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Durch: Differenfiation der Parabelgleichung finden wir:
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Da man die mit I und 1I bezeichneten Flachenbschnitte in Fig. 18 als Sunme
einer unendlichen Zahl soleher kleinen Flichenabsehnitte mit der Basis
IT bezeichneten Abschnitts
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des von den Coordinaten x und y abgegrenzten Parabel-
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segments ist pleich dem Reehtecke :.\.\'.
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C. Erfiimmungskreise.
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Erliiunterungen.
A und B, Fig. 19, einer Kurve an diese Tan-

Zieht man in zwel Punkten
singeschlossene Winkel @ die Kriimmung ds

senten. |0 heisst der von diesen *S
Linge des Bogens A B, so heisst — die durch-
g

B. Bezeichnet s die
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hnittliche Kriimmung der Lingeneinheit.
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Kriimmungsradins.

1) Ist s der Bogen eines Kreises mit dem Radius v, Fig. 20, so isf — el

. g

Mass fiir den Winkel g, (vergl. §31. 1) —, oder da e = f, auch fiir den Winkel a.

Die durchschnittliche Kriimmung der Lingeneinheit ist also Die Reciproke
z

des Radius ist also ein Mass fiir dieselbe.




Da hiernach die Kriimmung nur vom Radius r abhiingt, so ist dieselbe beim
Kreise constant, Der Radius heisst in seiner Eigenschaft als Mass der Kriimmung
HHKriimmungsradins®,

2) Unter der Krimmung einer Kurve in einem bestimmten Punkte P ver-
steht man die Krimmung eines diesen Punkt enthaltenden uwnendlieh kleinen
i\rlll'l'e'lllnugwnh_ Sind a und b, Fig, 21, dic Endpunkte dieses Bogens. d s, (Bogen-
differential), dessen Liinge. » der Winkel, den die in a an die Kuarve gezogene
Tangente mit der Abscissenaxe einschliesst, so ist. wie sofort evhellt. die Kriimmung d

des Bogens ab gleich der Aenderung. welche v erleidet, wenn der Berithrungs-

punkt a der '|\::l|||_l'|-=|;'e nach b riickt, oder wenn x und y sich um dx und dy
andern, d. h, dr ist das Differential des Winkels r.  Dio durehsehnittliche K ritnmung
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des Bogens ab ist gleich —. Bezeichnet r den Radius cines Kreises von gleicher
ds
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Kriimmung, so ist also ——
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Dieser Radius heisst Krimmungsradius der Kwve im Punkte P. der damit
heschriebene Kreis heisst Kriimmungskreis. is st dies also derjenige Kreis,

welcher mit der Kurve im Punkte P auf cine sehr kleine Strecke ab zur Deckung
gebracht werden kann. Denkt man sigh in den einander unendlich nahe selegenen
Punkteri a und b zu den Tangenten Senkrechte ervichtet, so ist der Durchschnitt
derselben der Mittelpunkt des Kriimmungskreises. und seine Entfernung von a und b

der Kriimmungsradius.
Das Difterentinl des Bogens ds kann als Hypotenuse des rechtwinkligen

Dreiecks mit den Katheten d x und dy angesehen werden, also ist:
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it man:

Setzt man 1) and 2) in (59) ein, 20 er

(60)

Beispi Eine Kurve durch ihre Gleic

gt 1) .
cepehen, den Kriimmungsradins derselben in dem Pankte P . 2 finden
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Fiir x Il erhalten wir hieraus r T

4) Der Kriitmmungsradius der Parabel fiir den g

sebenen Punke P, y lsisst sich zwar leicht mach der-
selben Formel finden, da aber ein anderer Weg, auf welchem man zum Kriimmungsradius gelangen kann,

sich fiir die Parabel besonders el

fach gestalter; so soll derselbe hier noch erliutert werden.

Die Coor iten eines beliebigen Punktes der Normale Rir den Punkt P, seien Yy, X,, Fig 22,
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