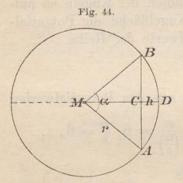


Die Ingenieur-Mathematik in elementarer Behandlung

Das Potential und seine Anwendung auf die Theorien der Gravitation, des Magnetismus, der Elektrizitaet, der Waerme und der Hydrodynamik

Holzmüller, Gustav Leipzig, 1898


58) Körperlicher Winkel des Kreiskegels

urn:nbn:de:hbz:466:1-77934

und ist ihre Zahl und ebenso die der Kraftröhren z. B. gleich 20, so folgt aus $4\pi m=20$, daß man die Centralmasse m als $\frac{20}{4\pi}=1,592$ angenommen hat. Der Kraftfluß in jeder der Röhren ist stets gleich 1, bei Querschnitt F ist er also für jedes Quadratcentimeter gleich $\frac{1}{F}$, bei unserer Zoneneinteilung also $\frac{1}{4\,r^2\pi}=\frac{20}{4\pi}\cdot\frac{1}{r^2}=\frac{m}{r^2}$, was

wieder die Feldstärke giebt. Also: Feldstärke gleich Kraftfluß

pro Quadratcentimeter Querschnittsfläche.

Bisweilen wird die einzelne Kraftröhre auch in Gestalt eines Kreiskegels angenommen. Dies giebt Veranlassung zu folgender

58) Aufgabe: Ein Kreiskegel habe im Hauptschnitt den Winkel $AMB = \alpha$ (die Seite MA sei = r). Wie groß ist sein körperlicher Winkel?

Auflösung. Es fragt sich, den wievielten Teil der Kugeloberfläche die Kalotte ADB von Höhe CD = hausmacht. Ihre Fläche ist gleich $2r\pi h$, also da

$$h = r - MC = r - r\cos\frac{\alpha}{2} = r\left(1 - \cos\frac{\alpha}{2}\right)$$

ist, gleich

$$2 r \pi r \left(1 - \cos \frac{\alpha}{2}\right) = 2 r^2 \pi \left(1 - \cos \frac{\alpha}{2}\right).$$

Demnach ist

$$\frac{\text{Kalotte}}{\text{Kugelfläche}} = \frac{2 \, r^2 \pi \left(1 - \cos \frac{\alpha}{2}\right)}{4 \, r^2 \pi} = \frac{1 - \cos \frac{\alpha}{2}}{2}.$$

Bei dem Monde, der Sonne, dem Jupiter u. s. w. würde α den scheinbaren Durchmesser in Bogengraden (Minuten, Sekunden, . . .) bedeuten. Man kann also ausrechnen, den wievielten Teil des scheinbaren Himmelsgewölbes sie bedecken. Bei der Sonne handelt es sich um $\alpha=32'0'',88$. Dagegen nennt man den halben Bogen, unter dem von ihr aus die Erde erscheint, die Sonnenparallaxe. Der ganze Bogen ist etwa das $\frac{1719}{195\,000}$ von α , nach Encke genau $\beta=16'',14232$. Demnach

würde der Bruch $\frac{1-\cos\frac{\beta}{2}}{2}$ z. B. angeben, der wievielte Teil der Wärmeausstrahlung der Sonne unserer Erde zu gute kommt. Auch hier handelt es sich um die Berechnung eines Kraftflusses.