

Sammlung algebraischer Aufgaben für gewerbliche und technische Lehranstalten

nebst einer Abhandlung über das Stabrechnen

Gleichungen (3. Teil); Proportionalität; Vermische Aufgaben; Summen; Exponentialgleichungen, geometrische Reihen, Zinseszins

Burg, Robert Frankfurt a.M., 1905

XXI. Proportionalität.

urn:nbn:de:hbz:466:1-78546

XXI. Proportionalität.

§ 1

- Wann nennt man eine Größenart [a] proportional zu einer Größenart [b]?
 Antwort: Eine Größenart [a] heißt proportional zu einer Größenart [b], wenn zu zwei beliebigen Werten b1 und b2 von [b] zwei Werte a1 und a2 von [a] zugehören, so daß die Proportion besteht a1: a2 = b1: b2.
- 2. Erläutere die Proportionalität:
 - a) bes Quabratumfange U zur Seitenlänge a;
 - b) bes Umfangs U eines regelmäßigen n-Eds zur Seitenlänge a;
 - c) des Kreisumfangs U zum Radius r;
 - d) des Feingewichts a einer Legierung zu ihrem Rauhgewicht b;
 - e) der gleitenden Reibung o zum Normalbruck N.
- 3. Wie nennt man:
 - a) eine Bewegung, bei welcher der Weg s proportional zur Zeit t ift;
 - · b) eine Arbeitsleiftung, bei welcher die Arbeit A proportional zur Zeit t ist;
 - c) eine Bewegung, bei welcher die Zunahme δ der Geschwindigkeit proportional zur Zeit t ist;
 - d) eine Kraftverteilung, bei welcher die Kraft P proportional zum Querschnitt F ist;
 - e) einen Körper, für welchen das Gewicht G proportional zum Volumen V ift?
- 4. Was versteht man unter dem Modul m (oder Proportionalitätsfaktor) der Größenart [a] zur Größenart [b], wenn [a] proportional zu [b] ist?
 Antwort: Unter dem Modul m versteht man den konstanten Wert des Quotienten a.
- 5. Gib die Werte der Moduln in Aufg. 2. a), b) und c) an.
- 6. Wie nennt und bezeichnet man die Moduln in Aufg. 2. d) und e)? Was für Zahlen sind die Moduln in Aufg. 2. a) bis e)?
- 7. Wie nennt, bezeichnet und benennt*) man die Moduln in Aufg. 3. a) bis e)?

^{*)} An dieser Stelle ift darauf hinzuweisen, daß alle Größen mit gebrochenen Benennungen Moduln zweier ungleich artigen proportionalen Größenarten find.

- 8. Wie kann man die Größenart [a] mit Hilfe der Größenart [b] und des Moduls m ausdrücken? Antwort: a = m · b.
- 9. Bilbe die in Aufg. 8 angegebene Gleichung für die Aufg. 2. d),
 e) und 3. a) bis e).

14

18

16

17

18

1!

§ 2.

10. Wann nennt man eine Größenart [a] proportional zu einer Größensart [b] und zu einer Größenart [c]? Antwort: Wenn [a] für gleiche Werte von [c] proportional zu [b] und für gleiche Werte von [b] proportional zu [c] ift.

11. Erläutere:

- a) ber Rechtecksinhalt F ist proportional zur Breite b und zur Höhe h;
- b) der Dreiecksinhalt F ist proportional zur Grundlinie g und zur Höhe h;
- c) ber Ellipseninhalt F ist proportional zur großen Halbachse R und zur kleinen Halbachse r;
- d) ber Zylindermantel M ist proportional zum Grundrabius r und zur Höhe h;
- e) das Drehmoment M ist proportional zur Kraft P und zum Hebelarm a;
- f) die Bogenlänge b ist proportional zum Radius ${f r}$ und zum Zentriwinkel ${f \varphi}$;
- g) die Verlängerung δ ist proportional zur Anfangslänge l und zur Spannung σ ;
- h) der Längenzuwachs δ ist proportional zur Stablänge l_0 bei 0^{0} C und zur Endtemperatur t;
- i) der Volumzuwachs δ einer Gasmenge ist proportional zum Volumen Vo bei 0° C und zur Endtemperatur t;
- k) die Arbeitsleiftung A ist proportional zur Anzahl n der Arbeiter und zur Zeit t;
- l) die erforderliche Wärmemenge W ist proportional zum Gewicht G und zur Temperaturänderung \triangle .
- 12. Beweise den Satz: Wenn [a] proportional zu [b] und zu [c] ist, so gilt die Gleichung:

$$\frac{\mathbf{a_1}}{\mathbf{a_2}} = \frac{\mathbf{b_1}}{\mathbf{b_2}} \cdot \frac{\mathbf{c_1}}{\mathbf{c_2}}$$

Ant. Benute vorübergehend den zu b2 und c1 zugehörigen Wert a0 von [a].

あいくでは、大学の あるできないと、大学は では、大学の あるできない。

- 13. Beweise den Satz: Wenn [a] proportional zu [b] und zu [c] ist, und das Produkt von [b] und [c] eine Bedeutung hat, so ist [a] auch proportional zu diesem Produkte.
- 14. Beweise den Satz: Wenn [a] proportional zu [b] und zu [c] ist, und [a] und [b] gleichartig sind, so ist der Verhältnis= wert von [a] zu [b] proportional zu [c].
- 15. Gib unter den in Aufg. 11 angeführten Beispielen diejenigen an, auf welche man: a) Aufg. 13, b) Aufg. 14, c) weder Aufg. 13 noch Aufg. 14 anwenden kann.
- 16. Sib für Aufg. 11 a) bis e) die Moduln der Größenart [a] zum Produkt der Größenarten [b] und [c] an.
- 17. Wie nennt und bezeichnet man (Aufg. 11. f. bis i.) den Ber= hältniswert:
 - a) der Bogenlänge b zum Radius r für den Zentriwinkel $q=180^{\circ};$ (Aufg. 21.)
 - b) der Verlängerung δ zur Anfangslänge l für die Spannung $\sigma=1~kg$ pro qcm; (Aufg. 23.)
 - c) des Längenzuwachses δ zur Stablänge l_0 bei 0^{0} C für die Endtemperatur $t=1^{0}$ C; (Aufg. 28.)
 - d) des Volumzuwachses δ einer Gasmenge zum Volumen V_0 bei 0^{0} C für die Endtemperatur $t=1^{0}$ C? (Aufg. 33.)
- 18. Wie nennt und bezeichnet man die Wärmemenge, welche ers forderlich ist, um G=1 kg eines Stoffes um $\triangle=1$ Celsiusgrad zu erwärmen? (Aufg. 11. I. und 39.)
- 19. Zwei Rechtecke, deren Inhalte sich zueinander wie m:n vershalten, rotieren um eine ihrer Seiten. Wie verhalten sich die Mantelflächen der bei der Rotation beschriebenen Zylinder?
- 20. Wie groß ist der Bogen b, welcher zum Radius r=150 cm und zum Zentriwinkel $\varphi=15^{0}$ 54' gehört?
- 21. Der Verhältniswert v des Bogens b zum Radius r heißt das Bogenmaß des Zentriwinkels φ . Wie groß (v) ist das Bogenmaß des Winkels $\varphi=100^{\circ}$?
 - a) $\varphi = 17^{\circ} 6'$; b) $\varphi = 53^{\circ} 20'$; c) $\varphi = 251^{\circ} 6'$.

- 22. Ein l=5 m langer Stab aus Schweißeisen erfährt bei der Zugspannung $\sigma=600$ kg pro qcm eine Verlängerung $\delta=1,5$ mm. Um wieviel (δ_1) wird sich ein ebenso langer Stab bei der Zugspannung $\sigma_1=1500$ kg pro qcm verlängern?
 - a) Um wieviel (δ_2) wird sich ein 3,5 m langer Stab auß Schweißeisen bei der Zugspannung $\sigma=600~kg$ pro qcm verlängern?

29

30

31

32

33

34

35

- b) Wie groß ist die Dehnung $s=\frac{\delta}{1}$ für Schweißeisen bei einer Zugspannung $\sigma=600~kg$ pro gcm?
- 23. Wie groß ist gemäß der vorigen Aufgabe der Dehnungs= toeffizient α für Schweißeisen? (Aufg. 17. b.)
- 24. Wie groß ist die Dehnung ε für Kupferdraht bei einer Zugspannung $\sigma=880~kg$ pro qcm, wenn der Dehnungskoeffizient $\alpha=\frac{1}{1300\,000}$ ist?
- 25. Um wieviel (d) wird ein Kupferdraht von l = 5 m Länge bei einer Zugspannung $\sigma = 880$ kg pro qcm verlängert? $\left(\alpha = \frac{1}{1300000}\right)$.

 a) Wie lang (l_1) wird der Kupferdraht?
- 26. An einem Wessingdraht von d=0.4 mm Dicke und l=20 m Länge wirkt eine Zugkraft P=1256.6 g. Wie lang (l_1) wird der Draht werden, wenn der Dehnungskoeffizient $\alpha=\frac{1}{1000\,000}$ ist? Anl. Bestimme zunächst σ , dann ε , dann δ .
- 27. Ein Stab aus Schweißeisen hat bei 0° C die Länge $l_{0}=90~cm$ und erfährt beim Erwärmen auf $t=91^{\circ}$ C die Verlängerung $\delta=1~mm$. Um wieviel (δ_{1}) wird sich derselbe Stab beim Erwärmen auf $t_{1}=52^{\circ}$ C ausdehnen?
 - a) Um wieviel (δ_2) wird sich ein Stab aus Schweißeisen, welcher bei $0^{\rm o}$ C die Länge von 1,50 m hat, beim Erwärmen auf t $=91^{\rm o}$ C ausdehnen?
 - b) Wie groß ist die Ausdehnung $\varepsilon=\frac{\delta}{l_0}$ für einen Stab aus Schweißeisen, welcher von 0^0 C auf 91^0 C erwärmt wird?
- 28. Wie groß ist gemäß der vorigen Aufgabe der (lineare) Ausschnungskoeffizient α für Schweißeisen? (Aufg. 17. c.)

新年の人といると、よりかがある とれた 以かられる

- 29. Wie groß ist die Ausdehnung ε $\left(=\frac{\delta}{l_0}\right)$ für Messingdraht beim Erwärmen von 0^{0} C auf $t=61,5^{0}$ C, wenn der Ausdehnungsstoeffizient für Messing $\alpha=\frac{1}{51\,700}$ ist? (Res. abgerundet als Bruch mit dem Zähler 1.)
- 30. Ein Platinstab, welcher bei $0^{\rm o}$ C genau ${\rm l_0}=18$ cm lang ist, wird auf $63^{\rm o}$ C erwärmt. Wie lang (1) wird derselbe, wenn für Platin $\alpha=\frac{1}{113\,100}$ ist?
- 31. Ein Stab, dessen Material den Ausdehnungskoeffizienten α besitzt, wird zuerst auf $t_1=C_1^{\ 0}$ Celsius und dann auf $t_2=C_2^{\ 0}$ Celsius erwärmt. Wie verhalten sich die beiden Endlängen l_1 und l_2 ?
 - a) Rupfer: $\alpha = \frac{1}{58200}$; $C_1 = 30$; $C_2 = 75$.
- 32. Wie groß (δ) müssen die Zwischenräume zwischen Eisenbahnsichienen sein, welche bei 0° C eine Länge $l_{\circ} = 9$ m haben, wenn dieselben bei $t_{1} = 9^{\circ}$ C gelegt werden und mit einer Maximalstemperatur $t_{2} = 60^{\circ}$ C gerechnet wird? (α für Stahl $= \frac{1}{85000}$).
- 33. In der nebenstehenden Flasche ist bei 0°C ein Gasvolumen Vo durch einen Flüssigkeitstropfen abgesperrt worden. Um wieviel (d) wächst das Volumen dieser Gasmenge bei der Erwärmung auf $t = C^o$ Celsius, wenn der Ausdehnungskoefstzient der Gase
 - $\alpha=rac{1}{273}$ ist? (Aufg. 17. d.) Wie groß ist das Gasvolumen (V) bei der Temperatur t? Antw. $V=V_0\cdot rac{273+C^*}{273}$.
 - a) $V_0 = 6 \text{ ccm}$; $t = 91^{\circ} \text{ C}$; b) $V_0 = 37.5 \text{ ccm}$; $t = 273^{\circ} \text{ C}$; c) $V_0 = 2.61$; $t = -14^{\circ} \text{ C}$; d) $V_0 = 11$; $t = -39^{\circ} \text{ C}$.
- 34. Wie verhalten sich die Volumina $(V_1 \text{ und } V_2)$ derselben Gasmenge bei den Temperaturen $t_1 = C_1^0$ Celsius und $t_2 = C_2^0$ Celsius (bei unverändeter Druckstärke)?
 - a) $t_1 = 27^{\circ} C$; $t_2 = 127^{\circ} C$; b) $t_1 = -13^{\circ} C$; $t_2 = +7^{\circ} C$; c) $t_1 = -8^{\circ} C$; $t_2 = 45^{\circ} C$; d) $t_1 = -9^{\circ} C$; $t_2 = -20^{\circ} C$.
- 35. In obenstehender Flasche (Aufg. 33) ist 1 l Luft bei 19^{1/20} C durch einen Flüssigkeitstropfen abgesperrt worden. Wie groß (Vo) ist das auf 0°C reduzierte Volumen dieser Lustmenge?

er

n. g=

13

m

er

^{*)} Bei dieser Aufg. fann die "absolute Temperatur" besprochen werden.

- 36. In vorstehender Flasche ist 1 l Luft bei $\mathbf{t_1} = \mathbf{C_1}$ Gelsius abgesperrt worden. Um wieviel (d) nimmt das Volumen dieser Luftmenge zu, wenn man dasselbe (bei unverändeter Druckstärke) auf $\mathbf{t_2} = \mathbf{C_2}$ Gelsius erwärmt?

 a) $\mathbf{t_1} = 12^{\circ}\,\mathbf{C}$; $\mathbf{t_2} = 69^{\circ}\,\mathbf{C}$; b) $\mathbf{t_1} = -3^{\circ}\,\mathbf{C}$; $\mathbf{t_2} = 51^{\circ}\,\mathbf{C}$.
- 37. Luft von 12° C werde in einer Heizfammer (Luftheizung) auf 69° C erwärmt. Um wieviel (x) °/0 des ursprünglichen Volumens dehnt sich die Luft hierbei auß? (Res. ganzzahlig abgerundet.)
- 38. $1\ kg$ Luft erfüllt bei 0° C (und $1\ Atm$. Druckstärke) einen Raum $V_{0}=773\ edm$. Wie groß ist das spezifische Gewicht der Luft bei 115° C (und $1\ Atm$. Druckstärke)? (Res. in kg pro edm auf 6 Dezimalstellen.)
- 39. Um 3,5 kg Eisenfeile von 12° C auf 112° C zu erwärmen, ist die Wärmemenge W = 39,9 Kal. erforderlich. Wie groß (c) ist hiernach die spezifische Wärme des Eisens? (Aufg. 18.)
- 40. a_1 kg eines Körpers von der spezifischen Wärme c_1 und der Temperatur $t_1 = C_1^0$ Celsius werden mit a_2 kg eines Körpers von der spezifischen Wärme c_2 und der Temperatur $t_2 = C_2^0$ Celsius gemischt. Wieviel $(\mathbf{x})^0$ Celsius beträgt die Mischungstemperatur?
- 41. 400 g warmes Wasser und 300 g kaltes Wasser sollen die Mischungstemperatur von 34° C ergeben. Wieviel (x und y)° C muß das warme und das kalte Wasser vor der Wischung besitzen, wenn ersteres doppelt soviel Celsiusgrade über der Zimmertemperatur von 24° C besitzen soll wie letzteres unter der Zimmertemperatur?
- 42. Zu 600 g Olivenöl von 13° C werden 500 g Eisenstaub von 94° C geschüttet, wodurch die Temperatur des Öles auf 32° C steigt. Läßt man dieses Gemisch auf 28° C abkühlen und mischt dasselbe dann mit 810 g Wasser von 80° C, so erhält man die Wischungstemperatur von 68° C. Wie groß (c, und c,) ist hiernach die spezisische Wärme des Olivenöls und diesenige des Eisens?

§ 3.

43. Wann nennt man eine Größenart [a] umgekehrt proportional zu einer Größenart [b]? Antwort: [a] heißt umgekehrt proportional zu [b], wenn zu zwei beliebigen Berten b1 und b2 von [b] zwei Berte a1 und a2 von [a] zugehören, so daß

die Proportion besteht $a_1:a_2=b_2:b_1$.

- 44. Wann nennt man eine Größenart [a] proportional zu einer Größenart [b] und umgekehrt proportional zu einer Größenart [c]?
- 45. Erläutere:
 - a) die Druckstärke p eines Gases ist proportional zur Gasmenge G und umgekehrt proportional zum Volumen V;
 - b) die Beschleunigung (Verzögerung) p ist proportional zur besschleunigenden (verzögernden) Kraft P und umgekehrt prosportional zum bewegten Gewicht G; (Aufg. 3. c.)

c) ber elektrische Leitungswiderstand wist proportional zur Länge 1 bes Leiters und umgekehrt proportional zum Querschnitt F besselben.

46. Beweise den Satz: Wenn [a] proportional zu [b] und umgekehrt proportional zu [c] ist, so gilt die Gleichung:

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \cdot \frac{c_2}{c_1}$$
 ober $= \frac{b_1}{b_2} : \frac{c_1}{c_2}$

- 47. Welche Beziehung besteht zwischen der beschleunigenden Kraft P und dem bewegten Gewicht G beim freien Fall? Welchen Wert hat die Beschleunigung beim freien Fall (für den 50ten Breitengrad)?
- 48. Wie nennt und bezeichnet man den elektrischen Widerstand eines Leitermaterials für l=1 m Länge und F=1 qmm Querschnitt?
- 49. 1 cbm Luft wiegt (bei 0° C) und bei 1 Atm. Druckstärke 1,293 kg. Welche Druckstärke (p) besitzen G=431 g Luft (bei 0° C), welche auf einen Raum V=20 l zusammengepreßt sind? (Aufg. 45. a.)
- 50. Bei nebenstehender Luftpumpe verhält sich der vom Kolben beschriebene Raum z zum Rauminhalt q der Glocke und Leitung wie 1:4. Wie groß ist die Drucksftärke (p1) der Luft unter der Glocke am Ende des ersten Kolbenshubes, wenn die anfängliche

Druckstärke $p_0 = 1$ Atm. war?

- a) Wie groß ist die Druckstärke (p4) am Ende des vierten Kolbenhubes (ohne Rücksicht auf die in die Hahnbohrung eins dringende Außenluft)?
- 51. Zwei mit gewöhnlicher Luft gefüllte Kugeln von den Raumsinhalten $V_1=4$ l und $V_2=5$ l sind durch eine Luftpumpe verbunden. Wie groß wird die Druckstärke $(p_1$ und $p_2)$ in jeder Kugel, wenn aus der ersten Kugel die Hälfte der ursprünglich in ihr enthaltenen Luft in die zweite Kugel hinübergepumpt wird?

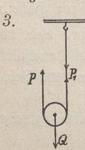
- 52. Aus Bersuchen mit der Fallmaschine ergibt sich, daß eine Kraft $P_1=6~g$ dem bewegten Gewicht $G_1=392~g$ die Beschleunigung $p_1=1,5~\frac{dm}{Sek.^2}$ erteilt. Wie groß (p_2) muß die Beschleunigung sein, welche eine Kraft $P_2=4~g$ dem bewegten Gewicht $G_2=588~g$ erteilt? (Aufg. 45. b.)
- 53. Wie groß ist die Beschleunigung (Verzögerung) p, welche die beschleunigende (verzögernde) Kraft P einem Körper vom Gewicht G erteilt?

Anl. Die Kraft G würde dem Gewicht G die Beschleunigung $g=9,81~\frac{m}{Sek.^2}$ erteilen.

- 54. Ein Eisenbahnzug vom Gesamtgewicht G = 150000 kg wird durch die Dampstraft von 1600 kg auf horizontaler Bahn gleich= mäßig beschleunigt bewegt. Wie groß ist die Beschleunigung p, wenn der Gesamtwiderstand 900 kg beträgt?

 Anl. Bestimme die resultierende beschleunigende Kraft P.
 - a) Wie groß (v) wird die Geschwindigkeit dieses Gisenbahnzuges 3 Min. nach Beginn der Bewegung und wie groß (s) der in dieser Zeit zurückgelegte Weg sein?
- 55. Ein belasteter Schlitten vom Gesamtgewicht $G=500\ kg$ wird auf horizontaler, glatter Eisbahn bei einer bestimmten Geschwindigsteit c sich selbst überlassen. Wie groß (p) ist die Verzögerung, wenn der Reibungstoeffizient f=0.04 ist (ohne Rücksicht auf den Lustwiderstand)? Ans. Bestimme zunächst die Reibung ϱ .
 - a) Wie lange (t) und wie weit (s) wird sich der Schlitten bewegen, dis er durch die Reibung zur Ruhe kommt, wenn $c=3,27\,rac{m}{Sek}$ war?
- 56. Die Drahtstärken zweier Kupferdrähte von gleichem Gewicht verhalten sich wie 5:8. Wie verhalten sich die Querschnitte F_1 und F_2 , die Längen l_1 und l_2 und die elektrischen Leitungs= widerstände w_1 und w_2 der beiden Drähte? (Aufg. 45. c.)
- 57. Wie groß ist der elektrische Leitungswiderstand w eines 4 mm starken Telegraphendrahtes von 12 Meilen Länge, wenn der spezifische Leitungswiderstand des Eisens c = 0,12 Ohm ist? (Ausg. 48)

58. Um aus Neusilberdraht von 1,6 mm Dicke einen elektrischen Widerstand von 1 Ohm herzustellen, braucht man eine Draht- länge von 5 m. Wie groß (c) ist hiernach der spezisische Widerstand des Neusilbers?


§ 4.

- 59. Wann nennt man eine Größenart [a] proportional zur nien Potenz einer Größenart [b]? Anl. a₁: a₂ = b₁n: b₂n.
- 60. Wann nennt man eine Größenart [a] umgekehrt proportional zur nten Potenz einer Größenart [b]?
- 61. Gib die Art und den Grad an für die Proportionialität:
 - a) bes Quadratinhalts F zur Seitenlänge a;
 - b) des Kreisinhalts F zum Radius r;
 - c) der Würfeloberfläche O zur Kantenlänge a;
 - d) der Kugeloberfläche O zum Radius r;
 - e) der Druckstärke p des Windes zur Windgeschwindigkeit c;
 - f) des Weges s bei der gleichförmig beschleunigten Bewegung ohne Anfangsgeschwindigkeit zur Zeit t;
 - g) der erforderlichen Pendellänge 1 zur Schwingungszeit t;
 - h) der Beleuchtungsftärfe B zur Entfernung e von der Lichtquelle;
 - i) bes Würfelvolumens V zur Kantenlänge a;
 - k) des Kugelvolumens V zum Radius r;
 - 1) bes Trägheitsmomentes J eines Quabrates zur Seitenlänge a.
- 62. Gib die Art und den Grad an für die Proportionalität:
 - a) des Cylindervolumens V zum Grundradius r und zur Höhe h;
 - b) des Kreisausschnittes F zum Radius r und zum Centrimintel q;
 - c) des Trägheitsmomentes J eines Rechtecks (bezogen auf die Mittelparallele zur Breitseite) zur Breite b und zur Höhe h.
- 83. Lebhafter Wind von der Geschwindigkeit c=9 m pro Sek. übt die Druckstärke p=9,921 kg pro qm auß; welche Druckstärke (p_1) hat Sturm von der Geschwindigkeit $c_1=27$ m pro Sek.? (Aufg. 61. e.)
 - a) Welchen Druck (P1) übt dieser Sturm auf eine zu ihm senkrechte Fläche von 18 qm aus? (Ref. auf kg abgerundet.)

- 64. Ein Sekundenpendel hat (für 50° nördl. Breite) die Länge l = 993.8 mm. Wie lang (l_1) müßte ein Pendel sein, dessen einfache Schwingung eine halbe Sekunde dauert? (Aufg. 61. g.)
- 65. Ein Photometer wird von einer 1 m entfernten Glühlampe ebenso stark beleuchtet, wie von einer 20 cm entfernten Normalkerze. Wieviel (x) Normalkerzen ersetzt die Glühlampe? (Aufg. 61. h.)
- 66. Eine Lichtquelle \mathfrak{L}_1 von \mathfrak{n}_1 Normalkerzen und eine Lichtquelle \mathfrak{L}_2 von \mathfrak{n}_2 Normalkerzen haben voneinander die Entfernung \mathfrak{l} . Wie weit (x) von \mathfrak{L}_1 üben beide die gleiche Beleuchtungsstärke auß? a) $\mathfrak{n}_1=12$; $\mathfrak{n}_2=75$; $\mathfrak{l}=2,10$ m.
- 67. Aus einer Bleikugel von 20 mm Durchmesser sollen durch Umschmelzen 8 gleich große Kugeln hergestellt werden. Wie groß
 muß der Durchmesser (d1) dieser Kugeln sein? (Aufg. 61. k.)
- 68. Wie groß ist die Fläche F und der Umfang U eines Kreisausschnitts vom Zentriwinkel $\varphi=46^{\circ}$ 184, wenn der Nadiusr=180~mm ist?

XXII. Bermischte Aufgaben.

- 1. Leite den Wert der zum gleichförmigen Heben einer Last Q (ohne Reibung) erforderlichen Kraft P aus dem Energiegesetze ab:
 a) für die feste Rolle; b) für die lose Rolle; c) für den gewöhnslichen Flaschenzug; d) für den Differentialflaschenzug; e) für die schraube. (XIX. Ausg. 16.)
- 2. Um mittelst einer sesten Rolle die Last Q=25~kg gleichförmig zu heben, ist mit Rücksicht auf Seilsteifigkeit und Reibung eine Kraft P=27.5~kg erforderlich. Wie groß (η) ist der Wirkungs- arab dieser Rolle?

Die Last Q soll mittelst einer losen Rolle gleichförmig gehoben werden. Wie groß $(P_1 \text{ und } P)$ sind die Zugkräfte in beiden Seilteilen, wenn die Zugkraft im ablaufenden Seile um $10^{0/0}$ größer ist als im auflaufenden Seile? Wie groß (η) ist der Wirtungsgrad dieser Rolle? (Das Gewicht der Rolle ist in Q insbegriffen). Anl. $P_1 + P = Q$.