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IV . Anwendung der Differentialrechnung auf

analytische Geometrie .

( Fortserzung zu Abschnitt 11 }

A , Ellipse ,

Na

Tangente . Normale . Subtangente , Subnormale .

1 Durch Dilferentiatien der Mittelpunktsebeichung

HN hi ah
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a Nah HUN u

x HN
WIE Di we

{ x ax
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7x ) u
xN \ x N
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Quadratur der Ellipse ,
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C. Krümmungskreise .
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