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II . Vortrag ’.
Sitz der Elektricität auf einem isolierten Leiter ; Bedingung für die vollständige Abgabe
der Elektricität einer Probekugel an das Elektroskop ; Aickung des Elektroskops ; Analogie
zwischen Elektroskop und Thermoskop ; Las Aluminiumelektrömeter ; Aichungsskala ;
Versuche am Kegelkondukter ; Verschiedenheit der elektrischen Lichte auf ungleich -
gekrümmten Oberflächenteilen ; Konstanz des elektroskopischen Zustandes ; Verteilung der
elektrischen Lichte auf einem isolierten Leiter in Beziehung zur Krümmung der Ober¬

flächenteile ; Spitzenwirkung ; Entladungsfähigkeit der Flammen .

Die erste Tagereise haben wir zurückgelegt ! Ein Wanderer ,
der sich den eingeschlagenen Weg merken will , thut wohl daran ,
von Zeit zu Zeit einen Blick rückwärts zu werfen , auf die Win¬
dungen des Pfades zu achten und besonders charakteristische
Stellen dem Gedächtnis einzuprägen . So wollen auch wir bei
unserer Wanderung durch das noch vielfach unerforschte Ge¬
biet der Elektricität von Zeit zu Zeit zurückblicken und die
wichtigsten der beobachteten Erscheinungen an unserem gei¬
stigen Auge vorüberziehen lassen .

Wir erkannten neulich :
1 . Alle Körper werden beim Reiben oder durch Berührung

mit elektrischen Körpern elektrisch , jedoch müssen Leiter
vorher isoliert werden , damit sie die gewonnene Elektri¬
cität behalten . Auf die Stärke der beim Reiben erzeugten
elektrischen Ladung hat die Beschaffenheit des Reibzeugs
einen wesentlichen Einfluss . Je weiter Reiber und Reib¬
zeug in der elektrischen Spannungsreihe auseinander¬
stehen , um so grösser ist im allgemeinen die Wirkung .

2 . Wird ein elektrisierter Leiter in leitende Verbindung mit
der Erde gebracht , die selbst ein Leiter ist — etwa so ,
dass man ihn mit der Hand berührt — so wird er ent¬
laden , d . li . unelektrisch gemacht . Ist hingegen der be¬
rührende Leiter isoliert , so geht ein Teil der elektrischen
Ladung vom elektrisierten Körper auf den unelektrischen
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18 Sitz der Elektricität auf einem geladenen Leiter .

Leiter über , der dadurch selbst elektrisch wird (Ladung
durch Mitteilung ) ; sind zwei Körper gleich stark elek¬
trisch geladen , so geht bei gegenseitiger Berührung keine
Elektricität von einem Körper zum anderen über .

3 . Es giebt nur zwei verschiedene elektrische Zustände , die
sich entgegengesetzt sind , indem gleiche Mengen -t- E und
— E auf einen Körper gebracht , sich in ihrer Wirkung
aufheben (± E = 0) . Reiber und Reibzeug haben immer
entgegengesetzte Elektricität . Beim Reiben erhält das
englische Flintglas positive und die Harze (noch sicherer
Speckstein ) negative Eiektricität . — Bewirkt die langsame
Annäherung eines elektrischen Körpers an ein geladenes
Elektroskop eine Yergrösserung des Ausschlages der
Blättchen , so hat der Körper dieselbe Elektricität , wie
das Elektroskop , dagegen die entgegengesetzte , wenn die
Blättchen zusammenfalien (Probe ) . Gleichnamig elektri¬
sche Körper stossen sich ab , ungleichnamig elektrische
ziehen sich an .

Wir wollen uns jetzt die Frage vorlegen : Wo ist der Sitz
der Elektricität bei einem elektrisierten Körper ?

Da , wie wir wissen , die Isolatoren die Elektricität nicht
fortleiten , so ist es wahrscheinlich , dass bei ihnen die Elektri¬
cität dort verharren wird , wo sie durch Reibung erzeugt oder
durch Mitteilung hingelangt war , cl . h . an den Berührungs¬
stellen . Ist diese Voraussetzung richtig , so wird die Ent¬
ladung eines elektrisierten Isolators bei Berührung mit der
Hand auch nur an der Berührungsstelle stattfinden . Davon
können wir uns leicht durch einen Versuch überzeugen .

Ich lade ein Elektroskop mit dem elektrisierten Flintglas¬
stabe — bei der Annäherung des Stabes gehen die Blättchen
weiter auseinander und zeigen damit an , dass der Stab elek¬
trisch ist . Nun berühre ich den Stab , indem ich die elektrische
Oberfläche mit der Hand umfasse — Sie sehen , die nicht un¬
mittelbar berührten Oberfläehenteile erweisen sich noch als
stark elektrisch . Jetzt versuche ich den Glasstab durch wieder¬
holtes Anfassen ganz zu entladen — es will jedoch nicht recht
gelingen ! Um ihn ganz unelektrisch zu machen , muss ich ihn
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durch eine Spiritusflamme 7) ziehen , oder über derselben liin-
und herwenden . (Diese entladende Wirkung der Flamme wollen
wir später genauer untersuchen .)

Wo ist nun aber der Sitz der Elektrieität bei einem , natür¬
lich isolierten , Leiter ?

Hier sehen Sie (A , Fig . 9 ) ein feinmaschiges , biegsames
Drahtnetz (N) , welches durch den Ebonitständer (i) isoliert ist .
An diesem Netz sind beiderseits bewegliche Papierstreifen an¬
gebracht , die auf der einen Netzseite rot , auf der anderen grün
sind . Vermittelst der isolierenden Handgriffe (g t und g,) kann
ich das Netz nach Belieben biegen . — Jetzt lade ich das Netz

Fig . 9 .
Isoliertes Drahtnetz mit beweglichen . Papierblättelien nach Yanderfüet ; modificievt .

Vj0 natiirl . Grösse .

vermittelst des Flintglasstabes , indem ich ihn an den oberen
Netzrand drücke und ihn so abziehe , dass möglichst viele Ober -
fläehenpunkte des Glasstabes mit dem Netzrande in Berührung
kommen — Sie sehen , wie alle Blättchen sich heben , und jetzt ,
wo die Netzfläche eben ist , auf beiden Seiten gleich grosse
Ausschläge zeigen (B , Fig . 9) .

Nun bitte ich Sie , Ihre Aufmerksamkeit auf die Ihnen zu¬
gekehrten roten Blättchen zu richten ! Ich ergreife die beiden

' ) Zum Entladen eines Isolators kann jede nicht russende Flamme
dienen (s . d . Schluss dieses Vortrages) . Da der Kuss die Elektrieität leitet,
so ist eine Ablagerung desselben auf Körpern, die als Isolatoren dienen
sollen , durchaus zu vermeiden ; und zwar umsomehr, als er sich von etwas
rauhen Flächen meist nur durch sorgsames Waschen ganz entfernen lässt .

2 *
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isolierenden Handgriffe (g Lund g 2) und biege das Netz — Ihnen
die hohle Seite zuwendend — allmählich zu einem Hohlcy linder
zusammen . Sie bemerken , wie die roten Blättchen , die sich
in dem entstehenden Hohlraum befinden , allmählich sich senken
und — noch bevor die beiden Kanten des Netzes sich berühren
— ganz zusammen fallen (A , Fig . 10) , während die aussen
befindlichen grünen Blättchen einen bedeutend grösseren Aus¬
schlag zeigen , als vorhin ! Nun biege ich den Cylinder lang¬
sam auf — die roten Blättchen heben sich allmählich wieder ,
während die grünen sich senken . Bei ebener Stellung , des
Netzes ist der Ausschlag der roten und grünen Blättchen wieder
gleich (wie bei B , Fig . 9) . Ich biege das Netz weiter , so dass

Fig . io -
Demonstration der elektrischen Verteilung . VlO natürl . Grösse .

jetzt die roten Blättchen auf der erhabenen (convexen ) Seite
liegen — Sie sehen dieselben sich noch weiter heben , während
die grünen sich senken und schliesslich ganz zusammenfallen !
Wir erkennen hieraus : Die elektrische Ladung ist bei ebener
Stellung des Netzes auf beiden Seiten gleich verteilt , sobald
aber das Netz gekrümmt wird , wandert die Ladung von der
hohlen (eoncaven ) Seite auf die convexe , die äussere
Fläche , d . h . :

Der Sitz der Elektricität auf einem isolierten Leiter
ist die äussere Oberfläche desselben , im .Inneren eines
(nahezu geschlossenen ) hohlen Leiters giebt es keine
freie Elektricität ! Das ist ein sehr wichtiges Gesetz .

Ganz interessant ist die Notwendigkeit , die sich hieraus
für ein eiförmig gebogenes Netz ergiebt . Es muss , da die beiden
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Längsseiten des Netzes zugleich holil und erhaben sind , die
elektrische Ladung auf beiden Flächen des Netzes , aber nur
auf den erhabenen Teilen auftreten . Ich gebe dem ’ Netz
diese Form — und Sie sehen , das ist tliatsäehlich der Fall (B ,
Fig . 10) . Hierbei schneidet die Grenze der freien Elektricität
das Netz in der Mitte , wo die eine Krümmung in die andere
übergeht (im sogenannten Flexionspunkt ) .

Stellen wir uns vor , dass die elektrische Ladung eines
Körpers aus kleinsten elektrischen Teilchen besteht — was
jedoch nur als ein bildlicher Vergleich gelten darf — , so lässt

P

sich eine einfache Erklärung der beobachteten Erscheinungen
auf Grund der abstossenden Kraft gleichnamig elektrischer
Teilchen aufstellen .

Denken wir uns zunächst , dass alle elektrischen Teilchen
im Inneren eines massiven , kugelförmigen Körpers gleichmässig
verteilt seien , und fassen wir ein beliebig gewähltes Teilchen
e (Fig . 11 ) ins Auge , dessen Abstand von der Oberfläche = a ist .
Was wird dann geschehen ? Offenbar wird das elektrische
Teilchen e von allen benachbarten gleichnamig elektrischen
Teilchen abgestossen . Innerhalb des mit dem Halbmesser a
gezogenen Kreises werden sich aber immer zwei gleich weit
entfernte , aber entgegengesetzt gelegene Teilchen finden , z . B .
p und q , oder x und y u . s . w . , d . li . : Die Wirkung aller um e
herum innerhalb dieses Kreises liegenden elektrischen Teilchen

L enz ’scke
Erklärung .
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muss sieh in Bezug auf e völlig auf lieben . Nun bleibt aber
noch die abstossende Wirkung der Teilchen übrig , welche
ausserhalb des Kreises 3) a liegen . Wie leicht ersichtlich , werden
alle in der Linie B liegenden Teilchen auf e eine abstossende
Kraft in der Richtung B P ausüben . Je zwei symmetrisch
liegende Reihen , wie I a und I b oder II » und II b

, werden ,
zusammenwirkend , nach dem Gesetz von dem Parallelogramm
der Kräfte eine resultierende Kraft erzeugen , welche ebenfalls
in . der Richtung B P auf e abstossend wirkt . Mithin muss das
elektrische Teilchen unter der Wirkung aller ' abstossenden
Kräfte soweit in der Richtung B P bewegt werden , bis es nicht
weiter kann , d . li . bis zur Oberfläche des Leiters B . — Da
das Gesagte ebenso für jedes andere elektrische Teilchen gilt ,
so müssen sich alle elektrischen Teile aus dem Inneren des
Leiters auf dessen Oberfläche begeben (Lenz ) .

Aus diesem von uns gefundenen Gesetz über die Ausbrei¬
tung der Elektricität auf einem isolierten Leiter ergeben sich
nun einige wichtige Folgerungen :

1 . Eine metallene Hohlkugel kann ebensoviel Elek¬
tricität aufnehmen , wie eine massive Kugel von
gleicher Grösse .

2 . Ein elektrisierter Leiter , welchen wir in das In¬
nere eines metallenen Hohlkörpers bringen , muss
— bei Berührung mit der Innenwand — seine
ganze Ladung an die umschliessende Metallhülle
abgeben .

Das erste Gesetz erlaubt uns , einen zur Ansammlung von
Elektricität dienenden isolierten Leiter (einen sogenannten „Kon¬
duktor “ ) hohl , also möglichst leicht herzustellen , ohne dass
seine Wirkung deshalb geringer würde . — Von dem zweiten
Gesetz werden wir bald eine wichtige Anwendung machen ;
vorher will ich Ihnen noch zeigen , welchen Einfluss die

8) Eigentlich haben ■wir uns unter A und a Kugeln vorzustellen .
Die Zeichnung Fig . 11 stellt also einen Querschnitt dar . Die für beide
Kreisflächen gefundenen Beziehungen zwischen den elektrischen Teilchen
gelten aber auch für die Kugeln.
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Vergrösserung der Oberfläche eines elektrisierten
Leiters auf die elektrische Dichte hat .

In eine hohle Ebonitröhre (E , Fig . 12) , die mit einem
Gummi - Blasebalg verbunden ist (wie bei den Pulverisatoren ) ,
ist ein Metallrohr (m) eingeschoben , das mit 2 beweglichen
Papierstreifchen versehen ist . Tauche ich nun die etwas er¬
weiterte Mündung des Metallröhrchens in eine Seifenlösung und
elektrisiere sie nach dem Herausheben so stark , dass die Blätt¬
chen fast horizontal abstehen , so wird — wenn ich Luft durch
die Röhre einblase — eine Seifenblase entstehen , und Sie sehen ,

Seifenblaseu -Apparat zum Nachweis der elektrischen Dichte . 3/ io natürl . Grösse .

je grösser die Seifenblase wird , um so ' kleiner wird der
Ausschlag der Blättchen ! Löse ich vorsichtig den Gummi¬
schlauch von der Ebonitröhre , so tritt Luft aus , die Seifenblase
zieht sich zusammen und in demselben Maasse wächst der
Ausschlag der Blättchen . Da dieselbe Elektricitätsmenge sich
beimAnwachsen derSeifenblase auf eine grössere Fläche verteilen
muss , so kommt auf ein bestimmtes Flächenstück , z . B . 1 qcm ,
weniger Elektricität als vorher , die Elektricität ist gewisser -
maassen weniger dicht gelagert . Es folgt hieraus : Bei
gleichbleibender Ladung - nimmt die elektrische Dichte
eines Körpers in dem Maasse ab , als seine Oberfläche
vergrössert wird ! Interessant ist nun die Frage : Wie lagert
sich die Elektricität auf einem isolierten Leiter , der nicht
kugelförmig ist , also an verschiedenen Stellen verschiedene
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.Vergleich
zwischen

Elektroskop
und Ther -

moskop .

Krümmungen aufweist ? Ehe wir an die Beantwortung dieser
Frage gehen können , müssen wir uns nach einem geeigneten
Messapparat umsehen .

In dem Bestreben der Elektricität , sich stets auf die äussere
Oberfläche eines Leiters zu begeben , haben wir ein vortreff¬
liches Mittel , um die ganze Ladung eines kleinen Leiters , z . B.
einer kleinen Metallkugel , welche an einem genügend langen
Ebonitstäbchen befestigt ist , auf ein Elektroskop zu übertragen ,indem wir die Probekugel mit der Innenwand einer auf das
Elektroskop geschraubten metallenen Hohlkugel in Berührung
bringen .

Gelingt es uns auch noch , eine Elektricitätsquelle von
möglichst beständiger Ladungsstärke aufzuünden , so
werden wir in den Stand gesetzt , für 1 , 2 , 3 . . . n gleiche
Ladungen der Probekugel den zugehörigen Ausschlagswinkelder Blättchen zu beobachten , und wenn das Elektroskop mit
einer Skala versehen ist , abzulesen oder , was noch bequemerist , eine neue Skala herzustellen , wo der Stand des Blättchens
bei 1 , 2 , 3 . . . n Ladungen der Probekugel bezeichnet ist .
Auf diese Weise können wir den durch die jeweilige
Stellung des Blättchens angegebenen Ladungsgradoder Elektricitätsgrad des Elektroskopes in — vor¬
läufig willkürlichen — Einheiten der Elektricität angeben !
Dann wird uns das Elektroskop das für die Elektricitäts -
messung sein können , was — vor der Entdeckung der festen
Temperaturpunkte (Gefrierpunkt und Siedepunkt des Wassers )— das Thermoskop den Physikern , vorFahrenheit undReaumur ,für die Wärmemessung war . Wie das mit einer Zoll - oder einer
Millimeterskala versehene Thermoskop sehr wohl dazu dienen
kann , Differenzen des Wärmezustandes (d . li . der Temperatur )mit einander zu vergleichen , so wird uns das geaichte (kali¬
brierte ) Elektroskop in den Stand setzen : Differenzen des
Elektricitätsgrades oder des „ elektrischen Zustands¬
grades “ mit einander zu vergleichen . Mehr brauchen
wir vorläufig nicht .

Da die Papierelektroskope zu unempfindlich sind , um kleine
Elektricitätsgrade anzuzeigen , so wollen wir das Aluminium¬
elektrometer (Fig . 13) benutzen , das im Wesentlichen
ähnlich gebaut ist , bei dem aber an Stelle der zwei Papier -
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blättchen ein einziges Blättchen aus feiner Alnininiumfolie an¬
gebracht ist , wodurch die Empfindlichkeit des Apparates etwa
auf das öOfaclie gesteigert ist . In der Schwingungsebene des
Aluminiumblättchens ist eine auf Glimmer geritzte Gradskala
angebracht . Das Gehäuse ist hier ein Blechkasten , dessen
Wände aus Spiegelglas bestehen . Die Seitenwände sind mit
Drahtnetz bedeckt .

Sie werden aus einiger Entfernung kaum mehr im Stande
sein , das feine Aluminiumblättchen deutlich zu sehen , daher

iiiiiiiniiiiiiiiiiiiiHiiiiiiiiiiiiiiiiiiii

Fig . 13 .
Aluminium -Elektrometer mit eingesetzter Graclskale . */4 natürl . Grösse .

wollen wir das Zimmer verdunkeln und vermittelst einer Lampe ,einer Beleuclitungs - und einer grossen Projektionslinse ein stark
vergrössertes Bild vom Blättchen und der Skala auf einem
grossen weissen Schirm entwerfen 10) , sodass Sie bequem ;von
Ihren Plätzen aus die Stellung des Blättchens ablesen können .
(Fig . 15 zeigt Ihnen die Versuchsanordnung . Auf dem Schirme
ist bereits die w . u . angegebene Aichungsskala entworfen .)

I0) Bei allen Versuchen mit dem Elektrometer ist im Folgenden die
Anwendung der Projektion vorausgesetzt , auch wenn es im Text nicht
■weiter hervorgehoben wird.
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Da die Projektionslampe das Zimmer genügend erhellt , um
alle Gegenstände deutlich zu sehen , so können Sie auch leicht
meinen bei den folgenden Versuchen nötigen Manipulationen
folgen . ... ...

Als Elektricitätsquelle soll uns dieser durch einen
Ebonitständer isolierte Konduktor (Fig . 14) dienen , der aus
einem Blechcylinder besteht , an den ein Blechkegel (a c) ange¬
lötet ist . Am anderen Ende ist ein Hohlkegel eingeschoben .
Die ganze Oberfläche des Konduktors ist vernickelt und poliert .

Jetzt lade ich den Konduktor vermittelst des Flintglasstabes .
Bitte horchen Sie etwas hin ! Versuche ich den Konduktor

Pigt , M .

Kegcl -Ivonduktor . a/10 nattirl . Grösse .

noch stärker zu laden , so hören sie an der Spitze (a) ein leises
Zischen . Offenbar fliesst die noch weiter zugeführte Elektri -
cität aus der Spitze ab .

Nun berühre ich mit der an einem langen Ebonitstäbchen
befestigten vernickelten und polierten Probekugel die Mitte
des Cylindermantels (d , Fig . 14) , die durch eine Linie be¬
zeichnet ist und senke die Probekugel in die Hohlkugel des
Elektrometers , bis sie die Innenwand berührt — Sie sehen ,
das Blättchen zeigt einen Ausschlag von 23,3° . Ich entlade
das Elektrometer und wiederhole den Versuch , indem ich die
Probekugel stets auf derselben Stelle des Konduktors aufsetze ;
wir erhalten Ausschläge von 23,5 °

, 23,4 °
, 23,2 °

, 23,3 °
, 23,4 ° ;

d . h . die Ausschläge des Elektrometers sind fast gleich , mithin
dürfen wir voraussetzen , dass unser Konduktor — den wir da¬
zwischen immer wieder laden , bis es zischt — eine recht be -
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ständige Elektricitätsquelle abgiebt , die wir zum Aiclien
des Elektrometers benutzen können .

Bezeichnen wir auf dem weissen Schirme (S , Fig . 15) den
Drehungspunkt des Blättchens und die Stellung des Blättchens
bei 1 , 2 , 3 . . . n Ladungen der Probekugel durch Striche,welche wir mit einer blauen Bleifeder ziehen , so entsteht vor
unseren Augen die Aichungsskala . Schreiben wir zugleich

Fig . 15.
Projection der Elektrometerskala . : / io des Apparats , 1/2o der Skala .

den Stand des Blättchens nach der Gradskala an , so können
wir später in aller Bequemlichkeit die Aichungsskala auf einer
Glimmerscheibe 11) entwerfen , und statt der bisherigen Grad¬
skala in das Gehäuse des Elektrometers einsetzen . Natürlich
müssen wir die zugehörigen Ziffern umgekehrt schreiben , damit
sie bei der Projektion auf dem weissen Schirm aufrecht er¬
scheinen.

n) Eine Glimmerseheibe hat vor einer Glasscheibe den grossen Vorzug
voraus , dass sie nicht so leicht zerbricht , auch lässt sie sich leicht bear¬
beiten , z . B . mit einer Schere beschneiden.
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Auf solche Weise ist diese einsetzbare Projektions¬
skala entstanden , die ich Ihnen hier vorlege . Dass derselben
ein noch beständigere Elektricitätsquelle und eine genauere
erst w . u . erläuterte Aichungsmethode zu Grunde gelegt worden ,
thut nichts zur Sache . Wir wollen diese genauere Skala fortan
immer benutzen .

% ij;

Die von uns (S . 26) beobachtete Erscheinung des Ent¬
weichens der Elektrieität aus der Spitze des Konduktors bei
zu starker Ladung , legt uns die Frage nahe : Wie verteilt
sich die Elektrieität auf der Oberfläche eines isolierten
Leiters ? D . h . lagert sie sich gleichförmig oder nicht ?

Fig . 16 .

Wir wollen uns ein ganz einfaches Probierelektroskop her -
steilen , indem wir in eine zu diesem Zweck in die kleine
Probekugel gebohrte Seitenöffnung einen starken Neusilber¬
draht stecken , der in seiner Mitte zwei Drahtbügel trägt , in
welche 2 Papierstreifen leicht beweglich aufgehängt sind (A ,
Fig . 16) . — Setze ich nun die mit dem kleinen Elektroskop
versehene Probekugel auf den wieder geladenen Konduktor ,
so gehen die Blättchen auseinander .

Fahre ich nun mit dem Elektroskop entlang der
äusseren Konduktoroberfläche hin und her , so sehen
Sie , wie der Ausschlag der Blättchen sich ändert ! *)

Wir erkennen leicht , dass der .Ausschlag der Blättchen an
der Spitze (a) am grössten ist , nächstdem an der kreisförmigen

* ) Der Versuch gelingt sicherer, wenn man das Hülfselektroskop auf
die bezeichneten Punkte des Konduktors setzt und dann etwas entfernt.
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Kante (e) , welche den Cylindermantel begrenzt ; schon schwächer
an der ebenfalls kreisförmigen , aber stumpferen Kante (c) und
am kleinsten in der Mitte des Cylindermantels (d) .

Denken wir uns den hohlen Kegelkonduktor (Fig . 14) in
den Punkten ab c d e f senkrecht zur Längsachse a g zer¬
schnitten , so erhalten wir als Querschnitt Kreise , die von der
Spitze a bis zur Kante c stetig an Grösse zunehmen , von c
bis e aber sich gleich bleiben . Je grösser ein Kreis ist ,
umso schwächer gekrümmt ist die Kreislinie ; also nimmt
die Krümmung dieser Schnittkreise von a bis o ab
und bleibt dann unverändert bis e . Dagegen ist die
Krümmung der Konduktoroberfläche in der zur Schnittebene
senkrechten Richtung (also in der Ebene des Papieres bei
Fig . 16) an den Punkten c d e verschieden , denn die Kante c
bildet jetzt einen stumpfen , die Kante e einen spitzen Winkel ,
während bei d ein gestreckter Winkel (eine gerade Linie )
auftritt . Mit Berücksichtigung dessen , dass wir bei Beurteilung
der Krümmung einer Fläche die in verschiedenen Rich¬
tungen stattfindenden Krümmungen zusammenfassen
müssen , kommen wir zu dem Resultat , dass die Gesamt¬
krümmung an der Spitze a am stärksten ist , nächstdem
an der Kante e , dann in c , b und am schwächsten in d (der
Mitte des Cylinders ) .

Es macht den Eindruck , als ob die Elektricität an den
stärker gekrümmten Oberflächenteilen des Konduktors in
grösserer Menge angehäuft , gewissermaassen verdichtet sei ;
bezeichnen wir diesen Zustand der Elektricität als „ elek¬
trische Dichte “ (vgl . S . 23) , so können wir sagen :

Die elektrische Dichte ist auf ungleichstark ge¬
krümmten Oberflächenteilen eines geladenen iso¬
lierten Leiters ungleich , und zwar umso grösser , je
stärker die Krümmung ist *) .

Das tritt nicht so unmittelbar , aber noch schärfer hervor ,
wenn wir vermittelst der Probekugel , von welcher natürlich

* ) Genauer definiert ist elektrische Dichte der Quotient der Elek-
tricitätsmenge an einer bestimmten Stelle des Leiters durch die Grösse des
Flächenstücks , oder die Elektricitätsmenge für die Einheit der Fläche . Doch
wird diese Definition erst nach Einführung einer Maasseinheit für die Elek¬
tricitätsmenge verständlich.
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das Hülfselektroskop entfernt worden , von den in Fig . 16 mit
a , b , c , d , e , f , g bezeichneten Punkten je eine Ladung auf
das Elektrometer übertragen (s . o . S . 2G) . Wir erhalten

In den Oberflächenpunkten a b c d e f 8’

a) bei stärkster 1in elektr . Einh .
Ladung des

6,0 1,1 1,4 0,8 3,2 0,5 0

Konduktors | Verhältnis 7,5 1,4 1,75 1 4,0 0,65 0
b ) bei schwacher | in elektr . Einh .

Ladung des j
2,3 0,45 0,52 0,3 . 1,2 0,2 0

Konduktors [ Verhältnis 7,6 1,5 1,73 1 4,0 0,66 0

Wir sehen hieraus , dass auf der äusseren Oberfläche ,
wie vorhin , die elektrische Dichte an der Spitze (a ) am
grössten ist , nächstdem an der kreisförmigen Kante e — u . s . w.
und am geringsten auf der Mitte des Cylindermantels (d) . Auf

Fig . 17 .
Graphische Darstellung der elektrischen Dichte .

der inneren Fläche des Hohlkegels nimmt die elek¬
trische Dichte vom Rande an sehr rasch ab und ist im
tiefsten Punkte (g) = 0 . — Die zweite Versuchsreihe bei
schwächerer Ladung zeigt , dass das Verhältnis der elek¬
trischen Dichten an den betreffenden Punkten dasselbe
bleibt also nicht von der Ladungsstärke abhängt .

. Die von uns gefundenen Zahlenwerthe für die elektrische
Dichte setzen uns in den Stand , ein anschauliches Bild von
der Änderung der elektrischen Dichte auf dem Konduktor
und —. zum Vergleich auf einer isolierten Hohlkugel — zu
machen . Wir tragen auf der Durchschnittszeichnung des Kon¬
duktors (A , Fig . 17) und der Kugel (B) an den betreffenden
Punkten (a , b . . . g) in der Richtung der elektrischen Ab-
stossung Linien an , welche den gemessenen Dichtigkeiten der
Elektricität an diesen Punkten proportional sind . Verbinden
wir nun die Endpunkte dieser Linien , so erhalten wir beim
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Konduktor die auffallend gekrümmte Linie (Kurve ) abcdefg ,
Fig . 17 , A . Denken wir uns diese Linie um die Achse des
Konduktors (a g) gedreht , so beschreibt sie eine Drehungs¬
fläche (Rotationsfläche ) , welche die Niveau fläche der elek¬
trischen Dichte genannt wird .

Bei der Kugel (B , Fig . 17) ist die elektrische Dichte
überall gleich und die Niveaufläche der elektrischen Dichte
ist wiederum eine Kugelfläche .

Jetzt verbinde ich den Ableitungsdraht eines Papier -
elektroskops , auf welches ich eine kleine Kugel geschraubt
habe 12) , durch einen sehr feinen , mit Seide umsponnenen
Kupferdraht mit der isolierten Probekugel . Lade ich nun den

Fig . 18 .

Konduktor und berühre ihn irgendwo mit der Probekugel , so
zeigt das Elektroskop einen gewissen Ausschlag , der sich
nicht ändert , wenn ich die Probekugel der Oberfläche des
Konduktors entlang führe , auch wenn ich die Spitze des Kon¬
duktors oder den tiefsten Punkt des Hohlkegels berühre
(Fig . 18) . Ebenso können wir das Elektroskop mit dem
elektrisierten Drahtnetz (Fig . 10 , S . 20) verbinden und dieses
biegen — immer bleibt der Ausschlag des Elektroskopes un¬
verändert , ob der Draht die hohle oder die erhabene Netzseite
berührt .

12) Es sei hier ausdrücklich darauf hingewiesen, dass bei allen
diesen elektrischen Apparaten und Nebenapparaten sämt¬
liche Schrauben dasselbe Gewinde haben , sodass alle Kugeln,
Platten u . s . w. nach Bedarf vertauscht werden können . Dadurch wird das
Experimentieren sehr erleichtert und die Anzahl der nötigen Hülfsapparate
bedeutend vermindert .
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Der elek¬
trische Zu -
standsgrad .

Wir sehen zu unserer Überraschung , dass die Wirkung ,
welche ein elektrisierter Leiter auf ein entfernt aufgestelltes
und durch einen feinen Draht mit ihm verbundenes Elek -
troskop ausübt , unverändert bleibt , wenn der Verbindungs -
draht an irgend einem Punkte der äusseren Oberfläche oder
der Innenwand des Hohlraumes angelegt wird . Diesen eigen¬
tümlichen Zustand des elektrischen Leiters , den wir am leitend
verbundenen Elektroskop wahrnehmen , nennen wir den elek -
troskopischen Zustand des Körpers . Die verschiedenen
Grade des elektroskopisclien Zustandes mögen „ elektrische

Fig . 19 .
Faraday ’s Versuch . 7io natürl . Grösse .

Zustandsgrade “ (oder wie früher beim Elektroskop „Elek
tricitätsgrade “ ) heissen . Dann können wir kürzer sagen :

Der elektrische Zustandsgrad eines Leiters hat
auf seiner ganzen Oberfläche — sowohl der äusseren ,
als der inneren — denselben Wert ! Dadurch unterscheidet
sieh der elektrische Zustandsgrad wesentlich von der
elektrischen Dichte , die — wie wir sahen — auf ver¬
schiedenen Teilen desselben Leiters sehr verschiedene Werte
haben kann .

Mit dem elektrischen Zustandsgrade der Körper werden wir
uns späterhin eingehend zu beschäftigen haben , jetzt wollen
wir nur noch die Wirkung eines elektrischen Körpers auf einen
ihn (fast ) umschliessenden unelektrischen Leiter untersuchen .
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Ich schraube auf das Elektrometer eine ebene kleine Platte
und stelle auf diese einen oben offenen Drahtnetz - Cylinder
(N , Fig . 19) . Tauche ich nun die elektrisierte grössere Probe¬
kugel (p ) , die an einem langen Ebonitstäbchen befestigt ist ,
in den Hohlraum des Drahtcylinders , ohne das Netz zu be¬
rühren , so zeigt das Elektrometer einen Ausschlag , der
sich nicht ändert , wenn ich die Kugel im Hohlraum des
Cylinders hin - und herbewege , oder wenn ich damit die Innen¬
wand des Netzes berühre ; d . h . die elektroskopisclie Wir¬
kung , die ein elektrisierter Körper auf einen um¬
gebenden Leiter ausübt , ist im ganzen Hohlraume
konstant und eben so gross , wie bei Berührung der
Innenwand (Faraday ) ! Hiervon wollen wir eine Anwen¬
dung machen .

An dem Ende eines Ebonitstabes ist ein Stück arnalga -
miertes Leder befestigt . Ich tauche dasselbe sowie den unelek¬
trischen Flintglasstab in das Drahtnetz (B , Fig . 19 ) . Reibe
ich nun — ohne das Netz zu berühren — beide an einander ,
so zeigt das Elektrometer keinen Ausschlag so lange
Reiber und Reibzeug innerhalb des Netzes sind , weil
beide Elektricitäten sich in ihrer Wirkung nach aussen auf -
lieben . Je nachdem ich nun den Glasstab oder das Reibzeug
heraushebe , zeigt das Elektrometer — E oder -+- E , aber der
Ausschlag ist in beiden Fällen genau gleich gross , d . h .
beim Beiben werden — E und 4 - E in gleichen Mengen erzeugt !

Nach dieser Abschweifung , welche uns einige wichtige
elektrische Gesetze kennen lehrte , wollen wir unsere Unter¬
suchung über die elektrische Dichte zu Ende führen , indem
wir noch die Frage erledigen : Nach welchem Gesetz
wächst die elektrische Dichte mit der Krümmung der
Oberflächenteile eines Leiters ?

Hier sehen Sie 3 Ebonitständer , auf welcher 3 Hohlkugeln
von 20 , 10 und 2 cm Durchmesser befestigt sind und deren Halb¬
messer sich also verhalten , wie r : i\ : r = 10 : 5 : 1 . Durch’ a b c
zwei Drähte d ; und d2 (von je 1 m Länge ) verbinde ich die
3 Kugeln (A , B , C , Fig .

' 20) , sodass sie als ein einziger isolierter
Kolbe . 3
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Leiter aufzufassen sind . Mithin muss , wenn eine Kugel ver¬
mittelst des Flintglasstahes geladen wird , hei allen 3 Kugeln
der elektrische Zustandsgrad gleich sein . — Entnehme
ich nun vermittelst einer kleinen Probekugel jeder Kugel einzeln
eine Ladung und übertrage sie auf das Elektrometer , so er¬
halten wir Zahlenwerte , deren Verhältnis zu einander von

Fig . 20.
Isolierte Hohlkugeln zur Messung der elektrischen Dichte . 1/12 natilrl . Grösse .

(In Wirklichkeit sind die Drähte di u . d 2 je 1 m lang .)

der heim Aichen ( s . o . S . 27) gewählten Elektricitäts -Einheit ganz
unabhängig sein muss und das gesuchte Verhältnis der
elektrischen Dichten widerspiegeln •wird . Wir finden

ABC
Krümmungshalbmesser r = 10 cm 5 cm 1 cm
beob . elektr . Dichte D = 0,6 1,2 6,1
Also verhalten sich die

el . Dichten Da : Db : D e = 1 : 2 : 10 (nahezu ) .

Bei A und C ist das Verhältnis der Krümmungshalbmesser
r : r = 10 : 1 , das der elektrischen Dichten D : D = 1 : 10 ,
also umgekehrt ! Ebenso ist , bei B und C , ra : r 0

= 5 : 1 , da¬
gegen Db : D

c
= 10 : 2 — 5 : 1 . Hieraus folgt : Bei gleichem

elektrischen Zustandsgrade zweier Kugeln stehen
die elektrischen Dichten im umgekehrten Verhältnis
zum Krümmungshalbmesser .

Nun verhält sich

Diese Brüche , -i - sind die reciproken Werte
r b r c

der betr . Krümmungshalbmesser , und geben ein Maass ab
für die Krümmung , daher dürfen wir sagen :
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Die elektrische Dichte steht — hei gleichem elektrosko -
pischem Zustandsgrade — im geraden Verhältnis zur Krüm¬
mung , oder : Bei einem elektrisierten Leiter verteilt
sich die Elektricität so über die äussere Oberfläche ,
dass die elektrischen Dichten sich verhalten , wie die
Krümmungen der entsprechenden Oberflächenteile .

Hieraus ergiebt sich , dass , wenn bei einem Teile eines
geladenen Leiters der Krümmungshalbmesser sehr klein
(also die Krümmung sehr gross ) wird , wie z . B . an der Spitze
unseres Kegelkonduktors (Fig . 14) , sich die Elektricität in
einer solchen Dichte anhäufen muss , dass die anliegenden
Staub - und Wasserteilchen der Luft 13) — wie unsere Probe¬
kugel — hier besonders stark geladen und abgestossen werden .
Bei einer gewissen Stärke der Ladung wird die abstossende
Kraft im Stande sein , den Luftwiderstand zu überwinden
und die Staub - und Wasserdampfteilchen abzuschleudern .
Diese reissen die benachbarten Luftteilchen mit sich fort —
andere rücken an ihre Stelle und so entsteht der sogenannte
„ elektrische Wind “

, die zischende Luftströmung , welche Sie
an der Spitze des Konduktors bemerkten .

Wir werden später (bei der Elektrisiermaschine ) inter¬
essante Erscheinungen der Spitzenwirkung kennen lernen ;
hier möchte ich mich darauf beschränken , Ihnen den Einfluss
zu zeigen , welche die Spitzen Wirkung auf das Laden und Ent¬
laden der Körper hat .

Ich stelle ein Papierelektroskop vor Sie hin und fahre mit
dem geladenen Flintglasstabe in etwa 20 cm Entfernung über
der Kugel hin und her . — Die Blättchen schwingen auf und
ab , aber — nach Entfernung des Stabes — bleibt das Elek -
troskop ungeladen . Jetzt stelle ich in die Seitenöffnung der
Elektroskopkugel einen starken , rechtwinklig gebogenen Draht ,
der in eine sehr feine Spitze ausläuft . Diese Spitze drehe
ich nach oben und fahre nur einmal rasch in etwa 40 cm
Höhe mit dem geladenen Glasstabe darüber hin (A , Fig . 22) ,

ls) Nach neueren Untersuchungen scheint vollkommen staub- und
wasserdampffreie Luft die elektrische Entladung so sehr zu erschweren,dass die Moleküle der Luft allein die hier den Staub- und Wasserteilen
zugeschriebene Kolle nicht übernehmen können.

Erklärung
der Spitzen -

wirkung .

Ladung
durch

Spitzen¬
wirkung .

3
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Spitzen¬
wirkung der

Flammen

so ist das Elektroskop im Augenblick geladen , d . li . die
Spitze saugt gewissermaassen die Elelctricität auf .

Stelle icli das zweite Papierelektroskop nalie zu dem ge¬
ladenen heran , und drehe (mit einem Ebonitstäbchen ) die
Spitze so , dass sie auf die Kugel des benachbarten Elek -
troskopes II (Fig . 22 , B ) gerichtet ist , so können wir nach
kurzer Zeit wahrnehmen , dass das erste Elektroskop allmälig
seine Ladung verliert , während das zweite etwas geladen
wird . Durch Anlegen des elektrischen Glasstabes an den
Kopf des I . Elektroskopes kann die Ladung des II . be¬
schleunigt werden — wir sehen also , dass durch eine Spitze

£ - 2

I

Fig . 21 .
Versuch über Spitzenwirkung . VlO natürl . C4rösse

die Elektricität abfllesst , daher müssen bei allen elektrischen
Apparaten , welche die Elektricität möglichst lange halten
sollen , sorgfältig alle Spitzen und scharfen Kanten vermieden
werden .

Bringe ich eine Flamme — z . B . die einer Wachskerze —
in die Nähe eines geladenen Elektroskopes , so verliert dieses
seine Ladung sehr rasch . Verbinde ich ein Elektroskop durch
einen Draht mit einer Flamme , indem ich das an einem
Ebonitstäbchen befestigte und etwas vorragende Ende des¬
selben in die Flamme halte , so verschwindet eine vorhandene
Ladung sofort und das Elektroskop lässt sich überhaupt nicht
laden , da alle Elektricität durch die Flamme ausströmt . Die
glühenden Kohlenteilchen der Flamme wirken hier wie sehr .
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viele feine Spitzen, daher ist die aufsaugende und zerstreuende
Wirkung einer Flamme ausserordentlich gross. Nun werden
Sie begreifen , warum wir die geladenen Isolatoren , wie Ebonit ,
Glas u . s . w . , völlig entladen können , wenn wir sie über einer
Flamme hin- und herbewegen , oder durch dieselbe ziehen.

Damit schliessen wir unsere zweite Wanderung und wollen
das nächste Mal die Frage zu beantworten suchen : Welchen
Einfluss übt ein elektrisierter Körper auf seine Umgebung aus ?
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