

Die Mechanik fester Körper

Blau, Ernst Hannover, 1905

§ 47. Die Backenbremsen. Beispiele 183-185

urn:nbn:de:hbz:466:1-76868

§ 47. Die Backenbremsen.

Sie beruhen auf den Gesetzen der gleitenden Reibung.

a) Der Drehpunkt des Bremshebels liegt in der Tangente an die Bremsscheibe. Fig. 157.

Wird der Bremshebel an die Scheibe angedrückt, so entsteht die Reaktion N. — Gleichgewicht ist vorhanden, wenn die Bedingung besteht

$$N \cdot b = K (a + b),$$

$$N = \frac{a + b}{b} \cdot K$$

daraus ist

Der Reibungsbetrag am Umfang der Bremsscheibe ergibt sich dann mit

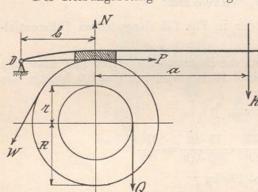


Fig. 157.

$$W = fN = f \frac{a+b}{b} \cdot K$$
.

Damit Bremsen eintritt, muß P = W sein.

$$P \cdot R = Q \cdot r$$

daher
$$P = Q \frac{r}{R}$$
,

also
$$Q\frac{r}{R} = t\frac{a+b}{b} \cdot K$$

$$K = \frac{r}{R} \cdot \frac{b}{a+b} \cdot \frac{Q}{f} (153)$$

b) Der Drehpunkt des Bremshebels liegt oberhalb der Tangente an die Bremsscheibe. Fig. 158.

Wäre E der Hebeldrehpunkt, dann würde gelten

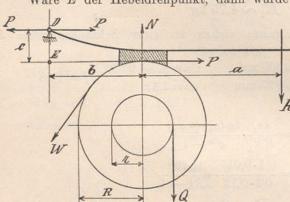


Fig. 158.

$$K_1 = \frac{r}{R} \cdot \frac{b}{a+b} \cdot \frac{Q}{f}$$

Da aber der Drehpunkt in D ist, tritt ein Kräftepaar $P \cdot c$ auf, dessen Moment $P \cdot c$ ebenfalls durch Bremsen aufgehoben werden muß. Die hierfür nötige Kraft ist nun aus

$$K_2 (a + b) = P \cdot c = Q \frac{r}{R} \cdot c$$

$$K_2 = \frac{r}{R} \cdot \frac{c}{a + b} \cdot Q$$

Demnach ist die totale Kraft am Bremshebel

$$K = \frac{r}{R} \cdot \frac{b}{a+b} \cdot \frac{Q}{f} + \frac{r}{R} \cdot \frac{c}{a+b} \cdot Q$$

$$K = \frac{r}{R} \cdot \frac{Q}{a+b} \left(\frac{b}{f} + c \right) \dots \dots \dots (154)$$

oder

c) Der Drehpunkt des Bremshebels liegt unterhalb der Tangente an die Bremscheibe.

In diesem Falle hilft das Moment $P \cdot c$ der Kraft K

$$K = \frac{r}{R} \cdot \frac{Q}{a+b} \left(\frac{b}{f} - c \right) \dots \dots (155)$$

f = 0.5, wenn Holz auf Eisen und trocken wirkt. $f = 0.15 \div 0.1$ für Eisen auf Eisen.

Beispiele.

183. In welchem Verhältnisse stehen K und Q, wenn r = 100, R = 300, a = 400, b = 75 mm und f = 0.5 sind?

Auflösung:

$$\frac{K}{Q} = \frac{100}{300} \cdot \frac{75}{475} \cdot \frac{1}{0,5}$$
$$\frac{K}{Q} = \frac{1}{9,5}$$

184. Wie groß ist für die Bremse in 183 die Last Q, wenn $K \sim 20 \,\mathrm{kg}$ ist? Auflösung:

$$Q = \frac{20 \cdot 300 \cdot 475 \cdot 0.5}{100 \cdot 75}$$
$$Q = 190 \text{ kg}$$

185. Wie groß ist für eine Bremse, bei welcher der Hebeldrehpunkt 30 mm unterhalb der Tangente an die Bremsscheibe liegt, das Verhältnis $\frac{K}{Q}$, wenn a, b, r und R so groß wie in Beispiel 183 sind? Für welchen Wert von c wird ferner die Bremse selbsttätig?

Auflösung:

$$\frac{K}{Q} = \frac{r}{R} \cdot \frac{1}{a+b} \left(\frac{b}{f} - c \right) = \frac{100}{300} \cdot \frac{1}{475} \cdot \left(\frac{75}{0,5} - 30 \right)$$

$$\frac{K}{Q} = \frac{1}{11,9}$$

Die Bedingung für die Selbsttätigkeit der Bremse ist

$$\frac{b}{f} = c$$

$$c = \frac{75}{0.5}$$

$$c = 150 \text{ mm}$$

Wenn c < 150 mm, ist Bremse nicht selbsttätig. Wird c > 150 mm, dann muß man sogar Hebel noch etwas abheben, wenn Gleichgewicht vorhanden sein soll.