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Yorwort .

Der erste Teil dieser im Winter 1890/91 gehaltenen

Vorträge , welcher die statische oder Reibungs -Elektricität
behandelt , erschien vor zwei Jahren allein , da Kränklichkeit

und Berufsarbeiten den Verfasser an der für den Druck er¬

forderlichen Umarbeitung des zweiten Teiles hinderten . Leider

verzögerte sich die Ausgabe der vorliegenden „dynamischen
Elektricität “ aus denselben Gründen länger , als vorausgesetzt
war , doch kam diese Verspätung insofern der Arbeit zu gute ,
als mancher neue Versuch durchprobiert und eingefügt werden
konnte ( so z . B . die anschauliche Demonstration der Wirkungs¬
weise des Telephons nach Bosschard , Fig . 74) .

Da die Fülle des Stoffes eine Ausscheidung des minder

Wichtigen dringend erforderte , so wurde aus dem Magnetis¬
mus nur das zum Verständnis der elektro -magnetischen Er¬

scheinungen Nötige besprochen und einige Ergänzungen und

praktische Winke im Anhänge behandelt . In der Darstellung
selbst ist der historischen Entwickelung möglichst Rechnung

getragen . Bei der Einleitung in die dynamische Elektricität
suchte der Verfasser dadurch einen engeren Anschlufs an
die statische Elektricität zu erzielen , dafs er die ersten
Versuche über das Stromgefälle im Leiter und die Abhängig¬
keit der Leitungsfähigkeit eines Leiters von seinem Quer¬
schnitt mit Hülfe der Influenz - Elektrisiermaschine
anstellte (wie das u . a . von F . Poske in d . Zeitschr . f. d .
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phys . n . ehern . Unt : empfohlen worden ) . Da also hierbei
ein Apparat verwandt wurde , der als wichtigste Quelle der
statischen Elektricität bekannt ist , so konnte von vorn - >j
herein darauf hingewiesen werden , dafs bei den elektro - dyna - J
mischen Erscheinungen keine neue Art von Elektricität , son- J
dern nur eine neue Form ihrer Wirkungsweise auftritt .

Aus der Analogie der hierbei beobachteten Erscheinun¬
gen mit den hydrodynamischen ergab sich ungezwungen der
Begriff der elektromotorischen Kraft . t

Die Experimente stehen — dem eingeschlagenen induk - J:
tiven Gange entsprechend — im Vordergründe -

, doch ist auch
hier eine möglichst geringe Anzahl von Apparaten
benutzt worden , von denen einige — speciell für den Schul¬
gebrauch konstruiert — sich bereits den Beifall der Fachge¬
nossen errungen und eine gröfsere Verbreitung gefunden ■
haben . Mit Ausnahme des Demonstrations - Galvanometers
sind alle am Schlufs aufgeführten neueren Apparate vom
Verfasser eigenhändig angefertigt , also leicht herstellbar . —
Um den Zuhörern den Überblick zu erleichtern , wurden ver -

glschiedenfarbige Poldrähte und stellbare Stromrichtungs -Zeiger '

angebracht (am Stromwender ein automatisch wirkender ) ,
überhaupt war Verfasser bemüht , die Versuche zu verein¬
fachen ; so wurden durch Anwendung eines vor den Augen
der Zuschauer graduierten Galvanometers alle Rechnungen :
vermieden , wodurch u . a . das Ohm ’sche Gesetz unmittelbar
zur Anschauung gebracht wurde . j

Dafs der Verfasser die magneto - elektrische Induktion ,
*

den neueren Anschauungen gemäfs , auf die Kraftlinien zu
begründen suchte , wird man gerechtfertigt finden ; weniger viel¬
leicht , ■dafs er manches traditionelle Experiment , wie das mit \
der Volta ’schen Säule oder gar „ Volta ’s Fundamentalver - 1
such “ über Bord geworfen hat . Letzteres geschah , weil es
dem Verfasser widerstrebte , Anderen etwas klar machen zu
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wollen , was er selbst nie begriffen bat ■— — und dazu ge¬
hört die „ Kontakt - Theorie “ ! Da die Anschauungen
über die Ursache der elektromotorischen Kraft für das Ver¬
ständnis der Wirkungen des galvanischen Stromes bedeutungs¬
los sind , so ist der Schaden nicht grofs . (Übrigens ist in
Österreich vom Ministerium neuerdings die Besprechung des
Volta ’schen Fundamentalversuchs in den Schulen als „ zweifel¬
haft “ für unzulässig erklärt .)

Zur Vermeidung von Mifsverständnissen sind die Aus¬
drücke „ elektrische Spannung “ und „ Klemmenspannung “

vei’mieden und durch die längeren , aber eindeutigen Bezeich¬
nungen „ elektrische Niveaudifferenz “ (Potentialdifferenz ) und
„ Poldifferenz “ ersetzt .

Vielfache Anregung verdankt der Verfasser der physika¬
lischen Sektion des pädagogischen Museums der Militär -
Lehranstalten in St . Petersburg und der „ Zeitschrift für den
physikalischen und chemischen Unterricht “ .

Herrn Prof . Dr . O . Chwolson , sowie den Oberlehrern
Herren N . von Drenteln und A . Nating in St . Petersburg ,
und Herrn Prof . Dr . F . Poske in Berlin ist der Verfasser zu
besonderem Dank verpflichtet für die Liebenswürdigkeit , mit
der erstere ihn bei der Durchsicht des Manuskriptes , letztere
bei der Korrektur der Druckbogen unterstützt haben .

Die Verlagshandlung hat in anerkennenswerter Weise
für die Ausstattung gesorgt und die Figuren nach Original¬
zeichnungen des Verfassers neu schneiden lassen .

St . Petersburg , im März 1895 .

Der Verfasser .
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I . Vortrag 1.
Die wichtigsten Erscheinungen des Magnetismus ; Vergleich der magnetischen und der
elektrostatischen Erscheinungen ; Die Influenz -Elektrisiermaschine als Elektricitätsquelle ;
Verlauf des Elektrisierungsgrades entlang einem die Pole der Maschine verbindenden
Halbleiter ; Analogie zwischen hydrodynamischen und elektrodynamischen Erscheinungen ;
Begriff der elektromotorischen Kraft ; Elektrisches Gefälle im Stromkreise ; Abhängigkeit
des elektrischen Gefälles von der Länge des Stromleiters ; Ursache des elektrischen Stromes ;

Abhängigkeit des elektrischen Gefälles von der Leitungsfähigkeit des Stromleiters .

In der statischen oder Reibungs -Elektricität haben Sie eine
Reihe von Erscheinungen kennen gelernt , welche mit den zu¬
nächst zu besprechenden magnetischen Erscheinungen zum
Teil eine so auffallende Übereinstimmung zeigen , dafs wir un¬
willkürlich dazu gedrängt werden , zwischen beiden Gebieten
einen inneren Zusammenhang zu vermuten . Bei genauerer
Betrachtung werden sich aber bald gewichtige Unterschiede
zeigen . Wir werden daher gut thun , die wichtigsten magneti¬
schen und elektrostatischen Erscheinungen einander gegenüber
zu stellen . Da die Magnete und ihre Haupteigenschaften Ihnen
schon bekannt sind , so können wir uns auf das für das Fol¬
gende Notwendige beschränken .

Hier ist ein Stück Magneteisenerz , das aus einer che¬
mischen Verbindung des Eisens mit Sauerstoff (Fe 3 0 4) besteht .
Durch Abschleifen hat man zwei gegenüberstehende Flächen
eben gemacht . Ich fasse das Magneteisenstück in der Mitte
und drücke es in ein Häufchen Eisenfeilspäne . Nach dem
Herausheben sehen Sie (A Fig . 1) die Eisenteilchen daran
haften , aber nicht gleichmäfsig . Dichtere Büschel hängen an
den Endflächen , besonders an deren Kanten . In der Mitte
zwischen beiden Endflächen sehen wir ringsum eine freie Zone ,
wo keine Eisenteilchen haften , die Indifferenzzone (ii bei A
Fig . 1 ) . Die Flächen , wo die magnetische Anziehung am kräf¬
tigsten ist , nennen wir die Polflächen oder Pole (pp ) . Nähere

Kolbe . TI. 1



2 Magnetische Anziehung und Abstofsung .

ich eine Polfläche — nachdem ich die Feilspäne abgestreift
habe — einem Stück Eisen , so wird dieses stark angezogen
und ist seinerseits wieder imstande , Eisen anzuziehen (B Fig . 1) .
Jede der beiden Polflächen kann ich so mit einer Kette von
Eisenstücken versehen und die Endglieder zeigen eben¬
falls gegenseitige Anziehung und haften nach der Berüh¬
rung aneinander (B Fig . 1 , rechts ) .

Die magnetische Anziehung äufsert sich schon in der Nähe
der Polfläche . Ich befestige ein Stück weiches Eisen in einem
Ständer ( A Fig . 2) und halte eine Polfläche nahe darüber . Nun
kann ich an dieses Stück Eisen ein zweites , an dieses ein
drittes hängen . Sobald ich aber den Magnet entferne , fallen

Fig . 1.
Magnetische Anziehung .1/10 nat . G-röfse .

Fig . 2.
A magnetische Influenz . B verschiedene
Anziehungskraft d . Magnete auf Eisen u .

Nickel .

die freien Eisenstücke ab — ebenso , wenn ich bei dem vorigen
Versuch das oberste Eisenstück festhalte und den Magnet
fortnehme . Diese durch die Annäherung eines Magnets be¬
wirkte Erscheinung heifst die magnetische Influenz . (Wir
kommen noch darauf zurück .)

Die magnetische Anziehungskraft äufsert sich beim Eisen
sehr stark , bei einigen Metallen (Kobalt und Nickel ) schwach
und ist bei anderen Körpern nur mit Hülfe sehr starker Mag¬
nete nachweisbar . Um Ihnen den Unterschied zwischen Eisen
und Nickel zu zeigen , nehme ich von jedem Metall nahezu
gleich grofse Stücke , die rund gefeilt und mit einem Häkchen
versehen sind ; diese hake ich in die Öse einer feinen seidenen
Schnur , an welche ich in Abständen Bleistücke von gleichem
Gewicht befestigt habe (B Fig . 2) . Berühre ich die Eisen¬
kugel mit einer Polfläche des Magnets , so kann ich eine



Richtkraft beweglicher Magnete . 3

Kette von über 10 Bleistückchen auf heben , während die Nickel¬
kugel herabfällt , sobald das vierte Bleistückchen gehoben wer¬
den soll .

Wir sahen : Bei der Berührung mit einem Magnet ,
ja selbst durch Annäherung eines solchen , wird
weiches Eisen ebenfalls magnetisch , verliert aber
diese Eigenschaft sofort nach Entfernung des Magnets .
Auch wiederholtes Streichen mit dem Magnet ändert hierin
nichts , dagegen zeigt ein Stahlstab in diesem Falle bleiben¬
den Magnetismus . Das setzt uns in den Stand , künstliche
Magnete von bequemerer Gestalt herzustellen .

Diese Stricknadel ist ein vortreffliches Versuchsobjekt .
Ich breche sie in der Mitte durch und erhalte zwei handliche
Stahlstäbchen , die ich magnetisiere , indem ich sie in der Mitte
fasse , dicht bei den Fingern auf die eine Polfläche des Magnets
lege und abziehe , sodafs das Ende der Stahlnadel zuletzt die
Polkante verläfst . Dieses wiederhole ich 20—30 mal . Ebenso
verfahre ich mit der anderen Nadelhälfte , nur streiche ich sie
an der entgegengesetzten Polfläche des natürlichen Magnets . —
So ! Jetzt sind beide Nadeln genügend stark magnetisiert , um
Eisenstücke zu tragen , deren Gewicht gröfser ist als das der
Magnetnadeln selbst . — Nun können wir vermittelst Magnet¬
nadeln die eigentümlichen Eigenschaften der Magnete studieren .

An zwei Ständern , die einen Abstand von etwa 2 m haben ,
sind an feinen , ungedrehten Seidenfäden kleine Bügel aus
Aluminiumdraht befestigt , in welche ich die beiden Magnet¬
nadeln so lege , dafs sie horizontal schweben . — Sie sehen :
beide Nadeln schwingen einige Mal hin und her und nehmen
dann eine parallele Lage ein . An jener Sonnenuhr am Fenster
erkennen wir leicht , dafs das eine Ende jeder Nadel genau
nach Norden zeigt 1) .

Um die Enden der Nadeln von einander zu unterscheiden ,
stecken wir an den „ nordsuchenden “ Pol jeder Magnetnadel ,
den wir auch kurz „Nordpol “ nennen können , einen rot ge -

' ) Die horizontale Abweichung der Magnetnadel vom astronomi¬
schen Meridian beträgt jetzt hier in St . Petersburg fast Null (nur etwa
7a Min. westlich ) und kann daher für unsere Zwecke vernachlässigt werden .
Diese „ Deklination “ der Magnetnadel ist für westlicher oder östlicher
gelegene Orte bedeutend gröfser.

1 *



4 Wechselwirkung zwischen Magneten.

färbten Kegel ans leichtem Sonnenblumenmark und an das
andere Ende eine grüne Kugel aus demselben Stoff . Jetzt
zeigen beide wieder aufgehängten Magnetnadeln mit der Spitze
des roten Kegels nach Norden . Der rote Kegel markiert also
den Nordpol , die grüne Kugel den Südpol jeder Nadel . —

Uns drängt sich nun die Frage auf : wie verhält sich nun
ein solcher beweglicher Magnet bei der Annäherung eines
Stückes Eisen , und wie bei der eines zweiten Magnets ? Ich
nähere einen eisernen Schlüssel der einen Magnetnadel — der
eine Pol wird angezogen , aber — — der andere ebenfalls ,
d . h . beide Pole ■des Magnets werden von dem unmagnetischen Eisen
angezogen, wie vorhin das Eisen von jedem der beiden Magnetpole .

Fig . 3.
Magnetische Anziehung und Abstofsung . Vio natürl . Gröfse .

Jetzt nehme ich eine Magnetnadel vom Bügel und nähere
ihren Nordpol der beweglichen Nadel von der Seite — sofort
dreht sich diese lebhaft herum , schwingt mit abnehmenden
Ausschlägen einige Mal hin und her und bleibt dann in einer
solchen Lage stehen , dafs ihr Südpol dem zugewandten Nord¬
pole der genäherten Magnetnadel gegenübersteht (A Fig . 3) . —
Kaum wende ich die feste Nadel , so schwingt auch die beweg¬
liche herum und kehrt ihren Nordpol dem Südpole der ge¬
näherten zu (B Fig . 2 ) .

Nachdem die aufgehängte Nadel wieder ihre nord -südliche
Ruhelage eingenommen hat , nähere ich ihrem Süd pole rasch
den Südpol der anderen Magnetnadel — es findet eine lebhafte
Abstofsung statt ; desgleichen zwischen beiden Nordpolen .
Wir sehen hieraus : Ungleichnamige Magnetpole ziehen sich an, gleich¬
namige stofsen sich ab !

Sollte es möglich sein , beide Magnetpole von einander zu
trennen ? Ich zerbreche die eine Magnetnadel in der Mitte und

TBi .



Ampere ’sche Hypothese der Molekularmagnete . 5

nähere die Bruchfläche des mit dem roten Kegel versehenen
Nord -Endes der aufgehängten Nadel — es ist hier ein Süd¬

pol entstanden ; ebenso an der Bruchfläche des anderen
Stückes ein Nordpol , d . h . jedes zerbrochene Stück ist wieder ein
vollständiger Magnet ! Ich zerbreche die Stücke nochmals , bis
die Nadel in 8 nahezu gleiche Stücke geteilt ist . Nun stecke
ich diese in eine dünne Glasröhre so , dafs auf einen Südpol
immer der Nordpol des nächsten Stückes folgt und hänge die
Glasröhre in den freien Bügel ; Sie sehen , die 8 Magnetchen
verhalten sich wie ein heiler Magnet .

Setzen wir in Gedanken das Zerteilen der Magnetnadel
immer weiter fort , so hindert uns nichts an der hypothetischen
Annahme , dafs jedes Molekül 2) des Stahles , aus dem die
Nadel besteht , einen Nord - und einen Südpol hat , also der
Magnet aus zum Teil gleichgerichteten Molekularmagneten zusammen¬
gesetzt ist ( Ampfere ) .

Was wird nun geschehen , wenn diese Molekularmagnete
nicht gleichgerichtet sind , sondern alle möglichen Stellungen
einnehmen ? Hier sehen Sie ein sehr dünnwandiges Probier¬
gläschen , das mit Stahl -Feilspänen locker gefüllt und durch
einen Kork verschlossen ist . Durch längeres Streichen an den
Polen eines starken Magnets gelingt es , die aus vielen Tau¬
senden von Stücken bestehende Stahlmasse zu magnetisieren ,
sodafs die Enden kleine Eisenstücke zu tragen vermögen . —
Jetzt lockere ich den Pfropf etwas und schüttele die Röhre so
stark , dafs die Feilspäne durcheinander geworfen werden und
— fast spurlos ist der Magnetismus verschwunden !

Nach dem Vorstehenden dürfen wir annehmen , dafs ein
nnmagnetisches Stück Stahl oder Eisen auch aus Molekular¬
magneten besteht , die aber alle möglichen Stellungen zu ein¬
ander haben . Magnetisieren heifst also nur : einen Teil
der Molekularmagnete gleichgerichtet parallel stellen .
Die (in Wirklichkeit nie zu erreichende ) Grenze der Magneti¬
sierbarkeit wäre der Fall , wo alle Molekularmagnete gleich¬
gerichtet sind . Die leichte aber nur vorübergehende Magneti -

2) Unter Molekülen verstellen wir die kleinsten unter sich gleich¬
artigen Teilchen , aus denen die Körper zusammengesetzt sind . Die unteil¬
baren Elementarbestandteile der Moleküle heifsen Atome .

Molekular -
magnete .



6 Magnetisierung von Stahlstäben .

Magnetisierung
durch Influenz .

sierbarkeit des Eisens könnte eine Folge der leichten Drehbar¬
keit der Eisenmoleküle sein , während die auch mit Kohlenstoff¬
atomen behafteten Stahlmoleküle vielleicht schwerer drehbar
sind , dafür aber — einmal gerichtet — ihre neue Stellung bei¬
behalten . Die Thatsacbe , dafs ein Stück Stahl rascher den
Magnetismus annimmt , wenn es während des Magnetisierens
erschüttert wird , und dafs ein Stahlmagnet durch Stofs oder
Fall einen Teil seines ‘

Magnetismus verliert , spricht jedenfalls
für unsere Annahme .

Noch haben wir die Frage zu entscheiden : Welchen Pol
erhält das mit dem Magnetpol gestrichene Ende der Stahlnadel ?
Dieses Stück einer Stricknadel ist noch unmagnetisch . Ich
fasse es nahe an einem Ende und ziehe es so an dem Nordpol
eines Magnets ab , dafs das freie Ende zuletzt den Pol verläfst .
Die Probe erweist , dafs dieses Ende ein Südpol geworden ist .
Ebenso ergiebt das Streichen am Südpol des Magnets an der
letzten Berührungsstelle des Stahlstäbchens einen Nordpol .
Hierzu ist nicht einmal unmittelbare Berührung nötig , denn
das Magnetisieren gelingt auch , wenngleich schwächer , an
einem Magnetpol , den ich durch eine dünne Glimmerplatte vor
der Berührung geschützt habe . Ja sogar ein harter (nicht aus¬
geglühter ) eiserner Nagel , den ich mit dem einen Ende in die
Nähe eines Magnetpoles bringe , zeigt nach einiger Zeit etwas
bleibenden Magnetismus , und zwar hat das näherstehende
Ende des Nagels einen entgegengesetzten , das abge¬
wandte einen gleichnamigen Magnetpol erhalten . Diese
Erscheinung nennen wir die magnetische Influenz (s. o . S . 2)
und können sagen : Das Magnetisieren durch Streichen
oder durch Annäherung eines Magnets ist ein Magne¬
tisieren durch Influenz .

Nun wollen wir noch versuchen , den Magnet durch Be¬
rührung mit verschiedenen Körpern zu „ entladen “ — — es
gelingt durchaus nicht . Der Magnetismus ist also nicht ableit¬
bar . Dagegen wird ein Magnet (nahezu ) unmagnetisch durch
das Erhitzen in einer Flamme .

Wir wollen nun die wichtigsten magnetischen Er¬
scheinungen zusammenfassen und ihnen die uns schon be¬
kannten Erscheinungen der statischen Elektricität gegen¬
überstellen (vergl . I . Bd . , S . 5 ) .



Vergleichung magnetischer u . elektrostat . Erscheinungen . 7

Magnetische Erscheinungen .

1 . Es giebt nur einen magne¬
tischen Zustand , dessen zusammen¬
gehörige Äufserungsformen wir als
Nord - und Südmagnetismus be¬
zeichnen.

2 . Ein magnetisierter Körper zeigt
(bei regelmäfsiger Magnetisierung
zwei ) entgegengesetzte Pole (Nord¬
en d Südpol ) , während dazwischen
die Indifferenzzone liegt .

3 . Gleichnamige magnetische Pole
stofsen sich ab , ungleichnamige zie¬
hen sich an.

4 . Wird ein Stahlmagnet in be¬
liebig viele Stücke zerbrochen , so
ist jedes Stück wieder ein vollstän¬
diger Magnet mit einem Nord - und
einem Südpol .

5 . Eine frei beweglich aufgehängte
Magnetnadel stellt sich in den
magnetischen Meridian ein , hat also
eine Richtkraft .

6 . Nur wenige Stoffe lassen sich
in merklichem Grade magnetisieren
oder wirken auf die Magnetnadel
ein (Eisenerze , Nickel , Kobalt u . e . a .) .

7 . Bei einem Magnet ist jedes
Molekül ein Magnet , also der
Sitz eines Nord - und eines Südpols
(vergl. 4) . Magnetisieren heifst
also : mehr oder weniger Mole¬
kül armagnete gleichgerichtet
parallel stellen .

8 . Durch Berührung kann einem
Magnet der Magnetismus nicht ent¬
zogen werden .

9 . Durch Streichen mit einem
Magnet (Influenzwirkung , s . o .) kön¬
nen beliebig viele Stahlstäbe mag¬
netisiert werden , ohne dafs der in-
fluierende Magnet an Stärke ein-
büfst .

Elektrostatische Erschei¬
nungen :

1 . Es giebt zwei verschiedene
elektrische Zustände , die wir als
Glas- und Harzelektricität (oder als
4 - E und — E) bezeichnen .

2 . Ein jeder (durch Mitteilung
oder durch Reibung ) elektrisierte
Körper hat entweder + E oder
— E.

8 . Gleichnamig elektrische Kör¬
per stofsen sich ab , ungleichnamige
ziehen sich an.

(Keine Analogie .)

B. Eine frei bewegliche elek¬
trische Nadel (I . Bd . S . 12 ) hat ,
bei Abwesenheit eines elektrischen
Körpers (oderLeiters ) , keine Richt¬
kraft .

6 . Alle Körper können elek¬
trisch gemacht werden , wenn sie
gehörig isoliert sind.

7 . Bei einem isolierten Leiter ist
der Sitz der Elektricität die äufsere
Oberfläche ; bei einem Isolator
dagegen die Stelle , welche gerieben
oder mit einem elektrisierten Körper
berührt wurde . — Elektrisieren
heifst : in einem Körper einen
Überschufs oder einen Man¬
gel an Elektricität im Ver¬
gleich zur Umgebung hervor -
rufen (Unitar . Hypothese ) oder : in
einem Körper freie + E oder — E
erzeugen (Dualistische Hypothese ) .

8 . Durch Berührung mit einem
nicht isolierten Leiter kann ein elek¬
trisierter Leiter entladen werden .

9 . Durch Influenz können belie¬
bige Mengen + E und — E erzeugt
werden , ohne dafs der influierende
Körper seine Ladung verliert (Elek¬
trophor , Influenz - Elektrisierma¬
schine) .
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Sie sehen aus dieser Zusammenstellung : so grofs auch in
mancher Hinsicht die Ähnlichkeit zwischen den magnetischen
und den elektrostatischen Erscheinungen ist , so ergiebt sich
doch in vielen anderen Stücken eine auffallende Verschieden¬
heit . Diese zeigt sich besonders in dem Gebundensein des
Magnetismus , d . h . in der Unmöglichkeit , einen Körper durch
Mitteilung , oder richtiger gesagt , auf Kosten des Magnetismus
eines anderen Körpers zu magnetisieren , oder einen Magnet
durch Berührung zu „entladen “ . Ferner ist der für gewöhn¬
lich zu beobachtende Magnetismus auf einige wenige Körper
beschränkt (Anh . 1) . Die Elektricität dagegen ist — wenig¬
stens auf Leitern — beweglich und kann durch Reiben in
jedem genügend isolierten festen oder flüssigen Körper her¬
vorgerufen werden . Sollte es da wohl möglich sein , diese so
verschiedenen Erscheinungen auf eine gemeinsame Ursache
zurückzuführen ? Und doch ist das der Fall , wie Sie später
sehen werden .

Wir haben nun diejenigen magnetischen Erscheinungen
kurz wiederholt , welche zum Verständnis des später Folgenden
unerläfslich sind , und wollen uns wieder den elektrischen Er¬
scheinungen zuwenden .

Auf unseren ersten sechs Wanderungen lernten wir die
Erscheinungen der statischen (d . h . im Gleichgewicht befind¬
lichen , also „ ruhenden “) Elektricität kennen . Dieser Name ist
sehr gebräuchlich , aber nichts weniger als charakteristisch ,denn die sogenannte „ ruhende “ Elektricität konnte abge¬
leitet werden und — bildlich gesprochen ■— durch einen
Draht auf einen anderen Körper oder zur Erde überströmen ,also gewisseymafsen sich bewegen . Wir haben auch von dieser
Bewegungsfähigkeit der statischen Elektricität vielfach Ge¬
brauch gemacht , aber immer nur das Endresultat , also
wieder einen Gleichgewichtszustand beobachtet . Jetzt
wollen wir aber unsere Aufmerksamkeit gerade auf
den Vorgang der elektrischen Entladung in Leitern ,also auf die sogenannte „ strömende Elektricität “
richten , die , im Gegensatz zur statischen , wohl auch dynamische
Elektricität genannt wird .
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Um die Erscheinungen der strömenden Elektricität ver¬
folgen zu können , müssen wir eine genügend ergiebige Elek -
tricitätsquelle zur Verfügung haben . Die von uns früher viel¬
fach benutzte Influenz - Elektrisiermaschine kann uns
vorläufig zeigen , worauf es zunächst ankommt .

Ich setze die Influenzmaschine in Gang und hänge an
die auseinandergezogenen Konduktoren (A Fig . 4) Ösen , die
ich in die Enden einer dicken Hanfschnur , die ein Halb¬
leiter ist , geschlungen habe , und befestige die Schnur so an
einem von der Decke herabhängenden Seidenfaden (s) , dafs
sie genügend stramm hängt und einen geschlossenen Strom¬
kreis bildet , wenn die Maschine in Thätigkeit gesetzt wird .

Fig . 4 .
Verlauf des Elektrisierung -sgrades in einem Stromleiter . 1j20natlirl , G-röfse .

(B Probierelektroslcop . 1/10 natürl . Gröfse .)

Das an einem Ebonitstäbchen befestigte einfache Probier -
elektroskop (B , Fig . 4) , dessen Blättchen aus Papierstreifen
bestehen , die in Drahtbügeln aufgehängt sind , setze ich mit
dem unteren , passend gebogenen Ende auf die Schnur , nahe
am positiven Konduktor . Damit ich das Probeelektroskop
der Schnur entlang führen kann , bitte ich , dafs jemand von
Ihnen die Kurbel der Elektrisiermaschine langsam und
gleichmäfsig weiterdreht . — Wir sehen , dafs die Blättchen
(in der Stellung a , Fig . 4) sehr stark abgelenkt werden . Durch
Annäherung des Probierelektroskops an ein auf dem anderen
Ende des Tisches befindliches , mit Glas -Elektricität geladenes
Elektroskop erkennen wir , dafs die Schnur an der berührten Stelle
freie positive Elektricität aufweist , was vorauszusetzen war .



10 Verlauf des Elektrisierungsgrades im Stromleiter .

Nun rücke ich allmählich das Probierelektroskop der

Schnur entlang , wobei ich dazwischen die Art der Ladung

prüfe - Sie sehen : Die Ladung ist noch immer posi¬
tiv , nimmt aber stetig ab bis zum Punkte o (Fig . 4) ,
wo die Blättchen ganz zusammenfallen , also das Elek -

troskop die Ladung 0 hat . Bei weiterem Verschieben
heben sich die Blättchen wieder , aber die Ladung ist

negativ und wächst stetig , je näher das Elektroslcop
dem negativen Konduktor kommt (f — i , Fig . 4) . Wir
schliefsen hieraus : Der Elektrisierungsgrad oder die Potentialdifferenz 3)
mit dem Null-Niveau der Erde nimmt (der absoluten Gröfse nach ) in
der Strombahn von beiden Polen an stetig ab , bis zum Punkte o . In
o selbst ist der Elektrisierungsgrad = 0 . Interessant ist nun
die Frage : Was geschieht im (oder am ? ) Leiter , während ihn
die Elektricität durchströmt , wie wir bildlich sagen ? Was
strömt ? oder : strömt überhaupt etwas ? Nach der dualistischen

Hypothese werden beide elektrischen „Fluida “ an den Polen
der Maschine erzeugt und fliefsen sich im Leiter entgegen .
Dann müssten sich doch beide entgegengesetzten Elektrici -
täten beim Zusammentreffen (im Punkte o etwa ) neutra¬
lisieren ! Wie erklärt sich aber dann die stetige Abnahme
des Elektrisierungsgrades des Leiters bis zum Punkte o ? Oder
sollen beide Elektricitäten an einander vorbeifLiefsen und sich

unterwegs allmählich neutralisieren ? Das widerspricht nun

völlig unseren bisherigen Beobachtungen . Sie werden zugeben ,
dass die dualistische Hypothese die inneren Vorgänge bei der

sogenannten „strömenden Elektricität “ nicht zu erklären ver¬

mag . Die Macht der Gewohnheit hat aber die ihr entlehnten
Ausdrücke : „ strömende oder fliessende Elektricität “ (oder kurz :
elektrischer Strom ) sowie „ + E und — E “ u . s . w . geheiligt ,
sodafs wir — in Ermangelung eines zutreffenderen Bildes —
diese Bezeichnungen beibehalten , wie wir auch noch immer
von einem Auf - und Untergang der Sonne sprechen , wiewohl

3) Die elektrische Pötentialdifferenz zweier Körper messen wir
durch die mechanische Arbeit , welche erforderlich ist , um die positive
Einheit der elektrostatischen Elektricitätsmenge von dem niederen elektrischen
Niveau auf das höhere zu befördern . Der Arbeitswert der elektrischen
Potentialdifferenz eines Körpers mit der Erde ist also ein mechanisches
Mafs für seinen Elektrisierungsgrad (vergl . I . Bd . S . 134) .
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wir schon durch Kopernicus eines besseren belehrt wor¬
den sind .

Wie gestaltet sich nun die Sache nach der unitarischen
Hypothese ? Erlauben Sie mir , Ihnen zuvor an einem Beispiel
aus der Hydromechanik die Vorgänge klar zu machen , welche
eine Analogie zu den elektrodynamischen bilden , deren Unter¬
suchung uns jetzt beschäftigt .

Stellen wir uns einen horizontalen ringförmigen Kanal vor
(A , Pig . 5) , der bis zur Hälfte seiner Wandhöhe mit Wasser
gefüllt ist . An einer Stelle (M ) sei in einem Damme ein weites
Rohr vom Querschnitt des Kanals eingesetzt , in dessen Mitte ein

Pig . 5.
Hydrodynamische Erscheinungen .

Flügelrad (Schiffsschraube ) sich befindet und durch eine Maschine
in Bewegung gesetzt werden ' kann . An einer anderen Stelle (S)
befinde sich eine Schleuse , welche vorläufig geschlossen sein mag .

Was wird geschehen , wenn wir das Flügelrad in Bewegung
setzen ? Offenbar wird das Flügelrad das Wasser im Kanal
vorwärts treiben (z . B . in der Richtung des Pfeiles links bei M) .
Dadurch fliefst das Wasser in die linke Hälfte des Kanals und
wird sich dort aufstauen , während auf der anderen Seite der
Wasserspiegel fallen mufs . An der Schleuse wird sich eine
Niveaudifferenz bilden (B , Fig . 5 ) , deren Gröfse von der
das Wasser treibenden Kraft , der „aquamotorischen Kraft “
der Maschine abhängt . Diese Niveaudifferenz wird so
lange zunehmen , bis der Gegendruck des Wassers auf
das Flügelrad der „aquamotorischen Kraft “ der Ma -
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schine das Gleichgewicht hält ; von da ab dient die wei¬
tere Arbeit der Maschine nur zur Erhaltung der Niveaudifferenz .
Die Niveaudifferenz an der geschlossenen Schleuse kann also
als Mafsstab für die aquamotorische Kraft der Maschine dienen .
Da wir nun die nach dem mechanischen Arbeitswert gemes¬
sene Niveaudifferenz als Potentialdifferenz bezeichnen , so
können wir sagen : Die Potentialdifferenz an den Endpunkten des
Kanals ist ein Mafs für die aquamotorische Kraft . — Ist nun (nach
mechanischem Mafs ) die Niveauerhöhung auf der einen Seite
der Schleuse = + v (vergl . B , Fig . 5) , auf der anderen die
Niveauerniedrigung = — v , so ist die gesamte Niveau - oder
Potentialdifferenz = + v — (— v ) = 2 v , was schon aus der
Fig . 5 , B ohne weiteres ersichtlich ist .

Denken wir uns jetzt , während die Maschine gleichförmig
weiterarbeitet , die Schleuse aufgezogen , sodafs der Kanal
einen in sich geschlossenen Stromkreis bildet ! Die Ni¬
veaudifferenz wird sich auszugleichen streben , da aber die trei¬
bende Wirkung der Maschine anhält , wird zu beiden Seiten
des Wasserrades eine Niveaudifferenz bestehen bleiben , die
von dem Widerstande im Stromkreise abhängt und im allge¬
meinen weit kleiner ist als die vorhin . In dem Kanal
mufs sich bald ein Gleichgewichtszustand hersteilen , indem an
jeder Stelle ebensoviel Wasser zufliefst , als abfliefst . Bei einem
gleichbleibenden Querschnitt des Kanals wird die Niveau¬
abnahme oder das Stromgefälle ein gleichmässiges sein
müssen . [C , Fig . 5 , zeigt einen senkrechten Querschnitt durch
die Achse des Kanals ; o — o ist das ursprüngliche Niveau des
Wassers in der Ruhelage (Nullniveau ) .]

Hieraus ergeben sich nun zwei Folgerungen :
1 . Denken wir uns in dem vom ringförmigen Kanal um¬

schlossenen Raume einen Teich gegraben , dessen Wasserspiegel
mit dem ursprünglichen Niveau des Kanals in gleicher Höhe
sich befindet , und vergleichen wir die Wasserhöhe oder den
Füllungsgrad des Kanals mit dem des Teiches , so ergiebt
sich : Der Füllungsgrad des Kanals ist in der linken Hälfte
grösser , in der rechten kleiner als der des Teiches . Die Ni¬
veaudifferenz beider nimmt (wenn wir links vom Flügelrade
beginnen ) stetig ab , wird an einem Punkte = 0 und geht in
eine stetig zunehmende negative Differenz über . Ver -
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glichen mit dem Nullniveau haben wir — bildlich gesprochen
— in der linken Kanalhälfte Plus -Wasser , in der rechten Minus -
Wasser , oder einen positiven und einen negativen Fül¬
lungsgrad .

2 . Zwischen je zwei gleichweit von einander entfernten
Punkten der gleichförmigen Strombahn (b t b 2 oder b ' b "

. . .
bei C , Fig . 5) herrscht ein gleiches Stromgefälle oder eine
gleiche Füllungsgrad - Differenz , d . h . das Stromgefälle
ist konstant . Ein beliebiger Punkt des Stromkreises hat, mit strom¬
aufwärts gelegenen Punkten verglichen , ein tieferes Niveau , also einen
negativen Füllungsgrad -, dagegen einen positiven im Vergleich zu
stromabwärts gelegenen Punkten .

Kehren wir nun zu den elektrischen Erscheinungen zu¬
rück . Die Analogie zu der ersten Folgerung aus den hydro¬
dynamischen Gesetzen haben wir bereits (Fig . 4) kennen ge¬
lernt , indem der Elektrisierungsgrad (oder das elek¬
trische Potential ) im Stromleiter stetig abnahm , gleich Null
wurde und schliefslich einen wachsenden negativen Wer t
annahm .

Jetzt wollen wir noch das Stromgefälle zwischen zwei
Punkten des Stromkreises untersuchen .

Das Papier -Elektrometer (E , Fig . 6) , dessen Gehäuse aus
Blech besteht , stelle ich auf einen Paraffinblock . [Bei allen
Versuchen mit dem Elektrometer wird ein stark vergröfsertes
Bild der Aichungsskala und des Blättchens auf einem
weifsen Schirm entworfen . Vergl . I . Teil Fig . 15 ] , Auf dem
Ebonitstabe (1) sind zwei verschiebbare Messingklemmen an¬
gebracht , an welche zwei starke Neusilberdrähte (np m 3) mit
hakenförmig gebogenen . Enden gelötet sind . An diese be¬
festige ich zwei sehr feine , blanke Kupferdrähte (d [ d3)
und führe sie über kleine Haken , die durch Seidenfaden an
Holzleisten befestigt sind , welche an Schnüren hängen . Das
Ende des einen Drahtes (m t ) befestige ich an der Klemm¬
schraube des Blechgehäuses , das des anderen an dem Lei¬
tungsstabe des Elektrometers .

Nun bitte ich jemand von Ihnen , wieder die Influenz -
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in aschin e langsam und gleichmäfsig zu drehen , und lege
die Drahtgabel auf die Hanfschnur , wie Fig . 6 zeigt — als¬
bald sehen Sie einen Ausschlag am Elektrometer , der
fast völlig unverändert bleibt , wenn ich die Drahtgabel
hin - und herschiebe oder entlang der ganzen Schnur
führe ! Das mit dem stromabwärts gelegenen Neusilber -
draht (m9) verbundene Elektrometer zeigt dabei , wie die Probe
erweist , beständig — E .

Nun drehe ich den Ebonitstab so , dafs m2 an seiner Stelle
bleibt , aber mx stromabwärts zu liegen kommt — das Elektro¬
meter zeigt ungefähr denselben Ausschlag , jedoch -t- E . Auch

Fig . 6 .
Elektrisches Stromgefälle im Stromkreise . V20 natürl . Gröfsc .

jetzt bleibt der Ausschlag fast unverändert , wenn wir die Draht¬
gabel der Schnur entlang fortrücken . Berücksichtigen wir
hierbei , dafs die Influenzmaschine wahrscheinlich nicht voll¬
kommen gleichmäfsig wirkt , und dafs die Schnur stellenweise
vielleicht dünner ist oder fester gedreht sein kann , so werden wir
annehmen dürfen , dafs bei einer völlig konstanten Elek -
tricitätsquelle in einem gleichförmigen Stromleiter
das Stromgefälle im ganzen Stromkreise konstant ist .

Beziehung Wir wollen den Versuch mit einer kleinen Abänderung"
ne

S
ana

m~wiederholen . Die Schnur ist 210 cm lang . In einer Entfer -
^

Lelters es nun S von 70cm vom positiven Konduktor , d . h . in x/3 ^ er
Schnurlänge , ist mit einer roten Bleifeder ein Punkt markiert
(P , Fig . 6) . Hier setze ich eine Klemmschraube an , die durch
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einen Draht mit der Erdleitung verbunden ist . Dieser Punkt

(P ) des Stromkreises mufs also , wenn die Maschine in Thätig -

keit gesetzt wird , den Elektrisierungsgrad der Erde , also das

Potential = 0 annehmen . Sie sehen — das Hülfselekt -roskop

zeigt hier in der That keinen Ausschlag . Dagegen weist es

von P bis + K stets 4 - E , von P bis K immer — E auf . —

Ich lege die Drahtgabel an die Schnur — die Erscheinung ist

dieselbe wie vorhin , auch wenn der mit dem Elektrometer ver¬
bundene Draht m 2 auf den Punkt P zu liegen kommt . Nun
tritt aber eine auffallende Erscheinung auf : In jedem der bei¬

den ungleichen Teile der Schnur (d . h . zwischen + K und P ,
sowüe zwischen P und — K ) zeigt das Elektrometer einen

(nahezu ) unveränderlichen Ausschlag , aber im kleineren Schnur¬
teile beträgt er 3,4 und im grösseren 1,8 Skalenteile , d . h . : In
dem kürzeren Stromleiter ist das Stromgefälle fast doppelt so

grofs als in dem längeren Leiter . Nun ist letzterer zwei Mal

länger als ersterer ; wir sehen hieraus : Bei gleichartigen ,
aber ungleich langen Stromleitern ist die Niveaudif¬
ferenz zwischen je zwei gleichweit entfernten Punkten

umgekehrt proportional zu der Länge der Stromleiter .
Die Kraft , durch -welche hier die Elektricität der Maschine

erzeugt wird , ist , wie wir schon (I . Bd . S . 96) wissen , die Muskel¬
kraft Ihres Kameraden , der so freundlich vrar , die Maschine
zu drehen . Als eine die Elektricität durch den Stromleiter
treibende Kraft , können wir sie die elektromotorische Kraft nen¬
nen , wie wir vorhin die Kraft , welche das Wasser in Bewegung
setzte , als die aquamotorische Kraft bezeichneten . Wir
hatten in der Niveaudifferenz , welche bei geschlossener
Schleuse , also bei unterbrochenem Strom auftrat , einen
Mafsstab für die aquamotorische Kraft gefunden . In gleicher
Weise wollen wir die elektrische Niveaudifferenz (oder
Potentialdifferenz ) an den nicht verbundenen Polen
der Elektricitätsquelle als Mafs der elektromotori¬
schen Kraft betrachten .

Um die elektromotorische Kraft der Influenzmaschine zu
bestimmen , müfsten wir also die Potentialdifferenz an den freien
Polen messen (während der Apparat gleichmäfsig wirkt ) . Lei¬
der reichen hierzu die uns zu Gebote stehenden Hülfsmittel
nicht aus . Die Skala unseres Elektrometers reicht nur bis

Elektro¬
motorische

Kraft .
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10 Volt 3) bei Anwendung des Normalkondensators , oder '
(da

die Verstärkungszahl des Kondensators etwa = 200 ist ) bis
2000 Volt ohne den Kondensator . Hier handelt es sich aber ,
je nach der Funkenstrecke , um elektrische Poldifferenzen von
4— 50000 Volt . — Wir wollen daher zu unseren weiteren Ver¬
suchen andere Elektricitätsquellen aufsuchen , zuvor aber einen
Blick rückwärts werfen .

Bei der statischen oder Reibungs -Elektricität hatten wir
gefunden :

Ein elektrisierter isolierter Leiter hat auf seiner
ganzen Oberfläche und in seinem Inneren (auch im
Hohlraume ) denselben Elektrisierungsgrad , d . h . ein
konstantes Potential. Hier dagegen beobachteten wir in dem
Stromleiter ein Potentialgefälle , das wir , der Anschaulich¬
keit wegen , als elektrisches Stromgefälle bezeichnet
haben , obgleich wir gar nicht wissen , was sich im Leitungs¬
draht bewegt . — Worin besteht nun der Unterschied
zwischen statischer (ruhender ) und dynamischer (strömender )
Elektricität ?

Ich habe zur Einführung in die dynamische Elektricität
absichtlich eine Elektricitätsquelle gewählt , welche wir schon
früher zur Erzeugung der statischen Elektricität benutzten .
Sie werden daher ohne weiteres zugeben , dafs in beiden
Fällen dieselbe Elektricität wirksam war ! Wenn nun
im folgenden neue Elektricitätsquellen , welcher Art sie auch
sein mögen , im wesentlichen dieselben Erscheinungen zeigen ,
so müssen wir annehmen , dafs es — bildlich gesprochen —
sowohl in der statischen , als auch in der dynamischen Elek¬
tricität nur eine einzige Sorte von Elektricität giebt . Die
Verschiedenheit der elektrostatischen und der elektro¬
dynamischen Erscheinungen beruht also lediglich auf
der verschiedenen Wirkung , welche dieselbe Elektricität
ausübt , wenn sie sich im Zustande der Ruhe oder in
dem der Bewegung befindet . Hierbei ist es völlig gleich¬
gültig , wodurch die Elektricität in dem betreffenden Leiter in
Bewegung gesetzt (zum „ Strömen “ gebracht ) wird .

3) Das Volt ist die praktische Einheit der Potentialdifferenz und da¬
mit der praktische Arbeitswert des Elektrisierungsgrades . Es ist 1 Volt
= Y300 elektrostat . Potential -Einheiten (vergl . I . Bd . S . 135 ) .
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Führe ich z . B . den elektrisierten Flintglasstab über einem
unelektrischen Elektroskop hin und her (I . Bd . S . 39 ) , so wird
— während der Glasstab der Kugel des Elektroskops genähert
wird — durch Influenz die entgegengesetzte Elektricität in die
Kugel herangezogen , die gleichnamige Elektricität in das un¬
tere Ende des Leitungsstabes und in die Blättchen abgestofsen .
In dem Mafse , wie der influierende Körper sich entfernt ,
strömt von beiden Enden des Leitungsstabes die Elektricität
wieder zurück . Wir haben also in diesem Falle in jeder Hälfte
des Elektroskopenstabes hin - und hergehende elektrische
Ströme . Ebenso wird , wenn wir einen elektrisierten isolierten
Leiter ableitend berühren , die Elektricität von allen Oberflächen¬
teilen zu dem Berührungspunkt hinströmen und abfiiefsen . Das
Umgekehrte findet beim Laden des Leiters statt . Wir können
also sagen : Ein elektrischer Strom tritt immer ein , wenn in einem
Leiter der elektrische Zustand (das Potential) an irgend einer Stelle ge¬
ändert wird !

* *
*

Wir haben vorhin (beim Versuch Fig . 6) angenommen ,
dafs eine Elektricität im Stromleiter „ fliefst “

, und nannten den
Vorgang , durch welchen ein elektrisch höheres Niveau
mit einem niedrigeren sich auszugleichen strebt , den
elektrischen Strom . Nach dieser , der unitarischen Hypo¬
these entnommenen Annahme liefsen sich die beobachteten
Erscheinungen recht wohl erklären . Wir wollen aber , der Be¬
quemlichkeit halber , den Ausdruck — E beibehalten , aber un¬
ter „ Stromrichtung “ die Richtung verstehen , in welcher die
-4- E durch den Leiter fliefst . Dafs wir hierbei , wie allgemein
üblich , mit Franklin die Glaselektricität als -+- E annehmen , ist
rein willkürlich und es ist sehr möglich , ja nach den neue¬
sten Untersuchungen sogar wahrscheinlich , dafs es sich umge¬
kehrt verhält .

Nun wollen wir noch den Einflufs kennen lernen , welchen
die Dicke der Schnur auf das Stromgefälle hat . Zu diesem
Zweck habe ich hier (Fig . 7) drei Hanfschnüre an den Enden
mit Stanniol bewickelt und mit starken Kupferdrähten zusam¬
mengeschnürt , deren freie Enden Haken bilden , die ich an
die Pole der Maschine legen kann . Alle 3 Schnüre sind gleich

Kolbe , ir . 2
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lang . Die erste (A) besteht ans einer Hanfschnur , die zweite
(B ) aus 2 und die dritte aus 3 Schnüren Ton demselben Stück ,
also möglichst gleicher Beschaffenheit . Ich befestige die
Schnüre nach einander (s . Fig . 6) und bestimme für jede der¬
selben die elektrische Niveaudifferenz an den Berührungspunkten
der Drahtgabel , deren Zinkenabstand natürlich unverändert
bleibt . Während nun die Maschine möglichst gleichförmig ge -

Pig . 7.
Stromleiter von verschiedenem Querschnitt .

dreht wird , erhalten wir folgende Ausschläge am Elektrometer :
bei A 8,5 ; bei B 5,5 ; bei C 2,7 . Wir sehen hieraus : Die elek¬
trische Niveaudifferenz zwischen je zwei gleichweit
entfernten Punkten der Strombahn nimmt ab , wenn
der Querschnitt des Stromleiters vergröfsert wird .

Hier stelle ich ein geladenes Papierelektroskop (Fig . 8)
vor Sie hin , fasse die abgenommene einfache Schnur (A) an

Fig . 8.
Leitungsfähigkeit von Schnüren verschiedener Dicke . */? natürl . Gröfse .

den Drahthaken und lege die Mitte der Schnur an den Lei¬
tungsstab des Elektroskops . — Sie sehen , wie die Blättchen
langsam zusammenfallen . Ich wiederhole den Versuch mit
der doppelten Schnur B , die Blättchen fallen merklich rascher
zusammen ; noch rascher ist das bei der dreifachen Schnur C
der Fall , also leitet die dreifache Schnur die Elektricität besser
als die doppelte , und diese besser als die einfache .
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Jetzt können wir die obige Beobachtung genauer aus -
drücken :

Für eine bestimmte Strecke der S}rombahn ist die elektrische
Niveaudifferenz der Endpunkte um so kleiner, je gröfser die Leitungs¬
fähigkeit des Stromleiters ist . [Hierbei dürfen wir ja nicht an eine
Analogie mit dem Falle denken , wo in einem Wasserkanal
durch Bodensenkung eine von der aquamotorischen Kraft
unabhängige Niveau - (also auch Potential -) Differenz eintritt ,
sondern nur mit dem Fall , wo der horizontale Kanal sich
verbreitert .]

Interessant sind einige Folgerungen , die sich an unsere
Beobachtung knüpfen . Was wird geschehen , wenn wir einen
guten Leiter , z . B . einen Kupferdraht statt der Schnur verwen¬
den ? Offenbar mufs die elektrische Niveaudifferenz an unserer
Gabel unmerklich klein werden . Der Versuch bestätigt das
vollkommen . Sie sehen jetzt , warum ich eine Schnur benutzte .
— Verbinde ich dagegen die Pole der Maschine durch einen
Nichtleiter (Isolator ) , so tritt die ganze elektromotorische
Kraft als Niveaudifferenz an den Polen auf , und der Iso¬
lator wirkt hier , wie die herabgelassene Schleuse beim Wasser¬
kanal !

Damit wollen wir für heute schliefsen .



Rückblick .

II . Vortrag -.
Elektrisierung von Metallen bei Berührung von Flüssigkeiten ; Wirkung zweier gleich¬
zeitig eingetauchter Metalle ; das Volta ’sche Element ; Poldifferenz ; Ursache der elektro¬
motorischen Kraft des Elements ; Chemische Theorie ; Historisches : KontakttheorieVolta ’s ;
Konstante Elemente ; Schaltung parallel und hintereinander ; Elektromotorische Kraft
einer Batterie bei der Schaltung parallel und hintereinander ; Vergleich der elektro¬

motorischen Kräfte einiger konstanter Elemente .

Eine Tagereise liegt hinter uns . Werfen wir einen Blick
rückwärts , um die wichtigsten Punkte nochmals ins Auge zu
fassen und sie unserem Gedächtnis besser einzuprägen .

1 . Die magnetischen und die elektrostatischen Gesetze der
Anziehung und der Abstofsung , sowie die Influenz zeigen
eine auffallende Übereinstimmung , doch ergeben sich
auch grofse Verschiedenheiten : So zeigt ein Magnet
stets beide entgegengesetzte Pole , auch bildet jedes
Stück eines zerbrochenen Magnets wieder einen voll¬
ständigen Magnet mit beiden Polen . Ferner erweisen
sich nur gewisse Stoffe (Eisen und seine Erze , Nickel
u . e . a .) deutlich magnetisierbar , während alle genügend
isolierten festen Körper elektrisierbar sind .

2 . Zwischen einem von Elektricität durchströmten Leiter
und der Wasserströmung in einem Kanal besteht eine
unverkennbare Analogie , die auch dann bestehen bleibt ,
wenn die Stromleitung unterbrochen (beim Kanal die
Schleuse geschlossen ) ist . Bei der Elektrisiermaschine
tritt in diesem Falle an den Enden der Poldrälite eine
elektrische Niveaudifferenz auf , welche von der elek¬
tromotorischen Kraft des Apparates abhängt und
als Mafsstab für sie benutzt werden kann .

3 . Wird an zwei Punkten A und B eine elektrische Niveau¬
differenz erzeugt (und erhalten ) , so zeigt , bei leitender
Verbindung von A und B , die Elektricität das Bestreben ,
die Niveaudifferenz auszugleichen . DenVorgang , durch
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welchen das geschieht , nennen wir den elek¬
trischen Strom . — In dem Leiter , welcher beide Pole
des Apparates verbindet , ist der Elektrisierungsgrad (die
elektrische Differenz mit dem Null - Niveau der Erde )
verschieden . Am positiven Pol ist er am stärksten 4 - E ,
nimmt immer mehr ab , erreicht an einer Stelle den
Wert Null und wird nach dem negativen Pole zu immer
stärker — E . In dem Stromleiter haben wir demnach
ein elektrisches Gefälle (Stromgefälle ) . — Ist der Strom¬
leiter gleichförmig , so ist das Stromgefälle kon¬
stant , d . h . die Niveaudifferenzen für gleichweit abste¬
hende Punkte des Leiters sind einander gleich . Für
zwei in einem bestimmten Abstand befindliche Punkte
der Strombahn ist die elektrische Niveaudifferenz um
so gröfser , je geringer die Leitungsfähigkeit des betref¬
fenden Leiterstückes ist .

* , #

Jetzt sollen Sie eine neue Elektricitätsquelle kennen lernen ,
welche auf den ersten Blick unscheinbar und wenig ergiebig
zu sein scheint , in Wirklichkeit aber gröfsere Elektricitäts -
mengen zu liefern vermag als die beste Influenzmaschine , und
in der Technik eine wichtige Verwendung gefunden hat .

Auf das Aluminium -Elektrometer (Pig . 9) schraube ich eine
Zinkplatte und lege auf diese zwei sehr dünne Glimmer¬
scheiben (g) , welche die Platte allseitig überragen . Darauf
lege ich ein Stück Filtrierpapier (f) , auf welches ich einige
Tropfen verdünnter Schwefelsäure träufle .

Nun nehme ich einen biegsamen Zinkdraht (d) , welcher
mit zwei isolierenden Griffen (i) aus Siegellack versehen ist ,
und berühre die Zinkplatte (Zn ) und das feuchte Filtrierpapier
(f) . Nach Entfernung des Zinkdrahtes und dem Abheben
der oberen Glimmerscheibe zeigt das Elektrometer eine
schwache Ladung — E (in Fig . 9 ist die Stellung des Blätt¬
chens punktiert angegeben ) , während das feuchte Filtrier¬
papier 4- E aufweist 4) . — Wiederholen wir den Versuch mit

4) Hier uncl im folgenden ist , hei allen Versuchen am Elektrometer ,
das Blechgehäuse desselben (durch den Draht L in Eig . 9) mit der Erd -
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einer Kupferplatte und Kupferdraht , so erhalten wir am
Elektrometer ebenfalls — E , aber eine merklich schwächere
Ladung , dagegen würde Platin + E zeigen . Je nachdem
wir statt der verdünnten Schwefelsäure : reines Wasser oder
Lösungen von Salzen nehmen , ist die Wirkung bei den ein¬
zelnen Metallen etwas verschieden , sowohl was die Gröfse als
was das Vorzeichen der Ladung anlangt — aber immer wird
das Zink von allen Metallen durch Berührung mit
geeigneten Flüssigkeiten am stärksten negativ elektrisch !

Was wird nun geschehen , wenn zwei verschiedene
Metalle in Berührung mit derselben Flüssigkeit stehen ?

Hier lege ich Ihnen zur Ansicht einige Stäbchen aus ver¬
schiedenem Metall , sowie einige aus harter Retortenkohle vor ,

Fig . 9.
Nachweis der Elektrisierung von Metallen bei Berührung mit Flüssigkeiten ,

nach Buff . 1/1q natürl . Gröfse .

welche an dem Ende mit angelöteten biegsamen Kupferdrähten
versehen sind . Diese Drähte sind bei den Zinkstäbchen
mit grüner , bei den übrigen mit roter Seide umsponnen .
Auf jedes Stäbchen sind zwei schmale Gummiringe (Stücke
eines dünnen Gummischlauches ) geschoben , sodafs je 2 Stäb¬
chen aneinander gelegt werden können , ohne sich zu be¬
rühren .

Voita ’sches Nun tauche ich ein Zink/Kupfer -Paar in ein dickwandiges
Reagenzgläschen (Fig . 10) , welches zur Hälfte mit verdünnter
Schwefelsäure gefüllt ist , setze das Gläschen in ein passendes

leitung verbunden (vergl . Bd . I S . 44) . Auch wird durch Projektion ein
stark vergröfsertes Bild der Skala und des Blättchens auf einem weifsen
Schirm erzeugt (I . Bd . Fig . 15) .
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Loch eines Holzklötzchens und — ein sogenannter „ Volta¬
scher Becher “ oder ein „ Volta ’sches Element “ ist fertig !

An den Enden der Leitungsdrähte (d [ d s) sind steife Neu-
silberdrähte angelötet , welche zuerst zu einer Art Öse (o)
gebogen und am Ende zugespitzt wurden . Stecke ich nun die
Spitze eines Neusilberdrahtes in die Öse eines anderen Elements ,
so sind die betreffenden Metallstäbe in sicherer leitender Ver¬
bindung (Kontakt ) . Das ist , wie Sie bald sehen werden , hier
von der grössten Bedeutung . — Zunächst stecke ich in die Öse

Fig . 10.
A Kleines Volta ’sches Element . J/2 natürl . G-röfse .

B Verbindung des Leitungsdrahtes mit einem isolierten Draht .

der Pohldrähte des Elements je einen Drahtstift, ' der an beiden
Enden etwas zugespitzt und in der Mitte mit einem Stück
Siegellack versehen ist (B , Fig . 10) . Indem ich nun diesen
isolierenden Griff (S) fasse , kann ich den Stift an den Ablei¬
tungsdraht des Elektrometers halten , ohne den Leitungsdraht
des Elements zu berühren .

Diese Vorsicht werde ich bei allen Versuchen am Elektro¬
meter beobachten , auch wenn ich nicht dessen erwähne .

Nun wollen wir sehen , ob unser „ Element “ wirkt . Ich
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bringe die Leitungsdrähte mit der Kugel des Aluminium -
Elektrometers abwechselnd in Berührung — es erfolgt keine
merkliche Wirkung . Entweder wurde überhaupt keine Elek -
tricität erzeugt oder — das Elektrometer ist zu unempfind¬
lich . Wir müssen es also mit dem Kondensator versuchen
(I . Bd . S . 66 ) .

Ich ersetze die Kugel des Elektrometers durch eine Kon¬
densatorplatte . Nun berühre ich den Leitungsdraht des Elektro -
trometers mit dem Poldraht des Kupferstabes , während ich die
obere Platte ableitend berühre (A , Fig . 11 ) . Nach dem Abheben
der oberen Platte zeigt das Elektrometer einen kleinen Ausschlag
(etwa 0,9 Skalenteile ) . Die Probe ergiebt , dafs der Lei -

rig. n .
Nachweis der Elektricität an den Polen eines Volta ’schen Elements . 1/io natürl . Gröfse .

tungsdraht des Kupfers das Elektrometer mit 4 - E ge¬
laden hat . (Hierbei ragte der Draht des Zinkstabds frei in die
Luft , war also isoliert .) — Vertauschen wir bei einem Kontroll -
versuch die Poldrähte , wobei ich natürlich den Ableitungsdraht
des Elektrometers mit dem Poldraht des Zinkstabes berühre ,
so zeigt das Elektrometer — E .

Beim vorigen Experiment (Fig . 9) erhielten wir von einem
einzelnen Zink - oder Kupferstäbchen bei Berührung mit der
Flüssigkeit — E , hier aber beim Kupferstabe + E ! Wie wir
schon sahen , erhält die Flüssigkeit die entgegengesetzte
Ladung . (Beim Zink , Fig . 9 , etwa + 1,1 und beim Kupfer
+ 0,3 ca .) Wir können nur annehmen , dafs der Überschufs
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( 1,1 — 0,3 = 0,8) auf irgend eine Weise durch die Flüssigkeit
zum Kupferstäbchen übergeführt wird , wodurch dieses die
Differenz -Ladung + E = 0,8 annimmt , während das Zink die
entsprechende Ladung — E = 0,8 erhält . Dafs wir einen etwas
abweichenden Wert (0,9) beobachteten , kann auf unvermeid¬
lichen Messungsfehlern beruhen .

Ich wiederhole den Versuch , leite aber den nicht mit
dem Elektrometer verbundenen Leitungsdraht des Elements
zur Erde ab , indem ich ihn an der Erdleitung befestige oder
— was bequemer ist — ich berühre damit gleichzeitig den
Ableitungsdraht der oberen Platte (B , Fig . 11 ) . Nach Ent¬
fernung der Drähte und dem Abheben der oberen Platte
zeigt das Elektrometer einen doppelt so grofsen Aus¬
schlag ( 1,7) . Das wird Sie nicht befremden , wenn Sie be¬
denken , dafs das elektrische Niveau des Kupferpoles (+ e)
über , das des Zinkpoles (— e ) um denselben Betrag unter
dem Nullniveau (der Erde ) liegt und wir im zweiten Falle
die ganze Niveaudifferenz Kupfer/Zink ( + e — (— e) = 2e)
messen , während wir vorher , beim isolierten anderen Pol , nur
die Niveaudifferenz Kupfer/Erde oder Erde/Zink beobachteten .

Wir sehen hieraus , dafs bei gleichzeitigem Ein¬
tauchen zweier verschiedener Metalle (in eine geeig¬
nete Flüssigkeit ) an den herausragenden Metallteilen
eine elektrische Niveaudifferenz hervorgerufen und
erhalten wird , wobei das eine Metall (hier Kupfer ) + E ,
das andere (Zink ) — E zeigt . Ein solches „ Element “ ist mithin
eine selbstthätige Elektrisiermaschine im kleinen . Die aus der
Flüssigkeit hervorragenden , ungleichnamig elektrischen Metall¬
stäbe bilden die Pole , daher nennen wir die daran befestigten
Leitungsdrähte kurz die Poldrähte .

Die elektrische Niveaudifferenz oder „ Poldifferenz “ ist bei Poiatfferenz.
einem solchen Element aufserordentlich klein , dafür genügt
aber eine momentane Berührung der Poldrähte mit
den Platten eines grofsen Kondensators , um sie auf
dieselbe Niveaudifferenz zu bringen , welche die Pole
haben . Wenn Sie sich jetzt dessen erinnern , wie langsam
das Laden eines Kondensators mit Hülfe eines Glasstabes oder
auch der Elektrisiermaschine geschah (I . Bd . S . 82 u . 89 ) , so
wird Ihnen einleuchten , dafs wir es hier mit einer Elek -
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trieitätsquelle von geringem Elektrisierungsgrade ,
aber , im Vergleich zu den elektrostatischen Elektricitäts -

quellen , bedeutenden Elektricitätsmenge zu thun
haben , wie Ihnen später klar werden wird . — Bildlich ge¬
sprochen , gleicht der durch die Influenzmaschine erzeugte
elektrische Strom vielen , dicht hintereinander folgenden Wasser¬
tropfen , die beim Stauen mit grofser Gewalt , also bedeutender
Geschwindigkeit (wie durch eine Spritze ) fortgeschleudert
werden , während bei unseren Elementen der elektrische
Strom in einem die Pole verbindenden Draht einer grofsen
Wassermenge entspricht , welche mit fast unmerklichem Gefälle
dahingleitet . Der Strahl einer starken Dampfspritze ist im¬
stande , eine Ziegelmauer zu zerbröckeln , würde aber — des
auf eine verhältnismäfsig kleine Fläche wirkenden Druckes
wegen — nicht geeignet sein , ein Mühlrad treiben . — Wir
werden demnach erwarten dürfen , dafs unsere „Elemente “

unter Umständen viel gröfsere dynamische Wirkungen zeigen
werden als die Influenzmaschine ; dafs dieses thatsächlich der
Fall ist , werden Sie bald sehen .

Wir haben das vorige Mal erkannt , dafs die elektrische
Niveaudifferenz (Poldifferenz ) an den freien Polen einer Elek -
tricitätsquelle einen Mafsstab abgiebt für die Gröfse der
elektromotorischen Kraft des Apparates . Nun haben wir
— mit Hülfe desselben Kondensators , der zur Herstellung der
Aichungsskala benutzt wurde — für unser Volta ’sches Element -
chen Kupfer/Zink eine Poldifferenz von 1,7 Skalengrad ge¬
funden . Nachdem einige Minuten verflossen , wiederhole ich
den Versuch und erhalte nur 1,3 . Nun verbinde ich in der
oben (B , Fig . 10) angegebenen Weise die Poldrähte mitein¬
ander , sodafs ein geschlossener Stromkreis (Kupfer —
Draht — Zink — verdünnte Schwefelsäure — Kupfer ) entsteht ,
und messe nach einigen Minuten — der Ausschlag beträgt
kaum 0,5 . Schliefse ich nochmals die Stromleitung (auf etwa
10 Min .) , so ist die Poldifferenz nur noch 0,3 ; d . h . die elektro¬
motorische Kraft unseres Volta ’schen Elements hat sehr rasch
abgenommen , die Wirkung des Elements ist nicht kon¬
stant . Wie entsteht der elektrische Strom überhaupt und
warum nimmt seine Wirkung ab ? Um diese Frage zu ent¬
scheiden , müssen wir versuchen , den inneren Vorgang im Eie-
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ment zu erkennen oder wenigstens untersuchen , ob und
welche Veränderungen mit den eintauchenden Teilen
der beiden Metalle vor sich gehen !

Ein flaches Glasgefäfs (G, Fig . 12) , das aus einem Gummi¬
schlauch (g) und zwei Spiegelglasplatten besteht , die durch
zwei Gummiringe (r ) zusammengehalten werden , kann durch
eine Pipette mit verdünnter Schwefelsäure gefüllt werden .
Zwei verlötete Stücke aus Kupfer - und Zinkdraht putze ich mit
Schmirgelpapier blank , biege sie in der Mitte zusammen , dafs
die Schenkel parallel stehen und stecke diese durch einen passen¬
den Kork , den ich auf den Kand des Gefäfses setze (Cu , Zn ,
Fig . 12) . Die ganze Vorrichtung bringe ich statt des Elektro¬
meters auf ein Projektioiistischchen (T , Fig . 13 a . d . f. S .) . Sobald

Projektions -Blementclien , x/2 natürl . Gröfse .

ich die verdünnte Säure in das flache Gefäfs (a) giefse , sehen Sie
auf dem Projektionsschirm (S , Fig . 13 ) eine heftige Bewegung
der Flüssigkeit eintreten und am Kupferdraht sich Blasen
bilden , welche ihn bald dicht umhüllen und dann herabsinken ;
— das ist jedoch nur scheinbar , weil das projicierte Bild ein
umgekehrtes ist — in Wirklichkeit steigen die Blasen in die
Höhe , wie Sie sich beim Nähertreten überzeugen können .
Nach einiger Zeit hebe ich die Drähte heraus und spüle sie
mit Wasser ab •— der Kupferdraht erscheint unverändert , der
Zinkdraht dagegen sieht wie zerfressen aus und ist stellen¬
weise schwärzlich geworden . Letzteres ist eine Folge von
metallischen Beimengungen , welche das käufliche Zink meist
hat . Ich amal ’gamiere das Zink , d . h . ich tauche es in
Schwefelsäure , bringe darauf einen Tropfen Quecksilber , den
ich verreibe , sodafs die Zinkfläche (soweit sie eintauchen soll)
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wie versilbert erscheint . Nun wiederhole ich den Versuch .
Der Erfolg ist derselbe , doch bleibt der Zinkstab jetzt blank ;
dennoch würden wir bei längerer Einwirkung bemerken , dafs
der Zinkstab merklich an Dicke abnimmt — er wird ver¬
braucht . Was ist hier geschehen ?

Die chemischen Untersuchungen haben nun ergeben , dafs
die am Kupferstäbchen aufsteigenden und es schliefslich fast
ganz einhüllenden Bläschen aus Wasserstoff bestehen , wäh¬
rend die Flüssigkeit jetzt aufgelöstes Zinkvitriol (schwefel -

Fig . IS .
Projektion eines Volta ’schen Elements , Vis (der Skala V20) natürl . G-röfse .

[Die beiden Blendschirme (bei L nnd p) sind fortgelassen ].

int. .
~ 1 , i .UH'V

saures Zink , Zn S 0 4) enthält . Durch die Hülle von Wasser -
stoffbläschen mufste das Kupferstäbchen allmählich von der
Flüssigkeit isoliert werden . Hierdurch wird aus dem Kupfer¬
stabe , der isolierenden Schicht und der Flüssigkeit gewisser -
mafsen ein Kondensator gebildet , wodurch sich denn die
Schwächung der Elektricitätserregung erklärt .

Woher stammt aber nun der elektrische Strom des
Elements ?

chemische In unserem Falle wurde Zink verbraucht (oder , wie der
Sektrfechen Chemiker sagt , oxydiert , d . h . mit Sauerstoff [Oxygen ] ver -

stromes . bunden ) . Ebenso zeigten Versuche , die man mit den ver -
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schiedensten Kombinationen je zweier Metalle bei verschiedenen
Flüssigkeiten anstellte , dafs ein elektrischer Strom nur
dann auftritt , wenn zwischen dem einen Metall und
der Flüssigkeit eine chemische Wechselwirkung statt¬
findet , und zwar zeigt immer dasjenige Metall an seinem
hervorragenden Ende — E , welches von der Säure stärker
angegriffen wird . Da sich aufserdem zeigte , dafs die erzeugte
Elektricitätsmenge umso gröfser ist , je mehr von dem chemisch
angegriffenen Metall , als welches meist Zink verwandt wird ,
verbraucht wird , so können wir annehmen , dafs die che¬
mische Wirkung der Flüssigkeit auf die betreffenden Metalle
(oder umgekehrt ) die Ursache der Elektricitätserregung ist ;
und zwar ist die durch die Auflösung des Zinkes ver¬
brauchte chemische Energie die Ursache der elektro -

richtiger gesagt , der elek -
Anschauung , der wir uns an -

motorischen Kraft oder ,
frischen Energie . Diese
sehliefsen wollen , nennt man die chemische Theorie des elek¬
trischen Stromes . (De la Rive und Faraday 1836 .)

Als Ludwig Galvani , Professor in Bologna ( 1789) , eine Gesciüciitiiciies :!
bereits früher von Coldani (1756 ) veröffentlichte Beobach¬
tung : dafs frisch getötete Frösche in Zuckungen geraten , wenn
in der Nähe eine Elektrisiermaschine entladen wird , durch
eine zufällige Beobachtung bestätigt fand (oder von neuem ent¬
deckte ?) , suchte er diese Erscheinung weiter zu verfolgen . Zu
diesem Behuf hängte er präparierte Froschschenkel an einem
Kupfer draht nahe bei dem eisernen Geländer seines Balkons
auf . Sobald nun die vom Winde bewegten Froschschenkel das
Geländer berührten , zuckten sie zusammen . Jetzt glaubte
Galvani das Vorhandensein einer tierischen Elektricität ge¬
funden zu haben , die als „ Flüssigkeit “ von den Nerven zu den
Muskeln geht . Dies erwies sich aber als ein Irrtum !

Wie Sie sich nach dem Gesehenen schon selbst denken voita ’s
können , spielte hier die Verbindung zweier verschiedener Kontakttlleone-!
Metalle durch die feuchte Muskelmasse des Frosches die
Hauptrolle . Das Verdienst , dieses richtig erkannt zu haben ,
gebührt Volta , Professor zu Pavia ( 1793) , dem Erfinder des
Kondensators . Er fand , dafs die einfache Berührung zweier
verschiedener Metalle schon genüge , um beide Metalle mit
entgegengesetzter Elektricität zu laden . Hiernach ist die
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Berührung - (der „ Kontakt “) zweier verschiedener Metalle unter
sich die eigentliche Ursache der elektromotorischen Kraft , und
die Flüssigkeitsschicht der Elemente kommt erst in zweiter
Linie in betracht . Diese „Kontakttheorie “ trug nach heftigem
Streit , bei welchem viele Frösche das Leben lassen mufsten ,
den Sieg über Galvani ’s Theorie davon und hat noch jetzt
(wenn auch in veränderter Form ) viele Anhänger . Da jedoch
Beobachtungen neuerer Zeit (Exner , Ostwald u . A .) ergaben ,
dafs bei der scheinbar direkten Berührung zweier verschiedener
Metallplatten ( Volta ’ s „Fundamentalversuch “

; vergl . Anh . 2)
eine mikroskopische Feuchtigkeitsschicht oder eine Schicht von
verdichteten Gasen bei dem Zustandekommen der elektrischen
Niveaudifferenz der Metalle eine wesentliche Kolle spielt ,
und dafs die Natur der die Platten (vor der Berührung )
umgebenden Gase nicht nur von Einflufs auf die Gröfse,
sondern auch auf das Vorzeichen der Ladung beider Metall¬
platten ist , so wollen wir uns an die chemische Theorie halten
und nicht näher auf die Kontakttheorie eingehen . Wir können
das um so eher thun , als die chemische Theorie einfacher , und
die Wahl der Theorie für das Verständnis des Folgenden ohne
Belang ist.

Die mit Hülfe der Elemente erzeugte d3rnamische Elelc -
tricität erhielt Galvani zu Ehren den Namen „ Galvanismus“
oder „galvanische Elektricität “ (doch hätte sie besser Volta ’ s che
Elektricität heifsen sollen , wie manche Gelehrte sie auch
nennen ) . Ehe die chemische Theorie aufkam bezeichnete man
sie als „Kontaktelektricität “ . Dieser Ausdruck findet sich auch
jetzt noch häufig .

Wir haben unsere einfachen Zink/Kupfer - Elementchen
Volta ’ sche Elemente genannt und wollen diese Bezeichnung
beibehalten , im Gegensatz zu den in der Technik gebräuch¬
lichen (konstanten ) „galvanischen Elementen “

, welche Sie
nun kennen lernen werden .

Kehren wir jetzt zu unseren Versuchen zurück .
Wir beobachteten die störende Wirkung des Wasser¬

stoffs beim Kupfer . Sollte die Bildung oder wenigstens die
Ansammlung dieses Gases nicht verhindert werden können ?
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Allerdings , und zwar giebt uns die Chemie die nötigen Mittel
an die Hand . Das Kupfervitriol (schwefelsaures Kupfer, .
Cu S0 4) löst sich leicht im Wasser . Tauchen wir den Kupfer¬
stab in eine Lösung von Kupfervitriol , die wir durch irgend
eine poröse Scheidewand von der verdünnten Schwefelsäure
trennen , in welcher der Zinkstab sich befindet , so treten keine
Wasserstoffblasen auf ; dagegen wird Kupfer aus der Lösung
gefällt und schlägt sich an der Kupferplatte nieder . [Hierauf
kommen wir noch zurück .] A , Fig . 14 , zeigt Ihnen ein solches
Element nach Daniell ( 1836) , wo ein poröser Thoncylinder T
beide Flüssigkeiten trennt . Dieses Element ist sehr kon -

Fig . 14.
A Daniell ’sches Element [Zink (Zn ) in 10 % Schwefelsäure (oder in Lösung von Zink¬
vitriol ) ; Kupfer (Cu ) in gesättigter Lösung von Kupfervitriol ]. 1/10 natürl . G-röfse . B
Bunsen ’sches Chromsäure -Element . 1/10 natürl . Gröfse . Kohle (C) in Lösung von doppelt

chromsaurem Natrium ; Zink (Zn ) in verdünnter Schwefelsäure .

stant , besonders w'enn das Zink amalgamiert worden (s . o .)
und (statt in verdünnte Schwefelsäure ) in eine Lösung von
Zinkvitriol in Wasser zu stehen kommt .

Noch wirksamer ist das in seiner äufseren Form ähnliche
konstante Bunsen ’ sche Chromsäure - Element (B , Fig . 14) ,
wo statt des Kupfers eine Platte aus harter Ketortenkohle ver¬
wandt wird , welche in einer Lösung von doppelt chromsaurem
Natrium zu stehen kommt , während das amalgamierte Zink in
verdünnte Schwefelsäure taucht . (Meist hat der hier aufsen
befindliche Zinkcylinder [Zn ] einen angelöteten Kupferstreifen ,
an welchem die Klemmschraube für den Leitungsdraht be¬
festigt ist .) Da der Chromsäure auch Schwefelsäure zugesetzt
wird (rergl . Anh . 3) , so genügt es auch , die beiden Platten (Zn

Daniell ’sches
Element .

Chromsäure *
Element .
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Genügende
Isolierfähigkeit

des Holzes für
galvanische

Ströme .

und C) in eine solche Lösung zu tauchen , um eine Zeitlang
die Wirkung des Elements einigermafsen konstant zu erhalten .
Hierdurch sind wir in den Stand gesetzt , sehr handliche Tauch -
elemente herzustellen , deren wir uns späterhin oft bedienen
werden (s . w . u . Fig . 41 ) .

Hier stelle ich eine kleine Tauchbatterie (Fig . 15 ) hin ,
deren einzelne Elemente dem besprochenen (Fig . 10 , S . 23)
gleichen , nur ist das Kupfer hier durch einen Kohlenstab 5)
ersetzt . Ein Brettchen (B) ist mit passenden Löchern versehen , in
welche dickwandige Reagenzgläser gesteckt sind . Zwei Messing¬
stäbe (Sj_, S2) haben Ableitungsdrähte (d t , d2) und sind mit je

+

Fig . 15 .
Einfache , kleine Tauchbatterie . % natiirl . Gröfse .

6 Löchern (1) versehen , in welche die Ableitungsdrähte
'und

die Poldrähte der einzelnen Elemente hineingesteckt werden
können .

Wie Sie sehen , sind hier die Messingständer nur durch
eine Holzschicht von einander getrennt , dennoch genügt das hier
völlig , um sie von einander zu isolieren — d . h . für die gal¬
vanischen Ströme ! Bei Anwendung sehr hochgradiger Elek -
tricitätsquellen , wie z . B . der Influenzmaschine und der uns

5) Bei den Kohlenstäben ist das obere Ende etwa 8 mm breit (gal¬
vanisch) verkupfert worden , worauf — nach völligem Trocknen — das
Anlöten der Drähte sehr leicht ist . Vorteilhaft ist hier , wie bei Drähten ,
die Anwendung von reinem Zinn , obgleich das Löten damit etwas
schwerer ist . Die (abgespülte ) Lötstelle bleibt nämlich blank .
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erst viel später begegnenden Induktionsströme , wäre die
Isolierfähigkeit des Holzes bei weitem nicht genügend , da der
Druck , mit dem die Elektricität abzufliefsen sucht , mit dem
Elektrisierungsgrade ' wächst .

Wie bei dem Volta ’ schen Becher sind die Poldrähte des
Zinkes mit grüner , die anderen mit roter Seide umsponnen ;
ebenso sind die Ableitungsdrähte (d t , d2 , Fig . 15) und deren
isolierende Siegellackgriffe (i t , i2) rot und grün , sodafs Sie von
Ihren Plätzen aus genau verfolgen können , in welcher Weise
ich die Elemente unter einander verbinde .

Zuerst wollen wir die Poldifferenz oder elektromotorische
Kraft der einzelnen Elemente , die (s . Fig . 14) mit Nummern 1 ,

Schaltungpurallel (neben einander )
Tnr

hui 0 04i 0

Schaltung hinter einander
Fig . 16.

Verschiedene Schaltung galvanischer Elemente einer Batterie .

2 . . . 5 versehen sind , am Aluminium -Elektrometer bestimmen ;wir erhalten 1,95 ; 1,93 ; 1,95 ; 1,96 ; 1,94 ; d . h . diese frisch zu¬
sammengesetzten , aus ganz gleichem Material bestehenden
Elementchen zeigen eine — bis auf die unvermeidlichen Ab¬
lesungsfehler — genau gleiche elektromotorische Kraft .

Jetzt tritt die Frage an uns heran : Wird die elektro¬
motorische Kraft sich ändern , wenn wir die Elemente
zu zweien , dreien . . . . u . s . w . kombinieren ?

Wie sollen wir sie aber nun zusammenstellen ? Hierbei
können wir zwei verschiedene Wege einschlagen . Wir können
nämlich entweder alle Kohlenstäbe unter einander und alle Zink¬
stäbe unter einander verbinden (A, Fig . 16) ; oder wir verbinden
den Zinkstab des ersten Elements mit dem Kohlenstab des
zweiten , dessen Zinkstab mit der Kohle des dritten u . s. w.
(B , Fig . 16 ) . — Die erste Art der Kombination oder „ Schaltung“

Kolbe . II . 3

Schaltung
parallel und

hintereinander
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heifst die Schaltung parallel oder nebeneinander , weil sie

gleichlaufen den Wasserkanälen entspricht , die gemeinschaftlich
ausmünden . Die andere Schaltung , bei welcher der elektrische
Strom (der im Leitungsdraht von der Kohle zum Zink fliefst )
die einzelnen Elemente nacheinander passieren mufs (in den
Elementen selbst also vom Zink durch die Flüssigkeit zur
Kohle ) , nennt man die Schaltung hintereinander (oder
successive ) . Eine solche Gruppe von verbundenen Elementen
heifst Batterie oder Kette .

Wir wollen nun unsere Elemente zuerst parallel und dann
hintereinander schalten und die Wirkung am Elektrometer

verfolgen . Dabei können wir , der besseren Übersicht wegen ,
die Resultate gleich tabellarisch ordnen . Den Ausschlag sehen
Sie deutlich auf dem Projektionsschirm (vergl . I . Bd . , Fig . 15) .
Zur Abkürzung bezeichnen wir die elektromotorische Kraft
mit E .

Messung der elektromotorischen Kraft am Elektrometer :

Anzahl Schaltung :
d . Elem . a) parallel b) hintereinander

Ausschlag : Ausschlag :
i 1,95 1,95 ; E y= l gesetzt
2 1,95 £ 3,91 ; E3 = 2 (genau)
8 1,94 . 5,85 ; E3 = 3 (genau)
4 1,95 0>> 7,75 ; E4 = 4 (nahezu )
5 1,94 £ 9,75 ; E s = 5 (genau)

Hieraus sehen wir , dafs die elektromotorische
Kraft bei paralleler Schaltung unverändert bleibt ,
dagegen bei der Schaltung hintereinander mit der
Anzahl der Elemente zunimmt , und zwar ihr propor¬
tional .

Wir haben hier ganz gleiche Elemente benutzt . Vielleicht
tritt ein Unterschied auf , wenn wir Elemente verschiedener
Art kombinieren .

Ein einfaches Daniell ’ sches Elementchen zeigt Fig . 17 .
Die U -förmige Glasröhre ist in einen Holzklotz eingelassen und
an der Biegung mit Glaswolle (G W ) verstopft , sodafs die

Flüssigkeiten langsam durchsickern können , aber sich bei

ruhigem Stehen nicht vermischen . In den einen Schenkel
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i

i

i

j
. *
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giefse ich eine Lösung von Kupfervitriol , in den anderen von
Zinkvitriol und setze die Kupfer - und Zinkstäbe , die durch
Korken geführt sind , ein . Die Poldrähte haben Siegellack¬
griffe (i) . Ein ebensolches G-efäfs dient uns als Chromsäure¬
element nach Bunsen (s . o .) .

Am Elektrometer erhalten wir als Mafs der elektromoto¬
rischen Kraft :

1 Daniell = 1,10 ; 1 Chromsäureelement = 1,95 ;

Fig . 17.
Kleines konstantes Element . natürl . Gröfse .

beide parallel geschaltet geben 1,8 ; hintereinander 3,04
(= 1 . 1 + 1,95) .

Bei paralleler Schaltung ist die elektromotorische
Kraft ungleicher Elemente kaum so grofs , wie die des stär¬
keren , dagegen bei der Schaltung hintereinander gleich
der Summe der elektromotorischen Kräfte der einzel¬
nen Elemente .

Was mag aber geschehen , wenn ich ein Element dem
anderen entgegen schalte , sodafs der Strom des einen Ele¬
ments dem des anderen entgegen fliefst ? (Bei dieser Versuchs¬
anordnung sind sehr konstante Elemente erforderlich , wes -

3 *
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halb ich die früher benutzten Tauchelementchen nicht ver¬
wenden kann .) Ich verbinde den Zinkstab des Daniell ’schen
Elementes mit dem Zinkstabe des (U -förmigen ) Chromsäure -

Elementes und halte den Poldraht der Kohle an die Elektro¬

meterplatte , den des Kupfers an die obere (des Kondensa¬
tors ) . — Nach dem Abheben der oberen Kondensatorplatte
zeigt das Elektrometer nur 0,84 und zwar + E , wie der elek¬
trisierte Plintglasstab erweist . Nun ist aber 0,84 = 1,95 — 1,10 ;
d . h . die elektromotorische Kraft bei Gegenschaltung
zweier Elemente = der Differenz der elektromotori¬
schen Kräfte .

Da wir aber , wenn wir die elektromotorischen Kräfte
beider Elemente mit E und e bezeichnen , schreiben können

E — e = E + (— e) = 1,95 + (—1,1 ) = 0,85 (beobachtet 0,84) ,
so können wir allgemein sagen :

Bei der Schaltung hintereinander ist die elektromotorische Kraft
der Kette gleich der algebraischen Summe der elektromotorischen Kräfte
der einzelnen Elemente .

*

Die Anzahl der verschiedenen galvanischen Elemente ist
sehr grofs . Ich bin nicht in der Lage , Ihnen Muster aller ,
oder auch nur der gebräuchlichsten vorzulegen , da wir uns
ausschliefslich der Daniell ’schen oder der Chromsäure -Ele¬
mente bedienen werden . Da es aber auf die Form der Gefäfse
gar nicht ankommt , so will ich Ihnen , mit Hülfe unserer U-för¬
migen , mit einer Scheidewand aus Glaswolle versehenen Röhren ,
wenigstens kleine Modelle der wichtigsten Arten konstanter
Elemente zusammenstellen , damit wir ihre elektromotorische
Kraft mit dem Daniell ’schen Element (Fig . 17) vergleichen
können .

1 . Leclanehe ’s Element : Kohle in einem Gemisch von
gepulvertem Braunstein und Koks , Zink (amalgamiert )
in Salmiaklösung (die auch die Lücken des anderen
Schenkels erfüllt ) . Dieses Element ist sehr konstant .

2 . Grove ’s Element : Platin in koncentrierter Salpeter¬
säure , amalgamiertes Zink in verdünnter Schwefel¬
säure . (Da dieses Element schädliche Dämpfe ent -
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wickelt , so müssen dichtschliefsende Gummipfropfen
angewendet werden .)

3 . Bunsen ’s Element : Harte Kohle statt Platin , sonst
wie Grove ’s Element .

4 . Latimer Clarke ’s Element (als „Normalelement “ oft
gehraucht ) . Platin in Zinkvitriollösung , chemisch
reines , nicht amalgamiertes Zink in einem steifen
Brei aus Quecksilbersulphat . (Eine poröse Scheide¬
wand ist nicht erforderlich .)

Um vergleichbare Resultate zu erhalten , wollen wir alle
Elemente etwas „ arbeiten “ lassen , d . h . ich verbinde ihre Pole
durch Drähte , damit der Strom eine Zeitlang hindurch geht
und eine Art Gleichgewichtszustand eintritt .

Nachdem das geschehen , gehen wir an die Messung , wo¬
bei ich nur die Vorsicht beobachte , immer den positiven Poldraht
direkt mit dem Elektrometer zu verbinden , da durch wech¬
selnde Ladung der Kondensatorplatten Störungen eintreten
können .

Elektromotorische Kraft einiger konstanter Elemente .
i) Am Elektrometer b ) Daniell = 1
1 Daniell LI 1
1 Crrove 2,0 1,8 Daniell
1 Bimsen 1,95 1,8 Daniell
1 Clarke 1,5 1,36 Daniell
1 Leclanchc 1,3 1,2 Daniell

Diese Zahlen mögen Ihnen als ein annähernder Mafsstab
zur Beurteilung der elektromotorischen Kraft dienen . Mafs -
gebend für den Gebrauch ist entweder die Stärke der Wirkung
oder die Bequemlichkeit der Handhabung und endlich — der
Kostenpreis . In der Technik werden oft aus letzterem Grunde
die Leclanche ’schen Elemente bevorzugt .

^ jl;

So haben wir denn heute die Wirkungsweise der „ offenen “
(d . h . nicht durch Leiter verbundenen ) Pole der Elemente
kennen gelernt und wollen das nächste Mal dem geschlos¬
senen Stromkreise unsere Aufmerksamkeit widmen .
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Wir haben auf unserer zweiten Wanderung eine neue
Elektricitätsquelle kennen gelernt : wir sahen , dafs unter ge¬
wissen Umständen Metalle durch Berührung mit Flüssigkeiten
dauernd elektrisch werden können . Die hierbei auftretenden
Elektricitätsgrade sind jedoch so gering , dafs wir das Alumi¬
nium -Elektrometer mit dem Kondensator verwenden mufsten ,
um uns von dem Vorhandensein von freier Elektricität an den

herausragenden Enden (den Polen ) zu überzeugen . . Wir sahen :
1 . Bei der Berührung eines Metalles mit einer geeigneten

Flüssigkeit zeigt das hervorragende Ende des Metalles
(meist ) — E (am stärksten Zink ) , während die Flüssigkeit
die entgegengesetzte Ladung annimmt . Bei gleichzeiti¬
gem Eintauchen zweier verschiedener Metallstäbe
nimmt das herausragende Ende des einen Metalles
eine Ladung + E an , während das andere — E auf¬
weist . Diese elektrische Poldifferenz stellt sich nach
ableitender Berührung sofort wieder her und bleibt
solange bestehen , als die chemische Wirkung zwischen
der Flüssigkeit und den Metallen ungeschwächt vor¬
hält ; daher sehen wir in der chemischen Wirkung
die Ursache der Elektricitätserregung im gal¬
vanischen Element .

2 . Die elektrische Niveaudifferenz der freien Pole eines
galvanischen Elements ist uns ein Mafsstab für die
elektromotorische Kraft . Hat der eine freie Pol
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den Elektrisierungsgrad + e und der andere — e , so
tritt die gesamte Niveaudifferenz + e — ( — e ) = 2e an
dem einen Pole auf , wenn der andere zur Erde abge¬
leitet ist , also das Nullniveau der Erde annimmt .

3 . Werden mehrere konstante und gleiche galvanische
Elemente parallel geschaltet , so ist die elektro¬
motorische Kraft der Batterie dieselbe , wie bei
einem einzelnen Element , wächst dagegen bei der
Schaltung hintereinander mit der Anzahl der
Elemente . Sind die Elemente von ungleicher elek¬
tromotorischer Kraft , so ist bei der Schaltung
nacheinander die gesamte elektromotorische
Kraft der Kette gleich der algebraischen
Summe aller elektromotorischen Kräfte der ein¬
zelnen Elemente (auch für den Fall , dafs einige Ele¬
mente den anderen entgegengesetzt geschaltet sind ) .

Unsere bisherigen Versuche beschränkten sich auf den
Nachweis der Elektricität an den freien Polen der galvanischen
Elemente . Nun wollen wir — wie wir es bereits (S . 9) bei
der Influenzmaschine gethan haben — , das Stromgefälle im
geschlossenen Stromkreise verfolgen .

Da aber , nach unserer Erfahrung , die Niveaudifferenz der
Pole sehr stark abnimmt , wenn eine leitende Verbindung her¬
gestellt und dadurch ein elektrischer Strom hervorgerufen
wird , und die Poldifferenz der galvanischen Elemente über¬
haupt im Vergleich zu der Elektrisiermaschine sehr gering ist ,
so müssen wir eine Kette von vielen Elementen bilden . Wir
wollen kleine Batterieen von Danie 11 ' sehen Elementen (vergl .
Fig . 17 ) verwenden . Zehn Batterieen zu je 5 Elementen , alle
hintereinander geschaltet , werden genügen , da wir die 50fache
elektromotorische Kraft eines Elements haben . Eine kleine Bat¬
terie zeigt Ihnen Fig . 18 (a . d . f . S .) . Vermittelst der in die Löcher
der Messingständer (m) passenden Drähte (d : d2) verbinden wir
diese Fünfer -Batterieen unter einander . — (Der gemeinsame
Holzständer H macht die Batterie stabiler und zugleich trans¬
portabler und gestattet auch , nach Belieben Gruppen von par¬
allel geschalteten Elementen zu verwenden .)
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Nun fehlt uns noch ein passender Stromleiter . Hier sehen
Sie (R, Fig . 19 ) über dem Experimentiertisch an zwei Schnüren
einen Holzrahmen hängen , der oben 10 und unten 11 starke

d i +
rrrrrrnr

Fig . 38.
Kleine Batterie von 5 Daniell ’sclien Elementen . (A : /3. B J/2 natürl . Gröfse .)

Fig . 19.
Nachweis des Stromgefälles im Stromleiter . J/i5 natürl . Gröfse

R Stromleiter ; B Batterie von 50 Elementen ; E Elektrometer ; II Kontaktsclüüssel .

Neusilberstifte trägt , deren herausragenden Ende etwas zuge¬
spitzt sind , sodafs sie in die Bohrung eines Kontaktschlüssels
( SII ) passen . Einen sehr langen feinen Neusilberdraht habe
ich möglichst genau in 10 gleiche Teile geteilt und die Teil¬
punkte fest um die unteren Stifte (0 , 1 , 2 , 3 . . . . 10) gewickelt ,
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die zwischenliegenden Stücke zu Locken aufgewickelt und mit
der Mitte an dem betreffenden oberen Stift eingehakt .
So stellt der ganze Draht eine sehr lange Leitung dar . Die
Stifte 0 und 10 verbinde ich durch biegsame starke Drähte
mit der Batterie (B) von 50 Elementchen .

Durch zwei feine umsponnene Kupferdrähte , deren eines
Ende an je 1 Kontaktschlüssel befestigt ist , während das andere
einen isolierenden Siegellackgriff (i i) trägt , kann ich die Konden¬
satorplatten des Elektrometers mit je zwei Stiften für einen
Moment verbinden , um die elektrische Niveaudifferenz dieser
beiden Punkte der Strombahn zu bestimmen . Zwischen den
Stiften 0 und 10 (s . Fig . 19) erhalten wir 8,2 Aichungsgrade .
Da der ganze Leitungsdraht zwischen diesen beiden Punkten
möglichst genau in 10 gleiche Teile geteilt worden ist , so
dürfen wir erwarten , dafs zwischen den Punkten 0 und 1 ,
1 und 2 u . s .

’ w . der 10 . Teil dieser Niveaudifferenz auftreten
wird (s . o . S . 14 ) . Das ist thatsächlich der Fall , denn das
Elektrometer zeigt 0,79 ; 0,80 ; 0,80 ; 0,81 u . s . w . , d . h . bei
einem gleichförmigen Stromleiter ist der Niveauunter¬
schied zwischen gleichweit abstehenden Punkten der
Strombahn konstant . (Diese Versuchsanordnung ist — des
Kondensators wegen — nicht ganz einwandfrei , doch genügt sie ,
um Ihnen vorläufig einen Begriff davon zu geben , dafs auch hier
ein Stromgefälle stattfindet .) — Sehr mifslich ist , bei der für
diesen Zweck geringen Anzahl von Elementen , der Nachweis ,
dafs die freie Elektricität von dem einen Pole (0) bis zum
anderen (10) stetig abnimmt , doch wollen wir es versuchen . Ich
verbinde die Elektrometerplatte (Fig . 19 ) mit dem Stifte 0 , aber
leite gleichzeitig die obere Platte zur Erde ab . Nach dem
Abheben der oberen Platte zeigt das Elektrometer + E = 3,3,
dagegen beim Stifte ( 10) — E = 3,5 ; dazwischen sind bei 1 bis 5
die Ladungen abnehmend positiv , von 6 bis 10 wachsend
negativ . Der Nullpunkt liegt also im Neusilberdraht zwischen
5 und 6 . — Sie sehen , dafs wir bei dem galvanischen Strome
im wesentlichen dieselben Erscheinungen haben , wie wir sie
bei Anwendung der Influenzmaschine beobachteten .



42 Stromwender oder Kommutator .

Nun wollen wir einen Schritt weiter gehen und fragen :
welche Wirkungen ruft der elektrische Strom in seiner
Umgebung hervor ?

Zunächst wollen wir untersuchen , ob die vom elektrischen
Strome durchflossenen Leiter sich auch gegenseitig anziehen
oder abstofsen , wie wir es bei elektrisierten Körpern (z . B . an
den elektrischen Pendeln ) beobachteten . Zu diesem Zweck
müssen wir leicht bewegliche Stromleiter . hersteilen und
Zusehen , ob ein genährter zweiter Stromleiter irgend eine Wir¬
kung auszuüben vermag !

Da wir , auch späterhin , oft genötigt sein werden , die
Richtung des Stromes in einem bestimmten Leiterstück

Fig . 20.
Stromwender nacli Rülimkorff , mit automatischem Stromrichtungszeiger (Z).

1li natürl . Gröfse .

| | rfi | P|r

umzukehren , so wollen wir einen Hülfsapparat benutzen , der
das gestattet , ohne dafs wir die Poldrähte vertauschen müfsten .
Einen solchen Stromwender oder Kommutator lege ich
Ihnen hier vor (Fig . 20) .

Ein kleiner Ebonitcylinder (T ) ist durch zwei nicht durch¬
gehende (also von einander isolierte ) Achsen in zwei Messing¬
ständern (sx s2) vermittelst der Kurbel (g) drehbar . Die Ständer
sind durch Kupferstreifen mit den Klemmschrauben px p3 ver¬
bunden . Von den Achsen führt je ein Kupferstreif zu zwei
Metallplatten (m x m2) , welche auf dem Cylindermantel so be¬
festigt sind , dafs sie sich gegenüberstehen und bei einer ge¬
wissen Stellung des Stromwenders mit den Messingfedern (fx f2)
in Berührung stehen , welche wieder durch Kupferstreifen mit
den Klemmschrauben k t k 2 verbunden sind . Werden die Klemm -
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schrauben p t p2 mit den Poldrähten eines Elements verbunden
und zwischen k ^ ein Leiter eingespannt , so fliehst der Strom
bei einer Stellung des Stromwenders (B , Fig . 20) von Pi über
k x nach k 2 , dagegen in der anderen Stellung des Cylinders
( C , Fig . 20) von pt über k 3 nach k 1 ; also wird in dem
zwischen k t und k 3 befindlichen Leiterstück der Strom
die Kiehtung wechseln , wenn die Kurbel (g) eine halbe

Drehung macht . In der mittleren Stellung des Cylinders werden
die Federn (ft f2) nicht berührt , also ist der Strom unter¬
brochen . Die verlängerte Achse des Cylinders hat eine

Fig . 21.
Beweglicher Stromleiter (S) nach Mühlenbein . Modificiert und vereinfacht .

Vo natürl . Gröfse .

axiale Bohrung , in welche ein Stift pafst , welcher an einen

Neusilberzeiger (Z) gelötet ist . Wird der Stift eingesetzt , so
dreht sich der Zeiger mit dem Cylinder und giebt die ver¬
änderte Stromrichtung im Leiterstück (kj k 2, bei A Fig . 20)
an , was Sie mithin von Ihren Plätzen aus kontrollieren können .

Einen beweglichen Stromleiter liefert uns ein schmaler Streifen
von feinstem Blattzinn (Stanniol ) , etwa 28cm lang und 5mm breit ;
diesen befestige ich an den Enden passend geformter starker
Messingdrähte (Dj, D2, Fig . 21 ) , die am Stromwender angebracht
sind , in der Weise , dafs er schlaff herabhängt 6) . Verbindeich

6) Mit einer Laubsäge ist in die Messingdrähte (Dj D 2, Fig . 21 ) eine
Spalte yon etwa 1 cm Tiefe eingesägt , das 2—3fach zusammengelegte Ende
des Stanniolstreifens eingeschoben und die vorstehenden Drahtenden mit
biegsamem Kupferdraht zusammengeschnürt .
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nun die anderen Klemmschrauben des Stromwenders , die mit
einem + und — markiert sind , mit den entsprechenden Polen
eines Bunsen ’ schen Chromsäure -Elements (s . Fig . 31 ) , so fliehst
der Strom in der Richtung des Stromzeigers (Z ) durch den Stanniol¬
streifen . — Als fester Leiter dient uns starker , mit Seide oder
wachsierter Baumwolle umsponnener Kupferdraht , den ich in
4— 5 Windungen zu einem Rahmen (R , Fig . 21 ) zusammenbiege
und auf einem Holzklotz (H) aufrecht befestige , nachdem ich
die Ecken mit Bindfäden zusammengeschnürt habe . Die Enden
dieses Drahtes führe ich zu Klemmschrauben , die mit einem
zweiten Chromsäure -Element verbunden sind . Um Ihnen die
Stromrichtung zu markieren , befestige ich an den Seiten des
Rahmens zwei Pfeile aus Papier .

Fig . 22.
■Wirkung eines festen Stromleiters auf einen beweglichen .

Vj8 natürl . Gröfse .

Nun schiebe ich den Drahtrahmen R über den Zinnstreifen ,
den ich im Auge zu behalten bitte (Fig . 22) . — Jetzt schliefse
ich am Stromwender den Strom . Während bisher das Zinn¬
blättchen ( S , Fig . 22 ) schlaff herabhing , bläht es sich jetzt auf
und legt sich bald an die eine , bald an die andere Seite des
Drahtrahmens an (B und C , Fig . 22) , wenn ich die Stromrichtung
ändere . Es macht den Eindruck , als ob der Zinnstreifen bald
von der rechten , bald von der linken Hälfte des Rahmens
angezogen würde . Ein Blick auf den Stromrichtungs -Zeiger
des Kommutators ergiebt , dafs der bewegliche Leiter nach der
Seite des Rahmens gezogen wird , wo der Strom dieselbe
Richtung hat .

Nun modificiere ich den Versuch , indem ich den Draht¬
rahmen dicht neben den Stanniolstreifen stelle und den Strom
schliefse — auch jetzt findet bei gleicher Stromrichtung An¬
ziehung , aber bei entgegengesetzter eine deutliche Abstofsung
statt (D , Fig . 22 ) , wir erhalten also die Regel :
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Gleichgerichtete elektrische Ströme ziehen sich an , entgegengesetzt

gerichtete sto/sen sich ab .
Falls unsere Beobachtung richtig ist , so müfste ein frei

beweglicher Stromleiter das Bestreben haben , sieh einem in

- wA

Fig . 23.
Modificiertes und vereinfachtes Ampere ’sches Gestell . Vio natürl . Gröfse .

B Kontaktbecher . 1/2 natürl . Gröfse .

der Nähe befindlichen Stromleiter gleichgerichtet parallel zu
stellen , also unter Umständen eine Richtkraft zeigen ! Das
wollen wir doch versuchen .

Ein nicht geschlossener Drahtrahmen (R , Fig . 23 ) ist so
an einem schlichten Frauenhaar (oder an einem ungedrehten
Kokonfaden ) aufgehängt , dass die freien Enden in zwei Queck -
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silbernäpfe (B , Fig . 23 ) tauchen , von denen der eine den
anderen umgiebt . Beide Quecksilbergefäfse sind von einander
isoliert , aber durch Platindrähte mit den Klemmschrauben
verbunden , welche ich durch den Stromwender mit einem
Chromsäure -Element in Verbindung setze . Durch Drehung der
Trommel ( t) wird der Faden , der mehrfach herumgeführt ist ,
verkürzt oder verlängert . Eine kleine Drehung des Armes (a)
gestattet eine seitliche Bewegung des Fadens und Rahmens ,
während das Brettchen mit dem Kontaktbecher näher und
weiter gerückt werden kann , sodafs es immer möglich wird ,
das gerade Drahtende des Drahtrahmens genau senkrecht über
dem mittleren Quecksilberbecher einzustellen , worauf der
Kähmen herabgelassen und der Stromkreis geschlossen wird .
Eine Stecknadel , die in dem Kähmen befestigt ist , trägt einen
kleinen Pfeil aus Karton , der als Stromzeiger dient (Z) und
auf der einen Seite rot , auf der anderen grün gefärbt ist .

Als fester Stromleiter dient ein Rahmen
aus starkem Kupferdraht (K2, Fig . 23) , wel¬
cher auf einem drehbaren Klötzchen ange¬
bracht und mit 2 Stromrichtungs -Zeigern
(Z2 Z3) aus Papier versehen ist . Auf der
Schiene kann dieser Rahmen dem dreh¬
baren (Rj) beliebig genähert werden . —
Dieser Apparat , der hier modiflciert und ver¬
einfacht ist , heilst nach seinem Erfinder das
Ampfere ’ sche Gestell .

Nun verbinde ich auch die Klemm¬
schrauben des festen . Drahtrahmens (R .2) mit
einem Chromsäure -Element , stelle denStrom -
richtungs -Zeiger ein und schiebe den Rahmen
zum beweglichen heran , dafs eine vertikale
Seite voransteht (A, Fig . 24) . Sie sehen , der
bewegliche Leiter wendet sich und stellt
sich so , dafs im genäherten Teile der Strom
gleichgerichtet ist . — Ich drehe den festen
Rahmen um 180 °

, und sofort macht der
bewegliche Leiter eine Schwenkung und stellt sich wieder ent¬
sprechend ein (B , Fig . 24) . Nun unterbreche ich den Strom am
Kommutator , schiebe den festen Rahmen soweit vor , dafs die

Hr

t .4

Fig . 24.
Richtkraft eines festen
Stromleiters auf einen

beweglichen .J/io natürl . G-röfse .
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Mittelpunkte beider Kakmen zusammenfallen und schliefse den
Strom — sofort schwingt der bewegliche Leiter herum , pendelt
einige Mal hin und her und stellt sich wieder so , dafs die
Ströme gleichgerichtet parallel sind ( Ampere ) .

Jetzt verbinde ich beide Chromsäure - Elemente (parallel
geschaltet ) mit dem Stromwender , also mit dem schwebenden
Drahtrahmen und schliefse den Strom dem Zeiger entsprechend
- der King dreht sich langsam und stellt sich so , dafs der
Pfeil nach Osten zeigt . Sollte das ein Zufall sein ? Ich
drehe den Pfeil um 180 ° und gebe dem Strom die umgekehrte
Richtung (die also wieder vom Pfeil markiert wird ) — der

Erfolg ist derselbe ! In beiden Fällen fliefst also der Strom
oben nach Osten oder , wenn Sie von Norden blicken , im

umgekehrten Sinne wie die Bewegung der Uhrzeiger . — Woher

Fig . 25.
Wirkung eines Magnets auf einen beweglichen Stromleiter . Vio natürl . Gröfse .

kommt das ? Der von einem verhältnismäfsig starken Strom
durchflossene Drahtrahmen zeigt eine Richtkraft , ähnlich wie
eine Magnetnadel , nur dafs er mit seinen Flächen eine nord -
südliche Lage einnimmt , seine Ebene also eine west -östliche
ist . Diese Richtkraft kann — da weiter keine Ursache vor¬
handen ist — nur eine Wirkung des Erdmagnetismus sein .
Ist diese Voraussetzung richtig , so mufs ein genäherter
Magnetstab eine Richtkraft auf den beweglichen i.
Leiter äufsern ! Die Probe ist einfach . Ich nähere das Süd - Wirkung eines|
ende eines Magnetstabes der Kante des Drahtrahmens (A , etae

S
nbewegi.

Fig . 25 ) . Sie sehen , wie der Ring sogleich eine Vierteldrehung Stromleiter,
macht und dem Südpol des Magnets die Fläche zukehrt ,
welche vorhin nach Norden gerichtet war . Das Umgekehrte ■
tritt ein , wenn ich den Nordpol des Magnets heranbringe
(B , Fig . 25) . Diese auffallende Erscheinung zeigt uns ;
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unverkennbar , clafs zwischen den elektrischen Strö¬
men und den Magneten eine Beziehung herrscht . Diese
zu erforschen soll jetzt unsere Aufgabe sein .

Das soienoia . Ich ersetze den Drahtrahmen unseres Apparates durch
eine Locke aus hartem , also steifem Kupferdraht (Fig . 26 ) , die
so gewickelt ist , dafs die Enden , ohne die Windungen zu
berühren , nahe Zusammenkommen , wo sie durch ein Stück¬
chen Kork geführt und so gebogen sind , dafs sie in den Queck¬
silberkontaktbecher tauchen können . Um Ihnen die Strom¬
richtung zu markieren , hänge ich zwei farbige Papierscheiben

Fig . 26.
Das Solenoid mit markierter Stromricktung . 3/2 natürl . Gröfse .

Hü 1? .«

(B , Fig . 26) an die Enden des „ Solenoids “
, wie man diese

Vorrichtung nennt . Die rote Papierscheibe zeigt die Pfeile
nach links , die grüne nach rechts gerichtet (also letztere den
Uhrzeigern entsprechend ) . — Nun schliefse ich den Strom so ,
dafs die Pfeile die Stromrichtung anzeigen — sofort wendet
sich das Solenoid und stellt sich von Nord nach Süd ,
und wiederum fliefst der Strom oben nach Osten .

Nun vertausche ich die Papierscheiben und wende
den Strom — wieder zeigt das rote Ende nach Norden , und
der Strom fliefst , wie wir uns leicht überzeugen , wieder den
Pfeilen entsprechend . — Jetzt nähere ich den Nordpol des
Magnetstabes von der Seite — das Solenoid schwingt heftig
herum und kehrt ihm das grüne Ende zu , wo der Strom im
Sinne der Uhrzeiger fliefst . Das Umgekehrte findet bei An -
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liäherung des magnetischen Südpols statt . Zur Kontrolle nähere
ich rasch den Nordpol des Magnets dem roten Ende des
Solenoids — dieses wird abgestofsen , ebenso das grüne Ende
vom Südpol . Wir erkennen hieraus :

Zwischen einem Magnet und einem vom elektrischen Strom durch¬
flossenen Solenoid finden genau dieselben Erscheinungen der polaren An¬
ziehung und Abstofsung statt , welche wir zwischen zwei Magnetnadeln
beobachteten; und zwar verhält sich das Ende des Solenoids ,
wo der Strom in der Richtung der Uhrzeiger fliefst ,
wie ein südsuchender Magnetpol ; das andere Ende , wo
der Strom in umgekehrter Richtung , wie die Uhrzeiger kreist ,
wie ein nordsuchender Pol ( Ampere ) .

Fig .
Magnetische Wirkung einer Drahtspirale ., 1/8 natürl . Gröfse .

S Quecksilber -Stromschlüssel .

J

Sollte am Ende das vom Strom durchflossene Solenoid ein
Magnet geworden sein ? Ich nehme eine Glasröhre (g,
Fig . 27 ) und umwickele sie mit etwa 20 Windungen umspon¬
nenen Kupferdrahtes (von etwa 1 mm Stärke ) und verbinde
die Enden mit einem Chromsäure -Element , schalte aber einen
„ Stromschlüssel “ oder „Kontaktschlüssel “ ein , um den Strom
nach Belieben schliefsen und öffnen zu können . Dieser Strom¬
schlüssel (S) besteht aus einem Holzklotz , in den eine napf¬
förmige Vertiefung ausgebohrt und mit Quecksilber gefüllt ist.
Zwei Stahldrähte (dx d2) sind so befestigt , dafs der eine be¬
ständig eintaucht , der andere , hakenförmig gebogene , mit der
Spitze nahe über der Quecksilberoberfläche schwebt und durch
einen Druck mit dem Finger zum Eintauchen gebracht wird ,
wodurch der Stromschlufs hergestellt ist .

Ich halte die Drahtspirale nahe über einem kleinen Eisen-
4Kolbe . II .
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blechstück (e) und schliefse den Strom — das Eisen wird an¬
gezogen , fällt aber herab , wenn ich den Strom unterbreche .
Nun nähere ich das eine Ende einer aufgehängten Magnetnadel :
die Nadelenden werden genau so angezogen , als wäre die
Drahtspirale ein Magnet , aber nur solange der Strom in der
Spirale kreist . Die Drahtspirale , durch welche ein gal¬
vanischer Strom geht , hat also thatsächlich magne¬
tische Eigenschaften , die aber spurlos verschwinden ,
wenn der Strom unterbrochen wird .

Fig . 28.
Magnetisierung von weichem . Eisen (e) und Stahl (s) durch den galvanischen Strom .

1/5 natürl . Gröfse .

Nun liegt die Frage nahe , ob wir nicht vermittelst des
elektrischen Stromes direkt künstliche Magnete erzeugen
können ?

Wir haben schon oben (S . 3) gesehen , dafs Eisen und
Stahl sich beim Magnetisieren verschieden verhalten . Wir
wollen daher beide zugleich prüfen . — Ein Holzrahmen
(Fig . 28 ) hat oben zwei Löcher , durch welche ich einen Stab

verschiedenes aus weichem Eisen (e) und einen aus Stahl (s) von gleicher
V

Ei
’
sen

e
nnd

°n Gröfse stecke und durch Schrauben festklemme . Nun um¬
wickele ich jeden Stab mit 15 Windungen umsponnenen Kupfer¬
drahtes und führe die Drahtenden zu den Klemmschrauben
(k x k 3) , die ich — unter Einschaltung des Kontaktschlüssels
(vergl . S , Fig . 27 ) — mit einem Chromsäure -Element verbinde .
— Schliefse ich den Strom , so zeigen sich beide Stäbe
magnetisiert ; während aber der weiche Eisenstab (e, Fig . 28)
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eine ganze Reihe von Eisenstücken zu tragen vermag , kann
ich am Stahlstabe (s) nur ein Stück anlegen , denn das zweite
will nicht haften . Doch — jetzt gelingt es ! Nach einer kleinen
Weile kann ich wieder ein Eisenstück zulegen , doch bleibt
die Tragkraft des Stahlstabes immerhin bedeutend
kleiner als die des weichen Eisenstabes . — Nun unter¬
breche ich den Strom — — am Eisenstabe fallen , mit Aus¬
nahme des obersten , alle Eisenstücke ab , beim Stahle kein
einziges !

Ich reifse von beiden Stäben die Eisenstücke ab und halte
sie wieder an die Polflächen : der Stahlstab hat seine magne¬
tische Kraft behalten , das Eisen ist , scheint ’s , völlig unmagne¬
tisch geworden . Wir wollen den Versuch wiederholen , aber
vorher auf die Polflächen beider Stäbe Stückchen von feinem
Papier kleben . Beide Stäbe zeigen eine etwas geringere Trag¬
kraft als vorhin , und beim Öffnen des Stromes fallen am Eisen¬
stabe alle Stücke ab , während am Stahlstabe alle hängen
blieben , d . h . weiches Eisen wird durch einen ihn um¬
kreisenden elektrischen Strom sehr stark magnetisch ,
aber nur so lange der Strom dauert ; der Stahl dagegen
behält (wenigstens zum grofsen Teil ) seinen Magnetismus .

Die aus einem weichen Eisenkern und einem ihn umkreisen¬
den elektrischen Strom gebildeten Magnete heifsen Elektro¬
magnete . Ihre Tragkraft wächst anfangs mit der Anzahl der
benutzten galvanischen Elemente und übersteigt die aller anderen
künstlichen Magnete . Die Wirkung wird , wie auch bei Stahl¬
magneten , verstärkt , wenn beide Polflächen die angelegte Eisen¬
platte , den sogenannten Anker , berühren . Solche hufeisen¬
förmige Elektromagnete zeigt Fig . 29 in zwei typischen Formen .
Der eine (B) hat breite flache Polflächen , die sich sehr nahe stehen ,
und zeigt — da er aufserdem aus besonders weichem Eisen
hergestellt ist — , obgleich er nur 5 Windungen starken Kupfer¬
drahtes hat , eine aufserordentliche Tragkraft . Das Ihnen vor¬
liegende Exemplar wiegt blos 890 g . Wir wollen seine Stärke
erproben . Ich lasse den Strom des einen grofsen Chromsäure -
Elementes durch den Draht gehen : versuchen Sie es , den Anker
abzureifsen ! Einem einzelnen von Ihnen gelingt es kaum . Nun ,
spanne ich noch das zweite Element vor — jetzt haben zwei
von Ihnen genug damit zu thun . Ein früherer Versuch zeigte ,

4 *
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dafs dieser kleine Elektromagnet in diesem Falle eine Trag¬
kraft von über 120 kg , also mehr als das lOOfache seines Ge¬
wichtes tragen kann . Sie sehen , welche riesige dyna¬
mische Wirkung unsere unscheinbare Elektricitäts -

quelle hervorzubringen vermag und werden es begreiflich
finden , dafs die Elektromagnete berufen sind , in der Technik
eine wichtige Rolle zu spielen —■ doch ' davon später . Jetzt

Pig . 29.
A Hufeisenförmiger Elektromagnet . B Joule ’sclier Elektromagnet . !/10 natürl . Gröfse .

will ich nur noch erwähnen , dafs man mit Hülfe grofser
Elektromagnete u . a . die magnetischen Eigenschaften solcher
Körper nachweisen konnte , die für gewöhnlich sich völlig un -

magnetisch . erweisen und deshalb lange für überhaupt nicht
magnetisch galten , wie Holz , Glas u . s . w . (Anh . 1 ) .

* *
#

Wir haben gesehen , dafs ein Magnet auf einen beweglichen
Leiter , der von einem elektrischen Strom durchflossen wird ,
eine Richtkraft ausübt . Sollte nicht auch der elek¬
trische Strom einen gleichen Einflufs auf eine beweg¬
liche Magnetnadel ausüben ? Dafs ein Solenoid die Magnet¬
nadel abzulenken vermag , haben wir bereits beobachtet , doch
konnte hierbei vielleicht die spiralische Form des Leiters von
Einflufs sein .

Ich nehme eine starkwandige Glasröhre (g , Fig . 30) und
klemme vermittelst zweier Korken (k x u . k, ) einen starken
umsponnenen Kupferdraht (h) so ein , dafs er eine Schleife
bildet , von der ein Stück geradlinig ist . Auf dieses klebe ich mit
Wachs einen roten Papierpfeil (p) und verbinde die freien
Enden durch Klemmen mit den Poldrähten eines Elements so,
dafs der (positive ) Strom in der Richtung des Pfeiles die Draht -
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schleife durchfliefst . Nun fasse ich diesen Stromleiter und
nähere ihn in vertikaler , aufwärts gerichteter Stellung des
Pfeiles dem von Ihnen abgekehrten Südende einer Magnetnadel
(A, Fig . 31 ) — die Nadel wird abgelenkt , und zwar wendet
sich der nordsuchende Pol derselben (der durch eine rote
Papierspitze markiert ist ) , nach Westen . Nun führe ich den
Leiter , ohne die Stromrichtung zu ändern , in derselben
Ebene um die Nadel herum - die Ablenkungsrichtung der
Magnetnadel bleibt unverändert . Jetzt wiederhole ich den

Stromleiter für Versuche über die Ablenkung der Magnetnadel durch den elektrischen
Strom . 1/5 natürl . G-röfse

Ablenkung der Magnetnadel durch den galvanischen Strom ,

Versuch , halte aber die Drahtschlinge so , dafs der Pfeil , und
mithin der Strom , die umgekehrte Richtung hat — der nord¬
suchende Pol ist nun in allen Lagen des Stromleiters nach
Osten abgelenkt , während er vorhin nach Westen zeigte .

Zur Kontrolle halte ich (A Fig . 32 ) die Drahtschleife so ,
dafs ihre Ebene eine nord - südliche Lage hat und der Strom ,
den ich nun schliefse , die ganze Nadel umkreist und zwar
über der Nadel nach Norden fliefst . Sie sehen , dafs
der nordsuchende Pol , wie beim letzten Versuch , nach Westen
abgelenkt bleibt ; drehe ich aber die Drahtschleife um 180°,
lasse also den Strom über der Nadel nach Süden fliefsen ,
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Amp ^ re ’s
Schwimmregel .

so wendet sich der Nordpol nach Osten (B , Fig . 32 ) . Für
alle von uns beobachteten Fälle können wir das Gesetz der
Ablenkung so ausdrücken : Denken wir uns mit dem (positiven )
Strome so vorwärts schwimmend , dafs wir das Gesicht der
Magnetnadel zuwenden , so wird der nordsuchende Pol der
nach links abgelenkt (Ampfere) .

Diese , wie Sie bald sehen werden , aufserordentlich wichtige
Erscheinung der Ablenkung der Magnetnadel durch den elek¬
trischen Strom wurde zu Anfang unseres Jahrhunderts (vor 1804)
von Romaguesi 7) , und später (1820) von dem dänischen Gelehr¬
ten Oersted entdeckt . Das Gesetz der Ablenkung verdanken
wir dem Franzosen Ampere , und ihm zu Ehren wird es die
Ampöre ’ sche Schwimmregel benannt . Einfacher vielleicht

Fig . 32.
Amp6re ’sches Gesetz . A und B Vio nattirl . Grüfse . C Schematische Darstellung .

ist folgende Fassung : Man halte die rechte Hand mit der
inneren Fläche zur Magnetnadel gekehrt so , dafs die
Fingerspitzen die Richtung des ( positiven ) Stromes
angeben , dann zeigt der ausgestreckte Daumen die
Richtung an , in welcher der nordsuchende Pol ab¬
gelenkt wird (C , Fig . 32 ) .

Wir können auch — was uns später oft von Nutzen sein
wird — aus der Ablenkung der Magnetnadel auf die Rich¬
tung des elektrischen Stromes im Leiter schliefsen :

7) Allgemein gilt 0 erstell als Entdecker der Ablenkung der Magnet¬
nadel durch den elektrischen Strom , da seine Publikation bekannt wurde ,
während Romaguesi seine Beobachtungen nicht selbst veröffentlicht zu
haben scheint ; wenigstens wird er von einem Zeitgenossen nur gelegentlich
erwähnt (vergl . Anh . 5 ) .
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Legen wir die rechte Hand so an den ablenkenden
Stromleiter , dafs die Handfläche der Magnetnadel zu¬

gewandt ist und der ausgestreekte Daumen die Rich¬

tung des abgelenkten nordsuchenden Poles anzeigt ,
so fliefst der ( positive ) Strom von der Handwurzel
■in der Richtung der Fingerspitzen (vergl . C , Fig . 35 ) .

Fassen wir , der Übersicht wegen , nun unsere Beobach¬

tungen zusammen :
1 . Gleichgerichtete elektrische Ströme ziehen sich an und

entgegengesetzt gerichtete stofsen sich ab . Beweg¬
liche Stromleiter suchen sich so zu stellen ,
dafs die elektrischen Ströme gleichgerichtet
parallel sind .

2 . Ring - oder lockenförmige bewegliche Strom¬
leiter (Solenoide ) zeigen eine magnetische Richt¬
kraft , werden von einem genäherten Magnetstabe
ebenso angezogen und abgestofsen , wie eine Magnet¬
nadel .

3 . Ein elektrischer Strom lenkt eine genäherte Magnet¬
nadel in gesetzmäfsiger Weise ab und erzeugt in einem
Stück Eisen , das er umkreist , starken Magnetismus ,
und zwar ist der Nordpol des Elektromagnets
an dem Ende , wo der ( positive ) Strom in um¬

gekehrter Richtung fliefst , wie die Bewegung
der Uhrzeiger erfolgt .

Wie sollen wir uns nun den Zusammenhang zwischen den

Magneten und den elektrischen Strömen erklären ?

Ampöre , der geniale Entdecker der elektro -magnetischen
Gesetze , nahm an , dafs jedes Molekül eines Magnets von
einem in sich selbst zurückkehrenden (geschlossenen )
elektrischen Strome umkreist werde , und zwar wird ein
Teil dieser „Molekularströmchen “ durch die magnetisierende
Wirkung des Streichens mit einem starken Magnet oder durch
einen elektrischen Strom zu einander gleichgerichtetparallel
gestellt (A , Fig . 33 ) . So wirken denn diese Molekularmagnete ,
wie bei unserem Versuch (S . 5) die Stahl -Feilspäne , verstärkend
aufeinander . Magnetisieren heifst also : die Molekular¬
ströme gleichgerichtet parallel stellen . Die — nie zu
erreichende — Grenze der Magnetisierbarkeit wäre daher er -

Gesetz dei
Stromriclitung 'J

Amp &re ’s
Hypothese .
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Richtung der
. Erdströme .

reicht , sobald alle Molekularströme gleichgerichtet parallel ge¬
stellt sind . Das verschiedene Verhalten des Eisens und des Stahls
beim Magnetisieren (s . o . S . 3 ) rührt davon her , dafs die Eisen¬
moleküle beweglicher sind , als die Stahlmoleküle , weshalb letz¬
tere der Richtkraft einen gröfseren Widerstand entgegensetzen ,
aber in der einmal angenommenen Stellung verharren , während
die Eisenmoleküle sich nach dem Aufhören der äufseren Kraft¬
wirkung wieder in ihre gewöhnliche Stellung zurückdrehen ,
bei welcher die Molekularströme alle möglichen Richtungen
haben , mithin sich in ihrer Wirkung nach aufsen aufheben ,
sodafs das Eisen unmagnetisch erscheint .

Diese Ampöre ’sche Hypothese des Magnetismus erklärt nun
auf das Ungezwungenste die von uns beobachteten Gesetze der
magnetischen Anziehung zwischen ungleichnamigen Polen und

Fig . 33.
Richtung der Ampöre ’selien Molekularströme .

Südpol

der Abstofsung gleichnamiger , denn im ersten Falle (B , Fig . 36 )
sind die Ströme in den zugekehrten Polflächen einander gleich¬
gerichtet parallel , dagegen im zweiten Falle (C , Fig . 33 ) entgegen¬
gesetzt . Ebenso ergeben sich die gegenseitigen Beziehungen
zwischen elektrischen Strömen und Magneten als eine notwen¬
dige Folge der Richtkraft , welche zwei elektrische
Ströme aufeinander ausüben . Fassen wir , nach Ampere ,
die ganze Erdkugel als einen grofsen Magnet auf , dessen
nordsuchender Pol im Süden liegt , so müssen die Erd¬
ströme von Ost nach West (also mit der Sonne ) gehen .

Die Einfachheit der Amper e ’schenHypothese ist bestechend ,
allein bei näherer Betrachtung ergeben sich doch manche
Schwierigkeiten . Woher stammen z . B . diese beständigen
Molekularströme der Eisen - und Stahlmoleküle , und wodurch
erhalten sie sich konstant ? Wir können die Annahme der
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Molekularströme nur als einen geistreichen Versuch betrachten ,
die magnetischen und die elektrodynamischen Erscheinungen
auf eine gemeinschaftliche Ursache zurückzuführen . Indessen
liefert sie uns ein vortreffliches Hülfsmittel zur Orientierung .
Denken wir uns z . B . einen vertikal stehenden stark magneti¬
sierten Stahlstab (M , bei A Eig . 34) dessen nordsuchender Pol nach
oben gerichtet ist , so bildet der umgebende Baum , soweit
wir die magnetische Fernewirkung wahrnehmen können , das
magnetische Feld des Magnets . Könnten wir nun , par¬
allel zum Magnetstabe , einen sehr biegsamen , fadenförmigen

IL= +

Fig . 34.
Wirkung eines Magnets auf einen beweglichen Stromleiter nach Lodge ; modificiert .

1/10 natiirl . Gröfse .

Stromleiter schlaff herabhängend anbringen , so rnüfste dieser
Leiter das Bestreben zeigen , eine solche Lage anzunehmen ,
dafs der ihn durchfliefsende Strom den Molekular¬
strömen gleichgerichtet parallel wird , also rnüfste der
Leiter sich um den Magnetstab zu wickeln suchen !
Das können wir probieren .

In die Klemmen des Stromwenders (A , Fig . 34 ; vergl . Fig . 21)
befestige ich zwei rechtwinklig gebogene starke Drähte (d und d^ ,
von denen der letztere durch eine Gummischnur (g) gehalten
wird . Die freien Enden , deren Abstand etwa 75 cm beträgt , sind
durch einen feinen , platten Metallfaden (Anh . 4) von 85 cm
Länge verbunden (f ) . Ich stelle den in einen Holzblock ein -
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geklemmten Magnetstab (M) nahe zum schlaff herabhängenden
Stromleiter und schliefse den Strom — sofort wirbelt der Metall¬
faden um den Magnet und legt sich in Schraubenwindungen
an . Nun kehre ich den Strom um — der Faden wickelt sich
los , beschreibt einen grofsen Bogen und wickelt sich in um¬

gekehrter Richtung um den Magnet (B , Fig . 34) . Durch Herab¬
drücken des oberen Drahtendes (d ) vermindere ich nach Be¬
darf die Spannung des Fadens , sodafs er bis 20 Windungen
um den Magnetstab beschreiben kann . Wenn Sie nun darauf

achten, ' dafs (wie beim Versuch Fig . 21 ) die Stromrichtung im
Faden durch den Zeiger des Stromwenders markiert ist , so
können Sie leicht erkennen , dafs der Faden sich immer so um
den mit dem Nordpol nach oben gerichteten Magnetstab wickelt ,
dafs der Fadenstrom (von oben gesehen ) in entgegengesetzter
Richtung den Stab umkreist , wie die Uhrzeiger sieh bewegen .
Das Umgekehrte ist der Fall , wenn ich den Magnetstab wende ,
also der Südpol nach oben gerichtet ist . In beiden Fällen
stellt sich thatsächlich der biegsame Leiter so , dafs
derStromden hypothetischen Molekular strömen gleich¬
gerichtet parallel wird !

Die von uns beobachtete Wechselwirkung zwischen den
Magneten und dem elektrischen Strom läfst uns — an der Hand
der Ampere ' sehen Hypothese — den Zusammenhang zwischen
magnetischen und elektrischen Erscheinungen ahnen . Die Ablen¬
kung der Magnetnadel bietet uns aber auch ein Hülfsmittel , um
die schwächsten elektrischen Ströme nachzuweisen . Apparate
dieser Art werden Stromprüfer oder Galvanoskope genannt .

Das von uns schon benutzte Ampere ’ sche Gestell
(Fig . 35 ) kann uns hierbei gute Dienste leisten . An Stelle des
Quecksilberkontaktbechers setze ich ein leeres Glasröhrchen (g)
mit verengerter , glatter Öffnung . An das Haar hake ich einen
Aluminiumdraht (a) , der einen kurzen Magnet (m) , ein Stück
einer magnetisierten Stricknadel , trägt . Das obere Ende des
Aluminiumdrahtes ist durch einen Strohhalm (Z) gesteckt , der
als Zeiger dienen soll ; das untere Ende reicht bis in die Glas¬
röhre , wodurch ein Hin - und Herpendeln des Magnets vermie¬
den wird .
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Ein Ring aus starkem Kupferdraht (R) läfst sich so stellen ,
dafs der Magnet sich in seiner Mitte befindet . Nun schiebe
ich die Papierskala (S) in die richtige Entfernung und drehe
das ganze Gestell so , dafs der Magnet in der Ringebene schwebt .
Da Sie sich westlich vom Apparat befinden , so können Sie
leicht die Ablenkung der Magnetnadel an der Bewegung der
Papierspitze (p) verfolgen (Fig . 38) .

Fig . 35.
A Das Ampere ’sche Gestell als Galvanoskop . 1/10 natürl . Gröfso . Z Zeiger aus Stroh mit
Papierspitze (p ) und Gegengewiclitclien (w ) aus Kork . S grobe Skala (ein mit Papier über¬
zogener Zink -Blechstreifen ). B Zweckmäfsige Form des Magnets (M). ^ 2 natürl . Gröfse .

Sie erinnern sich noch dessen , wie schwierig es war , das
Vorhandensein von freier 4 - E und — E an den Polen eines
Elements nachzuweisen , da das so empfindliche Aluminium -
Elektrometer bei direkter Berührung keinen Ausschlag gab ,
und erst bei Anwendung des Kondensators eine schwache La¬
dung zeigte .

Jetzt wende ich ein kleines Zink/Kohle -Elementchen der¬
selben Art an (vergl . Fig . 17) , wie wir sie neulich benutzten .
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Kaum berühre ich mit den Poldrähten des Elementchens die
Klemmen (k t u . k 2, Fig . 34) des Drahtringes , so schwingt die
Nadel heftig zur Seite , schwankt hin und her und stellt sich end¬
lich fast rechtwinklig zur Drahtebene ein , indem der Zeiger
über die Skala hinausfährt .

Nun achten Sie auf den Zeiger !
Ich hebe das durch einen Korken ge¬
steckte Zinkstäbchen langsam aus der
Flüssigkeit — Sie sehen : der Ablen¬
kungswinkel der Magnetnadel
wird um so kleiner , je kleiner
die eintauchenden Zink/Kohle -
Flächen sind . Jetzt , wo die beiden
Stäbchen die Flüssigkeit gerade noch
berühren , beträgt der Ausschlag kaum
3 Skalenteile (s . Fig . 35) , ist also sehr
klein . Ein Kontrollversuch am
Elektrometer giebt denselben
Ausschlag , einerlei ob die Stäb¬
chen kaum die Flüssigkeit be¬
rühren , oder fast ganz eintau -
chen ! Was bedeutet das ? Wir wissen ,
dafs das Elektrometer die Differenz
des elektrischen Zustandsgrades der

Z ^ eien Pole eines Elements, also die
elektromotorische Kraft des Ele -

der Figur nur 3 sichtbar ). me nts mifst (vergl . S . 15 ) - sollte

der Ausschlag der Magnetnadel beim
Galvanoskop etwas anderes bedeuten , also nicht von der
elektromotorischen Kraft abhängen ?

Wir wollten das Galvanoskop als Stromprüfer benutzen
und seine Empfindlichkeit mit der des Elektrometers vergleichen ,
gerieten aber zu widersprechenden Angaben beider In¬
strumente , was uns reizt , die Bedeutung der Angaben des
Galvanoskops zu studieren . Zuvor möchte ich Sie aber auf
ein Hülfsmittel aufmerksam machen , das uns gestattet , nötigen
Falls die Empfindlichkeit des Galvanoskops bedeutend
zu steigern .

Ich hebe das Zinkstäbchen wieder soweit aus der Flüssig -

Fig . 36.
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keit , dafs es sie kaum berührt , der Ausschlag ist sehr klein .
Nun stelle ich einen anderen Bing (A, Fig . 36 ) ein , der kleiner
ist , also der Magnetnadel näher steht — der Ausschlag ist schon
etwas gröfser . Nun setze ich an seine Stelle einen Rahmen (B ,
Fig . 36 ) , der aus 10 Windungen umsponnenen Kupferdrahtes
besteht (in Fig . 36 , B sind nur 3 Windungen angedeutet ) —
der Ausschlag wächst bedeutend .

Der Ausschlag nimmt zu mit der Anzahl Windun¬

gen des Drahtes , d . h . führen wir den elektrischen Strom in
mehreren Windungen um die Magnetnadel , so wird die ab¬
lenkende Wirkung vervielfacht , daher nennt man einen
solchen Apparat einen „ Multiplikator “ ( Schweigger 1821) .

Ehe wir unsere heutige Tagereise absehliefsen , möchte ich
Ihnen noch , zum Vergleich , die magnetisierende Wirkung des
durch die Influenzmaschine erzeugten Stromes zeigen .

Zwei gleiche Eisenstäbe umwickele ich mit je 15 nicht zu
dichten Windungen von starkem Kupferdraht , der durch eine
dicke Schicht von Guttapercha isoliert ist . Beide Stäbe klemme
ich zwischen Gummistücke in Ständer so ein , dafs sie vertikal
stehen . Durch den einen Draht leite ich den Strom eines
Chromsäure - Elements , durch den anderen den der Influenz¬
maschine (wobei eine Funkenstrecke von 5 — 10 mm einge¬
schaltet sein muss ) .

Der Elektromagnet des Elements zeigt eine Tragkraft von
über 8 Kilogramm — der der Influenzmaschine kaum '/5 Kilo¬
gramm , denn der mit einer Messingschale verbundene Anker
wiegt mit dem zum Abreifsen erforderlichen Gewicht nicht ein¬
mal 200 g . — Sie sehen hieraus , dafs — in Bezug auf diese
dynamische Wirkung — das Chromsäure -Element der Influenz¬
maschine bei weitem überlegen ist !

Unser heutiges Ziel ist erreicht . Nächstens wollen wir ver¬
suchen , das Rätsel zu lösen , welches uns in der Verschieden¬
heit der Angaben des Elektrometers und des Galvano¬
skops entgegentrat .
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IY . Vortrag -.
Graduierung des Galvanoskops ; Herstellung der Aichungsskala ; das Galvanometer . —
Wirkung der Schaltung hintereinander und parallel bei sehr kurzer und bei langer
Drahtleitung , sowie bei Einschaltung einer Flüssigkeitssäule (Stromdämpfer ) ; Begriff der
Stromstärke ; Vergleich der hydrodynamischen und der elektrodynamischen Erscheinungen ;
Aufserer und innerer Widerstand ; Herleitung des Ohm ’schen Gesetzes ; Folgerungen
aus dem Ohm ’schen Gesetz . — Das specifische Leitungsvermögen verschiedener Körper ;
pi*akt . Einheit des Widerstandes , das „Ohm “ ; Definition der prakt . Einheit der Strom¬
stärke , das „Ampere “. — Bestimmung des inneren Widerstandes eines Elements oder einer

Batterie ; Stromstärke in Leiterverzweigungen ; Messung grofser Stromstärken .

Neulich lernten wir einige Wirkungen des geschlossenen
galvanischen Stromes kennen , der kontinuierlich den Leitungs¬
draht durchströmt , und verglichen die Vorgänge im Strom¬
leiter mit den früher beobachteten an den Leitungsschnüren
der diskontinuierlich wirkenden Influenzmaschine . Weitere Ver¬
suche lehrten uns eine Reihe neuer dynamischer Wirkungen .
Fassen wir das Gesehene kurz zusammen :

1 . Wird der Strom einer Batterie von konstanten (hinter¬
einander geschalteten ) Elementen durch einen sehr
feinen und langen Draht geleitet , der möglichst gleich¬
förmig ist , so ist das Stromgefälle im Leiter konstant ,
d . h . je 2 , gleich weit abstehende Punkte des Strom¬
leiters haben die gleiche elektrische Niveaudifferenz .

2 . Gleichgerichtete elektrische Ströme ziehen sich an , ent¬
gegengesetzt gerichtete stofsen sich ab , daher haben
bewegliche Stromleiter das Bestreben , sich
gleichgerichtet parallel zu stellen . Ist der Strom
genügend stark , so stellt sich ein beweglich aufge¬
hängter kreis - oder lockenförmiger Stromleiter (Solenoid )
— wenn nur der Erdmagnetismus auf ihn einwirkt —
so ein , dafs der (positive ) Strom , von der Südseite aus
gesehen , in der Richtung der Uhrzeiger fliefst .

3 . Ein von elektrischen Strömen umkreistes Stück Eisen
wird , solange der Strom währt , ein starker Magnet
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(Elektromagnet ) . Magnete und bewegliche
Stromleiter üben auf einander eine solche
Richtkraft aus , dafs der elektrische Strom
und die hypothetischen Ampöre ’ sehen Mole¬
kularströme sich gleichgerichtet parallel
stellen . Die Molekularströme eines Magnets um¬
kreisen diese — wenn man gerade auf den Südpol
blickt — in dem Sinne der Uhrzeiger ; demnach müssen
die erdelektrischen Ströme von Ost nach West ge¬
richtet sein .

Für die Ablenkung der Magnetnadel ergiebt
sich hieraus folgende (modiücierte ) Regel nach
Ampere : Halten wir die rechte Hand , mit der
inneren Fläche der Magnetnadel zugekehrt , so an den
ablenkenden Teil des Stromleiters , dafs der (positive )
Strom von der Handwurzel zu den Fingerspitzen fliefst ,
so zeigt der ausgestreckte Daumen die Richtung des
abgelenkten nordsuchenden Poles an .

Hieraus ergiebt sich leicht die Regel für die
Stromrichtung :

Legen wir die rechte Hand so an den ab -
lenkenden Teil des Stromleiters , dafs die
innere Handfläche der Magnetnadel zuge¬
kehrt ist und der ausgestreckte Daumen die
Richtung des abgelenkten nordsuchenden Poles
markiert , so fliefst der (positive ) Strom von
der Handwurzel zu den Fingerspitzen hin .

Unsere nächste Aufgabe ist nun , die Angaben des Gal¬
vanoskopes genauer zu untersuchen .

Als wir daran gingen , die Erscheinungen der statischen
Elektricität quantitativ zu vergleichen (I . Bd . S . 27 ) , war unser
erstes Bestreben , ein genügend empfindliches Elektroskop durch
wiederholte Zuführung von gleichen Ladungen empirisch zu
aichen , um dann aus den an der Aichungsskala abgelesenen
Ausschlägen des Aluminiumblättchens auf die Stärke der La¬
dung (nach unseren willkürlichen Einheiten des Elektri -
sierungssgrades ) schliefsen zu können . Auf diese Weise ging
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aus dem Elektroskop ein für unsere Zwecke brauchbares
Elektrometer hervor . Sollten wir nicht auch imstande sein,
das Galvanoskop zu aichen (graduieren ) um auf diese
Weise ein „ Galvanometer “ zu erhalten ?

Da unser Ampere ’ sches Gestell nicht recht handlich ist ,
so wollen wir ein eigens für Demonstrationszwecke hergestelltes
Galvanoskop (A, Fig . 37) benutzen , das einen in seinem Fufs -

SSpin !1!

Fig . 37 .
Demonstrations -Galvanometer (Sinus -Tangenstmssole ). !/7 natiirl . Gröfse .

gestell drehbaren Messingständer (S) hat , der die Bussole
mit der kurzen , auf einer Stahlspitze ruhenden Magnetnadel
(B , Fig . 40) trägt . Die Magnetnadel ist — rechtwinklig zu
ihrer magnetischen Achse — mit zwei langen Aluminiumzeigern
versehen , deren mit farbigem Papier beklebte Enden dicht vor
einer Gradteilung spielen , welche auf dem vertikalen Mantel
eines Ringes angebracht ist , also von Ihnen bequem von der
Seite gesehen werden kann .

Als ablenkender Stromleiter dient ein starker Kupferring (R) ,
der um die horizontale Achse drehbar ist . Die sich nicht
berührenden Enden des Ringes sind mit Klemmschrauben ver¬
sehen (k t und k 2) . Das am Fufsgestell befestigte Visier (V)
wird zur genaueren Ablesung der Gradteilung benutzt und
markiert zugleich eine etwaige Drehung des Ständers .
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Um die Gradteilung weiterhin sichtbar zu machen , sind die
Teilstriche bei 0 ° , 10 °

, 20 ° . . . durch Dreiecke markiert , welche
bei 0 °

, 30 °
, 60 ° und 90 ° rot , bei den übrigen schwarz gefärbt

sind (G , Fig . 40) .
Jetzt wende ich die Bussole so , dafs das feste Visier (V)

genau auf 0 ° weist , drehe den ganzen Apparat samt dem Fufs -

gestell langsam , bis auch beide Zeiger auf 0 einstehen 3) , und
richte den Kupferring (R) vertikal . Die Klemmschrauben (KJv,, )
verbinde ich durch biegsame , umsponnene Leitungsdrähte mit
dem Stromwender und diesen mit einem sehr konstanten Flee -

ming ’ schen Element (Fig . 38 ) . Bei diesem taucht chemisch
reines Zink in eine Lösung von Zinkvitriol und Kupfer in

Fig . 38..
Fleeming ’ scher Normal -Daniell zum Graduieren des Galvanometers . 1/5 natürl . Gröfse .

eine Lösung von Kupfervitriol , wobei durch Hähne (1 und 2)
frische Lösung zufliefst , während durch einen dritten Hahn (3)
die verbrauchte Lösung abtröpfelt , wodurch eine aufsergewöhn -
liche Beständigkeit dieses Elements erzielt wird . [Der vierte
Hahn (4) dient zum Entleeren des Apparats .]

Ich schliefse den Strom — der Ansschlag beträgt , nachdem
die Nadel sich beruhigt hat , 12,5 ° . Nun neige ich langsam den
Kupferring (R , Fig . 37 ) — der Ausschlag nimmt stetig ab und

8) Durch Sorgfalt des Mechanikers ist der Stahlstift , auf welchem
die Magnetnadel schwebt , sehr genau im Teilkreise centriert , und ich habe
die Stellung der Zeiger so reguliert , dafs beide Zeigerenden kaum um 0,1 °

(konstant ) abweichen . Diese Differenz kann bei unseren Versuchen über¬
sehen werden , daher brauchen wir späterhin für jede Stromrichtung nur
1 Ablesung zu machen .

Normal -Daniel !
nach

Fleeming .

Kolbe . II . 5
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wird endlich = 0 , wenn ich den Eing genau horizontal stelle .
Wir haben es also an der Hand , den Ablenkungswinkel der
Nadel innerhalb der Grenzen 0 ° und 12,5 ° beliebig grofs zu
machen . Wählen wir z . B . 10 ° - so ! Nun ist diese Ab¬

lenkung erreicht . Ich schraube den Eing in dieser Lage fest

(vermittelst einer Vorrichtung an der Klemmschraube k 3 ,
Fig . 40) und wende den Strom . Die Zeiger drehen sich nach der
anderen Seite und bleiben bei 9,6 ° stehen 9) . Offenbar liegt
die Verbindungslinie beider Zeigerenden nicht genau
senkrecht zur magnetischen Achse der Magnetnadel ,
doch thut das nichts ; wir brauchen nur die Ablenkungen für
beide Eichtungen des Stromes zu notieren und das Mittel
aus beiden Ablesungen zu nehmen . [Sollten die beiden Zeiger¬
enden nicht genügend genau auf gleichen Teilstrichen der Grad¬
skala einspielen , so erhält man für die eine Stromrichtung
2 Ablesungen a t und a, ' und für die andere a2 und a3

'
. Dann

ist der wahre Wert des Ablenkungswinkels das Mittel aus den
4 Einzel -Ablesungen , also a = (a t + a/ + a2 -4- a2

'
) / 4 .]

Jetzt können wir an die Graduierung (Aichung ) des

Galvanoskops gehen . Als Einheit der galvanoskopischen Strom¬

wirkung soll uns diejenige dienen , welche unser Fleeming ’scher
Normaldaniell liefert . Es kommt nun darauf an , den Versuch
so anzustellen , dafs die Nadel ohne Strom die gleiche Ab¬

lenkung erfährt , also bei einem neuen Stromdurchgang die gal -

vanoskopische Wirkung sich zur vorhergehenden addiert , mit¬
hin verdoppelt , bei dreimaligem verdreifacht wird , u . s . w.

Ich stelle das Galvanoskop (G, Fig . 39 ) auf ein niedriges
Tischchen der optischen Bank (a b ) , genau über den Nullpunkt
der Millimeterskala . Nun gebe ich der optischen Bank die

Sichtung von Ost nach West , d . h . eine solche , dafs die Alu¬

miniumzeiger (z z Fig . 39 , B) ihr parallel stehen , und drehe
die Bussole so , dafs die Zeiger und das feste Visier (v ) genau
auf 0 ° zeigen . Ich schliefse den Strom , der Ausschlag beträgt 10 ° .
Jetzt unterbreche ich den Strom , lege zwei lange Stabmagnete
(m,m, ) auf passende Ständer und nähere sie langsam , bis der¬
selbe Ausschlag a 1

' = 10 ° erzielt ist , darauf schliefse ich den

9) Die Zuleitungsdrähte am Galvanometer (Fig . 37 ) sind, umein -

andergedreht , um einer etwaigen ablenkenden Wirkung derselben vor¬

zubeugen .



Graduieren des Galvanometers . 67

Strom [in derselben Richtung , wie Sie an dem Zeiger des
Stromwenders erkennen ] . Der zweite Ausschlag a2

' = 19,8U.
In gleicher Weise erhalten wir a3

' = 27,9 ; a4
' = 35,l ; a5

' = 41,5
u . s . w . Sie erkennen leicht , dafs die Abstände zwischen den
Aichungsgraden immer kleiner werden , d . h . die Ausschläge
des Galvanoskops sind nicht proportional der ab¬
lenkenden Wirkung des Stromes — ebensowenig , wie es
beim Elektrometer der Fall war .

Auf die angegebene Weise graduieren wir das Galvanoskop
bis in die Nähe von 70 ° vom Nullpunkt , wo die Zunahme zu

■W £ ’ T

Fig . 39.
Graduierung eines Galvanoskops mit Hülfe zweier Magnete in der Ost -Westlage .

1/20 natiirl . Gröfse . A Seitenansicht ; B Ansicht von oben .

gering ist , daher brechen wir ab . Nun wiederholen wir die
ganze Messung bei umgekehrter Stromrichtung , wobei
die Nadel nach der anderen Seite ausschlägt . Bezeichnen wir
jetzt die Ausschläge mit a/ '

, a2
"

, a3
"

. . . , so erhalten wir die
wahre Ablenkung , wenn wir aus den entsprechenden
Ausschlägen beider Stromrichtungen das Mittel neh¬
men , z . B . a4 = (a/ + a1

"
) /2 ; a2 = (a2

' + a2
"

) /2 u . s . w . Wir
haben nur noch nötig , die bei der Graduierung erhaltenen
Skalenpunkte in geeigneter Weise zu markieren , um eine
Aichungsslcala zu erhalten , welche uns beim Galvanoskop
dieselben Dienste leisten kann , wie die Skala des Elektrometers
bei diesem . (Anh . 7 .)
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Bei einer früheren Versuchsreihe erhielt ich im Mittel ans
mehreren Messungen :

i 1 2 3 4 5 6 7 8 | 9 | 10 | 11 12 13 14 15 16 17 18 19 20

a 7,51 14,7 21,ö| 27,s | 33,4 38,3 42,7 4ie,5| 49,s | 52,7j55,4 | 57,7 59,8 61,5 63,1 64,5 65,9 67,1 68,2 69,2

Aichungsskala Um die Aichungsskala für unser Galvanoskop zu entwerfen ,
Galvanometers , entferne ich zunächst den Glasdeckel der Bussole und die Nadel ,

hebe den Ring mit der Gradskala ab 10) und lege einen 12 mm brei¬
ten Streifen Zeichenpapier straff gespannt herum . Da dieser
Reif 30 mm hoch ist , so bleibt über dem Papierstreifen die ganze
Gradskala mit den Spitzen der Dreiecke sichtbar ; ich kann also
bequem auf dem Papierstreifen die betreffenden Punkte der
Aichungsskala eintragen (Fig . 40) . Da aber das Zeichnen der

G !P 1(11!
AS

nr '
"
T i a '■ a 1 i i ä ' i i ä ' ä ' Ä ' i ' Ä' uiTi )

1 o t 2 3 d Ö e 7 3 9 10 12 14 \

Fig . 40 .
Stück der Aiclniugsskala (AS ) des Galvanometers auf der (vertikalen ) Gradskala (G)

so befestigt , dafs diese sichtbar bleibt . 1/2 natürl . Gröfse .

Skala zu zeitraubend wäre , weil sie zu beiden Seiten von jedem
der beiden Nullpunkte (im ganzen also viermal ) entworfen
werden mufs , so befestige ich lieber eine fertige Aichungs¬
skala , die ich schon früher auf Grund der erwähnten Messungen
gezeichnet habe . Bevor ich aber die Enden des Papierstreifens
mit etwas Klebwachs befestige , überzeuge ich mich davon , dafs
die Nullpunkte beider Skalen übereinstimmen .

Wir können nun nach Belieben die Grad - oder die Aichungs¬
skala verwenden , wollen uns aber vorläufig nur der letzteren
bedienen . Auf solche Weise ist unser Galvanoskop ein Mefs-
instrument geworden , das wir Galvanometer nennen wollen ,
wiewohl wir vor der Hand nur wissen , dafs wir vermittelst
desselben lediglich eine ablenkende Wirkung des gal¬
vanischen Stromes prüfen können .

10) Durch eine Marke auf der inneren Seite des Ringes und an der
Bussole kann der Ring leicht -wieder in die richtige Stellung gebracht
werden .
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In welcher Beziehung steht nun diese Wirkung des Stromes
zur Gröfse oder zur Gruppierung (Schaltung ) der Elemente ?
Dieses weiter zu verfolgen , soll nun unsere Aufgabe sein .

* , *

Hier stehen drei Tauchelemente , von denen eines in Fig . 41
wiedergegeben ist . Die beiden Kohlenplatten sind unter
sich und mit der Klemmschraube ( C) verbunden und tauchen
in eine mit Schwefelsäure versetzte Lösung von doppeltchrom -

C Zn

Fig . 41.
Tauchelement A [mit Blasebalg (B) an der Glasrohvgabel , für 3 Elemente gleichzeitig
wirkend ]. Die Nebendrähte (dx d2) am Stromwender (C) dienen für elektrometrische

Messungen (und sind für gewöhnlich isoliert anfgehängt ).

saurem Natrium (Anh . 3) , während die kleinere Zinkplatte (Zn)
vermittelst des Messingstabes (m) mehr oder weniger tief ein¬
getaucht , oder ganz aus der Flüssigkeit gehoben werden kann ,
wodurch der Strom unterbrochen wird .

Das Rohr in der Mitte des Deckels ist mit der anderen Klemm¬
schraube (Zn ) leitend verbunden . Durch den Ebonitdeckel ist
ein Glasrohr eingeführt , das unterhalb der Kohlenplatten in eine
sehr feine Spitze ausläuft und dazu dient , vermittelst des Blase¬
balgs (B) Luft einzublasen , um die Flüssigkeit umzurühren , wäh¬
rend der Strom geschlossen ist . Auf solche Weise wird das sonst
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ziemlich unbeständige Tauchelement recht konstant , was wir
daraus erkennen , dafs bei dem in den Stromkreis geschalteten
Galvanometer der Ausschlag der Nadel — ohne Anwendung
des Gebläses — stetig abnimmt , dagegen während des Blasens

lange Zeit unverändert bleibt .
Wir wollen jetzt und später , zur Kontrolle , die elektro¬

motorische Kraft am Elektrometer bestimmen . Zu diesem
Behufe befestige ich an den Klemmschrauben des Stromwenders
(C , Fig . 41 ) , die mit den Poldrähten der Elemente verbunden
sind , zwei feine Nebendrähte (d t d2) , die mit isolierenden Siegel¬
lackgriffen (i) versehen sind . Diese führe ich , nachdem der
Strom durch den Kommutator unterbrochen worden ist , zu den
Kondensatorplatten des Elektrometers . Beim Nichtgebrauche
hake ich sie in Ringe , die an Seidentäden (ft f3) von der Decke
herabhängen .

Wir erhalten am Elektrometer für die drei Elemente ,
(deren Zinkplatten nur etwas eintauchen ) I = 1,8 ; II = 2,0 ;
III = 1,9 Volt ) . Nun drehe ich den Stromwender , dafs der
Strom geschlossen wird , also durch das Galvanometer fliefst
— der Ausschlag beträgt gegen 3 Aichungsgrade , wenn der
Kupferring der Bussole vertikal steht . Durch Neigen des
Ringes vermindere ich den Ausschlag , bis er genau = 2 Aichungs -

graden wird 11) . Nun schraube ich den Ring fest und schalte das
II . Element ein . Die Ablenkung ist = 2,8 ; also etwas grösser .
Um die Ausschläge gleich zu machen , brauche ich nur die
Zinkplatte langsam zu heben — so ! Nun ist a 2 ebenfalls = 2 .
Ebenso verfahre ich mit dem III . Element . Jetzt sind alle
drei Tauchelemente galvanometrisch gleich stark (da¬
gegen sind die elektromotorischen Kräfte unverändert geblieben ) .

Nun können wir mit der Messung beginnen .
Das I . Element giebt bei der obigen Kommutator - Stel¬

lung 2,0 und bei der anderen 1,8 ; also im Mittel 1,9 . Dasselbe
ist beim II . und III . Element der Fall .

Da unsere Klemmen (k , Fig . 42) eine bequeme Form haben ,
so können wir die Elemente durch Einklemmen von Kupfer¬
blechstreifen leicht hintereinander (A ) oder parallel (B) schalten .

n ) Falls der Ring des Galvanometers nicht drehbar ist , so müssen
kleinere Elemente genommen werden , oder man kann eine passende
Flüssigkeitssäule einschalten (s . w . u . S . 73 ) .



Wirkung kurzer, dicker Leitungsdrähte. 71

Ich habe die Ausschläge am Galvanometer absichtlich

so reguliert , dafs für 1 Element die Angabe beider Apparate

möglichst übereinstimmt , wodurch ein unmittelbarer Ver -

gleich möglich ist . Fig . 42 zeigt die Schaltung für alle

3 Elemente .
Zwei hintereinander geschaltete Elemente geben im Wirkung

Galvanometer (im Mittel aus beiden Stromrichtungen ) 1 ,9 , wuSgsarähte.
d . h . genau dasselbe , wie 1 Element . Dasselbe ist bei 3 Ele¬
menten der Fall , wogegen am Elektrometer der Ausschlag mit
der Anzahl der Elemente wächst (vergl . S . 34) .

Zn Zn Zn

SLbJh

Fig . 42.
A bequeme Schaltung liintereinender , B parallel , K eine Pressschraube von den Tauch¬

elementen . V2 natürl . Gröfse .

Nun schalte ich 2 Elemente parallel . Das Galvanometer
zeigt jetzt 3 ,8 , das Elektrometer 1,9 . Also haben wir am Gal¬
vanometer die doppelte Wirkung , wie bei 1 Element . Für
3 Elemente ist der Ausschlag = 5 , 75 , also fast genau dreimal
grösser . Eine kleine Tabelle wird die Übersicht erleichtern .

I . Kurze , dicke Leitungsdrähte .

Anzahl
A . Galvanometer B . Elektrometer

der Schaltung Schaltung
Elemente hinter¬

einander parallel
hinter¬

einander parallel

1 1,9 1,9 = aj (1,9) (1,9)
2 1,9 3,8 = 2 • 3,8 1,9
3 1,9 5,75 = 3 • a. 5,6 1,95

(fast)

Ein Blick auf diese Tabelle lehrt , dafs hier die galvano -
metrische Wirkung des Stromes in einem Gegensatz zu der
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Wirkung
feiner , langer• Drähte .

elektrometrischen stellt . Während hier die elektromotorische
Kraft in geradem Verhältnis zur Anzahl der hintereinander
geschalteten Elemente steht , ist die galvanometrische
Wirkung bei parallel geschalteten Elementen der An¬
zahl der Elemente proportional , bleibt dagegen bei
der „ Schaltung hintereinander “ unverändert . Wir
haben hierbei kurze , dicke Leitungsdrähte benutzt . Es wäre
vorschnell , wollten wir aus dieser einen Beobachtungsreihe
schon auf das Gesetz der Stromwirkung schliefsen ; vielmehr
müssen wir die Nebenumstände berücksichtigen . Welchen
Einflufs haben z . B . die Leitungsdrähte ?

Ein Teil des langenNeusilberdrahtes , den wir schon benutzten
(Fig . 19) , möge (vor dem Stromwender ) in den Stromkreis ein¬
geschaltet sein — der Ausschlag wird am Galvanometer sofort viel
kleiner (bleibt aber am Elektrometer unverändert !) . Kaum ge¬
lingt es mir , durch Aufrichten des Bussolen -Ringes den Aus¬
schlag für 1 Element auf die vorige Höhe (1,9 ) zu bringen . Wir
erhalten

II . Feiner , langer Neusilberdraht
eingeschaltet .

Anzahl
der

Elemente

A . Galvanometer B . Elektrometer
hinter¬

einander parallel
hinter¬

einander parallel

1 1,9 1,9 1,9 1,9
2 2,2 3,5 3,8 1,9
3 2,7 4,9 5,7 1,85

Wir erkannten sofort , dafs die galvanometrische Wir¬
kung des Stromes durch Einschaltung eines feinen
und langen Neusilberdrahtes sehr geschwächt wird ,
gerade so , als hätten wir bei jedem Element die Zinkplatte zum
Teil aus der Chromsäure gehoben , also die wirksame Be¬
rührungsfläche verkleinert . (Dagegen - ist die am Elektrometer
gemessene elektromotorische Kraft unverändert geblieben .) Die
Tabelle II zeigt uns ferner , dafs die für eine kurze
Leitung beobachtete Proportionalität zwischen der
Anzahl der parallel geschalteten Elemente und der
Ablenkung (an der Aichungsskala ) nicht mehr besteht ,
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und dafs ferner dnrch Schaltung hintereinander der Ausschlag
wächst !

Es macht den Eindruck , als oh der dünne , lange Draht
dem Durchfliefsen der Elektricität einen Widerstand , entgegen¬
setzt , wodurch die galvanometrische Wirkung des Stromes ge¬
dämpft wird . Wir wissen bereits aus der statischen Elek¬
tricität , dafs die verschiedenen Körper die Elektricität ver¬
schieden gut leiten , und wir unterschieden gute Leiter (Me¬
talle ) , schlechte Leiter (Holz , Hanfschnur u . s . w .) und Nicht¬
leiter oder Isolatoren (Ebonit , Glimmer u . a .) . Sollte am
Ende die Leitungsfähigkeit der Drähte von ihrer Länge
und Dicke abhängen ? Diese Frage ist sehr wichtig , doch wollen
wir vorher über die Angaben des Galvanometers ins Reine zu
kommen suchen .

Fig . 43 .
f- ■ Stromdämpfer . 1/7 natürl . Gröfse . (2 verstellbare , amalgamierte Zinkplatten in Zink¬

vitriol -Lösung ) , an der Glaswand eine Papier -Millim .-Skala .

In diesem gläsernen Troge (Fig . 43) sind auf Holzbänkchen
2 amalgamierte Zinkplatten verstellbar angebracht und mit
Klemmschrauben für die Leitungsdrähte (d , d2) versehen . Ich
giefse eine Lösung von Zinkvitriol (ZnS0 4) in Wasser in den
Trog und schalte diese Flüssigkeitssäule in den Stromkreis
statt des Neusilberdrahtes ein — der Ausschlag wird fast un -

i merklich klein . Nun schiebe ich langsam das Bänkchen (rechts )
näher . . . der Ausschlag wächst stetig , um sprungweise noch
etwas anzusteigen , wenn die Platten sich berühren . Der Aus¬
schlag ist in diesem Falle genau so grofs , wie bei der kurzen

. Drahtleitung (Tab . I ) allein . Wir sind also mit Hülfe dieses
„ Stromdämpfers “ imstande , den Strom beliebig zu schwächen .

Ich rücke die Zinkplatten des Stromdämpfers soweit aus -
einander , dafs der Ausschlag für 1 Element nur 0,5 Aichungs -
grade beträgt . Bei umgekehrter Stromrichtung erhalten wir 0,4 ,
also im Mittel a, — 0,45. Wir wollen die Versuchsreihe noch -

Widerstand .

Stromdämpfer .
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mals wiederholen und die Resultate gleich tabellarisch nieder¬
schreiben .

III . Eine Flüssigkeitssäule eingeschaltet .

Anzahl
der

Elemente

A . Galvanometer B . Elektrometer
(elektromotor . Kraft)

Schalt
hinter¬

einander

mg

parallel

Schalti
hinter¬

einander

ng
parallel

1 0,45 = a . 0,45 1,9 = Vj 1,9
2 0,9 = 2 ai 0,45 3,8 = 2v, 1,9
nO 1,34 = 3at 0,46 5,75 == 3v: 1,9

Wir sehen hieraus , dafs die Einschaltung der Flüssigkeits¬
säule nicht nur die galvanometrische Wirkung des Stromes
herabsetzt , sondern auch , dafs jetzt die Wirkungsweise der
Schaltung (hintereinander oder parallel ) eine entgegengesetzte
ist , wie vorhin (Tab . I) , wo nur kurze dicke Drähte die Lei¬
tung bildeten , d . h . die galvanometrische Wirkung des
Stromes ist bei Einschaltung einer längeren Flüssig¬
keitssäule in die Leitung proportional der Anzahl
hintereinander geschalteter Elemente , während die
parallele Schaltung ohne Einflufs ist . Die Stromwh 'kung
hängt nur noch von der elektromotorischen Kraft ab . Würden
wir statt der Flüssigkeitssäule einen sehr feinen Draht von ent¬
sprechender Länge verwenden , so wäre das Resultat genau
dasselbe .

Nennen wir vorläufig die Ursache der galvano -
metrischen Wirkung des Stromes die Stromstärke und
die Ursache der dämpfenden Wirkung , welche der
Stromleiter ausübt , den Widerstand, so können wir sagen ,
dafs wir zuerst (Tab . I) einen sehr kleinen und jetzt (Tab . III )
einen sehr grofsen Widerstand in dem Stromleiter hatten ,
und finden :

1 . Die Stromstärke ist um so kleiner , je gröfser der
Widerstand im Stromleiter ist .

2 . Bei sehr kleinem Widerstande des Leiters ist
die Stromstärke proportional der Anzahl par¬
allel geschalteter , bei sehr grofsem Wider -
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stände dagegen der Anzahl hintereinander 1 ge¬
schalteter Elemente (in beiden Fällen hat die
andere Schaltungsweise keinen Einflufs auf die Strom¬
stärke ) .

Wie sollen wir uns diesen Widerspruch erklären ? Offenbar
hat der elektrische Strom , je nach der Schaltungsweise , einen
anderen Charakter . Was bedingt nun die Stromstärke ,
oder die „ galvanometrische Wirkung “

, wie wir anfangs , in Er¬

mangelung eines zutreffenderen Ausdrucks sagten ?
Wir sahen , dafs die elektromotorische Kraft (die

Potentialdiiferenz an den freien Polen der Elemente ) ganz
unabhängig von der Gröfse der eintauchenden Plat¬
ten oder dem Widerstande der Leitungsdrähte ist (wenigstens
innerhalb der von uns beobachteten Grenzen ) , und nur von
der Natur der betreffenden Metalle und Flüssigkeiten bedingt
wird . Denken Sie sich die eintauchenden Zinkplatten an der
Oberfläche in □ Millimeter geteilt und — bildlich gesprochen —

von jeder dieser Flächeneinheiten einen elektrischen „ Strahl “

von gleicher (elektromotorischer ) Kraft ausgehend , so wird die
Summe dieser „Stromstrahlen “ die ganze in Bewegung gesetzte
Elektricitätsmenge , d . h . den elektrischen Strom selbst dar¬
stellen . Hierbei ist es natürlich gleichgültig , wie wir die

„Stromstrahlen “ gruppieren , ob wir sie alle von einer einzigen
grofsen Platte oder von mehreren kleineren Platten von gleicher
Gesamtfläche ausgehen lassen , d . h . ob wir ein einziges grofses
Element nehmen , oder mehrere kleinere , deren Zink - und
Kohlenpole unter sich verbunden sind . Bei paralleler
Schaltung der Elemente werden Stromstrahlen von gleicher
Stärke summiert , es wächst daher die Elektricitätsmenge ,
dagegen bleibt das Stromgefälle (die elektromotorische Kraft )
unverändert . Vielleicht wird das Ihnen einleuchtender , wenn
Sie an die leichter zu übersehenden Vorgänge bei einem
Wasserstrome denken .

Stellen Sie sich einen horizontalen ringförmigen Kanal vor
(vergl . Fig . 5, S . 11) , der an einer Stelle durch ein Kohr ge¬
schlossen ist , in welchem ein Flügelrad mit gleichbleibender
Kraft das Wasser vorwärts treibt , sodafs im Kanal eine kon¬
stante Strömung entsteht . Wie wir bereits (S . 12) wissen , mufs
sich in diesem Falle , ein gleichmäfsiges Gefälle bilden , d . h .
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Begriff der
Stromstärke
bei Wasser -

strömen .

die Niveaudifferenz für gleichweit abstehende Punkte
der Strombahn ist konstant . Dasselbe beobachteten wir
beim elektrischen Strom (S . 14) .

Was wollen wir nun unter der Stromstärke verstehen ?
Auf diese Frage können wir verschiedene Antworten geben ,
je nach dem Mafsstabe , den wir anwenden . Das Einfachste
wäre : wir bestimmen die Geschwindigkeit der Strömung , d . h .
die von den Wasserteilchen in 1 Sekunde zurückgelegte Strecke ,
und messen den Querschnitt des Stromes ; dann ist die Wasser¬
menge , die in 1 Sekunde durch den Querschnitt
fliefst , das gesuchte Mafs der Stromstärke .

Stromstärke — Wassermenge per Sekunde = Geschwindig¬
keit X Querschnitt . (1)

Diese Wassermenge entspricht nun dem Volumen nach
einer Wassersäule , deren Länge die von der Strömung in
1 Sekunde zurückgelegte Strecke , und deren Grundfläche der
Querschnitt des Stromes ist . Wir könnten aber ebenso gut statt
des Volumens das Gewicht dieser Wassersäule bestimmen ,
wir hätten :

Stromstärke = Gewicht des Wassers per Sekunde . . . (2)
Das Verhältnis dieser beiden Mafse der Stromstärke ist

bestimmbar , wird aber keineswegs durch eine einfache , d . i .
unbenannte Zahl ausgedrückt 12) .

Wir könnten aber mit demselben Recht den Arbeitswert
(die Energie ) des Stromes messen , indem wir zunächst die
Energie (die Arbeitsfähigkeit ) eines Wasserstrahles von gleicher
Geschwindigkeit und 1 □ cm Querschnitt zu bestimmen suchen .
Dann giebt uns das Produkt der erhaltenen Energie mit dem
Querschnitt des Stromes (in □ cm ) ein Mafs für die Strom¬
stärke .

Stromstärke = Energie des Stromes = Energie per □cmX
X Querschnitt (in □ cm) . (3)

12) Ein Quecksifberstrom werde in Gramm per Sekunde und in
Kubikcentimeter per Sekunde gemessen . Erhalten wir im ersten Fall
z . B . 1359 Gramm, und im zweiten 100 ccm , so ist das Verhältnis beider
Mafse 1359 g / 100 ccm = 13,59 g und entspricht dem Gewicht von 1 ccm,
d . h . dem specifischen Gewicht des Quecksilbers . (E . Mach , Leit¬
faden d . Phys . für Studierende II . Aufl . 1891 , S . 222 .)
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Ich habe Ihnen absichtlich gezeigt , dafs bei den verhält -
nismäfsig einfachen Vorgängen , die ein Wasserstrom darbietet ,
die Stromstärke in verschiedener Weise gemessen
werden kann . Es wird Sie daher nicht wundern , wenn wir
für den weit komplicierteren elektrischen Strom noch andere
Stromstärke -Mafse kennen lernen werden als die beobachtete
„ galvanometrische Wirkung “ .

Was geschieht , wenn wir mehrere Kanäle , in denen das
Wasser mit gleichem Gefälle (also gleicher Geschwindigkeit )
fliefst , zu einem Strom vereinigen ? Offenbar wird das Gefälle ,
oder die Geschwindigkeit , unverändert bleiben , dagegen ist
der Querschnitt des Stromes gröfser geworden . Die Wasser¬
menge , welche per Sekunde durch den Hauptkanal fliefst ,
wird gleich der Summe der entsprechenden Wassermengen in
den einzelnen Kanälen sein , d . h . die Stromstärke wird
mit der Anzahl der vereinigten Kanäle wachsen ,
genau so , wie wir es bei den galvanischen Elementen bei
paralleler Schaltung beobachteten , als wir kurze dicke Leitungs¬
drähte anwandten , welche dem Durchgänge der Elektricität
keinen merklichen Widerstand entgegensetzten .

Sehr störend für die weitere Vergleichung der Erschei¬
nungen bei Wasserströmen und bei elektrischen Strömen ist der
Umstand , dafs eine Bodensenkung bei einem Wasserkanal ein
Gefälle hervorruft , das von der „aquamotorischen Kraft “ des
Flügelrades in unserem gedachten Beispiel (S . 11 und 19) un¬
abhängig ist , während es für den elektrischen Strom
kein Oben und kein Unten giebt , die Lage ( und
Form ) des Stromleiters also völlig gleichgültig ist .
Darum betonte ich Ihnen gegenüber mehrfach , dafs unsere
hypothetischen Wasserkanäle horizontal sein sollten (und dafs
wir von der Reibung absehen ) . Lassen wir das Wasser , statt
durch offene Kanäle , durch Röhren fliefsen , so erhalten wir
ein ganz anderes Bild . Leiten wir z . B . Wasser aus einem
hoch gelegenen Reservoir durch Röhren nach einem tiefer ge¬
legenen Orte , so wird der Druck des ausströmenden Wassers
(oder die Stromgeschwindigkeit ) von dem Niveau - Unter¬
schiede abhangen , aber — wenn wir von der Reibung ab¬
sehen — von der Länge der Röhrenleitung unabhängig sein .
Sie erinnern sich noch , dafs bei geöffnetem Strom die elek -
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trisohe Niveaudifferenz (Potentialdifferenz ) der Poldrähte einer
Batterie von der Länge der Leitungsdrähte unabhängig war
(wenigstens innerhalb der von uns beobachteten Grenzen ) .

Nennen wir die das Wasser treibende Kraft — einerlei ,
ob sie durch ein Flügelrad oder durch eine Niveaudifferenz
hervorgerufen wird — die „aquamotorische Kraft “

, so erhalten
wir ein neues Mafs für die Stromstärke .

i

Stromstärke = Wassermenge = k x aquamot . Kraft x
X Querschnitt . (4)

Hier bedeutet k eine konstante Zahl , die von den ange¬
wandten Mafsen abhängt und die Beziehung zwischen der
aquamotorischen Kraft und der Stromgeschwindigkeit angiebt .

t

A fESS

Fig . 44.
Wirkung eines grofsen Widerstandes auf das Fliefsen des Wassers . A bei kleiner ,

B bei grofser Niveaudifferenz . 1j10 natürl . Gröfse .

Um Ihnen ein wenn auch grobes Bild von dem Falle vor¬
zuführen , wo ein grofser Widerstand den Wasserstrom
dämpft , benutze ich eine einfache Vorrichtung , die ich Ihnen
hier vorlege (Fig . 44) . Ein cylindrisches Glasgefäfs (A) mit
ausgebogenen Bändern , dessen Boden abgesprengt worden , ist
mit mehreren Lagen durchnäfsten Baumwollenzeuges über¬
spannt . Ich giefse Wasser in das Gefäfs, etwa 8 cm hoch —
es fliefsen nur langsam einzelne Tropfen aus , wiewohl die
Wassersäule auf dem Zeugboden einen ziemlich grofsen Quer¬
schnitt hat (etwa 300 □cm ) .

Eine andere Versuchsanordnung zeigt B , Fig . 47 . Eine
Glasröhre (g) ist in gleicher Weise mit Baumwollenzeug ge-
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schlossen , aber durch einen langen Schlauch (s) mit einem
Trichter ( t) verbunden . Ich giefse in diesen Wasser und hebe
ihn langsam höher - Sie sehen , wie bei wachsendem Wasser¬
druck immer öfter Wassertropfen hervorquellen und schliefslich
ein kontinuierlicher dünner Wasserstrahl entsteht . Hier ist
also die Stromstärke — wenn ich mich so ausdrücken darf
— nicht mehr abhängig von dem Querschnitt der
Wassersäule , sondern in erster Linie von dem Wasser¬
drücke , d . h . von der Niveaudifferenz (a—b ) . Sie haben hier
den analogen Fall zur Schaltung der Elemente hintereinander ,
bei Einschaltung eines sehr grofsen Widerstandes .

Wir nehmen (vergl . S . 75 ) zum Mafs der Stromstärke bei
galvanischen Elementen die Elektricitätsmenge , welche in 1
Sekunde durch einen (beliebigen ) Querschnitt der Stromleitung
fliefst :

Stromstärke = Elektricitätsmenge per Sekunde .
Wir wollen jetzt untersuchen , welchen Einflufs die elektro¬

motorische Kraft und die Beschaffenheit des Leiters auf die
Stromstärke hat .

Bei unserem Versuch mit der eingeschalteten Flüssigkeits¬
säule (Fig . 43 , S . 73 ) sahen wir , dafs eine Flüssigkeitssäule viel
stärker den Strom dämpft als ein metallischer Leiter . Wir
können daher sagen : Flüssigkeiten sind schlechtere Leiter der
Elektricität , oder sie bieten dem elektrischen Strom einen
gröfseren Widerstand als die Metalle (Drähte ) . Nun sind
aber die Platten der Elemente durch Flüssigkeitsschichten ge¬
trennt , die natürlich auch einen gewissen Widerstand bieten ,
den wir nicht aufser Acht lassen dürfen . Ich werde daher ein
Tauchelement zusammenstellen , bei welchem wir die Entfernung
beider Platten beliebig ändern , also den Einflufs des Platten¬
abstandes untersuchen können 13) . Wir können dann sowohl
den Widerstand in der Leitung , als im Elemente selbst , ändern
und die galvanometrische Wirkung beobachten .

13) Die folgende Versuchsreihe (Fig . 45 —47 ) ist im 'wesentlichen
Pfaundler entlehnt , wenn auch entsprechend modificiert . (Müller-Pouillet ’s
Lehrb . d . Phys . IX . Aufl., herausg . von Pfaundler , III . Bd ., S . 412—413 .)
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Innerer und
äufserer

Widerstand .

I . Ein Glastrog (A , Fig ! 45 ) ist bis % seiner Höhe mit einer
Lösung von Natriumbichromat (mit Zusatz von Schwefelsäure )
gefüllt . Da hinein stelle ich eine Kohlen - und eine Zinkplatte ,
die an Holzbänkchen befestigt sind und beliebig hoch ge¬
stellt werden können . Der Abstand beider Platten kann an
einer Papier -Millimeterskala abgelesen werden , welche auf die
Vorderseite des Glastroges geklebt und mit heifsem Paraffin be¬
strichen ist (zum Schutz gegen zufällig darüberfliefsende Säure ) .

Durch 2 Kupferdrähte von je 1 Meter Länge , die ich von
derselben Drahtrolle abgeschnitten -habe , verbinde ich die Pol¬
klemme des Elements mit dem Galvanometer (B , Fig . 48) . Der

Beziehung zwischen dem ('äufseren und inneren ) Widerstande und der Stromstärke .
Vio natürl . Gröfse . A Tauchelement . B Galvanometer .

Ausschlag beträgt etwa 4,5 Aichungsgrade . Nun schalte ich
2 längere Drähte von gleicher Beschaffenheit ein — der Aus¬
schlag a3 = 3,8 ist merklich kleiner .

Jetzt rücke ich die Platten des Elements weiter auseinander
— Sie sehen , wie der Ausschlag sehr rasch abnimmt . Eine
Vermehrung des Widerstandes sowohl in der Leitung ,
als im Elemente selbst , vermindert die Stromstärke .

Nennen wir den Widerstand im Element den „ inneren
Widerstand “

(w .) und den der Leitung den „ äusseren Wider¬
stand “ (wa) , so stellt die Summe beider Widerstände den Ge¬
samtwiderstand (W) dar ,

W = Wj H- wa .

Was wird nun geschehen , wenn wir den Gesamtwider¬
stand verdoppeln ?

II . Ich verbinde das Galvanometer (G , Fig . 46) durch
zwei Drähte von je 1 Meter Länge mit dem Trog -Element (E)
und schiebe die Zinkplatte näher heran , sodafs der Ausschlag
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genau = 8 Aichungseinheiten wird . [Diese Stellung der
Zinkplatte und des zugehörigen Drahtes ist in Fig . 46
punktiert wiedergegeben .] Der Plattenabstanrl beträgt
40,4 mm . Den jetzt vorhandenen Gesamtwiderstand (im Ele¬
ment , der Drahtleitung und im Galvanometer ) setzen wir = 1 ,
und wollen jeden einzelnen Widerstand verdoppeln . Zu diesem
Zweck schalte ich zwischen das Galvanometer und die Zink¬
platte noch zwei ebensolche Drähte von je 1 Meter Länge ein , die
aufserdem durch einen Kupferstreifen (Rt ) von genau gleicher
Länge und Dicke , wie der King (R) des Galvanometers , ver¬
bunden sind ; also ist der äufsere Widerstand doppelt so grofs
als vorhin . Rücke ich nun die Zinkplatte auf die zweifache

Fig . 46.
Abhängigkeit der Stromstärke vom Gesamtwiderstande . : /io natiirl . Gröfse .

Entfernung (2 . 40,4 = 80,8 mm) , so ist der Gesamtwiderstand
verdoppelt und — der Ausschlag ist a2 = 3,95 , also (fast
genau ) die Hälfte des vorigen . Bei verdoppeltem Gesamt¬
widerstande ist die Stromstärke halb so grofs , oder : Die Strom¬
stärke steht im umgekehrten Verhältnis zum Gesamtwiderstande.

III . Nun müssen wir noch den Einflufs der elektromo¬
torischen Kraft untersuchen . Ich stelle in die Mitte des
Glastroges ein mit siedendem Paraffin getränktes Holzbrettchen
(H , Fig . 47 a . d . f . S .) , um dessen Rand ein Gummischlauch (g)
gelegt ist , sodafs der Trog in zwei getrennte Abteilungen ge¬
schieden wird . Eine Zink - und eine Kohlenplatte stelle ich
dicht an die Scheidewand und verbinde sie durch einen kurzen
Metallstreifen , dessen Widerstand wir vernachlässigen dürfen .

Kolbe , n . 6
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Ohm ’sches
Gesetz .

Nun rücke ich die beiden Endplatten der auf diese Weise
hintereinander geschalteten Elemente soweit heran , dafs die
Summe ihrer Abstände (80,8 mm) genau so grofs ist , wie der
Plattenabstand beim letzten Versuch . Jetzt ist der Gesamt¬
widerstand unverändert geblieben , dagegen die elektromo¬
torische Kraft verdoppelt — der Ausschlag (a3 = 7,9) ist

doppelt so grofs als letzthin (3,95) , oder ebenso grofs , wie bei
einem einzigen Element bei halb so grofsem Gesamtwiderstande .
Wir sehen also :

Fig . 47 .

Abhängigkeit der Stromstärke von der elektromotorischen Kraft . Vio natiirl . Gröfse .

Die Stromstärke ist der elektromotorischen Kraft
direkt proportional .

Wir können nun leicht das vollständige Gesetz der Strom¬
stärke aufstellen :

Die Stärke des galvanischen Stromes steht in geradem Verhältnis

zur elektromotorischen Kraft (der Batterie) und im umgekehrten Ver¬

hältnis zum Gesamtwiderstande (Ohm ’s Gesetz ) .
Bezeichnen wir die gesuchte Stromstärke mit J , die elek¬

tromotorische Kraft mit E und den Gesamtwiderstand mit W ,
so wird der Bruch E/W der Stromstärke (J ) proportional
sein . Um den Zahlen wert dieses Bruches gleich dem der
Stromstärke zu machen , müssen wir ihn mit einem konstanten
Faktor , den wir mit k bezeichnen wollen , multiplicieren , dann
haben wir das Mafs für die Stromstärke
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Denken wir uns vorläufig als Einheit der Stromstärke (J )
einen Strom , der an unserem kalibrierten Galvanometer eine
Ablenkung von 1 Aichungsgrad hervorruft , und setzen wir die
elektromotorische Kraft eines Daniell ’ schen Elements = 1 ,
so wird im allgemeinen der Ausschlag , den 1 Daniell hervorruft
— je nach dem eingeschalteten Widerstande — gröfser oder
kleiner als 1 sein . Wenn wir nun den Leitungsdraht so
wählen , dafs der Ausschlag gerade = 1 wird , so können wir
den jetzt vorhandenen Gesamtwiderstand w = 1 setzen und
als Widerstands - Einheit benutzen . Dann giebt der Bruch
E/W , wo W ein bekanntes Vielfaches von w ist , direkt die
Stromstärke an , d . h . wir können die Einheit des Wider¬
standes so wählen , dafs der obige konstante Faktor
k = l wird , dann ist einfach

Da aber der Gesamtwiderstand (W ) sich aus dem im Ele¬
ment selbst vorhandenen inneren Widerstande (w4) und dem
äufseren Widerstande (wj der Leitung zusammensetzt , also
W = Wj4 - wa ist (vergl . S . 80) , so haben wir als mathema¬
tischen Ausdruck für die Stromstärke

Dieses Gesetz der Stromstärke galvanischer Elemente , das
der deutsche Gelehrte Ohm zuerst ( 1827) gefunden hat , liefert
in seiner mathematischen Form den Schlüssel zu dem Rätsel ,
wie bei sehr kleinem äufseren Widerstande die Strom¬
stärke proportional der Anzahl parallel geschalteter — bei
sehr grofsem äufseren Widerstande dagegen proportional
der Anzahl hintereinander geschalteter (gleichwertiger )
Elemente sein könne , was uns anfangs in Erstaunen setzte .
Wir hatten nämlich damals aufser Acht gelassen , dafs bei
der Schaltung parallel (die gleichbedeutend mit der An¬
wendung eines Elements von gröfserer Oberfläche der ein¬
tauchenden Platten ist ) der innere Widerstand mit der An¬
zahl der Elemente ab nimmt , also die Stromstärke steigen
mufs ; dagegen ist bei der Schaltung hintereinander , wo der
Strom der Reihe nach alle inneren Widerstände überwinden

6 *
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mufs , der innere Widerstand in gleichem Verhältnis

gewachsen wie die elektromotorische Kraft , weshalb
bei unbedeutendem Leitungswiderstande die Stromstärke sich

nicht ändern konnte . Das Stromgefälle ist aber jetzt ein

gröfseres und kann einen grofsen äufseren Widerstand besser
überwinden , also wird in diesem Falle die Stromstärke im (Ver¬

gleich zur parallelen Schaltung ) bedeutender sein .
Noch schärfer tritt dies hervor , wenn wir uns das eine

Mal n Elemente parallel , das andere Mal hintereinander

geschaltet denken , und für einen sehr kleinen und einen
sehr grofsen äufseren Widerstand die betreffende Strom¬
stärke berechnen .

I . Äufserer Widerstand verschwindend klein im

Vergleich zum inneren Widerstande
(d . h . wa = 0 gesetzt ) .

Für 1 Element ist die Stromstärke
E E

Jn
E

• 0 (1)

a) u Elemente parallel
.Die elektromot . Kraft bleibt = E
innerer Widerstand (» mal

kleiner ) = Wj/n
äufserer Widerstand ver¬

schwindend w„ = 0

b ) n Elemente hintereinander
Die elektromot . Kraft = n . E
innerer Widerstand (» mal

gröfser ) = n . w;
äufserer Widerstand ver¬

schwindend w = 0

J =

Stromstärke :
E

W|
n

- + 0
n

n . E n . E n . E
n . W- + w

oder , wenn war rechts den Zähler und
den Nenner des Bruches mit n rnulti-
plicieren,

hier fällt n fort , also ist

Jj . . (2a ) (2 b)

D . h . Bei verschwindend kleinem äufseren Wider¬
stande wird die Stromstärke durch parallele Schal -
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tung der Elemente vergröfsert , bei der Schaltung
hintereinander dagegen nicht .

II . Äufserer Widerstand sehr grofs , so dafs der
innere Widerstand (selbst bei der Schaltung hinter¬

einander ) dagegen verschwindet .

Für 1 Element ist die Stromstärke (bei Wj = 0)
_ E _ E _ E

1 _
+ wa

~
0 + wa w a

(3)

c) n Elemente parallel
Die elektrom . Kraft = E
innerer Widerstand = w,/nC ''ersollwin<3eni3

1 gegen w a )

äufserer Widerstand = wa

d) n Elemente hintereinander

elektromot . Kraft = n . E
innerer Widerstand = n . w . (sehr klein im

1Verh . zu \va )

äufserer Widerstand == \va
Stromstärke :

E n . E l . E n . E
0 + wR

=n .J ',

Bei sehr grofsem äufseren Widerstande (im Ver¬
gleich zum inneren !) wird die Stromstärke durch
parallele Schaltung der Elemente nicht verändert ,
dagegen durch Schaltung hintereinander vergröfsert
[aber keineswegs proportional der Anzahl Elemente , da bei
einer grofsen Anzahl hintereinander geschalteter Elemente der
innere Widerstand (n . w .) nicht mehr gegen w a vernachlässigt
werden kann .]

Wie Sie sehen , stehen diese theoretischen Folgerungen aus
dem Ohm ’ sehen Gesetze völlig in Einklang mit unseren Beob¬
achtungen (S . 72 — 74) . Was uns damals unbegreiflich schien , er¬
weist sich als eine notwendige Folge der Abhängigkeit der
Stromstärke von dem Gesamtwiderstande , während wir
anfangs nur auf den äufseren Widerstand (d . h . den der Lei¬
tung ) geachtet hatten . Möge dieses eine Beispiel Ihnen ein¬
prägen , dafs man bei der Ergründung eines Naturgesetzes
stets alle Umstände berücksichtigen mufs , durch welche die
beobachtete Erscheinung beeinflufst werden könnte !
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Da eine vorhandene Anzahl von galvanischen Elementen
in verschiedener Weise zu einer Batterie zusammengestellt
werden kann (wie Fig . 48 für 6 Elemente zeigt ) , so ist die
Frage naheliegend : Wie sollen wir die gegebenen Elemente
schalten , um im vorliegenden Falle die gröfste Stromstärke zu
erzielen ?

2 Reihen zu je 3 El.
Iiimereinander

\Zn \Zn 1Zn \Zn \Z?t \Zn
6 El. parallel

3 Reihen zu je 2 El.
hintereinander .

D

6 El. hintereinander

Fig , 48.
Verschiedene Kombination von 6 galvanischen Elementen .

Hierbei müssen wir berücksichtigen , dass die elektro¬
motorische Kraft nur von der Anzahl der hintereinander
geschalteten Elemente oder Gruppen (unter sich paralleler
Elemente ) abhängt , dagegen der innereWiderstand mit der
Anzahl hintereinander geschalteter Gruppen zu - , und mit
der Anzahl der in jeder Gruppe parallel geschalteten Elemente
abnimmt , also die Stromstärke bei jeder Kombination ver¬
schieden sein kann .

So haben wir (nach Fig . 48) für 6 Elemente folgende Kombina¬
tionen :

hinter¬
einander

parallel
elektrom .

Kraft
innerer

Widerstand

A 1 6 E Vs -
Wi

B 2 3 2 E % W;
C 3 2 3 E 3/ -irr/ 2
D 6 1 6 E 6v ;
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Je nachdem mm im gegebenen Falle die äulsere Leitung
einen gröfseren oder kleineren Widerstand (wa) hat , wird die

Stromstärke der Batterie eine verschiedene sein . Wünschens¬
wert ist es natürlich , in jedem Falle die günstigste Kombination
zu wählen , wo also die Stromstärke den möglichst hohen Wert

(das Maximum ) erreicht . Theoretische Folgerungen aus dem
Ohm ' sehen Gesetze ergeben und praktische Versuche bestätigen
folgende Kegel :

Für einen gegebenen Leitungswiderstand ( wa ) ist
die vorteilhafteste Kombination von galvanischen
Elementen die , wo der gesamte innere Widerstand
der Batterie dem ganzen Leitungswiderstande mög¬
lichst gleich ist .

Hieraus erkennen Sie , wie wichtig es ist , die Widerstände
messen zu können . Wovon hängt nun aber der Widerstand
eines Leiters ab ? Wir sahen schon , dafs der Widerstand bei

Flüssigkeitssäulen oder bei Drähten mit deren Länge stetig
wächst , und es wird Ihnen ohne weiteres einleuchten , dafs
für gleichförmige Leiter der Widerstand proportional
der Länge des Leiters sein mufs . — Wir haben also nur
noch zu untersuchen , welchen Einflufs die Dicke , oder die
Fläche des Querschnitts , und die Beschaffenheit , d . h . das
Material des Leiters ausiibt .

Beginnen wir mit den bequemeren Versuchen an einer
Flüssigkeitssäule . Hierzu können wir den schon früher (Fig . 43,
S . 73 ) benutzten Glastrog mit den beiden Zinkplatten verwenden ,
die ich Ihnen zur näheren Betrachtung in die Hand gebe . Sie
bemerken , dafs die schmalen Kantenflächen und die Hinter¬
flächen beider Platten mit Lack überzogen und mit 4 parallelen
Feilstrichen in 1 , 2 , 3 , 4 cm Abstand vom unteren Rande ver¬
sehen sind . Diese Striche dienen als Marke beim Eintauchen
der Platten .

Ich giefse soviel Lösung von Zinksulphat (ZnSO .,) in den
Glastrog , dafs beide Platten bis zum ersten Strich eintauchen
(A , Fig . 49 , wo q die eintauchende Oberfläche bedeutet ) . —
Nun verbinde ich durch kurze , dicke Drähte einen Pol eines
Tauchelementes (das mit einem Gummiball zum Einblasen von
Luft versehen ist , um den Strom konstant zu erhalten , s. o .
S . 70) mit dem Galvanometer , den anderen Pol mit der Klemm -

Günstigste
Kombination
der Elemente
einer Batterie .
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schraube der einen Zinkplatte und die zweite Platte wieder
mit dem Galvanometer .

Den Abstand beider Platten , den ich an der Papierskala
ablesen kann , mache ich genau = 2 cm . Den Ausschlag am
Galvanometer markiere ich durch ein spitzes Dreieck aus
Papier , das ich so auf die gläserne Schutzhülle der Bussole
klebe (vergl . Fig . 37 ) , dafs es gerade vor die Spitze des Alu¬

miniumzeigers der abgelenkten Magnetnadel zu stehen kommt .
Nun wollen wir durch Zugiefsen von Flüssigkeit die ein¬
tauchende Fläche der Zinkplatten verdoppeln und fragen ,

■ lllllllllllllBlllBiiiiigilig— I

Sciiv
Fig . 49.

Abhängigkeit des Widerstandes von dem Querschnitt der Leitung . Vio nafürl . Gröfse .

wie lang die Flüssigkeitsschicht sein mufs , um denselben
Widerstand zu bieten . Das werden wir daran erkennen ,
dafs das Galvanometer denselben Ausschlag zeigt , wie eben .

So erhalten wir gleichen Widerstand in der Flüssig¬
keitssäule ,

bei dem Querschnitt qx = 1 und der Länge Z, = 2 cm (A , Fig . 50)
- - - q3 = 2 - - - Z3 = 4 cm = 2 . 1, (B, Fig . 50)

q3 = 4 - - - Z3 = 8 cm = 4 . Z, (C, Fig . 50 )

d . h . für gleiche Widerstände sind die Längen der Leiter dem
Querschnitt (d . h . der Fläche des Querschnitts ) proportional .
Wählen wir aber (flüssige ) Leiter von gleicher Länge , so
wird der Widerstand bei doppeltem Querschnitt nur halb
so grofs und bei vierfachem Querschnitt nur der vierte
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Teil des Leiters vom Querschnitt = 1 sein oder mit anderen
Worten :

Bei gleicher Länge der Leiter steht der Widerstand im
umgekehrten Verhältnis zu der Fläche des Querschnitts . Wir
finden also als Regel (vorläufig für Flüssigkeiten ) :

Der Widerstand eines Leiters ist direkt propor¬
tional der Länge und umgekehrt proportional der
Querschnittsfläche des Leiters

w = /.
'
q . ( 1 )

Nun brauchen wir uns nur davon zu überzeugen , ob bei
metallischen Leitern (Drähten ) dasselbe stattfindet . Da hier
die Widerstände , wie wir schon wissen , viel kleiner sind , so
werden , wenn wir nicht sehr lange Drähte anwenden , die ein¬
geschalteten Drähte nur einen kleinen Teil der äufseren Lei¬
tung bilden , ihre Verdoppelung also eine verhältnismäfsig
kleine Differenz der Ausschläge bewirken . Wir müssen daher
die abgelenkte Nadel in die Stellung bringen , wo die Em¬
pfindlichkeit des Galvanometers am gröfsten ist , das
ist bei einem Ablenkungswinkel von 45 ° der Fall
(Anh . 9) .

Um einen solchen bestimmten Ausschlag erzielen zu können ,
müssen wir den Strom regulieren können , daher lasse ich die
Flüssigkeitssäule als Stromdämpfer in der äufseren Leitung
und führe die Drähte , wie Fig . 50 zeigt , zu zwei Quecksilber -
bechern , die durch zwei Ausbohrungen eines dicken Brett¬
chens (B) gebildet sind . Durch den zu untersuchenden Probe¬
draht (m ) wird dann der Strom geschlossen . Die beiden ein¬
tauchenden Enden des Mefsdrahtes könne *n nach Bedarf durch
drehbare stählerne Federn (f) gehalten werden .

Ich nehme als Probedraht einen Kupferdraht von 102 cm
Länge und biege je 1 cm vom Ende rechtwinklig um , sodafs
die Entfernung zwischen beiden Biegungen genau = 1 Meter
ist . Nun tauche ich die umgebogenen Enden in die Queck¬
silbernäpfchen (Fig . 53 ) und reguliere den Plattenabstand des
Stromdämpfers (D) , bis der Ausschlag genau 45 ° beträgt .

[Da wir hier den Ablenkungswinkel nicht messen , sondern
nur den gleichen Ausschlag hervorrufen wollen , so ist hier wie
bei den vorigen Versuchen kein Stromwender erforderlich :
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auch könnten wir jedes beliebige ungeaichte Galvanoskop
verwenden .]

Nun nehme ich einen Doppeldraht derselben Art von dop¬
pelter Länge — der Ausschlag ist wieder = 45 °

; ebenso bei
einem vierfachen Draht von vierfacher Länge ! Statt zweier
Drähte hätte ich ebenso gut einen einzigen Draht von doppel¬
tem Querschnitt nehmen können , oder statt der 4 einzelnen
Drähte einen Draht von vierfachem Querschnitt oder doppel¬
tem Durchmesser 14) , d . h . doppelter „ Dicke “

, wie man ge -

G uW

ipiiisril*

Fig . 50.

Widerstands vergleich von Drähten . 1/i0 natiirl . Gröfse .

wohnlich sagt . — Diese Messungen an Drähten stimmen also
völlig mit denen an Flüssigkeitssäulen überein , d . h . bei allen
gleichförmigen Leitern steht der Widerstand im ge¬
raden Verhältnis zur Länge und im umgekehrten Ver¬
hältnis zur Fläche des Querschnitts .

Dieses Resultat ist insofern auffallend , als hieraus hervor¬
geht , dafs der galvanische Strom — bildlich gesprochen —
den Querschnitt des Leiters ausfüllt , d . h . durch den Quer¬
schnitt eines Drahtes fliefst , nicht aber längs der äufseren

14) Ist der Durchmesser (die Dicke) eines Drahtes = d , so ist sein
Halbmesser r = d/2 und ijie Fläche des Querschnitts (als Kreisfläche)
Q = 7rr2 = n d2/4 . Hat der Draht z . B . eine Dicke d = 1 mm, so ist sein
Querschnitt Q == 7t/4 □ mm ; dagegen bei A1 = 2mm ist Q1= 227r/4= 4 7i/4 =
n Qmm , also ist der Querschnitt eines Drahtes von doppelter Dicke 4 mal
gröfser .
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Oberfläche des Drahtes sich bewegt , wie wir aus unserer
Beobachtung bei der statischen Elektricität hätten schliefsen
können , wo der Sitz der Elektricität , auf einem isolierten Leiter ,
die äufsere Oberfläche des Leiters ist .

Nun wollen wir noch Drähte aus verschiedenem Metall
miteinander vergleichen . Durch dieselbe Öffnung eines Zieh¬
eisens (einer Stahlplatte mit scharfrandigen Löchern von genau
abgepafstem Durchmesser ) habe ich einige Drähte aus Kupfer ,
Silber , Neusilber und Eisen gezogen , die also denselben
Querschnitt zeigen . Ich nehme Drähte von gleicher Länge
( 1 Meter ) und benutze sie als Mefsdrähte (m , Fig . 50) ,
wobei ich für den Silberdraht die Ablenkung = 45 ° einstelle .
Ersetze ich den Silberdraht durch den Kupferdraht , so ist der
Ausschlag etwas kleiner , noch kleiner beim Eisen und am
kleinsten beim Neusilber , d . h . diese Metalle setzen , bei gleicher
Länge und Dicke des Drahtes , dem Durchgänge des elektrischen
Stromes einen verschieden grofsen Widerstand entgegen . Um
denselben Widerstand , wie der 100 cm lange Silberdraht zu
haben , hätten der Kupferdraht 93,4 cm , der Eisendraht 15,2 cm
und der Neusilberdraht gar nur 7,0 cm lang sein dürfen . In
diesen Mafszahlen spiegelt sich das specifische Leitungs¬
vermögen dieser Metalle wieder , das dem specifischen
Widerstande umgekehrt proportional ist . Bezeichnen wir
diesen specifischen Widerstand eines Drahtes mit s , die Länge
mit 1 und den Querschnitt mit q , so ist der mathematische
Ausdruck für den Widerstand eines Drahtes

Als praktische Einheit des Widerstandes hat man den
einer Quecksilbersäule von 1 □mm Querschnitt und 106,3 cm
Länge (bei 0 ° Celsius ) angenommen und dem deutschen Ge¬
lehrten Ohm zu Ehren 1 Olm, genannt 15) .

I5) Aus genau abgepafsten Drähten werden Widerstände hergestellt,
welche 1 , 2 , 5, 10 , 20 . . . u . s . w. Ohm entsprechen und in passender
Weise in einem Kasten ( „Widerstandskasten“ oder „Widerstandssatz“ ) so
vereinigt , dafs man beliebige Widerstände (durch Addition) in den Strom¬
kreis schalten kann . Ein solcher Widerstandssatz kann beim Gal¬
vanometer in ähnlicher Weise benutzt werden , wie ein Ge¬
wichtssatz bei der Wage .

Specifisclier
Widerstand .
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Das Ampere
als Strom -

Einheit .

Damit sind wir in den Stand gesetzt , eine praktische
Einheit für die Stromstärke zu definieren , die 1 Amptre
heifst :

Die praktische Einheit der Stromstärke , das Am¬

pere , ist diejenige , wo bei einem Gesamtwiderstande
= 1 Ohm eine elektro - motorisehe Kraft = 1 Volt wirk¬
sam ist .

Mit dieser Definition der Stromstärke haben wir vorläufig
nur einen theoretischen Äbschlufs erreicht , denn unsere Aichungs -

skala am Galvanometer beruht auf einer willkürlichen Strom¬
einheit .

Folgende Tabelle zeigt . Ihnen den Widerstand und die

Leitungsfähigkeit der wichtigsten Metalle und einiger Flüssig¬
keiten (nach Pfaundler , Lehrb . d . Phys . III S . 421) :

Leitungswiderstand
bei 1 m Länge und 1 qmm Querschnitt

Leitungsfähigkeit
oder

Länge eines Ohms
(bei 1 qmm Querschn .)

Material Ohm Meter

Quecksilber hei 0 ° . 0,941 1,063
Wismuth . 1,26 0,8
Antimon . 0,34 2,9
Neusilber . 0,20 5,0
Blei . 0,188 5,3
Zinn . 1,127 7,9
Eisen . 0,093 10,8
Platin . 0,087 11,5
Zink . 0,054 18,5
Messing . 0,048 20,9
Gold - . 0,019 52,6
Kupfer . 0,015 66,7
Silber . 0,014 71,4
Gaskohle . 38 bis 113 0,025 bis 0,008
Schwefelsäure von 30,4 °/0 . . . 14 653 0,00006914
Zinksulphat von 23,7 % • • • • 208 850 0,00000452

Die Leitungsfähigkeit und der Leitungswiderstand
stehen , wie wir schon sahen , im umgekehrten (reciproken )
Verhältnis zu einander . Bezeichnen wir erstere mit A und letz¬
tere mit <u , so ist A = 1/cu , oder cu = 1/A ; z . B . für Quecksilber
0,941 = 1/1,063.
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Interessant ist es , dafs nur wenige Metalle (Blei , Zinn ,
Cadmium , Zink ) bei ihren Legierungen eine Leitungsfällig¬
keit zeigen , welche der aus dem Procentgehalt der zusammen¬
setzenden Metalle berechneten Leitungsfähigkeit entspricht .
Alle anderen Metalle zeigen , sowohl unter sich , als mit den

genannten Metallen legiert , eine unverhältnismäfsig ge -

ringere Leitungsfähigkeit , so ist z . B . Leitung ?fähigk
beob . berechn .

100 Silber legiert mit 0 Vol .-Procent Zinn 100 1.00
98 _ o 23,0 98,2
10 _ 90 il,5 20,1
0 - 100 11,4 11,4

Leitungsfähig¬
keit der

Legierungen ,

Es kann sogar (wie z . B . bei einer Legierung von Silber
und Gold ) die Leitungsfähigkeit der Legierung weit kleiner
sein als die jedes der Metalle , aus denen die Legierung besteht .
Es ist dieses für die Technik von Wichtigkeit , da man aus
solchen Legierungen die zu Messungen dienenden Normal¬
widerstände herstellen kann , indem man nur verliältnismäfsig
kurze Drähte braucht . Auch zeigen manche dieser Legierungen ,
wie z . B . das Manganin die wichtige Eigenschaft , dafs ihr Lei¬
tungswiderstand weit weniger durch Temperaturschwankungen
beeinftufst wird , als es bei den reinen Metallen der Fall ist .

Um unser Studium der galvanischen Elemente zum Ab -
schlufs zu bringen , müssen wir noch die Frage erledigen , wie
man den inneren Widerstand eines Elements oder
einer Batterie bestimmt .

Nach dem Ohm ’ schen Gesetz ist die Stromstärke
J = E/ (wj -f- wa ) ,

und zwar ist die günstigste Kombination der Elemente einer
Batterie die , wo w , = w a ; also Wj + w a= 2 Wj wird ; dann haben
wir z . B . für 1 Element :

j , __ E 1 E
2wj 2 Wj

Nun ist aber (S . 84) E/wj die Stromstärke eines Elementes
für den Fall , dafs der äufsere Widerstand = 0 ist . Das giebt
uns einen Fingerzeig .
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Wir messen zuerst den Ausschlag des (graduierten ) Gal¬
vanometers bei verschwindend kleinem Widerstande
der Leitung , wo kurze , dicke Drähte das Element mit dem
starken Kupferringe des Galvanometers verbinden . Darauf
fügen wir solange bekannte Widerstände in die äufsere Lei¬
tung ein , bis der Ausschlag genau halb so grofs ist (nach der
Aichungsskala !) . Dann ist der Gesamtwiderstand verdoppelt ,
also ist der gesuchte innere Widerstand gleich dem Wider -
stancLe , den wir in der Leitung zufügen mufsten 16) .

Nun interessiert uns noch die Frage : Wie wird die Strom¬
stärke sich verteilen , wenn der Leitungsdraht sich in mehrere
Zweige spaltet , die sich später wieder vereinigen , wie Fig . 51
zeigt .

Fig . 51.
Stromstärke in Leiterzweigen (L x und L2).

Sie erinnern sich noch dessen , dafs in einem Stromkreise
durch jeden Querschnitt des Leiters in derselben Zeit dieselbe
Elektricitätsmenge fliefsen mufs , wenn der Strom konstant
sein soll .

Denken Sie sich nun die beiden Leiterzweige L , und L2
als einen einzigen Leiter , so fliefst durch den Querschnitt beider
per Sekunde dieselbe Elektricitätsmenge , wie durch jeden
anderen Querschnitt ; also ist die Stromstärke beider
Leiterzweige (it und i2) zusammen gleich der gesamten
Stromstärke (J ) ; d . h . i1 + i2 = J . Zwischen den Punkten
a und b herrscht eine bestimmte Potentialdifferenz (va — v b)
d . h . in beiden Leiterzweigen ist die elektromotorische
Kraft ( E ) gleich . Dann ist , nach dem Ohm 'sehen Gesetz ,
die Stromstärke (i ) nur noch abhängig von dem Widerstande
(Wj und w8) :

I6) Falls das benutzte Instrument eine Tangensbussole ist (s . w. u .
im nächsten Vorträge ) , so kann man den Ausschlag (in Graden ) berechnen ,
welcher der halben Stromstärke entspricht und die Widerstände darnach
bestimmen .
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11 = ( va — V >/ Wl = E / wi
12 = (va — vb) / w2 = E/wj

also
ij : i2 = 1/w ! : l/w 2 (oder i , : i2 = w2 : Wj ) .

Dieses gilt auch für eine beliebige Anzahl von Leitungs¬
zweigen ( Ohm , Kirchhoff ) .

Eine wichtige Anwendung kann hiervon gemacht werden ,
wenn es gilt , grofse Stromstärken zu messen , für welche
die Empfindlichkeit der vorhandenen Galvanometer zu bedeu¬
tend ist . Giebt man den beiden Leiterzweigen einen Wider¬
stand von einem bestimmten Verhältnis , z . B . 99 : 1 , so ist ihr
Gesamtwiderstand 99 -+- 1 = 100 . Der Strom teilt sich demnach
so , dafs durch die Leitung von gröfserm Widerstande ein
99 mal schwächerer Strom als durch die andere Leitung , oder
7100 des Gesamtstromes fliefst (s . o .) . Ist die im längeren Zweige
gemessene Stromstärke = i , so ist die gesuchte Gesamtstrom¬
stärke J = 100 . i .

Damit haben wir unsere heutige lange Wanderung beendet
und wollen nächstens neue dynamische Wirkungen und tech¬
nische Anwendungen des galvanischen Stromes kennen lernen .
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Y . Vortrag -.
Wärmewirkung des galvanischen Stromes ; Glühlampen ; Elektrolyse des Wassers ; Knall¬

gas - und Wasserstoff -Voltameter ; Das Kupfer -Voltameter ; Das Volt , das Ohm und das

Ampere als Einheiten der elektromotorischen Kraft , des Widerstandes und der Strom¬
stärke ; Elektrochemische Äquivalente ; Aichung des Elektrometers nach Volt ; Ver¬
gleichung der Aichungsskala des Galvanometers mit der Gradskala ; Die Tangens -
Bussole ; Reduktionsfaktorder Bussole . — Galvanoplastik und Galvanotypie ; Der Telegraph
( Lesage , Sömmering , Schilling , Gaufs und Weber , Steinheil , Morse ) ;
Polarisationsströme ; Sekundäre Elemente ; Akkumulatoren ; Thermo -elefetrische Ströme .

Wir haben das vorige Mal die ablenkende Wirkung des
galvanischen Stromes auf die Magnetnadel als vorläufiges Mafs
der Stromstärke angenommen und fanden , nachdem wir durch
Graduierung unser Galvanoskop zu einem Galvanometer er¬
hoben hatten , folgendes :

1 . Fliefst ein galvanischer Strom durch eine Leitung , so
wird die galvanometrische Wirkung um so schwächer ,
je länger (bei sonst gleicher Beschaffenheit ) der Leiter
oder je enger sein Querschnitt ist . Die Ursache der
Schwächung der Stromenergie ( im Leiter )
nennen wir seinen Widerstand. Bei gleichförmigen
Leitern steht der Widerstand im geraden Verhältnis
zur Länge und im umgekehrten Verhältnis zur
Fläche des Querschnitts . — Der Widerstand (w) und
das Leitungsvermögen ( /) eines Leiters stehen im re -
ciproken Verhältnis zu einander (w = l// ) . Als prak¬
tische Einheit des Widerstandes (1 Ohm ) gilt der
eines gleichförmigen Quecksilberfadens von 1 Qmm
Querschnitt und 106,3 cm Länge bei 0 ° C .

2 . Die Stromstärke (J ) ist von den anderen Gröfsen ab¬
hängig . Sie steht im geraden Verhältnis zur elektro¬
motorischen Kraft (E ) der Elemente und im um¬
gekehrten Verhältnis zum Gesamtwiderstande (W)
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d . h . dem inneren Widerstande (Wj) innerhalb der
Elemente selbst + dem äufseren Widerstande (w ) in
der Leitung . Also ist die Stromstärke

J = E/W = E/ (w . + w a) .
Aus diesem Ohm 'sehen Gesetz folgt , dafs die Strom¬
stärke vergröfsert wird : bei verschwindend kleinem
äufseren Widerstande durch die Schaltung parallel ,
dagegen bei sehr grofsem äufseren Widerstande durch
die Schaltung hintereinander . — Die günstigste
Gruppierung der Elemente zu einer Batterie ’
ist die , wo der innere Widerstand dem äufse¬
ren ( dem der Leitung ) gleich ist .

3 . Wird der Stromleiter zwischen zwei Punkten der Balm
verzweigt , so verhalten sich die Stromstärken der ein¬
zelnen Leiterzweige umgekehrt wie die betreffenden
Widerstände der Zweige (^ : i3 . . . = 1/wj : l/w 2 . . .) .
Durch dieses Kirchhoff ’ sehe Gesetz sind wir in
den Stand gesetzt , die stärksten Ströme zu messen ,
indem wir die Widerstände zweier Leiterzweige so
wählen , dafs durch das Leiterstück , in welchem wir
die Stromstärke messen , ein genau bestimmter Bruch¬
teil des Gesamtstromes fliefst .

Wir haben letzthin wohl erkannt , von welchen Umständen
die Stromstärke (d . i . vorläufig nur die galvanometrische
Wirkung ) abhängt , aber einen Anhaltspunkt für die Definition
derjenigen Stromstärke , welche wir als Einheit annehmen
könnten , boten unsere Versuche am Galvanometer nicht .
(Beim Graduieren des Galvanometers war von uns willkür¬
lich ein konstanter Strom = 1 gesetzt worden .) Der Ausdruck
„ Elektricitätsmenge per Sekunde “

, die durch den Quer¬
schnitt des Leiters fliefst , ist der Analogie mit dem Wasser¬
strom entlehnt , also nur als bildliche Redeweise aufzufassen .
— Wir besitzen kein Sinnesorgan zur Wahrnehmung der
Elektricität und können daher ihre „ Menge “ nicht direkt
messen . — Es läfst sich aber erwarten , dafs der elektrische
Strom , der die Magnetnadel aus ihrer Ruhelage schleudert

Kolbe . II . 7
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und . dem Eisen beim Elektromagnet gewaltige Anziehungs¬
kräfte verleiht , auch Wirkungen anderer Art hervorzubringen
vermag . Vielleicht finden wir unter diesen , was wir brauchen :
einen praktischen Mafsstab für die Stromstärke !

I . Hier stehen drei grofse Bunsen ’scheChromsäure -Elemente
(vergl . B , Fig . 14 , S . 31 ) . Ich schalte sie hintereinander zu ein er Bat¬
terie . An dem einen freien Pol befestige ich einen feinen Metall¬
faden (Lametta , welche zum Christbaumschmuck verwandt wird )
— wollen Sie vielleicht das andere Ende des Lamettafadens an
dem freien Pol des dritten Elements festklemmen ? — — Sie

lassen den Metallfaden hastig fallen , weil
er — zu heifs geworden sei ! Sie haben
Recht , er ist stark erwärmt worden .

Nun schraube ich statt des Lametta¬
fadens einen Neusilberdraht ein , an welchen
ich vorhin eine Menge Wachskügelchen in
kurzen Abständen von einander angedrückt
habe . Sehen Sie — — da beginnen schon
einige Kugeln längs dem etwas schräg
stehenden Draht herabzurutschen und fallen
bald ab , da - das Wachs geschmolzen ist .
Wir sehen also , dafs auch stärkere Drähte
durch , den Strom erwärmt werden , wenn
auch schwächer , als der feine Metallfaden ,
der dem Strom einen weit gröfseren Wider¬
stand entgegensetzt . Diese Wärmewirkung

des elektrischen Stromes wird in der Technik u . a . zur Ent¬
zündung von Minen beim Sprengen von Felsen u . s . w . benutzt .

Hier lege ich ein elektrisches Lämpchen vor (Fig . 52 ) , das aus
einem fast luftleer gemachten Glasgefäfs (G) von bimförmiger
Gestalt besteht , worin zwei durch einenhaarfeinenKohlenbügel (c)
verbundene Platindrähte eingeschmolzen sind . Lasse ich den
Strom der drei Elemente durch den Kohlenbügel gehen , indem
ich die herausragenden Platin - Ösen der Lampe mit den Pol¬
drähten verbinde , so erstrahlt der Kohlenfaden in hellem , gold¬
gelbem Licht . Sie haben diese elektrischen Glühlampen gewifs
schon oft an den Schaufenstern oder auch in Privatwohnungen
gesehen , doch ist die gebräuchliche Stromquelle eine andere .
Wir werden sie erst später kennen lernen (Anh . 8) .

Fig . 52 .
Elektrische Glühlampe .

Natürl . Gröfse .
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Durch den elektrischen Strom wird der Leiter er¬
wärmt und zwar um so stärker , je schlechter er leitet oder
je gröfser sein Widerstand ist . Sie erraten nun wohl , wo heim
„ Dämpfen des Stromes “ durch eingeschaltete Widerstände
die scheinbar verloren gegangene Energie geblieben ist . Die
elektrische Energie hat sich in Wärmeenergie verwandelt! Wir könnten
nun versuchen , die durch einen Strom erzeugte Wärmemenge
zu bestimmen und als Mafs der Stromstärke zu benutzen , doch
ergaben die sehr umständlichen und schwierigen Versuche
(von Lenz und Joule ) , dafs die im Stromleiter erzeugte
Wärmemenge zwar im geraden Verhältnis zum Widerstande
des Leiters steht , aber nicht der Stromstärke selbst , sondern dem
Quadrat der Stromstärke proportional ist (Joule ’sches
Gesetz ) , mithin für unseren Zweck sich nicht recht eignet .

II . Jetzt wollen wir eine chemisch - dynamische Wirkung
des galvanischen Stromes studieren , die sogenannte Wasser -
zersetzung oder Elektrolyse des Wassers .

Hier sehen Sie (A, Fig . 53 ) eine am oberen Ende geschlossene
Glasröhre (G) , welche nach Fünftel -Kübikcentimetern kalibriert
ist . Unten ist ein Gummipfropf hineingeschoben , durch den drei
Glasröhrchen wasserdicht geführt sind . Das mittlere Röhrchen (r )
ist beiderseits offen , in die beiden anderen sind Platindrähte
eingeschmolzen , welche in Platinbleche (p) , die „ Elektroden “ ,
endigen . Aufsen sind die Platindrähte mit kleinen Klemm¬
schrauben versehen , zur Aufnahme der Poldrähte der Batterie .

Ich nehme die Röhre aus der Federklemme (f ) , kehre sie
um , ziehe den Pfropf heraus und fülle die Röhre mit stark
verdünnter Schwefelsäure . Nach Einsetzen des Pfropfes setze
ich die Röhre wieder an ihren Platz und stelle ein Glasgefäfs
darunter . — Verbinde ich nun die Poldrähte der 3 Bun -
sen 'sehen Chromsäure -Elemente , die , wie vorhin , hintereinander
geschaltet sind , mit den Klemmschrauben , so bemerken Sie
sofort eine lebhafte Gasentwickelung , während aus dem mitt¬
leren Röhrchen das verdrängte Wasser herauströpfelt . In
wenigen Minuten sind mehrere Kubikcentimeter des Gases er¬
zeugt . Die hierbei innerhalb der Flüssigkeit sich abspielenden
Vorgänge sind recht komplicierter Natur ; das Endresultat ist
dasselbe , als ob die zugefügte Schwefelsäure unverändert ge¬
blieben und nur das Wasser in seine Elementarbestandteile

7 *
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zerlegt worden , wäre . Das nahm man auch anfangs an und
nannte den Vorgang fälschlich eine „ Wasserzersetzung “ .
Die Gasblasen , welche Sie in der Röhre ( A , Fig . 53) aufsteigen
sehen , bestehen aus einem Gemisch von Sauerstoff - und
Wasserstoffgas , welches sich beim Entzünden (z . B . durch
den Entladungsfunken einer Leydener Flasche ) unter einer mit
einem starken Knall verbundenen Explosion wieder zu Wasser
(Dampf) verbindet und daher Knallgas genannt wird . Der
Apparat heifst Knallgas - Voltameter (s . w . u .) .

Fig . 53.
Elektrolyse des Wassers . J/10 natürl . Gröfse . A Knallgas -Voltameter , vereinfacht ;

B Wasserstoff -Voltameter nach Höfmann , modificiert .

Um beide Gase getrennt zu erhalten , benutze ich einen
anderen Apparat (B , Fig . 53 ) . Ein hohes U - förmiges Glasrohr
ist an beiden Schenkeln nach Zehntel - Kubikcentimetern ka¬
libriert und mit drei Hähnen (h xh 2h3) versehen . Zum Füllen
dient ein cylindrisches , oben trichterförmig erweitertes , unten
in eine dünne Röhre verlaufendes Glasrohr (I ) , welches mit
seinem Halter oder in dem Korken , durch den es ge¬
führt ist , verstellbar ist . Durch einen Gummischlauch (S)
ist der Trichter mit dem Abflufsrohr verbunden . Die Platin -
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Elektroden (p) sind nahe der Biegung seitlich eingeschmolzen
und durch Platindrähte mit den isolierten Klemmschrauben (k x
und k s) verbunden . Jetzt fülle ich den Trichter mit verdünnter
Schwefelsäure und öffne die drei Hähne , bis beide Schenkel
gefüllt sind und schliefse darauf die oberen (h xh s) . — Bald
nach dem Durchleiten des Stromes sehen Sie in beiden Röhren
Gas aufsteigen , doch an der positiven Elektrode (der Anode )
weniger als an der negativen (der Kathode ) .

Jetzt , wo die Flüssigkeit in beiden Schenkeln mit den
betreffenden Gasen gesättigt ist , giefse - ich in den Trichter
Flüssigkeit nach , öffne behutsam die oberen Hähne , bis die
Röhren wieder gefüllt sind , und schliefse den Strom der Batterie .
Nach einigen Minuten , wenn an der negativen Elektrode (der
Kathode ) gerade 20 Kubikcentimeter Gas entwickelt sind ,
unterbreche ich den Strom . An der Anode haben sich nur
10 Kubikcentimeter , d . h . halb soviel Gas gebildet ! Die
gröfsere Gasmenge erweist sich bei der Untersuchung als
Wasserstoff , die kleinere als Sauerstoff . Das Wasser be¬
steht , also — dem Volumen nach — aus 2 Teilen Wasserstoff
und 1 Teil Sauerstoff .

Die Menge Knallgas , welche beim ersten Versuch , oder
die Menge Wasserstoff , welche beim zweiten in einer be¬
stimmten Zeit , z . B . in 1 Minute entwickelt wird , kann als
Mafs der Stromstärke dienen und wird auch vielfach dazu
benutzt (Jacobi ’s Stromeinheit liefert 1 ccm Knallgas per
Minute ) . Doch ist dieses Verfahren für genauere Bestimmungen
weniger geeignet als das w . u . beschriebene . Um vergleich¬
bare Resultate zu erhalten , müssen die Gase völlig trocken
sein und bei einer Temperatur von 0 ° C . bei 760 mm Baro¬
meterdruck gemessen , oder durch Rechnung auf diese Tempe¬
ratur und diesen Druck reduciert werden .

Diese , wie die folgenden Apparate miifsten chemische
Strommesser heifsen . Der gebräuchliche Name „ Volta¬
meter “ ist sehr unglücklich gewählt , da Volta mit ihrer Er¬
findung nichts zu thun hat . Auch liegt eine Verwechselung -
nahe mit den Voltmetern , d . h . Apparaten zur Bestimmung
des „ Volt “

, oder der praktischen Einheit der elektromoto¬
rischen Kraft .

III . Ich ersetze nun den Wasserzersetzungsapparat durch KuP
m e

r
t
'
er

°lta
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ein Gefäfs (A, Fig . 54) mit koncentrierter Lösung von Kupfer¬
vitriol , in welche zwei blanke Scheiben ans Kupferblech tauchen .
In den Stromkreis schalte ich noch den Stromwender (C) und
das Galvanometer (D) ein , wie Fig . 53 zeigt .

Dieser Apparat (A) wird Kupfer - Voltameter genannt .
Die beschriebene Versuchsanordnung gestattet uns , den

Strom im Galvanometer umzukehren , während er im Kupfer -
Voltameter (B ) seine Richtung unverändert beibehält . Durch
das Zusammenrücken der Kupferplatten im Voltameter kann
ich den Widerstand desselben verkleinern , also die Stromstärke
erhöhen , bis das Galvanometer seinen empfindlichsten Ausschlag
(45 °

, d . h . etwa 8 Aichungseinheiten ) zeigt . Nach einigen

Fig . 54.
Kupfer -Voltameter CA) und Galvanometer (D ) durch den Stromwender (C) so mit der
Batterie (B) verbunden , dafs der Strom nur im Galvanometer die Richtung wechselt .

1/10 natürl . Gröfse .

Minuten hebe ich beide Platten heraus , spüle sie ab und trockne
sie durch Betupfen mit Filtrierpapier und Erwärmen über einer
Spiritusflamme . Nun gebe ich Ihnen die Platten herum , bitte
aber , beide , besonders die durch matten Kupferglanz ausge¬
zeichnete negative Elektrode (die Kathode ) , nur am angelöte¬
ten , mit Siegellack überzogenen Leitungsdrahte zu fassen ! Sie
bemerken wohl , wie die Kathode mit einer frischen Kupferhaut
bedeckt ist , während die Anode aussieht , als wäre sie von Säure
zerfressen . — An der Platte , wo der (positive ) Strom eintrat ,
hat sich Kupfer aufgelöst und an der anderen Platte niederge¬
schlagen , während die Kupferlösung scheinbar unverändert ge¬
blieben ist . [Metall geht mit dem Strom .]

Jetzt wollen wir die Gewichtszunahme der Kathode (der
negativen Platte ) bestimmen . Auf jenem Seitentisch steht eine
empfindliche Wage schon bereit . Ich lege die Platte auf die
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eine Wagschale und auf die andere Schrot oder Sand , bis das
Gleichgewicht erzielt ist . Nun stelle ich jede Platte an ihren
Platz und reguliere ihren Abstand nochmals , bis der Ausschlag
am Galvanometer 7,5 Aichu -ngseinheiten (44,6 °) beträgt . Nach
dem Wechseln der Stromrichtung haben wir 7,6 ; also im Mittel
7,55 . Nun wollen wir 5 Minuten lang den Strom durchgehen
lassen und jede Minute das Galvanometer beobachten .

I . Strom -
riclitung

11. Strom -
riehtung Mittel

zu Anfang . . 7,5 7,6 7,55
nach 1 Min . . . . 7,4 7,58 7,49

- 2 - . . . 7,45 7,5 7,48
- 3 - . . . 7,4 7,5 7,45
- 4 - . . . 7,4 7,5 7,45
- 5 - . . . 7,35 7,45 7,40

Der Strom wird unterbrochen . Mittel 7,47

Die wieder abgespülte und in gleicher Weise getrocknete
Kathodenplatte wiegt jetzt um 0,565 g oder 565 mg mehr als
vorher . Soviel Kupfer hat sich in 5 Min . abgesetzt also ist
die in 1 Minute abgeschiedene Menge des Kupfers = 0,113 g
= 113 mg , oder per Sekunde 113/60 = 1,88 mg .

Noch viel merklicher wäre die Gewichtszunahme der nega¬
tiven Elektrode gewesen , wenn wir zwei Silberplatten in einer
verdünnten Lösung von salpetersaurem Silber (Höllenstein )
angewandt hätten . Für genaue Strommessungen wird daher
das Poggendorf ’sche Silbervoltameter verwandt .

Wie wir neulich sahen , hängt die Stromstärke von der elek¬
tromotorischen Kraft und dem Gesamtwiderstande ab (J = E/W ) .
Wir können nun für zwei dieser Gröfsen willkürliche Einheiten
wählen , dann ist die dritte Gröfse dadurch schon bestimmt .
Wählen wir z . B . für die elektromotorische Kraft als Einheit
1 DanielPsches Element und als Widerstandseinheit den eines
Quecksilberfadens von 1 qmm Querschnitt und 106,3 cm Länge
( 1 Ohm ) , so könnten wir bei einem bekannten Gesamtwider¬
stande und einer (z . B . am Elektrometer ) bestimmten elektro¬
motorischen Kraft der benutzten Batterie für jeden einzelnen
Fall die Stromstärke (natürlich nach der angenommenen will¬
kürlichen Einheit ) berechnen . Da jedoch die Widerstands¬
messungen umständlich sind und besondere Hülfsapparate er -
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Das Volt als
praktische

Einheit der
elektromoto¬

rischen Kraft .

Einheit
der

Stromstärke .

fordern , so ist es oft wünschenswert , einen Weg’ einzuschlagen ,
welcher direkt die Stromstärke einer Batterie bei der gerade
eingeschalteten Leitung zu messen gestattet . Die von uns als
„ galvanometrische Wirkung “ bezeichnete Ablenkung der
Magnetnadel des Galvanometers wäre sehr bequem , giebt uns
aber vorläufig nur ein willkürliches Mafs , sodafs die an
verschiedenen Instrumenten angestellten Messungen unter sich
nicht vergleichbar sind . Wir müssen uns daher nach ver¬
gleichbaren Mafsen umsehen !

Wir wissen schon , dafs die praktische Einheit der
elektromotorischen Kraft (oder der Potentialdifferenz an
den freien Polen der Batterie ) das „ Volt “ genannt wird ,
doch fehlte uns in der statischen Elektricität jede Möglichkeit ,
eine Elektrieitätsquelle von konstantem , stets wieder herstell¬
barem elektrischem Niveau zu beschaffen . Eine solche bieten
aber in vortrefflicher Weise die konstanten Elemente , besonders
— für unseren Zweck — das von Daniell . Wir könnten
einfach die elektromotorische Kraft eines Daniell ’schen Ele¬
ments zur praktischen Einheit nehmen , und es sind lediglich
Gründe theoretischer Natur , welche eine etwas kleinere elektro¬
motorische Kraft als praktische Einheit , d . h . als Volt , geeig¬
neter erscheinen lassen .

1 Volt = 1/1,07 = 0,934 Norm al - Daniell .

Nun ergab unser Aluminium - Elektrometer beim Aichen
mit dem Normalkondensator für 1 Daniell den Ausschlag
« / = 15°

; hieraus berechnet sich der Ausschlag für 1 Volt
cq = 15°/1,07 = 14,02° oder rund 14 ° . Dieser Ausschlag wurde
nun bei der Aiehung (I . Bd . S . 67) zugrundegelegt , also ist
unsere Projektions -Aichungsskala am Elektrometer zugleich eine
Voltskala (d . h . bei Anwendung des Normalkondensators ) . Die
von uns früher (S . 37) für verschiedene galvanische Elemente
beobachteten Ausschläge am Elektrometer entsprechen demnach
(annähernd ) der elektromotorischen Kraft der Elemente nach Volt .

Als Einheit der Stromstärke können wir uns die Strom¬
stärke denken , welche durch ein konstantes Element
von der elektromotorischen Kraft = 1 Volt bei einem
Gesamtwiderstand = 1 Ohm hervorgebracht wird . Sie
heilst , dem französischen Gelehrten Ampere zu Ehren , 1 Ampere .
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Durch Versuche , die ich Ihnen hier nicht beschreiben kann ,
hat man gefunden , dafs ein Strom von der Stärke = 1 Ampere
während jeder Minute 67,08 Milligramm Silber oder 19,68mg
Kupfer ausscheidet oder 10,44 ccm Knallgas bildet . Also

In 1 Sekunde liefert ein Strom von 1 Ampere :
Silber | Kupfer I Knallgas ; d . li . Wasser zersetzt :
1,118 mg ! 0,328 mg I 0,114 ccm 0,0933 mg.

Diese Zahlen heifsen die elektrochemischen Äqui¬
valente des Silbers , Kupfers und Wassers , und mit ihrer
Hülfe lassen sich die Stromstärken der benutzten Elemente
berechnen , wie wir bald sehen werden .

So haben wir denn endlich für die uns wichtigen Gröfsen
die betreffenden (praktischen ) Einheiten oder Mafse gefunden .
— Bezeichnen wir noch die Elektricitätsmenge , welche bei
1 Ampere per Sekunde durch den Querschnitt der Leitung
fliefst , mit 1 Coulomb, so ist die Stromstärke = der An¬
zahl Coulomb per Sekunde !
Die Einheit der elektromoto rischen Kraft = 1 Volt (etwa 0,9 Daniel !)

des Widerstandes = 1 Ohm
der Stromstärke = 1 Ampere.

Nun ist (I . Bd . , S . 128) 1 Coulomb = 3000 Millionen elek¬
trostatischer Einheiten der Elektricitätsmenge . Um sich eine Vor¬
stellung von dieser gewaltigen Elektricitätsmenge zu machen ,
denken Sie sich zwei Coulomb gleichnamiger Elektricität in
1 Kilometer Abstand . Diese würden dann auf einander eine
Abstofsungskraft ausüben , die ausreicht , um 900 kg zu heben !

Unsere Batterie hatte beim letzten Versuch in 5 Minuten ,
d . h . 300 Sekunden 565 Milligramm Kupfer , also per Sekunde
1,88 Milligramm niedergeschlagen . Die Stromstärke betrug
(durchschnittlich ) also 1,88/0,328 = 5,7 Ampere , d . h . es
flössen in jeder Sekunde 5,7 Coulomb durch den Querschnitt
des Leiters .

Jetzt werden Sie einsehen , welch ’ eine reiche Elektricitäts -
quelle das unscheinbare galvanische Element ist , und Sie wer¬
den sich nicht mehr über die riesige Tragkraft der Elektro -
magnete wundern .

Ich erinnere Sie nochmals daran , dafs — selbst bei An¬
wendung konstanter Elemente — die Stromstärke keinen

Elektrocliem .
Äquivalente .
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konstanten Wert hat , noch haben kann (wie die elektro¬
motorische Kraft ) , da mit jeder Änderung in der Leitung auch
eine Änderung des Leitungswiderstandes und mithin auch der
Stromstärke verbunden ist .

Wenden wir jetzt unsere Aufmerksamkeit wieder dem
Galvanometer zu . — Während ein Strom von 5,7 Ampere
durch die Leitung Hofs , zeigte unser Galvanometer im Durch¬
schnitt 7,47 Aichungseinheiten ; also ist eine Aichungseinheit
= 5,7/7,47 = 0,763 Ampere . Diese Zahl könnten wir als Kon¬
stante der Aichungsskala verwenden , um die Angaben
des Instruments auf Ampere zu reducieren .

Unser Galvanometer hat eine solche Konstruktion , dafs die
Bussole samt dem Kupferringe in horizontaler Richtung ge¬
dreht werden kann , wobei wir mit Hülfe des festen Visiers
(vgl . Fig . 37 , S . 64) leicht den Drehungswinkel ablesen können ;
aufserdem kann der Ring selbst geneigt werden , um die Aus¬
schläge zu vermindern , ohne den Leitungswiderstand zu ändern .
Hierdurch wurde das Graduieren sehr erleichtert . Da nun
nicht alle Galvanometer diese Einrichtung haben , so wird es
Ihnen gewifs von Interesse sein , zu erfahren : in welcher Be¬
ziehung die Ablenkungswinkel ( in Graden abgelesen ) zur Strom¬
stärke . stehen .

Ich entwerfe (Fig . 55 ) auf der Wandtafel einen Viertelkreis
mit Graden von 0 bis 90 und trage an der Peripherie die bei der
Graduierung (S . 68) gefundenen Skalenwerte auf . Dann ziehe ich
eine Linie (AB ) senkrecht zu dem Halbmesser (r ) , der durch den
Nullpunkt geht , und ziehe von dem Mittelpunkt (M) Strahlen durch
die Skalenpunkte bis zur Linie AB . Die Punkte , wo diese
geschnitten wird , bezeichne ich mit den der Aichungsskala
entsprechenden Ziffern 1 , 2 , 3 . . . u . s . w .

Sie erkennen leicht , dafs auf der Linie A B (fast genau )
gleiche Stücke abgeschnitten werden , d . h . : Die Abschnitte
auf der Linie AB (gezählt von dem Anfangspunkte A)
sind proportional den Aichungsgraden , also propor¬
tional der Stromstärke . Einem nach Graden beob¬
achteten Ausschlag des Galvanometers = a ° entspricht auf
AB eine Strecke = t . Nun ist aber der Zahlenwert des
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Bruches t/r die sogenannte trigonometrische Tangente
des Winkels a (t/r = tanga ) .

Bewirkt nun ein Strom von der Stärke J eine Ablenkung
= a°

, so ist die zugehörige Strecke auf AB = t und ist der
Stromstärke proportional ; desgleichen auch der Bruch t/r (da
der Halbmesser r einen unveränderlichen Wert hat ) . Also ist
die (trigonometrische ) Tangente des Winkels a° (tang a = t/r )
ein Mafs für die Stromstärke .

Stromstärke J = k . taug r<° ,
wo k ein konstanter Faktor ist , der u . a . von den Dimensionen
des Apparates abhängt und der Reduktionsfaktor 17) der
Bussole genannt wird . Diese selbst können wir daher Tan¬

gentenbussole (oderTangensbussole ) nennen . (Pouilletl837 .)

y V? y» A / ^ B

Beziehung zwischen der Gradskala und der Aich .ungssk .ala bei der Tangens -Bussole .

Genauere Messungen zeigen nun , dafs für Galvano¬
meter dieser Art thatsächlich die (trigonometrischen )
Tangenten der Ausschlagswinkel den betreffenden
Stromstärken proportional sind , aber nur dann , wenn die
Magnetnadel sehr klein ist im Vergleich zum Durchmesser
des Leitungsringes . Das ist nun bei unserem Apparat in einer
für unsere Zwecke genügenden Weise der Fall , indem die
Länge der Magnetnadel kaum den 10 . Teil des Ringdurch¬
messers beträgt — daher die gute Übereinstimmung in der
Länge der einzelnen Abschnitte auf AB , Fig . 53 (vergl . Anh . 9) .

& • #

u ) Für « = 45 ° wird tg « = l , also J = k , d . li . der Zahlenwert

des Faktors k giebt die Stromstärke an , welche an dem be¬
treffenden Galvanometer die Ablenkung von 45 ° hervorruft .

Reduktions -
faktor der
Tangenten¬

bussole .
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IV . Da liegt unsere Kupferplatte noch auf der Wage ! Icli
Galvanoplastik, nehme sie und biege sie hin und her ; bald hören Sie ein

leises Knistern und — siehe da ! eine feine Kupferhaut löst sich
ab , d . h . die eben niedergeschlagene Kupferschicht läfst sich
stellenweise abziehen und zeigt mit photographischer Treue einen
Abdruck der massiven Kupferplatte ; nur sind alle Erhabenhei¬
ten auf der Kupferhaut vertieft und alle Vertiefungen erhaben .

Diese Beobachtung , welche zuerst von de la Rive ( 1836)
bekannt gemacht wurde , brachte fast gleichzeitig Jacobi in
Rufsland und Spencer in England auf den Gedanken : auf
galvanischem Wege metallische Abdrücke von verschiedenen
Gegenständen , wie Medaillen u . a . , herzustellen , was auch ge¬
lang . Jacobi nannte dieses Verfahren Galvanoplastik
(1838) , ahnend , dafs diese „galvanischen Nachbildungen “ eine
neue Industrie ins Leben rufen würden ! — Betrachten Sie die
Figuren dieses Büchleins . Es sind Holzschnitte , aber kein
einziger der Buchsbaumstöcke , auf denen die Zeichnung ge¬
schnitten wurde , ist zum Drucken verwandt , sondern von den
Holzschnitten wurde zuerst ein galvanoplastischer Abdruck
hergestellt , der alle Vertiefungen erhaben zeigt und daher das
Negativ genannt wird . Von diesem Negativ wurden die zum
Drucken bestimmten Positive , oder Cliches , in mehreren
Exemplaren galvanoplastisch erzeugt , und zwar aus Kupfer
(oder , nach einem besonderen Verfahren , aus Zink ) . — Da
nun eine Metallplatte ungleich mehr Abdrücke zu machen
gestattet als ein Stück Holz und von dem Negativ jeder¬
zeit beliebig viele Positive von genau gleicher Güte herge¬
stellt werden können , so wird Ihnen der Vorteil dieser Er¬
findung einleuchten . — Die Kupferplatten , vermittelst welcher
früher die geographischen Karten gedruckt wurden , erforderten
sehr viel Kosten und Zeit und lieferten doch nur eine geringe
Anzahl guter Abdrücke . Jede neue Platte verursachte die¬
selben Kosten , wobei die genau gleiche Wiedergabe unmög¬
lich war . Jetzt wird eine einzige Platte , wenn auch mit dop¬
pelten Kosten und doppeltem Zeitaufwand , in dem definitiven
Charakter der Karte , möglichst scharf und genau , entworfen
und dann ein Negativ hergestellt , von welchem die zum Druck

Galvanotypie, bestimmten positiven Abzüge (Cliches oder Galvanotypen ) in
beliebiger Zahl und in völlig gleicher Güte gemacht wer -
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den . Daher bekommen wir jetzt auch Schulatlasse von vor¬
züglicher Güte bei unglaublich niedrigem Preise . — Auch läfst
man — um ein drittes Beispiel anzuführen — solche Bücher ,
deren Inhalt keine Änderung erleidet , wie z . B . die Logarith¬
mentafeln , einmal setzen , revidiert den Satz auf das Sorgfäl¬
tigste und stellt dann galvanotypische Abdrücke des Satzes
her . So ist für weitere Auflagen ein fehlerfreier Druck ge¬
sichert (Stereotypen -Druck ) und die teuren Lettern können
sofort auseinandergenommen und wieder verwandt werden ,
wodurch auch Zeit erspart wird . — Bekannt ist Ihnen , dafs
man jetzt die verschiedensten Gebrauchsgegenstände galvanisch
versilbert , vergoldet oder vernickelt , teils um ihnen ein ge¬
fälligeres Aussehen zu geben , teils um sie vor dem Verrosten
zu schützen .

❖ £

V . Da wir gerade bei der technischen Anwendung der
elektrischen ' Ströme sind , so möge hier eine der interessantesten
und wichtigsten Erfindungen des 19 . Jahrhunderts gleich mit
erwähnt werden : der Fernschreiber oder Telegraph .

Das Bedürfnis , wichtige Nachrichten möglichst schnell von
einem Orte zum anderen gelangen zu lassen , hatte zur Kon¬
struktion der optischen Telegraphen geführt , die bis zum
Jahre 1837 im Gebrauche blieben und noch jetzt im Kriegs¬
dienst oder bei wissenschaftlichen Expeditionen Verwendung
finden . Die Langsamkeit der Zeichengebung , sowie die Un¬
sicherheit des Betriebes , der z . B . durch dichten Nebel ganz
unterbrochen wird , liefsen es wünschenswert erscheinen , die
elektrischen Wirkungen zum Telegraphieren zu verwenden ;
und so sehen wir denn auch , nach jeder auffallenderen Ent¬
deckung auf dem Gebiete der Elektricität , die praktischen
Versuche eine neue Sichtung einschlagen .

Der Genfer Lesage stellte ( 1774?) ein Telegraphenmodell Geschichtliches
zusammen , das aus 24 Drähten bestand , die (an beiden Enden )
mit je einem Buchstaben bezeichnet und mit Hollundermark -
Pendelchen versehen waren . Das Telegraphieren geschah ,
indem die betreffenden Drähte mit dem Konduktor einer
Eeibungs - Elektrisiermaschine in Verbindung gebracht
wurden , wodurch die Pendelchen an den Enden divergierten .
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Dieser Versuch erscheint mehr als eine interessante Spielerei
und fand keine praktische Verwendung . Ebensowenig glück¬
lich waren Andere , die den Entladungsfunken der Leydener
Flasche zur Zeichengebung benutzen wollten . Der hohe
Elektrisierungsgrad dieser Elektricitätsquellen erfordert eine
so vorzügliche Isolierung der Leitungsdrähte , wie sie für Ver¬
suche im grofsen gar nicht erreichbar ist , daher sind auch
alle diese Experimente mit der statischen Elektricität bald der
Vergessenheit anheimgefallen .

Da anfangs (bis 1820) nur die chemischen Wirkungen des
galvanischen Stromes (die Wasserzersetzung ) bekannt waren ,
so kann es uns nicht wundernehmen , dafs der erste elektrische
Telegraph auf diesem Princip begründet war . Sömmering in

Sömmering ’s München stellte ( 1809 ) den ersten wirksamen elektrischen
el

Teiegrap
™' Telegraphen her , indem er beide Stationen durch 35 Leitungs¬

drähte verband , deren Enden (Platin -Elektroden ) in einen mit
angesäuertem Wasser gefüllten Glaskasten (von unten ) geführt
waren . Sobald nun — vermittelst einer Klaviatur , die mit
Buchstaben und Ziffern versehen war — durch je 2 dieser
Drähte ein elektrischer Strom geleitet wurde , stiegen in den
entsprechenden Drahtenden kleine Blasen von Knallgas auf
und markierten so die betreffenden Zeichen . — Aus dem Ge¬
sagten wird Ihnen einleuchten , dafs dieser elektro - chemische
Telegraph an Schnelligkeit der Zeichengebung hinter dem
optischen Telegraphen zurückstehen mufste , und in der That
hat er keine praktische Verwendung gefunden .

Kaum hatte Oersted (1820) seine im Jahre vorher ge¬
machte Entdeckung der Ablenkung der Magnetnadel durch
den galvanischen Strom bekannt gemacht , so schlug Ampere
vor , die Platin - Elektroden am Sömmering ’schen Apparat
durch Magnetnadeln zu ersetzen , stellte aber selbst keine
praktischen Versuche an . Die vielen Leitungsdrähte hätten
auch bei einer Ausführung im grofsen die Kosten sehr bedeuted
gemacht .

Erster elektro - Den ersten brauchbaren elektro -magnetischen Telegraphen
ma

(l
“
adeT-)

ler konstruierte (1832 oder zu Anfang des Jahres 1833) Baron Paul
Telegraph. Schilling von Cannstadt in St . Petersburg , ein Estländer

von Geburt , der mit Sömmering befreundet war , und durch
dessen Apparat angeregt wurde (Anh . 10) . Fast gleichzeitig , und
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völlig unabhängig davon , stellten (1833) Gauls und Weber
in Göttingen einen elektro -magnetischen Teleg 'raphen zwischen
der Sternwarte und dem physikalischen Kabinett , also den
ersten Telegraphen im grofsen , her . Sie benutzten übri¬
gens nicht den galvanischen Strom , sondern den magnet -elek¬
trischen Induktionsstrom (s . d . nächsten Vortrag ) .

Fig . 56 giebt eine Gesamtansicht des ersten Schilling -
schen Telegraphen , der noch jetzt in dem Museum des Haupt -

Fig . 56.
Erster elektromagnetischer Nadel -Telegraph ; konstruiert von S cliillin g 1832/33 . B"Jder

Anruf -Apparat . [Aus O. Cliwolson , Popul . Vorlesungen über Elektr . (russ .) S . 200.]

O ’ i t - ‘
11111111 1

Telegraphenamts zu St . Petersburg aufbewahrt wird . Sechs
an Seidenfäden hängende Magnetnadeln waren mit Multi¬
plikatorwindungen versehen . Diese und ein Anruf -Apparat (B )
wurden durch 8 Drähte , von denen einer für die Rückleitung
bestimmt war , verbunden . Eine Klaviatur (C) diente zum
Schliefsen des betreffenden Stromkreises . Markiert wurde die
Bewegung der Nadeln durch kleine Kartonscheiben (p ) . Diese
waren an den Haken befestigt , an welchen die Nadeln hingen .
Im Ruhezustände kehrten diese Kartonscheiben dem Zuschauer
die scharfe Kante zu , bei der Ablenkung dagegen die eine
(weifse ) oder die andere (schwarze ) Seite . — In der Folge
(1835 oder 1836) konstruierte Schilling einen Telegraphen
mit nur einer Nadel . Aus der Ablenkung nach Ost oder



112 Erdleitung . — Schreibtelegraph .

West sollten Zeichen für die Buchstaben vereinbart werden ,
doch war es dem Erfinder nicht vergönnt , diese Idee praktisch
zu verwerten , da er bald darauf starb ( 1837) .

Wichtig für die praktische Ausführung der Telegraphen
war die Entdeckung v . Steinheil ’s in München ( 1838) , dafs
man bei Telegraphenleitungen den zweiten Draht ersparen
könne , wenn man die Erde selbst als Rückleitung 13) benutzt ,
indem man an die Enden der Drähte starke Kupferplatten lötet
und diese in feuchtes Erdreich (oder in Wasser ) versenkt .

Wheatstone suchte (1840) bei seinemZeigertelegraphen
die Unbequemlichkeit besonderer , vereinbarter Zeichen zu ver¬
meiden . Der durch einen Elektromagnet bewegte Zeiger markierte
durch seine Stellung die am Rande der Scheibe befindlichen Buch¬
staben und Ziffern . Dieser Apparat wirkte langsam und unsicher .

Die elektro -magnetischen Telegraphen fanden bald Eingang ,
wurden aber , mit Ausnahme der unterseeischen Telegraphen
(s . w . u .) , in kurzer Zeit durch den elektro - magnetischen
Schreibtelegraphen verdrängt , den der Amerikaner Morse
( 1835) erfand und dem Robinson im wesentlichen die noch
jetzt gebräuchliche Form gab .

Von dem Morse ’schen Telegraphen zeige ich Ihnen hier
(Fig . 57 ) ein Modell , bei welchem alle Nebenteile fortgelassen
sind . Wird durch den Elektromagnet (M) durch Herabdrücken
des Kontaktschlüssels (S ) ein Strom geleitet , so zieht er den

lä) Dies ist nicht in dem Sinne zu verstehen , als ob der Strom that -
sächlich in der Erde von der einen Station zur anderen fliefst , sondern
die Erde wirkt hier wie ein (für die von uns erzeugten Elektricitätsmengen )
unendlich grofses Reservoir , wohin aller Überschufs abfliefsen, oder von wo
jeder Mangel ersetzt werden kann , ohne dafs sein elektrisches Niveau merk¬
lich geändert wird . Um sich das klar zu machen , denken Sie sich am Meeres¬
ufer eine Pumpstation , die das Meerwasser in eine Röhrenleitung befördert ,
von der es an einer anderen Stelle sich wieder ins Meer ergiefst . Hierbei
ist es nun durchaus nicht erforderlich , dafs dieselben "Wasserteilchen ,
welche ins Meer flössen , nach der Pumpstation zurückkehren , also im
Meere einen Strom hervorrufen . Besonders einleuchtend wird Ihnen das
erscheinen , wenn Sie in Gedanken die Pumpstation auf die Landenge von
Panama versetzen , wo sie aus dem Grofsen Ocean das Wasser in eine
Röhrenleitung befördert , durch welche das Wasser bis in den Atlantischen
Ocean geleitet wird . Hier kann von einer ,,Rückströmung “ des Wassers
keine Rede sein.
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Eisenanker (a) , der an einem Hebel (h) befestigt ist an . Hierdurch
drückt das am anderen Ende befindliche Rädchen (r) , welches
in der Ruhelage in eine geeignete Farblösung taucht , gegen
den Papierstreifen (p) , während dieser über eine [bei den
gebräuchlichen Telegraphen durch ein Uhrwerk getriebene ]
Walze sich bewegt . Der Abstand der beiden Rollen (w w)
ist in Fig . 57 der Deutlichkeit wegen zu grofs gezeichnet . Sie
berühren sich . Schliefst man den Strom nur auf einen Moment ,
so druckt der Farbschreiber einen sehr kurzen Strich ( „ Punkt “ )
auf das Papier , während bei etwas längerem Stromschlufs ein
„ Strich “ entsteht . Aus Punkten und Strichen setzt sich das
Morse ’sclie Alphabet , sowie alle Zeichen für Ziffern , Inter -

Fig . 57.
Modell des Morse ’sehen Sclireibtelegraphen . 7 « nattirl . Gröfse . M Elektromagnet ;h Hebel mit dem Anker (&) und der kleinen SciiTeibrolle (r ) , die in der Ruhelage indie Farbschale (f) taucht ; p Papierrolle , von der der Papierstreifen über die Walzen

(w w ) geführt ist ; S der Kontaktschlüssel .

punktionen u . a . zusammen . Hierbei sind diejenigen Buch¬
staben , welche am häufigsten Vorkommen , durch die kürzesten
Zeichen wiedergegeben , z . B . e durch 1 Punkt , i durch 2 Punkte ,
t durch 1 Strich u . s . w .

In der folgenden Skizze (Fig . 58) sehen Sie eine Tele -
graphenanlage schematisch dargestellt . Bei A ist die Abgangs¬
station , von welcher nach B telegraphiert wird . Durch Nieder¬
drücken des Schlüssels ( Si) wird die Lokalbatterie (B, ) ge¬
schlossen und umkreist den Elektromagnet der Empfangsstation ,
deren Batterie (B2) bei der Ruhestellung des Schlüssels (S2)aufser Thätigkeit gesetzt ist . Zur Kontrolle des Vorhanden¬
seins des Stromes dienen die Galvanoskope (GiG 2) .

So sehr der Morse ’sche Schreibtelegraph den Nadeltele -
graphen an Schnelligkeit und Sicherheit der Zeichengebung

Kolbe . II . 8
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noch übertrifft — ganz verdrängen konnte er ihn nicht , denn
die Kraft , welche erforderlich ist , um einen Hebel in Bewe¬

gung zu setzen , ist natürlich viel gröfser , als die zur Ab¬

lenkung der Magnetnadel eines Multiplikators nötige Kraft .
Daher werden in solchen Fällen , wo nur schwache Ströme an¬

gewendet werden können , oder wo der Strom durch den sehr

grofsen Widerstand des Leiters zu sehr geschwächt wird , die

Nadeltelegraphen vorzuziehen sein . Das ist z . B . bei den unter¬
seeischen Telegraphenleitungen , den Kabeln , der Fall . Da

Mg . 58.
Schematische Darstellung einer Telegraphenanlage . A Abgangs -, B Endstation ; Schlüssel
bei A Stromschluss , bei B ltuheschluss ; B Batterie (in A geschlossen , in B ausgeschaltet )

Gr Galvanometer zum Nachweis des Stroms ; P 1P 2 Kupferplatten der Erdleitung .

die hier auftretenden Erscheinungen und die verwendeten
Apparate sehr kompliciert sind , so können wir nicht näher
darauf eingehen , ohne die Grenzen dieses Büchleins zu über¬
schreiten .

rj:

Nachdem wir die Anwendung des elektrischen Stromes in
der Telegraphie etwas ausführlicher besprochen haben , wollen
wir unsere Aufmerksamkeit wieder auf Wirkungen des Stromes
richten und zwar auf die Erscheinungen , welche aufser der
Erwärmung des Leiters oder der sogenannten „Wasserzer¬
setzung “ in einem flüssigen Leiter auftreten können .
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YI . Den positiven Pol eines grofsen Chromsäure -Elements
(E , Fig . 59 ) verbinde ich durch einen Draht (d, ) mit der einen
Platinelektrode eines Knallgas -Voltameters (vergl . S . 100) und
zugleich durch einen abgezweigten Draht (d ' j) mit dem Galvano¬
meter . Von hier führt ein Draht (d2) zu einer Klemmschraube des
Quecksilbernäpfchens . Ein Stahl¬
draht ist hakenförmig gebogen
und soauf dem Holzklötzchen des
Näpfchens befestigt , dafs er nahe
über der Quecksilberfläche
schwebt , aber durch einen leich¬
ten Druck zum Eintauchen ge¬
bracht werden kann . In gleicher
Weise ist der von dem zweiten
Pole des Elements kommende
Draht (d3) angebracht , während
derVerbindungsdraht der zweiten
Platinelektrode des Voltameters
(d4) beständig eintaucht .

Nun lege ich den Zeigefinger
auf den Haken des Drahtes d3
(A, Fig . 59 ) und drücke ihn nach
unten , wodurch der Strom ge¬
schlossen wird und durch d1: das
Voltameter (von links nach
rechts ) , d4undd 3fliefst , während
das Galvanometer ausgeschaltet
ist (die unterbrochene Leitung ist in Fig . 59 punktiert angege¬
ben ) . Wenn ich nun den Drahthaken d3 emporschnellen lasse
und sofort mit dem Mittelfinger den Haken von d3 eintauche , so
ist das Element ausgeschaltet , dagegen ein geschlossener Kreis
zwischen dem Voltameter und dem Galvanometer hergestellt
(B , Fig . 59 ) . - So ! Sehen Sie — das Galvanometer giebt
einen Ausschlag , ohne mit dem Element verbunden
zu sein ! Ein Blick auf die Magnetnadel zeigt Ihnen , dafs der
nordsuchende Pol nach Westen ausschlug , also der (positive )
Strom über der Nadel nach Norden , mithin im Voltameter von
rechts nach links , d. h . in umgekehrter Richtung fliefst , wie während
der Verbindung mit dem Element .

8 *

A

Ed ,

Fig . 59.
Galvanische Polarisation . 1/J5xiatiirl . Gr .
A Element (E ) und Voltameter (v) ver¬
bunden . B Voltameter und Galvano (G)
verbunden . (Die nicht geschlossene Strom¬

leitung ist punktiert angeführt .)

Polarisations -
Ströme .
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Dieselbe Erscheinung beobachten wir , wenn wir statt des
Voltameters ein Glasgefäfs nehmen , wo die Platin -Elektroden
in eine Lösung von salpetersaurem Silber tauchen . Hier wird
an der einen Platte Silber niedergeschlagen ; es stehen also
nicht mehr zwei gleiche Platinplatten , sondern eine reine Platin¬
platte und eine versilberte in der Flüssigkeit . Da ist die Ent¬
stehung eines Stromes begreiflich . Aber auch beim Knallgas -
Voltameter sind die Platinplatten durch die Berührung mit ver¬
schiedenen Gasen (an der einen Wasserstoff , an der anderen
Sauerstoff ) , die sich bilden , in einen äufserlich nicht wahrnehm¬
baren verschiedenen Zustand versetzt , sodafs sie wie
zwei verschiedene Metalle elektromotorisch wirken .
Man bezeichnet diesen Zustand als Polarisation und nennt
den bei Verbindung der „polarisierten “ Elektroden auftretenden
Strom den Polarisationsstrom (Kitter 1803) .

Wie wir sahen , ist der Polarisationsstrom dem ur¬
sprünglichen entgegengesetzt , mufs ihn also schwächen .
Nach dem - Ohm 'sehen Gesetz hatten wir für feste Leiter das
Gesetz : Stromstärke = Elektromotor . Kraft des Eiern . /Gesamt¬
widerstand . Sind aber polarisierbare Leiter in einer Flüssigkeit
eingeschaltet , so lautet das Gesetz :

Stromstärke
Elektrom. Kraft d . Elem . — Elektrom. Kraft d . Polarisation

Gesamtwiderstand

Unter der galvanischen Polarisation haben wir
also eine solche Veränderung der Oberfläche von Lei¬
tern (die in eine geeignete Flüssigkeit tauchen ) zu verstehen ,
durch welche ein dem ursprünglichen Strome ent¬
gegengesetzter Strom , der „ Polarisationsstrom “ oder
„ sekundäre Strom “

, erzeugt wird , welcher den primären
Strom schwächt . Wie die Versuche zeigen , hängt die elek¬
tromotorische Kraft des Polarisationsstromes von der chemischen
Natur der eintauchenden Metallplatten und . der betreffenden
Flüssigkeit ab , sowie teilweise auch von der elektromotorischen
Kraft des primären Stromes . Es zeigt sich nämlich , dafs bei
einer allmählichen Steigerung der elektromotorischen Kraft des
primären Stromes die des Polarisationsstromes anfangs der
ersteren gleich ist , bis ein gewisser Wert erreicht ist , von
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dann ab bleibt die elektromotorische Kraft des Polarisations¬
stromes konstant . So liegt das Maximum für Platinelektroden
in destilliertem Wasser etwa bei 2,03 Daniell (2,17 Volt ) , da¬
gegen bei angesäuertem Wasser bedeutend niedriger , etwa bei
1,6 Daniell (1,8 Volt ) . Wird der primäre Strom weiter ver¬
stärkt , so tritt die sichtbare Wasserzersetzung ein 19) . Kupfer¬
platten in Lösung von Kupfervitriol zeigen nur eine schwache ,
und amalgamierte Zinkplatten in Zinkvitriollösung
gar keine Polarisation . Daher benutzten wir diese bei
unserem Stromdämpfer (S . 73 ) .

Die „ sekundärenElemente “
, wie man die zur Stromerzeugung

dienenden Polarisationsapparate auch nennt , haben natürlich ein
Maximum von elektromotorischer Kraft , das nicht überschritten
werden kann . In neuerer Zeit haben sie in der Technik Verwen¬
dung gefunden . Nach einem Vorschläge von Sinsteden (1854)
stellte Plante (1859) sekundäre Batterieen aus Bleiplatten her ,
die — von einander isoliert — in verdünnter Schwefelsäure stan¬
den . Wird eine solche Batterie „ geladen “

, d . h . mit einer Strom¬
quelle verbunden , so wird an der Platte , wo der (positive ) Strom
eintritt , eine chemische Verbindung von Blei und Sauerstoff
( Bleisuperoxyd ) gebildet , während die andere Platte sich mit
Wasserstoffbläsclien bedeckt oder , wenn sie oxydiert war , eine
Schicht von schwammigem , metallischem Blei ansetzt , indem
das Oxyd reduciert wird .

Wird der primäre Strom unterbrochen und eine leitende
Verbindung zwischen den Bleiplatten hergestellt , so fliefst durch
den Leiter ein Strom von nahezu konstanter elektromotorischer
Kraft (etwa 2 Volt ) und anfangs hoher , aber rasch und stetig
abnehmender Stromstärke . Die Richtung des sekundären Stromes
ist natürlich die entgegengesetzte , wie die des ladenden primären ,
d . h . die mit Bleisuperoxyd bedeckte Platte bildet den
positiven Pol .

19) Da die elektromotorische Kraft eines Daniell ’ schen Elements
1,1 Volt beträgt , so hätten wir die sogen. Wasserzersetzung mit einem
solchen nicht erreicht . Ebenso hätte die Parallelschaltung Daniell ’ -
scher Elemente zu einer Batterie nicht geholfen, da dadurch wohl die
Stromstärke (d . i . die Elektricitätsmenge ) vergröfsert , die elektromo¬
torische . Kraft aber unverändert geblieben wäre.

Sekundäre
Elemente .



118 F a u r e ’ s Akkumulator .

Eine wesentliche Verbesserung erfuhren die sekundären
Elemente durch Faure (1881 ) u . a . dadurch , dafs statt der
schweren Bleiplatten Gitter aus Blei angewandt wurden , deren
Oberfläche mit einer Schicht Mennige (einer Sauerstoffverbin¬

dung des Bleis ) bedeckt war . Diese wird am positiven Pol
direkt in Bleisuperoxyd übergeführt und am anderen Pol in
sehr lockeres metallisches Blei reduciert , wodurch das Laden
wesentlich erleichtert und beschleunigt wird . Die Menge des

gebildeten Bleisuperoxyds ist ein Mafsstab für die

Menge der aufgespeicherten elektrischen Energie .
Dafs diese nie gröfser sein kann als die zum Laden ver¬
wandte , braucht wohl kaum besonders betont zu werden . In
Wirklichkeit tritt ein Verlust von 30— 40 % an elektrischer
Energie auf , der in Zukunft durch bessere Konstruktion dieser
Apparate , die Akkumulatoren (Ansammler ) genannt werden ,
wohl vermindert , aber nicht ganz aufgehoben werden kann .
Ein Übelstand der Akkumulatoren liegt darin , dafs das Blei¬

superoxyd beim Stehen aus der Schwefelsäure Wasserstoff auf¬
nimmt und sich zu Bleioxyd reduciert , womit ein Verlust an
der aufgespeicherten elektrischen Energie verbunden ist .

Da der Akkumulatoren - Strom von kürzerer Dauer ist
als (bei Anwendung von galvanischen Elementen ) der Ladungs¬
strom , so ist die Stromstärke , wenigstens anfangs , gröfser .
Wurden die Akkumulatoren bei paralleler Schaltung geladen ,
so kann durch Schaltung hintereinander ein ( schwächerer )
Strom von gröfser elektromotorischer Kraft erhalten und nach
Bedarf (z . B . zur elektrischen Beleuchtung etc .) verwandt werden .
Die Akkumulatoren bilden so ein transportables Magazin elek¬
trischer Energie .

*

Wir haben bisher ausschliefslich galvanische Elemente
zur Erzeugung des elektrischen Stromes benutzt . Jetzt wollen
wir uns nach anderen Elektricitätsquellen umsehen .

Wie wir sahen , ist die Ursache des elektrischen Stromes
die Erzeugung einer elektrischen Niveaudifferenz an einer be¬
liebigen Stelle eines (geschlossenen ) Leiters . Wird diese Niveau¬
differenz (wie es durch die chemische Wirkung bei galvanischen
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Elementen der Fall ist ) dauernd erhalten , so ist auch der elek¬
trische Strom ein dauernder .

Hier sehen Sie (A , Fig . 60) einen Bügel aus Kupferblech
(Cu) auf einem flachen Wismuthstabe (Bi) festgelötet und inner¬
halb dieses geschlossenen Metallrahmens eine Magnetnadel auf
einer Stahlspitze schwebend angebracht . Ich bringe den Bügel
in den magnetischen Meridian und erwärme die nördliche
Lötstelle an einer Spiritusflamme — sofort sehen Sie das Ihnen
zugekehrte Nordende der Nadel nach Osten ausschlagen , mit¬
hin ist ein elektrischer Strom aufgetreten , der über
der Nadel nach Süden , also an der erwärmten Lötstelle

Fig . 60.
A Thermo -Element nach Seebeck . l/5 natürl . Gröfse .

B Thermoelektrischer Strom bei gerecktem und erwärmtem Draht . Vio natürl . Gröfse .
C Thermosäule nach Magnus aus hartem , stellenweis geglühtem Messingdraht .

1/3 natürl . Gröfse .

vom Wismuth zum Kupfer geht . Das Umgekehrte ist der
Fall , wenn ich dieselbe Lötstelle durch Anlegen eines Stückes
Eis abkühle . Diese durch Erwärmung hervorgerufenen elek¬
trischen Ströme wurden von Seeheck ( 1823) entdeckt und
thermo - elektrische Ströme genannt . Den kleinen Apparat
(A , Fig . 60) können wir als thermo - elektrisches Element ,
oder kurz als Thermoelement bezeichnen .

Versuche , die man mit den verschiedensten Metallen an¬
stellte , ergaben , dafs man sie so in eine Reihe ordnen kann ,
dafs bei Erwärmung der Lötstelle der Strom immer von dem
in der Reihe tieferstehenden zu dem höherstehenden fliefst . In
Analogie zn der uns bekannten elektrischen Spannungsreihe
(I . Bd . S . 13 ) nannte man diese Reihenfolge der Metalle die
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Tliermo - elektrisohe Reihe

O
(Leituugsdraht )

Auch liier kann man beobachten , dafs zwei Glieder der
Reihe eine um so gröfsere elektrische Niveaudifferenz zeigen ,
je weiter sie in der Reihe auseinanderstehen . Von obigen Me¬
tallen wird also ein Antimon -Wismuth - Element am wirksamsten
sein . [Das Zeichen + und — giebt die Art der Elektricität
an den freien Polen an . In dem Yerbindungsdraht , eines Anti¬
mon -Wismuthstabes z . B . , geht der Strom vom Antimon zum
Wismuth , also an der Lötstelle (beim Erwärmen ) vom Wis¬
muth zum Antimon !]

Die thermo - elektrischen Ströme können auch bei einem
Metall allein auftreten , wenn ein Stück des betreffenden Drahtes
stark gereckt oder gedreht und die Grenzstelle erwärmt
wird . Ich nehme einen Kupferdraht ( B , Fig . 60) und mache
an einer Stelle einen Knoten , den ich recht fest anziehe . Die
Enden des Kupferdrahtes (d) verbinde ich mit dem Multi¬
plikator (M) , der mehrere Windungen aus starkem Draht hat
(vergl . Fig . 62 , S . 125) . Sobald ich in der Nähe des gereckten
Drahtstückes eine Spiritusflamme halte , zeigt die Magnetnadel
einen Strom an .

Auch das stellenweise Ausglühen eines Drahtes stört seine
Homogenität . Ich nehme einen langen harten Messingdraht ,
wickele ihn vorläufig auf ein Holzkreuzchen (C , Fig . 60) und
bezeichne die Mitten der kurzen Seiten mit schwarzem Lack
(Schellacklösung mit Kienrufs ) . Darauf wickele ich den Draht
wieder ab , glühe die Zwischenräume abwechselnd aus und
wickele den Draht wieder auf . Jetzt stehen die Grenzstellen
übereinander . Verbinde ich die Enden wieder mit dem Multi¬
plikator , so genügt schon die Annäherung der Hand an die
eine Grenzstelle (x ' b ) , um eine Ablenkung zu erhalten . Da
hier die Wirkung mit der Anzahl der Grenzstellen wächst , so
kann man einen solchen Apparat eine Thermo - Säule
nennen .

Mittelst einer geeigneten Thermo - Säule und einem ent -
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sprechenden Multiplikator lassen sich sehr geringe Tempe¬
raturdifferenzen nachw eisen , sodafs ein solches Instrument
als ein höchst empfindliches Differential -Thermometer verwandt
werden kann . Ebenso können stärkere , hartgelötete Thermo -
säulen , die eine längere Erhitzung an einer Flamme vertragen ,
benutzt werden , um konstante Ströme zu erzeugen , die sich
statt der galvanischen verwenden lassen . Eine nähere Be¬
schreibung derselben würde uns jedoch zu weit führen .

Damit wollen wir für heute schliefsen . Das nächste Mal,
wo wir unseren Kursus beenden , werden Sie die mächtigste
Elektricitätsquelle kennen lernen — die magneto -elektrische
Induktion !
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VI . Vortrag -.
Paraday ’s Fundamentalversucb . — Demonstrations -Multiplikator ; Astatische Nadel ;
Aperiodische Schwingung der Magnetnadel . — Erzeugung magneto -elektrischer Induk¬

tionsströme durch Bewegung eines Leiters im magnetischen Felde ; Richtung der Induk¬

tionsströme (Regeln von Lenz und Faraday ). — Induktionswirkung einer schwingen¬
den Magnetnadel auf eine Kupferscheibe (Dämpfung der Schwingungen bei Galvano¬
meternadeln ). — Selbstinduktion einer Drahtspule (Extrastrom ) ; Induktionsrolle (Wir¬

kung des Wechselstromes auf G-eissler ’sche und Puluj ’sche Röhren ). Magneto -elek¬

trische Maschinen . — Siemens ’ dynamo -elektrisches Princip . — Einflufs der Anwesen¬

heit von weichem Eisen im magnetischen Felde auf den Verlauf der magnetischen Kraft¬

linien ; der Pacinotti ’sche und der Gramme ’sche Ring ; v . Hefner - Alteneck ’s
Trommelinduktor . — Verschiedene Schaltungsweise bei der Dynamomaschine . — Ver¬

wendung dynamo -elektrischer Ströme ; elektrische Arbeitsübertragung . — Das Telephon ;
das Mikrophon . — Schlufs .

Die wichtigsten Erscheinungen und Verwendungen des gal¬
vanischen Stromes haben wir auf unseren Wanderungen kennen
gelernt . Ein Blick auf den zurückgelegten Weg zeigt Ihnen ,
dafs wir oft von der geraden Eichtung abgewichen sind .
Zürnen Sie darum Ihrem Führer nicht ! Wenn er Sie Seiten¬
pfade einschlagen liefs , so geschah es , um Ihnen neue Aussichts¬
punkte zu eröffnen , oder weil dieser Umweg gangbarer war ,
und wenn Sie eine Stelle zum zweiten Mal betraten , so geschah
es von einer anderen Seite, sodafs Sie ein vollständigeres Bild
der Örtlichkeit erhielten . Wir sahen das letzte Mal :

1 . Die dynamischen Wirkungen des galvanischen Stromes
äufsern sich u . a . als thermische und als chemische
Wirkungen . Erstere zeigen sich in der Erwärmung
des Leiters , die hei genügender Stromstärke und
gröfserem Widerstande eines Leiterstückes ein lebhaftes
Erglühen desselben bewirkt . Bei geeigneten flüssigen
Leitern bewirkt der Strom eine Zerreifsung der chemi¬
schen Verbindungen , und läfst gewisse Grundstoffe
sich rein ausscheiden (Elektrolyse ) . Durch geeig¬
nete Vorrichtungen können die sich absetzenden Me-
tallteile als Abdruck verwandt (Galvanoplastik )
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' oder als schützender Überzug belassen werden (gal¬
vanische Vernickelung , Vergoldung u . s . w .) .

2 . Die durch den galvanischen Strom niedergeschlagene
Menge eines Metalls (Kupfer oder Silber ) oder die
Menge des ausgeschiedenen Knallgases ist der Strom¬
stärke proportional . (Das Metall geht mit dem Strom ) .
So war man in den Stand gesetzt , durch Versuche die
elektrochemischenÄquivalente der Stromstärke zu
bestimmen (1 Ampere scheidet per Sekunde 1,118 mg
Silber , oder 0,328 mg Kupfer aus und zersetzt 0,0938 mg
Wasser oder bildet 0,174 ccm Knallgas ) .

3 . In gewissen flüssigen Leitern wird durch den elek¬
trischen Strom ein Gegenstrom (Polarisationsstrom
oder sekundärer Strom ) hervorgerufen , der nach dem
Aufhören des primären Stromes noch anhält . Die Stärke
des sekundären Stromes wächst , bei Steigerung der
Stromstärke des primären , rasch bis zu einem kon¬
stanten Maximum , das bei Bleiplatten in verdünnter
Schwefelsäure (Akkumulatoren ) einer Poldifferenz von
2 Volt entspricht . Diese Akkumulatoren können als
transportable Strom -Ansammlungsapparate dienen . Ver¬
schiedenartige Metalle zeigen , wenn sie an der Löt¬
stelle erhitzt werden , an den freien Enden eine elek¬
trische Poldifferenz und liefern bei leitender Verbin¬
dung der Enden einen elektrischen Strom (Thermo -
strom ) . Mit Hülfe geeigneter Apparate dieser Art
lassen sich sonst unmerklich kleine Temperaturdiffe¬
renzen nachweisen .

Wenden wir jetzt unsere Aufmerksamkeit wieder den Mag¬
neten zu . Wir haben die Wechselwirkung zwischen Magneten
und beweglichen Stromleitern beobachtet und erfahren , dafs
die galvanischen Ströme Elektromagnete von riesiger
Tragkraft hervorzubringen vermögen . Sollten wir nicht auch
mit Hülfe von Magneten elektrische Ströme erzeugen
können ? Diese Frage lag schon damals nahe , aber ich wollte
Ihnen zuerst die Eigenschaften des galvanischen Stromes zeigen ,
ehe ich dieses neue Gebiet betrete , dessen eigentümliche Schön -
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heit Ihnen den Genufs der anderen elektrodynamischen Er¬

scheinungen verkümmert hätte . Über dem Eingangsthor dieses
Gebiets prangt in glänzenden , unverlöschlichen Zügen der Name
eines der genialsten Physiker aller Zeiten , des bahnbrechenden
Erforschers der Elektricität : „ Michael Faraday “ .

Ein starker hufeisenförmiger Stahlmagnet (M , Pig . 61) , der
aus mehreren flachen Stahlplatten (Lamellen ) zusammengesetzt
ist , hat einen ebenfalls hufeisenförmigen Anker aus weichem
Eisen (A) , dessen Schenkel von einem starken , umsponnenen
Kupferdraht in entgegengesetzter Richtung umwickelt sind .
Die an diesen Draht gelöteten Leitungsdrähte (d t d2) sind an
Stücke Messingrohr befestigt , die Sie als Handhaben (hj h2) be¬
nutzen können , wenn Sie als Stromprüfer dienen wollen .

Fig . Gl.
Faraclay ’s Fundamentalversuch der magneto -elektrischen Induktion . 1/io natiirl - Gröfse .

Ich fasse den Anker in der Mitte , lege ihn an die Pole
des Magnets und halte diesen mit der linken Hand fest . Haben
Sie die Handhaben gefafst ? Ja ! Nun werde ich den Anker
rasch abreifsen , so - Sie fahren zusammen , als ob ein elek¬
trischer Schlag Sie durchzuckt hätte , und das ist in der That
geschehen . Ich führe die Ableitungsdrähte zu zwei Glasstän¬
dern (S) und nähere ihre ösenförmig gebogenen Enden bis auf
’/ä mm etwa , und verdunkele das Zimmer für einige Minuten .
Sobald ich jetzt den wieder angelegten Anker abreifse , spring ’t
bei der Drahtlücke ein Fünkchen über — ein Beweis
dafür , dafs hier ein zwar nur momentaner Strom , ein sogenannter
„ Stromstofs “

, aber von bedeutender elektromotorischer Kraft
entstanden ist . In diesem Fundamentalversuch Faraday ’ s
( 1831 ) ist , wie in einem Keime , die ganze Reihe der modernen
dynamo -elektrischen Maschinen im Princip enthalten .
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Unsere Aufgabe ist es nun , die Ursache dieses „ magneto¬
elektrischen Stromes “ aufzufinden . Bevor wir an die

nötigen Versuche gehen , wollen wir bei unserem Multiplikator
(Fig . 35 , S . 58) einige Umänderungen vornehmen , wodurch seine
Empfindlichkeit vergröfsert und das lästige und zeit¬
raubende Hin - und Herschwingen der Magnetnadel
beseitigt wird . Die Erhöhung der Empfindlichkeit erreichen
wir .leicht durch eine eigentümliche Kombination zweier Magnete

Fig . 62 .
A Demonstrations -Multiplikator mit Kupferdämpfung (Cu ) und Zeiger (Z). l /2 natürl .
Gröfse . B Astatische Nadel nach Hempel , modificiert und vereinfacht ; mit einstell¬

barem Spiegel (s) aus einem versilbertem Deckgläschen . 1j-> natürl . G-röfse .

(B , Fig . 62 ) . Jeder der beiden hufeisenförmigen Magnete (MjM?)
besteht aus einem Stahldraht (von 0,5 mm Dicke ; s . Anh . ll ) , der
nach dem Ausglühen im mittleren Teil vierkantig gehämmert und
an drei Stellen mit einer eingefeilten Rinne versehen ist . Nach
dem Härten und Magnetisieren wurden die Magnetstäbchen an den
hier auch vierkantigen Neusilberdraht mit feinem Kupferdraht
festgeschnürt , sodafs ihre ungleichnamigen Pole (n x s2 und n^ )
in eine Gerade fallen . Das untere Ende des Neusilberdrahtes

Astatische
Nadel .
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taucht in ein leeres Glasröhrchen (g) mit glattem , etwas ver¬
engertem Rande . Oben trägt der Neusilberdraht einen Zeiger (Z ) ,
der aus einem Strohhalm besteht und am kurzen Ende mit
einem entsprechenden Übergewichtchen (u) aus Kork versehen
ist , um das Gleichgewicht herzustellen .

Durch diese Kombination der Magnete ist die Richtkraft
der Erde fast völlig aufg ’ehoben (astatische Nadel ) . Die
Drähte des Multiplikators auf je zwei Doppelrahmen (R t R2 und
R3 R4) so gewickelt , dafs der durch die Klemmschrauben (KjK 2)
geleitete Strom im oberen und unteren Rahmen in entgegen¬
gesetzter , dagegen in den beiden unteren oder beiden oberen
Rahmen in gleicher Richtung fliefst , wodurch der Strom in
allen vier Rahmen die Nadel in demselben Sinne zu drehen
strebt . [Sie können sich nämlich den oberen Teil der astati¬
schen Nadel , der aus den Schenkeln n t und s2 gebildet wird ,
und ebenso den unteren Teil (n2 s t) als Magnetnadeln für
sich betrachten . Aus solchen übereinander befestigten Magnet¬
nadeln bestehen die gewöhnlichen astatischen Nadeln . Die hier
angegebene Konstruktion ist viel leichter herstellbar und bleibt
dauernd astatisch , was bei den anderen durchaus nicht der
Fall ist .]

Um nun auch noch das Schwingen der Nadel möglichst
zu beseitigen , schiebe ich in den oberen und unteren Hohl¬
raum der Doppelrahmen je einen Kupfer - Dämpfer (Cu bei A,
Fig . 62 ) , der aus einer flachen Hülse aus starkem Kupferblech
besteht , dessen kurze Kanten verlötet sind (s . Anh . 11 ) . Der Zweck
dieser Kupferhülsen wird Ihnen gleich klar werden . Da diese
flache Hülse durch beide Seiten des Rahmens (Rx R4) resp .
R 2 R 3) reichen mufs , ist ein schmaler Ausschnitt für den mitt¬
leren Teil der astatischen Nadel und den Neusilberdraht an¬
gebracht . Zur Probe berühre ich die Klemmschrauben (K x K 2)
der Rahmen mit den Poldrähten eines unserer kleinen Zink /
Kupfer -Elemente , wobei ich den Kupferpol mit k t verbinde
(sodafs die + E hier eintritt ) — die Nadel schlägt heftig aus
und bleibt , fast ohne zu schwingen , nahezu rechtwinklig zum
Rahmen stehen ; ebenso kehrt sie , nach Unterbrechung des
Stromes , unmittelbar in ihre Ruhelage zurück . Den Grund da¬
für werden wird bald kennen lernen . Eine solche Bewegung
der Nadel nennen wir aperiodisch. Merken Sie sich aber , dafs ,
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wenn der Zeiger der Nadel — wie in diesem Falle — von
dem Nullstrieh der Skala (s . Fig . 35 , S . 58 ) nach rechts ab -

gelenkt wird , der zugeführte Strom von der Klemmschraube k t
(die mit dem Zeichen + markiert ist ) durch den Multiplikator¬
draht nach k 2 fliefst , also bei k 3 austritt !

Da , wie wir bereits wissen , die Elektromagnete weit kräf¬
tiger sind als die Stahlmagnete , so umwickele ich einen Eisen¬
stab mit dickem isolierten Draht (Fig . 63 ) und binde ihn an

Fig . 63.
Erzeugung magneto -elektrischer Ströme durch Verschiebung des Leiters (R ) im

magnetischen Felde . 1/2q natürl . Gröfse .

einen dünnen Stab aus Kiefernholz ( S) , wobei ich die Drähte eine
Strecke längs dem Holzstabe und dann zu einem grossen Bun -
sen ’ sehen Chromsäureelement (E) führe . Nun t bedecke ich
den Elektromagnet mit einem weissen Karton , bestreue diesen
mit Eisenfeilspähnen und klopfe mit dem Finger daran — so¬
fort sehen Sie die Feilspähne sich in eigentümlichen Kurven ,
den magnetischen Kraftlinien , anordnen , von denen einige
in Fig . 63 angedeutet sind . Halte ich den Karton fest und
drehe den Magnet um seine Achse , so werden die jetzt sicht¬
baren Kraftlinien wegen der symmetrischen Form des Magnets
sehr ähnlich den vorigen sein , aber doch räumlich einer an¬
deren Schnittebene entsprechen . Wir sehen hieraus jedenfalls ,
dafs der ganze Raum , welcher den Elektromagnet um -
giebt , von magnetischen Kraftlinien durchsetzt ist .
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Dieses gesamte Wirkungsgebiet des Magnets nennen
wir das magnetische Feld.

Nun unterbreche ich den Strom des Elektromagnets (Fig . 63 ,
a . d . v . S .) , schiebe den Holzstab (S) durch einen an einem
Ständer befestigten Drahtring (R , Fig . 63 ) , der aus etwa 10 Win¬
dungen umsponnenen Kupferdrahtes gebildet ist , und hänge den
Holzstab mit dem Elektromagnet so an zwei von der Decke
herabhängende Doppelfäden (f) auf , dafs der Stab in der Mitte
des Drahtringes schwebt . Jetzt verbinde ich den Drahtring durch
biegsame lange Drähte mit dem weitab auf dem anderen Ende
des langen Experimentiertisches aufgestellten Multiplikator (M)
und schliefse wieder den Strom . Vermittelst einer Kompafs -
nadel überzeugen wir uns davon , dafs der rechts von Ihnen
befindliche Pol des Elektromagnets (n ) ein nordsuchender Pol
ist . Ich markiere ihn durch ein Stück roten Papieres , das ich
auf die Polfläche klebe .

Beginnen wir nun mit dem Versuch . Eben steht der Draht¬

ring nahe vor dem Südpol des Magnets (Fig . 63 ) . Ich lege
den Finger an den Holzstab und schiebe den Südpol zum
Drahtringe heran — sofort sehen Sie die Nadel ausschlagen ,
aber in die Ruhelage zurückkehren , wenn ich mit dem Magnet
stehen bleibe . Jetzt lasse ich den Stab los — er schwingt
zurück , und die Magnetnadel des Multiplikators schlägt nach
der entgegengesetzten Seite aus ! Während nun der Magnet
hin - und herpendelt (wobei sein Südpol dem Ringe sich bald
nähert , bald von ihm entfernt ) schwingt die Nadel in gleichem
Tempo nach rechts und links , also wird der Multiplikator von
Stromstöfsen mit wechselnder Richtung durchströmt .

Jetzt halte ich den Magnet an und nähere den Ständer
mit dem Drahtringe dem Südpol — es erfolgt der gleiche Aus¬

schlag , wie bei der Annäherung des Magnets (d . h . des Süd¬

pols ) . Schiebe ich den Drahtrahmen zurück , so erfolgt wieder
ein Ausschlag , aber in entgegengesetzter Richtung .

Wenn Sie nun auf den Verlauf der Kraftlinien (Fig . 63) , die
mit fortlaufenden Ziffern ( 1 , 2 . . . 6) versehen sind , achten , so
werden Sie leicht erkennen , dafs bei der Annäherung nach¬
einander die Kraftlinien 1 , 2 , 3 , 4 , 5 , 6 , dagegen bei der umge¬
kehrten Bewegung dieselben Kraftlinien in umgekehrter
Reihenfolge (6 , 5 , 4 , 3 , 2 , 1) von dem Drahtringe geschnitten
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wurden . Wir können mithin vorläufig sagen : Wenn die Kraft¬
linien von einem Leiterstück geschnitten werden (einerlei , ob
der Leiter oder der Magnet mit den Kraftlinien sich dabei be¬
wegt ) , so entsteht in dem Leiter (wenn er geschlossen ist ) ein
elektrischer Strom , dessen Richtung wechselt , wenn die Be¬
wegung in entgegengesetztem Sinne erfolgt . Dieser lediglich
durch Bewegung eines Leiters im magnetischen Felde erzeugte
zeitweilige Strom wird nun der magneto-elektrische Induktions-
strom genannt .

Nun schalte ich ein zweites Element dem ersten parallel
ein (in A , Fig . 64 nicht angedeutet ) , schraube aber den
einen Draht nicht fest . Schiebe ich nun den Drahtring , bis er
in einer Ebene mit der Polfläche des Magnets sich befindet ,
und lasse ihn stehen , so kehrt die Nadel wieder auf 0 zurück .
Wenn ich aber nun den zweiten Strom auch schliefse , so schlägt
die Nadel aus , kehrt aber sofort in die Nulllage zurück , um
aber nach der anderen Seite auszuschlagen , wenn ich den
zweiten Strom unterbreche . Was ist hier geschehen ?

Jedenfalls ist die Intensität des magnetischen Feldes bei
Einschaltung des zweiten Elements vergröfsert worden ; wir
können uns vorstellen , dafs zwischen den schon bestehenden
Kraftlinien neue Kraftlinien beim Stromschlufs hervorschossen ,
welche den Leiter (E ) schnitten , also einen Strom hervorrufen
mufsten . Beim Öffnen des zweiten Stromes (E 2) verschwanden
die neuen Kraftlinien , was im dynamischen Sinne einer Be¬
wegung in umgekehrter Richtung entspricht , daher mufste ein
Stromstofs in entgegengesetzter Richtung erfolgen . Wir können
unsere Erfahrungen mithin in erweiterter Form etwa so wieder¬
geben :

Wenn ein Leiterstück die magnetischen Kraftlinien durchschneidet,
so wird im Leiter eine elektromotorische Kraft hervorgerufen , so lange
seine Bewegung dauert . Die Richtung des magneto -elektrischen Induktions¬
stromes hängt von der Reihenfolge ab , in welcher die Kraftlinien ge¬
schnitten werden .

Hierbei können wir nun drei Fälle unterscheiden :
I . Das magnetische Feld bewegt sich , während

der Leiter feststeht ;
II . der Leiter bewegt sich im feststehenden mag¬

netischen Felde ;
Kolbe , ii . 9
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III . die Intensität des magnetischen Feldes ändert
sich , während Leiter und Magnet feststehen .

Alle drei Fälle können , wie wir sehen werden , zur Her¬
stellung von magneto - elektrischen Induktions -Apparaten ver¬
wandt werden .

Wollen wir den Vorgang an unserem stabförmigen (Elektro -)
Magnet nochmals prüfen und zugleich auf die Richtung des
InduktionsStromes genauer achten . Der südsuchende Pol

2 3 !/ 2 3 4
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Fig . 64 .
Nachweis des Lenz ’ sehen Gesetzes der magneto -elektrischen Induktion .

[Bei I ist die linke , durch den Pfeil markierte Hälfte des Drahtringes , nach vorne
gerichtet .]

ist links von Ihnen . (In der Fig . 64 ist der Einfachheit und
besseren Übersicht wegen der Elektromagnet ohne Umwicke¬
lung und Leitungsdrähte gezeichnet , ebenso beim Drahtringe
nur eine Windung angegeben .)

Schiebe ich nun den Südpol desMagnetsdemDrahtringenäher
(I , Fig . 64 , s . d . u . stehende Klammer ) oder durch ihn hindurch
(II ) , so zeigt der Ausschlag der Magnetnadel (nach rechts ) , dafs der
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Strom aus der Klemmschraube K 3 (vergl . Fig . 62) in den Drahtring
fliefst , also in diesem die Richtung hat , die der Pfeil angiebt .

Während die Mitte des Magnets den Drahtring passiert ,
kehrt die Nadel auf Null zurück und schlägt bei weiterem
Verschieben des Magnets (III und IV ) nach der anderen
Seite aus , während der Ring die Kraftlinien in umge¬
kehrter Reihenfolge schneidet .

Lasse ich jetzt den Magnet zurüekgehen (also von links
nach rechts , V und VI ) , so wechselt der Induktionsstrom die
Richtung .

Vergleichen Sie (Fig . 64 , I —VI ) die durch einen kurzen
Pfeil angegebene Richtung des Induktionsstromes im Draht¬
ringe mit der Ihnen (S . 55 ) bekannten Richtung der
hypothetischen Ampere ’schen Molekularströme (die hier , wo
ein Elektromagnet vorliegt , dem inducierenden galva¬
nischen Strome in dem herumgewickelten Draht gleich¬
gerichtet sind ) , so bemerken Sie leicht :

Nähert der ringförmige Leiter sich einer Polfläche
(I) , oder werden die Kraftlinien in der Reihenfolge
von aufsen nach innen 20) vom Leiter geschnitten (I ,
II , V ) , so ist der Induktionsstrom der Richtung der
magnetischen Molekularströme (resp . dem inducierenden
galvanischen Strom ) entgegengesetzt ; entfernt sich dagegen
der Leiter von der Polfläche , oder schneidet der Leiter die
Kraftlinien von innen nach aufsen , so ist der Induktionsstrom
den Molekularströmen (oder , dem inducierenden galvanischen
Strom ) gleichgerichtet .

Verwendete ich statt des Elektromagnets einen stählernen
Stabmagnet , so wäre die Wirkung bedeutend schwächer —
die Richtung der Induktionsströme aber dieselbe . — Ersetze
ich den einzelnen (Elektro -) Magnet durch zwei Stahlmagnete
(VII , Fig . 64 ) , die mit den gleichnamigen Polen (z . B . den

20) Hier , hei einem stabförmigen (Elektro -) Magnet , krümmen sich die
Kraftlinien von dem einen Pol zum anderen , und der Magnet wird von
den Kraftlinien gewissermafsen eingehüllt . Denken wir uns einen Schnitt
durch die Mitte des Magnets (senkrecht zur Achse) geführt , so sind die
weiter von der Achse abstehenden Kraftlinien die „ äufseren “ (beim Blick
auf die Polfläche erscheinen sie natürlich als die in der Mitte auf¬
tretenden ) .

9 *
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Lenz ’sehe
Regel der

Induktions¬
ströme .

Nordpolen ) aneinanderstofsen , so liegen die Indifferenzpunkte
bei i t und i, . Schiebe icli die Drahtrolle entlang diesem Doppel¬
magnet hin und her , so sehen Sie , dafs der Induktions¬
strom = 0 wird und die Dichtung wechselt , wenn ein
Indifferenzpunkt passiert wird . Diese Erfahrung wird uns
später von Nutzen sein .

Ich stelle wieder den Elektromagnet ein . Ziehe ich nun vor¬
sichtig den Eisenstab aus der Drahtlocke und schiebe ein dünn¬
wandiges Glasrohr hinein (damit die Windungen sich nicht
senken ) , so haben wir ein Solenoid , in welchem der inducierende
galvanische Strom in derselben Richtung fliehst , wie vorhin .
Der nordsuchende Pol bleibt also links von Ihnen (Fig . 65 ) .
Wiederhole icli nun die Versuche , so ist der Ausschlag viel
schwächer , als mit dem Eisenkern , und ich mufs drei Chromsäure -
Elemente Vorspannen , um eine recht deutliche Wirkung zu erzie¬
len , dann aber sehen wir , dafs die Richtung des Induktions¬
stromes die entsprechend gleiche ist , wie vorhin . — Wir
können also unsere Erfahrungen auch kürzer formulieren , wenn
wir uns dessen erinnern , dafs gleichgerichtete elektrische Ströme
sich anziehen , entgegengesetzt gerichtete Ströme sich abstofsen .

Bei jeder Bewegung eines Stromes oder eines
Magnets in der Nähe eines Drahtringes ( oder umge¬
kehrt ) entsteht in diesem ein Induktionsstrom . Die
Richtung des Induktionsstromes ist immer eine solche ,
dafs der Induktionsstrom dem inducierenden Strom
oder dem Magnet die entgegengesetzte Bewegung er¬
teilen würde . (Lenz ’sclie Regel .) Wird z . B . ein Nordpol
dem Drahtringe genähert , so ist der Induktionsstrom den Mole¬
kularströmen entgegengesetzt und sucht alsodenMagnet zurrick -
zustofsen . Wird der Nordpol entfernt , so ist der Induktions¬
strom denMolekularströnrengleich gerichtet und sucht den Magnet¬
pol heranzuziehen . Aus der Lenz ' sehen Regel ergiebt sich :
Bei der Bewegung (des Leiters im magnetischen Felde ) mufs ein
Widerstand überwunden werden . Diehierbeigel eistete
Arbeit ist die Ursache der elektrischen Energie .

Wir haben bisher den einfachen Fall betrachtet , wo der
Magnet stabförmig ist , also die Kraftlinien sich räum -
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licli nach allen Seiten symmetrisch verteilen oder ,
mit anderen Worten , die Kraftlinien den Magnet regel -
mäfsig umspinnen . Ferner benutzten wir als Leiterstück ,
in welchem die Induktionswirkung stattfindet , einen Draht ring ;
und die Bewegung erfolgte parallel der Achse des Magnets ,
deren Verlängerung stets (nahezu ) durch die Ringmitte ging .

Hier sehen Sie einen starken , aus mehreren flachen Stahl¬
platten (Lamellen ) gebildeten Stabmagnet (A, lüg . 65 ) auf einem

Fig . 65.
A Demonstration der Induktionsströme nach Pfaundler .

B Demonstration der Induktionsströme nach Szymahski . Vio natürh Gröfse .
[Das Leiterstück (bei A ) wird nach dem freien Ende der Gleitdrähte (also nach vorn )

bewegt .]

Ständer befestigt und mit einem weissen Karton versehen , auf
welchen einige Kraftlinien gezeichnet sind .

Ein zweiter Magnet (B , Fig . 65 ) besteht ebenfalls aus La¬
mellen , hat aber Hufeisenform .

Als Stromleiterstück , auf welches die Induktion wirkt ,
dient ein Stück Messingdraht (m bei B , Fig . 65 ) , welches an
einem langen isolierenden Griff“

(i) befestigt ist und längs den
messingnen Gleitschienen (s ! s .,) bewegt wird , welche an einem
einfachen Holzgestell (g ) so eingesetzt sind , dafs ihre gegen¬
seitige Entfernung verändert werden kann . Von ihnen führen
Drähte zum Galvanometer (Anh . 11) .

Halte ich nun die Gleitschienen (wie Fig . 65 , A u . B zeigt )
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im magnetischen Felde und führe das Leiterstück (m ) mit
passender Geschwindigkeit so den Schienen entlang , dafs ein
guter Kontakt stattfindet , so sehen wir am Galvanometer einen
Ausschlag , der umso gröfser ist , je mehr Kraftlinien geschnitten
werden und ganz ausbleibt , wenn das bewegliche Leiter¬
stück den Kraftlinien entlang geführt wird , also sie nicht
durchschneidet oder wenn die beiden Hälften des Leiterstückes
die Kraftlinien in umgekehrter Reihenfolge schneiden , wo¬
durch Ströme von entgegengesetzter Richtung in jeder
Leiterhälfte entstehen , deren Wirkung auf das Galvanometer
sich aufhebt (3a bei A , Fig . 65 ) .

Bringe ich eine kleine Magnetnadel (M bei A , Fig . 66) in
das magnetische Feld , so stellt sie sich in der Richtung der Kraft¬
linien ein . Nennen wir nun die Richtung , nach welcher der
nordsuchende Pol der Nadel weist , während sie der Kraft¬
linie entlang geführt wird , die Richtung der Kraftlinie ,
so können wir sagen : Mit Ausnahme einer einzigen Kraftlinie ,
welche z . B . beim Stabmagnet in der Richtung der magnetischen
Achse Austritt , bilden alle magnetischen Kraftlinien
geschlossene Kurven , die im Luftraum vom Nordpol
zum Südpol reichen und — wie wir uns denken können —
innerhalb des Magnets vom Südpol zum Nordpol zurück¬
kehren . Wird ein Magnet bewegt , so verschiebt sich das
ganze Kraftliniensystem , d . h . das ganze magnetische Feld macht
die Fortbewegung des Magnets mit ! In diesem Falle mufs also
auch in einem festen Leiter , welcher sich im magnetischen
Felde befindet und die Kraftlinien durchschneidet , ein In¬
duktionsstrom entstehen . Für die geradlinige Bewegung des
Magnets haben wir dieses bereits gesehen (S . 129) .

araday ’sche Für die Richtung des Induktionsstroms im inducirten Leiter
HegeL hat man folgende Gedächtnifsregel aufgestellt : Man denke

sich selbst schwimmend in der Richtung der Kraft¬
linie (s . o .) , mit dem Gesicht nach der Bewegung des
Leiters gewandt , dann ist der Induktionsstrom nach
rechts gerichtet (Faraday ) . In Analogie zu der modi -
ficierten Ampfere ’schen Schwimmregel für die Ablenkung der
Magnetnadel (s . o . S . 55 ) , ist auch für den Induktionsstrom eine
andere Fassung der Regel (von A . Fleming ) gegeben worden :
Man halte den Zeigefinger , Mittelfinger und Daumen der
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rechten Hand nahezu senkrecht zu einander und bringe den
Zeigefinger in die Richtung der Kraftlinie (sodafs die
Fingerspitze dahin weist , wohin der Nordpol einer Magnetnadel
zeigen würde ) , den Daumen in die Richtung der beab¬
sichtigten Bewegung des Leiters , dann zeigt der Mittel¬
finger die Richtung des Induktionsstromes im Leiter an .

Bedecken wir den Hufeisenmagnet (in aufrechter und in
liegender Stellung ) mit einem weifsen Karton und erzeugen die
magnetischen Kraftlinien , so sehen Sie , dafs diese zwischen
beiden Polen am dichtesten , an der Aufsenseite der Schenkel
des Magnets am spärlichsten sich entwickeln .

Machen wir nun die Versuche mit dem beweglichen Leiter
(Fig . 65 B) an verschiedenen Stellen des magnetischen Feldes ,
so finden wir , dafs der Induktionsstrom um so stärker
wird , je dichter die Kraftlinien zwischen den Gleitschienen
liegen , d . h . je mehr Kraftlinien vom Leiter geschnitten
werden . Bei unserem Versuch (Fig . 64) sahen wir schon ,
dafs eine Vergröfserung der Polstärke des Elektromagnets , also
eine Verstärkung der Intensität des magnetischen Feldes , eben¬
falls die Induktion verstärkt .

Fassen wir nun unsere Erfahrungen zusammen :
1 . Ein Induktionsstrom entsteht immer , wenn ein

Leiter oder ein Teil desselben die magnetischen
Kraftlinien durchschneidet , einerlei ob der Leiter sich im
festen magnetischen Felde bewegt oder feststeht , während
das magnetische Feld sich bewegt , oder ob die Intensität
des magnetischen Feldes (durch Veränderung der Pol¬
stärke z . B . des Elektromagnets ) geändert wird .

2 . Die unter sonst gleichen Umständen im Leiter
erzeugte elektromotorische Kraft des Induktions¬
stromes ist proportional :

a) der Intensität des magnetischen Feldes (also
der Polstärke ) ,

b ) der Länge des Leiters , auf den die Induktion
wirkt (da mehr Kraftlinien geschnitten werden ) ,

c) der Geschwindigkeit der Bewegung des Leiters
(oder des magnetischen Feldes ) , weil dann in dersel¬
ben Zeit ebenfallsmehr Kraftliniengeschnitten werden .

Rückblick
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Dämpfung der
Galvanometer¬

nadel äureli
Induktions¬

ströme .

f

I

Nachdem wir nun die Grundzüge der magneto -elektrischen
Induktion kennen gelernt haben , können wir daran gehen ,
uns mit den praktischen Anwendungen bekannt zu machen .

A Induktion in einer Kupferscheibe .
1/10 natürl . Gröfse .

B C Selbstinduktion in einer Dralitspirale
(Extrastrom ). 1/io natürl . Gröfse .

ein elektrischer Strom fliefst , <
(S . 46 ) , also ein magnetisches 1

I . Eine Magnetnadel , die
an einem feinen Faden hängt ,
schwingt lange hin und her ,
nachdem ich ihr einen kleinen
Stofs gegeben . Nun halte ich sie
aber dicht über einer dicken
Kupferplatte , die vor Ihnen auf
dem Tisch liegt (A , Fig . 66 ) und
Sie sehen , wie die Nadel nach
wenigen Schwingungen zur
Ruhe kommt . Durch die Be¬
wegung der Nadel , also des
magnetischen Feldes , werden in
der Kupferscheibe Induktions¬
ströme liervorgerufen , welche
(nach der Lenz 'sehen Regel
S . 132) dem Magnet eine ent¬
gegengesetzte Bewegung
zu geben suchen , also seine
Schwingungen dämpfen .
Jetzt werden Sie die Bedeutung -
der Kupferhülsen beim Multipli¬
kator (Fig . 62 ) verstehen . Da dort
sowohl der obere , als auch der
untere Teil der astatischen Nadel
von der Kupferhülse fast ganz
umgeben ist , so ist die dämpfende
Wirkung der Induktion so grofs ,
dafs die Nadel (fast ) ohne zu
schwingen sich einstellt (die Be¬
wegung also nahezu aperiodisch
wird ) .

II . Da schon eine einzelne
Drahtwindung , durch welche
3ine magnetische Richtkraft hat
i'eld aufweist , so mufs bei einer
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Drahtspule (Solenoid ) jede Windung in dem magnetischen
Felde der benachbarten Windungen sich befinden , mithin wird
jede Windung einer Drahtspule auf die andere inducierend
wirken , während die Stromstärke sich ändert , z . B . beim
Schliefsen und beim Öffnen des durchgehenden Stromes . —
Eine Drahtrolle (B , Fig . 66 ) , die über einen hohlen Holzcylinder
gewickelt ist und aus etwa 30 Windungen starken um¬
sponnenen Kupferdrahtes besteht , ist mit einem Tauchelement Extrastrom,
(e) und einem Stromunterbrecher (u) verbunden . Dieser be¬
steht aus einem kupfernen Zahnrade , dessen Zähne an einer
Feder (f ) schleifen . Durch eine an der Achse befindliche
Kurbel kann das Zahnrad gedreht werden . Aufserdem führen
Drähte (d4 d5) zu zwei Handhaben aus Messingrohr , die ich in
die Hand zu nehmen bitte . Sobald ich nun das Zahnrad drehe ,
erzittern Ihre Hände und zwar fühlen Sie um so empfindlichere
Zuckungen , je schneller ich drehe , d . h . je rascher die Strom -
stöfse auf einander folgen . Noch heftiger , ja schmerzhaft
wird die Empfindung , wenn ich in den Hohlraum der Draht¬
spule (B.) ein Bündel weicher Eisendrähte einschiebe . —
Jetzt werde ich das Zahnrad ganz langsam drehen — — .
Nun wird der Strom geschlossen ! Sie spüren kaum etwas ,
und während der Strom des Elements durch Ihren Körper
fliefst , gar nichts ; aber jetzt gleitet der Zahn von der Feder
ab und der Strom wird geöffnet — Sie zucken zusammen !
Da beim Stromschlufs gewissennafsen ein Strom von Kraft¬
linien das magnetische Feld der Spule durchdringt und die
Drahtwindungen schneidet [was gleichbedeutend mit einer
Annäherung des Leiters an den Magnet ist (s . o . S . 129 ) ] , so
mufs nach dem Lenz ’schen Gesetz ein Induktionsstrom
entstehen , der dem galvanischen Strom entgegengesetzt
gerichtet ist . Bei der Untersuchung des Stromes zucken —
bildlich gesprochen — die Kraftlinien zurück (was einem Ent¬
fernen des Leiters entspricht ) ; daher mufs der Induktions¬
strom (beim Öffnen ) mit dem Hauptstrome die gleiche
Richtung haben und seine physiologische Wirkung verstärken .

Wir können auch den Induktionsstrom für sich beobachten ,
wenn wir die Drähte so führen , dafs beim Unterbrechen des
Hauptstromes das Element ausgeschaltet ist . Eine solche
Versuchsanordnung zeigt Ihnen C Fig . 66 . Wenn Sie jetzt die
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Handhaben fassen , so geht beim Öffnen nur der Induktions¬
strom durch Ihren Körper . Die Wirkung ist kaum schwächer
als vorhin . — Dieser Strom , welcher nur durch Selbst¬
induktion der Windungen eines Leiters auf einander ent¬
steht , wurde von Faraday der „ Extrastrom “ genannt 81) .

Beim Schliefsen des Hauptstromes ist ihm der
Extrastrom entgegengerichtet , beide schwächen sich gegen¬
seitig , mithin kann der Hauptstrom immer nur allmählich
zu seiner vollen Stärke anschwellen . Bei Unter¬
brechung des Hauptstromes tritt der Extrastrom in
voller Stärke auf .

III . Noch kräftiger als der Extrastrom ist der Induktions¬
strom in einer zweiten Drahtspule , welche die primäre
umgiebt (A , Fig . 67 , II ) , ohne mit ihr in Berührung zu kommen .
Diese „sekundäre Spirale “ besteht aus vielen Windungen
feinen umsponnenen Kupferdrahtes . Da dieselben Kraft¬
linien die einzelnen Windungen der sekundären Spirale durch¬
setzen , so kann im ganzen , d . h . in allen Windungen zu¬
sammen nur ein Induktionsstrom von bestimmter Stromstärke
auftreten . In jeder Windung wird aber eine gewisse elektro¬
motorische Kraft erzeugt . Da nun die Windungen hinterein¬
ander geschalteten einzelnen Drahtringen entsprechen , so wird
der Indubtionsstrom gewissermafsen in viele kleine Strom¬
fäden zerlegt , die hintereinander geschaltet sind (wobei
natürlich der Widerstand wächst ) . Bei einer sekundären
Spirale von vielen Windungen findet also eine Umwandlung
(Transformation ) des galvanischen Stromes von verliältnis -
mäfsig grofser Stromstärke und kleiner elektromotorischer

21) Jede Dralitlocke , durch welche ein galvanischer Strom geschickt
wird , zeigt magnetische Wirkungen und Selbstinduktion , wodurch störende
Nebenwirkungen z . B . auf Galvanometer , oder in Bezug auf den Wider¬
stand des betr . Drahtes entstehen können . Um diese Induktionswirkung
(fast ganz) aufzuheben , werden bei Galvanometern die hin- und zurück¬
laufenden umsponnenen Drähte umeinander gewickelt (vergl . Fig . 37 S . 64)
oder bei den Widerstandsdrähten (S . 91 Fufsnote ) die Drähte in der
Mitte geknickt und mit der Mitte beginnend doppelt auf eine Spule ge¬
wickelt , wodurch der Strom in zwei dicht nebeneinander liegenden Leiter¬
stücken eine entgegengesetzte Richtung hat , die Selbstinduktion also (fast
ganz) aufgehoben wird .
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Kraft in einen Induktionsstrom von geringer Strom¬
stärke , aber sehr grofser elektromotorischer Kraft
statt , welcher bei gröfseren Induktions - Apparaten (B ,
Fig . 67) den Charakter des Funkenstromes einer Influenz¬
maschine annimmt , nur ergiebiger ist .

Fig . (j7 .
A Induktionsrolle . VlO natiirl , Gröfse .

B Rühm korff ’scher Funkeninduktor . 1/10 natiirl . Gröfse .
C Wagner ’scher Hammer .

Die Induktionsrolle (II bei A , Fig . 67 ) giebt schmerz¬
hafte Schläge , wenn man die Handhaben gefafst hält , während
der Hauptstrom in der primären Spule (I ) rasch geschlossen
und geöffnet wird , besonders wenn sich im Hohlraume der
letzteren ein Bündel weicher Eisendrähte befindet , wodurch
die Intensität des magnetischen Feldes sehr verstärkt wird .
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Rtünnkorff ’
Funken -
Induktor .

Noch kräftiger ist die Wirkung beim Riilimkor ff 'sehen
Funkeninduktor (B , Fig . 67 ) , dessen primäre Spirale aus
etwa 60 Windungen starken Kupferdrahtes besteht , während
der Draht der sekundären Spirale haarfein ist und eine Länge
von etwa 10 Kilometern hat , also Tausende von Windungen
bildet . Natürlich ist dieser Draht mit Seide umsponnen und
noch gefirnist , weil sonst , bei der hohen elektrischen Pol¬
differenz , die Funken die isolierenden Schichten durchbrechen
könnten . Am Apparat ist bei der primären Spirale ein Strom¬
wender (w) und ein automatischer Stromunterbrecher , der
Wagnerische elektromagnetische Hammer (C , Fig . 67 ) an¬
gebracht . Der Strom vom Elemente (E ) geht zum Stromwender ,
durchfliefst die primäre Spirale (I) , geht dann zu einer Messing¬
feder (f) , die an einer Schraube (s) anliegt (die Berührungs¬
stellen sind mit Platinplatten versehen ) . Diese Feder trägt am
freien Ende eine kleine Eisenplatte , welche durch die Schraube
in regulierbarer Entfernung von dem Eisenbündel der primären
Spirale schwebt . Wird nun der Strom geschlossen , so wird das
Eisen magnetisch , zieht die Eisenplatte an ; dadurch verläfst die
Feder die Kontaktschraube (s) , wodurch der Strom unterbrochen
wird und der Hammer wieder zurückfällt . Dafs hierbei die
Bewegung des Hammers sich dauernd erhält , hat folgende
Ursachen . In der Ruhelage (o bei C , Fig . 68) , wo der Hammer
die Schraube berührt , wird der Strom geschlossen , wächst
nach Überwindung des Extrastromes zur vollen Stärke an
und reifst den Hammer von der Schraube ab . Die Feder
nimmt die Stellung 1 an . Während dieser Annäherung wirkt
noch der jetzt (nach der Unterbrechung ) gleichgerichtete
Extrastrom eine zeitlang nach , spannt also die Feder
mehr an . Nach dem Zurückkehren in die Ruhelage (o) , wo
der Strom wieder geschlossen ist , wirkt der Extrastrom wieder
dem primären entgegen , wodurch die Schwingung der Feder
(in die Lage 2 ) weniger verlangsamt wird , als wenn der primäre
Strom gleich in voller Stärke auftreten würde . Die Feder
erhält dadurch einen kleinen Zuwachs an Kraft , der die
Schwingungen erhält , ebenso wie der Anstofs des Zahnrades
bei der Uhr den Reibungsverlust des Pendels ersetzt . [Solche
elektromagnetische Stromunterbrecher werden u . a . bei den
elektrischen Läutewerken (Klingeln ) verwandt .]
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Da der Extrastrom (der primären Spirale ) Reim Strom -
schlufs den Hanptstrom schwächt und beim Unterbrechen des
Stromes gewissermafsen nachklingt , so schwächt oder verzögert
er den Induktionsstrom in der sekundären Spirale . Um nun
den Extrastrom möglichst zu beseitigen , ist bei den gröfseren
Induktionsapparaten in dem hohlen Fufsgestell ein Konden¬
sator angebracht , der aus Stanniolstreifen besteht , die durch
Wachstaft oder besser durch Glimmerscheiben isoliert sind .
Die paarigen und die unpaarigen Stanniolblätter sind unter sich
und mit den Enden der primären Spirale verbunden . Beim
Unterbrechen des Stromes ist also die primäre Spirale durch
den Kondensator geschlossen , der den gröfsten Teil des Extra¬
stromes aufnimmt , was u . a . daraus hervorgeht , dafs bei An¬
wendung eines Kondensators der Öffnungsfunke zwischen
Kontaktschraube und Feder viel kleiner wird und die Feder
bisweilen erst angestofsen werden mufs , um in Vibration zu
geraten .

Vermittelst dieses Wagner ’ sehen Hammers können die
Stromunterbrechungen so oft in der Sekunde erfolgen , dafs
das summende Geräusch des Hammers eine bestimmbare Ton¬
höhe annimmt . Die Schläge , welche dieser Induktionsapparat
auszuteilen vermag , sind , wenn auch nicht lebensgefährlich ,
doch recht unangenehm , selbst schmerzhaft . Schraube ich an
die Klemmen der sekundären Spirale Drähte , die mit Siegel¬
lackgriffen versehen sind , und nähere die Enden , so sehen Sie ,
wenn der Apparat in Thätigkeit . gesetzt ist , Funken von
mehreren Centimetern Länge (bei grofsen Rühmkor ff ' sehen In¬
duktionsapparaten hat man Funken von 40—50 cm Länge erhal¬
ten ) . Nun verbinde ich die Drähte mit einem Glasrohr , welches
an den Enden mit eingeschmolzenen Platindrähten versehen und
mit sehr stark verdünntem Gase gefüllt ist (Geifsler ’ sclie
Röhre , G Fig . 68 , B ) . Verdunkeln wir das Zimmer , so
leuchtet die Röhre in einem milden Glanze und zeigt ver¬
schiedene Farben , die von der Natur des verdünnten Gases
abhängen . Einige Teile der Röhre bestehen aus dem gelb¬
lichen Uranglas , welches in lebhaftem Grün erstrahlt . Noch
prachtvoller erscheint eine Puluj ’sche Röhre , wo die Verdünnung
der Luft noch weiter getrieben ist , und eingeschmolzene
Edelsteine in lebhaften Farben erglühen . Die Rubine (auch
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Transformator .

unscheinbare Exemplare ) strahlen ein herrliches rotes Licht aus ,
Diamanten meist grünes , Schwefelcalcium blanweisses u . s . w .

Wir hatten bei den Induktions -Apparaten den Hauptstrom
durch die Spirale geschickt , welche wenige Windungen star¬
ken Kupferdrahtes hatte , sodafs wir in der sekundären
Rolle hochgradige Induktionsströme von geringer
Stromstärke erhielten . Vertauschen wir beide Spiralen , d . h .
schicken wir den primären Strom durch die Rolle mit den
vielen Windungen , so entsteht in der Rolle mit wenig
Windungen ebenfalls ein Induktionsstrom , dessen
elektromotorische Kraft entsprechend kleiner , dessen
Stromstärke aber in demselben Verhältnis gröfser ist
als die des primären Stroms . Wir sind also imstande ,
hochgradige Ströme in Ströme von geringerer elektromotori¬
scher Kraft , aber gröfserer Stromstärke umzuwandeln (zu trans¬
formieren ) . Apparate dieser Art heissen Transformatoren .
Dafs bei einem solchen Transformator die Isolierung der Win¬

dungen besonders gut sein mufs , ist ohne weiteres klar . In
der Technik haben diese Apparate eine grofse Bedeutung er¬
langt .

#

Bei den Induktionsapparaten (und Transformatoren ) ent¬
steht der Induktionsstrom bei ruhendem Leiter (und ruhendem
Elektromagnet ) durch Intensitätsänderung des magneti¬
schen Feldes , indem die Kraftlinien auftreten und ver¬
schwinden . Nun können wir aber auch durch Bewegung
des magnetischen Feldes oder durch Bewegung des
Leiters im ruhenden magnetischen Felde Induktions¬
ströme erhalten (s . o . S . 129) .

IV . Kaum ein Jahr nach Faraday ’ s Entdeckung der
magneto - elektrischen Induktion stellte Pixii (1832) die erste

„ magneto - elektrische Maschine “ her , bei welcher ein
Hufeisen - Magnet vor den Schenkeln eines hufeisenförmigen
Ankers rotierte , dessen Schenkel mit Drahtwindungen be¬
wickelt waren . Bei allen späteren Apparaten liefs man den
Eisenkern mit den Drahtspulen vor dem festen Hufeisen -Magnet
rotieren , was — besonders bei gröfseren Magneten — weit
bequemer ist .
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Hier sehen Sie (Fig . 68 , A) eine magneto - elektrische Ma¬
schine , wie sie von Stöhrer gebaut wurde .

Vor den Polflächen eines starken Hufeisen -Magnets , der
aus 5 Stahllamellen besteht , rotiert ein hufeisenförmiger An¬
ker aus Schmiedeeisen , dessen Schenkel mit Drahtrollen
(R1 ; R2) versehen sind . Nähern sich die beiden Rollen den
Polen des Magnets , so wird ein Induktionsstrom in jeder Rolle

Fig . 08 A .
Magneto - elektrische Maschine nach Stöhrer . 1/10 natürl . G-röfse .

erzeugt , der natürlich die Richtung wechselt , wenn die Rollen
die Indifferenzzone (d . li . die Ebene senkrecht zur Mitte der
Verbindungslinie der Pole ) passiert . Bei jeder Rotation
des Ankers wechselt der Strom in beiden Rollen die
Richtung zweimal . Die magneto -elektrische Maschine liefert also
einen Wechselstrom , dessen Stärke mit der Rotationsgeschwindig¬
keit wächst (da in derselben Zeit mehr Kraftlinien geschnitten
werden ) . Durch einen besonderen Umschalter (u ) können die
Induktionsströme beider Rollen entweder parallel oder hinter -
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einander geschaltet werden . Nach dem Ohm ' sehen Gesetz
ist im ersten Fall die elektromotorische Kraft dieselbe , der
Widerstand halb so grofs als bei einer einzigen Rolle , also
die Stromstärke verdoppelt . Dagegen bei der Schaltung
hintereinander ist die elektromotorische Kraft verdoppelt , ebenso
der Widerstand (also viermal gröfser als bei paralleler Schal¬

tung ) . Die Wahl der Schaltung hängt von dem Widerstande
in der Leitung ab : Bei allen Induktionsapparaten sollte

der Widerstand in den Induk¬
tionsrollen möglichst gleich
dem Widerstande in der Lei¬
tung sein .

Will man in der Leitung statt
der Wechselströme gleichgerich¬
tet bleibende Ströme haben , so
kann ein automatischer Stromwen¬
der (W , nebenan ) eingeschaltet wer¬
den , der mit der Rotationsachse ver¬
bunden ist , und ähnlich unserem
schon bekannten Stromwender (S .42)
bei jeder Umdrehung (während die
Verbindungslinie der Rollen senk¬
recht zur Verbindungslinie der Mag¬
netpole steht , also gerade keine In¬
duktion stattfindet ) zweimal die
Stromrichtung in der Leitung
wechselt , die also von an -
und abschwellenden Strömen
von beständiger Richtung
durchflossen wird , während die
Maschine selbst nach wie vor
Wechselströme liefert .

Wir wollen uns nicht weiter bei der magneto -elektrischen
Maschine auf halten , da sie von ihrer jüngeren Schwester , der

dynamo - elektrischen Maschine ( oft kurz Dynamo¬
maschine genannt ) längst überholt worden ist .

Die gewaltige Kraft der Elektromagnete legte den Ge¬
danken nahe , sich ihrer statt der Stahlmagnete bei den elektro¬

magnetischen Maschinen zu bedienen ( Wilde in Manchester

Fig . os n .
Stromwender der Magneto -elektrische

Maschine nach Stöhrer .
Vö natiirl . Crröise .
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1866) . Den letzten entscheidenden Schritt , der zur Konstruktion
der Dynamomaschine 22) führte , that dann der bekannte ge¬
lehrte Elektriker Werner Siemens ( 1866) , indem er zeigte ,
dafs der in einem Elektromagnet naehbleibende (remanente )
oder der durch den Erdmagnetismus inducierte Magnetismus
des Elektromagnets genügt , um in den Windungen des rotieren¬
den Ankers einen Induktionsstrom hervorzurufen , der in ge¬
eigneter Weise durch die Windungen des Elektromagnets ge¬
leitet , dessen Magnetismus rasch steigert , wodurch der In¬
duktionsstrom verstärkt wird , was wiederum dem Magnet
zugute kommt , bis die Grenze seiner Magnetisierbarkeit er¬
reicht ist , sodafs — ohne Zuführung eines Stromes von aufsen
— der Elektromagnet nach einer gewissen Anzahl von Ro¬
tationen des Ankers genügend stark wird , um einen kräftigen
Zweigstrom durch die Leitung (Nutzleitung ) zu schicken
( Siemens ’ dynamo - elektrisches Princip ) .

Von gröfster Wichtigkeit ist es , bei diesen Maschinen
sowohl dem Elektromagnet als auch dem Anker , welcher die
Induktionsrollen trägt , eine solche Form zu geben , dafs bei
jeder Rotation möglichst viele Kraftlinien senkrecht
durchschnitten werden . Sie sehen also , wie wichtig die
Kenntnis des Verlaufs der magnetischen Kraftlinien zur Her¬
stellung guter Dynamomaschinen ist .

Es wird also die Aufgabe der Technik sein , die Kraft¬
linien soviel als möglich in dem ausgenutzten Teile des
magnetischen Feldes zu konzentrieren und andererseits von
dem rotierenden Leiter möglichst vollständig (in senkrechter
Richtung ) schneiden zu lassen . Ersteres wird durch die so¬
genannten Polschuhe erreicht . Das sind passend geformte
Stücke aus weichem Eisen , welche auf die Pole des Elektro¬
magnets gesetzt werden (oder mit ihm aus einem Stück be¬
stehen ) . Diese haben die Eigenschaft , an den einander zuge -

23) Hier soll das Wort „ dynamo “ (dynamis = Kraft ) eine Maschine
bezeichnen , bei welcher lediglich durch die mechanische Kraft , welche
zur Drehung der Induktionsrollen verwandt wird , ein Strom erzeugt wird .
Das ist aber in gleicher Weise bei den magneto - elektrischen Maschinen
der Fall . Die Unterscheidung von magneto - elektrischen und Dynamo-
Maschinen ist also konventionell und hat nur eine praktische Bedeutung .

Kolbe . II . 10

Siemens ’
Dynamo -

elektrisches
Princip .
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Ringanker .

kehrten Seiten ein nahezu gleichförmiges magnetisches
Feld mit dichter gelagerten Kraftlinien zu erzeugen
(A , Fig . 69 ) .

Ein Stück weiches Eisen , das wir in ein magnetisches Feld
bringen (B Fig . 69) hat (wie Ihnen ein Vergleich von I und
II zeigt ) wiederum , die Eigenschaft , die Kraftlinien auf sich zu
konzentrieren , gewissermafsen aufzusaugen ( daher die aufser -
ordentliche Verstärkung der Wirkung einer Induktionsspule
durch Einführung eines Eisenkernes ; s . o . S . 137 u . 139 ) .

— -In

Fig . 09.
Verlauf der Kraftlinien (schematisch ) A bei Pohscliuhen ; BI bei einem freien Stab¬
magnet ; B II bei Anwesenheit von weichem Eisen im magnetischen Felde ; C Bei
einem Ringe (Cylinder ) aus weichem Eisen zwischen den Polschuhen , nach Stefan .

Von besonderem Interesse ist nun der Fall , wo ein Ring
aus weichem Eisen (oder ein Hohlcylinder , dessen senkrechter
Querschnitt also auch ein Ring ist) sich in dem magnetischen
Felde zwischen den Polschuhen befindet ( C , Fig . 69 ) . Wie die
Rechnungen (Stefan 1882) ergeben und die Versuche bestätigt
haben , treten die Kraftlinien in den Eisenring (oder Cylinder )
ein , aber — bei genügender Wandstärke — mit Ausnahme
der mittelsten , senkrecht auffallenden , nicht in den Innenraum ,
sondern gehen durch die Eisenmasse des Ringes und treten an
der gegenüberliegenden Seite wieder aus . Wird ein solcher
Ring gedreht (um eine Achse , die in Fig . 69 , C , durch die
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Ringmitte geht und senkrecht zur Ringebene steht ) , so bleiben
trotz der Rotation die inducierten magnetischen Pole des
Ringes (n und s) räumlich in ihrer Lage , aber sie verschieben
sich auf dem rotierenden Ringe .

Umwickeln wir nun den Eisenring losemit einigen Windungen
isolierten Kupferdrahtes , dessen Enden verlötet sind (A , Fig . 70) ,
so können wir den Ring mit der Drahtrolle (um eine zur
Papierfläche senkrechte Achse) drehen oder — was in Bezug
auf die Induktionswirkung dasselbe ist — die Drahtrolle dem
Ringe entlang verschieben . Denken
Sie sich den Eisenring an den Polen
zerschnitten , so würde das an der
Wirkung nichts ändern , wir hätten
dann aber , wie bei einem früheren
Versuche (VII , Fig . 64) , zwei (hier
halbkreisförmige ) Magnete , die mit
den gleichnamigen Polen zusammen -
stofsen und deren Indifferenz¬
punkte bei i t und i 2 liegen . Nun
wissen wir , dafs in einem solchen
Falle , wo eine Drahtrolle entlang
einem Magnet mit mehreren Folge¬
punkten geführt wird (S . 132 ) , der
Induktionsstrom in dem Leiter
= 0 wird und seine Richtung
wechselt , sobald ein Indifferenz¬
punkt passiert wird .

Wenden wir das auf den gege¬
benen Fall an , so ergiebt sich ohne
weiteres , dafs während di§ Drahtrolle von i x über s nach i 2
verschoben wird , ein an Intensität rasch anwachsender und
(nach Passieren des Poles ) wieder abnehmender Induktions¬
strom entsteht , der bei i 2 (wie bei i t ) = 0 ist und seine
Richtung wechselt , an Intensität zu - und wieder bis 0 (bei i t)
abnimmt . Das Maximum der Stromstärke liegt bei den Polen ,
weil die hier dicht eintretenden magnetischen Kraftlinien von
dem Leiter senkrecht geschnitten werden , während bei den
Indifferenzpunkten der Leiter parallel den Kraftlinien ver¬
schoben wird .

i,

h

Fig . 70.
Schematische Skizze des
Pacinotti ’schen Hinge .

io *
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Umwickeln wir jetzt den Eisenring mit isoliertem Kupfer¬
draht , so dafs ein geschlossener Drahtleiter gebildet wird

(B , Fig . 70) , und lassen wir jetzt den Eisenring mit seiner Um¬

wickelung (in umgekehrter Richtung wie vorhin die Draht¬
rolle allein ) rotieren , so werden in den Windungen Induktions¬
ströme von der durch die kleinen Pfeilspitzen markierten

Richtung erregt .
Von dem Punkte i t findet in beiden Ringhälften ein Fort¬

strömen der Elektricität bis zu dem gegenüberstehenden Punkte
i 3 statt . Verbinden wir diese Punkte i x und i 5, indem wir die
Enden eines Drahtes mit Pinseln aus Kupferdraht (+ p und
— p ) versehen , welche an den hier blank gemachten Stellen
des Windungsdrahtes schleifen , so wird von i 2 nach i (
(B , Fig . 70 ) , also von 4 - p nach — p , ein elektrischer Strom
von gleichbleibender Richtung erzeugt , solange der
Eisenring mit seiner Umwickelung rotiert . Führt man von
den Drahtwindungen Drähte zu Kupferstreifen , welche von
einander isoliert auf der Drehungsachse des Ringes angebracht
sind (A , Fig . 71 ) , und läfst hier die Drahtbürsten an richtiger
Stelle schleifen , so werden in jedem Augenblick Teile der
Drahtwindung , welche gerade die Indifferenzzone (i t i, ,
Fig . 70 , B) passieren , mit den Kontaktbürsten in Verbindung
sein . Stellt man nun zwischen beiden Kontaktbürsten (b ! und
b 2, Fig . 71 , A) eine Leitung her , so wird diese kontinuierlich yon
gleichgerichteten Strömen durchflossen . Bei den •wirklichen
Gramme ’ schen Maschinen (s . w . u .) ist statt jeder einzelnen
Windung des Ringankers eine Drahtspule zu denken . Die
Wirkungsweise ist aber dieselbe .

Wir haben hierbei die Wirkung der inducierenden Magnet¬
pole , der sogenannten Feldmagnete , auf die Drahtwindungen
und die des erregten Ankerstromes (in den Windungen ) selbst
nicht weiter in Betracht gezogen . In Wirklichkeit ist die dem
Feldmagnetpol gegenüberstehende äufsere Seite des Eisen¬
ringes stark ungleichnamig , die abgewandte innere Ringseite
aber schwach gleichnamig magnetisch , wodurch die Vorgänge
komplicierter werden . Die Gesamtwirkung entspricht aber
doch im wesentlichen unserer Darstellung . Da aber auch das
weichste Eisen nicht momentan seinen Magnetismus verliert ,
so werden bei der Rotation die Pole des Eisenringes und



Pacinotti ’s Ringmaschine . 149

damit die Indifferenzpunkte in dem Sinne der
Rotation verschoben . Die Gröfse dieser Verschiebung
hängt von der Beschaffenheit des Eisens und von der Rotations¬

geschwindigkeit ab , mufs also in jedem Falle erst ermittelt
werden . Daher ist für jede solche Maschine die Stellung der
Kontaktbürsten auf den isolierten Metallstreifen der Achse ,
welche die Induktionsströme sammeln und daher Kollektor
oder (hier fälschlich ) Kommutator heifsen , auszuprobieren .

Fig . 71.
A P acinotti - G-r am m e ’sclier Ring (Modell nach Weinhold ). 1j12 natürl . Gröfse .

B v . H e fner - Al te ne ck ’scher Trommelindnktor im Querschnitt .

Die erste magneto -elektrische Maschine , welche konti¬
nuierliche und gleichgerichtete Induktionsströme lieferte ,
erfand Prof . Pacinotti in Pisa ( 1860) , doch blieb dieser
Apparat unbeachtet und geriet in Vergessenheit , bis der Belgier
Gramme sie (1871) von neuem erfand und zugleich so ver¬
besserte , dafs sie leistungsfähig wurde und alle bis dahin kon¬
struierten magneto - elektrischen Maschinen aus dem Felde
schlug . Auch wandte er beim rotierenden Ringe statt eines

Geschichtliches .
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massiven eisernen Kernes ein Bündel dünner , von einander
isolierter Eisendrähte an , da ein solches rascher magneti¬
siert und entmagnetisiert wird als ein massives Stück Eisen .
Zugleich werden störende Induktionsströme innerhalb des Kernes
der Induktionsrolle vermieden . Erst später wurde die Priori¬
tät Pacinotti ’ s anerkannt , weshalb der wesentlichste Teil
dieser Maschine , der rotierende umwickelte Eisenring , allgemein
der Gr amme ’ sche Ring genannt wird . Diese Maschinen wur¬
den bald mit Benutzung des Siemens ’ sehen Dynamoprin -
cips gebaut und gehören auch jetzt noch zu den leistungs¬
fähigsten Dynamomaschinen .

Auf einem anderen Princip beruht der ebenfalls konti¬
nuierliche gleichgerichtete Ströme liefernde Trommelinduktor
(B , Fig . 71 ) von Hefner -Alteneck , einem Ingenieur der be¬
kannten Firma Siemens & Halske in Berlin . Hier ist der
Draht der Induktionsrolle um einen Cylinder aus weichem
Eisen der Länge nach gewickelt und rotiert dicht vor den
Polschuhen (NN , SS ) der Feldmagnete , welche den gröfsten
Teil des Cylindermantels umspannen . Da bei dieser Kon¬
struktion die Kraftlinien den gröfsten Teil der Induktionsrolle
senkrecht durchsetzen , so liefert der Trommelinduktor ebenfalls
sehr starke Ströme . Auf die recht komplizierte Wirkungs¬
weise dieses Apparates und die eigentümliche Verbindung der
einzelnen Drahtwindungen unter sich und mit dem Kollektor
können wir hier nicht eingehen . — In neuerer Zeit sind von
verschiedenen Firmen , je nach dem vorliegenden Zwecke ,
sehr verschiedene Dynamomaschinen aufgekommen , doch lassen
sie sich im wesentlichen auf die beiden Grundtypen : den
Gramme ’ scben Eing oder die Hefner - Alteneck ’ sche
Trommel zurückführen .

Noch müssen wir die praktische Verwertung des Dynamo -
princips , d . h . die Art und Weise , wie der Induktionsstrom
durch die Umwickelungen der Feldmagnete geleitet wird ,
etwas beleuchten , da der Nutzeffekt der Maschine wesentlich
davon abhängt .

I . Die Normal - oder Serienschaltung (I , Fig . 72 ) ,
welche zuerst von Siemens ( 1866) angewandt wurde , leitet
den Induktionsstrom durch die Drahtwindungen des Feld¬
magnets und weiter durch die Nutzleitung (BL ) , welche
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also hintereinander geschaltet sind . Die Induktionsströme
können hier überhaupt nur entstehen , wenn der Stromkreis
durch die Nutzleitung geschlossen ist . Diese Schaltungs¬
weise , welche bei geringem Widerstande der Leitung (BL ) sehr
starke Ströme liefert , hat den Übelstand , dafs bei Yergröfserung
des Widerstandes der Leitung die Stromstärke und damit
die Kraft der Feldmagnete abnimmt , was wiederum eine
weitere Schwächung des Induktionsstromes zur Folge hat .
Aufserdem tritt leicht ein Pol Wechsel ein , was bei gewissen
Arbeiten , wie Galvanoplastik , höchst störend ist .

II . Die Nebenschlufsschaltung (II , Fig . 72 ) , welche
Wheatstone (1867) vorschlug , leitet von den Bürsten des
Kollektors (b t b 2) einen Zweigstrom als Nutzleitung ab .

üL (© (© (©

Fig . 72.
Verschiedene Schaltungsweise an der Dynamomaschine .

(I Normalschaltung ; II Nebenschlufs -Schaltung ; ITI Schaltung mit gemischter
Bewickelung .)

Wird dieser jetzt unterbrochen , so üiefst der Gesamtstrom um
die Feldmagnete . Auch bei Vermehrung des Leitungswider¬
standes wird durch die Verstärkung des Feldmagnets (dessen
Rollen - Widerstand unverändert geblieben , also im Verhält¬
nis zu dem der Nutzleitung kleiner geworden ist , mithin einen

gröfseren Stromteil erhält ) die gesamte Stromstärke doch etwas
gröfser , als es nach dem Ohm ’schen Gesetz bei konstantem
Strom , wie z . B . bei einer magnetelektrischen Maschine , sein
würde . Diese Schaltungsweise ist , gegenüber der Normal¬

schaltung , besonders dann vorteilhaft , wenn die Nutzleitung
keinen konstanten Widerstand hat .

III . Die Kompoundschaltung oder Schaltung mit ge¬
mischter Bewickelung , welche von Brush ( 1879) angewandt
wurde . Der Feldmagnet hat hier eine doppelte Bewickelung .
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Die eine , aus starkem Draht , steht — wie bei der Normal¬

schaltung — durch den Kollektor mit der Nutzleitung (L ) in

Verbindung , während die andere (aus feinem Draht ) den Strom
nur um den Elektromagnet führt . Bei Vergröfserung des
Widerstandes der Nutzleitung fliefst ein entsprechend gröfserer
Stromteil durch die vielen Windungen des dünnen Drahtes ,
wodurch das magnetische Feld und damit die gesamte Strom¬
stärke so bedeutend verstärkt wird , dafs eine solche Maschine
(mit Kompound -Schaltung ) bei Schwankungen im Widerstande
der Nutzleitung innerhalb weiter Grenzen dennoch eine recht
konstante elektrische Poldifferenz 23) aufweist , weshalb sie
besonders geeignet für elektrische Beleuchtung mit Glühlampen
ist , die nicht gleichzeitig in Thätigkeit gesetzt werden . — Bei
allen Dynamomaschinen tritt die günstigste Wirkung ein , wenn
der Widerstand in der Nutzleitung gleich dem der Draht¬

windungen der Maschine ist . Letzterer entspricht , wenn wir
uns die Dynamomaschine durch eine entsprechend kräftige
Batterie von galvanischen Elementen ersetzt denken , dem
inneren Widerstande , ersterer dem äufseren .

Die grofsartigen Anwendungen , welche die Dynamo¬
maschinen in neuerer Zeit erfahren haben , sind Ihnen schon
im allgemeinen bekannt , so dafs ich mich auf kurze Hinweise
beschränken kann .

Die elektrische Beleuchtung der Strafsen und der
Leuchttürme geschieht durch Bogenlampen , bei denen zwei
harte Kohlenstäbe durch automatische Vorrichtungen beimStrom -
schlufs in Berührung gebracht und nach dem Erglühen der
Enden auseinander gezogen und in passender Entfernung ge¬
halten werden . Da bei gleichgerichtetem Strom der positive
Kohlenstab stärker verbraucht wird , so benutzt man hierzu
eine härtere Kohle oder man verwendet besonders kon¬
struierte Dynamomaschinen mit Wechselstrom . (Anh . 12 ) .

23) In vielen Büchern wird statt des von uns benutzten Ausdrucks
„ elektrische Poldifferenz “ die kürzere Bezeichnung : „ Polspannung “

(oder Klemmenspannung ) gebraucht . Wir haben diese Bezeichnung ver¬
mieden , da sie zu Mifsverständnissen führen kann , indem die elektrische
„ Spannung “ nicht gleichbedeutend mit „ Potentialdifferenz “ der
Pole ist , worauf es hier ankommt .



Elektrisches Schweifsen. — Gewinnung von Lichtmetallen . 153

Für die durch elektrisches Bogenlicht erreichbare Licht¬
stärke ist keine obere Grenze angebbar , da in neuester Zeit
immer mächtigere Lichtmassen erzeugt werden , welche (für
eine bestimmte Entfernung der Lampe !) eine gröfsere Hellig¬
keit entwickeln als das Sonnenlicht . Das Bogenlicht ist be¬
sonders reich an den chemisch wirksamen blauen und violetten
Strahlen und kann daher zu photographischen Zwecken ver¬
wandt werden . — Zur Zimmerbeleuchtung werden die Glüh¬
lampen (s . o . S . 98 ) bevorzugt , da ihr Licht , wenn auch von
gold -oranger Farbe , milder und dem Auge wohlthuender ist
als das schneidend grelle Bogenlicht .

Die aufserordentliche Hitze , welche im elektrischen Bogen¬
licht herrscht , ist die höchste , welche wir erzielen können .
Man kann durch geeignete Vorrichtungen aneinandergelegte
Metallstücke an der Berührungsstelle schmelzen und so
elektrisch zusammenschweifsen . Benardos in St . Petersburg
wandte dieses Verfahren zuerst an . Auf den letzten elektrischen
Ausstellungen in St . Petersburg waren u . a . grofse gesprungene
Kirchenglocken ausgestellt , die auf diese Weise zusammen -

geschweifst und wieder klangfähig gemacht waren . »— Auch
die hartnäckigsten Sauerstoffverbindungen werden jetzt durch
die Hitze des elektrischen Bogens gelöst und man stellt (ver¬
mittelst des Siemens ’schen elektrischen Ofens ) aus vielver¬
breiteten Mineralien , wie Thonerde , gewisse Leichtmetalle her ,
die — wie z . B . das Aluminium — rein oder in Legierungen ,
als Bronce , vielfach Verwendung finden .

Verbindet man eine Dynamomaschine passend mit einer
zweiten , dem „ Induktor “

, so wird — wenn die erste in Thätig -
keit gesetzt wird — die „verkuppelte “ rotieren , wie wir es auch
bei den Influenzmaschinen sahen (I . Bd . S . 103 ) . Ist die Achse des
Induktors mit einem Schwungrade versehen , so kann dieser

„elektrische Motor “ mechanische Arbeit leisten , als wäre er Elektrischer
von einer Dampfmaschine getrieben . Da hier die treibende Motor-

Maschine mit dem Motor nicht unmittelbar verkuppelt zu
sein braucht , sondern durch lange Leitungsdrähte verbunden
sein kann , so ist die Möglichkeit gegeben , Naturkräfte , die
sonst nutzlos verloren gehen , vorteilhaft auszunutzen . Stellt
man z . B . an Wasserfällen Turbinen auf und lässt durch sie 1

Dynamomaschinen treiben , so kann der Strom hunderte von



Das Telephon .

J 54 Elektrische ArbeitsÜbertragung .

Kilometern weit nach Orten fortgeleitet werden , wo die Be¬
triebskraft nötig ist . Bei dieser „ elektrischen Arbeits¬
übertragung “ (in deutschen Werken oft ungenauer Weise

„Kraftübertragung “ genannt ) sind , nun die Transformatoren
(s . o . S . 142 ) von gröfster Wichtigkeit . Wie Sie schon (S . 84)
wissen , wird der Widerstand einer langen Leitung umso
leichter überwunden , je gröfser die elektromotorische Kraft des
Stromes ist . Andererseits sind bei der praktischen Verwendung
zu hochgradige Ströme sehr schwierig zu isolieren , so dafs leicht
Energieverluste eintreten undsogar Brandschäden verursacht wer¬
den ; aufserdem können bei zufälligen Berührungen der Leitungs¬
drähte lebensgefährliche elektrische Schläge erhalten werden (s .
Anh . 12 ) . Man erzeugt daher hochgradige Induktionsströme
(von 30 bis 40000 Volt ) , welche man am Bestimmungsorte durch
Transformatoren in Ströme von niederem Grade (200 bis
300 Volt ) , aber entsprechend gröfserer Stromstärke umwandelt ,
ehe man sie in die Nutzleitung überführt . — Nachdem auf
der Ausstellung in Frankfurt a . M . ( 1891 ) zuerst im grofsen
die elektrische Arbeitsübertragung (175 Kilometer , von Laufen
am Neckar ) sich als praktisch ausführbar gezeigt hat , werden
schon jetzt in der Schweiz Fabriken auf diese Weise getrieben
und in Nord -Amerika ganze Städte elektrisch beleuchtet . Da
unsere Wälder immer mehr verschwinden und auch für un¬
erschöpflich gehaltene Steinkohlengruben zu versiegen drohen ,
so ist die elektrische Arbeitsübertragung das Problem
der Zukunft und wird bereits dem nahenden zwanzigsten
Jahrhundert seinen Stempel aufdrücken .

*

Ehe wir das Kapitel über die Induktionsströme schliefsen ,
mufs ich noch eine ihrer praktischen Verwendungen erwähnen ,
welche — obgleich eine der jüngsten Errungenschaften unserer
Zeit — für das Verkehrswesen von kaum geringerer Bedeutung
geworden ist , als der Telegraph — ich meine : das Telephon
(Fernsprecher ) .

Bereits 1860 hatte Reis ein Telephon konstruiert , von der
Thatsache ausgehend , dafs eine stählerne Stricknadel , welche
mit isoliertem Kupferdraht umwickelt ist , durch den in rliyth -
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mischer Folge Stromstöfse geschickt werden , einen klingenden
Ton giebt , dessen Tonhöhe von der Anzahl der Stromstöfse
pro Sekunde abhängt . Da bei der Reis ’ sehen Vorrichtung
der elektrische Strom geschlossen und ganz geöffnet wurde ,
so konnte bei der Übertragung eines Klanges wohl die Ton¬
höhe , aber nicht die Klangfarbe wiedergegeben werden .
Dieses , sowie knarrende , sehr stö¬
rende Nebengeräusche , welche die¬
ser Apparat hervorbrachte , liefsen
ihn als ein Kuriosum der physika¬
lischen Kabinette erscheinen , das
hin und wieder zur Belustigung
der Zuhörer verwandt wurde .

Von genialer Einfachheit der
Konstruktion und dabei viel besse¬
rer Wirkung ist das Telephon von
Bell (1877) , das die meisten von
Ihnen , wenn auch in veränderter
Form , durch eigene Anschauung
kennen .

Um die Wirkungsweise dieses
Apparates Ihnen leichter verständ¬
lich zu machen , habe ich einen
Stabmagnet (M bei A , Fig . 74 ) mit
einer Induktionsrolle versehen ,
, Ti -» nr t A Entstehung von . Induktionsströmenderen Enden ZU unserem Mnltipll - durch Annäherung einer Eisenplatte
kator (G) führen , dessenNadelaperi -
odisch schwingt ( Fig . 62 , S . 125) . maSnets beim Näl .ermcken einer Eisen-

All einem Stativ ist eine dünne
Eisenplatte (e) befestigt . Während ich die Eisenplatte dem
Magnet nähere , zeigt die Multiplikatornadel einen Ausschlag ,
geht aber sofort auf Null zurück , sobald die Eisenplatte stille
steht . Beim Entfernen der Platte schlägt die Nadel nach der
entgegengesetzten Seite aus , d . h . während der Annäherung
einer Eisen platte an d enPol ein e s Magnets wird in einer
diesen umgebenden Drahtrolle ein Induktionsstrom
hervorgerufen ; desgleichen während des Entfernens
der Eisenplatte , doch ist die Stromrichtung die umge¬
kehrte . Steht die Eisenblechplatte dem Magnetpol recht nahe ,

1 M U

B
M

Fig . 73.
■Wirkungsweise des Telephons .

Vio natürl . Gröfse .
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so genügt schon eine leichte Verschiebung , um einen In¬
duktionsstrom zu erzeugen .

Da , wie wir wissen , ein Induktionsstroni nur dann entstellt ,
wenn ein Leiter die magnetischen Kraftlinien (quer ) durcli -
schneidet , hier aber die Induktionsrolle und der Magnet fest¬
stehen , so mufs die Annäherung (oder das Entfernen ) der

Eisenplatte eine solche Wirkung hervorgebracht haben , als
ob die Kraftlinien allein sich verschoben und dadurch
die Windungen der Induktionsrolle geschnitten hätten . Wir
Eisen sahen bereits (Fig . 69) , dafs die Anwesenheit eines Stückes
im magnetischen Felde den Verlauf der Kraftlinien beeinfiufst .
Um Ihnen nun die Wirkung der Bewegung des Stückes
Eisen auf die Kraftlinien zu zeigen , lege ich einen starken

Stabmagnet auf den Tisch , bedecke ihn mit einem Stück
Karton und mache in bekannter Weise die magnetischen
Kraftlinien vermittelst Eisenfeilspänen sichtbar . Während
einer von Ihnen durch sanftes Klopfen den Karton in leichte
Erschütterung versetzt , rücke ich ein Eisenstück in der

Richtung der magnetischen Achse an den einen Pol heran
( B , Pig . 73 ) . Sie sehen , wie die Kraftlinien sich mehr und
mehr dem Eisenstück zuwenden , je näher dieses dem Pole
kommt . Jetzt sind (II bei B , Fig . 73 ) die Kraftlinien an der
Polfläche bereits viel dichter beieinander als vorhin ; das
Umgekehrte ist beim Entfernen des Eisenstückes der Fall .
Die Annäherung einer Eisenplatte an die Magnetpole
ist also in der Wirkung gleichbedeutend mit einer
Vergröfserung der Intensität des magnetischen Feldes
( vor den Polflächen ) , oder — wie wir uns , der Anschaulich¬
keit halber , vorstellen können — einer Verschiebung der
Kraftlinien nach der Polfläche zu ( also in der Richtung der
Pfeile bei II in B , Fig . 73 ) . Damit ist die Bedingung für die
Entstehung von Induktionsströmen gegeben (s . o . S . 129 ) .

Um Ihnen die Wirkungsweise des Bell ’ sehen Telephons
anschaulich zu machen , benutze ich ein einfaches Telephon -
modell (A, Fig . 74) . Zwei auf Ständern befestigte starke Stab¬
magnete sind mit Drahtrollen versehen , die ich durch Drähte
miteinander so verbinde , dafs der in R , erzeugte Induktions¬
strom in R 2 in gleichem Sinne fliefst . Vor dem Pole des einen
Magnets (M, ) schwebt an einer feinen elastischen Uhrfeder
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eine kleine Scheibe aus dünnem Eisenblech (e) , deren eine

dem Pole zugekehrte Fläche mit Papier beklebt ist . Ich regu¬
liere die Entfernung so , dafs durch die magnetische Anziehung
auf die Eisenscheibe die Feder etwas gespannt wird , ohne
dafs die Scheibe den Pol berührt . Nähere ich nun rasch

eine weiche Eisenplatte (E) dem Magnet M t , so wird die Eisen¬
scheibe e vom Magnet M 2 ebenfalls angezogen , doch ist die

Bewegung fast unmerklich . Wenn ich aber in demselben

A Einfaches Telephon -Modell nach Bossehard . Vio natiirl . Gröfse .
B Bell ’sches Telephon . 1/2 natiirl . Gröfse .

Tempo , in welchem die Feder schwingt , die Eisenscheibe E

nähere und entferne , so gerät die Scheibe e bald in sichtbare

Schwingungen . [Hätte ich die Verbindungsdrähte gekreuzt ,
oder bei M 2 den anderen Pol mit der Drahtrolle versehen , so
wären die Schwingungen von e ebenfalls erfolgt , nur würde
der Induktionsstrom die Intensität des magnetischen Feldes
bei M 2 in entgegengesetztem Sinne beeinflussen , daher
würde eine Annäherung von E an M x ein Entfernen der
Scheibe e von M 2 bewirken . Bei Telephonen ist das nicht
weiter störend .]

Bell ’ s Telephon (B , Fig . 74) besteht nun aus einem
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stark magnetisierten Stahlstabe , der in einem durch eine
Schraube (f ) regulierbaren , sehr kleinen Abstande vor
einer runden vernickelten Platte aus dünnem Eisenblech (e)
sich befindet . Diese am Rande festgeklemmte Platte wird vom
Magnet angezogen und ist daher fortwährend in ge¬
spanntem Zustande . Wird nun — etwa durch Schall¬
wellen — diese Eisenmembran in Schwingungen versetzt ,
so werden bei der Annäherung , sowie bei der darauf folgenden
Entfernung der Platte vom Magnetpol in der Rolle (R) In¬
duktionsströme von entgegengesetzter Richtung er¬
zeugt , welche zu einem zweiten Telephon geleitet werden .
Hier erzeugen die einzelnen Stromstöfse in gleichen Zeitinter¬
vallen Intensitätsänderungen im magnetischen Felde . Die
Eisenmembran des zweiten Telephons gerät dadurch in gleich¬
zeitige (isochrone ) Schwingungen , welche sich der Luft mit -
teilen und als Schall hörbar sind .

Hierbei finden nun sechsümsetzungen derEnergie statt :
I . Telephon (Absender ) .

1 . Die vor dem Telephon er¬
zeugten Schallschwingun¬
gen versetzen die Eisen -
platte in Mitschwingungen .

2 . Hierdurch entstehen Schwan¬
kungen in der Intensität
des magnetischen Feldes .

3 . Diese erzeugen Induktions -
strönie .

II . Telephon (Empfänger) .
4 . Die ankommenden Stromstöfse

erzeugen Intensitäts -
Schwankungen des magne¬
tischen Feldes .

5 . Diese veranlassen Schwingun¬
gen der Eisenplatte .

6 . Dadurch ward die Luft in
Schwingungen versetzt.

Vermittelst des Bell ’ sehen Telephons können wir also
ohne Anwendung einer Stromquelle , den Schall nach
einem anderen Orte übertragen oder , richtiger gesagt , dort
wieder hervorrufen . Da nun hierbei die Induktionsströme erst
durch die Schwingungen der Eisenmembran hervorgerufen
werden müssen und noch Umsetzungen mechanischer Energie
in magnetische und elektrische (und umgekehrt ) stattfinden ,
wobei Energieverluste unvermeidlich sind , so können diese
Telephone nur auf verhältnismäfsig kurze Strecken die mensch¬
liche Stimme deutlich übertragen , doch genügen gut gebaute
Apparate dieser Art (besonders die von Siemens in Berlin
und Ader in Paris , welche hufeisenförmige Magnete mit Pol -
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schuhen verwenden , die gleichzeitig auf die Platte wirken ,
wodurch diese in stärkere Schwingungen versetzt wird ) noch
für Entfernungen von 30— 40 Kilometern , finden daher heim
Telephonnetz von Städten vielfach Anwendung .

Um nun auf weitere Strecken telephonieren zu können ,
mufs man suchen , die Intensitätsschwankungen des
magnetischen Feldes zu vergröfsern , ohne dabei in den
Fehler des Reis ' sehen Apparats zu verfallen , wo ein Strom
ganz unterbrochen wird . Es kommt vielmehr darauf an ,
statt der Energie der Schallwellen , die einer Strom¬
quelle zu benutzen und ein Auf - und Abschwanken der
Stromstärke durch die Schallschwingungen zu bewirken , da¬
mit nicht nur die Tonhöhe und die relative Stärke der
einzelnen Töne , sondern auch nach Möglichkeit der durch die
Klangfarbe der Töne bewirkte Charakter der Schwingungen
beim zweiten Apparate wiedergegeben werde .

In überraschend einfacher Weise gelang dieses R . D . Das Mikrophon .
Lüdtge in Berlin (Januar 1878) und fast gleichzeitig und un¬
abhängig davon Hughes . Schaltet man in den Stromkreis
eines galvanischen Elementes einige sich lose berührende
Kohlenstücke ein , so bewirkt eine Zusammenpressung der
Kohlenstücke eine Vergröfserung der Berührungsfläche
und damit eine Verminderung des Widerstandes an
dieser Stelle . Spannt man nun einen Kohlenstab (A , Fig . 75)
zwischen zwei feststehende Kohlenstücke , zu welchen die
Leitungsdrähte führen , so ein , dafs der Druck reguliert
werden kann , so werden geringe Erschütterungen des Re¬
sonanzbodens , auf welchem die Kohlenhalter befestigt sind ,
entsprechende Verminderungen oder Verstärkungen des Wider¬
standes bewirken , wodurch gleichzeitige Stromschwankun¬
gen erzeugt werden . Diese bewirken in dem eingeschalteten
Telephon weit gröfsere Intensitätsänderungen des magnetischen
Feldes als die schwachen Induktionsströme eines Absende -
Telephons . Der Ton wird hierbei so verstärkt , dafs z . B . das
Kriechen einer Fliege als lautes Kratzen hörbar wird .
Vermittelst eines solchen Apparates können die leisesten Ge¬
räusche hörbar gemacht werden , deshalb nannte ihn Hughes
— nach Analogie zum Mikroskop , das die Welt des Kleinen
sichtbar macht — ein Mikrophon ( Feinhörer ) .
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Noch wirksamer wird , besonders bei Übermittelungen des
Schalles auf weitere Entfernungen , die gleichzeitige Verwen¬
dung eines Induktionsapparates (vgl . Fig . 67A , S . 139 ) . Leitet
man den Strom vom Mikrophon (M bei B , Fig . 75 ) zu der primären
Rolle (I ) von dort zum Element (E) zurück , so werden die
durch das Mikrophon bewirkten Stromschwankungen in der
aus vielen Windungen bestehenden sekundären Rolle (II )

Fig . 75.
A Mikrophon . Vs natürl . Gröfse .

B Telephon (T ) mit Mikrophon (M) und Induktionsrolle (J ) .

hochgradige Induktionsströme erzeugt , die noch auf weite
Entfernungen energisch auf das mit ihr verbundene Telephon
(T ) wirken . Auf diese Weise ist es möglich geworden , ent¬
legene Orte , wie New -York und Chicago , telephonisch zu
verbinden ; selbst das Meer bietet keine unüberwindliche
Schranke mehr . Täglich zieht sich das Telephonnetz enger ,
das die Nachbarstädte , ja Nachbarstaaten verbindet und so ist
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das Telephon ein wichtiger Faktor für das Verkehrsleben ge¬
worden , da es seinen älteren Bruder , den Telegraphen , vor¬
trefflich ergänzt , indem es die Stimme des Sprechenden
zu erkennen gestattet !

Schluf s .

Gar lange habe ich heute Ihre Aufmerksamkeit in Anspruch
genommen , und dennoch konnte ich nur das Wichtigste kurz
berühren , da ein näheres Eingehen die uns gesteckten Grenzen
überschritten hätte .

Mehrfach haben vir auf unseren Wanderungen unsere Zu¬
flucht zu Hypothesen nehmen müssen , um Zusammenhang in
die beobachteten Erscheinungen zu bringen . Es wird vielleicht
nicht uninteressant sein , jetzt , am Schlufs , einen Rückblick auf
die Wandlungen der physikalischen Hypothesen zu werfen und
dann einen Blick in die Richtung zu thun , wohin die Forscher
der Jetztzeit vorzudringen suchen 24) .

Oft kann man , auch in Büchern , der Behauptung begegnen ,
Aufgabe der Physik als Wissenschaft sei : die beobachteten Er¬
scheinungen zu erklären ! Was heifst aber überhaupt physi¬
kalische Vorgänge erklären ? Offenbar nichts anderes , als uns
noch unbekannte Vorgänge auf bekannte zurückführen . Welches
aber die „bekannten “ sind , hängt von dem zufälligen histori¬
schen Entwicklungsgänge der Physik ab . Alle Erklärungsver¬
suche physikalischer Vorgänge tragen daher den Stempel des
Zufälligen an sich und sind mit der Zeit Umwandlungen unter¬
worfen . Nicht die Erklärung der physikalischen Erscheinungen ,
sondern der Nachweis ihres Zusammenhanges ist von bleiben -

21) Hierbei folgt der Verfasser im wesentlichen dem Gedankengange ,
den Prof . Dr . 0 . Chwolson in einer kleinen , fesselnd geschriebenen
(rassischen ) Schrift „ Die Hertz ’schen Versuche “ eingeschlagen hat . (Son¬
der-Abdruck aus der Zeitschrift „ Elektricität “ 1890 .)

Kolbe . II . 11
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dem Wert und fördert unsere Naturerkenntnis . Die Aufgabe
der Physik ist es demnach : den Zusammenhang der
beobachteten Erscheinungen aufzudecken .

Noch zu Anfang dieses Jahrhunderts nahm man allgemein
für die Wärme , das Licht , den Magnetismus und die Elektri -
cität unter sich verschiedene Stoffe (Fluida ) an , die den Ge¬
setzen der Schwere nicht unterworfen wären und daher ge¬
wichtslose Stoffe (Imponderabilien ) hiefsen . Die Physik
zerfiel demnach in die Lehre von den Ponderabilien
(Mechanik fester , flüssiger und gasförmiger Körper ) und in
die Lehre von den Imponderabilien , deren vier (oder
sechs ) angenommen wurden , nämlich der Wärmestoff , Licht¬
stoff , magnetischer Stoff und Elektricitätsstofif (wobei die beiden
letzteren von den Dualisten noch in je zwei Stoffe mit ent¬
gegengesetzten Eigenschaften geschieden wurden ) . Dabei fand
keinerlei Zusammenhang zwischen den einzelnen Gebieten statt .
Als nun z . B . die Wirkungen des galvanischen Stromes auf die
Magnetnadel einen unerwarteten Zusammenhang zwischen
den bis dahin streng geschiedenen Gebieten des
Magnetismus und der Elektricität zeigten , da fiel die
Schranke zwischen beiden und die Annahme eines besonderen
imponderabilen Stoffes für den Magnetismus erschien über¬
flüssig und wurde aufgegeben .

Das war ein wichtiger Moment in der Entwicklungsge¬
schichte der Physik , denn mit ihm trat die Naturerkennt¬
nis in eine neue Phase . Ähnlich , wenn auch nicht so her¬
vortretend , weil allmählich vorbereitet , wirkte die spektralanaly¬
tische Forschung , indem sie nachwies , dafs die Wärme¬
strahlen und die Lichtstrahlen (so wie die gleichfalls an¬
genommenen „ chemisch wirksamen “ Strahlen ) nicht an sich
verschieden seien , sondern dafs es von der Natur der Körper ,
welche getroffen werden , abhängt , ob der Strahl eine Wärme - ,
Licht - oder chemische Wirkung äufsert . Man nahm nun an ,
dafs Licht - und Wärmestrahlen Schwingungsbewegungen eines
einzigen , das Weltall durchdringenden imponderabilen Stoffes ,
des Lichtäthers sei ; damit war auch der „Wärmestoff “ beseitigt .
So blieben denn bis in die neueste Zeit noch zwei von ein¬
ander verschiedene Imponderabilien übrig : der Licht¬
äther als Träger der Licht - und Wärmeerscheinungen
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und der gänzlich mysteriöse , unfafsbare Träger der
magnetischen und elektrischen Erscheinungen .

Die Gelehrten nahmen bisher an , dafs die Erscheinungen
der Influenz und Induktion unmittelbare Fernwirkungen
seien , bei denen das zwischenliegende „ isolierende “ Medium
(Dielektrikum ) eine passive Eolle spiele , sodafs alle elektri¬
schen Vorgänge sich auf die in ( oder auf ) dem Leiter
abspielenden beschränken . Nur F a r a d a y konnte keine
unmittelbare Fernwirkung anerkennen und hielt das einen
elektrischen Leiter umgebende Dielektrikum für den Haupt¬
träger der dynamischen (kinetischen ) Wirkungen . Nach seiner
Annahme hätten die magnetischen und elektrischen Kraftlinien
(welche die Eichtung der jeweilig wirkenden Kräfte markieren )
eine reale Existenz . Er wies am Kondensator nach , dafs
die Natur des Dielektrikums die Kapacität des Kondensators
wesentlich beeinflufst , dafs z . B . der luftleere Eaum ebenfalls
als Dielektrikum wirkt , und dafs der Ersatz der Luft durch
ein anderes Dielektrikum z . B . Schwefel oder Glas u . a . die
Kapacität des Kondensators in einem bestimmten Verhältnis
vergröfsert (I . Bd . S . 79 ) . Hieraus schlofs er , dafs die magne¬
tischen und elektrischen dynamischen Wirkungen
sich in dem umgebenden Dielektrikum selbst ab¬
spielen , und dafs also in diesem und nicht im Leiter sich
diejenigen Zustandsänderungen vollzögen , welche wir als elek¬
trische Fernwirkungen bezeichnen . Auch nahm Faraday an ,
dafs diese Zustandsänderungen sich mittelbar , also von
Punkt zu Punkt im Dielektrikum fortpflanzen . Hieraus folgt ,
dafs der eigentliche . Träger der magneto - elektrischen Wirkun¬
gen ein den ganzen Weltenraum durchdringendes Medium sein
müsse , und dafs die Wirkungen selbst im Dielektrikum Zeit
brauchen , um sich von einem Punkte des Eaum .es zu dem
anderen auszubreiten . Ja , es ist denkbar , dafs diese
elektrischen Wirkungen im Eaume noch naehdauern ,
wenn die erregende Kraft am Ausgangspunkt schon
verschwunden , wie ein Fixstern schon erloschen sein kann ,
während wir ihn noch am Himmel sehen , weil sein Licht schon
Jahre lang unterwegs gewesen ist , ehe es unser Auge trifft . —
Es ergab sich dann mit fast zwingender Notwendigkeit die
Annahme,

' dafs der Weltäther oder Lichtäther zugleich
11*
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Träger der magnetischen und elektrischen Erschei¬
nungen sei . Neuere Forschungen haben dieses nun im hohen
Grade wahrscheinlich gemacht . Faraday , wohl der gröfste
Experimentator aller Zeiten , besafs nicht das Küstzeug der
höheren Mathematik . Dagegen hat sein Schüler Clark Max¬
well auf mathematischer Grundlage eine elektro - magne -
tische Theorie des Lichtes aufgestellt , welche die magne¬
tischen , elektrischen und optischen Erscheinungen als gemein¬
same Bewegungserscheinungen des Weltäthers auffafst . Ist diese
Theorie richtig , so müssen magneto - elektrische „ Schwingungen “
herstellbar sein , welche den Gesetzen der Optik : der Reflexion
und der Brechung , gehorchen ! Der experimentelle Nachweis
gelang weder Faraday noch Maxwell und wurde erst in
den letzten Jahren von einem jungen , kürzlich (am 1 . Januar
1894) verstorbenen deutschen Gelehrten , Prof . Heinrich Hertz ,
geführt , dessen „Untersuchungen über die Ausbreitung der
elektrischen Kraft “ ( 1887—1893) die Physiker aller Länder auf
das lebhafteste interessierten und den Entdecker mit einem
Schlage in die erste Reihe der Forscher aller Zeiten stellten .

Es kann nicht meine Aufgabe sein , Ihnen die komplizierten
Versuche dieses genialen Gelehrten , der die Experimentier¬
kunst eines Faraday mit der mathematischen Ausbildung
Maxwell ’s vereinigte , zu beschreiben , besonders da die Unter¬
suchungen noch lange nicht abgeschlossen sind . Nur auf eine
der Schwierigkeiten will ich noch hinweisen , welche zu über¬
winden war , und kurz einiger Resultate erwähnen .

Der Lichtäther hat , wie jedes vollkommen elastische
Medium , die Eigenschaft : die durch periodische Stöfse an einer
Stelle erfolgenden Erschütterungen (Perturbationen ) mit einer
konstanten Geschwindigkeit fortzupflanzen , welche ganz
unabhängig von der Anzahl der in der Zeiteinheit erfolgenden
Stöfse ist . Bei der Wellenbewegung des Lichtes haben die
einzelnen Ätherteilchen . eine pendelartig schwingende Be¬
wegung , während die Fortpflanzung im Raume in senkrechter
Richtung zur Schwingungsebene der einzelnen Teilchen er¬
folgt (transversale Schwingungen ) . Die Strecke , um welche
die Bewegung im Raum fortrückt , während ein Teilchen seine .
Schwingung hin und her (um seine Ruhelage ) vollendet , heifst
eine Wellenlänge . Da , wie erwähnt , die Fortpflanzungs -
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geschWürdigkeit der Wellen eine konstante ist , so werden die
Wellen um so länger sein , je langsamer die periodischen Stöfse,
welche sie erregten , auf einander folgen . — Welcher Art nun
die Perturbationen des Äthers sind , welche (nach der Maxwell -
schen Theorie ) die magneto - elektrischen Erscheinungen be¬
dingen (ob transversale Wellen , wie die des Lichtes , ob wir¬
belartige — —) , wissen wir nicht , nur ergiebt die Rechnung ,
dafs die „ elektrischen Perturbationen “ des Äthers etwa die¬
selbe Fortpflanzungsgeschwindigkeit haben müssen , wie die
Lichtstrahlen , d . h . etwa 300 000 Kilometer oder 300 Millionen
Meter in der Sekunde . Unter dieser Voraussetzung müfsten
elektrische Wellen von 10 Meter Länge , falls sie existieren ,
(längere lassen sich in geschlossenen Räumen kaum beob¬
achten ) immerhin 300 000 000/10 = 30 Millionen Schwingungen
in der Sekunde vollführen . Um aber bequemere , in jedem
physikalischen Kabinett zu beobachtende Wellen von 3 Meter
Länge zu erzeugen , müfsten die erzeugenden Stöfse 100 Milli¬
onen mal in 1 Sekunde auf einander folgen .

Nach vielen vergeblichen Versuchen gelang es Hertz , durch
eine sinnreiche Vorrichtung , die er an dem Rühmkorff 'sehen
Funkeninduktor anbrachte , elektrische Entladungen von genü¬
gend schneller Aufeinanderfolge zu erhalten , um mit ihrer Hülfe
stehende „ elektrische Wellen “ in der Luft zu erzeugen , deren
Wellenlänge gemessen werden konnte . Es ergab sich auch , dafs
die „elektrischen Wellen “ (wie wir die ihrer Natur nach unbe¬
kannten Perturbationen nennen wollen ) sich in einem gleich¬
förmigen Dielektrikum geradlinig fortpflanzen , dagegen wenn
sie ein anderes Dielektrikum treffen , gebrochen werden und
zwar nach den gleichen Gesetzen , wie die Lichtstrahlen . Über¬
raschend für den ersten Augenblick , aber ebenfalls der Max -
well ’scken Theorie entsprechend , war die Beobachtung , dafs
die Leiter (Metalle ) die elektrischen Schwingungen
nicht fortzuleiten vermögen , sondern reflektieren .

So wurden denn durch die Hertz ’schen Versuche die Vor¬
aussetzungen der auf Faraday ’s Anschauung begründeten
Maxwell ’schen elektromagnetischen Lichttheorie bestätigt .
Jetzt — etwa , ein Jahrhundert nach Entdeckung der galvani¬
schen ElektricitäL — fällt vor unseren Augen die Schranke ,
welche die optischen Erscheinungen von den magnetisch -
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elektrischen schied . Noch ist hierbei vieles zu erforschen
übrig , aber durch die grundlegenden Arbeiten von Faraday ,
Maxwell und Hertz ist die Physik in eine neue Phase ihrer
Entwicklung getreten .

*

So haben wir denn unsere Wanderungen beendet . Nur
einführen in die Elektricitätslehre konnte ich Sie . Wenn Sie
aber durch das , was Sie jetzt gesehen und erfahren haben ,

• angeregt würden , sich weiter auf diesem Gebiete umzusehen ,
so wäre mir das der schönste Lohn !



Anhang 1.
(Ergänzungen und praktische Winke .)

1 . Durch Anwendung sehr starker Elektromagnete gelang s . 1.
es Faraday ( 1845) nachzuweisen , dafs alle Körper magnetische
Eigenschaften zeigen , aber nicht in gleicher Weise . Während
nämlich Eisen , Nickel , Kobalt u . e . a . von beiden Magnetpolen
angezogen werden , ist bei anderen Körpern , wie Antimon,
Wismuth , Zink und den meisten übrigen , das Umgekehrte der
Fall , d . h . sie werden von beiden Magnetpolen abgestofsen .
Die erste Gruppe von Körpern , deren typischer Vertreter das
Eisen ist , nannte Faraday paramagnetisch , die andere
diamagnetisch . Die Verbindungslinie der Pole eines Magnets
heilst die magnetische Achse , eine in ihrer Mitte senkrecht
gezogene Ebene der Aequator . Hängt man nun ein para¬
magnetisches Stäbchen zwischen die Polschuhe eines starken
Elektromagnets , so stellt es sich in Richtung der magnetischen
Achse (axial ) , d . h . den magnetischen Kraftlinien parallel . Ein
diamagnetisches Stäbchen dagegen stellt sich zur magnetischen
Achse senkrecht ( äquatorial ) , d . h . senkrecht zu den Kraft¬
linien . Weber erklärte dieses durch die Annahme , dafs in
den diamagnetischen Körpern durch die Einwirkung der Mag¬
nete molekulare Ströme von entgegengesetzter Richtung
induciert würden , was auch bei dielektrischen Köpern statt¬
finden könne ; und in der That erweisen sich Glas und andere
Nichtleiter als stark diamagnetisch .

2 . Der sogenannte „Volta ’sche Fundamentalversuch “ s . 30.
besteht in dem Nachweise , dafs zwei Platten aus verschie¬
denen Metallen , die an isolierenden Handgriffen mit den frisch

gereinigten Flächen zur Berührung gebracht und (in möglichst
paralleler Haltung ) wieder von einander entfernt werden , eine
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elektrische Niveaudifferenz (Potentialdifferenz ) zeigen , welche
nur von der Natur der verwandten Metalle , aber nicht von
der Gröfse der Berührungsfläche abhängig ist . Die Ursache
dieser „durch blofse Berührung “ entstandenen Elektrisierung
der beiden verschiedenen Metallplatten nannte Volta die
elektromotorische Kraft (Kontakttheorie ) . Bei Anwendung
einer Zink - und einer Kupferplatte zeigt das Zink -+- E , das
Kupfer — E (also umgekehrt , wie beim gleichzeitigen Ein¬
tauchen in angesäuertes Wasser , an den herausragenden
Enden , oder direkt so wie die Metallteile innerhalb der
Flüssigkeit ) . Ähnlich , wie die festen Körper in Bezug auf ihr
elektrisches Verhalten beim Reiben (I . Bd . S . 13 ) , lassen sich
auch die Metalle und Kohle so in eine Spannungsreihe
ordnen , dafs jedes Metall durch Berührung mit dem Folgenden
elektropositiv geladen wird .

Volta ’ s Spannungsreihe :
0

X. ‘^ ^ f-H 3
5 o 'S g g
m O M mN R n H

Hierbei findet folgendes von Volta gefundene Gesetz statt :
Die elektromotorische Kraft zwischen zwei beliebigen Gliedern
der Reihe ist gleich der Summe der elektromotorischen Kräfte
der zwischenliegenden Kombinationen , z . B . Zink / Kupfer =
Zink / Zinn + Zinn/Eisen + Eisen/Kupfer , oder auch : Zink /
Kohle + Kohle/Kupfer = Zink/Kupfer u . s . w . Da sich die
flüssigen Leiter dem Gesetz der Spannungsreihe nicht fügen ,
so nannte Volta die Metalle (und die Kohle) „ Elektromo¬
toren erster Klasse “

, und die flüssigen Leiter „Elektro¬
motoren zweiter Klasse “ . Diese Unterscheidung ist umso¬
mehr berechtigt , als die Metalle vom elektrischen Strom nur
erwärmt werden , während bei den Elektromotoren der zweiten
Klasse stets zugleich eine chemische Zersetzung ( die wir für
die Ursache der elektromotorischen Kraft annahmen , s . o . S . 29)
stattündet . Flüssigkeiten , welche nicht durch den elek¬
trischen Strom zersetzt werden , wie Vaselinöl , Alkohol
und sogar chemisch reines Wasser , leiten den Strom nicht !
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3 . Bei den Chromsäure-Elementen wird meist eine Lösung s . 31.
von doppeltchromsaurem Kali benutzt , welche durch das Aus¬
scheiden von Chromalaun sehr lästig ist . Weit zweckmäfsiger
ist die Anwendung von doppeltchromsaurem Natrium , da
die Alaunausscheidung fast ganz fortfällt . Folgende Mischung, die
Sie sich am besten vom Apotheker hersteilen lassen , hat sich
gut bewährt : 100 Gewichtsteile Wasser , 25 Teile rohe Schwefel¬
säure , 12 Teile Natriumbichromat . Der fertigen Lösung kann
man etwas schwefelsaures Quecksilber (oder Quecksilberoxyd )
zusetzen (3 —4 Gramm auf 1 Liter Flüssigkeit ) , wodurch die
Zinkplatte stets amalgamiert und blank erhalten wird .

4 . Lametta heifsen die flachen , aus gewalztem Metall s . 43,51,98 .
geprefsten Fäden , welche u . a . zur Verzierung der Wdihnachts -
bäume verwandt werden . Die gewellte Sorte ist vorzuziehen . Zu
dem sehr anschaulichen Versuch (Fig . 34 , S . 57) kann man auch
je 2 oder 3 Lamettafäden zugleich einspannen . In Ermange¬
lung solcher ist ein schmaler Streifen aus recht dünner Zinn¬
folie (Stanniol ) von 2 — 3 mm Breite und 50 cm Länge recht
gut brauchbar .

5 . In dem Werke : „ Essay theorique et experimentale sur s . 54.
le galvanisme “

, par Jean Aldini , Paris An XII . — MDCCCIV
(1804) [mit der Widmung : A Bonaparte , citoyen , premier
consul et president ] , findet sich S . 340 die Bemerkung : „ M. JRoma-
guesi , physicien de Trente , qui a reconnu , que le gal¬
vanisme faisait decliner l ’aiguille aimantee . “ — [Diese
literarische Notiz verdanke ich dem Herrn Prof . Dr . 0 . Chwol -
son in St. Petersburg .]

6 . BeimFleeming ’schenNormal - Element , [welches auch s . es.
durch das kleine Element (Fig . 17 , S . 35) ersetzt werden kann ]
taucht der Zinkstab in eine Lösung von 55,5 Teilen Zinksulfat
in 44,5 Teilen Wasser (spec . Gew. = 1,2 bei 20 ° C .) und der Kupfer¬
stab in eine Lösung von 16,5 Teilen Kupfersulfat in 83,5 Teilen
Wasser (spec . Gew. = 1,1 bei 20 ° C .) . Der Zinkstab mufs , wenn
er nicht chemisch rein ist , gut amalgamiert sein . Das Glas¬
gestell (Fig . 38) kann aus einem Stück bestehen . Da aber die
eingeschliffenen Glas-Hähne teuer sind , kann man den Ap¬
parat auch aus einzelnen Teilen zusammensetzen , die durch
Gummischläuche mit Ebonit -Hähnen (oder Quetsch -Hähnen )
verbunden sind . — Zu allen messenden Versuchen können nur
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S. 67.

konstante Elemente benutzt werden . Damit sie während des
Gebrauches möglichst gleichmäfsig wirken , läfst man sie nach
dem Zusammenstellen etwa 10 Minuten unter „ Kurzschlufs “
arbeiten , d . h . man verbindet die Polklemmen durch einen
kurzen , dicken Kupferdraht , damit sich im Inneren des Ele¬
mentes ein gewisser Gleichgewichtszustand herstellt .

7 . Bei unserer Versuchsanordnung (Fig . 39 ) steht die Gal¬
vanometernadel unter dem Einflufs zweier Richtkräfte : der
des Erdmagnetismus und der beiden Stabmagnete . Ersterer
sucht der Magnetnadel eine nord -südliche Richtung zu geben ,
letztere eine ost -westliche ; daher nimmt die Nadel eine gewisse
mittlere Richtung ein (Resultante ) . Je näher die beiden
Magnete "zur Bussole geschoben werden , umso mehr überwiegt
ihre Richtkraft die des Erdmagnetismus , d . li . der Winkel , den
die Galvanometernadel mit dem magnetischen Meridian bildet ,
wird immer gröfser . Da nun die Magnetstäbe stark magneti¬
siert und genügend lang sind (40 cm) , so ist ihr magnetisches
Feld im mittleren Teile , welcher von der (kurzen !) Galvanometer¬
nadel eingenommen wird , homogen , d . h . die Intensität ist (fast)
konstant und die Kraftlinien sind hier parallel . Hierauf
beruht (für eine nicht zu lange Magnetnadel ) die Zulässigkeit
der von uns benutzten Graduierungsmethode .

Beim Graduieren (Aieben ) des Galvanoskopes wurde
die Stromstärke , welche eine Ablenkung a1 = 14 ° ergab , als
(willkürliche ) Einheit der Stromstärke angenommen . Zur Her¬
stellung der bleibenden Aichungsskala empfiehlt es sich , die
Resultate der Graduierung graphisch darzustellen , indem man
auf quadriertem Millimeter -Papier als Abscissen (horizontal ) in
1 cm Abstand die Stromstärken (0, 1 , 2 , 3 . . . ) und als
Ordinaten (vertikal ) die beobachtete Anzahl der (Bogen-)
Grade , die auf Zehntel genau abzulesen sind , aufträgt und
die erhaltenen Punkte zu einer Kurve verbindet . Diese Kurve
kann bei genaueren Messungen als Hülfsmittel zur Reduktion
der Gradskala in Aichungsgrade dienen und benutzt werden , um
die nicht beobachteten Bruchteile der Aichungsskala (Halbe
oder Zehntel ) einzutragen , auch giebt ihr Verlauf ein gutes
Merkmal ab für die Güte der Messung.

Näheres über das Graduieren in der „ Zeitschrift für den
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phys . u . chem . Unt . “
(in Bezug auf das Elektrometer IV,

1891, S. 293, das Galvanometer VII , 1894, S . 122) .
8 . Die Glühlampe ist von Heinrich Göbel , einem nach s . 98.

New-York ausgewanderten Hannoveraner , bereits 1855 erfunden .
Göbel wurde von der Gesellschaft zur Ausbeutung der Edi¬
son ' sehen Erfindungen 1881 engagiert und seit der Zeit er¬
schienen die sogenannten Edison ’ schen Glühlampen auf dem
Markt . [Elektrotechn . Zeitschr . 1892, H . 7 , nach El . Eng . vom
25 . Jan . 1892 .]

9. Wird bei unserem Demonstrations - Galvanometer s. 107.
(vergl . Fig . 37 , S . 64 ) , bei vertikaler Stellung des Ringes (R) ,durch diesen ein konstanter Strom von genügender Stärke ge¬
leitet , um einen Ausschlag von etwas über 45 ° hervorzurufen ,
so läfst sich — durch Neigen des Ringes — immer ein Aus¬
schlag = 45 ° erzielen ! — In diesem Falle hat der Apparat
seine gröfste Empfindlichkeit . [Bei einer gewöhnlichen
Bussole kann man einen Winkel höchstens auf % Grad genau
ablesen (bei der unsrigen , die einen grofsen Teilkreis hat , höch¬
stens auf yi0 Grad ) . Für kleinere Winkel macht das einen
merklichen Bruchteil des Ablenkungswinkels aus , wodurch (bei
25 °

, resp . 5 °) der Fehler in der Stromstärke 1 , resp . 4% be¬
tragen kann . Andererseits ändern sich bei gröfseren Winkeln
(über 60 °) die Tangenten sehr rasch (die Aichungsgrade werden
bedeutend kleiner ) , weshalb der Ablesungsfehler das Resultat
wieder stark beeinflusst . Daher sucht man eine Ablenkung= 45 ° zu erzielen , da hier der Einflufs des Fehlers am wenig¬
sten wirksam ist] , — Unser Galvanometer ist in seinem Fufs-
gestell drehbar . Man kann also , wenn durch einen Strom
eine gewisse Ablenkung bewirkt ist , die Bussole der
Nadel nachdrehen , bis diese wieder auf Null ein¬
steht ! In diesem Falle ist die Stromstärke proportio¬
nal dem Sinus des Drehungswinkels ( 8) der Bussole
(J = k '

. sin 8 , wo k ' einen konstanten Faktor bedeutet ) .
Für eine solche Messung wird das Instrument zuerst so
aufgestellt , dafs die Zeiger der Magnetnadel in der Ruhe¬
lage und das Visier (v , Fig . 37 ) genau auf Null einstehen .
Da das Visier die Drehung der Bussole nicht mitmaekt , kann
man durch es an der Grad Skala den Drehungswinkel ablesen .
Dieses Galvanometer ist daher zugleich eine Sinus - Bussole .
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S. 110.

S. 125.

Die Handhabung einer solchen ist , des Nachdrehens wegen ,
zeitraubender als die der Tangens -Bussole, dafür hat die Länge
der Nadel keinen fehlerhaften Einflufs auf das Resultat , weil
die Nadel bei der Ablesung wieder in der Ringebene liegt .
Daher wird die Sinus-Bussole (erfunden von Pouillet 1837)
vorzugsweise zur genaueren Messung schwacher Ströme ver¬
wandt . Wir haben uns , um rasch experimentieren zu können
und nicht durch Rechnungen aufgehalten zu werden , des gra¬
duierten Galvanometers bedient , dessen Angaben der Strom¬
stärke direkt proportional sind (J = Ic" . A , wo A die Anzahl
der Grade an der Aichungsskala bedeutet ) . Dafs die erreich¬
bare Genauigkeit der Messungen von der Zuverlässigkeit
der Aichungsskala abhängt , ist wohl selbstverständlich .

10 . Schilling ’s Priorität in Bezug auf die Erfindung des
magneto - elektrischen Telegraphen wurde schon von Munke
(in Gehler ’ s Wörterbuch 1838 , IX , S . 111 — 115) anerkannt .
In neuerer Zeit auch von Zetzsche (Geschichte der Tele¬
graphie , Berlin 1877, S . 66) und Netoliczka (Illustrierte Gesch.
der Elektricität , Wien 1886 , S . 174—176 ) . — Auffallender Weise
haben die deutschen Lehrbücher davon keine Notiz genommen .

11 . Das leicht herstellbare Universalgestell , welches
wir als Ampere ’ sches Gestell (Fig . 23 ) und als Modell eines
Multiplikators (Fig . 35 , 36 ) kennen lernten , kann — wenn man
auf die Benutzung eines besonderen , graduierten Galvano¬
meters verzichtet — zu sämtlichen in der Schulphysik erforder¬
lichen Versuchen mit galvanischen Strömen dienen . [Die Herstel¬
lung ist beschrieben in d . Zeitschr . f. d . phys . u . ehern . Unt . VIII ,
S . 155 ] . Um es als brauchbares Modell einer Tangensbussole
zu verwenden , benutzt man zweckmäfsig eine kurze Magnet¬
nadel (z . B . eine von der Form Fig . 35 , B , deren Länge von einer
Biegung zur anderen 3 cm beträgt ) . Dann genügt ein darüber
geschobener Ring aus starkem Draht von 20 cm Durchmesser
vollständig . — Stellt man den Ring in einem Abstande von
5 cm (d . h . V4 des Ringdurehmessers ) vom Mittelpunkt der
Magnetnadel auf , so sind die Tangenten der Ausschlagswinkel
den Stromstärken direkt proportional (unabhängig von der
Nadellänge ) . Diese Form der Tangentenbussole wurde von
Helmholtz und Gaugain angegeben . — Für thermo -elek -
trische Ströme oder zum Nachweis der magnet - elektrischen
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Induktion werden zwei Doppelrahmen und eine astatische
Nadel (Fig . 62 ) angewandt , wodurch der Apparat zu einem
sehr empfindlichen Galvanometer wird , dessen Nadel ,
durch die Kupferdämpfung , fast momentan sich einstellt , wo¬
durch viel Zeit erspart wird . Noch wirksamer , als hei Anwen¬
dung der angegebenen Kupferhülsen von 4 mm Dicke (Cu,
Fig . G2 ) ist die Dämpfung , wenn man — nach einem Vor¬
schläge des Mechanikers G. Lorenz (0 . Haase ) in Chemnitz —
die 4 Kähmen , auf welche die mit Seide umsponnenen Kupfer¬
drähte gewickelt werden , aus dicken Platten von elektroly¬
tischem Kupfer ausfräst und die Seitenränder aus Ebonit her¬
stellt . Zur Anfertigung der Magnetnadeln eignen sich dicke
Klaviersaiten oder dünne Tangenten -Speichen der Fahrräder
sehr gut , da sie zäh sind und sich kalt biegen lassen ,
was die Selbstanfertigung der astatischen Nadel wesentlich
erleichtert . Das Härten der bis auf das Magnetisieren fertig
hergerichteten Nadeln geschieht , indem man sie auf einem
Stück Blech über einer Spiritusflamme erhitzt , bis sie blau
anlaufen ; dann läfst man sie in ein Gefäfs mit Vaselinöl fallen .
Die Hälfte der Nadel , welche den Südpol erhalten soll , wird
nachher mit feinem Schmirgelpapier abgeschliffen .

Jede Einzelrolle (Ri R2 R3 R4 , Fig . 62 ) hat 50 Windungen von
1 mm dickem Kupferdraht . Bei Anwendung der astatischen
Nadel mufs die Verbindung der Drähte eine solche
sein , dafs der Strom in den beiden oberen Drahtrollen
in umgekehrter Richtung kreist , wie in den beiden
unteren Rollen ! Oft ist es wünschenswert , den Rollenwider¬
stand dem Widerstand der Stromquelle ( Thermo -Element oder
Induktionsrolle ) möglichst anzupassen ; das kann in einem ge¬
wissen Grade durch eine verschiedene Schaltung der
Rollen erreicht werden . Zur leichteren Orientierung sind die
Drahtenden jeder Rolle , durch welche der Strom eintreten
soll , mit roter Seide bewickelt , während die anderen grün
sind . Alle 8 Drahtenden sind an vernickelte Blechstücke mit
Ausschnitten gelötet (vergl . Fig . 42 , S . 71) . Durch einige kleine
Prefsklemmen werden die Drähte nach Bedarf unter sich ver¬
bunden . Die freien Enden werden zu den an den Schlitten
befindlichen Doppelprefsklemmen K * K 2 geführt (in Fig . 62 sind
Ki u . K 3 leider als gewöhnliche Schraubenklemmen gezeichnet ) .



174 Anhang (Das Universalgestell ) .

Ist der Widerstand jeder einzelnen Eolle = W , so können wir
den Eollenwiderstand in folgender Weise modiflcieren : 1) Alle
4Eollen hintereinander geschalteten Fig . 62 angedentet ) ;
der Widerstand = 4W . 2) Die oberen und die unteren
Eollen parallel geschaltet (d . h . man verbindet mit den
beiden roten Drähten seiner Eollen , K 2 in gleicherweise mit
den grünen Drähten der zugehörigen Eollen , dann die oberen
und die unteren Eollen unter sich ) ; der Widerstand — 2 W/2 = W ,
also nur 1/i des vorigen . 3) Alle 4 Eollen parallel ge¬
schaltet (d . h . K x wird mit allen 4 roten , K 2 mit allen 4 grünen
Drähten verbunden ) ; der Widerstand = W/4 , also 16 mal kleiner
als bei der Schaltung hintereinander !

Sind die Eollen so geschaltet , dafs der Strom in allen in
gleicher Eichtung kreist , so darf die astatische Nadel —
wenn der Widerstand und die Windungszahl der Einzelrollen
gleich ist — keinen Ausschlag zeigen ! Schaltet man nun z . B.
in den Stromkreis der oberen Eollen einen Draht , dessen
Widerstand geprüft werden soll , und in den Stromkreis der
unteren Eolle bekannte Widerstände , bis der Ausschlag = 0
wird , so läfst sich , auch bei Verwendung eines wenig kon¬
stanten Elementes , die Widerstandsbestiinmung sehr genau
ausführen (da beide Leiterzweige gleichzeitig von dem¬
selben Strom durchflossen werden ) . In ähnlicher Weise kann
man auch die Stromstärke zweier galvanischer Elemente mit
einander vergleichen , doch würde ein näheres Eingehen darauf
hier zu weit , führen .

Wendet man statt der astatischen Nadel eine solche an , die
aus zwei gleichgerichtet parallelen Magnetstäbchen besteht ,
so erhält man bei Anwendung der Doppelrollen einen empfind¬
lichen gewöhnlichen Multiplikator , abermitKupferdämpfung .
Natürlich mufs in diesem Falle der Strom in allen 4 Eollen
gleiche Eichtung haben . Diese Nadel hat vor der astatischen
den Vorzug , dafs sie sich sehr energisch in den magnetischen
Meridian einstellt . Die oben erwähnten Widerstandsverglei¬
chungen können mit diesem Apparat ebenfalls (wenn auch weni¬
ger genau ) angestellt werden ; zum Nachweis der thermo -elek -
trischen Ströme oder der Induktionsströme (Fig . 63 —65 ) reicht
die Empfindlichkeit aber nicht aus .

Zum Nachweis sehr schwacher Ströme kann an der asta -
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tischen Nadel statt des Zeigers ein Spiegel (S , Fig . 62) einge¬setzt werden , der das durch einen Spalt fallende und von einer
Cylinderlinse von grofser Brennweite (etwa 100 cm) konzen¬
trierte Licht auf einen horizontalen Stab wirft , der mit Milli¬
meterpapier beklebt ist , sodafs ein scharfes Bild des Spaltes
auf der Skala entsteht . Hierdurch werden die kleinsten
Schwankungen der Magnetnadel sichtbar . Hierbei mufs das
Galvanometer durch einen Schutzkasten vor Luftzug geschützt
werden . (Da diese Versuchsanordnung ein gut verdunkeltes
Zimmer erfordert , so haben wir sie nicht benutzt .)

12 . Die Wechselströme zeigen Eigenschaften , welche sie s . 143,152 .
von den gewöhnlichen oder den intermittierenden gleichgerich¬
teten Strömen wesentlich unterscheiden . Sie können weder am
Galvanometer noch am Voltameter gemessen werden , da die
in rascher Folge und entgegengesetzter Richtung erfolgenden
Stromstöfse sich in ihrer Wirkung aufheben , und es sind zu
ihrer Messung besondere Apparate erforderlich , auf die wir
nicht eingehen können . Auch die Selbstinduktion im Leiter ,
besonders wenn dieser lockenförmig gebogen ist , ist so be¬
deutend , dafs der Widerstand einer Drahtspule gröfser sein
kann als der einer kurzen Luftstrecke in einem geraden Leiter .
Der Widerstand eines Leiters für Wechselströme wird also
wesentlich durch seine Form beeinflufst (das war bei den
gleichgerichteten Strömen nicht der Fall ) . Daher gilt das
Ohm ’ sche Gesetz auch nicht für Wechselströme ! Bei
gleichgerichteten Strömen ist die Leistungsfähigkeit gleichlanger
Drähte aus demselben Material der Fläche des Querschnitts
proportional (vergl . S . 90) . Das ist nun bei den Wechsel¬
strömen von hoher Wechselzahl nicht mehr der Fall ; es scheint
vielmehr , als ob sie — bildlich gesprochen — nicht das Innere
des Drahtes durchsetzen , sondern nur längs der Oberfläche
dahingleiten ! — Die Wechselströme der magnet -elektrischen
Maschinen oder gar der für Wechselstrom eingerichteten
dynamo - elektrischen Maschinen zeichnen sich durch ihre
intensive physiologische Wirkung aus und können , durch den
menschlichen Körper geleitet , den Tod zur Folge haben . Im '
Widerspruch hierzu scheinen die Versuche von Tesla zu
stehen , wonach Ströme von sehr hoher Wechselzahl (bis
300 000 in der Sekunde ) und grofser elektromotorischer Kraft
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(60 000 Volt und darüber ) durch den menschlichen Körper
geleitet werden können , ohne dafs die betreffende Person ein
Unbehagen verspürt . (Im Jahre 1893 wurden diese Versuche
von Prof . Jegorow im phys . Kab . der militär -med . Akademie in
St . Petersburg vor einem grofsen Zuschauerkreise wiederholt
und bestätigt .) — Wie Sie wissen , strahlt ein glühender Körper
Licht von sehr verschiedener Wellenlänge aus . Unser Auge
nimmt davon nur diejenigen wahr , welche 400 — 800 Billionen
Schwingungen in der Sekunde haben . Für die übrigen ist
unser Auge gänzlich unempfindlich . Wir können uns nun
denken , dafs unsere Nerven ebenfalls nur für gewisse , ver -
hältnismäfsig langsame Schwingungen abgestimmt sind und
daher von den zu schnell erfolgenden Schwingungen der Tesla ’ -
schen Ströme nicht mehr erregt werden können .
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Denjenigen Lesern , welche sich eingehender mit der
Elektricitätslehre beschäftigen wollen , seien aus der grofsen
Zahl der vorhandenen , zum Teil trefflichen Werke , folgende
empfohlen .
L . Graetz : Die Elektricität und ihre Anwendung . Stuttgart 1883 . Engelhorn .

— (Sehr klar geschrieben .)
Miiller - Pouillet ’ s Lehrbuch der Physik und Meteorologie. IX . Aufl .

Herausgegeben von Pfaundler . III . Bd . Braunschweig 1888 — 1890 .
Vieweg & Sohn. (Sehr eingehend , besonders auch die Theorie der
Instrumente behandelnd .)

Eugen Netoliczka : Illustrierte Geschichte der Elektricität von den
ältesten Zeiten bis auf unsere Tage . Wien 1886 . Pichler ’s Wittwe &
Sohn. (Mit zahlreichen litterarischen Hinweisen .)

Arthur Wilke : Die Elektricität , ihre Erzeugung und Anwendung in In¬
dustrie und Gewerbe . Leipzig 1893 . Otto Spanier . (Aus der Theorie
nur das Notwendigste , aber eine Fülle von Material in Bezug auf die
technische Anwendung der Apparate bietend .)

E . vonLommel : Lehrbuch der Experimentalphysik . Leipzig (II . Aufl . 1894 ) .
Johann Ambrosius Barth . (Recht kurz , aber das Wichtige plastisch
hervorhebend .)

Balfour Stewart und Haldane Gee (Deutsch von Karl Noack ) :
Praktische Physik für Schulen und jüngere Studirende . I . Teil. Elek¬
tricität und Magnetismus . Berlin 1889 . Julius Springer . (In den
Erläuterungen etwas knapp , giebt dieses Büchlein eine vortreffliche
Anleitung zur Herstellung einfacher Apparate und zur Anstellung von
messenden Versuchen .)

Adolf Weinhold : Vorschule der Experimentalphysik . Leipzig (III . Aufl.
1883 ) . Quandt & Händel . [Eine der vorzüglichsten Anleitungen zur
Herstellung von Apparaten und zum Experimentieren ; dabei mit den

nötigen elementaren Erläuterungen versehen . Dieses Buch behandelt
die ganze elementare Physik . Von gleicher Vortrefflichkeit sind die
für eine höhere Stufe (Studierende und Lehrer ) bestimmten „Physika ] ,
Demonstrationen “ desselben Verfassers .]

Paul Reis : Lehrbuch der Physik . Leipzig (VIII . Aufl . 1893) Quandt &
Händel . [Wegen der deduktiven Darstellungsweise für den Anfän¬

ger etwas schwierig ; dafür aber als vorzügliches Nachschlagebuch sehr
zu empfehlen . Enthält auch eine grofse Zahl physikalischer Aufgaben
(mit Angabe des Resultats )] .

■KZ’.

Kolbe . II . 12
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Die zu den beschriebenen Versuchen benutzten neuen
Apparate werden von den Mechanikern Ferdinand Ernecke
in Berlin (S .W . Königgrätzer Str . 112) , sowie von G. Lorenz
(0 . Haase) in Chemnitz , und von Max Kohl in Chemnitz zu
nachstehenden Preisen geliefert :

Name des Apparates Mark

1 Aluminium - Elektrometer (Big . 9 , 16, 18) ; Seitenwände
innen mit Drahtnetz versehen , 2 Kondensatorplatten ,
1 Glimmerscheibe , 1 Gradskala auf Spiegelglas . . .

1 einsetzbare Projektionsskala ( 1 Ai -
chungsskala oder 1 Gradskala ) . . .

1 Ebonitpfropf mit Leitungsstab und
Extra : Papierblättchen (zum Versuch Fig . 6)

1 aufschraubbare Hohlkugel (50 mm Durchm .)
nebst 2 isolierten Probekugeln , zum Gra¬
duieren (I . Bd ., S . 26 und 77) . . . .

1 Projektionstischchen (Fig . 13) mit 1 Lampe , 2 Linsen und
2 Blendschirmen (für alle Versuche mit dem Elektro¬
meter ) , je nach der Gröfse der Linsen .

1 Papier - Elektroskop (Fig . 8) .
2 Aluminium - Elektroskope nebst Zubehör (für qualitative

Versuche) .
1 Universalgestell (Fig . 23 , 35 , 62 ) , vollständig (vergl .

Anh . 11) .
a) Das Gestell allein (A , Fig . 23 oder 35 ) . . . .
b ) Teile , um es als Ampere ’ sches Gestell zu be¬

nutzen (Fig . 23 — 26) ; die beweglichen Leiter aus
Aluminium mit Silberspitzen ; alle Stromleiter mit
stellbaren Stromrichtungs -Zeigern . .

c) Teile zum Modell eines Multiplikators und
einer Tangensbussole (Fig . 35 , 36 ) . . . .

d) Teile zum empfindlichen Galvanometer
(Fig . 62 ) mit astatischer Nadel und Kupferdämpfung ,
sowie einem einsetzbaren Spiegel ; zum Nachweis
der thermo - elektrischen Ströme (Fig . 60 ) und der
magnet -elektrischen Induktion (Fig . 63—65 , 73)

e) 1 Schutzkasten aus Pappe mit 2 Glaswänden , für
feinere Versuche (mit dem Spiegel) .

50

5

5

40 — 50
12

25

135
25

30

32

36

7
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Name des Apparates Mark

Extra : i ;
f ) 1 Aufbewahrungskasten für die Solenoide , Nadeln

u . s . w .
1 genau planparallel geschliffener Spiegel .

Doppelnadel mit 2 gleichgerichteten Mag-
l neten (Anh . 11) .

1 modificierter Riihmkorff ’ scher Stromwender (Fig . 20)
mit automatischem Stromrichtungs -Zeiger, Prefsschrauben ,
sichtbarer Stromleitung (zu den Yersuehen Big. 21 , 24, 41
besonders geeignet) .

1 handlicher Stromleiter (Big. 30 ) zum Nachweis der
Ampere ’ schen Gesetze .

1 kleines Tauchelement (Big . 10) .
1 Batterie von 5 kleinen Tauchelementen (Fig . 15) . . . .
1 kleines konstantes Element (Fig . 17) zum Gra¬

duieren des Galvanometers .
1 Batterie von 5 konstanten Elementen (A, Fig . 18) . . .
1 Batterie von 50 konstanten Elementen auf 1 Brett , zum

Nachweis des Stromgefälles (Fig . 19) .
1 Demonstrations - Galvanometer (zu Yersuehen Fig . 13

bis 51 , 54 , 59 ) :
a) Sinus -Tangensbussole (Fig .37 ) bei Ernecke

mit drehbarem Metallständer und und bei
Ob ach ’ schein Ring ; Durchmesser Lorenz . .
des Skalenringes = 230 mm ( 1 ° bei
= 2 mm) mit Yisier . Max Kohl .

b ) Tangensbussole mit festem Ring , Gröfse dieselbe .
c) Tangensbussole , kleiner (Durchmesser des Skalen¬

ringes = 180 mm, 1 0 = 1,56 mm) . Mit festem Holz¬
ständer , Papierskala .

5
12

25

7 .50
2

12

3.50
15

130

145

100
90

65

1 Glaskasten aus Spiegelglas , 18x8x7cm, (zuYersuchen Fig .43 ,
45 —47 , 50) von E . Leybold ’s Nachfolger in Cöln . 1,50 —2

12 *



Alphabetisches Sachregister .
[Die Zahlen beziehen sich auf die Seiten ; Anh . = Anhang ; EK = elektromot . Kraft .]

Abdrücke , galvanische 108.
Abhängigkeit des Stromgefälles

von der Länge des Leiters 15 ; von
der Leitungsfähigkeit 19 ; vom Quer¬
schnitt 18 ;

— der Stromstärke von der EK
82 ; vom Gesamtwiderstande 81 ;
von der Länge des Leiters 88 , 90 ;
vom Querschnitt 87 , 90 ; vom
Widerstande 80 .

Ablenkung der Magnetnadel durch den
Strom 53 , 67 — 68 ; Gesetz der —
54 .

Abstofsung der Magnetpole 4 ; der
Stromleiter 44.

Achse der Magnetnadel 66 .
Aichung des Elektrometers nach Yolt

104 ; des Galvanometers 67 .
Aichungsskala : des Elektrometers 13 ,

37 , 104 ; des Galvanometers 67 , 106 ,
170 ; Herstellung 68 ; Konstante 106 .

Akkumulator 118 .
Aluminium-Elektrometer 21 ; Yoltskala

104 .
Amalgamierung der Zinkplatten 27 .
Ampere das , als Einheit der Strom¬

stärke 92 , 104.
Ampere ’ s Gesetze 45 —47 , 54 ; Ge¬

stell 43 (Fig . 23 ) ; Hypothese 5 , 55 ;
Schwimmregel 54.

Analogie zwischen hydrodynamischen
und elektrodynamischen Erscheinun¬
gen 13 , 77 ;

— zwischen magnetischen und elek¬
trostatischen Erscheinungen 7 .

Anker zum Hufeisenmagnet 51 ; zur
Dynamomaschine 147 .

Anode 101 .
Antimon 119 .
Anziehung der Magnetpole 4 ; der

Stromleiter 44 — 46 .
Aperiodische Schwingung der Magnet¬

nadel 128 ; Erklärung 136 .
Arbeitsübertragung , elektrische 154 .
Astatische Nadel 126 .
Atome 5 (Fufsnote 2) .
Automatischer Stromwender 144.
Automatischer Stromrichtungs - Zeiger
.. 42 .

Aufserer Widerstand 80.
Aquamotorische Kraft 11 , 15 , 19 , 78 .
Äquivalente , elektrochemische 105 .

Batterie kleiner Tauchelemente 32 ; —
konstantes Element 40 ; innerer
Widerstand 93 ; Schaltungsweise 33 ;
günstigste 87 .

Becher , Yolta ’ scher 23 .
Bedeutung des Magnetisierens 5, 55 .
Begriff der aquamotorischen Kraft 11 ;

der EK 15 ; der Stromstärke bei
elektrischen Strömen 75 , 79 ; bei
Wasserströmen 76 .

Bell ’ s Telephon 157 .
Bequeme Klemmen für Elemente 71 .
Bestimmung der E K am Elektrometer

34, 37 ;
— am Galvanometer 74.

Bestimmung des inneren Widerstandes
einer Batterie 94 .

Bewegliche Stromleiter 43 , 45 , 48 , 53 ,
57 , 127 , 133 .

Bewegung eines Leiterstückes im mag¬
netischen Felde 133 ;
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Bewegung eines Stromleiters um einen
Magnet 57 .

Bildliche Darstellung der Strombildung
im Elemente 75 .

Blasebalg für Tauchelemente 69 .
Bleisuperoxyd 117 .
Bogenlampe , elektrische 152 .
Bosschard ’ s Telephonmodell 157 .
Brechung der elektrischen Wellen 165 .
Buff ’ s Kontaktversuch 21 (Fig . 29) .
Bunsen ’ s Element 31 , 37 .
Bussole 64 (Fig . 37 ) ; Sinus- — 171

(Anh . 9 ) ; Tangenten - — 107 , 172
(Anh . ll ) ; Graduierung66 — 68 ; Kon¬
stante der Aichungsskala 106 ; Re¬
duktionsfaktor 107 .

Centrierung des Stahlstifts der Bus¬
sole 65 (Fufsnote 1) .

Chemische Strommesser 101 .
Chemische Theorie des galvanischen

Stromes 29 .
Chemische Vorgänge im Element 28 .
Chemische Wechselwirkung zwischen

Metallen und Flüssigkeiten 29 .
Chromsäure-Eleinent 31 .
Chromsäure-Lösung 31, 169 (Anh . 3) .
Clarke ’s Normal -Element 37 .
Cliche, galvanoplastisches 108 .
Coldani ’ s Entdeckung 29 .
Coulomb , Einheit der Elektricitäts -

menge 105 .

Dämpfung des elektrischen Stromes
73 ; — der Magnetnadel 126 , 136 .

Daniell ’ sches Element 31 ; EK des
- 35 , 117 .

Deklination der Magnetnadel 3 (Fufs¬
note 1) .

De la Rive , Chemische Theorie des
galvanischen Stromes 29 .

Demonstrations -Galvanometer 64 (Fig .
37) , 104 .

Demonstrations -Multiplikator 125 (Fig .
62 ) ; 173 (Anh . 11) .

Diamagnetismus 167 (Anh . 1).
Drahtspule , magnetische Wirkung 49 .
Draht -Widerstands Vergleichung 89 .
Dynamische Elektricität8 ; Unterschied

mit der elektrostatischen 16 .
Dynamo-elektrisches Princip 145 .
Dynamomaschine 144 — 152 ; Schal¬

tungsweise 150 .

Ed ison ’ s Glühlampe 171 (Anh . 8) .
Eigenschaften der Wechselströme l75

(Anh . 12 ) .
Eisenfeilspäne 1 , 127 .
Einflufs der Windungszahl auf die Ab¬

lenkung der Multiplikator -Nadel 60 ;
— einer Röhrenleitung auf den Was¬
serstrom 77 .

Einheit , praktische der EK 104 ; der
Stromstärke 92 , 104 ; ( Jacobi ’ s
101 ) ; — des Widerstandes 91 , 105 .

Einzelablesung 66 .
Elektricität , Erscheinungen der stati¬

schen 7 .
Elektricitätsmenge 75 , 105 ; als Mafs

der Stromstärke 79 .
Elektrische Arbeitsübertragung 154 .
Elektrische Beleuchtung 152 .
Elektrische Glühlampe 98 , 153 , 171

(Anh . 8 ).
Elektrischer Strom 17.
Elektrisches Gefälle im Stromleiter 13,

14, 18 , 41 .
Elektrisches Schweifsen 153 .
Elektrisierung der Metalle durch Be¬

rührung mit Flüssigkeiten 21 , 24.
Elektro -chemische Äquivalente 105 .
Elektro -chemischer Telegraph 110 .
Elektrolyse 99 .
Elektromagnet 51 ; Joule ’ scher 52 ;

hufeisenförmiger — 52 .
Elektromagnetismus 50 .

. Elektromagnetischer Telegraph von
Gauss und Weber 111 ; Morse
112 ; Schilling 110 ; Wheatstone
112 .

Elektrometer , Aluminium- 21 , 104;
Papier - 14.

Elektrometrisclie Wirkung 70 .
Elektromotorische Kraft {EK ) 15 , 33 ;

— einer Kette bei verschiedener
Schaltung 34 ; — von verschiedenen
Elementen 37 ; — bei verschiedener
Gruppierung der Elemente einer
Batterie 86 ; — der Polarisation 117 ;
Mafs der EK 15 , 16 , 104 .

Elektroskop 9, 18 .
Entwickelung der Formel für die

Stromstärke 82 .
Entzündung , elektrische 98 .
Erdelektrische Ströme 56 .
Erdleitung 22 (Fufsnote 4 ) ; Steiu -

heil ’ s 112 .
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Erdmagnetismus , Richtkraft auf be¬
wegliche Stromleiter 47 .

Erwärmung durch den Strom 98 , 153 .
Erzeugung von magnetischen Kraft¬

linien 127 , 135 , 146 , 156 .
Extrastrom 137 , 138 .

Faraday , Chemische Theorie des
galvanischen Stromes 29 ; Fun da¬
mentalversuch (Punkenmagnet ) 124
(Fig . 61 ) ; Regel für die magneto¬
elektrische Induktion 134 .

F a u r e , Akkumulator 118 .
Feld , magnetisches 57 , 128 .
Feldmagnet 148 .
F1 e e m in g’s Normaldaniell 85 (Fig .38) .
Folgerungen aus dem Ohm ’ sehen

Gesetz 84 , 85 .
Formel für die Stromstärke 83.
Füllungsgrad 12 ; — -differenz 13 .
Fundamentalversuch Faraday ’ s 124 ;

Volta ’ s 30 , 167 (Anh . 2 ).
Funkeninduktor (Induktionsrolle ) 139 .

Cr alvani ’ s Beobachtung 29 .
Galvanische Elektricität 30 .
Galvanische Elemente 31 .
Galvanische Polarisation 115 .
Galvanismus 30.
Galvanometer64 (Fig .37 ) ; Graduierung

66 —68 ; Konstante der Aichungs -
skala 106 .

Galvanometrische "
Wirkung 70, 71 .

Galvanoplastik 108 .
Galvanoskop 58.
Galvanotypie 108 .
Gaskohle (Koks ) 36 .
Ga ugain ’sche Tangenten -Bussole 172

(Anh . 11) .
Gauss und Weber , elektromagne¬

tischer Telegraph 111 .
Gegenschaltung von Elementen 36 .
Geis sler ’ sehe Röhren 141 .
Geschichtliches , Ablenkung der Mag¬

netnadel 54 , 169 (Anh . 5) ; Akkumu¬
latoren 117 ; Diamagnetismus 167
(Anh . 1) ; Galvanismus 30 ; Kontakt -
elektricität29,167 (Anh .2 ) ; Magneto¬
elektrische Maschine 142 ; Ringma¬
schine 149 ; Telegraphie 109 , 172 .

Gesetz , Ampere ’ s 45 — 47 ; Fara -
day ’ s 133 — 135 ; Jacobi ’ s 101 ;
Joule ’ s 99 ; Lenz ’ 132 : — der

magnetischen Anziehung und Ab -
stolsung 4 ; — der Anziehung von
Stromleitern 44 , 47 ; — der Strom¬
richtung 55 ; — der Induktionsströme
132 , 134 ; der Spannungsreihe 168 .

Gleitschienen (Drähte ) 133 , 134 .
Gleichgerichtete Induktionsströme 148 .
Gleichnamige Pole 4 .
Glimmerscheiben als Isolatoren 21,141 .
Glühlampen , elektrische 98 , 153 , 171 .
Göbel , Erfinder der Glühlampe 171

(Anh . 8 ) .
Graduierung einesGalvanoskops66 —68 .
Gramme ’ sehe magnet -elektrische Ma¬

schine 149 .
Gramme ’scher Ring 150 .
Gröfste Empfindlichkeit des Galvano¬

meters 89 , 103 , 171 (Anh . 9) .
Grove ’ s Element 30 .
Günstigste Gruppierung der Elemente

einer Batterie 87 .

Halbleiter 9 .
Hefner - Alteneck , v . , Trommel¬

induktor 150 .
Helmholtz , v ., Tangentenbussole 172

(Anh . 11) .
Hempel , astatische Nadel 121 (Fig .

62 , B ) .
Hertz , elektrische Wellen 165 .
H o f m a n n,Wasserstoff -VoltameterlOO .
Holz , Isolierfähigkeit für galvanische

Ströme 32.
Horizontale Abweichung der Magnet¬

nadel 3 (Fufsnote 1) .
Hufeisenmagnet 52 .
Hughes , Mikrophon 159 .
Hydrodynamische Erscheinungen 11

bis 13 ; 75 —79 . _
Hypothesen : Ampere ’ s 5, 55 ; Vol¬

ta ’ s 29 , 167 (Anh . 2) .

Jacobi , Einheit der Stromstärke 101 ;
Galvanoplastik 109 .

Indifferenzpunkt 132 , 147 , 149 .
Indifferenzzone 1 , 143 .
Inducierender Strom 131 .
Inducierter Strom (in der sekundären

Rolle ) 138 .
Induktion , magnetelektrische 128 .
Induktionsapparat 138 .
Induktionsregel 132 , 134 .
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Induktionsrolle (Spirale ) 138 , 139 .
Induktionsstrom 129 ; Gesetz 135 .
Induktor 153 .
Influenz , magnetische 2, 6 .
Influenz-Elektrisiermaschine als Elek-

tricitätsquelle 9 , 14 .
Innerer Widerstand 80 ; Messung 93 .
Isolierende Griffe 21, 23 , 33 , 35 , 69 .
Isolierfähigkeit des Holzes für galva¬

nische Ströme 32 .
Joule ’s Elektromagnet52 ; — Gesetz

der Wärmeentwickelung 99 .

Kaliumbichromat 169 (Anh . 3 ) .
Kathode 101 .
Kathodenplatte 103.
Kette (Batterie ) 34 ; EK 55 , 56 ; kon¬

stante K . 33—36 .
Kirchhoff ’ sches Gesetz 94 .
Klemmenspannung 152 (Fufsnote 23) .
Klemmschrauben 31 , 42 , 66 .
Knallgas 100 .
Knallgas -Voltameter 100 (Fig . 54) , 115 .
Kohlenstäbe 32 , 36 ; Verlötung 32

(Fufsnote 5) .
Kollektor an Dynamomaschinen 149 .
Kombination der Elemente einer Bat¬

terie 86 ; günstigste 87 .
Kommutator (Stromwender ) 42 (Fig .20) , .

144.
Kompoundschaltung 151 .
Kondensator 24, 104, 141 .
Konstante der Aichungsskala 106 .
Konstante Elemente 33 , 35 , 36 ; ihre

EIi 37 .
Konstanter Faktor 93 .
Kontakt 23 , 30 .
Kontaktschlüssel 40, 49 , 113 .
Kontakttheorie 29 .
Kontaktversuch ; Buff ’s 21 ; Volta ’s

30 , 167 (Anh . 2) .
Kontinuierliche Induktionsströme 148 .
Kraftlinien , magnetische 27 , 135 .
Kraftübertragung , s . Arbeitsübertra¬

gung 154 .
Kupferdämpfung 126 , 136 .
Kupferniederschlag 31 , 108 .
Kupfervitriol 31 .
Kupfer-Voltameter 102 .

Iiametta 57 , 98 , 169 (Anh . 4) .
L atimer Clarke ’sjS[or.malelement37 .
Leelanche ’s Element 36 .

Legierungen , Leitungsfähigkeit der —
93 .

Leiter der Elektricität (Tabelle ) 92 .
Leitung , telegraphische 110 .
Leitungsfähigkeit , von Drähten 91 ;

Flüssigkeiten 88 ; Legierungen 93 ;
verschiedener Stoffe 92 ; specifische
— 91 ; Änderung mit der Tempe¬
ratur 93 .

Lenz ’sches Gesetz 99 , 132 .
Lesage , elektrostatischer Telegraph

109 .
Licht , elektrisches 152 .
Lodge ’s Versuch 57.
Lokalbatterie 113 .
Lötung von Drähten und Kohlenstäben

32 (Fufsnote 5 ) .
Lüdtge , Erfinder des Mikrophons

159 .

Magnet , Elektro - 50 , 52 ; Stahl-
2, 47 , 57 , 131 , 133 ; natürlicher 1 .

Magneteisenerz 1 . '
Magnetische Achse 66 ; — Anziehung

und Abstofs ung 2 ; — Kraftlinien
127 , 135 ; — Wirkung eines Strom¬
leiters 47—49 .

Magnetisches Feld 57 , 128 , 146 , 156 .
Magnetisierung 3 ; Bedeutung der —

5, 55 ; .— durch Influenz 6 ; — durch
Streichen 3 ; — durch den Strom
49 —52 .

Magnetisierungsspirale 49 .
Magnetnadel 3 , 59 , 64 ; astatische 126 ;

Doppelnadel 174 (Anh . 11) .
Magneto - elektrische Induktion 127

und folgende.
Magnetpole 1 , 3 , 5 , 6 , 49 , 128 .
Mathematischer Ausdruck für die

Stromstärke 83 .
Manganin 93 .
Mafs , der EK 15 , 16,104 ; der Strom¬

stärke 82 , 92 , 101 , 104 , 105 ; —
bei Wasserströmen 76 .

Maschine, dynamo-elektrische 145 bis
152 ; magnet - elektrische 142 —144 ;
— für gleichgerichtete Ströme 144 ,
148 ; — für Wechselströme 143 , 152 .

Maximum der Stromstärke 87 .
Maxwell ’s elektro -magnetische Licht¬

theorie 164 .
Messung , kleiner Temperatur - Diffe¬

renzen 121 ; — starker Ströme 95 .
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Metallfäden siehe Lametta .
Mikrophon 149 .
Molekül 5 (Fufsnote 2) .
Molekularmagnet 5, 55 .
Molekularströme 55 .
Morse ’s Schreibtelegraph 112 .
Multiplikator 60 —61,120,125 (Fig . 62) .
Mühlenbein ’s Apparat 43.

Jffachweis : der A m per e’sclien Gesetze
53 — 54 ; des Len z ’schenGesetzesl30 ;
- der Olim ’schen Gesetze 80 —82 .

Nadel , astatische 125 (Fig . 62 , B) .
Nadeltelegraph 110 , 114 .
Natriumbichromat -Lösung 31 , 80 , 169

(Anh . 3) .
Nebenschaltung der Elemente 33 .
Nebenschlufs -Schaltung der Dynamo¬

maschine 151 .
Negativ , galvanoplastisches 108 .
Neusilberdraht 40, 72 .
Nickel 2 .
Niveaudifferenz 11, 25 , 77 ; elektrische

— 15 , 18, 25 , 41 .
Nordpol (nordsuchender Pol ) 3 .
Normalelement , von Clarke 37 ; von

Fleeming 65 .
Normalschaltung beim Dynamo 150 .
Nullniveau 12 ; elektrisches 10.
Nutzleitung 145 .

Offnungsstrom 137 .
Oersted , Ablenkung der Magnetnadel

54 .
Ohm , das — als Widerstandseinheit 91 .
Ohm ’sches Gesetz 82 , 85 ; Nachweis

dps 80 —82 .
Ost-Westlage der Magnete 67 .
Optischer Telegraph 109 .
Oxydation des Zinks im Element 28 .

Pacinotti ’scher Ring 147 .
Paraffin als Isolator 13 .
Papier -Elektrometer 14 .
Papier -EIektroskop 18 .
Paramagnetismus 167 (Anh . 1 ) .
Physiologische Wirkungen des Extra¬

stromes 137 , 138 .
Pixii , erste magnetelektrische Ma¬

schine 142 .
Plante , sekundäre Batterie 117 .
Polarisation , galvanische 115 .
Polarisations - Batterie 117 ; EK117 ;

Polarisations -Strom 116 .
Pole : galvanische 25 ; magnetische 1 , 4 .
Poldifferenz 25 , 152 .
Poldrähte 23 , 25 .
Polfläche 1 , 51 , 143 .
Polschuhe 145 .
Polspannung 152 (Fufsnote 23) .
Potentialdifferenz 10 (siehe Fufsnote 3) ;

als Einheit der aquamotorischen
Kraft 12 ; — der E K 15.

Potentialgefälle 16 .
Praktische Einheit : der EK 101 ; der

Stromstärke 92 , 101 , 104 ; des
Widerstandes 91 , 105 .

Prefsklemmen 71 .
Primäre Rolle (Spirale ) 138 , 160 .
Primärer Strom 116 .
Probier -Elektroskop 9 .
Projektions -Element 27 (Fig . 12 ), 28 .
Projektion der Elektrometerskala 22 .
P u 1uj ’sche Röhre 141 .

Quecksilber -Einheit des Widerstandes
9L

Quecksilber -Kontaktbecher 45 (B Fig .
23 ) , 49 , 115 .

Reduktionsfaktor der Tangenten¬
bussole 107 .

Reflexion elektrischer Wellen 165.
Reis , Telephon 154 .
Reihenfolge der Kraftlinien 131 (Fufs¬

note 20 ) .
Remanenter Magnetismus 145.
Richtkraft beweglicher Stromleiter

45 — 48 ; — der Magnete 3 , 7 .
Richtung der Ampere ’schen -Mole¬

kularströme 55 .
; — des elektrischen Stromes 17 , 55 ;
j — des erdelektrischen Stromes 56 ;
i — des Induktionsstromes 129 , 131 ;

— der magnetischen Kraftlinien 134 .
Ringanker 146 .
Ringmaschine 149 .
Robinson , Verbesserung des Schreib¬

telegraphen 117 .
Romaguesi , Entdecker der Ab¬

lenkung der Magnetnadel durch den
galvanischen Strom 54 , 169 (Anh . 5 ) .

Rühmkorff ’s Funkeninduktor 139
(Fig . 67 , B) , 140.

— Stromwender 42 .
Rückblick 20 , 38 , 62 , 97 , 122 , 135 .
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Salpetersaures Silber 116 .
Schaltung : hintereinander (successive)

33 , 36 .
— parallel (nebeneinander ) 33 , 34.

Schaltungsweise der Elemente 33, 36 ;
— der Dynamomaschine 150— 152 ;
— der Induktion srollen 143 ; — der
Multiplikatorrollen 174 (Anh . 11 ) .

Schilling ’s elektro -magnetischer Te¬
legraph 110 .

Schnur als Stromleiter 9 , 14 .
Schreibtelegraph 112 .
Schweigger ’s Multiplikator 61 .
Schweissen, elektrisches 153 .
Schwingungen , elektrische 164 .
Schwimmregel Ampere ’s 54 .
Sekundäres Element (Batterie ) 117 .
SekundäreRolle 138,160 ; — Strömell6 .
Selbstinduktion eines Leiters 137 , 138

(s . Fufsnote 21 ) .
Serienschaltung bei der Dynamoma¬

schine 150.
Siemens ’ dynamo - elektrisches Prin -

cip 145 .
Silbervoltameter 103 .
Sinusbussole (64, Fig . 37) , 171 (Anh . 10) .
Solenoid 48 (Fig . 26 ) .
Sömmering ’ s elektro - chemischer

Telegraph 110 .
Spannungsreihe Volta ’sl68 (Anh . 2) .
Specifische Leitungsfähigkeit 91 .
Specifischer Widerstand 91 .
Spiegel-Galvanometer 175 (Anh . 11) .
Sprengen durch den galvanischen

Strom 98 .
Stabmagnet (4) , 47 , 66 , 133 .
Stahlmagnet 47 , 50, 57 , 131 .
Stanniol als beweglicher Leiter 43 .
Steinheil , Erdleitung 112 .
Stereotypendruck 109 .
Stöhrer ’ s magnet - elektrische Ma¬

schine 143 .
Stromdämpfer 73 , 117 .
Stromeinheit 92 , 101 , 104 .
Strömende Elektricität 8 .
Stromgefälle 12 ; elektrisches 13 , 14 ,

18 , 44 ; Abhängigkeit des — von
der Länge des Leiters 15 ; von der
Leitungsfähigkeit 19 ; Konstanz des
— 14 , 144.

Stromleiter für die Ampere ’schen
Versuche 53 ; Neusilberdraht als —
40 , 72 ; Schnur als — 9, 14 .

Strommessung 103 , 108 .
Stromstärke 74 , 77 , 79 , 105 , 107 ; bei

Wasserströmen 76 .
Stromprüfer 58 ,
Stromregel 47 , 55 .
Stromrichtung 17 ; Gesetz der — 55 .
Stromrichtungs -Zeiger 44 ; automati¬

scher 42 .
Stromstrahlen 75 .
Stromunterbrecher (Stromschlüssel ) 49,

115 , 136 .
StromVerzweigung 94 .
Stromwender 42, 144 .
Südpol, magnetischer 4 .

Tabelle der Widerstände und der
Leitungsfähigkeit einiger Stoffe 92.

Tangentenbussole (Tangensb ussole )
107 (s . Fig . 37 , S . 64 ) ; Graduierung
der — 67 , 106 ; Konstante der
Aichungsskala 106 ; Nadellänge 107 ;
Reduktionsfaktor 107 .

Tauchbatterie , kleine 32 (Fig . 15 ), 40
(Fig . 18) .

Tauchelement 69 ; kleines 23 , 32 , 35
(Fig . 17) .

Telegraph , elektro - chemischer 110 ;
elektro - magnetischer 110 ; elektro¬
statischer 109 ; Schreib- — 112 ;
Zeiger- — 112 .

Telegraphenanlage 114 .
Telegraphenmodell 113 .
Telephon 154 - 158 ; — Modell 156.
Theorie der Dynamomaschine 145 bis

159 ; — des galvanischen Stromes
110 .

Theoretische Folgerungen aus dem
Ohm ’schen Gesetz 84 , 95.

Thermo-elektrische Reihe 120 .
Thermo-elektrische Ströme 119 ; Rich¬

tung der — 119 , 120.
Thermo-Element 117 , 118 (Fig . 60) .
Thermo-Säule 120 .
Thonzellen bei galvanischen Elementen

31 .
Tierische Elektricität ( Volta ’ s ) 29 .
Tragkraft eines Joule ’schen Elektro -

magnets 52 .
Transformation galvanischer Ströme in

hochgradige 138;
— hochgradiger Ströme in niedere
von grofser Stromstärke 142 , 154 .

Transformator 142 , 154 .



186 Alphabetisches Sachregister .

Umsetzung der elektrischen Energie
beim Telephon 158 .

Unbeständigkeit des Volta ’ sehen
Elements 26 ; Ursache 27 , 28 .

Universalgestell 172 —175 (Anh . 11) .
Ungleichnamige Magnetpole 4.
Unterbrechungsrad 137 .
Unterbrechungsstrom (

'Offnungsstrom)
1-37 .

Unterschied : zwischen magnetischen
und elektrostatischen Erscheinungen
6—8 ;

— der statischen und der dynami¬
schen Elekt -ricität 16 ;

— der unitaristischen und der dua¬
listischen Hypothese 7 , 10 ;

— der Wirkung eines Elements und
der Influenzmaschine 26 , 61 .

Ursache : des elektrischen Stromes 17 ;
des galvanischen Stromes 28 —30 ;
des Induktionsstromes 132 .

Vergoldung (galvanische ) 109 .
Verschiedene Gruppierung der Ele¬

mente einer Batterie 86 .
Vergleich : des Daniell ’schen und des

Chromsäure -Elements 85 ; — einiger
konstanter Elemente 37 ; — der
Grad - und der Aichungsskala des
Galvanometers 106 ; — der mag¬
netischen und der elektro -statischen
Erscheinungen 7 .

Verhinderung der Wasserstoff bildung
im Elemente 31 .

Verhalten des Eisens und des Stahls
beim Magnetisieren 2, 6 , 56 . .

Verhältnis zweier Mafse der Strom¬
stärke 76 .

Verkupferung , galvanische 109 ; — der
Kupferstäbe 32 (Fufsnote 5) .

Verlauf des Elektrisierungsgrades (Po¬
tentials ) im Stromleiter 9, 10 , 41 ;

— der magnetischen Kraftlinien 146 ,
155 ;

— Stromgefälles 13—15 , 41 .
Verwandlung galvanischer Ströme in

hochgradige 138 ; — hochgradiger
Ströme in niedere 142, 154.

Volt , das als praktische Einheit der
EK 16 (Fufsnote 3) , 104.

Volta ’s Element (Becher ) 23 ; — Ent¬
deckung 29 ; — Fundamentalver¬
such 30 , 167 (Anh . 2) ; Kontakttheorie

29 , 167 (Anh . 2) ; Spannungsreihe 168
(Anh . 2) .

Voltameter 100 .
Voltmeter 101 .
Voltskala des Elektrometers 104 ; Her¬

stellung 104 .
Vorgang der elektrischen Entladung 8 .

Wa gn er ’ scher Hammer 140 .
Wahre Ablenkung der Galvanometer -

Nadel 67 .
Wandlungen der Hypothesen 162 .
Wärmewirkung des elektrischen Stro¬

mes 98 , 153 .
Wasserstoffbildung im Volta ’schen

Element 28 .
Wasserstoff -Voltameter 100 .
Wasserzersetzung 99 , 100 .
Weber und Gauss , elektro -magne-

tischer Telegraph 111 .
Wechselströme 143 , 152 .
Wechselwirkung : zwischen Magneten

4 ; zwischen Magneten und Strom¬
leitern 47 : zwischen Stromleitern 44.

Wellen , stehende elektrische 165 .
Wheatstone , Nebenschlufs - Schal¬

tung der Dynamomaschine 151 ;
Zeigertelegraph 96 .

Widerstand 73 ; elektrischer — 74 ,
89 (äufserer 80 ;

'innerer 80 ; speei-
fischer 91 ) .

Widerstand : bei verschiedener Grup¬
pierung der Elemente 86 ; — der
Galvanometer -Rollen 174 (Anh . 11) ;
der Induktions -Rollen 144.

Widerstandseinheit 83 .
Widerstandsmessnng 93 ; des inneren

Widerstandes 93 .
Widerstandssatz 91 (Fufsnote 15) ; 138 .
Widerstandsvergieichung von Drähten

89 .
Wirkung : eines grofsen Widerstandes

auf das Fliefsen des Wassers 78 ;
— eines Magnets auf einen anderen

44 .
— eines Magnets auf einen beweg¬

lichen Stromleiter 47 .
— eines Stromleiters auf einen Mag¬

net 53 .
— kurzer , dicker Leitungsdrähte 71 ;

— langer 72 ;
— einer eingeschalteten Flüssigkeits¬

säule 73 , 74 .
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Wirkung weichen Eisens im magne¬
tischen Felde 146 , 155, 156 .

Wirkungsweise der Schaltung : auf die
EK 34 , 36 ;

— aufclieStrom stärkell , 74,84,86 .
WirkungsweisedesTelephonsl55 — 158 .
Windungszahl , Einflufs auf die Ab¬

lenkung 60 .
Widerspruch in den Angaben des

Elektrometers und des Galvano¬
meters 60 , 75.

Wismnth 119.

Zink , Amalgamieren des — 27 .
Zinkdraht 22 .
Zinkstäbe 31 ; — -platten 21 , 73 .
Zinkvitriol (Zinksulphat ) 28, 31 ,
Zinnfolie (Stanniol) 43 , 141 .
Zuleitungsdrähte , gedrehte 66 (Eufs-

note 9) .
Zweigstrom 151 .
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