

Perspektive

Freyberger, Hans Leipzig, 1897

§ 38. Teilstrecke des Abstandes

urn:nbn:de:hbz:466:1-78607

(Der zweite Diagonalpunkt würde durch die Halbierung des zu wFv gehörigen Nebenwinkels zu erlangen sein; er liegt aber meist soweit ab, daß er nicht mehr verwendet werden kann und ist für die Konstruktionen entbehrlich.

Würde man ferner die Strecke aF auf der Augenhöhe von A aus nach links und rechts abtragen, so wäre damit

auch Dr und D1, also der Abstand angegeben.

§36. Fig. 22. Gegeben sei HH, A, GA; ferner die fenkrechte Würfelkante np und an n der perspektiv. rechte Winkel mit den Fluchtpunkten V und

W; ber Würfel foll gezeichnet werben.

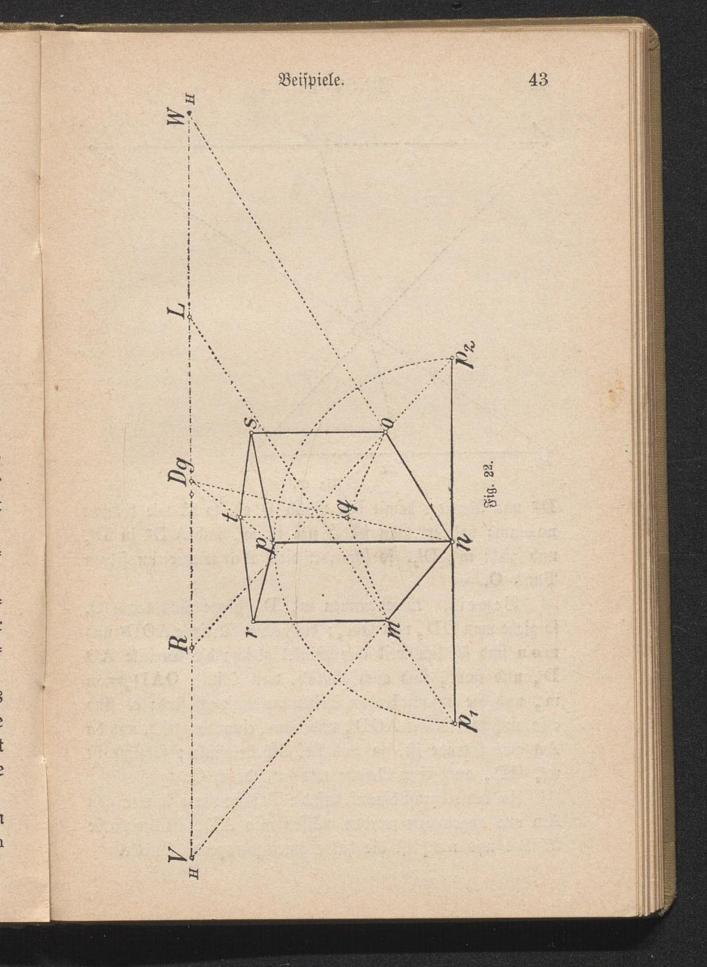
Suche nach voriger Aufgabe die Punkte R, L und Dg; in n ziehe eine Wagrechte und trage auf ihr von n nach links und rechts die Strecke np nach p_1 und p_2 ab, ziehe p_1 L und p_2 R, so schneiden diese nV und nW in m und o; die Senkrechten in m und o treffen pV und pW in r und s; ziehe noch sV und rW bis zum Schnitt in t, so ist das perspektivische Bild des Würfels fertig.

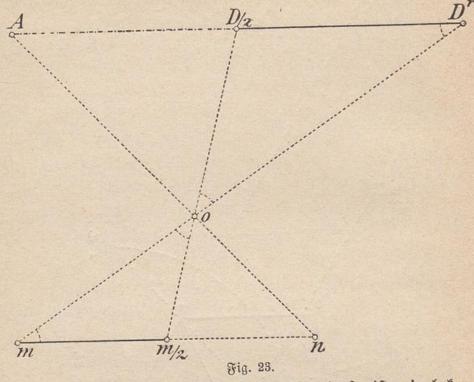
pt muß in der Verlängerung nach Dg gehen; die un= sichtbaren Würfelkanten können leicht nachgeholt werden.

§ 37. Nachdem wir die Eigenschaften und die Aufstuchung der Hilfspunkte kennen gelernt haben kommen wir zu deren Verwertung. Hauptsache ist dabei, daß alle Hilfspunkte auf unsere Bildfläche selbst zu liegen kommen.

§ 38. Da aber der Abstand größer sein soll, als das Bild breit, so würde dieser immer außerhalb der Bildsläche liegen. Diesem Uebel wird abgeholsen dadurch, daß wir mit dem halben Abstand (D/2) oder irgend einer Teilstrecke davon (D/3) D/4 arbeiten.

Fig. 23. Wir haben die Wagrechte mn und sollen ihre Länge auf nA von n aus abtragen; man zieht m





 D^r und schneidet damit den Punkt O ab, so ist wie bekannt no=nm; halbiert man jedoch nm in $m/_2$ und A/D^r in $D/_2$ und zieht $m/_2$ $D/_2$, so schneidet diese An wieder im selben Punkt O.

Beweis. Angenommen m_2 D_2 ginge nicht durch O, so ziehe man OD_2 und Om_2 ; die beiden Dreiecke AOD^r und mon sind ähnlich weil ihre Winkel gleich; die Dreiecke AOD_2 und nom_2 sind auch ähnlich, weil Winkel OAD_2 on m_2 und die einschließenden Seiten proportional sind; es sind also auch die Winkel AOD_2 und nom_2 einander gleich, und da An eine Gerade ist, so sind sie Scheitelwinkel; folglich ist m_2 OD_2 auch eine Gerade und geht durch O.

Zu bemerken ist hierbei, daß die Teilstrecken immer von \mathbf{A} n aus angetragen werden müssen also $\mathbf{AD}/_2$ ist der halbe Abstand und $\mathbf{nm}/_2$ ist die halbe hineinzutragende Strecke.