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10 Erklärungen . § 2.

Hansen vor 25 Jahren glaubte, bei Triangulierungen brauche man nun fast keine
Rücksicht auf schiefe Dreiecke und spitze Winkel zu nehmen, wenn man nur ge¬
nügend viele Kontrollen hat , deren Gesamtausgleichung alle Schäden heilen sollte.

Andererseits ist es eine Frucht des dritten , reifen, Stadiums, dass die Fehler¬
wirkung der Messungs -Elemente schon vor Beginn der Messungen selbst erwogen
und die Gesamt-Anlage und Auswahl der Messungen darnach getroffen wird.

Zur richtigen Auswahl gehören aber namentlich die schon oben erwähnten
mannigfaltigen Fehlergesetze.

Die Theorie der Beobachtungsfehler ist fast der einzig deduetive Teil unserer
sonst wesentlich nur empirisch - inductiven Feld- und Landmessung , welche in vielen
Beziehungen erst durch Einführung jener Theorie zu dem Range einer Wissenschaft
erhoben worden ist .

Versuchen wir zum Schlüsse die Entwickelung und die heutige Stellung der
M . d . kl. Q. in der Feld- und Landmessung durch wenige zusammenfassende Worte
zu charakterisieren, so können wir sagen : Diese Methode hat unserem Fache die
wichtigsten Dienste teils auf unmittelbarem , teils auf mittelbarem Wege geleistet ,
unmittelbar in der Klarstellung und Sicherung der Fehlerausgleichungen und der
Genauigkeitsbestimmungen , mittelbar als wichtigster Hebel zur Hebung unseres
Faches und Gleichstellung desselben mit den übrigen technischen Wissenschaften.

Kapitel I.

Allgemeine Theorie der kleinsten Fehlerquadratsumme .
In diesem ersten Kapitel werden wir die allgemeine Theorie der Methode der kleinsten

Quadrate nach der Definition des mittleren Fehlers und nach dem Princip der kleinsten Fehler¬
quadratsumme in einem Zuge behandeln , und nur so viel von Anwendungen und Beispielen auf¬
nehmen als zur Erläuterung der Theorien nöthig ist . Die eigentlichen Anwendungen , (namentlich
geodätischer Natur , werden in den nachfolgenden Kapiteln besonders behandelt werden .

§ 2. Erklärungen.

Wer sich mit Messungen irgend welcher Art beschäftigt , macht dabei die Er¬
fahrung, dass diese Messungen Fehlern ausgesetzt sind.

Man hat hauptsächlich zwei Mittel, die Richtigkeit von Messungen zu prüfen ,
entweder wiederholt man eine Messung unmittelbar und sieht zu , ob man das Er¬
gebnis der ersten Messung wieder erhält , oder man misst verschiedene Grössen ,
welche unter sich in einer bekannten Beziehung stehen, je einmal, und untersucht ,
ob die Messungsergebnisse die erwähnte Beziehung zeigen ; z . B . man misst die drei
Winkel eines ebenen Dreiecks und vergleicht deren Summe mit 180 ° . Wenn man bei
jeder Messung sich eine derartige Probe verschafft, und dieselbe in aller Strenge
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verfolgt , so wird man zu dem Schluss geführt , dass keine Messung vollkommen
fehlerfrei ist .

Damit ist natürlich nicht gesagt , dass es nicht möglich ist , eine Messung so
auszuführen, dass der noch zu fürchtende Fehler so klein ist , dass er für gewisse
Zwecke unschädlich bleibt.

Trotz der Mangelhaftigkeit der Beobachtungen können doch die Fehler gewisse
Grenzen nicht übersteigen , sofern der Beobachter die nötige Sorgfalt anwendet. Ist
letzteres nicht der Fall , so treten „ grobe Fehler “ auf (z. B . falsches Zählen der ganzen
Lattenlagen hei Längenmessungen u . A .) . Solche grobe Fehler sollen von den folgen¬
den Betrachtungen ausgeschlossen sein .

Gewisse Messungsfehlerwirken immer in demselben Sinn , z . B . das Ausweichen
der Messlatten aus der zu messenden Geraden führt immer auf ein zu grosses Messungs¬
ergebnis. Obgleich die Theorie der Beobachtungsfehler sich auch mit solchen „regel¬
mässigen“ oder „einseitig wirkenden“ Beobachtungsfehlern zu befassen hat , werden
wir doch im folgenden, sofern nicht das Gegenteil bemerkt ist , die Annahme machen ,
dass einseitig wirkende Fehler nicht zu befürchten sind, sondern nur unvermeidliche,
unregelmässige Beobachtungsfehler , welche gleichwahrscheinlich positiv oder nega¬
tiv sind .

Sobald man erkannt hat , dass die wahren Werte der beobachteten Grössen in
aller Strenge zu bestimmen unmöglich ist , hat man sich ein weniger hohes Ziel zu
stecken, nämlich nur die Erreichung der unter gegebenen Umständen wahrschein¬
lichsten Werte der Unbekannten, welche sich der Gesamtheit aller Messungen am
besten anpassen. Je nach der Art der Beobachtung und der Anzahl der angewendeten
Probemessungen wird man den wahren Werten der Unbekannten mehr oder weniger
nahe kommen ; man kann deswegen nach Ermittlung der wahrscheinlichsten Werte
noch die Frage aufwerfen , welche Genauigkeit erzielt worden ist .

Es ist hiernach die Aufgabe der Ausgleichungsrechnung, aus Beobachtungen,
welche infolge der unvermeidlichen ihnen anhaftenden Beobachtungsfehler auf Wider¬
sprüche führen , diejenigen Ergebnisse zu ziehen , welche sich den ' Messungen am
besten anpassen (oder die geringsten Fehler fürchten lassen) ; ferner diejenigen Be¬
träge anzugeben, um welche mutmasslich die gefundenen Ergebnisse von der Wahr¬
heit noch abweichen .

Oder mit anderen Worten :
Die Methode der kleinsten Quadrate beschäftigt sich mit der Ausgleichung von

Beobachtungsfehlern und mit der Bestimmung von mittleren zu fürchtenden Fehlem .

§ 8 . Der durchschnittliche Fehler .
Die ersten Fehlerbetrachtungen führen immer auf eine Durchschnittsberechnung,

welche zwar in der heutigen Fehlertheorie eine nur untergeordnete Bolle spielt ,
welche aber zur Einführung in das Verständnis der Sache hier zuerst mitgeteilt
werden muss.

Wenn die Fehler mehrerer gleichartiger Beobachtungen bekannt sind , so kann
man aus diesen Fehlern (absolut genommen , d. h . ohne Bücksicht auf die Vorzeichen )
einen Durchschnittswert bilden , welcher „ durchschnittlicher Fehler “ heisst . Allerdings
kennt man die wahren Beobachtungsfehler im allgemeinen ebensowenig als die wahren
Werte der beobachteten Grössen , doch hindert dieses nicht , den strengen Begriff des
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durchschnittlichen Fehlers zu bilden, d . h . wenn Sj e2 «s • • ■ s» eine Anzahl wahrer
Beobachtungsfehler von gleicher Art sind , so ist der durchschnittliche Fehler :

t = [±e ]
(1 )

wobei das Zeichen [+ e] die absolute Summe der s im Gegensatz zu der algebraischen
Summe andeuten soll , indem die eckige Klammer als Summenzeichen dient.

Als Beispiel für die Berechnung des Durchschnittswertes wahrer Fehler nehmen
wir folgendes :

Bei der „ Gradmessung in Ostpreussen“ wurden in 22 Dreiecken alle Winkel
■« , ß, y, gemessen und die Winkelsummen mit den theoretischen Summen 180 ° + sphär.
Excess verglichen. Dabei ergaben sich folgende 22 Widersprüche :

« + ß + y — ( 180 ° + sphär. Excess ) = e
Num. Fehler s

1 .
2 .
3.
4.
5 .
6 .
7 .
8 .

+ 0,36”
+ 0,93
— 0,51
— 1,46
— 0,95
— 1,40
+ 1,76
+ 0,92

8,29

Num. Fehler e
9 .

10 .
11 .
12.
13.
14.
15 .
16 .

+ 0,56"
0,00

— 0,59
0,00

— 1,36
+ 1,86
— 0,42
+ 1,68

6,47

Num. Fehler e
17.
18.
19.
20 .
21 .
22 .

1,62”
1,62
1,67

• 0,72
- 1,35
■0,98

7,96
6,47
8,29

Durchschnitt = [±e ] = an — = ± 1,03” .

Summe 22,72 ” = [+ e]
22,72 ”

n 22
Betrachtet man nun die Winkelsumme a + ß + y eines Dreiecks als Messungs¬

grösse, so hat man den durchschnittlichen Fehler derselben hiemit bestimmt = + 1,03”,
und dieser Wert als durchschnittlicher Dreiecksfehler hat immer ein gewisses Interesse
(dagegen wurde der durchschnittliche Fehler eines einzelnen Dreieckswinkels hiebei
nicht gefunden) .

Ebenso wie diese Dreiecksschlussfehlerhaben auch die Differenzen , welche man
bei Messungswiederholungenfindet, den Charakter wahrer Beobachtungsfehler e .

Im Gegensatz zu diesen wahren Beobachtungsfehlern stehen die scheinbaren
Fehler , welche man z . B . findet, wenn man das arithmetische Mittel mehrerer Be¬
obachtungen mit den einzelnen Beobachtungen vergleicht .

Dieses gieht folgende Formeln :
Beobachtungen:

Arithmetisches Mittel :

h h
• h •

(2)
oder mit Annahme der eckigen Klammer als Zeichen für algebraische Summierung

m
* = — (3)n K '

Man bildet die scheinbaren Fehler, d . h . die Differenzen :
®i = * — h v% = x — 7s v3 = x — Z3 . . . v» = x — 1„

dabei bemerkt man , dass die algebraische Summe dieser Differenzen = 0 ist , nämlich
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^1 + ^2 “F ^3 “h ■ • * — n & — Pl + 1%~h 8̂ "f"~ • • •)
[v] = n x — [1] = 0 wegen (2 ) oder (3)

[v] = 0 (4 )
Diese Gleichung (4) kann als Rechenprobe dienen.
Diese scheinbaren Fehler v behandelt man näherungsweise wie wahre Beobach¬

tungsfehler s , d. h . man berechnet nach Anleitung der Gleichung ( 1 ) den durch¬
schnittlichen Fehler :

t = M
n

Beispiel . Ein Winkel ist 5mal unabhängig gemessen worden :
Beobachtungen l Differenzen v Probe

35 ° 26 ' 16” + 2,8”
20” — 1,2
18" + 0,8 [+ „] = + 7,4
25” — 6,2

1IIlä11
15" *+- 8,8 M = o

Summen : 94" 14,8”

Mittel * = 35 ° 26 ' 18,8" t = ^ = 2,96 ” .5
Damit hat man ein Mass für die mutmassliche Genauigkeit einer einzelnen

Beobachtung . Nun wäre es weiter von Wichtigkeit , zu wissen , wie sich die Genauig¬
keit einer einzelnen Beobachtung zur Genauigkeit des arithmetischen Mittels verhält,
allein diese und andere hier sich anschliessende Fragen lassen sich auf Grundlage des
durchschnittlichen Fehlers und der vorstehenden einfachen Betrachtungen nicht lösen .

Aus diesem Grunde lassen wir jetzt den durchschnittlichen Fehler fallen und
gehen zu einem anderen Genauigkeitsmass , dem mittleren Fehler über.

§ 4. Dei* mittlere Fehler .
Nachdem der durchschnittliche Fehler sich als ungeeignet zur Behandlung

weiterer Aufgaben der Ausgleichungsrechnung erwiesen hat , machen wir einen Ver¬
such mit einem anderen Mittelwert der Fehler . Wenn eine Anzahl n wahrer Be¬
obachtungsfehler «j «2 e3 • • • *» vorliegt , so bilden wir daraus einen Mittelwert m
nach der Gleichung :

( 1)
Man nennt diesen Mittelwert den „mittleren Fehler “ oder „mittleren zu fürch¬

tenden Fehler “, (error medius metuendus) .
Der mittlere Fehler bietet gegenüber dem durchschnittlichen Fehler den Vor¬

teil , dass bei der Summierung [«2] , da alle Quadrate positiv sind, keine Unterscheidung
■der Vorzeichen nötig ist , sowie dass das Vorzeichen der Quadratwurzel unbestimmt -+-
aus der Rechnung hervorgeht . Abgesehen von diesen äusserlichen Unterschieden ist
aber der mittlere Fehler ein besseres Genauigkeitsmass als der durchschnittliche
Fehler , weil in den Quadraten die grossen Fehler mehr ins Gewicht fallen .

Der mittlere Fehler ist im allgemeinen grösser als der durchschnittliche Fehler
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und nur , wenn alle Binzelfehler s gleich sind , so werden auch der durchschnittliche

und der mittlere Fehler einander gleich ; dieses lässt sich zunächst für zwei Elemente

leicht einsehen; hat man nämlich zwei wahre Fehler und e 2, s0
der durchschnittliche Fehler der mittlere Fehler

f2 =

« l -

— «i 2 + e22 + 2 si s2 m2 =

m -

■

f - 2
2 Sl 2 - ■2 «22

4
_ 2 4

Um zu untersuchen , welches von beiden der grössere Wert ist , behandeln wir
-die Differenz beider :

m a — t 2 =_ e i2 + ^22 — 2 ex e2 _ (ej (2 )
4 4

Als Quadrat ist dieses stets positiv, es ist also stets m2 grösser als f2 (aus¬

genommen den besonderen Fall ej = e2, in welchem ro und t gleich werden ).
Dieser Beweis (2) lässt sich leicht auch auf beliebig viele Elemente e2 . . .

ausdehnen.
Zur weiteren Vergleichung zwischen dem durchschnittlichen Fehler und dem

mittleren Fehler betrachten wir folgende zwei Fehler -Reihen :
Summe Quadratsumme

I . 5
II . 14

3 8 10 9
6 20 2 2

3 5
1 10

58
58

402
750

Der durchschnittliche Fehler wird in beiden Fällen gleich , nämlich = 5,8 , der mitt¬
lere Fehler dagegen wird :

« i = j/ -^ - = ± 6>34, mn = = ± 8,66

Der mittlere Fehler lässt die erste Reihe besser erscheinen als die zweite Reihe, und
in der That ist eine ziemlich gleiche Fehlerverteilung bis zur Grenze 10 günstiger
als das zweimalige Überschreiten dieser Grenze mit 14 und sogar 20 , bei II , was
durch das zweimalige Vorkommen von 0 nicht aufgewogen wird.

Obgleich man auf diese oder ähnliche Art die Einführung des „mittleren
Fehlers “ wohl als zweckmässig darstellen kann , gelingt es doch nicht , diese Wahl
eines Genauigkeitsmasses als notwendig nachzuweisen. Die beste Rechtfertigung des

„mittleren Fehlers “ liegt aber darin, dass sich auf ihn eine allseitig befriedigende
und nun schon seit nahezu 100 Jahren anerkannte Fehlertheorie gründen lässt .

Indem wir hiernach die Definition des mittleren Fehlers nach der Gleichung (1)
festhalten , wenden wir diese Gleichung auf das frühere kleine Beispiel § 3. S. 13 an ,
zunächst mit der Annahme, als ob die scheinbaren Fehler v wie wahre Beobachtungs¬
fehler e behandelt werden dürften.

Beobachtungen V ®2
35 ° 26 ' 16" + 2,8" 7,84

20 — 1,2 1,44
18 0,8 0,64
25 — 6,2 38,44
15 + 3,8 14,44

Summe 94 M = 0,0 [v] = 62,80
Mittel 35 ° 26 ' 18,8"
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± 3,54” (? ) (3)
Dieser Berechnung (3) haben wir ein Fragezeichen (? ) zugesetzt, weil es frag¬

lich ist , ob die zunächst gemachte Annahme der v als wahrer Fehler zulässig ist ?
Die Antwort hierauf wird in unserem spätem § 7 . gegeben werden . Inzwischen müssen
wir uns einer anderen Betrachtung zuwenden .

Der mittlere Fehler nach der im Vorstehenden gegebenen Definition ist der Grundbegriff der
Genauigkeitsuntersuchungen ; neben diesem mittleren Fehler hat der durchschnittliche Fehler , der
sich zuerst in § 3. dargeboten hat , eine nur sehr untergeordnete Bedeutung .

Es bestehen noch zwei andere Fehlermasse , welche wir hier vorläufig erwähnen wollen ,
nämlich der ‘wahrscheinliche Fehler und der Q-renzfehler .

Diese beiden Fehler werden jedoch erst in einem späteren Kapitel zu behandeln sein .

§ 5. Das Fehlerfortpflanzuugsgesetz .
Es handelt sich um die Frage , in welcher Weise sich die mittleren Fehler ge¬

messener Grössen auf die hieraus durch Rechnung abgeleiteten Grössen übertragen .
Diese wichtige Frage muss erledigt sein , ehe weitere Aufgaben der Ausgleichungs¬
rechnung gelöst werden können. Wir behandeln zuerst einzelne besondere Fälle dieser
Frage , nämlich Multiplikation und Addition gemessener Grössen .

I . Multiplikation . Eine gemessene Grösse l wird mit einer gegebenen Zahl a
multipliziert , man hat also ein Produkt

x = al ( 1 )
Hier ist a als gegebene Zahl fehlerfrei, dagegen l als gemessene Grösse soll

mit einem mittleren Fehler m behaftet sein , und es fragt sich , welches der mittlere
Fehler M des Produktes x wird ?

Durch die Multiplikation a werden auch die der Grösse l anhaftenden Fehler
betroffen, man kann also rasch überblicken, dass das Ergebnis sein wird :

M = am (2)
Zur Veranschaulichung mag das Messen einer Geraden mit unsicheren Latten

dienen. Wenn eine Messlatte l an sich um den Betrag + m unsicher ist , d . h . wenn
sie ungenau mit dem Normalmass verglichen ist und wenn die Handhabung der
Messung selbst ganz fehlerfrei ist (d. h . wenn von den Messungsfehlern selbst hier
gar nicht die Rede sein soll ) , so wird bei o maligem Anlegen der fehlerhaften Latte
offenbar ein Fehler M = am erzeugt , und zwar + M, wenn + m im Vorzeichen
unbestimmt ist.

II . Addition . Es werden zwei Grössen l und l ' unabhängig von einander
gemessen und dann addiert, man hat also eine Summe :

x — l —t—l (3)
die l und V seien mit mittleren Fehlern + m und + m ' behaftet und es fragt sich
nun , was der mittlere Fehler M der Summe x ist ?

Auf den ersten Blick könnte es scheinen, als ob einfach zu setzen wäre :
M = m -+- m ' (? ) , (3 a)

allein sobald man die Sache näher betrachtet , so bemerkt man , dass dieses nur dem
äussersten Fall der Häufung der Fehler m und m! entspricht , während bei unregel¬
mässigen Vorzeichen + m und + m ' auch der Fall der gegenseitigen Tilgung m — m '
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berücksichtigt werden muss . Zudem muss man beachten , dass der Fehler von l und
V durchaus nicht gerade m und m’ selbst sind , sondern dass diese m und m' nur die
Mittelwerte der den l und l' anhaftenden Fehler vorstellen , dass also von einer so
einfachen Lösung wie (3 a) nicht die Rede sein kann .

Um zur richtigen Lösung der vorliegenden sehr wichtigen Aufgabe zu gelangen ,
müssen wir den Grundbegriff des mittleren Fehlers anwenden , und dazu denken wir
uns die Addition l + V = x nicht nur einmal , sondern wiederholt (etwa n mal ) vor¬
genommen , und wir ziehen alle Fehler e, e' u . s . w. in Betracht , welche bei allen
diesen Fällen auftreten . Im ersten Falle habe man l behaftet mit dem Fehler e,
und l' behaftet mit e '

, dann ist zweifellos der Fehler von x im ersten Falle gleich
e + e\ was mit S bezeichnet werden soll . Dieses « mal angewendet giebt :

= £] -f ~ £]
'

d'
2 = *2 +

^ 3 = ®3 + *3
’

A, — e» + £n
Um zu mittleren Fehlern überzugehen , müssen wir quadrieren :

V = el 2 + «l '2 + 2 «i «1
'

ö22 = «22 + ez z + 2 e2
'

^32 = ®32 + es 2 + 2 *3 e3

Quadratsumme

Quadrat -Mittel

— £„2 + e/ 2 + 2 sn e /

[<52] = [e2] + [e '2] + 2 [8 «']
[i2] = [fi2I + L*' 2J + 2 f6^1
n n n n (4 )

Hier ist zufolge der Grunderklärung des mittleren Fehlers :
m = ^ m = wet

n
= wi2, (5)

fee ' lund es fragt sich noch , was -— J ist ?n
Dieses ist der Durchschnittswert aller Produkte 8! e x

'
, e2 e2

' u . s . w. und da
alle e gleich wahrscheinlich positiv oder negativ sein sollen , also auch kein Grund
vorhanden ist , warum in der Reihe der Produkte ex sx

'
, s2 e2

' . . . die positiven oder
negativen Beträge überwiegen sollten , so ist der Durchschnittswert des letzten Gliedes
in (4) gleich Null zu setzen . (Genauer gesagt , der Grenzwert , gegen welchen bei
wachsender Anzahl n jenes Glied konvergiert , ist gleich Null .)

Damit und wegen (5) giebt nun (4) :
M 2 = wi2 + m' 2 j

oder M = | / 'm2 ■+ ■m'2 j
^

Dieses ist der wichtigste Satz der ganzen Ausgleichungs-Mechnung , er ist
gleichlautend mit dem pythagoräischen Satz der Geometrie , indem M als Hypotenuse
zu den Katheten m und m' gehört .

Der wichtige pythagoreische Lehrsatz der Ausgleichungs -Rechnung heisst also :
Wenn eine Messung mit dem mittleren Fehler + m addiert wird zu einer zweiten
Messung mit dem mittleren Fehler ±m '

, so entsteht eine Summe , deren mittlerer
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Fehler + M die Quadratwurzel aus der Quadratsumme von m und m' ist , oder es ist
der Summenfehler M die Hypotenuse zu den Teilfehlern m und m’ als Katheten .

Derselbe Satz gilt wie für Summen , so auch für Differenzen, d. h . wenn aus
den Messungen l + m und V + m' die Differenz D = (l ±m ) — (V ± m ') gebildet
wird, so haftet an dieser Differenz derselbe mittlere Fehler M = yj «2 4- m'2 wie an
der Summe l 4- V. Man überzeugt sich hievon leicht , wenn man die vorstehende
Entwicklung nochmals durchgeht , denn es wird sich mit l — V statt l 4- V nichts
ändern als dass in (4) das letzte Glied negativ wird, da aber dieses letzte Glied in (4)
gleich Null wird, bleibt alles bestehen .

Der Satz (6) lässt sich auch auf mehr als zwei Messungen leicht ausdehnen.
Hat man

x = (l + m) 4- (T + m ) 4- {l" ± m")
so kann man zuerst die zwei ersten Elemente nach dem Satze (6) zusammenfassen
und dann das dritte hinzunehmen , d . h . man hat für drei Elemente :

fff2 — (m2 4- m '2) 4- m ''3
So kann man beliebig fortfahren, wodurch man erhält :

M2 — rrß 4- m '2 4- wi"2 4- m" '2 4- . . . ( 7)
Sind hiebei alle Einzelfehler m m' m" . . . einander gleich, was als besonderer

Fall Vorkommen kann, so wird bei n Fehlern :
IW2 = »j2 4- rrfi 4- to2 . . . = n m2

M = my n (8)
Zur Veranschaulichung mag wieder das Beispiel der Lattenmessung dienen ;

jedoch soll nun im Gegensatz zu dem früheren Falle bei (2) angenommen werden,dass die Latten an sich fehlerfrei seien , dass aber bei jeder Lattenanlage l ein aus
der Handhabung entspringender Fehler begangen werde, dessen Mittelwert gleich 4h m
sei, wobei das Überwiegen positiver oder negativer Fehler ausgeschlossen sein soll .
(Letzteres ist bekanntlich nicht wirklich der Fall , doch sei davon jetzt nicht die Eede .)Unter diesen Voraussetzungen haben wir die Gleichung (8) giltig für n maliges
Lattenanlegen mit + m als mittlerem Fehler einer Anlage , und hiernach ist der
mittlere Lattenmessungsfehler proportional der Quadratwurzel aus der Anzahl n der
Lattenanlagen , d. h. auch proportional der Quadratwurzel aus der gemessenen Länge L
(weil L proportional n).

III . Lineare Funktion. Durch Verbindung der beiden Sätze I für Multipli¬
kation und II für Addition bzw. Subtraktion , erhalten wir den allgemeinen Satz für
Bestimmung des mittleren Fehlers einer linearen Funktion gemessener Grössen :

Wenn l , V, l " . . . gemessene Grössen und m , m '
, m " . . . deren bekannte

mittlere Fehler sind, so handelt es sich um die lineare Funktion
x ^ a. I 4- a l -+- al l ' 4~ . . . (9)

deren mittlerer Fehler M sich nach dem Vorhergehenden leicht ergiebt :
M — )/ (fflm)2 4- (a' m'

)2 4- («" m"
)2 4- . . • ( 10 )

Wenn dabei m' = m" = m '" . . . = m ist , so wird
M — m ~

\/ [aa ] ( 11)
IV . Allgemeine Funktion. Mit den vorstehenden Sätzen I, II, III ist das

Jordan , Handb. d. Vermessungskunde. 4. Aufl . I. Bd . 2
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wichtige Fehlerfortpflanzungsgesetz an sich erledigt ; mehr als eine lineare Funktion (9)

lässt sich in diesem Sinne nicht allgemein behandeln ; man kann aber jede beliebige

andere Funktion wenigstens näherungsweise auf eine lineare Funktion zurückführen

durch Differentiieren nach dem Taylor sehen Satze , mit der Annahme , dass die Fehler

verhältnismässig kleine Grössen seien . Obgleich die darauf gegründete Verallge¬

meinerung des Fehlerfortpflanzungsgesetzes zu unserem nächsten Gang der Theorie

in § 6 .— § 11 . nicht gebraucht wird (also auch zunächst übergangen werden kann ) ,

wollen wir dieselbe doch hier einschalten und durch ein kleines geodätisches Bei¬

spiel erläutern .
Man habe irgend eine Funktion gemessener Grössen :

X = f (l1 l2 ls . . .) (12)

Bezeichnet man jetzt mit 12 h • • ■ die wahren Werte der gemessenen Grössen , mit

ml m2 mg . . . deren mittlere Fehler , und mit e2 *3 • • • bestimmte denselben an¬

haftende Fehler , so kann man unter der Voraussetzung , dass diese Fehler so klein

sind , dass ihre höheren Potenzen vernachlässigt werden können , mit Hilfe des

Taylor sehen Satzes den entsprechenden Fehler e von x bestimmen , nämlich :

8 = f (h "+- 8l » 2̂ + ®2 i 3̂ + ®3 • • ■) —' f (h t h > 3̂ • ■•)

1 L ,
3 Xi

_df
3 x .

e2 ■ dx s
8S ■

Durch ähnliche Schlüsse wie die hei I . und II . angewendeten kommt man zu dem

Ergebnis :

M.

wobei die Differentialquotienten mit

berechnet werden .

41 ^ - tlL'■d xs
m 3) 2 - (13 )

Hilfe von Näherungswerten der lx i2 h

Fig . 1.
Mittlerer Feiner der

Seite a .

Ein einfaches Beispiel zur Anwendung dieses Satzes ( 13 )

ist folgendes (Fig . 1 .) :
Ein Punkt P wird gegen eine feste Basis AB = c fest¬

gelegt durch Messung der zwei Winkel « und y , wodurch die

Seite BP — a bestimmt wird :
Q

a = —— sin a (14)
sm y

dabei sind « und y mit mittleren Fehlern 8a und 8y behaftet ;

es fragt sich , was der mittlere Fehler M der Seite a ist . Die

Basis c wird dabei als fehlerfrei betrachtet .

Man bildet das totale Differential von (14 ) :
da ,- w- d y3 y

j da ,da = wr— d cc -
9 a

c cos y
da = —— cos ad a — c sin a . d y

sm y sm* y

Wegen (14 ) kann man dieses auch so schreiben :

da — a cotg ad a — a cotg y dy
Nun setzt man an Stelle der Differentiale d a und d y die mittleren Fehler + 8 a und

±8y , und hat damit den mittleren Fehler M zunächst in unbestimmter Form :
+ M = a cotg a8 a + a cotg y öy ,
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endlich nach der Regel von . (13) :
M — a ycotgZ « (da)2 -+- cotgt y (dy)2 (15)

Wenn beide Winkel a und y gleich genau gemessen sind , so sei da = öy = d , damit wird:
M — a dYcotgi a -+- eotg2 y

Hiebei ist d in analytischem Masse verstanden ; wenn ö" der Winkelfehler in Sekunden
ist , so wird :

ß " _— =
^77ycotgZ a + eotg? y

Wir nehmen beispielshalber a = y = 60 ° und ö = 10”
, das giebt

— = 4 - 0,0000 396a
■oder es ist der Fehler M etwa = 0,004 % von a.

Nehmen wir dabei a = 1000“ , so ist also M = 0,04“.
Wenn etwa in dem Dreieck (Fig . 1 .) der dritte Winkel hei B auch gemessenist , dann lässt sich die Berechnung des mittleren Fehlers der Seite a nicht mehr in

so einfacher Weise machen; wie dann zu verfahren ist , wird erst später hei der Theorie
der bedingten Beobachtungen gezeigt werden .

§ 6 . Zusammenwirkung unregelmässiger und regelmässiger Fehler .
Wir haben bis jetzt vorausgesetzt, dass keine konstanten oder einseitig wirken¬

den Fehler vorhanden sind, indessen gilt der Hauptsatz II . des vorigen § 5 . über
Fehlerfortpflanzung auch dann noch , wenn es sich um Kombination eines unregel¬
mässigen mit einem regelmässigen oder mit einem konstanten Fehler handelt , denn

le e ' lder Mittelwert , auf welchen es bei dem Falle II . S . 16 hauptsächlich ankommt,
konvergiert auch dann noch gegen Null , wenn nur e oder e' gleichwahrscheinlich
positiv und negativ ist .

Als Beispiel hiefür nehmen wir wieder wie im vorigen § 5 . S . 15 die Längen¬
messung mit Messlatten. Eine solche Messung ist nämlich nicht nur mit unregel¬
mässigen Fehlern , sondern auch mit regelmässigen Fehlern behaftet . Solche regel¬
mässige Fehler sind z . B . das Ausweichen aus der Geraden nach links oder rechts,nach oben oder unten . Diese Ausweichungen heben sich durchaus nicht gegenseitig
auf , sondern sie geben lauter positive Fehler , d. h. Fehler , welche die Länge zu grosserscheinen lassen .

Bei n maliger Lattenanlage wird man die einseitig wirkenden Fehlerteile = An
und die unregelmässig wirkenden Teile = B ]/ n annehmen können, dann ist der
mittlere Gesamtfehler:

V ( A «) 2 4 - (B j/w )2 = V A2 n2 + B2
Der Begriff des mittleren Fehlers ist also nicht an die Bedingung gleicher

Wahrscheinlichkeit für positive und negative Einzelfehler gebunden; man kann den
mittleren Fehler auch als Genauigkeitsmass für solche Messungen benützen, bei welchen
einseitig wirkende Fehlerquellen vorhanden sind; doch darf natürlich ein mittlerer
Fehler , welcher konstante Teile enthält , im allgemeinen nicht ebenso weiter behandelt
werden , wie ein mittlerer Fehler , welcher solche Teile nicht enthält .
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Es ist ein oft gehörter Einwurf gegen die Anwendung der Methode der klein¬

sten Quadrate auf gewisse Messungen, dass diese Messungen einseitige Fehler ent¬
halten , und dass deswegen die Methode der kleinsten Quadrate in solchen Fällen

überhaupt nicht anzuwenden sei .
Dem ist entgegenzuhalten , dass gerade die Methode der kleinsten Quadrate die

feinsten Mittel darbietet , um einseitig wirkende oder unbekannte Fehler aufzufinden,
und dann die Ausgleichung mit Rücksicht auf solche Fehlerquellen zu behandeln.

§ H. Das einfache arithmetische Mittel.

Wenn eine Messung mehrfach gleichartig und unabhängig wiederholt worden
ist mit den Ergebnissen l2 1% . . . ln , so nimmt man als bestanschliessenden Wert,
das arithmetische Mittel :

x — + ^ + __ W n >
n n ^ '

Die Abweichungen der Einzelmessungen von dem Mittel x , d. h . die scheinbaren
Fehler sind :

v1 = x — lx
v2 = x — Q
vs = x — l3 (2)

Vn = X - l,
deren Summe wegen ( 1 ) gleich Null ist , d. h . :

M = 0 - (»>
Durch Quadrierung der scheinbaren Fehler v findet man den mittleren Fehler einer
Beobachtung zunächst näherungsweise durch die Formel :

m = (?) (4>

Es handelt sich nun um Bestimmung des mittleren Fehlers M des arithmetischen
Mittels selbst, wozu die Anleitung des Satzes über Fehlerfortpflanzung (10 ) und (11 )
§ 5 . S . 17 dient, denn vermöge ( 1) ist x eine lineare Funktion der beobachteten
Grössen l , denen sämtlich der mittlere Fehler m zukommt, wie sich noch deutlicher
zeigt, wenn man die Gleichung (1 ) auseinanderzieht und so schreibt :

1 , 1 ,X — — l \ - b — /o '
n n *

i . i ,- ?3 + . . . - lnn n
Dieses entspricht der Gleichung (9) § 5 . S . 17 , nämlich

(5)

X -|- & l —H Qi V -|- Clr V —f- . . .
und dazu gehört die Anwendung (10) § 5 . S . 17 , nämlich

(5a >

M = ]/ (a m)2 + (a! m' )2 + (a” ro"
)2 . . . (5 b)

Es treten also die l2 lg . . . von (5) an Stelle der früheren 11’ l" . . . in (5 a) und
die dort mit a a! a" . . . bezeichneten Coefficienten sind in unserem Falle (5 ) sämtlich

= die mittleren Fehler m m ' m" . . . sind in unserem Fall alle einander gleich,

nämlich alle = m , also giebt die Anwendung von (5 b) nun :

M = Y(a m)2 -h (a! w ) 2 + (a" m )2 -+- . . . = m ]/a 2 -I- <i'2 4- o"2 + . . .



Das einfache arithmetische Mittel. 21§ 7 .

■dabei ist a2 -+- a ' 2 -+- a"2

also / 1 mM = ml / — oder M —r n y t (6)

d . h . der mittlere Fehler M des arithmetischen Mittels x wird erhalten aus dem
mittleren Fehler m einer Einzelbeobachtung durch Division mit der Quadratwurzel y n
aus der Anzahl n der Beobachtungen. Wir werden diesen wichtigen und interessanten
Satz nachher mit Fig . S . 23 noch etwas näher betrachten , zuvor aber müssen wir uns
nochmals der Gleichung (4) zuwenden , um die daselbst noch offen gelassene Frage
zu behandeln, inwiefern die scheinbaren Fehler v zur Vertretung der wahren Fehler e
geeignet sind.

Diese wahren Fehler e bleiben ewig unbekannt , aber dennoch kann man die
Abweichungenzwischen den v und den e näherungsweise berücksichtigen in folgenderWeise :

Im Gegensatz zu dem arithmetischen Mittel x bezeichnen wir mit X den
wahren Wert der Unbekannten, und mit e die wahren Beobachtungsfehler im Gegen¬satz zu den scheinbaren Beobachtungsfehlern « ; dann haben wir die Gleichungen:

e = X — l also e = v -h (X — x)v = x — l
Wenn man dieses auf n Fälle anwendet und die ej e2 • • • quadriert , so erhält man :

« l 2 = ^l2 + (X — a;)2 + 2 »j (X - x)
®22 = + (X — a: )2 + 2 «2 (X — oc)

e»2 = ®„2 + (X — a:)2 + 2 vn {X — x)
Summe [e2] = [w2] + n (X — a;)2 + 2 (iq -+- «2 . . . «„) (X — x)

Nun ist aber -t- -+- • . • = [«] = 0 nach (3 ) , also
[s 2] = [1)2] + n [ X — £C) 2

(8)
Der Wert X — x , d. h . die Abweichung des arithmetischen Mittels x von dem

wahren Wert X der Unbekannten ist in aller Strenge niemals zu bestimmen, allein
man kann wenigstens für X — x einen guten Näherungswert einführen, indem man
dafür den mittleren Fehler M des arithmetischen Mittels selbst setzt , d . h. nach (6)

in
ynX — x = M = (X — x)2 n

Damit giebt (8) :
[ «2] = [ w2] m 2

(9 )
Es ist nun in aller Strenge :

n
denn die wahren Fehler e müssen den streng richtigen mittleren Fehler bestimmen.Damit wird (9 ) :

n in 2 = [i)2] -+- m2
Diese Gleichung kann nach »i2 aufgelöst werden und giebt :

oder m ( 10)
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Das ist die gesuchte richtige Formel , welche an Stelle der genäherten Formel (4)
tritt , die Formel ( 10 ) kann man auch wieder in (6) einsetzen , womit man hat :

M =
m

y n V [V*l
n (n — 1 )

(11 )

Die neue Formel (10) erscheint auch ohne die mathematische Herleitung , nach

dem blossen Anblick besser als die frühere Formel (4) ; insbesondere in dem beson¬

deren Fall mit n = 1 . Hiefür würde (4) geben [®2] = 0 also m = 0 . Dagegen ( 10)
.,/T

giebt zwar auch [ü2] = 0, aber auch im Nenner n — 1 = 0 , also im ganzen m = y -
q

-,

d . h . unbestimmt , und in der That muss beim Vorhandensein von nur einer Beobach¬

tung die Genauigkeit unentschieden bleiben. (Als letzten extremen Fall kann man
auch noch n = 0 setzen , d . h . nach der Genauigkeit einer Beobachtung fragen, welche

gar nicht gemacht worden ist ; auch hiefür giebt ( 10) die richtige Antwort , indem

wegen n — 1 = 0 — 1 = — 1 der mittlere Fehler m imaginär wird.)
Zur Anwendung der in Vorstehendem entwickelten Theorie des einfachen arith¬

metischen Mittels nehmen wir nochmals das kleine Zahlenbeispiel am Schlüsse des

§ 3. S . 13 :
Beobachtungen l V V2

1 . 35 ° 26 ' 16" + 2,8" 7,84
2 . 20 - 1,2 1,44
3. 18 + 0,8 0,64
4. 25 — 6,2 38,44
5 . 15 + 3,8 14,44

Summe = 94 0,0 62,80 = [>2]
Mittel = 35 ° 26' 18,8" .

Mittlerer Fehler einer einzelnen Beobachtung:

Mittlerer Fehler des arithmetischen Mittels :

M = = 7 / IV J = ö,yb
y n r n (n — 1) y 5

Im ganzen schreibt man nun abgerundet :

x = 35 ° 26 ' 18,8" ±1,8 " .

= ± 1,77"

Zweites , grösseres Zahlenbeispiel .

In der „Gradmessung in Ostpreussen“ ( S . 78) giebt Bessel 18 unabhängige
Messungen für den Winkel Mednicken -Fuchsberg auf der Station Trenk , wie folgende
Zusammenstellung zeigt, welche zugleich die Fehlerberechnung enthält .
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Nr . Beobachtung l V x>i

X 83® 30' 36,25" — 1,38" 1,90
2 7,50 — 2,63 6,92
3 6,00 — 1,13 1,28
4 4,77 + 0,10 0,01
5 3,75 + 1,12 1,25
6 0,25 + 4,62 21,34
7 3,70 + 1,17 1,37
8 6,14 1,27 1,61
9 4,04 + 0,83 0,69

10 6,96 — 2,09 4,37
11 3,16 + 1,71 2,92
12 4,57 + 0,30 0,09
13 4,75 + 0,12 0,01
14 6,50 • — 1,63 2,66
15 5,00 — 0,13 0,02
16 4,75 + 0,12 0,01
17 4,25 0,62 0,38
18 5,25 — 0,38 0,14
Summe 87,59
Mittel 83° 30' 34,87" + 10,71

— 10,64
46,97

= [t>2]
Mittlerer Fehler einer einzelnen Beobachtung :

W _ ^ 46,97
17

= 4- 1,66"

Mittlerer Fehler des arithmetischen Mittels :
1,66

y n
Haupt -Ergebnis = 83° 30'

y i8
84,87'

= ±0,39 "

: 0,39".

Graphische Darstellung der Gleichung (6 ) .
Die oben S. 21 gefundene Gleichung (6) ist in mehr als einer Hinsicht sehr

wichtig, sie sagt in Worten, dass der mittlere Fehler des arithmetischen Mittels sich
im Verhältnis der Quadratwurzel der Anzahl der Messungen verkleinert . Zur Ver¬
anschaulichung dieses Gesetzes kann man M als Ordinate zur Abscisse n auftragen,wobei man eine hyperbelartige Kurve dritten Grades erhält , welche in der nach¬
folgenden Figur dargestellt ist . Die Zahlenwerte hiefür sind :

n = 1 2 3 4 5 6 8 10 20 50 100 1
— = 1,00 0,71 0,58 0,50 0,45 0,41 0,35 0,32 0,22 0,14 0,10y n ( 12 )

Graphische Darstellung der Gleichung (6) : M —
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Die Kurve läuft asymptotisch aus , d . h . der mittlere Fehler M nähert sich -
unbegrenzt der Null , ohne den Wert Null selbst je zu erreichen. Die ersten 5—10
Wiederholungen geben rasch eine Abnahme von M, d . h. eine Genauigkeitssteigerung ;
dann aber hat weiteres Wiederholen wenig Erfolg , und um den mittleren Fehler einer
ersten Messung auf ein Zehntel seines Wertes herunter zu bringen , müsste man 100
Wiederholungen machen.

Das thut man aber gewöhnlich nicht ; eine und dieselbe Messung pflegt man
höchstens 5 —10 mal zu wiederholen , und zwar nicht bloss deswegen , weil von da an
der Wert M nur noch langsam abnimmt , sondern aus einem noch viel wichtigeren
Grund : die Gleichung (6) und die darnach berechneten Zahlenwerte (12) , nebst der
dazu gehörigen Kurve , setzen nämlich voraus , dass die Messungen nur mit unregel¬
mässigen , positiv oder negativ gleich wahrscheinlichen Fehlern behaftet seien , und
dieses ist in Wirklichkeit fast nie der Fall . Im Gegenteil , je feiner die Messungen
werden und je öfter man sie wiederholt , desto mehr kommt man zu der Überzeugung ,
dass fast überall konstante Fehlerquellen einwirken . Man soll daher bei Wieder¬
holungen auch die Nebenumstände möglichst abändern , z . B. bei Winkelmessungen
nach und nach verschiedene Striche der Kreisteilung benützen u . s . w.

Einführung des Gewichtes .
Zur späteren Anwendung (z . B . im folgenden § 8 .) betrachten wir nochmals

die wichtige Gleichung (6) in anderer Hinsicht :
„ m , m2
M = —— oder M2 = — ngi

1/ n n
Es folgt hieraus , dass man das arithmetische Mittel als Ergebnis einer Beob¬

achtung betrachten kann, deren mittlerer Fehler M ist ; es ist also das Genauigkeits¬
verhältnis dieser fingierten Beobachtung und einer ursprünglichen Beobachtung durch
die Werte M und m festgestellt .

Dieses führt zu dem Begriff des Gewichtes.
Das Verhältnis von »i2 zu M2 ist bestimmt durch die Zahl n, welche angiebt ,

wie viele Beobachtungen der einen Art in ein arithmetisches Mittel vereinigt werden
müssen, damit dieses die Genauigkeit einer Beobachtung der anderen Art hat . n heisst
in diesem Falle das Gewicht der letzteren Beobachtung (wobei man das Gewicht einer
Beobachtung der ersteren Art = 1 setzt ) .

§ 8 . Das allgemeine arithmetische Mittel.
Wenn zur Bestimmung einer Unbekannten mehrere ungleichwertige Beobach¬

tungen vorliegen , d. h . solche , denen von vorn herein nicht gleiche Genauigkeit
zuzuschreiben ist , so ist das im vorigen § 7 . behandelte einfache arithmetische Mittel
nicht der wahrscheinlichste Wert der Unbekannten . Wie in diesem Falle zu ver¬
fahren ist , wird eine Betrachtung zeigen , welche wir mit einem einfachen Falle
einleiten :

Man habe 5 gleichartige Beobachtungen Z2
' ls ' Z4

' l6' und deren einfaches
arithmetisches Gesamt-Mittel :

_ h ' + 12
' -f- ls 4 - h ' 4 - 1$x -

§ ( 1 )
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Ausserdem betrachten wir zwei Partial -Mittel aus 2 und 3 Beobachtungen:
r h

’ + h
’

■1 - - 9- h ' + h ’ + h '

3 ( 2 )

dann ist leicht einzusehen , dass man aus den Partial -Mitteln ij und lo wieder das
Gesamtmittel x herstellen kann, ohne Zurückgreifen auf die ursprünglichen Beobach¬
tungen V \ es ergieht sich nämlich aus (1 ) und (2) :

der an diesem einfachen Palle mit 2 + 3 = 5 Beobachtungen gezeigte Grundgedanke
lässt sich leicht auch allgemeiner durchführen ; wir wollen Gruppenmittel l; . . .
aus pi p %p 3 . . . ursprünglichen gleich genauen Beobachtungen annehmen, und daraus
nach Analogie von (3) das Gesamtmittel berechnen

Pi h + P2 h ~*~ P3 h + • ■• _ [P 1}
PX + P2. + P3 - - - [p\ (4 )

Die Zahlen p haben hier die Bedeutung von Gewichten nach der Erklärung am
Schlüsse des vorigen § 7 . , d . h . die p sind dasselbe was die dort mit n bezeichneten
Wiederholungszahlen, zu welchen die Partial -Mittel lx Z2 ls . . . gehören.

Wir gehen einen Schritt weiter , indem wir annehmen , dass diese l l h ■ • ■
nicht Partial -Mittel , sondern selbst unmittelbare Beobachtungen von verschiedener
Genauigkeit seien ; dann müsste man ebenso verfahren wie im vorigen Palle nach
Gleichung (4) , nachdem man zuvor diejenigen Zahlen p ermittelt hätte , welche den
einzelnen Genauigkeiten entsprechen , und dieses wird erreicht , wenn man für p die
Gewichte nach der am Ende des vorigen § 7 . S . 24 gegebenen Definition nimmt.

Da übrigens der Wert von x in (4) nicht verändert wird, wenn man alle Ge¬
wichte p mit einer beliebigen Zahl multipliziert , so folgt, dass es zur Lösung der
Aufgabe genügt , wenn solche Gewichte p benützt werden, welche den früher als
Gewichte definierten Zahlen proportional sind, und wir werden deswegen künftig
allgemein die Gewichte nur als Yerhältniszahlen auffassen .

Es lässt sich weiter leicht zeigen , dass die Gewichte p umgekehrt proportional
den Quadraten der mittleren Fehler sein müssen , weil nach (6 ) § 7 . S . 21 der mitt¬
lere Fehler umgekehrt proportional der Quadratwurzel aus der Anzahl der Wieder¬
holungen d. h . aus der Gewichtszahl p ist . Um dieses deutlicher zu zeigen , wollen
wir die erwähnte Gleichung (6) § 7 . S. 21 , nämlich

in welcher n als Gewicht auftritt , auf 2 Fälle mit n = p und n = p anwenden:
mW =

V p'
Hieraus ergiebt sich der Satz : Wenn M M ' die mittleren Fehler , und pp ' die

Gewichte zweier Beobachtungen sind , so ist :

d . h . die Gewichte verhalten sich umgekehrt wie die Quadrate der mittleren Fehler,
oder die mittleren Fehler verhalten sich umgekehrt wie die Gewichtswurzeln.

Ein dem Begriff Gewicht verwandter Begriff ist der der Genauigkeit; bei ab-
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nehmendem mittlerem Fehler wächst sowohl das Gewicht als die Genauigkeit, jedoch
in verschiedenem Mass . Während das Gewicht umgekehrt proportional dem Quadrat
des mittleren Fehlers ist , verstehen wir unter Genauigkeit eine Grösse , welche nur
umgekehrt proportional dem mittleren Fehler selbst ist . Übrigens ist kein Bedürfnis
vorhanden, besondere Genauigkeitszahlen in unsern Beatmungen einzuführen.

In welcher Weise die Gewichte ermittelt werden , lässt sich nicht allgemein
angeben. Am einfachsten ist die Bestimmung der Gewichte , wenn man es nicht mit
unmittelbaren Beobachtungen, sondern , entsprechend der Untersuchung am Anfang
dieses § , mit Partial -Mitteln aus einzelnen Beobachtungsgruppen zu thun hat , was
zuweilen vorkommt.

Nachdem die Bedeutung der Gewichte p erklärt ist , giebt sich alles Weitere,
ähnlich wie beim einfachen arithmetischen Mittel . Wir haben bis jetzt folgendes :

Gegeben die Beobachtungen: i] ls . . . ln
mit den Gewichten : ih P2 Pz ■ ■ • P»

Der wahrscheinlichste Wert der Unbekannten ist das arithmetische Mittel :

x _ Pl h + P%h + PS h + Pn ln _ [p 1]
Pl + P<i + Pz + . - - Pn [p]

Man bildet wie früher die scheinbaren Fehler :
= x — lx mit dem Gewicht p x

V2 = X — l% „ , „ p Z
v3 = x — lR „ „ „ Ps •

Vn — X •— ln „ „ ff Pn
Wenn man diese v bezw . mit ihren p multipliziert und sie dann addiert , so

erhält man wegen (6) :
[2>»] = 0 (8)

Wir betrachten nun denjenigen mittleren Fehler w , welcher zu einem Ge¬
wichte p = 1 gehört ; ob unter der Beihe der piPzPz ■ ■ ■ wirklich ein Wert p = 1
vorkommt, ist dabei gleichgültig , jedenfalls kann man sich einen solchen Wert p = 1
denken und den ihm entsprechenden mittleren Fehler m betrachten , welchen man
auch kurz Gewichtseinheitsfehlernennt . Hieraus und aus den Gewichten Pi p ^ Ps ■■■
folgen auch nach den Verhältnissen (5 ) die mittleren Fehler der 12 h ■ ■ ■ näm¬
lich bezw .

(6)

(7)

m nt_ m m
^VPl Vpz Vps Vp»

Um nun das Fehlerfortpflanzungsgesetz anzuwenden , schreiben wir zuerst (6) in der
auseinandergezogenen Form :

Pl P2
[P\ 1

[P] h + Ps ,
[ P] " '

IpY
(10 )

Dieses (10) entspricht wieder der linearen Funktion (9 ) des allgemeinen Fehlerfort¬
pflanzungsgesetzes in § 5. S . 17, nämlich

x — a l -j- a l -}- a ' l -H . . . ( 10 a)
die a , a'

, . . . sind in (10) vertreten durch —K, , _ _ un (j da wjr ailc]j (ji e mjtt -
[p ] [p\

leren Fehler der einzelnen Summanden in (9) haben , giebt die Anwendung von (10 a) :
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m =

M2 =

Pi m \ 2
W yjj

_ /jM 2
"

W
Pl + P2 + PS

(n m Y
\ M YpJ

{YPlf + (1/P2

M 2 = rrß
[p] 2 = ro 2

(n m \2
VW VW
(iW 2 + .

[p]
[p ] 2

ro2
M

M = —=
yw

( ii )

Wir gehen über zur Bestimmung des mittleren Fehlers m einer Beobachtung
vom Gewicht 1 , (Gewichtseinheitsfehlers) . Wenn die Gewichte p alle = 1 wären , so
würde man aus den scheinbaren Fehlern v in (7) höchst einfach einen Mittelwert
bilden wie beim einfachen arithmetischen Mittel in § 7 . und obgleich dieses nicht
der Fall ist , können wir doch die zu ungleichen Gewichten gehörigen v reduzieren
auf gleiches Gewicht p = 1 , nämlich nach den Proportionen (5) muss sein :

Gewicht
Pl
P2
PS

Fehler

Pi

Gewicht
1
1
1

Fehler

Uj yPi reduziert

H VP2 »
H Ypz *

Dabei ist angenommen, dass die scheinbaren Fehler v den Gesetzen der wahren mitt¬
leren Fehler folgen , was zulässig ist . Man berechnet nun aus den auf das Gewicht
1 reduzierten Fehlerbeträgen den mittleren Gewichtseinheitsfehler nach der früheren
Formel (10) § 7 . S . 21 , nämlich :

mß = ypif + {v2 yP2f + (vs yPzf + . . . = i> v*]
n — 1 n — 1

( 12)w = t/M
r n — 1

Nun hat man in den beiden Gleichungen ( 11 ) und ( 12) die ganze Fehlertheorie des allge¬
meinen arithmetischen Mittels ; man kann auch aus (11 ) und (12) zusammen noch bilden :

M [p u2]
(13)

Zu einem Zahlenbeispiel wollen wir mit der nachfolgenden Fig . 1 . eine , Höhen¬
berechnung nehmen, bei welcher die Gewichte nicht etwa durch ungleichartige Messungs¬
wiederholungen bestimmt sind, sondern aus der Natur der Aufgabe sich selbst ergeben.

fig. l.

124701

G19,02n
- o

1 :200000
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Es seien nämlich A B C D E F Höhenpunkte der Landesaufnahme, deren
Höhen über N . N . unabänderlich gegeben sind, z . B . A hat die Höhe 1043,64 ” über
N . N . u . s . w. Wir nehmen auch an , diese 6 Höhenangaben seien fehlerfrei , oder
es sollen ihre Fehler nicht in Betracht kommen neben den Fehlern der 6 fachen
Höhenbestimmung von einem Punkte P aus , in welchem die Höhenwinkel nach A ,
B u . s . w. gemessen und mit den bekannten Entfernungen PA , PB u . s . w . zu
Höhenberechnungenbenützt worden sind. Auf diese Weise ist folgendes erhalten worden :

Zielweite s Gegebene Höben
über N. N .

Gemessene
Höhenunterschiede

Berechnete .
Höhen vonP

AP = 2010” A 1043,64 ” h1 = — 314,73” 728,91”
BP = 8903 B 619,02 Ä2 = + 109,20 728,22
G P = 5820 C 480,81 hs = + 248,24 729,05
DP = 3002 D 1247,01 lh = — 518,43 728,58
EP = 6197 E 928,18 7i5 = — 199,16 729,02
FP = 5800 F 418,71 h6 = + 310,13 728,84

(Einfaches Mittel = 728,77 “/
Das einfache arithmetische Mittel der 6 Höhenbestimmungen für den Punkt

wäre 728,77” ; dieses einfache Mittel dürfen wir aber nicht als Resultat annehmen,
weil bei der Ungleichheit der Entfernungen s die 6 Bestimmungen nicht gleich¬
wertig sind . Aus der Theorie der trigonometrischen Höhenmessung weiss man, dass
die Fehler der Höhenunterschiede h (nahezu) proportional den Zielweiten s sind, und
folglich müssen die Gewichte p umgekehrt proportional den Quadraten der Zielweiten

s sein , oder p = 1
«2 '

Die Masseinheit ist hiebei beliebig , wir nehmen s in Kilometern , und zwar
abgerundet nach (14 ) :

s = 2,0 8,9 5,8 3,0 6,2 5,8 km
Hieraus wird berechnet

p = ~ = 0,25
8* 0,01 0,03 0,11 0,03 0,03 (15)

Wir haben absichtlich ziemlich stark abgerundet , weil es keinen praktischen
Wert hat , in solchen Fällen , wo die Gewichtsbemessung selbst auf gewissen , nicht
strengen Annahmen beruht , mit vielen Dezimalen zu rechnen.

Mit den Höhen von ( 14) und den Gewichten ( 15 ) erhalten wir nun folgende
Berechnung, welche den Formeln (6) , ( 11 ) und ( 12 ) folgt :

l P pl v = 0,83 - - l V* p V2
728 + 0,91 0,25 0,2275 — 0,08 0,0064 0,0016

+ 0,22 0,01 0,0022 + 0,61 0,3721 0,0037
+ 1,05 0,03 0,0315 — 0,22 0,0484 0,0015
+ 0,58 0,11 0,0638 + 0,25 0,0625 0,0070
+ 1,02 0,03 0,0306 — 0,19 0,0361 0,0011
+ 0,84 0,03 0,0252 — 0,01 0,0001 0,0000

Summen 0,46 0,3808 0,0149
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x = \s3
M

0,3808
0,46

= 0,83

± 0,055 ’

m _ 0,055
]/ \jT]

~
]/Ö,46

± 0,080™

Also im ganzen : H = 728 ™+ x = 728,83 ™
mit dem mittleren Fehler : + 0,08™.

(16)

Anmerkung zu § 8 .
Die im Vorstehenden behandelten Formeln ge¬

statten zum Teil einfache mechanische Deutungen .
Denkt man sich nach Fig . 2. verschiedene Ge¬

wichte p t P 2 Pz • • • an einer Drehaxe A mit Hebelsarmen
?i /j /3 , . . wirkend , so sind die statischen Momente
dieser Gewichte bezw . /t p 2 ?2 p z l3 . . und die
Gleichung

__ tpjj
[?]

liefert denjenigen Hebelsarm x, welcher , mit der Summe
aller Gewichte [j >] belastet , dasselbe statische Moment
giebt , wie die Summe der Einzelmomente .

Denkt man sich nun die Drehaxe von A um den
Betrag x nach B verschoben , dann haben die Gewichte
PiPzPa in Bezug auf die neue Axe B die Hebelsarme
v± v2 v3, wobei

Fig . 2.

— 13 —

m

und es ist :
üj —»3? i'2 ~—x ~~ /g — x — l3

Pi »1 + P2 »'S + P 3 »3 = lP »J = 0
oder es ist B der Schwerpunkt eines den Gewichten p t p 2Pz entsprechenden Massensystems .

Auch die Summe [p t>2] hat eine mechanische Deutung ; es ist dieses das Trägheitsmoment
des soeben erwähnten Massensystems in Bezug auf die Axe B , und die Bedingung [p v2] = Mini¬
mum , welche den Mittelwert x im Sinne der Ausgleichungsrechnung bestimmt , heisst im Sinne der
Mechanik , es soll B eine Axe kleinsten Trägheitsmomentes sein .

§ 9 . Besonderer Fall zweier Beobachtungen.
Zur Übung der Theorie vom arithmetischen Mittel nehmen wir den Fall zweier

Beobachtungen, welcher ausserdem in manchen Beziehungen wichtig ist .
Wenn zwei gleich genaue Beobachtungen vorliegen, welche um den Betrag d

von einander abweichen , so mag die erste Beobachtung l sein und die zweite Beob¬
achtung l -1- d, also das Mittel

, d
X = l +

dann sind die scheinbaren Fehler :
, d d , _ d „ d- ^ = + ~

2
" Un<̂ ^ + ~

2
- (l d) — -

^
also der mittlere Fehler einer Messung ( 10 ) § 7 . S . 21 :

0,707 d
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•und der mittlere Fehler des Mittels selbst, nach ( 11 ) § 7 . S . 22 :

M = ™ = | - = 0 .5d (2)■/2 1
Dieser Fall war sehr einfach und wird in § 11 . uns nochmals in weiterem

Sinne beschäftigen.
Wir gehen auch noch über zu dem Falle zweier ungleich genauer Messungen

•derselben Grösse .
Wenn zwei ungleichartige Beobachtungen mit den Gewichten p und q vorliegen,

welche um den Betrag d von einander abweichen, indem etwa die erste den Wert l
und die zweite den Wert l -+- d geliefert hat , so wird das Mittel :

x = pl + q ( l + d) ^ l + ^ L_ d ( g)p -hq p -+■q
Die Abweichungen vom Mittel, d . h. die scheinbaren Fehler werden :

v, = H- -— d Do = — ——— d
p + q p + q

und es besteht (ohne Rücksicht auf die Vorzeichen ) das Verhältnis :

«l
1
q

(4)

(5)
d. h. der Widerspruch d wird auf die beiden Beobachtungen umgekehrt proportional
den Gewichten verteilt . Der mittlere Fehler einer Beobachtung vom Gewicht 1 wird
nach ( 12) § 8 . S . 27 :

_ i / p v l + q vl _ , 7/ _ PJL
r 2 - 1

d y p + g (6)

und der mittlere Fehler des Mittels selbst nach (13) § 8 . S . 27 :
m dM =

, Vpq ( ?)
Vp + q v + q

Die mittleren zu fürchtenden Fehler To] und w2 der beiden Beobachtungen vor
■der Ausgleichung sind :

m m
m2 = 71= - (8)

V q
=

Vp
Es besteht also das Verhältnis :

To] : m 2 =
1 1

Yp
'

Vq
(9)

Wir wollen hieran einige Betrachtungen anknüpfen , welche zur Vermeidung von Missver¬
ständnissen nützlich sind :

Bei einer ersten Betrachtung scheint die Gleichung (9) und die Gleichung (5) nicht gut ver¬
einbar . Die Verbesserungen und v2, welche man schliesslich den Messungen zuteilt , haben ein
anderes Verhältnis als die mittleren zu fürchtenden Fehler und m2, welche man den Messungen
von vornherein zugeschrieben hat . Man hat sich hier zu erinnern , dass der Widerspruch d ent¬
standen ist als die Differenz zweier Beobachtungen , deren mittlere zu fürchtende Fehler 4- mi und
■± m2 sind , dass man also im Mittel nicht annehmen darf

mt -J- w?2 = d
sondern : ± mt ± m2 = d
also nach dem Feblerfortpflanzungsgesetz (6) § 5. S. 16

-f- — d2
und diese Beziehung wird durch die Werte mt und m2 von (8) und (6) in der That erfüllt . Dagegen
sind vt und v2 die bestimmten Korrektionen , welche man den Beobachtungen zuteilt , und welche
deshalb die Beziehung erfüllen müssen :

vt — v2 = d
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Diese v sind übrigens durchaus nicht untrüglich , im Gegenteil , es haftet ihnen der mittlere Fehler M
des Mittels selbst an , und man muss deswegen annehmen , dass vt einschliesslich seiner Unsicher¬
heit M, dem a priori zu fürchtenden Fehler mt gleich ist , d . h .

*'i ±. M = ±_m.
also nach (4), (7), (8) und (6) :

Vp ? = <*

und in der That giebt die Quadrierung mit Weglassung des mit ± _ behafteten Doppelproduktes
eine identische Gleichung :

q2 + p q _ g
(p + q)2 p + q

Zur weiteren Veranschaulichung behandeln wir noch den einfachen Fall p = 1, q = 2,
d . h . es ist eine Unbekannte zweimal beobachtet worden , und zwar das erstemal mit dem Gewicht 1,
das zweitemal mit dem Gewichte 2. Die Beobachtungen haben die Differenz d gegeben . Ent¬
sprechend vorstehenden Gleicnungen erhält man :

Beobachtung 2.
l + d
g = 2

Beobachtung 1.
Beobachtungsresultate
Gewichte . . . . ,

Mittlere Fehler vor der Ausgleichung m t = m

"Mittel , wahrscheinlichster Wert

+ lf d = (it >s = d)Wahrscheinlichste Verbesserungen

Mittlerer Fehler einer Beobachtung vom Gewicht 1

M = ~ Vl .Mittlerer Fehler des arithmetischen Mittels . .
Es bestehen die Verhältnisse :

Mittlere Fehler vor der Ausgleichung . : m2 = V 2 : 1,414 : 1

1 : 1,414Genauigkeiten

Vi v2 = 2 : 1.Verbesserungen
Wenn dagegen zwei Beobachtungen vorlägen , deren Genauigkeiten a priori sich wie 1 : 2

verhielten , so müsste man den Widerspruch im Verhältnis 4 : 1 verteilen .

§ 10. Winkelausgleichung in einem Dreieck ,
Eine einfache Aufgabe , welche zunächst nicht als Mittelbildung mit Gewichten

erscheint , welche aber hierauf zurückgeführt werden kann, ist die Ausgleichung der
3 Winkel in einem Dreieck.

Wenn in einem ebenen Dreieck (Fig . 1 .) die drei Winkel mit gleicher Genauig¬
keit gemessen werden , mit den Ergebnissen a , ß , y, so wird wegen
der Messungsfehler ein Widerspruch der Summe a -+- ß + / gegen
180° auftreten , welchen man auf die drei gemessenen Winkel zu
gleichen Teilen verteilt . TJm dieses bekannte Verfahren durch das / \ \
Prinzip des arithmetischen Mittels zu begründen, betrachten wir zu- I
nächst nur einen der drei Winkel als Unbekannte. 1

Für den ersten Winkel sind zwei unabhängige Beobaehtungs- / '%_
ergebnisse vorhanden:

erstens a:, = a mit dem Gewicht = p 1 = 1 ( 1)
zweitens x2 = 180 ° — (ß -t- / ) mit dem Gewicht = p 2 = y (2)
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Das zweite Gewicht ist = weil in x2 die Fehler von ß und von y , d. h . der
Li

| /Tfache Wert eines mittleren Winkelfehlers , Zusammenwirken, was nach den Pro-

8 . S . 25 das Gewicht = — liefert , oder ausführlicher :Portionen (5)

mittlerer Fehler von x j ist 1% — ±m

„ „ „ x z „ m2 = ■+ in ± m = m V 2

also nii : in 2 = 1 : )/ 2
1 1 1

fflj2
'

OT22 _ 2

Der Mittelwert aus ( 1) und (2) ist also mit Rücksicht auf diese Gewichte :

ix « + } x [ir - ß + /)]
X = - i-

1
(3)

Wenn man hierin den Dreiecks - Widerspruch w einführt :
a + ß -h y — 180 ° = w (4)

also 180 ° — (ß + y) — a — io
so giebt die Einsetzung in (3) :

* = -
3

” = K -
3 (5 )

Dasselbe gilt auch für die beiden anderen Winkel des Dreiecks , welche mit y
und z bezeichnet sein mögen , d . h. :

w
* = 3

w
"
8y = ß -

* = f -
T

Summe : x -hy -i- z = a -t- ß -i- y — w

d . h . der Widerspruch w wird auf die drei Winkel gleich verteilt .
Wenn wir auch noch die mittleren Fehler berechnen wollen , so müssen wir

festhalten , dass bei der gewählten Behandlungsweise wir in ( 1 ) und (2) es mit zwei

Beobachtungen einer Unbekannten x zu thun haben.
Die Verbesserung der ersten Beobachtung x x nach ( 1 ) ist :

w ra \»i = —
3 (6>

und die Verbesserung v2 der zweiten Beobachtung x % nach (2) ist :
w w 2w

v2 = + -
g

- + -
g = -g- (7>

der mittlere Fehler einer Beobachtung vom Gewicht 1 wird (nach der Formel ( 12 )
§ 8. S . 27) :

m = + '
j/

i-/ Pl v \ + y 2 v \ ^ ~. / lw \ 2 1 / 2 » \ 2 ^~ ~ V ( 3 ) + 2 ( 3 )
w

i/y (8 )

Da dem Winkel a vor der Ausgleichung das Gewicht 1 zugeteilt war, (ebenso'

wie auch den Winkeln ß und y) , so ist dieser Wert m zugleich der mittlere Fehler
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eines Winkels vor der Ausgleichung . Nach der Ausgleichung erhält der verbesserte
Winkelwert x (ebenso wie auch y und g) ein grösseres Gewicht , nämlich die Summe

P\ - p2 = und damit wird der mittlere zu fürchtende Fehler des Winkels x (oder
U

auch y oder g) nach der Ausgleichung (nach der Formel (11 ) § 8 . S . 27) :
m . ivM —

Y
' 3
i

Y 2 (9)

Der mittlere Fehler nach (8) , m = + lässt sich sehr anschaulich unmittel -
Y 3

bar deuten : der Schlussfehler w ist nämlich die unregelmässige Zusammenwirkung
dreier Fehler 42 m , also :

+ i» + w + m, = -t - w
woraus: ro2 + m2 + wß — w2
was mit (8) übereinstimmt .

Der mittlere Fehler m vor der Ausgleichung und der mittlere Fehler M nach
der Ausgleichung veranschaulichen durch ihr Verhältnis den durch die Ausgleichung
erzielten Genauigkeitsgewinn . Nach (8 ) und (9) ist :

M : m = Yk " - 0,816 : 1 (10 )

Der mittlere Fehler hat infolge der Ausgleichung im Verhältnis rund 0,8 : 1
abgenommen, also die Genauigkeit hat in dem Verhältnis 1 : 0,8 zugenommen.

Oder man kann auch sagen : durch die Ausgleichung der drei Winkel in einem
Dreieck ist eine Genauigkeitssteigerung von 20 % für den einzelnen Winkel erreicht
worden.

Das vorstehende Beispiel , welches zur Einführung in die Theorie der Gewichte
sich gut eignet , kann auch noch so ausgedehnt werden , dass die drei gemessenen
Winkel nicht wie vorher gleichgewichtig , sondern selbst mit ungleichen Gewichten
beobachtet sind.

Wir wollen diesen Fall auch noch durchführen :
Es seien gemessen die 3 Winkel a ß y ( 11)

mit den Gewichten p a pß py ( 12 )
der Dreieckswiderspruch ist a + ß 4- y — 180 ° = w ( 13)

Ist m der mittlere Gewichtseinheitsfehler , so sind die mittleren Winkelfehler ,
entsprechend den Gewichten ( 12 ) vor der Ausgleichung :

m m m

also :

Bezeichnet man nun mit p x das Gewicht des gemessenen Winkels a und mit
p2 das Gewicht der Summe der zwei anderen Winkel ß + y, so wird nach ( 15 ) , da
die Gewichte umgekehrt proportional den Quadraten der mittleren Fehler sind :

1 1

m« =
v =
YPa

=
Wß

^
YPy

( 14 )

TO„2 = «l2 (— ]
ypa ) mß* + «ij,2 = « 2 (— + — )\ Pß Py ) ( 15)

Pi = Pa : Pi = -t

Pa Pß
Jordan , Handb . d . Vermessungskunde . 4. Aufl . I . Bd .

1 (16 )
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Zur Abkürzung setzen wir die Summe

Pa Pß Py
1 1 1

, und damit giebt (16 ) :

Pl + P2 = ( 17)

Pa \ Pß Py !

Nach diesen Vorbereitungen in Bezug auf die Gewichtehaben wir nun ähnlich wie bei (3) :

_ Pi « + p 2 [180 ° — ((3 -t- y) ] _ Pi « + P2 (« — «0
Pi + P2Pi + P2

Pi + P2
Setzt man hier ( 16 ) und ( 17 ) ein , so wird:

1

( 18)

Lp J
Da für die beiden anderen Winkel ähnliche Gleichungen gelten , hat man den

Satz , dass der Widerspruch w auf die drei Winkel a ß y umgekehrt proportional den
Gewichten oder proportional den Quadraten der mittleren Fehler verteilt wird.

Man kann nun auch ähnliche Formeln wie (8) und (9 ) , welche bei gleichen
Gewichten gelten , für ungleiche Gewichte entwickeln. Indem wir diese Entwicklung
als Übungsbeispiel anheim geben , schreiben wir davon nur die Ergebnisse :

wMittlerer Gewichtseinheitsfehler m = ( 19)

Mittlerer Fehler des Winkels a vor der Ausgleichung :

( 20 )

Mittlerer Fehler des Winkels a bezw . x nach der Ausgleichung :

Pa f Pß Py
(21 )

Auch ein Zahlenbeispiel für ein Dreieck mit drei ungleichgewichtigen Winkeln
möge hier eine Stelle finden , welches wir in den „ Astr . Nachr. , 75 . Band 1870 “ S . 293
aus Badischen und Hessischen Winkeln verschiedenster Herkunft zusammengebracht
haben , mit der Bemerkung, dass solche Gewichtsunterscheidungen praktisch immer
misslich sind , während für ein formelles Bechenbeispiel sich das vorgeführte wohl
eignet.
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In dem Dreieck Oggersheim—Mannheim—Speyer , welches in Big. 2 . darge¬
stellt ist , hat man

Gemessene Winkel Gewichte
a = 72 ° 16' 44,86 " pa = 27
ß = 90 1 56,46

'
pß = 42

y = 17 41 17,43 p y = 65

Fig . 2.
c

Summe : a + ß + y = 179 ° 59 ' 58,75 "
soll 180 ° 0 ' 0,29"

— 1,54 ”Widerspruch : w =

— = 0,015
Py

,037 , — = 0,024
Pß

= 0,037Gewichts-Reciproken: — =
Pa

0,037Winkelverbesserungen : va = 1,54" = + 0,75”
Vß = + 0,49 ' ' vy

— + 0,30' '

Ausgeglichen
72 ° 16' 45,61 ”
90 1 56,95
17 41 17,73

Gemessen Verbesserungen
0,75"72 ° 16 ' 44,86 ' '

90 1 56,46
17 41 17,43

+ 0,49
+ 0,30

179 ° 59 ' 58,75" + 1,54" 180° 0' 0,29 ”

Nach ( 19 ) bestimmt man den mittleren Fehler für die Gewichtseinheit:
m = ± 5,59"

und nach (21 ) berechnet man die mittleren Fehler der ausgeglichenen Winkel, und
hat damit das Schlussergebnis:

a = 72° 16 ' 45,61 ” + 0,77"
ß - 90 ° 1 ' 56,95" + 0,72"

y = 17 ° 41' 17,73" + 0,61"

In ähnlicher Weise , wie hier mit der Aufgabe der Dreieckswinkelausgleichung
geschehen ist , können noch manche andere Aufgaben, welche beim ersten Anblick
eine Ausgleichung mit mehreren Unbekannten zu verlangen scheinen , auf die Be¬
stimmung einer Unbekannten durch das arithmetische Mittel zurückgeführt werden ,
jedenfalls kann eine Ausgleichung mit einer Summenprobe für mehrere unmittelbar
gemessene Grössen ganz nach dem vorhergehenden Muster einer Summenprobe für
drei Elemente behandelt werden .

In ähnlicher Weise kann auch jede Ausgleichung mit einer streng zu erfüllenden
Bedingungsgleichung, auf den Fall des arithmetischen Mittels zurückgeführt werden .

§ 11 . Beobachtungs -Differenzen.
Wenn man eine Messung zweifach macht, z . B . eine Gerade hin und her misst,

■oder eine Nivellierung hin und her macht u. s . w. , so kann man auf je zwei solcher
Messungen die Sätze vom arithmetischen Mittel anwenden , wie wir schon in § 9 . S . 29
gethan haben ; und man kann immer , wenn von Beobachtungs-Differenzen die Rede
ist , die beiden in Betracht kommenden Messungen selbständig vorführen; indessen
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gestatten die Beobachtungs-Differenzen auch eine sehr nützliche allgemeinere Be¬
trachtung , zu deren Einleitung jedoch nochmals an das arithmetische Mittel ange¬
bunden werden soll :

Sind li und Z2 beide Messungsergebnisse mit der Differenz
man das arithmetische. Mittel :

h + hX ~ ~
2

~

■lo = d , so hat

und die scheinbaren Fehler :
■h =t' i = x ■ d

v2 = a: — Z2 = + —~ und = x — «2 _ , 2
Es ist also der mittlere Fehler einer Messung nach ( 10) § 7 . S . 21 mit n = 2 :

d
( 1)- ygi - rt' <& _ _

n — i — y 4 + 4 —
]/ 2

und der mittlere Fehler des arithmetischen Mittels nach (11 ) § 7 . S. 22.
m dM = ■

/ n
(2)

Wir merken uns hievon insbesondere die Gleichung ( 1 ) , nämlich d = m ]/ 2,
d . h. die zu erwartende Differenz zweier Messungen ist gleich dem j/ 2 fachen des
mittleren Fehlers einer Messung.

Nach Klarstellung dieser sehr einfachen Verhältnisse gehen wir einen Schritt
weiter, indem wir mehrere solcher Wiederholungsmessungen zusammen nehmen. Man.
habe z . B . verschiedene Linien , jede hin und her , oder verschiedene Nivellierungs¬
strecken, jede für sich hin und her, gemessen und in jedem dieser Fälle eine Differenz
d erhalten . Wir wollen aber dabei zunächst annehmen, die verschiedenen Längen
oder Nivellementsstrecken u . s . w . seien nahezu gleich lang, oder allgemeiner, die
Differenzen d gehören zu Messungen von lauter gleichen Gewichten, dann kann man
aus einer Anzahl r solcher Differenzen eine mittlere Differenz berechnen nach der
Formel :

+ d a2 + d 32 + . . . dAZ)2 =

oder D 2 = E—
r (3)

Der Nenner r ist hier streng richtig und nicht etwa durch r — 1 zu ersetzen,
wie bei (10 ) § 7 . , denn die Differenzen d haben den Charakter wahrer Fehler und
nicht bloss scheinbarer Fehler.

Aus ( 1 ), (2 ) und (3) zusammen folgt nun auch , indem man die mittlere Differenz .
D an Stelle der einzelnen Differenz d von ( 1 ) und (2 ) setzt :

Mittlerer Fehler einer Messung m = 1 (4)

Mittlerer Fehler einer Doppel-Messung M A3
r (5)

Wenn nun aber Differenzen did 2 , . . ds vorliegen, welche zu ungleichgewich¬
tigen Messungen gehören , z . B . wenn dl zu einem Hin- und Her-Nivellement der
Strecke slt dagegen zu u. s. w . gehört, allgemein wenn dt zu einer Doppel-
messung vom Gewichte p lt dagegen d2 zu einer Doppelmessung vom Gewichte p %
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tt . s . w. gehört, so darf man auch die mittlere Differenz D nicht mehr nach (3) be¬
rechnen, sondern man hat dann die mittlere Differenz D für das Gewicht 1 nach
Analogie von ( 12) § 8 . S . 27 zu berechnen, jedoch mit dem Nenner r wie in (3) :

P \ ^ 1̂ Pz ^2^ + • . • Pn dr9
I ) 9- = ■

X>2 = [pdZ] B =- / ■[pä *] (6)r fr
Also ist auch der mittlere Fehler m einer einzelnen Messung vom Gewichte 1 :

und der mittlere Fehler m eines Mittels aus zwei Messungen vom Gewichte 1 , oder
•der mittlere Fehler einer Doppelmessung vom Gewichte 1 :

(8)
Als eine der wichtigsten Anwendungen dieser letzteren Formeln wollen wir

Wiederholungsmessungenvon Längen, oder Hin- und Her-Nivellierungen nehmen. Alle
diese Messungen haben mittlere Fehler , welche mit den Quadratwurzeln der Ent¬
fernungen s wachsen , folglich sind die Gewichte umgekehrt proportional den (f/ s )

2,
d . h. umgekehrt proportional den s zu setzen , und damit werden (6) , (7) und (8) :

X >2 =
d , 2 tfo24. .
S1 s2

d,? = v [f ]

M - mm
( 9)

( 10)

Als Beispiel hiezu nehmen wir einen Teil eines Eisenbahn-Nivellements (das
in unserm Band II . 1893 , S . 442 näher beschrieben ist ).

Nivellierung
I—II

Entfernung
(PPunkt I II d9- s

( 1 )
(2)
(3)

— 0,1853» — 0,1859 »
= d
+ 0,6— 0,36 0,72*»

s
0,50

+ 1,6258 + 1,6262 - 0,4 0,16 0,42 0,38

(4)
(5)
(6)

- 1- 1,4329 + 1,4323 + 0,6 0,36 0,47 0,77
+ 0,5106 -+- 0,5094 + 1,2 1,44 0,48 3,00
— 0,0073 — 0,0049 - 2,4 5,76 0,51 11,30

r = 5 + 3,5693 + 3,5679 + 2,4 2,60 15,95
- 0,1926 ■0,1908 - 2,8

+ 3,3767 3,3771 — 0,4
Hieraus hat man den mittleren Fehler eines Doppelnivellementsvon 1 Kilometer:

M = Wrnr = ±x ’1%mm
(u>

und den mittleren Fehler eines einfachen Nivellements von 1 Kilometer:
m = M YY = + 2,53»» ( 12 )



38 Beobachtungs-Differenzen . § 11 .

Eine solche Genauigkeitsbestimmung ist mehr oder weniger zuverlässig , je
nachdem man mehr oder weniger Vergleichsstrecken zur Verfügung hat , dagegen auf

die Längen der Strecken kommt es dabei nicht an , sondern nur auf deren Anzahl.

(Allerdings ganz kleine Strecken , z . B . unter 100m, werden aus mancherlei Gründen
nicht vollberechtigt mitzählen.)

Wir wollen die Formeln (9) und ( 10 ) auch noch auf eine Längenmessung an¬
wenden und zwar auf das klassische Beispiel der Bessel sehen Gradmessung in Ost-

preussen, welches an sich schon interessant ist , uns auch noch Veranlassung zu einer

Bemerkung über die Entstehung der Differenzenrechnung geben wird.
Bessel hat bei seiner Gradmessung in Ostpreussen eine Basis in zwei Teilen

je zweifach gemessen , nämlich:
1 . Teil . 2 . Teil .

j Gesamtmittel I
1 . Messung 441,1852 “ 1381,1571 “ l , 00001 « . (
2 . Messung 441,1839 ” 1381,1632 ”

Differenzen dx = -1- 1,3 '"” d2 = — 6,1“”

Indem man nun die Differenzen d in Millimetern , die Entfernungen in Kilo¬
metern zählt , also sq = 0,441 und s2 = 1,381 , wobei r = 2 ist , hat man nach (9)
das mittlere Fehlerquadrat einer Messung der Längeneinheit :

+ ( 14>
4 \ «i «2 1

— = 7,70 m = ± 2,78”” für 1 Kilom . (14 a>

Dieses ist der mittlere Fehler einer Messung der Längeneinheit von 1 Kilometer.
Der mittlere Fehler eines Mittels aus je zwei zusammengehörigen (Hin- und Her)-

Messungen einer Länge von 1 Kilometer d . h . der mittlere Fehler einer Doppel¬
messung von P ” wird nach (10) :

m 2,78

11& ■

W3 :

M = = -+- 1,96” ” (für 1 Kilom .)
y 2 y 2

Endlich kann man aber auch den mittleren Fehler des Gesamtmittels sq
1822,3447 ” rechnen ; es ist nämlich dessen Quadrat

1 (djl . dl
8 \ s] s2

M '3 = M2 (sx + s2) : ~
j («1 -4- S2)

oder M ' = - ■s 2 d , 2 - «l '

(15)

■«2 —

(15)
d.,2

21/2 f *1
‘ s 2

während in der Gradmessung in Ostpreussen S . 55 statt dessen angegeben ist :

-L 7/ !l±
2 r si

l d , 2 - 6'i H- 6'2 d,2
2 y sx

^ 1
«2

(15a)

(Vergleiche hiezu die kleingedruckten Anmerkungen im Nachfolgenden S . 40 .)
Die Ausrechnung nach ( 15 ) giebt :

M ’ = M j/iT + söj = 1,96 y L822 = + 2,65”” 15 b)
Man wird also nun aus (13) und (15b) das Schlussergebnis bilden :

Basislänge = 1822,3447 ” + 0,0027“ (16 )
Endlich bietet die Differenzentheorie noch die Möglichkeit eines zweiten sehr

anschaulichen Beweises des Satzes , dass man bei der Genauigkeitsberechnung aus
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dem arithmetischen Mittel die Quadratsumme [w2] nicht durch n , sondern durch n — 1
dividieren muss, d . h. des Satzes (10) § . 7 . S . 21.

Wenn eine Unbekannte n mal beobachtet ist , so kann man zur Gewinnung
eines Urteils über die Genauigkeit der einzelnen Beobachtung die einzelnen Ergeb-

fl _ ^
nisse unter sich vergleichen , und zwar kann man die n Beobachtungen zu n —

^
—

verschiedenen Differenzen kombinieren . Bedeuten ^ und l2 die zwei ersten Beobach¬

tungen , so ist deren Differenz d = 12 — h < oder wenn man die scheinbaren Fehler
vj = x — lx und t>2 = x — h vorführt, so ist auch d = {x — v2) — (* — *h ) — vl —

fl _ ^
Die sämtlichen so zu bildenden n —=— Differenzen sind folgende :

®i — »2
» 1 — ^ 3 ®2 — v 3

vs — v4V1 — V4

. . Vn- 1 — V,V, — v„ V2 — V„ V3 — Vn

Diese Differenzen sind nun allerdings nicht unabhängig , und man hat deswegen
nicht das Recht , sie wie unabhängige Beobachtungsfehler zu behandeln, allein sie
sind wenigstens gleichartig und gestatten deswegen die Bildung eines Mittelwertes .
Ihre Quadratsumme wird , da jedes einzelne sich (n — 1 ) mal findet :

(17 )[d2] = (« - ! ) [»2] — 2 [«<»*]
wenn [®f v*\ die Summe aller bei der Quadrierung der Differenzen auftretenden Pro¬
dukte bedeutet .

Um diese unbekannte Summe [1>*»*] wieder zu eliminieren , benützt man die
identische Gleichung :

(18)(»! -+- C2 + v3 + • • • v»)2 = M 2 = t^2] + ^ [«<%] •
(17) und (18) geben zusammen:

[d2] = (n — 1 ) [ü2] + [®2] — [n]2

Die scheinbaren Fehler v geben aber die algebraische Summe [e] = 0

(19 )also [d2] = n [u2]

-, also die mittlere Differenz D (jeDie Anzahl der Differenzen d ist =

zweier Messungen) :

n (n — 1 )
( 20 )

und der mittlere Fehler einer Messung :

(21 )

dieses ist in Übereinstimmung mit (10) § 7 . S . 21 .
Über die Entstehung der Kechnung mit Beobachtungs -Differenzen schreibt Czuber in „Theorie

der Beobachtungsfehler , Leipzig 1891“ , S. 174 : „Der Gedanke , zur Beurteilung der Genauigkeit
einer Beobachtungsreihe statt der Abweichungen der einzelnen Beobachtungen vom arithmetischen
Mittel , ihre Abweichungen unter einander , mit anderen Worten , statt der scheinbaren Fehler die

Beobachtungs -Differenzen zu verwenden , ist von Jordan 1869 ausgegangen , und von Andrae und
Helmert weiter ausgebildet worden . Wohl unabhängig von Jordan hat Breger 1881 die Anwendung
der Beobachtungs -Differenzen zur Bestimmung der Präcision einer Beobachtungsreihe vorgeschlagen ,
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(Comptes renflus 93, 1881, S. 1119—1121 , sur les differences successives des observations ) und die
Richtigkeit der Grundgleichung (4) (s . oben S. 36) auch experimentell geprüft .“

Zu diesem Berichte von Czuber wollen wir noch einige Erläuterungen aus eigenen Erfahr¬
ungen geben : Die Differenzenrechnung entstand als Vorbereitung der längeren Erörterungen , welche
in den zwei ersten Bänden der „Zeitschrift für Vermessungswesen , 1872—1873“ geführt worden
sind . Es handelte sich um Berechnung mittlerer Längenmessungsfehler aus Reihen von Doppel¬
messungen . Es ist nämlich die Bestimmung des mittleren Fehlers einer Messung der Längeneinheit
aus den Differenzen einer Anzahl von Doppelmessungen verschiedener Längen früher grossenteils
nicht richtig ausgeführt worden , und es hatte zuerst Dienger in „Grunerts Archiv 31. Teil , 1858“,
S. 225, auf den allgemein hier begangenen Fehler aufmerksam gemacht (vgl . „Zeitschr . f . Verm .
1872“, S. 19).

Auf eine Unrichtigkeit , welche sogar Bessel in der „Gradmessung in Ostpreussen “, S. 54—55
bei der Berechnung des mittleren Fehlers seiner Basismessung dadurch beging , dass er die Quadrat¬
summe zweier Differenzen nicht mit 2, sondern mit 2 — 1 = 1 dividierte , war ich 1869 aufmerksam
geworden und legte mir die Sache am besten zurecht durch Einführung der Beobachtungs -Di^ »*-
enzen als selbständiger Fehler -Elemente , was dann weiter ausgeführt wurde in einer Abhandlung
„Über die Genauigkeit mehrfach wiederholter Beobachtungen einer Unbekannten “ in „Astr . Nachr .,
74. Band 1869“, S. 209—226, wo auf S. 226 der erwähnte Fehler , 2 — 1 statt 2, in der Gradmessung
in Ostpreussen S. 54 betrachtet und richtig gestellt wird . Bessel rechnet nämlich nicht so wie wir

im vorstehenden (14) — (16) S. 38 richtig angaben , sondern er rechnet ma = -~- u . s. w.,

wodurch m und alles folgende zu gross erhalten wird , nämlich Y 2 mal so gross , als der richtige
Wert , wie wir schon oben bei (15) und (15 a) S. 38 bemerkt haben .

Gleich darauf kam Andrae auf S. 283—284 der „Astr . Nachrichten “ 74. Band mit einer
kurzen dänisch geschriebenen Entgegnung auf meine Formeln von S. 209—226 , darauf bezüglich ,
dass die einfache Beziehung zwischen der Quadratsumme [d2] aller Differenzen und der Quadrat¬
summe [v2] der scheinbaren Fehler , nämlich [d2] = n [v2] mir entgangen war , d . h . die Andrae sehe
dänische Entwicklung giebt das , was wir im vorstehenden in (17) —(21) S. 39 mitgeteilt haben .
Weiter folgte in dieser Sache „Astr . Nachr ., 79. Band , 1872“, S. 219 —222 und S. 257—272.

Im Anschluss an das Vorhergehende wurden auch noch veröffentlicht in den Astr . Nachr .,
80. Band /1872) , S. 67—70, Zachariae , 80. Band , S. 189—190 Jordan , dann 81. Band , 1873 ,
S. 49—52 Helmert , 8 . 51- 56 Jordan , S. 225—267 Zachariae und 88. Band 1876, S. 127—131 ; Hel¬
mert .

Da es den Fernerstehenden schwer ist , aus all ’ jenen Controversen den wirklichen Gang
heute noch herauszufinden , wollen wir jenen Gang kurz so angeben : Meine erste Abhandlung von
1869 hatte nur den Mangel , dass die einfache Beziehung [d2] — n [v2] nicht gefunden war , was als¬
bald Andrae verbessernd nachholte . Dann brachte aber Zachariae 1872 eine andere Streitfrage
herein , indem er („Astr . Nachr ., 80. Band “, S. 68) nach der dänischen Gradmessung den Differenzen
bei Längenmessungen verschiedene Gewichte bei der Fehlerberechnung zuteilte , je nachdem die

Differenzen zu langen oder kurzen Strecken $ gehören , d . h . nicht bloss insofern die — auf die Ein -
s

d2
heit s zu reducieren sind , sondern er giebt einen — selbst wieder nachher das Gewicht $ von ders
Annahme ausgehend , dass eine Differenz d aus langen Strecken mehr zur Genauigkeitsermittlung
beitrage als ein d aus kurzen Strecken ; das mittlere Differenzquadrat für die Längeneinheit wäre
hiernach :

d t2 + d22

+
Diese Anschauung hat etwas Verführerisches , allein sie ist doch nicht die richtige , wie

Helmert in „Astr . Nachr . , 81. Band “, S. 49—52 zuerst scharf bewiesen hat . (Darauf bezieht sich
die Bemerkung , welche wir oben bei (12) S. 38 über die Längen der Nivellierstrecken gemacht haben .)

Wenn also nun heute jeder Landmesser oder Wasser -Nivelleur seine Nivellements nach der

Formel (10) S. 37, nämlich M — -~
~\- I, in Hinsicht auf mittlere Fehler berechnet , so wird

er dieselbe wohl als selbstverständlich hinnehmen , während doch diese Formel den langen und
polemischen Weg von 1869—1873 durchlaufen musste , welchen wir in den vorstehenden Citaten
geschildert haben . —
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§ 12. Allgemeines Ausgleichungsprinzip .
Das arithmetische Mittel genügt nur zur Ausgleichung von Beobachtungen

einer Unbekannten . Wenn zur Bestimmung mehrerer Unbekannter Beobachtungen in
überschüssiger Zahl vorhanden sind , so muss ein allgemeineres Ausgleichungsprinzip
gesucht werden. Alle Ausgleichungsaufgaben werden sich auf eine Grundaufgabe
zurückführen lassen , nämlich :

Es liegen folgende »« Gleichungen vor :

0 = a 1 x + hi y -+- Cj s + . . . -+- lx \
0 = ^2 ^ + bg »/ + Cg r: + . . . + Z2

Anzahl = n < 0 = as x + 63 y + c3 z 4 - . . . 4 - Z3 ( 1 )

0 = an x + hn y + cn z + . . . -\- l,'rt

Anzahl = u

Die Grössen Zi Z2 Z3 . . . 1% sind durch Beobachtungen erhalten worden , x y 2 . . .
sind Unbekannte , welche mit den Beobachtungen Z in Beziehungen stehen . Die Coeffi -
cienten a b c . . . der diese Beziehungen ausdrückenden Gleichungen ( 1 ) sind fehlerfrei
gegeben .

Die Anzahl n der Beobachtungen und der Gleichungen (1) soll immer grösser
sein als die Anzahl u der darin vorkommenden Unbekannten , d. h . :

n >̂ u (2 )
Es wird daher im allgemeinen nicht möglich sein , ein System von Unbekannten

x y z zu finden, welches allen Gleichungen ( 1) Genüge leistet. In diesen Gleichungen
werden Widersprüche auftreten , welche wir mit vz vB . . . vn bezeichnen ; und damit
gehen die Gleichungen (1) über in die folgenden neuen Gleichungen , denen wir den
Namen Fehlergleichungen geben :

Fehlergleichungen
«h — a~i x -j- hi y -4- Cj z -t- . . . —1—
^ 2 “ ö 2 ^ ^ 2 V ~t~ c2 ^ “b * * * + z2

Anzahl = n < »)3 = a3 x -+- 63 y -+- e3 z + . . . + Z3 (3)

Vn = On X + b» y + C„ Z -+ - . . . ln

Anzahl = u

Man kann nur verlangen , dass von den n Widersprüchen v eine Anzahl u ver¬
schwindet , man muss also notgedrungen auf die Bedingung , dass alle v gleich Null
werden, verzichten , und sich mit einem System x y z . . . begnügen , für welches die
v im allgemeinen nicht gleich Null werden.

Die Aufgabe , ein solches System zu finden , ist ohne weitere Bedingung eine
unbestimmte ; eine solche weitere Bedingung ist insofern vorhanden , als die Wider¬
sprüche v in ihrer Gesamtheit möglichst klein sein sollen , so dass den Gleichungen
( 1 ) möglichst wenig Zwang angethan wird.

Die allseitig befriedigende mathematische Formulierung dieser Bedingung des
möglichst Anpassens , oder des kleinsten Zwangs lautet :
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Es soll die Quadrat -Summe der Widersprüche v möglichst klein sein , oder
in einer Formel :

(4)[c2] = v \ -+- u£ + vl + . . . -I- ei = Minimum
Diese einfache Bedingung gilt aber nur unter der Voraussetzung, dass die Be¬

obachtungen Z, zu welchen die Verbesserungen v gehören , a priori gleich genau zu
achten sind. Ist dieses nicht der Fall , und kommen den Beobachtungen Zt Z2 Zg . . . Z„
a priori die mittleren zu fürchtenden Fehler »jj m2 ms . . . m„ zu , so gilt statt (4)
die geänderte Bedingung :

P 2 ] = (M
2 + pi )

3 + M
2 + . . . + fML» l2j Vto1/ \ m2) \ m3/ \ m«l

Minimum (5)

Oder indem man unter Gewichten pi p 2 p %• • -Pn solche Zahlen versteht , welche
den Quadraten mj m| m§ . . . ml umgekehrt proportional sind, kann man statt (5 ) auch
schreiben :

[pv 2] = Pi vf -h p 2 ■»! + Ps + • • ■Pn vl = Minimum (5 a)
Dieses Prinzip der kleinsten Quadratsumme [u2] bezw . [p i>2] ist ebenso will¬

kürlich wie der Begriff des mittleren Fehlers selbst , wie wir schon beim mittleren
Fehler § 4 . S . 14 bemerkt haben. Die Nützlichkeit des Quadratsummenprinzips
erweist sich aber am besten aus seinen Folgerungen, indem auf dieses Prinzip die
ganze heutige Methode der kleinsten Quadrate gegründet werden konnte.

Ehe wir weiteren Gebrauch von dem Prinzip der Gleichung (4) , bzw. (5) oder
(5a ) machen, überzeugen wir uns , dass dieses Prinzip im Einklang mit dem schon
früher behandelten arithmetischen Mittel ist .

Man habe eine Grösse x wiederholt beobachtet
mit den Ergebnissen \ Z2 h ■• • Z„
und mit den Gewichten p± p %p 3 . . , p „

Der Hypothese, es sei x der wahrscheinlichste Wert , entsprechen die wahr¬
scheinlichsten Verbesserungen v der Beobachtungen:

Vi = x — lx u2 = x — Z2 vs = x — Z3 . . . vn = x — l„
Nach (5a ) soll sein :

Pi (a: — Zj)2 + p 2 {x — Z2)2 + P3 (* — Z3)2 + . . . = Minimum
woraus durch Differentiieren nach der Veränderlichen x erhalten wird :

2jöi (x — Z[ ) + ‘lp 2 {x — Z2) -+- 2 p 3 [x — Z3) —l—. . . = 0
also mit Auflösung nach x \

_ Pih + ff2 h + Pz h + • • • _ [p 1]
MIh + P2 + P3 + ■■■

in Übereinstimmung mit (4) § 8 . S . 25

Man kann auch noch in anderer Weise das arithmetische Mittel als besonderen
Fall unserer allgemeineren Ausgleichungsaufgabe nachweisen:

Zur Bestimmung der unbekannten Grösse x sollen die Beobachtungen Zj Z2 Z3 . . .
gemacht werden , wobei die Beziehnungen bestehen :

&i x —f- Z
ci2 x —(- Z2 — 0
u3 x -f- Z3 — 0 (6 )
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Es ist also * niemals unmittelbar beobachtet , man kann aber x in den Beob¬
achtungen l mehrfach ausdrücken, nämlich :

3) x = - - u . s . w .a3
(?)

Es sollen nun die Gewichte der ursprünglichen Beobachtungen lx ls ■ ■ . alle
gleich , nämlich = 1 sein , und m sei der mittlere Fehler einer Beobachtung vom Ge¬
wicht 1 , dann sind die mittleren Fehler der verschiedenen in (7) enthaltenen Be¬
stimmungen von x bzw. :

mm
(8)

folglich die Gewichte der Werte x umgekehrt proportional den Quadraten hievon , d . h . :

(9)Gewichte : a\ a\ a ,
Nachdem die Gewichte (9) ermittelt sind , erhält man den wahrscheinlichsten

Wert von x aus (7) und (9) , nach dem Prinzip der Gleichung (4) § 8 . S . 25 :

Cl\ 4“ 0\ - f- 0/\ 4 -

ax lx 4~ Og ?2 + as ls + • • •
a x2 4 - a 22 4 - a s2 4- . . .

[«J
[aä \

( 10 )

Diese Gleichung wird im folgenden § 13 . bestätigt werden, indem die erste Gleich¬
ung (3 ) S . 45 daselbst mit y = 0 geben wird:

[« «] * + [ai ] = 0
Nachdem hiernach das allgemeine Ausgleichungsprinzip [t>2] = Minimum in

Übereinstimmung mit dem arithmetischen Mittel befindlich, und dadurch um so mehr
Vertrauen verdienend erkannt worden ist , wollen wir die Sache hier noch so weit
verfolgen , dass die Ermittlung der Unbekannten x , y , z . . . klargestellt wird.

Angenommen man habe nur drei Elemente x , y , z mit mehr als drei Fehler¬
gleichungen , alle mit gleichen Gewichten , so heisse eine einzelne dieser Fehler¬
gleichungen :

( 11 )v = ax + by + cz -\- l

Also ist das zugehörige Quadrat:
rfi = a£ x^ + 2 ab x y + 2 a c x z + 2 al x

4- 62 j/3 + 2b c y z + 2bly
(12 )

4 - 2 c 1 z

Die entsprechende Quadratsumme wird, wenn wie üblich, ax2 4- a22 4 - a32 4- . . . = [aa],
und « i 6j 4- a2 b%-+- . . . = [a 6] u . s . w . bezeichnet wird :

2 [a 6] x y + 2 [a c] x z 4- 2 [a l] x[c2] = [a a] x2
4- [b b] yi 4- 2 [6 e] y z 4 - 2 [6 1} y

4- [cc ] z2 4- 2 [c 1] z
4 - [l l ]

(13 )
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Nach dem Quadratsummen-Minimums-Prinzip muss werden :

Dieses ausgeführt gieht :
2 [a o] x + 2 [o b] y -+- 2 [a e] z -t- 2 [a ?] = 0
2 [a 6] x + 2 [6 b] y -+- 2 [6 c] * + 2 [6 1] = 0
2 [a c] a; + ■2 [6 c] y -4- 2 [c c] z + 2 [c l\ = 0

Da der Faktor 2 überall weggelassen werden kann, erhalten wir daraus 3 Gleichungen,
welche Normalgleichungen heissen.

Normalgleichungen.
[an ] ;r + [fli ] j/ + [(ic ] 2 + [(if ] = 0 \
[a 6] * + [& ft] y + [& c] ä + [& 1] = 0 (14)
[a c] x -+- [6 c] y -+- [c c] z -+- [c 1] = 0 ' (14)

Die ursprünglich gegebenen Fehlergleichungen (3) und die Normalgleichungen
(14 ) stellen das ganze Ausgleichungsverfahren vor . Man hat offenbar ehensoviele
Normalgleichungen als Unbekannte. Im besonderen Falle ( 14) hat man 3 Unbe¬
kannte x , y, g und 3 Normalgleichungen; bei u Unbekannten wie in (3) angedeutet
ist , wird man auch u Normalgleichungen bekommen , die linear sind, also durch Auf¬
lösung , nach irgend welchem Verfahren, zur Auffindung der n Unbekannten führen
müssen.

Die im Vorstehenden (11 ) — ( 14) behandelte Aufgabe führt (nach Gerling) den
Namen Ausgleichung vermittelnder Beobachtungen, indem die Beobachtungen l ange¬
stellt sind als Vermittlung , um zu den Unbekannten x , y , z zu gelangen .

Anmerkungen .
Die Quadratsumme [v2] wird häufig [vv] geschrieben und dann auch [p v8] — [p v r] , was

offenbar gleich berechtigt ist , ebenso wie a 3 = aa u . s . w. Wegen des Anschlusses an [ab ], [ac ]
u . s. w. passt es sich natürlich auch [aa ] und nicht [a 8] zu schreiben , sowie [vv ], während das
einzeln stehende [t/2] natürlicher ist .

Die Benennung „Fehlergleichung “ für eine Gleichung von der Art (3) S. 41 oder (11) S. 43
rührt von Helmert in dessen „Ausgleichungsrechnung “ her . Die rechte Seite unserer Fehler¬
gleichung (11) S. 43 , d . h . der Ausdruck ax -*t- by -\ - cz -\ - l kann , nach Schreiber , „Fehlerausdruck “
genannt werden .

Auch zur Buchstabenbezeichnung wollen wir einige Bemerkungen machen : Die übrig blei¬
benden (scheinbaren ) Fehler der Ausgleichungen mit v zu bezeichnen , ist seit Gauss , Gerling und Eucke
allgemein gebräuchlich und bei der Preussischen Landesaufnahme und im Geodätischen Institute
beibebalten . Statt v findet man häufig auch das Zeichen 5 * welches wir in den beiden ersten Auf¬
lagen dieses Werkes (bzw . „Taschenbuch der praktischen Geometrie “) anwandten , aber dann fallen
Hessen zu Gunsten des am meisten gebräuchlichen v.

Die Fehlergleichung v — ax -̂ - by -̂ cz -̂ l kommt in dieser Form schon in Art . 20 der „tbeoria
combinationis “ vor . Dagegen Encke schreibt stets v = ax + by -\ - cz -\ - n , bezeichnet also das Ab¬
solutglied mit n , was uns aber nicht passt , weil n neuerdings mehr als Zeichen für eine Anzahl
gebraucht wird (bei (3) bedeutet n die Anzahl der Fehlergleichungen ).

Das Absolutglied l einer Fehlergleichung hat den Charakter einer Beobachtung , welche aber
hier negativ auftritt , wie schon aus (7) zu ersehen ist , und später bei Betrachtung von Näherungs¬
werten (in § 14.) noch deutlicher sich zeigen wird . Schreiben wir eine Fehlergleichung in die Form :

(— l -\- v) ~ ax -\~ by -\~ cz
so erscheint ax -\- by -\ - cz als Funktion der Unbekannten x , y , z, dann — l als Beobachtungsergebnis
für diese Funktion und v als Verbesserung der Beobachtung (— 1), Der Ilmstand , dass in der alt¬
hergebrachten Form v = a xbyc z + l das Absolutglied l eine negative Beobachtung vorstellt ,
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scheint Veranlassung gewesen zu sein , das Absolutglied selbst negativ zu schreiben . So hat Hel -
raert in seiner „Ausgleichungsrechnung nach der Methode der kleinsten Quadrate , Leipzig 1872 “-
für die Fehlergleichungen die Form :

l = — l -\- ax -\- by -\- cs
also wie erwähnt — l statt -J- l und dazu / . statt v. Auch die Bezeichnung f für das Absolutglied
der Fehlergleichung kommt vor , und führt dann zu der Benennung Fehlerglied . Man könnte das¬
selbe einen Näherungswert für den scheinbaren Fehler v nennen , nach seiner innersten Bedeutung
hat aber das Absolutglied , mag man es mit l oder mit f bezeichnen , den Charakter einer Beobach¬
tung und nicht eines Fehlers . In unserem System bezieht sich f stets auf eine Funktion von
Messungen oder ausgeglichenen Elementen , und die linearen Fehlergleichungen schreiben wir stets
in der zuerst 1821 von Gauss angewendeten , jetzt am weitesten verbreiteten Form :

v = ax -\- by -\- cz -\- J.

§ 13 . Vermittelnde Beobachtangen mit zwei Unbekannten.
Wir beginnen mit dem besonderen Falle von nur zwei Unbekannten und

haben für dieses langsame Vorgehen zwei Gründe : Erstens gestalten sich bei nur
zwei Unbekannten alle Entwicklungen viel einfacher und übersichtlicher als wenn
man gleich mit beliebig vielen Unbekannten beginnt und zweitens kommt der beson¬
dere Fall zweier Unbekannter x und y so oft vor , namentlich hei Ausgleichungen
mit Coordinaten x , y , dass es sich wohl lohnt , diesen Fall besonders zu behandeln.

Die Anzahl der Beobachtungen l j h ■■• Z» sei = n und man habe folgende
n Fehlergleichungen :

vx = % x + y -t- l±
V-2 = 35 + &2 U ■+■ ^2
*3 — as x + y ■+• h ( 1 )..

Vn = an x 4- 6» y 4- L
Ein einzelnes v giebt quadriert :

t '2 = « 2 # 2 4 - 2 a b x y 4 - 2 a l x

+ y2 _t_ 2 6 ly
+ Z2

Denkt man sich alle einzelnen v so quadriert und addiert , so erhält man :
[ü®] = [a a] a;2 -+- 2 [a 6] x y -+- 2 \a 1] *

4 [6 ft] 2/2 + 2 [bl \ y (2 >
+ VH

Unser Quadrat-Minimums-Prinzip verlangt :

djr v] = n
9 [v v] = ()

Dieses giebt :
2 \a a] x -h 2 [a b] y -j- 2 [al ] = 0
2 [et 6] x + 2 [6 6] y + 2 [b l] = 0

oder mit Weglassung des gemeinsamen Faktors 2 hat man die zwei

Normalgleiehungen
[iu ] * 4 [et 6] w 4- [ft 1] = 0 I
[a b] x 4- [6 b] y 4 - [6 1] = 0 | (3>
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Diese Normalgleichungen löst man nach x und y auf , was bei nur zwei Un¬
bekannten keinerlei Schwierigkeiten bereiten kann. Man findet:

\bb ] [al ] - [ab ] [bl ] [aa ] [bl \ - [ab ] [al ]
[a o] [6 6] — [a ft] [a b]

y
[a a] [6 b] — [a b] [a b]

y ’

Die Gleichungen (3 ) oder (4) enthalten die vollständige Ausgleichungsvorschrift
für die vorgelegten Fehlergleichungen (1) . In Worten hat man hiernach folgende
Anweisung:

Wenn die Coefficienten a , b und die Absolutglieder l der Fehlergleichungen ( 1)
gegeben sind, so bildet man daraus alle Quadrate und Produkte und deren Summen:

a \ 4- a\ - [- a\ 4 - . . . 4- aä = [« »]
öSj bj 4- uq &2 4- 0E3 b3 4“ • • • etn bn = [öeb]
b \ 4- b| 4- b | 4- . . . 4- bl = [b b]

Aus diesen Summen-Coefficienten bildet man die Normalgleichungen (3 ) oder
sofort deren Auflösungen (4) .

Man kann die Normalgleichungen (3) auch in dieser abgekürzten Form schreiben:

denn es ist nach ( 1 ) :

[a «] = 0
[b v] = 0 (3 a)

[n r ] — di 4- ^2 ^2 + % 4 - . . •
was in weiterer Ausführung giebt :

[o v\ = [a a] x 4- [a b] y 4- [a i]
Diese Formen (3 a) entsprechen der Gleichung [r] = 0 beim arithmetischen Mittel . S . 20 .

Wir nehmen hiezu sofort ein Zahlenbeispiel :
In den „Württembergischen Naturwissenschaftlichen Jahresheften “ Jahrgang

XXIV. (1868 ) S . 260 sind von Professor Schoder die Meereshöhen h und die 12jährigen
Barometermittel B von 9 meteorologischen Stationen mitgeteilt , nämlich:

h B
1 . Bruchsal . . . 120,2 751,18
2 . Cannstatt . . . 225,1 742,37
3 . Stuttgart . . . 270,6 738,50
4 . Calw . . . . 347,6 731,27
5 . Friedrichshafen . 406,7 726,99
6 . Heidenheim . . 492,4 718,16
7 . Isny . . . . 708,1 700,48
8 . Freudenstadt . . 733,5 697,64
9. Schopfloch . . . 768,9 695,23 .

Wir wollen annehmen, die Theorie der barometrischen Höhenmessung sei uns
ganz unbekannt , wir bemerken aber , dass bei wachsenden Höhen h die Barometer¬
stände B ziemlich gesetzmässig abnehmen; und um das Gesetz dieser Abnahme zu
untersuchen , beginnen wir damit , die Barometerstände B als Funktion der Höhen h
graphisch darzustellen, wie Fig . 1 . zeigt (S . 47 ) .

Für viele Zwecke wird es nun genügen, durch die erhaltenen Punkte eine Ge¬
rade oder eine stetige Kurve möglichst anschliessend durchzulegen, und die Ordinaten
der Ausgleichungs-Kurve als ausgeglichene Werte anzunehmen .
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Auch wenn man eine Ausgleichung nach der Methode der kleinsten Quadrate
vornehmen will , ist ein solches Aufträgen vor Beginn der Rechnung immer Tätlich,
ganz besonders , wenn die Beziehung der Veränderlichen theoretisch unklar ist ; die

m _ mm
Fig . 1.

Graphische Darstellung der Barometerstände
B als Funktion der Höhen h. Die Höhen h

sind vertikal , die Barometerstände B
horizontal dargestellt .

492,4

,731.27

{738,50

graphische Darstellung hat den Zweck , die Art der Abhängigkeit zu veranschaulichen ,
unter Umständen die Form der Ausgleichungs -Funktion festzustellen , grobe Beobach¬
tungsfehler aufzufinden und Näherungswerte der Unbekannten zu ermitteln .

Der Anblick unserer Figur lässt eine lineare Funktion zwischen h und B an¬
nehmbar erscheinen , d . h . wir setzen :

B = x + h y (6)
Irgend 2 von den 9 Beobachtungen (5) würden hinreichen , die 2 Unbekannten

x und y der Funktion ( 6) zu bestimmen. Um aber allen 9 Beobachtungen möglichst
gerecht zu werden , müssen wir nach den oben entwickelten Gleichungen ( 1)—(4)
verfahren , und haben zuerst die Fehlergleichungen zu bilden . Hiebei sollen die
unter (5) gegebenen Höhen h als fehlerfrei anzunehmen sein , dagegen die Barometer¬
stände B als fehlerhaft beobachtet , so dass alle auftretenden Widersprüche den
Fehlern der B zur Last zu legen sind .

Jede der 9 Beobachtungen giebt eine Gleichung von der Form (6) ; die ent¬
sprechenden 9 Gleichungen werden aber im allgemeinen nicht stimmen , weshalb
jedem B eine Verbesserung v zugeteilt werden muss , also statt (6) wird werden

B + v = x -\- hy
oder v = x + hy — B (? )
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Dieses (7) ist bereits die Form der Fehlergleichungen in unserem besonderen
Fall , und zur Vergleichung haben wir die allgemeine Fehlergleichungsform ( 1 ) :

v = ax + by -\- l (8)

Die Vergleichung zwischen (7 ) und (8) giebt
a = 1 6 = 6 l = — B (9)

d . h . in unserem Falle sind alle Coefficienten a = 1 , die Coefficienten b sind die

gegebenen Höhen und die Absolutglieder l sind die negativen Beobachtungen B .

Damit erhalten wir folgende Berechnung :
Num. a 6 l b3 bl

1 . 1,0 120,2 — 751,18 14 448 — 90 291,836
2 . 1,0 225,1 — 742,37 50 670 — 167 107,487
3. 1,0 270,6 — 738,50 73 224 — 199 838,100
4. 1,0 347,6 — 731,27 120 826 — 254189,452
5 . 1,0 406,7 — 726,99 165 405 — 295 666,833
6. 1,0 492,4 — 718,16 242 458 — 353 621,984
7 . 1,0 708,1 — 700,48 501 406 — 496 009,888
8 . 1,0 733,5 — 697,64 538 022 — 511718,940
9 . 1,0 768,9 — 695,23 591 207 — 534 562,347

9,0 4073,1 — 6501,82 2297 666 — 2903 006,867

Da alle a = 1 sind, sind auch alle a3 = 1 , also [a a] = 9 und auch [a 6]

[a l] brauchen nicht besonders ausgerechnet zu werden , denn wegen a = 1 ist [a 6] —

[6] = 4078,1 und [a l] = [!] = — 6501,82 , und im Ganzen haben wir die Coefficienten
der Normalgleichungen:

[« «] = + 9,0 [a 6] = + 4 073,1 [a l] = — 6501,82
[6 6] = + 2297 666 [61] = — 2903 006,867

Setzt man diese Coefficienten in (4) , so giebt die Ausrechnung :

[a a] [6 6] = + 20678 994,00
[ab ] [ab ] = + 16590 143,61

( 10 )

[a a] [6 6] — [a 6] [a 6] =

[6 6] [al ] = — 14 939 010 752,12
[ab ] [6 1] = — 11 824 237 811,70

4088 850,39

[ad ] [bl ] = — 28 127 061,803
[a6 ] [a l] = — 26 482 563,042

[&6] [aJ ] — [ab ] [bl ] = — 3 114 772 940,42 [aa ] [61] — [ab ] [al ] =

Die Unbekannten selbst werden:
— 3 114 772 940

355 501,239

y — ■

4 088 850

355 501
4 088 850

= + 761,77

= — 0,08695

Die Ausgleichungsfunktion (6) heisst also :
B = 761,77 — 0,08695 h

oder nach h aufgelöst :
h = 11,50 (761,77 — B)

(11 )
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§ 14. Einführung von Näherungswerten bei zwei Unbekannten.
Wir haben die Ausrechnung des Zahlenbeispiels in vorstehendem § 13. , welche

sich zuerst dargeboten hat , nicht zur Nachahmung, sondern sozusagen als abschrecken¬
des Beispiel hierhergesetzt ; man kann nämlich die Rechnung wesentlich vereinfachen
durch Einführung von Näherungsiverten der Unbekannten x und y . Ebenso wie
man bei dem arithmetischen Mittel § 7 . S. 22 die Grade und Minuten (35° 26 ' )nicht mit in die Summierung hineinzog, kann man auch in unserem Falle erste
Näherungen absondern .

Wir wollen hier auf die allgemeinere Behandlung der Einführung von Näher¬
ungswerten nicht eingehen , sondern nur an unserem vorliegenden besonderen Falle
die Sache zeigen :

Betrachtet man die Barometer-Kurve (Fig . 1 . S . 47) , indem man sie bis zur
Höhe h = 0 nach unten rechts verlängert , so findet man beiläufig den Wert 762”"",und da es ja bekannt ist , dass in der Höhe Null über dem Meer allerdings der Baro¬
meterstand etwa = 760”m ist , so behalten wir den graphisch gefundenen Näherungs¬wert 762 . Dieses ist ein Näherungswert für x , den wir mit (x) bezeichnen wollen , also

(*) = 762,00 (1)
Um auch einen Näherungswert für y zu erhalten, nimmt man am besten die erste
und die letzte Beobachtung aus der Gruppe ( 5) S . 46 , nämlich

1 . h = 120,2 B = 751,18
9 . 768,9 695,23

Differenzen : dh = 648,7 z/ B = — 55,95

(2/) = SS = 0’08625 (2)
Die Näherungsfnnktion ist also nun nach ( 1 ) und (2 ) :

Näherung B = 762,00 — 0,08625 h (3)
Gelegentlich ist hiezu zu bemerken: Auf welchem Wege man die ersten Nähe¬

rungen herbekommt, ist gleichgültig , sehr oft hat man sie von anderwärts, von früheren
vorläufigen Berechnungen u. s . w . Unter allen Umständen kann man sich dadurch
brauchbare Näherungen verschaffen , dass man , bei 2 Unbekannten, 2 möglichst ver¬
schiedene Beobachtungen auswählt und die ihnen entsprechenden Fehlergleichungenmit v = 0 auflöst.

Die Näherungen (x) und (y) müssen nun noch verbessert werden , was durch
Zufügen von Verbesserungen geschehen soll , welche bzw . 6 x und ö y' heissen sollen ,wir schreiben dabei nicht öy sondern 6y '

, weil ö y für eine andere Sache (nachher
bei (7) S . 50) noch Vorbehalten bleibt . Also

x = (x) + ä x y = (y) -+- ö y’
(4)Dem entspricht in Zahlen:

Es soll sein : B = ( 762 -+- d x) — (0,08625 + 6 y'
) h (5)

Wegen der Beobachtungsfehler sind die Gleichungen (5) im allgemeinen nicht
erfüllt, weil die B beobachtete Werte vorstellen. Es muss jedem B eine Verbesserung
v zugeteilt werden , d . h . im Gegensatz zu (5) bat man:

Es ist -. B + v = (762 -f - ö x) — (0,08625 + ö y '
) h

Das giebt die Fehlergleichung : v = 8 x — hdy ' + {762 — 0,08625 h) — B
Jordan , Handb . d . Vermessungskunde . 4. Aufl . I . Bd . 4

(6)
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Indessen kommt noch eine Kleinigkeit in Betracht : Bei der Annahme (6 ) werden
die Coefficienten von 8 x und 8 y ' sehr ungleich. Die Coefficienten von 8 x sind
nämlich alle = 1 und die Coefficienten von 8 y ' sind = h , von 120 bis 769 , d . h . viel
grösser als die Coefficienten von 8 x . Eine solche Ungleichheit ist aber formell sehr
störend , wie jeder Kechenversuch sofort zeigen wird ; man kann aber immer die
Coefficienten nahezu gleich machen durch Einführung neuer Unbekannten , nämlich
statt (6) :

v = 8 x ~ lM (10° 8 + (762 ~ ° ’08625 ?t) ~ B

oder zur Abkürzung 100 8 y ' = 8 y ( 7 )

giebt : v = 8x — ~ Sy + (762 — 0,08625 h) — B (8)
Das ist eine nun genügend zugerichtete Fehlergleichung von der allgemeinen Form

v = a8x -+- b8y -hl 1
hwobei a = 1 b = — , (9)

l = (762 — 0,08625 h) — £ I
Zur Veranschaulichung der Bedeutung von l wollen wir noch ein neues Zeichen

(B) einführen, nämlich :
l — (B ) — B (B ) = 762 — 0,08625 h (10)

(B) ist nämlich derjenige Wert der Beobachtungsgrösse B , welchen B an¬
nehmen würde , wenn die Näherungswerte 762 und 0,08625 streng gälten . In Hin¬
sicht auf das Vorzeichen merken wir ein - für allemal :

l = (B) — B = Näherung — Beobachtung ( 11)
Nach den Formeln ( 11 ) , ( 10 ) und (9) wird folgendes berechnet :

h (B) B 1 a ft 62 ß bl
120,2 751,63 751,18 4- 0,45 + 1,0 - 1,20 1,44 0,20 — 0,54
225,1 742,59 742,37 + 0,22 + 1,0 - 2,25 5,06 0,05 — 0,50
270,6 738,66 738,50 + 0,16 + 1,0 — 2,71 7,34 0,03 — 0,43
347,6 732,02 731,27 + 0,75 + 1,0 — 3,48 12,11 0,56 — 2,61
406,7 726,92 726,99 — 0,07 + 1,0 — 4,07 16,56 0,00 + O"ou00
492,4 719,53 718,16 + 1,37 + 1,0 - 4,92 24,21 1,88 — 6,74
708,1 700,93 700,48 + 0,45 H- 1 »0 — 7,08 50,13 0,20 — 3,19
733,5 698,74 697,64 + 1,10 + 1,0 — 7,34 53,88 1,21 — 8,07
768,9 695,68 695,23 + 0,45 -f- 1,0 — 7,69 59,14 0,20 — 3,46

+ 4,88 + 9,0 — 40,74 229,87 4,33 — 25,26
[a a ] = + 9,00 [aft ] = — 40,74 [a C] — + 4,88 >

[ft ft] = + 229,87 P>q = - 25,26 i ( 15
\l 1] = + 4,38 )

Die Summe [11] haben wir hier gelegentlich mitberechnet , obgleich sie nach
der bisherigen Entwicklung noch nicht nötig erscheint.

Nun rechnet man wieder wie früher :
[ft ft] [n 1],— [a 6] [ft 1]
[a a] [ft 6] — [o 6] [aft]
[« a] [6 1] — [a 6] [a 1]
[a a] [ft 6] — [a ft] [a 6]

1121 . 7 — 1029,1
2068 .8 — 165977

— 227,34 + 198,81
2068,8 — 1659,7

92,6
409,1
28,53
409/1

= — 0,226

= + 0,06974
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Das so gefundene Sy ist nur eine Hilfs-Unbekannte, die eigentliche Verbesserung
Sy ' ist nach (7 ) gleich dem hundertsten Teile von Sy , d . h .

= ro! = + ° ’000697
Nun hat man nach ( 1) und (2) die Näherungen, und soeben berechnet die

Verbesserungen, also zusammen :

Näherungen (a:) = 762,00 (y) — 0,086 250
Verbesserungen 8 x = — 0,23 Sy ' — + 0,000 697

Auflösungen x = 761,77 y = 0,086 947 ( 13)
Damit ist die ausgeglichene Punktion :

B = x — yh = 761,77 — 0,086 947 h (14)
Dieses stimmt hinreichend überein mit dem früheren ( 11 ) § 13 . S . 48 . Wir

haben also auf einem zweiten bequemeren Wege das Ergebnis des vorigen § 13 wieder
erhalten , und wenn eine kleine Abweichung in y zu Tage tritt , indem der neue
Coefficient y = 0,086947 giebt gegen 0,08695 der früheren Rechnung, so werden
wir , ohne im einzelnen weiter nachzuforschen , dem neuen Ergebnis 0,086947 den
Vorzug geben weil es , trotz geringerer Ziffermenge in der Rechnung, schärfer erhalten
werden muss .

Wenn man nach (14) für die gegebenen Höhen h die einzelnen B ausrechnet,
und sie mit den beobachteten B vergleicht, so erhält man folgendes :

h B
beobachtet

B nach (14 )
ausgeglichen

V <y2

1 . 120,2“ 751,18““ 751,32““ + 0,14““ 0,0196
2 . 225,1 742,37 742,20 — 0,17 0,0289
3. 270 .6 738,50 738,24 — 0,26 0,0676
4. 347,6 731,27 731,55 -4- 0,28 0,0784
5. 406,7 726,99 726,41 — 0,58 0,3364
6 . 492,4 718,16 718,96 4 - 0,80 0,6400
7 . 708,1 700,48 700,21 — 0,27 0,0729
8. 733,5 697,64 598,00 + 0,36 0,1296
9 . 768,9 695,23 594,92 — 0,31 0,0961

1,4695 = [*j2]
Diese Summe [®2] wird zur Berechnung des mittleren Fehlers gebraucht.

Wenn die v wahre Fehler wären , so würde man einfach rechnen :

,4695 — + 0,404 ™“ (?) (16)

Dieses ist aber aus demselben Grunde nicht richtig , aus welchem auch die
erste Berechnung (3) S . 15 nicht richtig war , nämlich weil die v nicht wahre Fehler ,
sondern nur scheinbare Fehler sind. Die schärfere Berechnung des mittleren Fehlers m
wird in dem späteren § 18 . gelehrt werden .
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§ 15 . Gauss sehe Elimination und Fehlerquadratsumme
für zwei Unbekannte.

Statt der unmittelbaren Auflösung der Normalgleichungen, welche in (4 ) § 13.
S . 46 angegeben ist , empfiehlt sich in den meisten Fällen die von Gauss angegebene
allmähliche Eliminierung mit einer eigentümlichen übersichtlichen Bezeichnungsart.

Wir nehmen die Normalgleichungen (3 ) § 13 . S . 45 nochmals vor :
( 1 )

(2 )
[« »] * + [a b] y 4 [a 1] = 0

[a 6] x + [6 6] y + [b l] = 0

und addieren sieWir multiplizieren die erste Normalgleichung ( 1 ) mit

zur zweiten , wodurch x wegfällt, und folgende Gleichung übrig bleibt :

[a 6] y + [6 /] (3)

Dieses giebt Veranlassung, abgekürzte Bezeichnungen einzuführen, nämlich:

(4>

damit wird (3 ) :
[bb . l ] y + [6J . l ] = 0 V = ~

li hfl ]
(5>

Macht man die Elimination in umgekehrter Folge, so hat man :

[a a] - [f | ] [« b] = [a a . 1 ] [« l] - [f | ] [b l] = [a l . 1 ] (6>

[aa . 1]
( 7 )[a a . 1 ] x + [a l . 1] =' 0 x =

Die Klammern [6 b . 1 ] , [bl . 1] u . s . w. sind symbolische Bezeichnungen von
ähnlicher Art, wie auch z . B . die Determinanten -Bezeiehnung.

Um sich den Bau unserer Klammer-Coefficienten einzuprägen, merke man sich

zunächst, dass jeder solche Wert = Null wird , sobald man die symbolische Bezeich¬

nung algebraisch auffasst, z . B.
b b = 0 (8>[b b . 1 ] = [b b] [ab ] = bb

Quadratsumme der übrig bleibenden Fehler .
Auch die Quadratsumme [r>r>] der übrig bleibenden (scheinbaren) Fehler v

kann man durch einen ähnlichen gebauten Ausdruck darstellen wie [b b . 1] u . s . w.
Nach (2) § 13. S . 45 ist diese Summe zunächst:

[v v\ = [a «] s 2 4- 2 [a b] x y + 2 [a 1) x |
+ {bb} y* + 2lbl } y

+ [/! I]
Hiemit lässt sich die Normalgleichung ( 1 ) in innige Beziehung bringen, es

ist nämlich :
([a a\ x + [ab ] y + [a l])2 = [a a]2 k2 + 2 [a a ] [a b] x y + 2 [a a] [a l] x j

-+- [a b]2 ry2 + 2 [a b] [a 1] y
+ [aiy
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und wenn man allerseits mit ja a] dividiert
( [a a ] x -+- [a 6] y + [a Z] )s

[a o] [ia a ] x2 -I- 2 [a 6] x y

[a b] [a b]

■2 [a l] x

[a a]
v

[aa ]
v

[« v]

Wenn man dieses von (9 ) abzieht , so erhält mau :
([a a ] x

[aj ]
[o a] [« 1]

(11 )

miüöu
([M1 _ m [. „) , - . (M - gg t. , ) ,

[ab ]+ [ll ]
[« #] [aZ]

In der neuen Schreibweise mit [b b . 1 ] u . s . w . giebt dieses :

[® fl] ■ ([«. a] x + [q b] y + [a Z]>
[a a]

= [b b . 1 ] + 2 [b Z. 1] y
+ [Z Z. 1]

( 12)

Eine Umformung von gleicher Art kann man nochmals machen , nämlich wegen (5)
([b b . 1] y + [b l . 1])2 = [b b . 1JV * + 2 [b b . 1] [b Z . lj y

+ [bZ . l ]2
( — 1 1 - = [5 » ■1 ] S* + 2 [» ! • 1 ] » |

+ (

Dieses (13) wieder gliederweise von (12) abgezogen giebt :

(13 )

r„ „,i ( [» a ] » + [ob ] y + [aZ] )* ( [bb . l ] y + [bZ . l ] )a _ r „ „ [bZ . l ]1 J
[fl «] [bb . l ]

L J
[bb . l ] [bZ . l ] (14)

Schreibt man vollends [Z Z . 2] für die letzten Teile von (14) , so ist nun das
ursprüngliche [fl ®] von (9) auf folgende Form gebracht :

[ » ®] = ([« a ] : [ab ] i/ + [« Z] )2
+ ([bb . l ] y + JbZ . l ]> + [U _ ( 15)[« «] [b b . 1]

Nach ( 1 ) und (5) sind aber die beiden quadratischen Glieder = Null , es bleibt also übrig :
[» a] = [ZZ . 2] ( 16)

Die neu eingeführten Glieder [ZZ . 1] und [ZZ . 2] , welche zur Elimination selbst
nicht nötig waren , berechnet man im Anschluss an die Elimination .

Wir wollen den geschlossenen Ausdruck [ZZ . 2] auch nochmals auseinander
ziehen , nämlich :

[ZZ . 2] = [ZZ . l ] -
^ | [bZ . l ]

und [ZZ . 1] = [Z Z] - [^ [aZ]
Dann wird ( 16 ) :

[ee ] = [Zq - [aip
[# a]

[b Z . 1]2

[bb . l ] ( 17)

Die abgekürzten Bezeichnungen [6 &. 1] , [&c . 1] , [ll . 1] u . s. w . mit der entsprechenden
Elimination , sind zuerst von Gauss eingeführt worden im Jahre 1810 durch die Abhandlung „Dw *
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quisitio de elementis ellipiicis Palladis etc * Die Zeichen sind daselbst geschrieben [b b , 1] [b c , 1] u . s . w.T

während jetzt gewöhnlich [b b . 1] geschrieben wird , von manchen auch [6 fr,]. Abgesehen von diesen

Meinen Abänderungen haben sich diese classischen Bezeichnungen seit 80 Jahren in allen nam¬

haften Schriften über Methode der kleinsten Quadrate eingebürgert und werden als sozusagen ge¬

heiligte Bezeichnungen festgehalten . Der Versuch , diese glücklicherweise nun feststehenden Zeichen

durch andere zu ersetzen , wäre als unglücklich und auf die Dauer nicht haltbar zu bezeichnen .

§ 16 . Mittlerer Gewichts -Einheits - Fehler bei zwei Unbekannten .

Aus der Fehlerquadratsumme [® o] , mit welcher wir uns soeben beschäftigt
haben , kann man auch den mittleren Fehler einer Beobachtung berechnen (bzw . den

mittleren Fehler einer Beobachtung vom Gewichten = 1 ) . In erster Näherung kann

man schreiben :

m =

Indessen ist diese Formel deswegen nicht genügend , weil die v nicht wahre Fehler ,
sondern nur scheinbare Fehler sind , wie schon am Schluss Ton § 14. S . 51 betrachtet

worden ist .
Wir müssen die Formel ( 1) in ähnlicher Weise abändern, wie schon beim

arithmetischen Mittel bei (10) § 7 . S . 21 geschehen ist , wo der Nenner n in n — 1

(für eine Unbekannte x) umgewandelt wurde.
Wir werden wieder zu unterscheiden haben :

Ausgleichungs -Ergebnisse x y , Wahre Unbekannte X Y
scheinbare Fehler iq ®2 ^3 • • ■ ■ Wahre Fehler e2 «s • • •

Dann bestehen die Gleichungen :
v — ax + by + l \
e = aX + bY + l )

*• ;

Also Differenz : v — e = a (x — X ) -h b (y — F )
oder v = a (x — X ) -+- b (y — Y) + e (3)

Dieses hat wieder dieselbe Form wie die früheren Fehlergleichungen v = ax -i- by ^rl r
und wegen [a ®] = 0 und [6 ®] = 0 kann man daraus auch eine Art von Normal¬

gleichungen bilden , nämlich :
[av ] = [« «] (» — X ) + [ab ] (y — Y) + [« «] = 0 1
[b ®] = [a 6] (x — X ) -+- [6 b\ (y — Y) H- [6 e] = 0 (

^

Auch die Summe [du] kann man in ähnlicher Form wie früher bilden , nämlich :

[® « ] = [na ] (x - Xf - + 2 \ab ] {x — X ) {y — Y) -t- 2 [a e] (® — X )
+ [6 6] (V - r )2- + 2 [bt ] (y - Y )

-+- [e e]
und damit lässt sich auch dieselbe Umformung machen wie bei dem früheren [® ®]
in ( 17 ) § 15 . S . 53 , nämlich :

[v »] = 0 e] - [a_
e]2

[a a]
[6e . 1]2
\bb .1J (5)

Man sieht hieraus, dass [ y ®] kleiner als [« e] ist , und es handelt sich darum,
die Differenz zwischen [ v ®] und [e e] , d . h . die zwei Schlussglieder von (5) , so genau
zu bestimmen , als es bei der Unbekanntheit der wahren Fehler e möglich ist , d . h.
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wir gehen darauf aus , die Mittelwerte der zwei letzten Glieder in (5) zu bestimmen.
Zunächst haben wir :

[U fi]2 — (d| -b £Z2 ß2 ~b CE3 €3 -b . . .)2
— a }2 6j 2 b —Ct'22 £23 ~b &32 £3^ "b - . • - b 2 U2 £^ £2 '“b • * ■ ( 6 )

An Stelle der Quadrate «j 2 , e22 • • • setzen wir deren gemeinsamen Mittelwert m2,
und die Produkte £j «2 n. s . w . müssen wegen des unregelmässigen Zeichen Wechsels + s
im Mittel verschwinden, folglich giebt (6) :

[o e] 2 = (ax2 -b a22 + . . .) m2 -b 0

[a £] 2 = [a a] m2 (7 )

In gleicher Weise können wir auch das letzte Glied von (5) behandeln, nämlich:

P . . l ] = P «] - p [a . ]

(&1 «i -b &2 ®2 (a i £j + « 2 *2

a l ) *1 + ( « 2 «2

[6 e . 1] 2 = &. a,\ j £i 2 -b I b< <H ®23 +

a2 * 1 ®2 +

Hievon soll der Mittelwert mit Rücksicht auf die verschiedenen e t e2 . . . ge¬
bildet werden , und dabei macht man wieder dieselben Überlegungen, wie bei (6 ) ,
dass nämlich der Mittelwert der verschiedenen Quadrate , e22 . . . allgemein = m2
zu setzen ist und dass der Mittelwert der Produkte e 1 e2 verschwindet wegen der
unregelmässig schwankenden Vorzeichen + der einzelnen e . Man findet also aus
dem vorhergehenden:

[6 e . I ]2 rtl )2 + (&,

[6 e . I ]2 2 a , b

(&12 -b fc; [a\ 2 -b ec22 “b • • -) <Z2 ^ 2 “b • • ■)

[fc£ . I ]2
[ab ] — [bb . 1] (8 )

Setzt man dieses (8) nebst (7) in (5) , so erhält man :
[ ü y] = [je ] — m2 — m2
[v v] = [e s] — 2 m2

Nun ist -— - = m2 die wahre Bestimmung von m2, was mit dem vorhergehendenn
zusammengenommen giebt :

[v v] = n m2 — 2 m2

[« «]

also : (9 )
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Dieses ist die richtige Formel statt der zweifelhaften Formel ( 1). Die For¬
mel (9) erinnert in ihrem Bau an die frühere Formel (10) § 7 . S . 21 für das arith¬
metische Mittel . Ebenso wie für eine Unbekannte beim arithmetischen Mittel der
Nenner n in n — 1 überging , muss nun bei zioei Unbekannten x und y der Nenner
n — 2 werden .

Man kann wohl vermuten, dass das nun so weiter gehen wird, dass bei 3 Un¬
bekannten x , y , z der Nenner n — 3 und allgemein bei u Unbekannten der Nenner
n — n entstehen wird ; aber ehe wir dieses bewiesen haben werden , ist es noch nicht
gültig .

Die Unterscheidung wahrer Fehler e und scheinbarer Fehler v bei der Berechnung des
mittleren Fehlers ist eine der feinsten Betrachtungen der M. d . kl . Q., eine echte Blüte des Gauss -
sehen Ingeniums , während manch Anderer als Gauss sich wohl dabei beruhigt hätte , dass die v
immerhin Näherungswerte der e sind . Der allgemeine Satz , dessen besonderen Fall für zwei Un¬
bekannte wir soeben behandelt haben , wurde zuerst von Gauss in art . 38 der „theoria combina -
tionis “ (vom Jahre 1823) entwickelt . In einem Lehrbuche diese Sache anschaulich vorzutragen und
zu beweisen ist nicht leicht . Schon Gerling begnügte sich in seiner „Ausgleichungs -Rechnung der
praktischen Geometrie “, Hamburg 1843 , S. 39 und S. 132 mit einer allgemeinen Plausibelmachung .
Neuere Verfasser von Lehrbüchern haben häufig den Satz wenigstens für n — 1 bewiesen , und haben
dann nach Analogie summarisch weiter geschlossen , dass für zwei Unbekanute n — 2, für drei Un¬
bekannte n — 3 u . s. w. zu setzen sei . — Ganz unzulässig aber ist es , wie in neuester Zeit ge *

[v v]schehen , den Satz m2= - als „nicht streng zu beweisender Grundsatz “ an die Spitzen der Be -
n — u

trachtungen zu stellen . Mit demselben Rechte könnte man den Pythagoräischen Fehlerfortpflanzungs¬
satz (6) S. 16 als unbewiesenen Grundsatz an die Spitze stellen , und durch solches Verfahren der
M. d . kl . Q. den mathematischen Boden entziehen . —

§ 17 . Mittlerer Fehler der ausgeglichenen x und y .
Mit dem , was wir in § 13.—16 . gelehrt haben, kann man bereits kleine Aus¬

gleichungen machen, und in vielen Fällen geschieht nichts weiteres, (und im Sinne
allmählicher Erlernung der ganzen Theorie möchte es sich auch empfehlen , unn sofort
das Zahlenbeispiel von § 14 . nochmals vorzunehmen, und entsprechend § 15 . und § 16 .
weiter zu führen) .

Indessen ebenso wie beim arithmetischen Mittel der mittlere Fehler des Mittels
selbst, d . h . des ausgeglichenen x bestimmt werden musste, verlangt nun auch die
Weiterführung unserer Ausgleichung mit zwei Unbekannten noch die Berechnung der
mittleren Fehler der ausgeglichenen x und y.

Um dazu zu gelangen, nehmen wir wieder unser allgemeines Fehlerfortpflanzungs¬
gesetz (10) § 5 . S . 17 vor , und nehmen an , es hängen x und y mit gemessenen
Grössen l durch folgende lineare Gleichungen zusammen :

X = « 1 Zj + (*2 ?2 “b a 3 1%"i“ - • • “k ein ln ( 1 )
V — ft h + ßz h + ßs h + • • • ■+■ß» 1» (2)

Wenn dabei m der mittlere Fehler eines einzelnen l ist , so sind nach dem
citierten Fehlerfortpflanzungsgesetze die mittleren Fehlerquadrate von x und y :

m x2 = oq2 m % c£22 m 2 4 - ■• • = ( « j 2 - t- <*22 - t- . . .) to 2 = [« « ] m 2 (3 )
m,2 = ft 2 m2 + w2 + . . . = (ft 2 + ft 2 + . . .) m2 = [ß ft m2 (4)

oder in Gewichtsform, wenn zu dem mittleren Fehler m das Gewicht 1 gehört :
_ J _ _ _

1
_p' ~

[« «]
Py ~ ißß] (5 )
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Dieses gilt zunächst für beliebige Werte a und ß ; wir wollen nun aber
unter y die Unbekannte verstehen , welche aus der Auflösung unserer Normalgleieh-
ungen hervorgeht, nämlich nach (5) § 15 . S . 52 :

[6Z . 1 ]
y ■ (6 )

[hh . l ]
Um diese Gleichung (6) mit (2 ) in Übereinstimmung zu bringen , müssen wir

den Zähler von (6) so auflösen , bis alle darin vorkommenden lx U . . . einzeln da¬
stehen ; wir entwickeln daher:

[<* h]
[blA ] = m

[flfl]
= (&1 h + 5g lg

[ab ]

[a l]

[« &]
[a a] (<*1 Zj + Og 7g -+- . . .)

= 6 aij h
[a a]

Dieses in (6) berücksichtigt gieht :
* [« &] .

[a 6] ,

y = [a a]
«l

[a a]

[a 6]

°a ) h + • ■•

- h [o a]
«2

■b — .
[6 6 . 1 ]

1
[6 6 . 1]

Die Vergleichung mit (2 ) zeigt, dass die ß folgende Bedeutungen haben ;

- [“ 6] , ,
- . 1*2 =ßl = • [a a]

n t“ 6]
62 ~

[aa ]
° 2

(7)
[66 . 1] [66 . 1]

also : ft 2 = 1
[66 . 1]2 (&i 2 - 2 [« h]

[a a] 6j -+-
[aa ] 3 “1 )

ebenso auch: 022 = 1
[66 . 1]2 (h22 - aj &2

[« h]2 )
[« «] 2 2 /

Summe m = 1
tfc &TTp ( [62] - 9 [« 6]

[ao ] [« 6] +
[aa ] 2 [ V

oder mit m = [ &6] , [a2] = [a a] u . s . w . :

m = 1
[66 . 1]2 ( [6 6] - [a 6]

[aa ]
1ah ]) =

[& &. 1] 2 [66

also ißß ] = 1
[66 . 1]

oder pv = [5 6 • 1] (8 )

Dieses gilt für die Unbekannte y und entsprechend hat man für x , indem
man nur überall 6 und a vertauscht :

[ “ K] =
[oil ]

= [a a . 1] (9)

Die Quadratsummen [a a] und [ß ß] nennt man Gewichts -Coefflcienten . Damit
hat man auch die mittleren Fehler von y und von x , für den Gewichtseinheitsfehlerm :

m m
(10)

Vph V [6 6 . 1]
m m

( 11 )
Vp* ]/ [a a .■1]

mx = —— =
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m selbst wird hiezu nach (9) § 16. S . 75 und (16) § 15. S . 53 bestimmt , nämlich :

7/ [™ ] _ 7/ P
y n — 2 f n ( 12 )

Coefficienten-Determinante . Wenn man die Determinante der Normalgleich -
ungs -Coefflcienten [a a] [ab ] u . s . w. einführt , nämlich :

(13)[<xa ] [6 b] — [ab ] [ab ] = D
so kann man, wie sich durch Auflösen sofort zeigt , auch folgende Formen herstellen :

\aa . 1] (14)

Damit ist alles zur Fehlerbestimmung von x und y selbst nötige gefunden.
Wir werden aber später finden, dass es auch noch eine Aufgabe giebt , welche im
bisherigen nicht inbegriffen ist , nämlich Bestimmung des mittleren Fehlers einer
Funktion der ausgeglichenen x und y .

Es ist nicht rätlich , sich damit zu beschäftigen , ehe die mittleren Fehler von
* und y selbst nach den vorstehenden Formeln (9) und ( 10) völlig verstanden und
auch durch Zahlenbeispiele eingeübt sind , jedoch des Zusammenhangs wegen wollen
wir doch noch die Formeln für [a ß] u . s . w. angeben . Man braucht nämlich später
(in § 24 .) nicht nur die Quadratsummen [ <x a] und [ß 0 ] , sondern auch die Produkt¬
summe [aß ] der Coefficienten a und ß von ( 1) und (2 ).

Ein einzelner Wert ßi oder a1 giebt sich nach (7) , mit Anwendung von D nach ( 14) :

[a b] ax) ([b b] ax — [a b] b, )ai ßi — +

([« «] Pbjajbj [a a] [a b] b] bj — [a b] [b b] aj ax + [a b] [a b] a l bj)
dann die Summe aller solcher Produkte :

[a ß] = ( [a a] [ b b] [a b] — [a a] [a b] [b b] — [a b] [b b] [a a] + [a b] [a b] [a b]^
Die ’2 ersten Glieder heben sich auf, und wenn man wieder die Bedeutung von

D berücksichtigt , so erhält man :

r„ m = ~ ta fe] = _ — [« &] _L w D [aa ] [bb] - [« b] [ob ]
und wegen der Analogie mit [b b . 1 ] wollen wir noch einführen :

D
[ab]

( 15 )

[a &] ~
[Sj [66 ] = [« 6 ' 1] (16)

wodurch wird : ratf ] = — —^
[a b . 1]

Zusammenfassung :

(17)

[bb ] _ 1
[aa . l ] [a b . 1]

[b b . 1 ]

( 18)

(m xf =
y

= [« a] m2 = [M ] OT2 {mvf =
y

= [ß ß] m? = [a
^ nfi ( 19)
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B = [aä ] [6 5] — [a 6] [a b] (20)
Dieser Coefficienten -Determinante D entspricht auch eine Gewichts -Coefflcienten -

Determinante : / l = [aa ] [ßß ] — [« (1] [« ß] (21 )

und es besteht zwischen beiden die Beziehung:
ZM = 1 (22)

Wir wiederholen hiezu aber die Bemerkung, dass man all das letzte, von ( 13)
bis (22) für die nächsten Aufgaben nicht braucht .

§ 18 . Coefficienten-Berechnung und Summen-Proben.

Obgleich durch die vorhergehenden § 13.—17. die Ausgleichung mit zwei

Unbekannten x und y vollständig klargelegt ist , wollen wir doch vor Beginn eines

Zahlenbeispiels noch einige Bemerkungen machen über die Ausrechnung und Ver¬

sicherung der Quadratsummen und Produktsummen [o a] , [a b] u. s . w.
Die Ausrechnung der Quadrate a a und der Produkte a, b u . s . w. kann, je

nachdem die Zahlen einfach oder mit vielen Stellen angegeben sind , verschieden

geschehen. Es sind hiezu die mechanischen Bechenhilfsmittel zu erwähnen, welche

wir in unserem II . Bande , 4 . AuiL, S . 118— 134 beschrieben haben : Rechenschieber,
Rechenscheibe , Rechenmaschinen u . s . w.

Die Quadrate bildet man jedenfalls mit einer Quadrattafel, wie eine solche

z . B . auf S . [2]— [6] unseres Anhangs mit 3stelligem Argument gegeben ist . Für

grössere Genauigkeit (welche aber bei guter Vorbereitung der Rechenform selten nötig
ist ) hat man ausführlichere Quadrattafeln als Beigaben zahlreicher Logarithmentafeln
und anderer Tabellenwerke.

Die Produkte ab u . s . w . kann man direkt ausmultiplizieren, wie in den Bei¬

spielen S . 48 und S . 50 mit [61] geschehen ist . Bei mehrstelligen Zahlen kann

man sich einer Produktentafel bedienen , deren zur Zeit zwei vorhanden sind , nämlich :

Dr . A. L. Crellen Rechentafeln , welche alles Multiplizieren und Dividieren mit

Zahlen unter Tausend ganz ersparen , mit einem Vorworte von Bremiker . 5. Ausgabe ,

Berlin 1880.
Rechentafel nebst Sammlung häufig gebrauchter Zahlenwerte , entworfen und be¬

arbeitet von Dr , H . Zimmermann , Regierungsrat . Berlin 1889.
Crelle giebt alle Produkte von 3- und 3 stelligen Faktoren , Zimmermann giebt die

Produkte aus 3- und 2 stelligen Faktoren .

Es giebt aber auch ein sehr gutes Verfahren, die Produkte mit der Quadrat¬
tafel zu bestimmen. Es ist nämlich :

(a -+- 5)2 = o2 -+- 62 -+- 2 a b oder ab —

woraus man findet:

(a + bp — (a2 -+- 62)

[« &] = [(a + 6 )2] - ( [aa ] + [6 b]) ( 1 )

und da man [an ] sowie [6 6] ohnehin braucht , so ist nur noch [(n + 6)a] d. h . die
Summe der Quadrate (a -+- bf auszurechnen.

Statt (a -i- b)- kann man auch (a — 6)2 benützen in dieser Weise :

[a 6] = [ (« — 6 )2] + [« a ] + [6 6] (2)
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Wir wollen dieses Verfahren an einem Beispiele zeigen , welches zu § 14. und
§ 19 . gehört :

b Z bl Z>2 Z2 ( &+ Z) {b + lf
1,20 0,45 + 0,54 1,44 0,20 1,65 2,72
2,25 0,22 0,50 5,06 0,05 2,47 6,10
2,71 0,16 0,43 7,34 0,03 2,87 8,24
3,48 0,75 2,61 12,11 0,56 4,23 17,89
4,07 — 0,07 — 0,28 16,56 0,00 4,00 16,00
4,92 1,37 6,74 24,21 1,88 6,29 39,56
7,08 0,45 3,19 50,13 0,20 7,53 56,70
7,34 1,10 8,07 53,88 1,21 8,44 71,23
7,69 0,45 3,46 59,14 0,20 8,14 66,26

40,74 4,88 •+ 25,54 — 0,28 229,87 4,33 45,62 284,70
45,62

" '
+ 25,26 = [bb] = [ZZ] - 234,20
= [6 l) [6 &] + [ZZ] = 234,20 2 [bl] =

[6Z] =
+ 50,50
+ 25,25

Wir haben also [6 Z] unmittelbar = + 25,26 und auf dem Wege über (6 -+- Z)2
und [6 6] und [Zl] mittelbar [b Z] = + 25,25 gefunden , was hinreichend zusammen
stimmt . Damit ist nicht nur [b l] selbst , sondern es sind auch [6 6] und [ZZ] versichert

Man kann solche Proben in den verschiedensten Verbindungen machen ; man
kann z . B. [a a] und [6 6] nebst [a 6] durch [ (« + Z>) 2] kontrollieren und dann noch
die Produktsumme der (o + 6) Z bilden , wodurch auch noch [« Z] und [6 Z] ver¬
sichert sind.

Man kann auch noch in anderer Weise ein Produkt durch Quadrate bestimmen , nach der
Öleichung

a = -J - (« + !>)’ + 4 - (« — 6)24 4
Hiernach ist berechnet : Tafel deT Viertel -Quadrate alleT ganzen Zahlen von 1 bis 200000

u . s. w . von Joseph Plater , Wien 1887, besprochen von Hammer in der Zeitschr . f. Verm . 1888,
S. 485—486. Für Multiplikation vielstelliger Zahlen kann diese Tafel von Nutzen sein (nachdem man
sich in der Anordnung mit den 3 letzten Stellen als Überschrift zurecht gefunden hat ), für Produkte
kleiner Faktoren , wie sie in der M. d . kl . Q. meist Vorkommen , lohnt sich die Tafel der Viertel¬
quadrate kaum .

Summenproben. Man kann die Berechnung der Coefficienten [a a\ , [a 6] u. s . w .
auch durch Summen kontrollieren , welche immer über die ganze Beihe o , b , Z
sich erstrecken.

Bei nur zwei Elementen x , y , bzw . a , 6 tritt der grosse Vorteil solcher
Summenproben noch nicht so deutlich hervor , wie bei vielen Unbekannten , wo die
Probesummen durch die ganze Bechnung , namentlich auch in der Elimination von
Linie zu Linie wirksam , ausgezeichnete Dienste leisten . Indessen müssen wir , um
das Verfahren allmählich einzuüben , auch schon bei zwei Unbekannten den ganzen
Probesummenapparat kennen lernen . Dabei ist es bequem, nicht die Summen selbst
sondern die negativen Summen in Bechnung zu nehmen, so dass immer alles auf
Null ausgehen muss, d. h . wir setzen :

+ Zq + Zj + Sj = 0
az + \ + h + *2 = 0 u . s - w-
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dann ist auch :
[a a] -h [ab ] -h [a l] -f- [a s] = 0
[a b] + [6 6] + [b l] + [6 s] = 0
[a 1] + [6 1] + [l 1] + [l s] = 0
[fi s] -(- [6 s] —p [1 s] -(- [s s] — 0

Dieses wollen wir durch Linien in folgender Weise andeuten :

[d a] | [a b] | [a l] | [a s]
I v> b] I [b i] I [6 «]

I [ll ] I [l «]
I [« «]

Man bekommt also ein Coefficienten-System , wie wenn statt 2 Unbekannten
deren 3 vorhanden wären . Dem entsprechend rechnet man auch weiter nicht nur

[6 6 . 1 ] , [61 . 1 ] , sondern auch [6s . 1 ] , [ls . 1 ] u. s . w , d . h . :

[« &] ,
[66 . 1 ] : [„ « - Mm [61 . 1 ] = [61] -

[aa ]
[al ] [6s . l ] = [6s ] -

[^ [asl

[1 S . 1 ] = [1 s] - [^ [fis]

[ss . l ] = [ss ] -
[^ j [f. sl

Hiemit hat man wieder Proben , nämlich :

[6 6 . 1 ] | [6 1 . 1 ] | [6 s . 1]
I \ll . 1] I P 8 . 1]

I [88 . 1 ]

Die Richtigkeit der hierdurch angedeuteten Probegleichungen lässt sich leicht
einsehen , z . B . :

P6 . 1 ] = [66 ] -
[^ [fi6 ]

° = [afo]

L6 6 . 1 ] + [6 1 . 1] [6 s] -

[6 6 . 1] -t- [6 1 . 1] + [6 s . 1 ] = 0
und ebenso : [6 l . 1] -h [1 1 . 1] - t- [1 s . 1] = 0

n v [6 S . 1] + [1 S . 1] + [S S . 1] = 0

So geht es auch noch weiter :

[1 s . 2] = [l s . 1 ] -[11 . 2] = [11 . 1 ] rk4~ ii [6 i • 1]
[66 . 1 ]

'

[s s . 2 ] = [s s . 1 ]

[bl - 1]
[66 . 1]
[6s . 1 ]"
[6 6 . 1 ]

[6 s . 1}

[6 s . 1]

Die hiebei gütigen Proben sind angedeutet durch:

[11 . 2 | [1 s . 2]
I [ss . 2]
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<1. h. diese 3 letzten Glieder müssen einander gleich werden , wie sieh in ähnlicher

Weise , wie oben bei den Coefflcienten [ . . . 1] , leicht nachweisen lässt .

Nun kommt noch die wichtige Probe , dass [11 . 2] = [■« u] werden muss , indem

u] durch Quadrieren der einzelnen auszurechnenden v bestimmt wird.

Die mitgeteilten sehr zahlreichen Proben sind bei einiger Übung , wenn nur

2 Unbekannte, vorhanden sind , teilweise überflüssig , und man kann sich hier, so weit

die Elimination in Frage kommt , wohl mit der Probe begnügen , dass [l l . 2] , dessen

Bestimmung bei y und bei * vorkommt , hiebei übereinstimmend erhalten werden

muss . Oft wird man die quadratischen Schlussglieder [s s] , [s s . 1 ] , [s s . 2] weglassen
können ; wir haben diese letzten Probeglieder mehr der Symmetrie der Formeln wegen
als wegen des praktischen Bedürfnisses aufgenommen.

Andererseits kann wohl auch ein Rechner , der seiner Sache sonst sicher, ist ,
sich mit der einen Probe begnügen :

[s s] = [a o] -f 2 [o 6] 4- 2 [a l] oder = [« »] + [a 6] -t- [a ?]
-+- [6 6] + 2 [b l] -f - [a 6] -t- [6 6] -+- [b 2]

+ [ll ] -t- [a l] h ~ [6 l] -+ [2 l]
Wenn alle diese Proben stimmen , so kann man mit einer an absolute Sicher¬

heit grenzenden Wahrscheinlichkeit die Fehlerlosigkeit der Rechnung behaupten .

Unsere Zahlenbeispiele von § 13. und § 14. hatten die Eigentümlichkeit , dass
alle Coefflcienten a = 1 sind . Dieser Fall kommt häufig vor und erleichtert die Aus¬

rechnung der Summen -Coefflcienten sehr, denn es ist dann , bei n Beobachtungen ,

[« «] = « [a 6] = [6] [a 1] = [fl

und nur [6 6] , [61] und [l l] müssen besonders berechnet werden , wozu dann kaum

Summengiieder s zu nehmen sind , während die Elimination wohl mit Summengliedern
gemacht werden kann.

19 . Eliminations -Beispiel mit 2 Unbekannten.

Wir nehmen das Beispiel von § 14 ., welches wir dort nach gewöhnlichen
algebraischen Methoden behandelt haben, nochmals vor.

Das Coefflcienten-System von S . 50 nebst Summengliedern ist :

a
■9,00

6
- 40,74
229,87

l
+ 4,88
— 25,26
+ 4,33

■ 26,86
■163,87

16,05
( 1)

Indem wir vorerst unentschieden lassen , ob man die Werte | \a 61 , \a fl
[a o]

L J [a a]
L

u . s . w. unmittelbar oder mit dem Rechenschieber oder mit Logarithmen oder sonst
wie ausrechnen will , erhalten wir die folgende Anordnung, wobei man vorerst an¬
nehmen mag, dass die Mein gedruckten Zahlen nötigenfalls auf einem Nebenblatt
berechnet worden sind.
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[ao ] = + 9,00 [a 6] = — 40,74
[6 6] = + 229,87

- l« &] = - 184,42 - ^ [a 7] = +[a a] [a u]

[ai ] = + 4,88
[6 l] = — 25,26

[a s] =
[6s ] =

22,09 — ^ [« ] = +[a a]

26,86
■163,87

Probe
0,00
0,00

p q = +
[a 7] r „

4,33
2,65 -

+
1

1!
II

V
^

^

£
=r[ 'ö’

16,05
14,56

0,00

[66 . 1 ] = + 45,45 [6 Z . 1 ] = —
[U . 1 ] = +

3,17
1,68
0,22 —

[6s . l ] = -
P s . 1 ] = +

42,29
1,49
2,95

—0,01
0,00

P l . 2] = + 1,46 p s . 2] = — 1,46 0,00

y -
+ 4S - + 1 (2)

p y = 45,45 [» v] = 1,46 I
Für die umgekehrte Rechnung , nämlich Elimination von y und Bestimmung

von x nebst p „ schreiben wir nur noch die Zahlen , und zwar mit einer Stelle weniger
als vorher :

6
+ 229,9

a i s Probe
— 40,7 — 25,3 — 163,9 0,0
+ 9,0 + 4,9 + 26,8 0,0
— 7,2 — 4,5 — 29,0

+ 4,3 + 16,1 0,0
- 2,8 — 18,0

1 )8 + 0,4 — 2,2 0,0
+ 1,5 — 1,9 0,0
— 0,1 + 0,5
+ 1,4 ■ — 1,4 0,0

x = - 0,4
+ 1,8

■0,22 (genauer = — 0,226 ) |

I (3)
px = 1,8 [u i>] = 1,4

Wenn es sich um eine Rechnung mit so wenigen Stellen wie hier handelt , so
macht man die Rechnung am besten mit dem Bechenschieber . Man stellt für die

erste Linie den Quotienten
40,7

229 ^9
ein , und multipliziert damit der Reihe nach :

40,7 25,3 163,9 , d . h . man liest mit einer Einstellung die drei Produkte ab :
40,7

40,7 = 7,2
40,7

229,9

Um die Vorzeichen

25,3 = 4,5
229,9

oder + der Grössen

40,7
229,9

[ab ]
[a a]

163,9 = 29,0

[a 6] u . s . w . richtig anzu¬

setzen , kann man in jedem einzelnen Palle die verschiedenen einwirkenden + und —
abzählen ; man gelangt aber bald zu einer übersichtlichen mechanischen Regel , die
wir an der Hand des vorstehenden Beispiels bilden wollen :

ft ) + — + +

6)

l)
5 . 1) -

7. 1) -
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1 ) Die Vorzeichen einer Linie 6 , l ) oder i . l ) haben jedenfalls dieselbe Folge
wie die darüberstehenden Vorzeichen der ersten Linie a ).

2) Die Vorzeichen einer Linie b . i) oder i . l ) beginnen immer mit — , daraus

folgt :
3 ) Wenn über b . l) in der Linie a ) das Zeichen — steht , so gehen die Vor¬

zeichen von o) unmittelbar nach 6 . 1) über ; wenn dagegen über 6 . 1) in der Linie a)
das Zeichen -+■ steht , so gehen die Vorzeichen von a ) sämtlich umgekehrt nach
6 . 1) über .

Wir wollen diese Regel an einem Beispiel mit 5 Elementen weiter veran¬
schaulichen :

+_ - _ _+

_+
+

+ )

Um nun alles zusammenzustellen , was die Elimination S . 63 für den Endzweck

geliefert hat , nehmen wir aus (2 ) und (3 ) :

y = -+- 0,06975 x = — 0,22 genauer = — 0,226 ,
p y = 45,45 p x = 1,8 genauer = 1,78 ! (4)

[ll . 2J = [v u] = 1,46 [l l . 2] = [v v] = 1,4 I

Das hier angegebene x = — 0,22 und p x = 1,8 sind mit dem Rechenschieber
und bei Beschränkung auf die allermindeste Stellenzahl erhalten ; rechnet man ein
klein wenig schärfer , so erhält man x = — 0,226 und p = 1,78 , womit wir weiter
rechnen wollen .

Die Schlusssumme [ll . 2] = 1,46 muss mit der unmittelbaren Ausrechnung
der v und der »2 nach (15 ) § 14 . S . 51 stimmen , was mit [«2] = 1,4695 genügend
der Fall ist ; und nachdem diese wichtige Probe stimmt , hat man den mittleren
Gewichtseinheitsfehler :

also

m =

Dann :

m„ =

y =
J/_
100

= + 0,06797
VPy 1/45,45
+ 0,06975 + 0,06797

+ 0,000697 ± 0,000680

4 - o,46 n‘m

nix

x

m 0,46
Vp*

~
VW

— 0,23 ± 0,34

±0,34

(5)

(6)

VDiese —
q

und x haben diesesmal dieselbe Bedeutung , wie früher ö„ und 8X in

(13) § 14. S . 51 und wir haben daher nun wie dort :
Näherung (y) = 0,086 250
Verbesserung + 0,000 697 ± 0,000 680
Ausgeglichen p86 947 ± 0,000 680 ( 7)

Ebenso auch
Näherung (x ) = 762,00 “”

Verbesserung — 0,23 ± 0,34””

Ausgeglichen 761,77”” ± 0,34”” (8)
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Die ausgeglichene Funktion ist also nun :
B = 761,77 »"” — 0,086 947 h ,

± 0,34”"“ + 0,000 680 1 (9)
mit m = + 0,46"“ J

Man hat also wieder dieselbe Ausgleichungsfunktion wie früher (14) § 14. S . 51 ,
jedoch hat die neue Rechnung den Vorzug , dass sie die Unsicherheit der erlangten
Formel zu schätzen gestattet . Z . B . ist 761,77 für h — 0 der für jene Gegend
(Württemberg ) giltige mittlere Jahresbarometerstand auf den Meeresspiegel reduziert,
und dieser Wert wurde mit einem mittleren Fehler von + 0,34“m erhalten. Ähnlich
wissen wir nun von dem Coefficienten 0,086 947 , dass er auf etwa 1 : 128 oder rund
1 % seines Wertes annähernd bestimmt wurde .

§ 20. Eliminations -Rechnung mit Logarithmen.
Bei nur zwei Unbekannten x und y reicht die Elimination mit dem Rechen¬

schieber fast immer aus , indessen, wenn die Coefficienten mehrstellig sind , überhaupt
wenn man genauer zu rechnen veranlasst ist , wird man zur logarithmischen Rechnung

Logarithmische Auflösung der Normalgleiehungen mit Schiebe-Zettel.

a\ 6] n s] j Proben.
[ffl

log [o
l°9 & a

+ 9,00
0.95424

— 40,74
1.61002

2.26580

+ 4,88
0.68842

1.34420

0.42260

+ 26,86
1.42911
2.08489

1.16329

0,00

[&
/'[« »] , ■
\ [« «1

P
fia l]
[(« “]

*

+ 229,87
•— 184,42

— 25,26
-f 22,09

+ 4,88
— 2,65

— 163,87
-f 121,58

+ 16,05
— 14,56

0,00

0,00

& . i ] i . i ] s . l ]
— 3,17y + 45,45

= + 0,06975

P

log [6
+ 45,45

1.65753

— 3,17

0.50106

9.34459

— 42,29

1.62624

0.46977

— 0,01

P

+
1]

[66 . n

+ 1,68

— 0,22

+ 1,49
— 2,95

0,00

'
P

1 . 2]
+ 1,46

s . 2]
— 1,46 0,00

Zettel a.
9.04576

l°9 ^
0.65578

7 0log -,—=11[a a]
9.73418

Zettel &.
8.34246

7 [&M ]fo + . l ]
8.84353

8,84353 = log y
0,06975 = y

Jordan , Handb . d . Vermessungskunde . 4. Aufl . 1. Bd . 5
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übergehen, welche hei nur zwei Unbekannten auch wohl selbstverständlich ist , indem

man eben den Formeln von § 15 . S . 52 schlechthin folgt, z . B . [66 . 1 ] = [6 6] — [o 6] ,

wozu man loa E0 = zuerst bestimmt, das man mehrfach braucht , u. s . w.
[« «]

Indessen wenn man einmal sich entschliesst, logarithmisch zu rechnen, so em¬

pfiehlt es sich , ein festes liniertes Schema anzulegen und dabei kann man die fort¬

gesetzten Additionen der Logarithmen mit Schiebe -Zetteln machen und dadurch viele
Schreibereien ersparen, wie aus vorstehender Tabelle zu ersehen ist .

Die Rechnung nach diesem Schema S . 65 nimmt folgenden Verlauf :
Die vorher berechneten Coeffieienten [<i o] [a 6] u. s . w. werden an die durch

die Zeilen - und Spaltenbezeichnung bestimmten Stellen geschrieben, z . B . die Zeile [6
und die Spalte Z] bestimmen durch ihr Zusammentreffendie Stelle für [6 l] = — 25,26 .

Nach diesem werden die 4 Logarithmen in eine Linie gesetzt :

log \a a] = 0.95424 log [a 6] = 1.61002 log [a Z] = 0.68842 log [o s] = 1.42911

Die weitere logarithmische Rechnung geschieht mit Hilfe von Zetteln (Papier¬
streifen) , welche unten auf S . 65 angegeben sind . Man kann das , was die zwei
Zettel a . und 6. enthalten , natürlich praktisch wohl auch auf einen Papierstreifen
schreiben , in der Beschreibung reden wir jedoch von zwei getrennten Zetteln .

Zettel a . wird so erhalten : Man legt einen Papierstreifen über die Linie log [a

und schreibt über 0.95424 die dekadische Ergänzung 9.04576. Dieses ist loa -r— v und
\a a\

wird zur Berechnung von log und von log gebraucht . Hiezu schiebt man

den Zettel um eine Spalte nach rechts, so dass 9.04576 über 1.61002 kommt, die Summe
beider 0.65578 schreibt man auf den Zettel rechts . Der Zettel wird abermals um eine
Spalte nach rechts geschoben und giebt 9.04576 über 0.68842 , zusammen 9.73418 .

Damit ist der Zettel a . an sich fertig , und kann zur Berechnung von [a 6]

Ea [o Z] u. s . w. gebraucht werden. Zu diesem Zweck kommt der Zettel wieder in
[aa ]
die Normallage und liefert durch allmähliches Schieben nach rechts, indem 0.65578 nach
abwärts addiert wird , folgendes :

(Zettel ) 0.65578 0.65578 0.65578
1.61002 0.68842 1.42911

2.26580 1.34420 2.08489

in ähnlicher Weise wird auch vollends erhalten :
(Zettel ) 9.73418 9.73418

0.68842 1.42911

0.42260 1.16329

Zu den so erhaltenen 5 Logarithmen schlägt man die Nummeri auf, und setzt
dieselben in die vorbereiteten Stellen darunter :

- 184,42 + 22,09 + 121,58
— 2,65 — 14,56

Die Vorzeichen — oder -+- bestimmt man hiebei nach der auf S . 63—64 bereits
angegebenen Regel.
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Addiert man diese Beträge algebraisch zn den darüberstehenden Coefflcienten
[6 6] = + 229,87 u . s . w. , so erhält man :

[6 6 . 1 ] = + 45,45 [61 . 1 ] = — 3,17 [6 s . 1] = — 42,29
[11 . 1] = + 1,68 [1 s . 1] = + 1,49

Zu diesem erstmals reduzierten System gehört nun der zweite Zettel 6.
Verfährt man mit diesem ebenso wie vorher mit dem Zettel a ., so ist die

Elimination vollendet , und auf dem Zettel 6 . selbst hat man :

log [6 1 . 1] log y (abgesehen vom Vorzeichen ) .
[66 . 1]

Um auch x zu erhalten , kann man zwar in gewöhnlicher Weise das erhaltene y
in eine der Normalgleichungen

+ 9,00 * — 40,74 y + 4,88 = 0
— 40,74 * + 229,87 y — 25,26 = 0

einsetzen , und erhält damit * = — 0,226 . Wenn man aber auch das Gewicht von *
haben will , so stellt man die ganze Elimination um , so dass y die erste und x die
zweite Unbekannte wird , wie schon auf S . 63 angegeben ist . Auf diese Weise erhält man :

* = — 0,226 [11 . 2] = 1,46 y = + 0,06975
[a « . l ] = + 1,78 [66 . 1 ] = + 45,45

[11 . 2] = 1,46 stimmt genügend mit dem schon früher (am Schluss von § 14. (13) S . 51)
berechneten [« «] = 1,4695 , man hat also jetzt den mittleren Gewichtseinheitsfehler

(5)

ywL „ .r 9 — 2 : 0,46 ” (6)

und damit auch die mittleren Fehler von x und y :
m
_ = + 0,34”

yi,78
x = — 0,23”” + 0,34”

my = — — = + 0,06797
y 45,45

y = + 0,06975 + 0,06797
Dieses ist also das Ergebnis der reinen Elimination ; die WeiterverWertung der

gewonnenen y und x ist dann ebenso wie schon am Schluss des vorigen § 19 . S . 64 —65
gezeigt worden ist .

2h Ungleiche Gewichte.
Bisher wurde angenommen , dass alle Beobachtungen 1 von vornherein gleich

genau seien . Wenn dieses nicht der Fall ist , haben die einzelnen 1 verschiedene Ge¬
wichte . Wir wollen annehmen :

Beobachtungen lj 13 h ■ • •
mit Gewichten p l p 2 Pz ■ ■ ■

Die Fehlergleichungen seien dieselben wie früher :
= etj * + 6j y + li Gewicht = pi
= tt2 x + 63 y + 1% — Pi

v3 = a3 x -hb s y + = ps

ln [
P« I ( 1)

(2 )

Vn = dn x, + 6„ y + ln = Pn
Dann hat man nicht mehr [« «] zu einem Minimum zu machen , sondern :

[p vv \ = Minimum (3)
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(4)

Dieses giebt die Normalgleichungen:
[ p a a,\ x -i- [p ab \ y + [ p a l] = 0
[p a b] x 4- [p b b] y -+- [p 6 1} = 0

Diese Gleichungen unterscheiden sich von (3 ) § 13. S . 45 nur dadurch , dass

in jeder Klammer p zugesetzt ist ; eine weitere Änderung gegen früher tritt nicht
ein . Auch bei der Elimination tritt z . B . [pbb . 1] an die Stelle von [6 6 . 1 ] u . s . w.
Der mittlere Gewichtseinheitsfehler wird :

■2, = t/M oder = t/EP *1a
V n — 2 r n — ; (5)

Dieser Fehler m gehört im allgemeinen zu keiner wirklichen Beobachtung , sondern
zu einer fingierten Beobachtung, welche das Gewicht p = 1 hat .

Wenn die Gewichtswurzeln Yp bequeme Zahlen sind , so ist es oft nützlich,
statt geradezu [p aa ] , [pa 6] u. s . w. auszurechnen, so zu verfahren :

Man multipliziert alle Coefficienten a , b und die Absolutglieder l der Fehler¬

gleichungen mit YPt und denkt sich die Fehlergleichungen (2 ) nun so geschrieben:

n Ypi = «i Ypi + h Ypi + h Yßi
v2 YPi — a2 YP2 + &2 YP2 + h VP2 (6 )

dann giebt die Quadrierung von selbst die Summe [p v v] nach (3 ) und die Normal¬

gleichungen (4) .
Man kann diese Sache auch so auffassen : Mögen die Summen direkt nach (4)

oder nach (6) entstanden sein ; man kann immer dem Zeichen [eia] die Bedeutung
unterlegen :

Pi a \ + p3 a l + Ps a\ + ■■• = la «] u- s - w- (7)
und damit gelten alle bisherigen Formeln auch für ungleiche Gewichte .

Die Coefficienten a , ß in § 17 . erhalten hiebei auch veränderte Bedeutungen,
nämlich entsprechend (1) S . 56 haben wir nun :

— -7M1 Yp \ ) -
Yp\

1 _ ra a~l
PxLpJ

YP2
(8 )

(9)i = r^ti
Px Lp J p y L p J

Die Weiterrechnung nach § 17 . führt aber abermals auf die Formel :

Py = [pbb . l ] , (10)
so dass man also überall sich nicht weiter um die Gewichte zu kümmern hat , sobald
die Summen-Coefficienten entweder nach (4) unmittelbar oder nach (6) berechnet
vorliegen.

Damit ist bereits alles zur Ausgleichung mit ungleichen Gewichten Erforder¬
liche behandelt , wir wollen aber noch einige Bemerkungen zufügen (welche zunächst
auch übergangen werden können) .

Mittlere Fehler a priori angenommen .
Wenn die GenauigkeitsVerhältnisseder Beobachtungen und der Fehlergleichungen

geradezu durch mittlere Fehler (nach Schätzung a priori oder sonst wie) angenommen
sind , so sind die Gewichte p den Quadraten dieser mittleren Fehler umgekehrt pro -
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portional zu nehmen , und die Rechnung ist nach den Formeln ( 1 ) bis (5 ) , oder (6 )
bis ( 10) zu führen ; indessen kann man die Formeln auch so schreiben , dass nicht
von Gewichten p , sondern nur von mittleren Fehlern m die Rede ist , und diese mehr
anschauliche Form empfiehlt sich in vielen Fällen . Wir haben so :

_ , , . . . Mittlere Fehler der l
Fehlergleichungen :

» i = fl ; x +- y -t- ?i
^2 = a2 * + Z>2 V + Z2

v„ = a„ x + b„ y + l„

vor der Ausgleichung:
+ m i
+ J«2

Ausgleichungsprinzip :

r v ® 1 _
Lro m J

Normalgleichungen :

M 2
. = Minimum

= 0

raa
^ ^ ra

^ ran
\jn mj Lw m-j \jm>mj
rüL ] ., + rii ] , + rü ]\jn mj \jn mj \_m mj

Mittlerer Gewichtseinheitsfehler nach der Ansgleichung :

» = /UL _ fiqr n — 2 \jm mj
oder - 7/

1 \ u
- 2 I

r n — 2 Ln* m J

(11 )

( 12)

(13)

( 14)

Die mittleren Fehler der Werte von l nach der Ausgleichung sind bzw. :

nii =
y w i < —

j
®1« ( 15 )

Wenn die otj ot2 . . . ot „ schon vor der Ausgleichung richtig bemessen waren,
so wird in = 1 und mj' = m l ot2

' = ot 2 u. s . w.

Um zu einer weiteren Betrachtung in Bezug auf Gewichte zu gelangen , gehen
wir von dem einfachen Fall aus , dass eine Fehlergleichung das Gewicht 2 und alle
anderen das Gewicht 1 haben, also etwa :

v1 = ax x hi y + p = 1 \
» 2 = “ 2 * + h V + h P = 1

| ( 16 )
*3 = «3 * + h y ■+ h P = 2 ‘

dann ist die erste Normalgleichung :

(ß [ - f- a\ -H 2cr| ) x -h (öfj -H a2 b2 -{- 2 ß3 b3) y + G*i Zi -4- ß2 Z2 + 2 a3 Z3) = 0

Dasselbe würde man auch erhalten , wenn man die dritte Fehlergleichung doppelt
einsetzte , und dann mit folgendem System weiter rechnete :

«1 = ax x + b; y + ^
®2 = a2 * + b2 2/ "+■Z3
u3 = «3 a: + b3 2/ + 13
®4 = °3 * + &3 V + 3̂

Aus beiden Systemen (16 ) und ( 17 ) erhält man dieselben Unbekannten x y
mit denselben Gewichten und derselben Summe [ZI . 2] = [# t ] .

p = 1
p = 1
p = 1
p = 1

( 17 )
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m2 = ^1- und nicht = ,3 — 2 4 -

Wenn man aber die mittleren Fehler berechnet, so darf man bei ( 17 ) nicht
4 Gleichungen in Rechnung bringen, sondern nur 3 , d . h . es ist :

l’
% <« *>

Wenn umgekehrt die Gleichungen (17 ) den Beobachtungen entsprechen, so
darf man zwar zur Ausgleichung selbst statt ( 17) ein System von der Form (16 )
anwenden , bei der Fehlerberechnung ist aber die ursprüngliche Zahl der Fehler¬
gleichungen, d . h . der Beobachtungen, massgebend.

Wenn 2 Fehlergleichungen mit gleichen Coefficienten a , h . .
gleichen Absolutgliedern l , und mit ungleichen Gewichten vorliegen:

Vi = ax + hy + cz ->r . . . + li Gewicht = pi
v2 = ax + by + cz + . . . + l2 „ = Pi

so geben diese nach gewöhnlichem Verfahren folgende Beiträge zu den Coefficienten
der Normalgleichungen:

p 1 a2 4 - P2 «2 = (i ,l + l )2) «2 . {p \ -Pp 2) ab . . -Piali -hp 2 al 2 = a (p1 l1 -hp 2 l2) (19)
Beitrag zu dem Fehlerquadrat -Gliede : > (Pill + Pill ) (20)

Wir wollen nun statt der zwei Gleichungen ( 18) die eine folgende schreiben :

tf = ax -\- by + cz + . . . + ^ 1 ^ - ' , Gewicht = Pi + p^Pl + p2
Diese eine Gleichung giebt zu den Normalgleichungen folgende Beiträge :

(Fl + Pi ) «2 . (Pi + Pi ) a b . . . a (p x h + p 2 h )
(Pi h + Pi h )*

aber mit un-

(18)

(18' )

(19 ' )

(20 ')
Pl + Pi

Die Coefficienten (19) und ( 19 ’
) sind identisch , dagegen die Beiträge zur

Quadratsumme [p 1l ] sind in (20) und in (20'
) nicht identisch , und nur wenn lx = (2

ist , geht (20') in (20) über.
Dieses Resultat heisst in Worten : Man kann zwei Fehlergleichungen von der

Form (18 ) , d . h . mit gleichen Coefficienten aber ungleichen Absolutgliedern, durch
eine Gleichung (18 '

) ersetzen, soweit es sich nur um die Unbekannten xy z . . . selbst
und um deren Gewichte handelt , dagegen für die Berechnung mittlerer Fehler giebt
die Gleichung (18 ' ) keinen richtigen Ersatz der zwei ursprünglichen Gleichungen,
sondern nur eine etwa näherungsweise zulässige Genauigkeitsbestimmung. In dem
Nenner des mittleren Fehlerquadrats muss aber jedenfalls die Gleichung (18'

) als
zwei Gleichungen zählen .

§ 22. Nicht lineare Funktionen .
Wenn die Beziehungen zwischen den Beobachtungen und den Unbekannten

nicht durch lineare Gleichungen dargestellt sind , so kann man dennoch die Aus¬
gleichung auf lineare Fehlergleichungen zurückführen in folgender Weise :

Man habe die Beobachtungen
L \ L 2 L 3 . . . Ln

welche mit den Unbekannten X und Y in folgenden Beziehungen stehen :
Es soll sein : F l (X , Y) — L 1 = 0 •.

F %(X,Y ) - L2 = 0
F 3 (X , Y ) - Ls = 0 \ (1)

F „ (X , Y ) — Ln = 0
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Wegen der Beobachtungsfehler sind diese Gleichungen nicht erfüllt , und es
gelten statt derselben die Fehlergleichungen :

« i = f x {x , r ) - ii
= F %(X , Y ) — _Zj2

vs = F 3 (X , Y ) — L s (2)

v„ = F „ (X , Y ) —•L„
Schreibt man diese Gleichungen in die Form :

F (X,Y ) - (L + v) = 0 (3)
so ergiebt die Vergleichung mit ( 1 ) , dass v eine Verbesserung der Beobachtung L
ist , welche den Widerspruch in der betreffenden Gleichung zum Verschwinden bringt .
(Vgl . die kleingedruckte Anmerkung am Schlüsse von § 12 . S . 44 — 45 .) Wenn X und Y
die wahrscheinlichsten Werte der Unbekannten sind , so sind die Werte v die wahr¬
scheinlichsten Verbesserungen der Beobachtungen L , oder , um alle Fragen der Wahr¬
scheinlichkeit zu vermeiden , nennt man v die „ übrigbleibenden Fehler “ der Aus¬
gleichung, oder die „scheinbaren“ Fehler.

Versteht man unter (X ) und ( Y) Näherungswerte von X und Y, und unter
x und y deren Verbesserungen, also

X = {X ) + x Y = {Y) + y (4)
so kann man mit Hilfe des Taylor sehen Satzes unter Beschränkung auf die ersten
Potenzen von x und y die Funktion F so entwickeln:

F {X , Y) = F ( (X ) + x, { Y ) + y]
F (X , Y) = F ((X ) , ( Y)) + y

und damit gehen die Gleichungen (2) über in :
v-[ — (t} x —H y —j—l^

^ &2 V ~b ^2
^3 — a 3 x + &3 V ~+~ h (5 )

v„ = an x -+■bn y + h
wobei die Coefficienten a , & und die Absolutglieder l folgende Bedeutung haben :

9 F d F
a dx _ ai ^

l = F {(X ) , ( Tj ) — L oder l = (L ) — L ( 7)
(L ) ist ganz allgemein derjenige Wert, welchen eine Beobachtung L annehmen

würde , wenn die Näherungen (X ) , ( Y ) giltig wären .
Schreibt man (7) in die Form :

F ((X ) , ( Y) ) — (i + 1) = 0 oder (L ) — (L + l) = 0 (8)
und vergleicht man dieses mit ( 1) , so ergiebt sich , dass die l in Bezug auf das Vor¬
zeichen , mit den v gleichartig sind. Sachlich betrachtet hat aber das Absolutglied
l den Charakter einer Beobachtung, ebenso wie L , denn (i ) in (8) ist eine fehler¬
freie ßechnungsgrösse. Formell betrachtet ist auch l diejenige Verbesserung, welche
an einer Beobachtung L angebracht werden müsste , wenn die Näherungswerte (X ),
( Y) statt X , Y angenommen würden .

Die Gleichungen ( 5) treten an die Stelle der ursprünglichen Fehlergleichungen (2) ;
diese Gleichungen (5 ) sind selbst Fehlergleichungen in Bezug auf die neuen Unbekannten
x , y und in Bezug auf die Werte l, welche an Stelle der Beobachtungen L treten .
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§ 23. Ausgleichung von Barometerständen .
Zu einem Zahlenbeispiel der Ausgleichung mit nicht linearen Funktionen

nehmen wir die Barometermessungen von § 13. S . 46 nochmals vor , nämlich :
h

m
B

1 . Bruchsal . . . 120,2 751,18
2. Cannstatt . . 225,1 742,37
3. Stuttgart . . 270,6 738,50
4. Calw . . . . 347,6 731,27
5 . Friedrichshafen 406,7 726,99
6 . Heidenheim . . 492,4 718,16
7. Isny . . . . 708,1 700,48
8. Freudenstadt 733,5 697,64
9 . Schopfloch . . 768,9 695,23

( 1 )

Wir stellen uns die Aufgabe : Es soll zwischen den Höhen h und den Baro¬
meterständen B eine Beziehung hergestellt werden von der Form :

h = Ylog ~ (2)

wobei die trigonometrisch bestimmten Meereshöhen h als fehlerfrei , die Barometer¬
stände B als gleich genaue Beobachtungen behandelt werden .

Es handelt sich zuerst um Bestimmung von Näherungswerten (X ) und ( Y).
Hiezu schreiben wir (2) in die Form :

Jl
log X - log B —

y
und wenden diese Gleichungauf die erste und auf die letzte Beobachtung an , dieses giebt :

120 2
log (X ) — log 751,18 =

log (X ) — log 695,23 :
( 30

768,9
( 30

'

Diese zwei Gleichungen kann man nach ( X ) und ( Y) auflösen, und man findet :
(X ) = 762,03 ( 30 = 19298 (3)

Um zu der allgemeinen Form der Gleichungen ( 1 ) S . 70 zu gelangen, hat man
die Gleichung (2) nach (B) aufzulösen . Dieses giebt :

h , X
y = 1o9 b

X = io 4 ,
* io -

B ’ X
d. h . die in den allgemeinen Formeln S . 70 mit F (X

h
ist in unserem Falle : F (X , Y) = X 10 F ,
und damit berechnet man nach Anleitung von (6) und (7 ) S . 71 :

B — X 10 r = 0

Y) bezeichnet̂ Funktion

= X10
Y 'i M

l = XUO
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Bei der Ausrechnung von a und b ist überall (X ) und ( 3T) an Stelle von X und T
zu setzen. Die Ausrechnung der Formeln (4) macht man am besten in logarith-
mischer Form, d. h . :

loga = -
m

oder % - =
( y )

, , h 1 {X ) h , (JT) h
logb = -

m 4- log = log a 4- log

log (l + B ) = log (X ) — ^ = log (X ) 4- log a

(5)

Setzt man hier die Zahlenwerte nach ( 1 ) und (3) ein , so erhält man :

Nr. a b l
1 4- 0,986 4- 0,00056 0,00
2 4- 0,973 4 - 0,00103 — 0,53
3 4- 0,968 4- 0,00123 — 0,68
4 + 0,959 4 - 0,00157 — 0,20
5 4 - 0,953 4- 0,00182 — 1,06
6 4- 0,943 4 - 0,00219 4- 0,38
7 4- 0,919 4- 0,00307 — 0,20
8 + 0,916 4 - 0,09317 4- 0,53
9 4- 0,912 4 - 0,00331 0,00

Der Umstand, dass der erste und der letzte Wert l Null werden , ist nicht
zufällig; es kommt dieses daher , dass die erste und die letzte Beobachtung B zur
Bestimmung der Näherungswerte benützt wurden . Wenn die Näherungswerte gar
keiner der Beobachtungen streng genügen, so wird auch kein Wert 1 = 0 werden.

Die Fehlergleichungen würden also jetzt sein :

» 1 = 0,986 x 4- 0,00056 y ' 4 - 0,00 |
«2 = 0,973 x + 0,00103 y’ — 0,53 (6)

Die zweite Unbekannte wurde hier genannt, weil wir dieselbe nochmals
ändern wollen . Die Coefficienten sind nämlich noch zu ungleich, was bei der nume¬
rischen Rechnung unbequem ist . Wir wollen daher statt der Fehlergleichungen (6)
lieber folgende schreiben:

»! = 0,986 x 4 - 0,056 4- 0,00

»2 = 0,973 * + 0,103 — 0,53
' (7)

d . h . wir führen statt y’ die neue Unbekannte ein :

= V (also y’ = 100 y) (8)

wobei y’ die Korrektion des Näherungswertes ( K) und y die aus den Normalgleich¬
ungen zu bestimmende Unbekannte ist . Damit erhält man folgende Tafel der Coeffi¬
cienten, nebst Summen s, wobei :

d 4- b 4- l 4” s — 0 (9)
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Nr. a 6 l $
1 + 0,986 + 0,056 0,000 — 1,042
2 + 0,973 + 0,103 — 0,530 — 0,546
3 + 0,968 + 0,123 — 0,680 — 0,411
4 + 0,959 + 0,157 — 0,200 — 0,916
5 + 0,953 4- 0,182 — 1,060 — 0,075
6 + 0,943 + 0,219 4- 0,380 — 1,542
7 + 0,919 + 0,307 — 0,200 — 1,026
8 + 0,916 + 0,317 4- 0,530 — 1,763
9 + 0,912 + 0,331 0,000 — 1,243

Summen + 8,529 + 1,795 — 1,760 — 8,564

Die Ausrechnung der Summen -Coefficienten [« a] , [6 6] u . s . w. wollen wir
mit der Quadrattafel machen nach dem Verfahren von § 18 . S . 60.

Bei nur 2 Unbekannten hat man dabei auch eine Erleichterung insofern, als
a + s 6 + s 2 + s nicht besonders zu berechnen sind, denn wegen (9 ) ist :

(« + s) — — (6 + 1) (6 + s) — — (« + 1) (1 + s) = — (« + 6)

a 6 l S
« 4- 6

= — (14s )
Ch X

= - ( &+ *)

b + l
— — (ct+ s)

Proben :

4 - 0,986 4 - 0,056 0,000 — 1,042 + 1,042 + 0,986 + 0,056 + 8,529 + 8,529
4- 0,973 4 - 0,103 — 0,530 — 0,546 4 - 1,076 + 0,443 — 0,427 + 1,795 + 1,795
4 - 0,968 4- 0,123 — 0,680 — 0,411 4- 1,091 + 0,288 — 0,557 — 1,760 + 10,324
4- 0,959 4 - 0,157— 0,200 — 0,916 4- 1,116 + 0,759 — 0,043 8,564 R
4- 0,953 + 0,182 — 1,060 — 0,075 + 1,135 — 0,107 — 0,878 0,000 — 1,760
4 - 0,943 + 0,219 4 - 0,380 — 1,542 4 - 1,162 + 1,323 + 0,599 -f- 6 769
+ 0,919 4- 0,307— 0,200 — 1,026 4- 1,226 + 0,719 + 0,107
4- 0,916 4- 0,317 4- 0,530 — 1,763 + 1,233 + 1,446 + 0,847 + 1,795
4- 0,912 4- 0,331 0,000 — 1,243 4- 1,243 + 0,912 + 0,331 — 1,760

-4 8,529 4 - 1,795 - 1,760 — 8,564 + 10,324 + 6,769 + 0,035
—t- 0,035

a2 62 12 S2 (« + 6)2
= (l + s)2

(« 4 D2

= (6 + s)2
(6 + l)2

= (a + s)2

0,9722 0,0031 0,0000 1,0858 1,0858 0,9722 0,0031
0,9467 0,0106 0,2809 0,2981 1,1578 0,1962 0,1823
0,9370 0,0151 0,4624 0,1689 1,1903 0,0829 0,3102
0,9197 0,0246 0,0400 0,8391 1,2455 0,5761 0,0018
0,9082 0,0331 1,1236 0,0056 1,2882 0,0114 0,7709
0,8892 0,0475 0,1444 2,3778 1,3502 1,7503 0,3588
0,8446 0,0942 0,0400 1,0527 1,5031 0,5170 0,0114
0,8391 0,1005 0,2809 3,1082 1,5203 2,0909 0,7174
0,8317 0,1096 0,0000 1,5450 1,5450 0,8317 0,1096

8,0884 0,4383 2,3722 10,4812 11,8862 7,0287 2,4655
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[aa ] = 8,0884
[6 6] = 0,4383

[aa ] =
[ ll ) =

8,0884
2,3722

II
II

’
e "'« ’

8,0884
10,4812

— 8,5267 — 10,4606 — 18,5696
+ 11,8862 -+- 7,0287 + 2,4655
H- 3,3595 — 3,4319 — 16,1041

[ab ] = + 1,6798 [ a l] = ■- 1,7160 [a s] = — 8,0520

[& &] = 0,4383 [6 6] = 0,4383
[ » ] = 2,3722 [s s] = 10,4812

Diese Rechnungen sind ansführ - — 2,8105 — 10,9195

licher , und auch genauer behau - + 2,4655 -4- 7,0287
delt , als für den unmittelbaren — 0,3450 — 3,8908
Zweck unseres Beispiels nötig [6 1] = — 0,1725 [6s ] = — 1,9454
wäre ; indessen soll durch diese
ausführliche Behandlung das [ 1Z ] = 2,3722
Verfahren überhaupt nach allen [s s] 10,4812

Beziehungen klar gemacht — 12,8534
werden . + 11,8862

— 0,9672
[Is ] — 0,4836

Diese Coefficienten stellt man in üblicher Weise zusammen :
a 6 l s Probe

a -+- 8,0884 -4- 1,6798 — 1,7160 — 8,0520 + 2
6 + 0,4383 — 0,1725 — 1,9454 + 2
l + 2,3722 — 0,4836 + 1
s

Ausführlich geschrieben heisst z. B . die dritte Probe ;

+ 10,4812 + 2

— 1,7160 — 0,1725 + 2,3722— 0,4836 = + 0,0001
Die hei den Proben bleibenden Beste -1- 2 + 2 + 1 + 2 rühren ledig¬

lich von Abrundungen her, und bleiben auf sich beruhen.
Löst man nun die Normalgleichungen nach dem Muster von § 20 . S . 65

logarithmisch auf, so bekommt man :

a 6 i s Probe

Logarithmische -+- 8,088 + 1,680 — 1,716 — 8,052 0,000
Auflösung der

Normal-
0.90784 0.22531

9.54278
0.23452
9.55199
9.56120

— 0,172
+ 0,356

0.90590
0.22337
0.23258

— 1,946
-f 1,673

gleichungen nach
dem Muster

S . 65.

+ 0,488
— 0,349

0,000

+ 2,372 — 0,484 0,000
— 0,364 — 1,708

„ _ 0,184
V 0,089

= — 2,07 + 0,089
8.94939

+ 0,184
9.26482

— 0,278
9.43616

0,000

9.58025 9.75159

- t- 2,008 — 2,192 0,000
— 0,380 + 0,564

+ 1,628 — 1,628 0,000
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Nun stellt man die Coefficienten so um :

b a l s

+ 0,438 + 1,680
+ 8,088

— 0,172
— 1,716
+ 2,372

— 1,946
— 8,052
— 0,484

Die Weiterrechnung gieht dann :
— 1,056
+ 1,644 + 0,642 + 1,644 — 1,056 — 0,588

+ 2,304 — 1,248
— 1,626 + 1,626

Man hat also jetzt im ganzen :
x = + 0,642
px— 1,644

[vv ] = [ll . 2]
= 1,627

-./M27
/ / 932 = : : 0,48

y = — 2,07
p y = 0,089

also

+ 0,38

x = + 0,64 + 0,38

Näherungen (X ) = 762,03
Resultate X = 762,67 + 0,38

Also die gesuchte Formel :
762 67

h = 19091 log oder

m
1,62

y = — 2,07 + 1,62
y' = — 207 + 162

( Y ) = 19298

Y = 19091 + 162

log B = log 762,67
h

19091

(11 )

( 12 )

Um die FehlerVerteilung zu untersuchen und um zugleich eine durchgreifende
Rechenprobe zu erhalten, berechnen wir nach der Formel (12) aus den gegebenen
Meereshöhen h die Barometerstände B , und vergleichen dieselben mit den Beobachtungen:

Nr. Meereshöhe Barometerstand B
Vh ausgeglichen beobachtet

1 120,2
mm

751,69
mm

751,18 + 0,51 0,2601
2 225,1 742,24 742,37 — 0,13 0,0169
3 270,6 738,18 738,50 — 0,32 0,1024
4 347,6 731,36 731,27 + 0,09 0,0081
5 406,7 726,16 726,99 - 0,83 0,6889
6 492,4 718,69 718,16 + 0,53 0,2809
7 708,1 700,24 700,48 — 0,24 0,0576
8 733,5 698,10 697,64 + 0,46 0,2116
9 768,9 695,12 695,23 — 0,11 0,0121

1,6386 = [w]
Die hieraus erhaltene Summe [« w] = 1,6386 stimmt genügend mit dem aus

der Elimination erhaltenen Wert [ll . 2] = 1,628 oder 1,626 .
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Man kann nun diese nach dem logarithmischen Gesetz gemachte Ausgleichung
mit der früheren, nach linearem Gesetz gemachten Ausgleichung vergleichen. Nach
( 15 ) § 14. S . 51 gab die frühere Ausgleichung die Quadratsumme der übrig bleibenden
scheinbaren Fehler [« «] = 1,4695 , also etwas kleiner als die neue Ausgleichung
mit 1,6386 .

Die übrig bleibende Summe [v w] betrachtet man in solchen Fällen als Kriterium
der Güte der angewendeten Funktion , und in diesem Falle erscheint also die lineare
Funktion besser als die theoretische logarithmische Funktion , was jedenfalls nicht der
Fall ist , und nur durch Zufall erklärt werden kann.

Als sachliches Resultat heben wir hervor : Der auf den Meeresspiegel reduzierte mittlere
Barometerstand in Württemberg ist :

B 0 — 762,71*»»4 . 0,4*»»*.
Eine weitergehende Interpolations -Ausgleichung dieser Art wurde von uns in der Zeitschrift

der österr . Gesellschaft für Meteorologie 1880, S. 162—167 veröffentlicht .
26 badische und württembergische Stationen zwischen 111«»und 1009m Höhe gaben die Formel :

h — 18517 log
76

^
6®

(1 + 0,008665 t)

wo t die mittlere Jahrestemperatur ist . Hiebei ist :
B0— 762,56»”» + 0,10m>".

§ 24. Gewicht einer Funktion der ausgeglichenen x und y .
Schon am Schlüsse von § 17. S . 58 , als von den Gewichten und mittleren

Fehlern der ausgeglichenen x und y die Kede war , mit den Gewichts -Coefficienten
[cca] und [ßß ] , haben wir die Bemerkung gemacht , dass es auch noch einen ähn¬
lichen Coefflcienten [« ß] giebt, welcher dann gebraucht wird , wenn es sich um eine
Funktion der ausgeglichenen x und y handelt.

Indem wir dem Leser anheimgeben, mit dieser nicht dringlichen Sache sofort
sich bekannt zu machen , müssen wir doch der Vollständigkeit wegen das Funktions-
Gewicht für 2 Elemente auch noch hier erledigen , ehe wir zu beliebig vielen Unbe¬
kannten übergehen.

Jedenfalls wollen wir schon vor Beginn der Formel-Entwicklung vor einem
Irrtum warnen , der leicht Vorkommen kann, nämlich die mittleren Fehler m, und m„,
welche nach § 17 . berechnet wurden, als unabhängig weiter zu behandeln, was nicht
zulässig ist.

Oft hat es weniger Interesse, die Genauigkeit der Unbekannten x und y selbst,
zu kennen , als die Genauigkeit einer Funktion derselben; wir nehmen die lineare
Funktion :

F = fiX - \- fay ( 1)
Es könnte auf den ersten Blick erscheinen, als ob man den mittleren Fehler

von F kurzweg aus den mittleren Fehlem von x und y berechnen könnte nach der
Formel (10) § 5 . S . 17 :

W = (fxmtf + (?) (2)
Allein dieses ist nicht richtig , weil die x und y durchaus nicht unabhängige Beob¬
achtungen mit den ebenfalls unabhängigen mittleren Fehlern m* und m, sind, viel¬
mehr hängen x und y von denselben Messungen li l2 . . . ln ab . Wenn z . B . zufällig
die Fehler aller l positiv wären , so würden nach ( 1 ) und (2 ) § 17. S . 56 auch die
Fehler von x und von y beide positiv.
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Setzen wir zunächst bestimmte Fehler Al x Al 2 . . . der l voraus , so folgen
daraus die bestimmten Fehler Ax und Ay nach (1 ) und (2 ) § 17. S . 56 :

A x = ßx A1\ + A l2 + cc%A lg + . . . (3)
A y = ft A li + ß2 A ?2 + ßa A + . . . (4)

und daraus folgt ferner der bestimmte Fehler von F nach ( 1 ) :

AF = fi Ax + f2 Ay ( 5)

Wenn man dieses quadriert und die Mittelwerte der Quadrate bildet , so wird,
wenn n malige Wiederholung angenommen wird :

[AFA
_
F ] = [A xAx ]

n 1 n
■fl [dydy ] • 2 /1/2

[AxAy ] (6)

und hier ist der Mittelwert [AxAy ] nicht gleich Null , denn es ist nach (3 ) und (4) :

(VA x A y = ßx ßi (A y 2 -+- «2 ß2 (A Z2)2 + as ßa (d ^)2 + • • ■ l
n2 ßi A l2 A + ax ßa A li A + . . . )-t- a i ßa A l\ A l2 -t- «2 pi zi ^ ‘11 - « i pa ^ <0 ^ la

Hier werden die Mittelwerte der in der zweiten Linie stehenden Produkte aller¬

dings = Null , weil die verschiedenen (mit ungleichen Nummern x und 2 u. s . w . be-

zeichneten ) A l unter sich unabhängig sind . Es bleibt also nur die erste Linie von (7)
weiter zu betrachten , und diese giebt den Mittelwert :

[AxAy ]
n : [ß ß] TO2 (8 )

Die übrigen in (6) auftretenden , quadratischen Mittelwerte haben bereits be¬

kannte Bedeutungen , nämlich :

[A x A x] = ml = [ß « ] m2 und [AyAy ]^ = m* = [ß ß] ro2

Setzt man dieses nebst (8) in (6 ) ein , so wird :

~ F * F ~ = & 2 = m2 {fl [« ß] + f \ [ßß ] + 2 fx h [« ß] } (»)

oder auch : M2 = (/] m*)2 -+- (f2 m„)2 P- Zfifa [ß ß] m2 (10)

Würde man also die unrichtige Formel (2) angewendet haben , so würde das

Glied 2 /) f2 [ß ß] ra2 in (10) , welches die Zusammenwirkung der beiden Fehler m%
und my ausdrückt, verloren gegangen sein.

Statt (9) kann man auch schreiben (wegen (18) § 17 . S . 58) :

,
fl — 9. -üA -

| [a a . 1]
M% : : »» 3 , -+ - 2 1 (ID

> 6 . 1 ]
^

[66 . 1] f

Die Gleichung (9 ) kann man ausserdem noch in eine andere Gestalt bringen
mit Benützung der Beziehungen , welche am Schluss von § 17 . S. 58 zusammengestellt
sind , nämlich :

[ß ß] =

m
»K2

[66]
D [ßß ] = [an]

^D
" [ßß ]

— [a6]~
D

= ^ = [&6] + /’! [« «] — 2 fi f2 [a 6] Jdamit wird (9) : (12 )
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und dieses kann auch noch so umgeformt werden:

fl , [fa - 1J21
jP [na ] [6 6 . 1]

wobei <* ■ ' ] - ' . - gl ] fi .

Beispiel eines Funktions -Gewichtes .

(13)

( 14)

Um auch eine Anwendung der vorstehenden Formeln zu haben , müssen wir

vor allem den Coefflcienten [a6 . 1] = berechnen, wozu die Formel (16) § 17.

S. 58 dient :

[a6 . 1 ] = [« 6] - g | j [66] oder = [n 6] —
j
=^

*
j [a a\

Wir haben dieses zweifach geschrieben, weil diese beiden Formen sich den
Eliminationen von x und von y anschliessen.

Um dieses deutlich zu zeigen , setzen wir die Anfänge jener Eliminationen von
§ 19. S . 62 und S . 63 nochmals her , und fügen die Berechnung von [o6 . 1] beide -
male bei :

a]
[a + 9,0
[6 — 40,7

+ 50,8

6]
— 40,7
+ 229,9
— 184,4

q
+ 4,9
— 25,3
+ 22,1

+ 10,1
= [a 6 . 1]

45,5
[66 . 1]

3,2

6] a] Z]
[6 + 229,9 — 40,7 — 25,3
[a — 40,7 + 9,0 + 4,9

+ 50,8 - 7,2 — 4,5

+ 10,1
= [6 a . 1]

- 1,8
[a a . 1]

0,4

Es soll nun für die Höhe h = 1000" der mittlere Barometerstand B und dessen
mittlerer Fehler , bzw . Gewicht , berechnet werden . Es handelt sich also um die Funktion :

B = 761,77 — 0,08695 h oder = 761,77 — 8,695 ^
mit h = 1000 :

B = 761,77 — 10 x 8,695 = X — 10 Y = 674,82 (15)
Dieses entspricht der Funktion ( 1 ) :

F = hx + f2 y d. h. f1 = l = - 10.
Zur Berechnung des mittleren Fehlers M der Funktion ( 1 ) haben wir oben

die Formel (11 ) gefunden, welche mit Einsetzung aller Zahlenwerte giebt :

m = 0,462 { p
_

i£ + iSi
M = + 0,40mm

also B10oo = 674,82 ””» + 0,40””»

Das heisst also : In der Höhe 1000“ über dem Meere wird, nach der Beobach¬
tungsweise (1 ) § 23 . S . 72, ein Jahres -Mittel-Barometerstand = 674,82 ’»’» zu erwarten
sein , und zwar kann man das aus den vorhandenen Beobachtungen schliessen mit
einem mittleren zu fürchtenden Fehler von + 0,40”"”.

0,462 X 0,77
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25. Übergang zu beliebig vielen Unbekannten .

Wir haben in § 18 . bis § 24 . die Ausgleichung vermittelnder Beobachtungen
mit zwei Unbekannten besonders behandelt , weil dieser Pall sich sehr übersichtlich

darstellen liess , und weil es für das erste Erlernen der M . d . kl . Q. nützlich ist ,
nicht sofort in die weitschweifigen allgemeinen Formeln für beliebig viele Unbekannte

einzugehen . Zudem kommt der Fall zweier Beobachtungen so oft vor , z . B . bei

trigonometrischen Punktbestimmungen , mit Coordinaten x und y , dass es sich wohl

lohnt , diesen Fall besonders zu erledigen .
Man kann sogar von den Formeln für zwei Unbekannte einige Analogieschlüsse

auf die Formeln für mehr Unbekannte sich erlauben ; z . B . nachdem nachgewiesen
ist , dass bei zwei Unbekannten x und y das Gewicht p y = [bb . 1 ] ist , kann man
wohl vermuten , dass bei drei Unbekannten x y z gelten wird p s — [cc . 2] u . s . w.

Auch bei der Fehlerformel mit dem Nenner n — 2 (§ 16. S . 56) haben wir

schon den Analogieschluss beigefügt , dass bei w Unbekannten der Nenner n — u zu

erwarten sein werde, doch war das noch kein Beweis für beliebige Anzahl u.
Wir gehen nun von dem besonderen Falle zweier Unbekannter x und y zu

dem allgemeinen Fall beliebig vieler Unbekannter x y z . . . über , und überzeugen
uns sofort, dass Alles , was früher über die Einführung von Näherungswerten (§ 14.),
über den allgemeinen Gang der Gauss sehen Elimination mit [b b . 1] , [c c . 2] . . .

(§ 15.), Coefficienten-Berechnung und Summenproben (§ 18.), über ungleiche Gewichte
und nicht lineare Funktionen (§ 21 .—22 .) u . A . gesagt wurde , nicht bloss für zwei,
sondern für beliebig viele Unbekannte gilt .

Z . B . bei vier Unbekannten x y z t hat man folgenden Bechnungsgang :

Fehlergleichungen : v t = Oj x + Zq y + Cj z + <Zj t + Zx
®2 — a 2 x "+~ Z>2 y + C2 z + &2 t "+- ?2

Vq = ctg x -\- 63 y - t- C3 z - t- dg 1 -f- Z3

Normalgleichungen ausführlich geschrieben :

[a ä\ x + [a b] y -+- [a c\ z + [ot d\ t + [a Z] = 0 |
[a Z>] x -+- [b b] y + [5 c] z -t- [b d] t + [J Z] = 0 |
[a c] x + [6 c] y + [c c] z + [c <Z] t + [c Z] = 0 j
[acZ] x + [Z>cZ] y + [ c <Z] z + [<ZcZ] t + [cZZ] = 0 )

Da hier alle nicht quadratischen Coefficienten [a Z>] [sc ] . . . doppelt Vorkom¬
men, pflegt man , um diese nicht doppelt schreiben zu müssen , die folgende Abkürzung
anzuwenden, wobei man die in der Diagonale stehenden quadratischen Glieder unter¬
streicht und dann die Wiederholungen der [ct Z>] [a c] . . . einfach weglässt.

Normalgleichungen abgekürzt geschrieben , nebst [ZZ] :

[a a] x + [ct b] y + [a c] z + \a d] t + [a Z] = 0
[6 &] y + [6 c] z + [Z>cZ] t -+- [& Z] = 0

[c c] z + [c d] t -+- [c Z] = 0
[dd \ t + [eZZ] = 0

[ ZZ ]

(3)
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Reduzierte Normalgleichungen abgekürzt geschrieben :

1 . Reduktion : [6 6 . 1] y + [ft c . 1] z + [6 d . 1] t + [6 l . 1 ] = 0

[c c . 1] z -+- [c d . 1 ] t + [c l . 1 ] = 0

[dd . l ] t + [dl . 1 ] = 0
[H • 1]

Reduktion : [c c . 2 ] z -■f* [c d * 2] t [cl .■2]
[dd . 2] t + [dl .. 2]

[Z Z . 2]

3 . Reduktion : [d d . 3] { + [dl . 3]
[Z l ., 3]

4. Reduktion : [11 . 4]

(4)

(5)

(6)

(7)
Der Bau des Eliminations -Coefflcienten lässt sich leicht dem Gedächtnis ein¬

prägen , wenn man ausser den unmittelbar in die Augen fallenden noch folgende
Eigenschaften merkt :

1) Jeder Klammer -Coefficient wird = 0 , wenn man die symbolischen Zeichen
algebraisch auffasst , z . B . :

[51 . 1 ] = [61] — ^ [al ] = 61 — ^ ^ = 51 — 61 = 0L [aa ] aa
2) Wenn 1 , 2 , 3 . . . in der Klammer steht , so steht im Nenner des Subtra¬

henden bzw . [a a\ , [6 6 . 1] , [c c . 2] . . .
Um ein Zahlenbeispiel zu haben , wollen wir folgendes Gleichungssystem auflösen :

459 * — 308 y — 389 e + 244 t — 507 = 0

+ 464 y + 408 z — 269 1 4 - 695 = 0

+ 676 z — 331 1 + 653 = 0 .
+ 469 t — 283 = 0

+ 1129

(8)

Die Auflösung mit dem Rechenschieber zeigt nachfolgende Tabelle S . 82 , welche
ähnliche Anordnung hat wie die Tabelle für 2 Unbekannte x y § 19 . S. 63 . In den
2 letzten Spalten sind die Summenglieder und die Proben angegeben . '

Die Anfangsgleichungen aller Gruppen , zusammengenommen , nennt man voll¬

ständig reduzierte Normalgleichungen oder Endgleichungen :

A = [a a\ x + [a 6] y + [a c] z + [ad ] i + [o Z] = 0
B ' = [66 . 1] !/ + [6 c . l ] « + [6 cZ. l ] t H- [6 Z. l ] = 0
G" = [ec . 2] jz+ [cd . 2] t -+- [cZ . 2] = 0
D '" = [dd . 3] t -h [dl . 3] = 0

[HA ] = [vv ]
Dieses sind wirkliche Gleichungen , deren jede immer eine Unbekannte weniger

enthält als die vorhergehende , während (3) oder (8 ) mit den Unterstreichungen nur

Abkürzungen der Gleichungen (2 ) sind , deren jede noch alle Unbekannten enthält .
Das Zahlenbeispiel auf S . 82 giebt folgende Endgleichungen :

459 x — 308 y — 389 2 + 244 1 — 507 = 0

+ 256 y + 146 2 — 105 t + 354 = 0

+ 263 z — 64 1 4 - 21 = 0
281 6 h- 137 = 0 .

(10 )

11 = [v ®]
Jordan , Handb . d . Vermessungskunde . 4. Aufl . I. Bd . 6
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Die 4t« Gleichung bestimmt f , und setzt man dieses rückwärts in die 8*® Gleich¬

ung , so hat man auch z u . s . w . Kurz , man kann durch Rückwärtssubstituieren
allmählich alle Unbekannten in der Aufeinanderfolge t z y x finden .

Auflösung eines Systems von 4 Normalgleichungen :

a h c d l S Probe

A + 459 — 308 — 389 + 244 — 507 + 501 0

+ 464 + 408 — 269 - 1 695 — 990 0

- 208 — 262 + 164 — 341 4- 337

+ 676 — 331 + 653 —1017 0
— 330 + 207 — 430 4- 425

+ 469 — 283 -t- 170 0

— 130 + 270 — 267

+ 1129 — 1687 0
— 560 4~ 554

B ' + 256 + 146 — 105 + 354 - 653 — 2

+ 346 — 124 + 223 — 592 — 1

— 83 -f 60 — 202 4 - 373

+ 339 — 13 — 97 0
— 43 + 145 — 268

+ 569 —1133 0
— 400 — 902

C " 263 — 64 + 21 — 219 r 1

+ 296 + 132 — 365 — 1
— 15 + 5 — 53

+ 79 — 231 + 1

+ 137
+ 281

~

— 2 + 17

t = - — 0,488 D " ' + 281 + 137 — 418 0

+ 77 — 214 0
— 66 4- 203

+ li — li

Die Ausrechnung der Abzüge — 208 - 262 + 164 u . s . w. ist mit dem
Rechenschieber gemacht.

308
Man stellt dabei zuerst den Quotienten ein , und liest mit dieser einzigen

Einstellung der Reihe nach ab :

~ 308 = 208 , ~ 389 = 262 , ~ 244 = 164 ,459 459 459
Dann in der zweiten Linie, mit einer Einstellung :

389
459 389 = 330 389

459 244 = 207

308
459

389
459

507 = 341

507 = 430

308
459

389
459

501 = 337

501 = 425

Diese Ergebnisse 208, 262 u. s. w. werden mit richtigen V orzeichen d . h . nach
den Regeln von § 19 . S . 63—64 unter 464 , 408 u . s . w. eingesetzt.
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Die Eliminationen und die damit verwandten Berechnungen sind , wie die meisten kleineren
.'Zahlenrechnungen in diesem Buche , lediglich mit dem Rechenschieber gemacht , und dagegen wird
sachlich nichts einzuwenden sein . Dagegen entstehen formelle Übelstände , wenn man solche Be¬
rechnungen durch den Druck veröffentlicht .

Z. B. heisst oben der erste Subtrahend — 208, während der genauere Wert — 207 ist , denn

die genaue Ausrechnung ist — 308 = — 206,7. Der Fehler 208 statt 207 bleibt in dem Schluss -
459

resultat unschädlich .
Da es unsere Absicht war , in diesem Buche die Anwendung des Rechenschiebers praktisch

zu zeigen , mussten wir wirkliche Rechnungen dieser Art vorführen , und nicht etwa solche , welche
nachher logarithmiscb verbessert sind . Es war notwendig , unverfälschte Originalrechnungen mit¬
zuteilen , und dabei kleine formelle Widersprüche zu dulden , welche bei logarithmischen Rech¬

nungen in einem Druckwerke nicht zulässig wären , deshalb haben wir auch den Fehler 208 statt
207 von der früheren Auflage auch wieder stehen gelassen .

§ 26. Reduzierte Fehlergleichungen .

Im Anschluss an die reduzierten Normalgleichungenkönnen wir auch reduzierte
Fehlergleichungen hilden, welche zu manchen Zwecken sehr nützlich sind .

Mit Beschränkung auf 3 Unbekannte x y z haben wir die allgemeine Form
einer Fehlergleichung :

v = am + 6 y + c z + 1
und hiezu die erste Normalgleichung:

[aa ] x + [al ] y -i - [« «] « + [« l] ■
[fflft]
[ua ] y - [« c] „ [a 0

[a a] [a a\

( 1 )

(2)

(3)

Dieses * setzen wir in ( 1 ) und haben :

° = (& -
[^ i a) 2/ + (c “

/
- & ) (4)

oder v = &' y c' z + V (5 )

wobei Jf , [ab ]b — b — p— i a c — c — v = « - L- Sa (6)
[a a] [« «] [aaj

(4) oder (5 ) nennen wir eine „reduzierte Fehlergleichung “
, und V e' V nach (6)

können wir reduzierte Coefficienten nennen .
Man kann sich leicht überzeugen, dass folgendes richtig ist :

[6 ’ 6 '
] = [66 . 1] [6' c ' ] = [6 c . 1]

[c
' cj = [ce . 1]

•denn es ist z . B . :

[V l’
} = [61 . 1]

[c' l '
] = [c l . 1]

[iV l'] = [ll . 1]

b ' b -
[« « ]

“ >

(7)

6l
-2 = 6l 2 _ 2a 1 &l [^ + [^ 2 ° i 2

P ' 6'
] = [66 ] - 2 [a6 ] |^ j + | ^ [aa ]

[6 ' 6’
] = [6 6] — [a 6] = [6 6 . 1] u. s . w .
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Nimmt manNun kann man die Fehlergleichung (5 ) nochmals reduzieren,
nämlich die erste reduzierte Normalgleichung zur Hand :

[6 b . 1 ] y -+■[6 c . 1 ] z + [6 l . 1] = 0 oder [6
' 6'

] y + [b' d ] z + [V 1'
] = 0

und bestimmt daraus: y ■ [b ' c'
] , [b ' V]

und setzt man dieses in (5) , so wird :
[V c ' ]

[b
’ V] [b’ b' ]

b' \ z - V ■ W v]
[b ' b ']

wobei

W V ]
V — c" z + l "

c" = d - j= -£ ] V l" = V — V
[b' b '

] [b b ']
und es gelten die ähnlich wie (7) leicht nachzuweisenden Beziehungen :

[c" c"
] = [c c . 2] [c" l” ] = [c l . 2] 1

[V V ] = [11 . 2] )
So kann man auch fortfahren, bis man hat :

[c" c" ]
oder mit Zuröckgehen auf ( 10) und (6) :

: l " l"

(8 )

(9)

( 10)

(11)

(12 )

v = V" = 1 [« i ] „ W r ] . [<=" n c„
[d ' W ][aa ] [6' b' ]

Wir haben also nun bewiesen , dass alle Eliminations -Coefficienten [6h . 1 ] ,
[6 c . 1] . . . [cl . 2] u. s . w. nicht bloss der Form nach , sondern in Wirklichkeit
Quadratsummen und Produktsummen sind , deren Elemente V , c' . . . c" u . s . w. an¬

gegeben werden können.
Insbesonderesind die [6 6 . 1] , [c c . 2] . . . Quadratsummen , und daher stets positiv.

§ 27 . Fehlerquadratsumme [vv \ und mittlerer Fehler m .

Die Entwicklung von [u « ] , welche in § 15 . (9 ) bis (15) S . 52— 53 , für 2 Un¬
bekannte gemacht wurde , lässt sich allgemein weiter führen :

Für 3 Elemente x y z haben wir :
[u c ] = [a «.] x%+ 2 [a 6] x y + 2 [o c] x z 2 [a 1] x I

-+- [6 6] y* + 2 [6 c] y g + 2 [6 1] y I .
+ [c c] «2 + 2 [c 1] g j

'

+ [ 11] )
Mit dieser Fehlerquadratsumme [« d] kann man die linken Seiten A B ' C " . . ■

der Endgleichungen (9 ) § 25 . S . 81 in innige Beziehungen bringen. Zunächst hat man :
A = [n a] x -+- [a 6] y + [a c] g + [o 1] (2)

AA
[a ä] [a a] *2 + 2 [a 6] x y + 2 [a e] x g + 2 [a 1] x

[abf
[a n] y* + 2 W\ [ac] yz

[acl 8
[a a]

*2

[a 6]
[aa ]
[« c]
[a a]
[ajp
[a a]

[a 1] y

[a 1] g

also
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Dieser Ausdruck lässt sieh Glied für Glied von der Summe [0 0] in ( 1 ) sub¬
trahieren ; dieses giebt :

[ VV] ~ t^ ]
= V) bA] + ^ P c . 1] «/ 2 - - 2 [61 . 1 ] «/

2 [c l . 1 ] z (3)
-+ - [c C . 1] «2

+ [11 . 1]
Genau in derselben Weise kann man mit der zweiten Endgleiehung fortfahren :

B ' = [bb . l ] y + [6 c . 1 ] . [6 2 . 1] (4)
B ' B ’

[66 . 1]
= [66 . 1 ] 2/2 + 2 [6 c . 1 ] y 2 + 2 [61 . 1] y

, \pe . i ]*
. 2 [hcA] ai 11 .+

[WA ]
* + 8 pli lJU ] '

[ ii£ -! ! [bj 11

[» * ] ■

Dieses kann man wieder Glied für Glied von (3 ) abziehen , wodurch man erhält :

+ [n . 2]
Die Fortsetzung dieses Verfahrens giebt :

C ” = [ce . 2 ] . + [cl . 2]
C ' ° ~ = [cc . 2] . 2 + 2 [c 1 . 2] .

(6)

[cc . 2]
-t- [e 1 . 2]

[d - 2]
[c c . 2]

Wenn man auch dieses noch , Glied für Glied , von (5 ) abzieht, so erhält man :

[ 0 0 ] —
AA B ' B ' G " 0 "

= [11 . 3] (7)
\a a] [66 . 1 ] [c c . 2]

Nun sind aber die A B ’ C " nach (2 ) , (4) und ( 6) , d . h . die linken Seiten der

Endgleichungen (9) § 25 . S . 82 sämtlich Null , und (7) wird sehr einfach :

[00 ] = [11 . 3] (7 a)
Wenn man dieses Restglied [11 . 3 ] wieder in seine Teile zerlegt, so hat man :

lei . 2]

folglich :

[ 1 1 . 3] = [11 . 2] -

[11 . 2] = [11 . 1]

[11 . 1] = [ ! !] -

[0 0 ] = [ 11 . 3 ] = [11] —

[c 1 . 2]

[61 . 1]

[cc . 2]
[bl - 1]'
[66 . 1]

[a l] 2 [61 . I ] 2 [C l . 2]g
(8 )

[a a ] [6 6 . 1] [cc . 2]
Am Schluss von § 26 . wurde gezeigt , dass alle Nenner [» «] [6 6 . 1 ] [cc . 2]

n . s . w. positiv sind ; man sieht also aus (8) deutlich, wie die Summe [11] allmählich
abnimmt.

Aus [00 ] berechnet man auch den mittleren Fehler m einer einzelnen Beob-
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achtung (vom Gewicht 1). Wenn v die wahren Beobachtungsfehler wären , so würde
man bei n Fehlergleichungen haben :

> ” ]
(?)TO2 =

dagegen bekommt man aus den wahren Beohachtungsfehlern ß richtig :

m2 = ^ 3
n

Bezeichnet man die wahren Unbekannten mit X Y Z, so hat man :
v = ax + by + ce + l
e = aI + 6 Y + c Z + 1

Differenz

(9)

(10)

( 11 )v = a (x — X ) -+- b (y — Y) -+- c (e — Z ) -+■e
Diese Gleichung hat wieder die Form einer Fehlergleichung , und würde in der

Form [ci r ] = 0 [6u ] = 0 auch Normalgleichungen von der früheren Form geben ;
man kann daher auf die Gleichung (11 ) auch alle mit den Fehlergleichungen vorge¬
nommenen Umformungen anwenden , insbesondere ist nach (8) :

[6 e_ . 1
_] 2

[bT .T]
-

und mit den reduzierten Coefflcienten b' c" von § 26 :
[a ß]2 [&' e' ]

[^ ] = [* *] - [“
| -

wobei die e ' e"
[” 1 = [s {1 -

[« «] [VV]
. . folgende Bedeutungen haben :

er — e - [a e] [*>« ■!] V

[c ß . 2]2'
[ec . 2]

(12)

[C" ß" ]
V ' *"]

(13)

- ß' tVe '
h '

[6' 6' ] ( 14)
[a a ] [6 6 . 1]

Aus (13) erkennt man , wegen der quadratischen Gestalt der Glieder, dass [ß ß]
jedenfalls grösser als [v v\ ist . Die Differenz [e ß] — [v v] ist selbst eine Funktion
der e, also in aller Strenge niemals zu bestimmen; man kann aber wenigstens die
Mittelwerte bestimmen, gegen welche die Glieder von (13) konvergieren. Wir be¬
trachten zuerst :

[a ß] 2 = ( oq ßj ff- n 2 ®2 + a 3 e3 ff- • • O
'2

— cq 2 ß;2 - i- ag 2 ß2^ ff- c®32 ß32 • • •
-{—2 % a2 ß; ß2 ff” 2 ßq 0&3 ß; ßg —(—. . . (16)

Der Mittelwert der Produkte ß ; e2, ß[ ßg u . s . w. verschwindet wegen der gleich¬
wahrscheinlichen Zeichen + und — und . der Mittelwert der Quadrate ßj 2, ß22 . • ■
ist = »»2 zu setzen . Es ist also als Mittelwert der Funktion (15) zu nehmen :

[a ß] 2 = (cq2 -+- aq2 ff- a32 + • . . ) «i2 = [a a ] m2
[a ß] 2

und
[a a]

= m2 (16)

Gehen wir zu dem zweiten Gliede von (13) über, so ist zuerst zu zeigen , dass
der Mittelwert von [6' ß'

] auch gleich dem Mittelwert von [6' ß] ist , denn nach der
ersten Gleichung von (14) ist :

W «' ]
Hier ist aber über das Vorzeichen von [aß ] gar nichts bekannt , es ist also

im Mittel [6' ß'
] = [6' e] , folglich nach denselben Schlüssen wie bei (15 ) und (16) :

_ lvJl - W2
[6

' 6’
]

-
[6' 6 ']
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Diese Schlussfolge geht beliebig weiter ; wir haben daher aus ( 13) :

\v v] — [e e] = — rrfi — ruß — nfi oder [e e] = [u «] + 3 »i2

Der strenge Wert des mittleren Fehlerquadrats ist nach (10) :

[« «]
n

und dieses giebt in Verbindung mit der vorhergehenden Gleichung (17 ) :

(17 )

nß =

(18)

Dieses gilt für 3 Unbekannte, da wir der Kürze wegen nur 3 Symbole x y z

geschrieben haben ; die Betrachtung gilt aber allgemein , und giebt daher für n Febler-

gleichungen mit u Unbekannten :

(19)nß = [» z>]
n — u

Diese Gleichung tritt an Stelle von (9 ) .

Anhang zu § 27 .
Ähnliche Entwicklungen wie die vorstehende Entwicklung von [v v\ kommen

in der M . d . kl . Q . mehrfach vor ; wir bilden deshalb aus dieser Entwicklung einen

allgemeinen Satz, indem in ( 1 ) und (7) S . 85 alle 1 = 0 gesetzt werden, und dann (1 )
und (7 ) einander gleich gesetzt werden. Wenn man hiebei die Bedeutungen von A

nach (2) , B ' nach (4) , und G ” nach (6 ) berücksichtigt , so geben ( 1) und (7 ) :

( [a a\ x + [ab ] y -+- [a c] zß
[cj a] x %+ 2 [a 6] * y -+- 2 [o c] x z

+ [bb\ iß + 2 \bc ] yz

[e c] «2

[a a]
( [b b . 1 ] y 4- [b e . 1 ] zß

[bb . l ]
([e c . 2] zß

(20 )

\ '
[ec . 2]

Dieses ist eine algebraische Identität , welche mit der Bedingung Quadrat¬
summe [vv ] = Minimum in gar keiner Beziehung besteht . Es ist hier nur voraus¬

gesetzt , dass die Coefficienten | b b . 1 ] u . s . w. nach dem allgemeinen Gesetz der

Elimination gebildet sind.

28. Gewichts-Coefficienten [aa \ [« /?] . . .

Nach dem Bisherigen haben wir, mit Beschränkung auf n = 4 , u = 3 , folgendes :

Fehlergleichungen :

Anzahl n = 4

«j = «j x -r b i y -+- Ci z -+-
= 0*2 ^ “k fyä V Cg Z + ?2

V$ — a S x + &S V + c3 z + h
vi = ai x = - bi y + ci z + lA

Anzahl u = 3

(1 )

[a a] x -f- [a b] y + [a c] z -+- [a l] = 0 \

[a 6] x -= [b 6] y + [b c] z + [6 i] = 0 > (2)

[ac ] i + [Jc ] } -r [c c] z + [c 1] = 0 )

Normalgleichungen :
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[6 l . l ] = 0 I
= 0 |

Reduzierte Normalgleichungen:
[6 b . 1 ] y + [6 e . 1] z
[6 c . 1 ] y + [e c . 1 ] z h [c l . 1 ] =

[c c . 2] z + [c l . 2] = 0
Normalgleichungen in abgekürzter Schreibweise :

[a a] x + [a 1)] y + [a c] « + [« (] = 0
[6 &] y + P c] « + [6 ?] = 0

[ c c] z + [c 1] = 0
Lül

Reduzierte Normalgleichungen in abgekürzter Schreibweise :
[bb . \ \ y + [6 c . 1 ] s + [bi . 1] = 0

[ c c . 1] z -+- [e l . 1 ] = 0' "
[ * * ■!]

[ e c . 2] z + [c l . 2] = 0
[ 11 . 2]

[ ll . 3]

(3)

(4)

(2*)

(3 *1

(4 *)

( 5 )

Die Bedeutung der Eliminations-Coefflcienten setzen wir nochmals ausführlich her :

[5e . l ] = [6c] - [ah]
[aa] [ac] [W - l ]

[rf . i ] = [cq

[il . i ] = [ii]

[ac\
[aa]
[aj \
[aa]

t«q

[al]

[cc . 2 ] = [cc . 1] — ~ ~ [6c . 1 ] [cl . 2] = [d . l ] - M [W .

[JZ . 2] = [K . 1] -

[U . 3] = [M . 2] -

[cLl ]
[cc . l ]
[cl . 2]"
[ccT2 ]

(8**)

(4**)
[cl . l ] )

[d . 2] } (5*1

Nun wollen wir die Normalgleichungen (2 ) so aufgelöst denken , dass x y z
sich als lineare Punktionen der l zeigen , oder da es auf die Vorzeichen nicht ankommt,
können wir auch — x , — y , — z als lineare Punktionen der l darstellen :

— X — (X] -b CCg “b Cfg lg -b (Z4 I4 "l
- y = i’

i h ! h + ßs k + ß4 k ( 6 )
— z — fih + 721 2 + 7s h + 74 h ^

Hievon betrachten wir zuerst die dritte Gleichung, nämlich diejenige für z und
wenden darauf das allgemeine Pehlerfortpflanzungsgesetz von ( 9 ) und (11 ) S . 17 an .
nämlich indem der mittlere Fehler der l mit m und der mittlere Fehler von s
mit m, bezeichnet wird :

mß = 7i 2 m2 + y22 »n2 + 732 w2 + y42 wß
mß = (yß ■

oder dasselbe in Gewichtsform :
- 722 + 732 742) = [77] m2

= [77]

0 )

(3 )
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Nun muss man andererseits auch z aus den Normalgleichungen (2 ) bestimmen,
durch Elimination von x und y , was wir nach dem Verfahren der unbestimmten
Coefficienten thun wollen , d . h . wir multiplizieren die Gleichungen (2) mit den zu¬
nächst noch unbestimmt gelassenen Coefficienten Q \ , Qs ' Q3 , wodurch wir erhalten :

Qi [» »] * + Qi [a 6] y + Qi [a c] z + Qi [a l] = 0 1
Qa [a 6] x + Q2 [6 ö] V + Q2 [6 c] * + Q* [6 q = 0
Q3 [a c] * + Qs [6 c] y 4- Q3 [c c] * + Q 3 [c Z] = 0 >

( 9 )

Wenn man diese 3 Gleichungen addiert , so sollen x und y verschwinden und
2 soll den Coefficienten = 1 erhalten , d . h . es wird über die Coefficienten Qi Q2 Qs
so verfügt, dass wird :

Qr fa a1 + Q<, fa b] — Qo \a cl = 0
Qi [« 6J + Q2 [6 6] ^ Qs [öc ] = 0
Qi [o c] + Q2 [6 c] + Qs [c c] = 1

( 10)

Damit giebt die Addition der 3 Gleichungen (9 ) :
dl )# Qi [® q + Q2 [(* q ■+■ Q3 [c q — o

Dieses wird mit der ursprünglichen Annahme , d . h . mit der dritten Gleichung von (6)
verglichen , und dazu ist nötig , dass wir die Klammern | aZ] , [bl ] , [c Z] in ( 11 ) auf-
lösen und alles nach Zi Z2 Z3 Z4 ordnen , d . h . :

£ + Qi («1 Ji + «2 2̂ + «s (3 + ai (4)
+ Q2 ((*1 h + &2 (2 + &3 (3 "h &4 (4)
+ Q3 (ci h + c2 (2 + Cs h + c4 (4) = 9

z + (Qi ai + Q2 &i + Q3 ci ) q + ( Qi ° 2 + Q2 &2 + Q3 Cs) h I / j 2)
+ (Ql aS + Q2 &3 + Q3 c3) h + (Ql a4, + Q2 Ö4 + Q3 c4) h — 9 I

Zur Vergleichung setzen wir die dritte Gleichung von (6) her , nämlich :
# + 7i q + 72 (2 + 7*3 (3 + Yi q = 0

Dieses mit ( 12 ) verglichen giebt :
7i = Qi «1 + Q2 &l + Q3 ci I

Ql ai + Q2 ^2 + Q3 (13)
73 — Ql a3 + Q2 &3 + Q 3 c3
74 = Ql a4 + Q2 &4 + Q3 c4

Multipliziert man diese Gleichungen der Reihe nach mit a t a% aB a4 und berück¬
sichtigt ( 10), so erhält man :

( 14 a)[a y] = [a a] Qi + [a 6] Q2 + [a c] Q3 = 0
Macht man dasselbe auch mit b und mit c, so bekommt man auch :

( 14 b)
(14 c)

[6 7] = [a &] Qi + [6 6] Q2 + [6 e] Qs = 0

[c y] = [a c] Ql + [6 c] Q2 + [c c] Q3 = 1

Diese 3 Gleichungen [a y] = 0 , [6 7] = 0 , [c 7] = 1 sind erhalten worden bei
der Elimination von x und y, d . h . bei der Bestimmung von z ; würde man die
Elimination umstellen (wobei auch wieder andere Coefficienten Q aufträten ) , so würde
man analoge Gleichungen erhalten und die Gesamtheit aller solcher Formeln ist :

[a «] = l [h «] = 0 [c «] = 0 j
[« ß\ = 0 rz> ß] = 1 [c £] = o
[fl 7] = 0 [6 7] = 9 [c 7] = 1 1

(15 )
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Wir gehen einen Schritt weiter , und multiplizieren die Gleichungen (13) der

Beihe nach mit ctj a2 «3 «4, das giebt :
[a y] = Qi [a a ] + [b a] + 4)3 [c a]

d . h . wegen (15 ) : [a y] = Qi (16 a)
Auf ähnlichem Wege, nämlich, wenn man die Gleichungen (13) mit ß 1 ß2 ß3 ßt

und dann auch noch mit yt y2 'h 74 multipliziert und addiert, erhält man auch :
[ßy ] = Qz [yy] = Q 3 ( 16b u . 16c)

Setzt man diese (16) in (11 ) , so erhält man :
— z = [ay ] [al \ + [ß y] [b l] + [y y] [c l] (17)

Setzt man diese (16 ) auch in ( 10 ) , so erhält man :

[aa ] [ay ] -+- [ab ] [ß y] -i [a c] [y y] = 0 1
[a 6] [« y] + [6 b] [ß y] H- [& c] [y y] = 0 ) (18)
[a c] [a y] + [b c] [(1 y] -+■ [c c] [ y y] = 1 '

Bei diesen Gleichungen (17 ) und ( 18) ist die dritte Unbekannte z bevorzugt;
durch cyklische Vertauschung erhält man aus (17 ) und (18) das vollständige System:

Unbestimmte Auflösung der Normalgleichungen
— * = [« «] [« 1] + [« ß] [6 1] + [« y] [c l] |
- y = [aß ] [al ] + [ßß ] [bl ] + [ßy ] [cl ]
- z ^ [ay ] [al ] + [ßy ] [bl ] + [yy ] [cl ] I

(19)

■[ac ] [ßy ] = 0 \
[bc] [ßy] = ll

- [« c] [ß / ] = ° \ (20 )

Gewichtsgleichungen
[a a] [a a ] + [a b] [a ß] 4- [a c] [a y] = 1 [et et] [« ß] -+- [a 5] [ß ß] -

[et Z>] [a a ] H- [b b] [« ß] + [6 c] [a y] = 0 [o 6] [« [1] -+- [b b] [ß ß] -

[a e] [« «] - h [6 c] [aß ] + [c c] [a y] - 0 [a c] [aß ] i [& c] [ß ß] -
[et st] [a y] -+- [a 6] [ß y] + [a c] [y y] = 0
[ab ] [ay ] + [66 ] [ß y] + [& c] [ y y] = 0
[a c] [a y] + [6 c] [ß y] + [e c] [ y y] = 1

Durch Auflösung der Gewichtsgleichungen (20 ) kann man alle Gewichts-Coeffi -
cienten [aa \ [aß ] u. s . w . bestimmen, und zwar die nichtquadratischen , z . B . [aß ] [ßy]
u . s . w . je doppelt, was als Bechenprobe dient.

Setzt man die so erhaltenen Coefficienten [a a] [a ß] u . s . w. in (19) , so hat
man die sogenannte . unbestimmte Auflösung der Normalgleichungen“ , d. h . die Ent¬
wicklung der x y z als lineare Funktionen der Absolutglieder [o l] [6 1] [ e l] .

Die Gewichtsgleichungen (20) haben dieselben Coefficienten [a aj [a 6] u . s . w.
wie die ursprünglichen Normalgleichungen (2 ) ; die Auflösung der Gewichtsgleichungen
schliesst sich daher auch der Auflösung (2*) (3*) (4*) an .

Hiebei sind an Stelle der früheren [a /] . [6 Z] , [c l] nun entweder — 1 oder 0
getreten , und man wird bald finden , dass auch alle folgenden [& l . 1] , [c l . 1 ] , [c l . 2]
nur — 1 oder 0 werden können, z . B . die dritte Gruppe von (20) geht in Hinsicht
auf die Absolutglieder dadurch aus (2*) hervor, dass man setzt

[a Z] = 0 [& Z] = 0 [c Z] = — 1
damit wird nach (3**) S . 88 :

[6 Z. 1] = [&Z] - [« &]

[cZ . l ]

[a a]
[ac ]

[a Z] = 0 — 0 = 0

1 — 0 =
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Auf diesem Wege bekommt man für die dritte Gruppe von (20) folgendes
System , welches (8*) und (4*) S . 88 entspricht :

[a ci] [ cc y] + [a 6] [0 y] + [a c] [y y] = 0 ,
[bb ] [ßy ] + [bc ] [yy] = 0 (21 a)

[ c c] [y y] - 1 )

[6 b . 1 ] [ßy ] + [6 c . 1] [y y] = 0 |
[e e ■1] [y y] = 1 1 (21b)

[c c . 2] [y y] = 1 (21c)
Wir nehmen diese Schlussgleichung von (21c ) zusammen mit (8) und haben :

P ‘ =
[^

= [cC - 2 ] ( 22 )

Dieses ist die Verallgemeinerung des Satzes , den wir in der Form p „ = [66 . 1]
für 2 Unbekannte bereits in (8 ) § 17 . S . 57 gehabt haben.

Da unsere Betrachtung zwar mit drei Elementen x y z geführt , aber dem
Gedanken nach nicht an drei gebunden ist , heisst dieser Satz nach (22) allgemein:

Wenn man die Normalgleichungen nach der Gauss sehen Methode allmählich
reduziert , d . h. [6 6 . 1] , [cc . 2] u . s . w . bildet , bis nur noch eine Gleichung mit
einer Unbekannten übrig bleibt , so ist in dieser letzten Gleichung cler Coefficient der
Unbekannten zugleich das Gewicht der Unbekannten.

Diese Gewichtsbestimmungsmethode ist sehr gebräuchlich.
Um zur unabhängigen Bestimmung der Gewichte aller Unbekannten nach dieser

Methode zu gelangen , muss man die Elimination wenigstens einmal vollständig um¬
kehren , also etwa zuerst mit der Ordnung x y z die Unbekannte z und p „ bestimmen,
dann mit der Ordnung z y x die Bestimmung von x und p x vornehmen, worauf y
nebst p a sich findet durch Umstellung , entweder der 2 Gleichungen , welche nach
Elimination von * geblieben sind , oder der 2 Gleichungen, welche nach Elimination
von z sich ergeben haben .

Han kann jedesmal hiebei auch einen nicht quadratischen Coefficienten [cc j9] u . s. w. ge -

legentlich mitbestimmen , denn wenn z. B. x eliminiert ist , so dass man hat :

so kann man auch rechnen :

[b b . \}y + [bc . 13* -H &M ] = 0

[c c . 1] g H- [c M ] = o

[b c . 2] = [&c . 1] —[bb . 1] [cc . 1J _ 1 (23)
[bc . l]

Man beweist dieses gerade so , wie (22) bewiesen wurde , d . h . man betrachtet [fJ}’] als den¬

jenigen speziellen Wert von z> welcher in (19) entsteht , wenn [a ?] — 0, [<bl ] = — 1 und [c/ ] = 0 ge¬
setzt wird .

Man könnte in dieser Weise durch mehrfaches Umstellen der Eliminationsordnung alle

Gewichts -Coefficienten nach und nach finden , und bei nur 2 oder 3 Unbekannten macht sich unter

Umständen das ganz bequem .
Bei 2 Unbekannten ist überhaupt alles einfach , wie in dem Beispiel § 20. S. 65 gezeigt ist .

Bei 3 Unbekannten kann man so verfahren :
]) a b c 2) c b a

b c }) n

c «

giebt 5 und ["/ ? ] nebst [(9 >']. giebt x und [a a ] nebst [cc[9].
Nun muss man jedenfalls noch einmal umstellen , um y und [j9j9] zu erhalten ; also :

3) c b oder 4) a b
b b

giebt y und [f9 (9] nebst [(9 ? ]. giebt y und [ßß ] nebst \aß \



92 Gewicht einer Funktion der x y z nach der Ausgleichung . 29.

Da man mit 1) , 2) und 3) bereits alle Unbekannten und deren Gewichte hat , kann man

statt noch 4) zu bilden , für den letzten noch fehlenden Coefficienten [a ß] auch die erste der

Gleichungen (20) selbst zu Hilfe nehmen .
Bei mehr als 3 Unbekannten ist aber das Verfahren der Gleichung (23) höchstens dann zu

empfehlen , wenn man nur einzelne der Coefficienten [fS? ] etc . braucht , nach denen man dann die

Eliminationsordnung einrichten kann . Braucht man alle Gewichts -Coefficienten , (was z . B. bei der

Bessel sehen Triangulationsausgleichung der Fall ist ), so kann man nicht ohne die allgemeinen

Gewichtsgleichungen (20) bzw . (21) auskommen , deren gemeinsame Auflösung wir in § 33. besonders

behandeln werden .

29. Gewicht einer Funktion der x y » nach der Ausgleichung .

Wir betrachten die lineare Funktion :
( 1)f = fi * + hy + fs «

Das Gewicht von F kann man aus den Einzelgewichten der gemeinsam aus¬

geglichenen Elemente x y z nicht unmittelbar bestimmen , weil die Gewichte der x y z
nicht unabhängig sind, man muss vielmehr , wie im Fall von § 17 ., auf die Beobacht¬

ungen selbst zurückgr
'eifen , und F als Funktion derselben darstellen .

Wir benützen wieder die Gleichungen (6 ) § 28 . S . 88 :
— X — tj- 1 -f - C-2 1% “k 0-3 fl
— V — ßl k + 02 4 + 03 h + 04 h (2 )

7i h + 72 h + 73 h + h h
Setzt man diese Werte in ( 1 ), so erhält man :

j
+ (fi + f2 0i + h 7i ) h

p _ I -+- (fi «2 + fs ßz + h 72) h
j + (fi a s + /a $3 + fs 73) h (
I -1- (fj a4 + fz 04 + fs Yi) h ’

Da die l bei Gewichtsberechnungen als unmittelbare Beobachtungen gelten ,
erhält man das Gewicht P nach dem allgemeinen Gesetze der Fehlerfortpflanzung ,
ebenso wie hei (7) und (8) des vorhergehenden § 28. S . 88 :

| (fi «1 + fs 0i + fs 7i)2
)

|
+ (fi «2 -k 4 02 “b fs /2)2

|
_
1_
P

oder mit Ausführung der Quadrate :

fl fl [« «] + 2 fl fs [« 0] 2 fl fs [« 7]
+ fs fs [ß 0] ~k 2 fs fs [0 7]

+ fs fs [7 7]
p (3)

Die Gleichung (3) kann man auch so schreiben :

= fi (fi [« «] + fs [“ 0] + fs [“ 7] )
+ f2 (f ia 0] + fs [0 0 ] + fs [0 7] )
+ fs (fl [“ 7] + fä [0 7] + fs [7 7] )

(4)

oder mit Ordnung nach Vertikal -Keihen und mit Zusammenfassung der Coefficienten
von fl fs fs -

3i fi + 1s fs = [3 / ] (5)
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wo q x g2 2a folgende Bedeutungen haben :

21 = [« «] fl + [« ß] h + [« /] fs )
22 = [« 0] + [ß ß] + [ß y] fs > (6)
23 = [« y] fi + [ß 7] h + [f 7\ fs ’

Nun wird sich zeigen , dass die Gleichung besteht :

[a a] qx -+- [a 6] g2 + [« c] 23 = /1 (? )

denn die Ausführung dieser Punktion nach (6) giebt :

[a «] qx + [a 6] g2 + [a c\ qs = ( [a a] [a « ] + [a 6] fa 0 ] + [a c] [« 7] ) f x »
([« «] t« ß] + 1« &] [P ffl + [« c] D* ri) h (8)
( 0 a ] [a y] + [a 6] [ß y] + [a c] 0 y] ) fs )

Die hier auftretenden Coefficienten ([o <*] [« « ] + • • ■) sind aber teils = 1 ,
teils = 0, wie im vorigen § 28 . (20) S . 90 gezeigt wurde. Die Entwicklung (8)
giebt also in der That die sehr einfache Beziehung (7 ) , und indem wir dieselbe Be¬

trachtung auch auf f2 und fs ausdehnen , haben wir entsprechend (7) das ganze System :

[a a] qx + [a 6] q2 + [a c] qs = fx >
[a 6] qx + [6 b] g2 + [6 c] 2s = h | (9)
[« c] 2i + [& c] 22 + [c c] 23 = fs ’

Das sind Gleichungen von derselben Porm, wie die ursprünglichen Normal-

gleichungen , man kann sie daher auch ebenso wie jene weiter behandeln :

[<* a] qx + [a 6] g2 + [0 c] g3 fx — 0 1
[6 6] g2 + [fc c] 2s — k = 0 |

[c c] 23 “ fs = 0 '
(10 a)

[fc fc• f ] 22 1 - [fcc . l ] 2s — [4 - 1 ] = 0 1

[cc . 1] 33 — [/s - 1 ] = 0 f
( 10 b) .

[c c . 2] g3 — [fs . 2 ] = 0 (10 c)

Die Schlussglieder haben folgende Bedeutungen :

[fs . 2] = [f3 . l ] - [| | ^ [/
-
2 . l ] [

(11)

Diese Schlussglieder kann man der gewöhnlichen Elimination (2*) bis (5)
§ 28 . S . 88 anhängen.

Denkt man sich aus den Gleichungen (9 ) und ( 10 ) die 2l 22 23 numerisch

bestimmt, und in (5 ) eingesetzt , so hat man den gesuchten Wert — .

Hieran schliesst sich aber ein noch einfacheres Verfahren an : Man setze die
durch (9) bestimmten fx f2 fs in (5) , und erhält damit :

~ = [« «] 21 + 2 [o fc] 2i 2ä + 2 [a c] qx g3 j
— [b fc] 21 2 [fc c] q2 qs 1

— [e e ] 2 ! I

( 12 )
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Auf diesen Ausdruck (12) kann man die allgemeine Entwicklung (20) § 27 .
S . 87 anwenden , nämlich :

1 {[a a ] 2 i -1- [fl 6] + [a c] i ([6 6 ■1] ~ c • * ] (te)2 ( [cc - 2] fe)2

P ~ ~
[a a] [6 6 . 1] [c c . 2]

d . h . mit Einsetzung von ( 10a) , (10b ) , (10c) giebt dieses :

1 _ JL ^ ^ + [fe - 2 ]8 dg 'i
P ~

[a a]
'

[6 6 . 1 ] [ c c . 2]
v

Dieses ist theoretisch die übersichtlichste Formel für das Funktionsgewicht.
Ob man im einzelnen Falle numerisch hiernach, d . h . nach ( 10 a ), ( 10 b) , ( 10 c)

und (13) rechnen will , oder ob man die ursprünglichen Formeln (3) oder (5 ) anwenden
will, wird von den Umständen abhängen.

§ 30. Gewicht einer Funktion von Funktionen .
Eine weiter abschweifende und daher zunächst zu übergehende Betrachtung

bezieht sich noch auf das Gewicht einer Funktion von Funktionen der ausgeglichenen
x , y , z . Später bei der Fehler -Ellipse kann davon Gebrauch gemacht werden .

Man habe zwei Funktionen :
x = f\ x -+- f2 y + fs z y = f{ x -j- fs y + fs z ( i )

Diese zwei Funktionen sollen nach dem vorigen § 29 . (13) (s . oben ) behandelt
worden sein , und haben folgende Gewichte erhalten :

i fi , ik - 1? , ih - w i _ ft *
, [/2

' - i ] !
, c/y - g]

Px [a a]
1

[5 6 . 1 ] [ e c . 2] P y [a o]
‘

[6 6 . 1]
'

[c c . 2]
Nun stellt man noch eine Funktion von X und von Y auf :

(P ) = r X 4- / r
deren Gewicht ebenfalls bestimmt werden soll .

Hiezu hat man jedenfalls den Weg , dass man vermöge (1) und (3)
und y ausdrückt und eine Funktion der x und y herstellt , nämlich:

(F ) = (r fi + r ' f{ ) x -f - (r f2 -t- r ' f2
'
) y + {r fs r ' f3

' ) z
Das Gewicht dieser Funktion von x , y und z ist bestimmt durch:

J _ _ (rf 1 + f' f1T ^ [(r/a + F f2 ) Af ^ [(rf 3 + rY 3
'
) . 2]2

(P )

( 2 )

(3)

(F ) in x

(4)

(5)
[so ] [6 6 . 1] [cc . 2]

Ausser diesem unmittelbar sich darbietenden Wege zur Berechnung des Ge¬
wichtes (P ) der Funktion (3 ) giebt es aber noch einen zweiten Weg durch Vermitt¬
lung der Gewichte P x und P „, welche man nach (2) schon hat .

Wir betrachten die Bestandteile von (2) und (5) nach dem Entstehungsgesetz (11)
•§ 29 . S . 93 :

fx = f1 fl = fi
11 _ f [« *>] .

[fs • 1] = fi’ [« &] , ,
[so ]

'1

o-| _ f I« c] [hc . l ]2] - fs
[ssj fl

[6 6 . 1]
‘ 1 [fs ■2 ] = fs [» «] , ,

[aa ]
' 1

»• f\ r ' f{ = rfi -h r{ f{

[bc . 1]'
[66 . 1]

[(r/4 + r7 2
'
) . l ] = (r6 - ■r ' fi )

K*- fs + r ' fs ) ■2] — (x fs ■+• r ' fs ) • [oc ]
[so ] (r f2 — r' f2 ) ■ [bc . 1]

[66 . 1] [(rf ^ r ' f2
'
) A ]
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Man hat also die sehr einfachen Beziehungen:
r fi + r ' fi = rf l + r ' f{

l(rfzAr ' f2
’
) A ] = r [f^ A ] + r '

[f2
' A ]

[(r hA f '
fz ) A \ — r [/^ . 2] -+- r '

[fs
' . 2]

Setzt man dieses in (5) ein und quadriert, so findet man :

(6 )

(iy 7*2 fl , [4 ' - i ]2

- r 2 r >•'

oder :

[a a]
fl

[a a]
fl fl .
[a a]

1
(P )

'

1

[& 6 . 1]

[56 . 1]
ih • 1 ] W ■

t/s • 2]« )

1]

[c c . 2] )

[cc . 2] J
[/3 - 2] [/3 ' - 2]

(7)

[66 . 1 ]

. ^ 1 .P■L X
-2 1 . ■2 r r '

[ec . 2]
1

Dabei haben — und — die bereits in (2 ) angegebenen Bedeutungen, und
J. x da

(8 )

1

lässt sieh aus (7) leicht ableiten :

\a a\
Ms 'jJ + MM

[c c . 2] ( 9 )
Pxy

~
[a a] [6 6 . 1]

In Worten kann man dieses so ausdriicken:
Wenn für zwei Punktionen X und Y nach (1 ) die Gewichte in den Formeln (2)

bestimmt sind, und wenn es sich dann abermals um eine Punktion (F ) von den
Funktionen X und Y handelt , so braucht man das Gewicht (P ) von (F ) nicht von Neuem
zu berechnen , sondern man kann es nach (9) und (8) aus den schon berechneten Ge¬
wichten P „ und P v ableiten.

Wir werden bei der Fehlerellipse von diesem Satze Gebrauch machen , und
zwar mit der Vereinfachung:

(P ) = X + r , d . h . r = r ' = 1 .

Hiefür kann man das vorstehende in folgende Regel fassen :
Wenn gegeben ist :

Px
_
1

_
p „

z

(10)

dann berechnet man :

und damit ist :
W)

[« «] =

\ß (n =

[aß ] =

= [« «] + [0 ß]

A ) Ao Ai Ai h A2 ■̂ 2 ,
[« «] [6 6 • 1] [cc . 2]

1

Bo Bo ,
[o o]

Bi
[6 6

Bi
■1]

.
b 2
[c c

ba +
• 2]

+

Ao Bo , A, B, ^ 2b 2
[a a] [6 6 V [c c . 2]

(11 )

■2 [aß ] .

§ 31 . Partielle Elimination .

Auch die Theorie der partiellen Elimination ist nicht ein wesentlicher Bestand-
feil unseres Entwicklungsganges , die partielle Elimination mag aber später von
Nutzen sein .
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Zunächst wollen wir die Entwicklungen von § 26 . zum Teil wiederholen und

zusammenfassen :
Fehlergleichungen :

v1 = x + \ y + cx z + li
vz = ct2 * + h y + c2 z + k ( 1)Anzahl = n

v„ = a„ x bn y + c „ z + l,’n

Anzahl = u-

Normalgleichungen :

[a a] x + [a h] y -+■[a cj z + \a l] = 0
"

[6 6] y + [b c] z [6 l] = 0
(2 )Anzahl = m

[c c] 2 + [c 1] = 0
[ H ]

Erstmals reduzierte Normalgleichungen :
rj>* n . . -l r/i ^ n » r7i/ 11 — n oder [6

' &'
] y [h' c'

] ä + [ö' 1'
] = 0

Anzahl
[cc . 1 ] « + [cl . 1] = 0 [ c' c'

] « + [& ?'] = 0
p ' n

(S)

Hiehei ist :
[oc ]
[a a]

(4), Lw'
c — c — t— j a

Auf das System (3) kann man auch dadurch kommen , dass man n reduzierte

(fingierte) Fehlergleichungen schreibt :

Reduzierte Fehlergleichungen :

bi y + c{ s + 1
Anzahl = n

Cn Z h

Anzahl = u — 1

Alles dieses in Worte gefasst , giebt den Satz :
Wenn man statt der n Fehlergleichungen ( 1 ) die n reduzierten Fehlergleichungen

(5) anschreibt , und aus denselben mit gleichen Gewichten wie bei ( 1 ) , in üblicher .
Weise Normalgleichungen (3) bildet , so erhält man daraus dieselben Unbekannten y
und z , und auch alle Gewichte und mittleren Fehler gerade so wie aus den ursprüng¬
lichen Fehlergleichungen ( 1 ) . Man muss jedoch bei der Berechnung des mittleren
Fehlerquadrats

im Nenner n — u in der Zahl u der Unbekannten das zuerst eliminierte x mitzählen,
oder man darf in (6) nicht etwa den Nenner = n — (u — 1 ) nach (5 ) nehmen.

Man kann aus dem Vorstehenden auch noch folgenden , allgemein gültigen
Satz ableiten :

Wenn man eine Unbekannte x bereits in den Fehlergleichungen , mit Hilfe der
Beziehungen (4 ) eliminiert , und damit reduzierte Fehlergleichungen (5) aufstellt , so
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bekommt man daraus dasselbe Normalgleichungssystem (3) , welches man auf dem
gewöhnlichen Weg durch Elimination von x aus den Normalgleichungen erhalten
haben würde .

Wir betrachten noch folgenden Fall :
Fehlergleichungen :

= Cj z . . . -f- ct] x -{- bj y -j- Zj
Ug — ^2 Z • . . —f- CtgUt ~t" bg 2/ rt* Zg

U» = c„ £ . . . + an X + b„ y -+- Z»
Eine zweite Gruppe von Beobachtungen gebe :

Vn+ i — . . . dn+ i t -t- £t„+ i tu + bn -t-i 2/ “b Zm+ i (d tZ) t -f- {d a] x + {d b) 2/ -f- Id Z) = 0
t'»+2 = . . . t + a»+ 2 a; + b„+2 y + Z„+9 (a a ) a + (ab ) j/ + (a l ) = 0
. fbb) 2/ + (bü ) = 0

£ j )

Die Unbekannten * und y kommen in beiden Gruppen vor , dagegen z nur in
der ersten, Z nur in der zweiten Gruppe.

Nun soll z aus den Normalgleichungen von (7 ), und t aus den Normalgleich¬
ungen von (8) eliminiert werden . Dieses giebt :

aus (7) : [a a . 1] x + [a b . 1 ] y + [a l . 1] = 0 (9)

aus (8 ) : (a a . 1 ) x -+- (a b . 1) y + (a l . 1 ) = 0 (10)

Diese beiden Gleichungen nehmen wir so zusammen :
( [sa . l ] + (oa . 1 )) ® ( [ab . 1] + (ab . 1 )) y + ([a Z . 1] + (a Z. 1)) = 0 (11)

Dieses ist genau dieselbe erste Normalgleichung, welche man bekommen haben
würde, wenn man aus allen Fehlergleichungen von (7) und (8 ) zusammen genommen
Normalgleichungen gebildet und daraus z und t eliminiert hätte .

Um dieses zu beweisen , bilden wir das Gesamtnormalgleichungssystemfür die
Fehlergleichungen (7) und (8) unmittelbar :

[cc ] z . . . -t- [ca ] x + [cb ] y + [c l] = 0
(d d) t -+- [d a) x -+- [db ) y + [dl ) = 0

([a a] + (a a)) x + ([a b] + (a b)) y -+- ([a Z] + (a l)) — 0

Normalgleichungen:
[c c] z + [c a] x + [c b] y -+- [c Z] = 0 j

[aa ] x + [ab ] y + [aZ] = 0 [
[bb ] y + [6Z] = 0 I [ >

[l Z] 1

erstmals reduziert :

((dd) _
[^ ]

°) f +

nochmals reduziert:

(d a) —
j
- - - [c o]j x + . . .

[a a] -+- (a a) — ^ [c a] j x + . . .

[a a] + (« ) - ^ [e a] - (d a)j » + . . . ( 12 )

Der Coefficient von x in (11 ) enthält in der That dieselben Bestandteile wie
der Coefficient von x in (12) , und da es mit allen anderen Coefficienten sich ähnlich
verhält , so ist damit der bei (11 ) ausgesprochene Satz bewiesen .

Nun kann man auch noch einen Schritt weiter gehen , und mittelst des bei (5)
bewiesenen Satzes über reduzierte Fehlergleichungen zu dem Schluss kommen :

Jordan , Handb . d. Vermessungskunde . 4. Aufl . I . ßd . 7
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Wenn einzelne Unbekannte e und t wie bei (7 ) und (8) nur in einem Teil

der Fehlergleichungen Vorkommen , so darf man für diese Partialgruppen von Fehler¬

gleichungen reduzierte Fehlergleichungen von der Form (5) bilden und dann mit der

Gesamtheit aller reduzierten Fehlergleichungen weiterrechnen, wie wenn es Original¬

fehlergleichungen wären .
Bei der Berechnung des mittleren Fehlers sind jedoch die anfänglich eliminierten

Unbekannten (g und t) in der Zahl u aller Unbekannten mitzuzählen.

§ 32. Bildung der Endgleichungen ohne Zwischenglieder .

Die allmähliche Elimination, welche wir in § 25 . durch die Gleichungen (4)— (7)

S . 81 und durch das Zahlenbeispiel S . 82 gelehrt haben , reicht immer aus , und da

man dabei Schritt für Schritt Summenproben hat , ist jenes Verfahren sehr gut . In¬

dessen , nach Erlangung einer gewissen Übung im Ausrechnen der [6 & . 1] u . s . w.

kann man auch die Elimination mehr auf einmal machen , wie wir nun zeigen wollen :

Wir haben in § 25 . S . 81 angenommen, dass die Endgleichungen von den

Normalgleichungendurch Vermittlung der allmählich reduzierten Gleichungen (4) (5) (6)

S . 81 erlangt werden . Obgleich alle hiebei vorkommenden Beträge von der Form

[6 o . 1] u, s . w. jedenfalls ausgerechnet werden müssen ,_ fe*3ra M
[aa ]

L J ’
[6 c . 1]

kann man doch wenigstens das allmähliche Zusammensetzen dieser Beträge ersparen
und durch eine Gesamtsummierung ersetzen, so dass von den Gleichungen (4) und (5)

§ 25 . S . 81 immer nur die erste jeder Gruppe gebildet wird.
In gleicher Weise , wie [ll . 3] in (8) § 27 . S . 85 in seine Bestandteile rück¬

wärts zerlegt wurde , kann man dieses mit allen anderen Coefflcienten thun , so zeigt

z . B . ein Blick auf (4* *) und (5* *
) § 28 . S . 88 :

[6c . 1]
[cZ . 2] = [el \ - [61 . 1]

[66 . 1 ] '

und nach diesem Beispiel ist folgendes Schema für 4 Unbekannte gebildet :

(1 )

[o et] [ab ] [ac ] [a d] [al ]

(X2 [6 6] [6 c] [bd ] [bl ]

“ i
1« &] r , , 1« &] r ,- M [aC] -

lTä )
ladi ~

[TT]
la l]

B ' [66 . 1] [6c . l ] [6 d . 1] [bl . l ]
«3 [ec ] [cd ] [cl ]

« 2
t« C]— r ll « ]
[aa ]

- ^ Aaä ]
[aä \

A

C " [ec . 2] [cd . 2] [cl . 2]
[d d] [dl ]

[a d] r „ [ad ] T „«3 ~
[T7ci [aa ] —

[WWj105?]

02 i ]
[6 &. 1]

L

7i
[cd . 2] r , A
Icc . 2]

[C£i ' 2]
[Cd - 2]

[„ 1 . 21
Icc . 2] 1

D " ’ [dd . 3] [dl . 3]
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Nach diesem Schema ist im Folgenden das Zahlenbeispiel von § 25. S . 82 von
4 Gleichungen , nebst Summenproben und Fehlersummengliedern [7 1] u . s . w. nochmals

behandelt , und zwar sind alle Beträge [a 6] u . s . w . mit dem Bechenschieber be¬

rechnet , so dass keine Zahl mehr zu schreiben war , als hier hergesetzt ist .

X
a

y
b

z
c

t
d l S Probe

+ 459 - 308 — 389 + 244 — 507 + 501

+ 464 + 408 — 269 + 695 — 990
- 208 — 262 + 164 — 341 4- 337

B ' + 256 + 146 — 105 + 354 — 653 — 2
+ 676 — 331 + 653 — 1017
— 330 + 207 — 430 4- 425
— 83 -f- 60 — 202 4- 373

C ” + 263 — 64 -1- 21 — 219 + 1

+ 469 — 283 + 170
- 130 ~f 270 — 267
— 43 + 145 — 268

+ 137

+ 28l
" "

— 15 + 5 — 53

- 0,486 D " ' + 281 + 137 — 418 0
+ 1129 —1687

— 560 4 - 554
— 490 4- 902
— 2 + 17
— 66 + 203

+ li — li 0

Die zwischen Horizontallinien stehenden Zahlen geben das Endgleichungssystem
(10) § 25 . S . 81 .

Ob durch die vorstehende Eliminations-Anordnung ein rechnerischer Gewinn
im Vergleich mit § 25 . S . 82 erzielt wird , kommt namentlich auf die Zahl der Un¬
bekannten an . Bei wenigen Unbekannten ist es nicht der Fall , dagegen bei zahl¬
reichen Unbekannten ist diese Anordnung nützlich, wenn die Additionen mit wechseln¬
den Zeichen bequem eingerichtet werden.

Diese Anordnung ist bei der trigonometrischen Abteilung der Landesaufnahme
im Gebrauch (mit Logarithmen), jedoch durchaus mit Subtraktion in Form von deka¬
dischen Ergänzungen, so dass der Schluss obiger Tabelle so geschrieben wird :

+ 1129 x 8313
X 9440 554
X 9510 902
X 9998 17
X 9934 203

40011 x 9989
= 11 = — 11

Das kleine schiefe Kreuz x ist dabei Zeichen für dekadische Ergänzung , zum
Beispiel : x 8813 = 8313 — 10000 = — 1687 .

(Anmerkung . Die obenstellende Elimination , ebenso wie S. 82, ist nur mit dem gewöhn¬
lichen Rechenschieber gemacht , weshalb die letzte Stelle nicht überall scharf ist .)
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§ 33 . Gemeinsame Bestimmung aller Unbekannten x y & . . .
und aller Gewichts-Coefficienten [« «] [« ß] u . s. w .

Im Anschluss an das Vorhergehende haben wir noch ein , für gewöhnliche

Zwecke nicht erforderliches, Verfahren gebildet , nach welchem alle Unbekannte x y g . . .

auf emmal erhalten werden.
Wir nehmen die Endgleichungen (9) § 25 . S . 81 nochmals vor :

Endgleichimgen :

A = [a a] x + [a b] y + [ac ] z + [a d] t + [a l] = 0 \
B ' = [b b . 1 ] y + [b c . 1] i? + [b <2 . 1 ] t + [b Z. 1] = 0
C " = [c c . 2] 2 + [c d . 2] t + [c l . 2] = 0
1) "' = [<Zd . 3] f + [(ZZ. 3] = 0

[ll . 4 ] = [« « ]

(1)

Die 4*e Gleichung bestimmt t, und setzt man dieses rückwärts in die 3*e Gleich¬

ung , so hat man auch g, und so fort aus der 2 ‘en und 1 *™ Gleichung auch y und x.

Dieses ist ein Verfahren, welches numerisch häufig angewendet wird.

Nun kann man aber die fragliche Rückwärtssubstitution auch allgemein alge¬

braisch ausführen, worauf sich ein übersichtliches Schema zur numerischen Rechnung

gründen lassen wird.
Wenn man ausser den bereits bei (1 ) vorkommenden Klammern [b b . 1 ] u . s . w .

noch einige andere ähnlich gebaute Coefficienten einführt , welche wir im Folgenden
durch runde Klammern (a c . 1 ) u . s . w. von den früheren unterscheiden wollen , so

bekommt man folgendes Gleichungssystem , von dessen Richtigkeit man sich am

besten rückwärts dadurch überzeugt , dass man die Ausdrücke (3) in (2) einsetzt , und

die Resultate mit (1 ) vergleicht .

— [a a] x — [a, Z] - [bl .~
[bb .

[c l .
[c c .

~?r [a c • i ] -

— [bb . i ] y - [bl .• 1] - [c l .
[c c [b c ■i ] -

— [ec . 2] g = [cl .■2J -

— [dd . 3] t = [dZ . 3]

Dabei haben die neu eingeführten , durch runde Klammern unterschiedenen

Coefficienten folgende Bedeutungen :

(« « ■i ) = i

M - l ) = M ] ~ [^ j [ab ] [

(al . l ) = )

M . 2) = (« <i . l ) - M ^ j (« c . l ) , (bd . 2) = [6 <2 . 1 ] - | ^ | ] [b c . l ] |

(3>

(a l . 2) = (o l . 1)
(U
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Wir fahren nun noch weiter fort, und setzen :

(aJ .8) = («l .2 ) - ^ (ad .2), (N .8) = (W .2) - Ö (W.2 ) , (cZ.3) = [ cZ.2] - jgj ] [cd2 ] (5)

und damit kann man x y z i kurz so ausdrücken:
(al . 3) (bl . 3 ) ( e l . 3) [d l ■3]

x = —
& 4 v = —

$ bÄ
-
]

" = t = -
\dd 73]

_

(6)

Es würde wenig Wert haben , alle diese Formeln aufzustellen, wenn es nicht
ein einfaches Schema gäbe , nach welchem dieselben mechanisch ausgerechnet werden
können . Dieses ist aber der Fall , wie folgendes zeigt :

[a a]3 [et b] 0 [a c] 0 [a d] 0 [a 1]0
[6 6] [6 c] [6 d] [b l]

A [c c] [c d] [c ?]
[dd ] [dl ]

[i q

[bb . l ]3 [ fte . l ] ! [bd . l ] j [bl . l ] i
[cc . l ] [cd . 1] [cZ . lJ

[dd . 1 ] [dl . 1]
pi - i ]

[ab ]o
[« c]o
[ad ]o
[«

[cc . 2]3 [cd . 2] „ [cl . 2]a
G [dd . 2] [dl . 2]

[11 . 2]

(oc . 1 ) [6c . 1] !
(acLl ) [bd . l ] i G '

(al . 1 ) [bl . l ] i

[dd . 8] „ [dl . Sk
[ll . 3]

(ad . 2 ) (bd . 2) [cd . 2] % ,
(al . 2 ) (bl . 2) [cl . 2]2

i [ll . 4] (aZ . 3 ) (bl . 3) (cl . 3) [dl . 3J3 Zähler
[o a]3 [66 . 1] 3 [ec . 2 ]s [dd . 3]3 Nenner

— x — y — g — t Quotient

Folgendes ist der Gang der Kechnung:
1 . Die Abteilung A wird mit den gegebenen Coefficienten ausgefüllt.
2 . Die ganze Abteilung B wird in üblicher Weise berechnet nach der Regel :

[ab ] ,[6 6 . 1 ] = [6 6] [aa ] [a b] u . s . w.

3 . Man füllt die Abteilung B ' aus durch Heruntersetzen der mit 0 bezeichneten
Grössen von A .

4 . Man berechnet 0 und die erste Columne von C ' wieder ganz nach der alten
Regel, welcher sich auch die drei neuen Grössen nach den früher angegebenen
Formeln (3) anschliessen.

5 . Man ergänzt die Abteilung C ' durch Heruntersetzen der mit j bezeichneten
Klammern von B .

3 . Man bildet D nebst den zwei ersten Columnen von D ' wieder nach der alten
Regel, welche für [ll . S] sowie (al . 2 ) u . s. w . gemeinsam ist [vgl . (4)] .

7 . Man setzt wieder die [ . . ,] 2 von C nach D' hinunter .
8 . L und die Zähler in L ' werden wieder nach der alten Regel [s . o . (5)] gebildet.
9 . Die Nenner [ . . ,] 3 werden von A B C D nach L ' hinuntergesetzt .

10 . Die Quotientenbildung in L ergiebt die Unbekannten nach den Formeln (6) .
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Zahlenbeispiel mit 3 Unbekannten .

+ 17,50 x — 6,50 y — 6,50 g —
17,50 y — 6,50 g —

+ 20,50 g +

2,14 = 0
13,96 = 0

5,40 = 0 |
+ 100,34

a b c l

+ 17,50 — 6,50
+ 17,50
— 2,41

— 6,50
— 6,50
— 2,41

— 2,14
— 13,96
— 0,79

+ 20,50
— 2,41

+ 5,40
- 0,79

+ 100,34
— 0,26

+ 15,09 — 8,91
+ 18,09
— 5,26

— 14,75
+ 4,61
— 8,71

— 6,50*
— 6 .50 *
— 3,84

- I 100,08
— 14,42

— 2,14*
- 6,35

-+- 12,83 — 4,10
+ 85,66
— 1,81

— 10,34
— 8,49
— 3,30

— 8,91 *
— 14,75 *
— 2,85

-h 84,35
= [v u]

— 11,79
— 17,50 *

— 17,60
— 15,09*

— 4,10 *
— 12,83 *

+ 0,67 + 1,17 + 0,32

i

= X = y — z

(8)

(9 )

Die Subtrahenden von der Form [a 6] u . s . w. sind hier zur Unterscheidung

mit kleineren Zahlen gedruckt ; dieselben sind durchaus mit dem Rechenschieber
berechnet .

Alle von links nach rechts hinüber gesetzten Zahlen sind rechts mit * be¬
zeichnet .

Wenn es sich nun weiter darum handelt , auch alle Gewichts -Coefficienten [« «]
[« ß] u . s . w. zu bestimmen , so hat man nach (20) § 28 . S . 90 an Stelle der Ab¬
solutglieder [a l ] [6 1] [c 2] die Werte — 1 0 0 zu setzen u . s , w. , und die Elimination
in den hierauf bezüglichen Teilen zu wiederholen , d , h . wir bekommen folgendes :
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b c

— 6,50
+ 17,50
— 2,41

— 6,50
— 6,50
— 2,41

— 1,00
0,00

- 0,37

!
t

H- 20,50
— 2,41

0,00
— 0,37

+ 15,09 — 8,91
-+- 18,09
— 5,26

— 0,37
— 0,37

0,22

— 6,50 *
— 6,50*
— 3,84
— 1,00*

0,16

4- 12,83 - 0,59 — 10,34
— 1,16
— 0,48

— 8,91*
— 0,37 *
— 0,41

- 1,64
— 17,50 *

— 0,78
- 15,09*

— 0,59 *
— 12,83

+ 0,094
= [« «]

+ 0,052
= [* ßi

+ 0,046
= [« y]

b c

+ 15,09 — 8,91
+ 18,09
— 5,26

— 1,00
0,00

— 0,59

+ 12,83 — 0,59 — 8,91*
- 1,00*
— 0,41

- 1,41
— 15,09

— 0,59 *
— 12,83

+ 0,093
= \ßß ]

+ 0,046
= \ßr ]

c

+ 12,83 — 1,00 — 1,00*
— 12,83*

+ 0,078
= [ ff ]

17,50

( 11)

( 12 )

Wir haben das Schema konsequent bis zu [ y 7] fortgesetzt , obgleich die Reci -
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proke von [yy\, nämlich 12,83 , in der Form [cc . 2] , schon in der Berechnung von
x y z bei (9 ) enthalten ist .

Damit haben wir Alles erhalten , was aus den Normalgleichungen (8) für irgend
welche Ausgleichungszweckeüberhaupt abzuleiten ist , nämlich in Zusammenstellung:

x = + 0,67 y = + 1,17 g = + 0,32 [c v] = 84,34 (13)
[« «] = + 0,094 [« ß] = + 0,052 [« j>] = + 0,046 >

[0 ß] = t - 0,093 [ß y] = + 0,046 l (14)
[y y] = + 0,078 )

Beispiel mit 6 Unbekannten.
Um das im VorstehendenbeschriebeneVerfahren auch noch an einem grösseren

Beispiele zu erproben , haben wir 6 Normalgleichungen genommen , welche aus unserer
2 . Auflage , 1877 , S . 53 —64 herstammen (Stationsausgleichung auf Kandel mit
7 Strahlen und 16 Winkeln) , nämlich, ausführlich geschrieben:

a b c d e f l
a + 18 Xj + • 13 Xq 4“ 8 Xq + 8 x^ -i— 6 Xg + 5 Xq — 91,8 = 0
b -{- 13 ä/| + 29 Xq -+ 12 Xq -t- 11 x^ -+ 7 Xg -t- 5 Xg — 95,4 — 0
c + 8 + 12 *2 + 27 xs + 22 x4 + 12 x5 -+■5 xe — 118,9 = 0
d —b- 8 x^ + 11 Xq + 22 Xq —f- 31 x^ -|—18 Xg + 5 xg — 168,4 = 0
e + 6 x} + 7 x2 + 12 £c3 + 18 xi + 22 Xg + 5 x6 — 139,4 = 0
f + 5 U/j + 5 Xq + 5 Xq —(- 5 x4 + - 5 Xg ■+ 8 Xg — 75,5 = 0

+ 1856,1 = [l 1]
Diese 6 Gleichungen finden sich in der Tabelle auf S . 105 nach den 6 Un¬

bekannten xt xq Xq x4 x5 Xg aufgelöst und dazu noch das Quadratsummen-Glied
[ll . 6] = 499 = [« «] bestimmt.

Die Elimination von S . 105 ist mit dem gewöhnlichen Rechenschieber gemacht
(nur ausnahmsweise, wenn bei den Gliedern mit l grössere Zahlen auftraten , ist mit
anderen Mitteln ein wenig nachgeholfen) . Es ist nicht eine Zahl oder Ziffer mehr
erforderlich gewesen , als auf S . 105 geschrieben ist , und die Subtraktionen z . B .
29,0 — 9,4 = 19,6 konnten alle leicht im Kopfe gemacht werden .

Es ist auch jede einzelne Linie durch eine Summenprobe versichert, deren
Stimmen in der äussersten Spalte rechts ausgesetzt ist . Allerdings muss das Glied
mit s am Schlüsse jeder Linie rechts selbst durch eine kleine Nebenrechnung einge¬
setzt werden , wobei jedesmal das mit * bezeichnete von links oben herunter gesetzte
Glied zum vorhergehenden Summengliede negativ zuzunehmen ist , z . B . — 19,0 ist
entstanden aus

(+ 18,4 - 24,4) — 13,0 * = — 6,0 — 13,0 = — 19,0
oder (-! 32,9 - 15,0) — 8,0 * = 17,9 — 8,0 = + 9,9
und dann erst kommt die gewöhnliche Quersummenprobe

+ 6,2 + 23,4 + 18,4 + 9,3 + 2,8 — 78,1 + 8,0 + 9,9 = — 0,1 .
Dieses — 0,1 , welches 0,0 sein sollte , ist in der letzten Spalte rechts hinausgesetzt
um zu zeigen , wie die Linie gestimmt hat . Diese Probestimmungsglieder wachsen
nach unten immer mehr an , schliesslich bis 0,5 , was aus dem allmählichen Häufen
der unvermeidlichen Abrundungsunsicherheiten zu erklären ist . Übrigens kann man
bei der Rechnung selbst immer auch einen Blick auf diese Stimmungsglieder werfen
und einen Teil davon dem Gliede s zulegen , was in unserem Falle geschehen ist,
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a b c d ! e f l — s Probe

a + 18,0 1 + 13,0 + 8,0 + 8,0 + 6,0 + 5,0 - 91,8 + 33,8 0,0

+ 29,0- 9,4
+ 12,0
— 5,8

+ 11,0
— 5,8

! + 7,0
j — 4,3

+ 5,0
- 3,6

I — 95,4
j + 66,3

+ 18,4
— 24,4

0,0

+ 27 .0
— 3,6

+ 22,0
— 3,6

+ 12,0
- 2>7

+ 5,0
1 — 2,2

i — 118,9
j + 40,8

+ 32,9
— 15,0

0,0

+ 31,0
— 3,6

1 + 18,0
|

- 2,7
+ 5,0
— 2,2

— 168,4
4 40,8

+ 73,4
— 15,0

0,0

+ 22,0
|

— 2,0
+ 5,0
— 1,7

— 139,4
+ 30,6

— 69,4
— 11,3

0,0

i + 8,0
— 1,4

— 75,5
+ 25,5

-r- 42,5
— 9,4

0,0

+ 1856,1
— 468,2

— 1166,7 ! 0,0
+ 172,4 '

b + 19,6 + 6,2 + 5,2 + 2,7 + 1,4 — 29,1 + 13,0* — 19,0 0,0
+ 23,4- 2,0

+ 18,4
— 1,6

+ 9,3
— 0,9

+ 2,8
— 0,4

— 78,1
+ 9,2

+ 8,0*
- 4,1

+ 9,9
+ 6,1

— 0,1

-4- 27,4
— 1,4

+ 15,3
— 0,7

+ 2,8
— 0,4

—127,6
-b 7,7

+ 8 ,0*
— 3,4

+ 50,4
+ 5,0

- 0,1

+ 20,0
— 0,4

+ 3,8
— 0,2

— 108,8
+ 4,0

+ 6 ,0*
— 1,8

+ 52,1
-b 2,6

- 0,1

+ 6,6
— 0,1

— 50,0
+ 2,1

+ 5,0*
- 0,9

+ 28,1
+ 1.4

0,0

+ 1387,9
— 43,2

— 91,8*
+ 19,3

— 902,5- 28,2
0,0

e + 21,4 + 16,8 + 8,4 + 2,4 — 68,9 + 3,9 + 6 ,2* + 9,8 — 0,1
+ 26,0
— 13/2

+ 14,6
— 6,6

4 - 2,4
— 1,9

— 119,9
-b 54,1

+ 4,6
— 3,1

+ 5,2*
— 4,9

+ 50,2
— 7,7

— 0,1

+ 19,6
— 3,3

+ 3,1
— 0,9

— 104,8
+ 27,0

+ 4,2
— 1,5

+ 2,7* : + 52,0
— 2,4 ; — 3,8

- 0,2

+ 6,5
— 0,3

— 47,9
-f 7,7

+ 4,1
— 0,4

+ 1,4*
- 0,7

+ 28,1
— 1,1

+ 0,1

+ 1844,7
— 221,8

— 72,5
-b 12,5

— 29 .1 *
-f- 20,0

—901,6
+ 31,6

0,0

d + 12,8 + 8,0 + 0,5 — 65,8 + 1,5 + 0,3 + 16,8* + 25,7 — 0,2
+ 16,3
— 5,0

+ 2,2
— 0,3

— 77 .8
+ 41,2

+ 2,7
— 0,9

+ 0,3
— 0,2

+ 8,4*
— 10,5

+ 39,8
— 16,1

— 0,1

+ 6,2
— 0,0

— 40,2
+ 2,6

+ 3,7
— 0,1

+ 0,7
— 0,0

+ 2,4 *
— 0,7

4 24,6
— 1,0

+ 0,1

+ 1122,9
— 338,3

— 60,0
+ 7,7

— 9,1
+ 1,5

— 68,9*
+ 86,4

—801,1
+ 133,0

0,0

e + 11,3 + 1,9 — 36,6 + 1,8 + 0,1 - 2,1 + 8,0 * + 15,8 + 0,2
+ 6,2
— 0,3

— 37,6
+ 6,2

+ 3,6
- 0,3

+ 0,7
— 0,0

+ 1,7
+ 0,4

+ 0 .5*
— 1,3

+ 23,2- 2,6
+ 0,2

.+ 784,6
— 118,5

— 52,3
+ 5,8

— 7,6
+ 0,3 :

4 17,5
— 6,8

— 65,8 *
+ 25,9

—602,3
+ 50,5

- 0,1

+ 5,9 — 31,4 + 3,3 + 0,7 + 2,1 - 0,8 + 1,9 * + 18,7 + 0,4
+ 666,1
— 167,1

— 46,5
+ 17,5

— 7,3
+ 3,7

+ 10,7
+ 11,2

— 89,9
— 4,2

— 86, 6*
+ 10,1

— 515,2
+ 97,0

- 0,1

t [+ 499,0
= [ll . 61

— 29,0 '
+ 18,0

— 3,6 ;
+ 19,6* ;

+ 21,9
+ 21,4 *

— 44,1 !
+ 12,8* j

— 26,5 i
+ 11,3 *

— 31,4 * ;
+ 5,9 * :

— 886,8 — 0,5

+ 1,6 j + 0,2 j- 1,0 + 3,4 + 2,3 + 5,3
1 ' = *l 1= *2 1= *3 = ®4 = = *6
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und beim etwaigen Nachrechnen zu beachten ist , indem dadurch die Gesamt-Stimmung
noch etwas verbessert worden ist . Offenbar muss , wer ein solches Schema wie S . 105

anwenden will , dasselbe langsam mit dem Rechenschieber in der Hand verfolgen und

erst , wenn er den ganzen Gang mechanisch eingeübt hat , ein neues eigenes Beispiel
vornehmen.

§ 34. Möglichkeit oder Unmöglichkeit der Auflösung der
Normalgleichungen.

Zu den Nebenbetrachtungen , welche sich an die Haupttheorie der Ausgleichung
vermittelnder Beobachtungen noch anschliessen lassen , gehört auch die Frage , ob die

Normalgleichungen überhaupt immer eine Auflösung geben werden ?
In praktischen Fällen wird man schon aus der Natur der Aufgabe selbst

wissen , ob eine Auflösung im gewöhnlichen Sinn möglich ist oder nicht , z . B . wenn

ein Punkt in der Ebene bestimmt wird durch den Schnitt mehrerer Geraden, welche

in einem einzelnen Falle zufällig alle nahezu parallel werden , so sagt schon der

Anblick der Figur , dass keine gute bzw. überhaupt keine Lösung von einer Aus¬

gleichung zu erwarten sein wird.
In diesem und ähnlichem Sinne ist die nachfolgende Untersuchung zu verstehen.
Wir betrachten zuerst den besonderen Fall , dass die Anzahl der Fehlergleichungen

gleich der Anzahl der Unbekannten ist , und nehmen nur 2 Elemente an :

Fehlergleichungen : Normalgleichungen :

rq = dj x + bi y -+- ij [a a] se [a 6] y + [a 1] = 0 (
«2 = “ 2 * + h y + l<i [a b] x + [6 6] y + [ftTj = 0 /

Reduzierte Normalgleichung : [6 6 . 1 ] y -+- [6 l . 1 ] = 0 (2)

Fehlerquadratsumme : [v o] = [1 1 . 2] = [Z2] — —
[b

~
ft

*~
1]

(®)

In diesem einfachen Falle ist aber :

[o a] = a \ -+- a| [a ft] = cq ?q -t- <i2 h2 [a l] = a , ij -+- a2 1%
[b b] = b \ + b \ [ft l ] = ftj Zj + ft2 h

[l l] = l\ -h l\
Setzt man dieses in (2 ) ein, so erhält man nach kurzer Um -Ordnung :

[ftft . l ] =

folglich wird

(®1 h2 — a2 b-f)2
[bl . 1] _ ( « 1 ft2 — ^ 2 bl ) (« 1 ?2 — a i l̂ )

[ft l ■1]
y = — -- J

(4)

(5)
Cti - 0/g CK' —f—&%

(ai \ — a2 h )
[6 6 . 1 ]

_
(a: ft2 — a2 6^

Das ist derselbe Wert y , den man auch unmittelbar aus den Fehlergleichungen
mit = 0 und u2 = 0 erhalten würde. Die Normalgleichungen bilden also hier
einen Umweg , den man aber unter Umständen deswegen betritt , weil dabei das
Gewicht von y , p y = [6 ft . 1] erhalten wird , welches die Fehlergleichungen an und
fiir sich nicht geben würden.

Gehen wir nun weiter zu der Fehlerquadratsumme [v u] nach (3) , so zeigt sich
bald, dass diese gleich Null wird, denn die Ausrechnung giebt :

(n . 7_ _i_ 7_\2 (n . 7 « 7
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Wollte man ferner einen mittleren Gewichtseinheitsfehler berechnen, so würde

man erhalten : tri* = ~ (7)
ü u ü

Denken wir uns, zur Veranschaulichung, unter den 2 Fehlergleichungen etwa
2 lineare Bestimmungen eines Punktes mit den Coordinaten x und y , so erhalten
die Resultate (4) bis (7 ) folgende Deutungen :

Bei 2 Strahlen ist eine Ausgleichung zur Punktbestimmung nicht nötig, wenn
man aber trotzdem die Ausgleichungsformelnanwendet, so geben sie denselben Schnitt¬
punkt x y , den man auch ohne Ausgleichung erhalten hätte , mit bestimmten Ge¬
wichten ^ „ = [66 . 1 ] und p z = [aa . 1] , aber ohne einen bestimmten mittleren Ge¬
wichtseinheitsfehler m .

Hat man aber die Kenntnis eines solchen Wertes m von irgend anderwärts,
so kann man auch mittlere Coordinatenfehler berechnen :

m m
■m , = = - mx = - -

Y [b 6 . 1] Y[aa . 1]
wenn die Coefflcienten

(8 )

Unmöglich wird die Bestimmung von y und x dann
« 1 hi « 2 ^2 i n (1 ) gleiches Verhältnis haben :

— = -— , also (h b9 — ai>bi =
a , o2

d . h . wenn die betreffenden Strahlen parallel werden .
Dagegen wird die Bestimmung von x und y wieder möglich, wenn zu zweien

Fehlergleichungen mit konstantem Verhältnis b : a eine dritte mit anderem Verhältnis
&3 : a 3 hinzutritt , oder allgemein , wenn bei beliebig vielen Fehlergleichungen , mit 2

Unbekannten , wenigstens 2 Fehlergleichungen sind , deren Coefficientenverhältnisseb : a
nicht gleich sind. Denn wenn alle Verhältnisse b : a einander gleich wären , so würde

, [ab ] bauch J1 = — , also :
[o aj a

[66 . 1 ] = [66 ] — ] [a b] = [ft 6] - — [a b] = [& 6] - [bb ] = 0 .

Bei nur 2 Unbekannten x und y lassen sich alle diese Verhältnisse leicht
überblicken ; für irgend welche Zahl von Unbekannten hat schon Gauss in der „Theoria
combinationis “ art . 28 . Betrachtungen über die Möglichkeit oder Unmöglichkeit der
Auflösung angestellt .

In neuerer Zeit ist diese Frage durch die Determinantentheorie theoretisch
noch klarer gemacht worden in folgender Weise :

Die notwendige und hinreichende Bedingung dafür, dass die Normalgleichungen
eine und nur eine Auflösung zulassen, besteht darin , dass die aus den Coefficienten
der in diesen Gleichungen vorkommendenUnbekannten zusammengesetzteDeterminante
von Null verschieden sei .

Diese Determinante entsteht aus dem System der Coefficienten der Unbekannten
in den Fehlergleichungen durch Komposition mit sich selbst. Sie ist daher gleich
(nach dem Multiplikationstheorem der Determinanten) der Summe der Quadrate
derjenigen Determinanten , welche man erhält , indem man aus dem System der Fehler¬
gleichungen auf alle möglichen verschiedenen Weisen jedesmal so viel Gleichungen
herausgreift, als Unbekannte zu bestimmen sind , und die Coefficienten der Unbekannten



108 Determinantenformeln für 3 Elemente. § 35 .

in den herausgegriffenen Gleichungen zu einer Determinante zusammenstellt. Ist von
diesen letzteren Determinanten auch nur eine von Null verschieden, so ist die Deter¬
minante der Coefficienten der Unbekannten in den Normalgleichungen ebenfalls von
Null verschieden.

Das System der Normalgleichungen hat daher jedesmal dann eine und nur eine
Lösung, wenn sich aus den Fehlergleichungen auch nur eine einzige Gruppe von
Gleichnngen absondern lässt , welche eben so viele Gleichungen enthält , als Unbekannte
vorhanden sind , und die Eigenschaft hat , eine und nur eine Lösung zu besitzen.

§ 35. Determimintonformeln für 3 Elemente .
(Ohne Zusammenhang mit unserem allgemeinen Entwicklungsgang .)

Man kann bei 3 Elementen x y z immer noch die Auflösungsformeln für * y e
und die Gewichts -Coefflcienten [a «] [a ff] u . s . w . in einigermassen geschlossener
Form angeben, ähnlich wie bei 2 Unbekannten, namentlich wenn man Determinanten
anwendet, welche selbst ja auch bei 3 Elementen noch übersichtliche Ausrechnung
gestatten .

Praktische Bedeutung haben die nachfolgenden Formeln kaum, denn die nume¬
rische Auswertung der Unbekannten und ihrer Gewichte geschieht immer am besten
auf dem Wege der allmählichen Elimination.

Wenn folgende Fehlergleichungeu vorliegen :
— fli x 4 y + C] z 4 l-\ i

* + &2 y + c2 g 4 - h | . . .
. (
Vn = an x -i- b„ y 4 c„ z 4 l„ |

so sind die zugehörigen Normalgleichungen:
[a a] x -t- [a 6] y + [a c] z •+- [a Z] = 0 >
[a 6] x 4 [6 b] y 4 [6 c] z 4 [b l] = 0 j (2)
\a c] x + [b c] y 4 [c c] z 4 [c l] = 0 '

Durch allmähliche Elimination findet man hieraus :
[bb . l ] y + [6 c . 1 ] z 4 [b l . 1] = ° l
[6 c . 1] 4 [c C . 1 ] Z 4 [ c l . 1] = 0 f [ö)

[c c . 2] e 4 [c l . 2] = 0 (4)
Andererseits kann man die Determinantentheorie anwenden :

[a a] [ri b] [a c] 4 [« a] [b 6] [c c] — [a c] [6 b] [a c] ,D = [a 6] [b 6] [6 c] = 4 [a b] [6 c] [a c] — [a a] [6 c] [bc] (5)
[<« c] [b c] [c c] 4 [a c] [a 6] [& c] — [a 6] [a b] [c c] 1

Analog sei :
'

[a l] [a 6] [a c] [a a] [ei l] [a c] 1
[a a] [a 6] [a l] 1

Dx = [bl ] [b b] [b c] | » . = [a b] [6 l] [6 c] j Dz = [a b] [6 b] [bl ] (6)
[c l ] [b c] [c c] [fl c] [c 1] [c c] \ [a c] [6 c] [cl ] ; 1

Dann werden x y und z SObestimmt :
D x
D

Dv
D

D *'
D (? )
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Zwischen (4) und (5) und (6) bestehen einfache Beziehungen, es ist nämlich :

[C C ' 2] =
[a a] [6 6] - [a 6] [a 6]

[^ • 2] =
[o a] _ [a 6] [tl j ]

(8)

wo der Nenner [a a] [6 6] — [a 6] [a 6] die schon früher in § 17 . benützte Coefficienten -
Determinante zweiter Ordnung ist .

[cc . 2] ist zugleich die Reciproke des Gewichts -Coefficienten [y y] , Alle Ge-
wichts-Coefficienten lassen sich ähnlich darstellen :

[Kß] = W [cel — [&c] [6c ] ^ = _ [ab] [cc] - [ac] [bc]
B

[ac] [66] — [a6] [6c]
B

[aa] [cc] — [ac] [ac] ^ = [6c] [an] — [a6] [ac] l
^

[aa ] [bb] — [ab} [ab] \
D I

Auch die Quadratsumme der übrigbleibenden Fehler, [l l . 2] , kann man dreifach
durch Determinanten darstellen :

[ 11 . 2] :

[l T] [l 6] [ l c]
[75] [66] [6 c]
[lc ] [bc] [cc]

[ao ] [al ] [sc ]
[a f] [i 1] [l c]
[a c] [l c] [c c]

[a a] [a 6] [n Z]
[o 6] [6 6] [6 q
[o l] [6 l] [l l]

[6 6] [6 c]
[6 c] [c c]

[a n] [a 6]
[a 6] [6 6]

( 10)

[a a] [a c]
[a c] [c c]

Die Richtigkeit aller vorstehenden Formeln kann man sofort einsehen , wenn
man die Determinanten zweiten und dritten Grades in bekannter Weise entwickelt.
Uber die Gültigkeit analoger Formeln für mehr als 3 Elemente verweisen wir auf
Vogler, Lehrbuch der praktischen Geometrie , 1 . Teil S . 253 u . ff. , und entnehmen
von dort auch noch , dass die Coefficienten -Determinante D ausser der ursprünglichen
Form (5) noch folgende andere leicht zu begründende Formen hat :

= [a «] . [6 6 . 1] . [c e . 2]

Auch für die Gewichts -Coefficienten bestehen noch manche andere Formen:

[ao ] [a6 ] . [nc] o «] [a 6] [a e]
D = i 0 [6 6 . 1 ] [6 c . 1] = 0 [6 6 . 1 ] [6 c . 1]

! 0 [6 c . 1] [c c . 1 ] 0 0 [cc . 2]

[aa ] [a6 ] 0 j [aa ] [a6 ] 0
[a 6] [6 6] 0 : 0 [6 6 . 1] 0 [aa ] [6 6 . 1] 0
[o c] [6 c] 0 0 [6 c . 1] 1 [6 c . 1 ] 1

D B B
Die erste dieser 3 Formen giebt aufgelöst daselbe wie (9 ).

Man kann solche Formeln vielleicht gelegentlich als Bechenproben benützen.
Die Determinanten sind symbolische Bezeichnungen , ähnlich wie unsere [66 . 1 ]

[cc . 2] u . s . w . , und so lange diese besonders der Methode der kleinsten Quadrate
angepasste Symbolik ausreicht, ist kein Grund vorhanden , eine andere, für numerische
Berechnung weniger geeignete Symbolik anzuwenden .

Die Benützung allgemeiner Determinantensätze zu Betrachtungen von solcher
Art wie am Schluss von § 34. ist dagegen sehr nützlich.



110 Interpolationsausgleichung einer periodischen Erscheinung . § 86 .

§ 36. Interpolationsausgleichung einer periodischen Erscheinung .
Nachdem wir nun die allgemeine Theorie der Ausgleichung vermittelnder

Beobachtungen erledigt haben, mag es am Platze sein , zum Abschluss dieser Theorie
ein Anwendungs -Beispiel vorzunehmen und hier einzuschalten , welches nicht wie fast
alle unsere späteren sonstigen Anwendungen geodätischer . Natur ist .

Wir betrachten eine Ausgleichung von Beobachtungen , welche ihrer Natur
nach einen periodischen Verlauf haben, wie z. B . meteorologische Beobachtungen ,
Pegelbeobachtungen am Meeresufer u. s . w.

Als periodische Punktion nehmen wir die folgende :
F = (F ) 4- rj sin (04 4- cp) 4- r2 ( <*2 + 2 cp) 4- r3 sin («3 4- 3 cp) 4- . . • (1)

wobei cp unabhängige Veränderliche , etwa der Zeit entsprechend , ist . Die Konstanten
r0 r \ r2 r3 . . . «j a2 «3 ■ • • sollen so bestimmt werden , dass die Punktionswerte
sich gegebenen Beobachtungen möglichst gut anschliessen , d . h . dass die Quadrat¬
summe der Abweichungen der Punktionswerte F von den Beobachtungen ein Mini¬
mum werde.

Zum Zweck der Ausgleichung muss man die Punktion ( 1 ) in Bezug auf die
zu ermittelnden Unbekannten linear machen , und zwar geschieht dieses einfach durch
Auflösung :

sin (04 4- cp) = sin aj cos cp 4- cos 04 sin cp
sin (a2 4- 2 cp) = sin a2 cos 2 cp 4- cos «2 sin 2 <p

Wir setzen :
»4 sin 04 = Di
r2 sin a2 = y2

ri cos 04 :
r2 cos k2 ;

Xi
: x2 (2 )

(3)

(4)

und damit nimmt die Punktion ( 1) folgende Porm an :
F = (F ) 4- 2/1 cos cp 4- 2/2 cos 2 cp 4- 2/3 cos 3 cp 4- . . .

4- Xi sin cp 4- » 2 sin 2 qp 4- x 3 sin 3 cp 4- . . .
Man führt also statt der Unbekannten r und a die neuen Unbekannten y und x

ein , und wenn diese ermittelt sind , kann man jederzeit wieder zu r und « zurück¬
kehren, indem man die Gleichungen (2) nach den Unbekannten r und a auflöst .

Wir setzen folgende Beobachtungen voraus :
Amplitude cp = 0 i 2 i 3 i . . . (n — 1) i
Beobachtung F 0 Fi F 2 Fs - - - F n~ 1
Dabei ist i das Intervall der Amplitude pp, und zwar sollen die Beobachtungen

sich gleichförmig auf eine Periode verteilen , d. h.
n i = 360 °. (5)

Man bildet nun aus (3) die den n Beobachtungen F entsprechenden « Pehler-
gleichungrn , deren allgemeine Porm diese ist :

v — (F ) 4- 24 cos cp 4- «4 sin cp 4- y2 cos 2 (p 4- sin 2 cp 4- . . . — F (6)
Die n Fehlergleichungen gehen hieraus hervor, wenn man für qp der Reihe nach

die Werte 0 , i , 2t . . . und für F entsprechend die Werte F 0 Fi F 2 . . . einsetzt .
Wir bilden die Tabelle der Coefficienten der Fehlergleichungen , und um die Bezeich¬
nungen festzusetzen , schreiben wir zu (6) noch die entsprechende Gleichung :

v = a (F ) -\- b yi + c Xi -\- d y3 e x2 1 (7)
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Die Tabelle der Coefficienten a 6 c . . . und der Absolutglieder l ist :

a b c d e 1 . . l

+ 1 cos 0 sin 0 cos 0 sin 0 - * o
+ i COSi sin i cos 2 i sin 2 i (3 i)
+ 1 cos 2 i sin 2 i cos 4 i sin 4 i (6 i) - Ft
+ i cos 3 i sin 3 i cos 6 i sin 6 i (9 t) - Ft
+ i cos 4 i sin 4 i cos 8 i sin 8 i - F 4

(8 )

Wenn man nun die Summen-Coefflcienten [a a] [a &] . . . bildet , so bemerkt
man bald, dass dieselben wegen der symmetrischen Anordnung der Beobachtungen
höchst einfach werden . Die Coefficienten sind nämlich:

[a «] = n [o 6] = 0 [a c] = 0 oII8, [o e] = 0

[bb ]
n~ 2 [6 e] = 0 II O [be] = 0

r n n
[* *] = 2 [ci ] = 0 [c e] = 0

IS
<NIIRa*2, [de] = 0

IIL
Ĵ

(9)

Die Begründung dieser Formeln kann
durch eine geometrische Betrachtung nach neben¬
stehender Fig . geschehen : Die Gleichung (5) ,
ni = 360 °

, entspricht der Konstruktion eines
regelmässigen Vielecks von n Seiten , dessen Pro¬
jektionen auf 2 Achsen sind :

Projektion auf x :
s -+- s cosi + s cos2i + s cosSi + . . .

Projektion auf y .

Geometrische Darstellung der Gleichungen
[a 6] = ö und [a c] = 0

t.X

0 -+- s sin i + s sin 2 i -+- s sin 3 i + . . .
Die Projektionen eines geschlossenen Vielecks
auf 2 Achsen sind aber algebraisch = Null, es
sind daher durch diese Projektionen die beiden
Gleichungen der Gruppe (9) bewiesen :

[a 6] = 0 und [a c] = 0 .
Ganz ebenso verhält es sich mit den übrigen Produktsummen [o <f] = 0 , [<i e — 0

n . s . w., denn hier handelt es sich nur um mehrfaches Durchlaufen von Polygonen
mit Centriwinkeln 2 i , 3 i u . s . w. , und ähnlich verhält es sich auch mit [6 c] , [6 <?]
n. s . w. ; man überzeugt sich , dass jedem Glied sin ( . . .) cos ( . . .) immer ein Glied

gegenübersteht von der Form sin (. . . + 180 ° ) cos (• • •) • Bei den Quadratsummen
[a o] , [6 ft] u . s . w. findet man immer Gruppierung sin? (. . .) -h cos2 (. . .) .
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Indem wir hiernach die Coefflcienten (9) als erledigt betrachten , gehen wir
zur Auflösung der Normalgleichungen über, welche sind :

(9 a)[h h] 2/i . [ft Z] — 0
[c c] Bi H- [c Z] = 0

Jede Nonnalgleichung enthält also nur eine Unbekannte , und Elimination ist
gar nicht nötig . Indem wir nun auch die Absolutglieder [a 1] [ft l] . . . nach (8)
bilden , erhalten wir folgende Auflösung der Normalgleichungen :

n (F ) = - [aZ] = [F ]

yi — — [ ft 1] — (F 0 - f- jftTj cos i —■F 2 cos 2 i -t- jpg cos 3 i . .)
u

^ Bj = — [c l] = ( . . F 1 sin i + F 2 sin 2 i + F 3 sin 3 i + . .)

Yi- 2/2 = — [<ZZ] = (F 0 + Fi cos2i + F \ cos 4i F s cos 6 i + . .)

72- b2 = — [e Z] = ( . . Fi sin 2 i + F 2 sin 4 i + F s sin 6 i + . .)

(10)

Die erste Gleichung n (F ) = [F ] sagt aus, dass (F ) das arithmetische Mittel
aller Beobachtungen F ist , und es scheint nun passend , alle Beobachtungen von
diesem Mittel an zu zählen, und zu setzen :

F 0 = (F ) + fo , Fi = (F ) + fi , F 2 = (F ) + f2 u . s . w.
[/] = 0

(11 )

(12)hiebei ist :
Man darf nun auch in (10 ) überall f statt F schreiben , denn es wird z . B .

durch Substitution von ( 11) in yi :
2 2

2/1 = - (fo + fi cos i + f2 cosü -+- . . . ) -t- - (F ) ( 1 + cos i + cos 2 i -h . . .)

Die Klammer des zweiten Gliedes ist aber = [aft ] = 0 , folglich :
2

2/1 = ~ (f0 + fi cos i + f2 cos 2 i + f3 cos 3 Z - |- . . .) (13)
und ähnlich verhält es sich mit Xi y % b2 • • •

Man kann noch die Summe [v v] und den mittleren Fehler m einer Beobachtung
angehen . Da nach (9 ) alle Produktsummen [<j ft] , [o c] . . . gleich Null sind , so
werden auch alle [6 e . 1 ] , [cd . 2] u. s . w. gleich Null , und damit reduziert sich die
Formel (8) § 27 . S . 85 auf die einfache Gestalt :

Wegen (10) und (9 ) hat man hier :
[ft l]2 _ n
[6 ft] 2

[c Z]2 n
[cc ] 2

[v v] = [ZZ] — n (F )2 — | (y \ + Bf) — | (y\ + Bf) — . . . ( 14)

Wegen (2 ) ist y \ + x \ = r \ y \ + x \ = r \ . . .

[üü ] = [ZZ] — w (F )2 — ~ [rr \
U

Das Anfangsglied [ ZZ] ist nach (8) zunächst :
[ZZ] = [F F ]

also (15
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Aus (11 ) folgt : [FF ] = [ff ] + n (Ff + 2 (F ) [f ] (16)
oder weil nach ( 12 ) [/"

] = 0 ist :
[n ] = [FF ] = [/7 ] + >» (F )2

Dieses in (15) gesetzt gieht : [b «J = [ff ] — - [rr ] (17)
Der mittlere Fehler einer Beobachtung wird :

m = - (18>
wobei u die Anzahl der Konstanten in der Interpolationsformel ist , z . B . in ( 1) ist
u = 7 ; wenn man dagegen schon hei den Gliedern mit 2 cp abbrieht , wie in (14),
so ist u = 5 .

Wir stellen noch besondere Formeln auf für den häufig vorkommenden Fall
n = 12, also nach (5) , i = 30 ° . In diesem Falle wird nach (13) :
6 2/1 = /o + fi cos 30 ° + f2 cos 60 ° - i- fg cos 90 ° + f± cos 120 ° + f§ cos 150°

4 - f6 cos 180 ° -hf 7 cos 210 ° -+ fg cos 240 ° + fg cos 270 ° +- f10 cos 300 ° + fn eos 330 °
Da aber alle hier vorkommenden goniometrischen Funktionen sich auf sin 30 °

= 0,5 und cos 30 ° = 0,8660 reduzieren lassen , so erhält man :
® Vi = (fo — fß ) + {fi — fi — fs — /io) 30 ° + (/

"
j — fb — /7 + /jj ) cos 30 °

Alle derartigen Formeln für n = 12 , entsprechend einer Funktion ( 1) , welche
bis 4 cp fortgesetzt wird, erhält man aus ( 10) , mit Rücksicht auf die Ersetzung der F
durch f, wie bei (13) . Die Resultate sind :

® Fi = {fo fs) + {fi — fi — fs + /io ) s^n 30 ° -+■(fi — fs — fi + fn ) cos 30 °
6 os1 — (fs — fg) + (/ ] -\- fb — fq — fn ) sin 30 ° + (f2 + fi — fs — /)o) cos 30 °

® 2/2 = {fo — fs + fß — fg) + (fi — fi — A + /5 + /7 — fs — /io + /ii ) 30 °
6 »2 = {fi + fi — fi — fs + fi + fs — /io — fn ) cos 30 °

62/3 = {fo — h + fi — fß + fs — /io)
® xs = {fi — fs -l- fb — fi + fg — fn )
3 Vi = (fo + /s + /e + fg) — {fl + fi + fi + fb + fi + fs ■+" /io + fn ) sin 30°
3 xi = {fi — fi +■fi — fg + fi — fs + /io — fn ) cos 30 °

Zu einem Zahlenbeispiel für die Formeln (19 ) nehmen wir die 6jährigen Baro -
metermittel von 1868 — 1873 in Kairo (Jordan , Phys . Geogr . und Meteorol . der lib .
Wüste S . 144). Diese Mittel für die einzelnen Monate gehen in unsere Rechnung
als Beobachtungen F ein , wie folgende Tabelle zeigt :

9> Monat
Beobachtet

Ausgeglichen
r \ f '

Widersprüche
V t’3F ! F - ^758,26 i n

mm mm mm mm mm
0° Januar . . . 0. 761,70 + 3,44 11,83 + 3,95 762,21 + 0,51 0,26

30° Februar . . . . 1. 761,74 + 3,48 12,11 + 2,80 761,06 — 0,68 0,46
60° März . . . . . 2. 757,62 0,64 0,41 + 0,09 758,35 + 0,73 0,53
90° April . . . . . 3. 758,14 _ 0,12 0,01 0,72 757,54 — 0,60 0,36

120° Mai . . . . . 4. 757,15 _ 1,11 1,23 — 0,77 757,49 + 0,34 0,12
150° Juni . . . . . 5. 755,75 _ 2,51 6,30 — 2,52 755,74 - 0,01 0,00
180° Juli . . . . . . 6. 754,51 _ 3,75 14,06 — 4,00 754,26 - 0,25 0,06
210° August . . . . 7. 754,40 __ 3,86 14,90 — 3,46 754,80 + 0,40 0,16
240“ September . . . 8. 757,10 _ 1,16 1,35 1,52 756,74 - 0,36 0,13
270“ Oktober . . . . 9. 758,90 + 0,64 0,41 + 0,84 759,10 + 0,20 0,04
300“ November . . . 10. 760,51 + 2,25 5,06 -i- 2,27 760,53 + 0,02 0,00
330° Dezember . . . 11. 761,61 + 3,35 11,22 + 3,08 761,34 — 0,27 0,07

Mittel {F ) = 758,26 + 13,16 78,89 ■f 13,03 758,26 + 2,20 2,19
— 13,15 — 12,99 — 2,17

Jordan , Handb . d . Vermessungskunde . 4. Aufl . I . Bd . 8
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Nach (19) wird berechnet :

6 yx = + 20,561 6 2/2 — — 0,270 6 2/3 = + 6,31 61/4 = + 0>U
6 »! = — 2,479 6 *2 = - 3,603 6 xs = -t- 2,24 6 cc4 = + 1,49

+ 20,561 96 ° 53'
Nach (2 ) hat man tang ax

1 20,561
6 sin % 6 cos aj

und in gleicher Weise findet man auch die übrigen a und r , so dass man hat :
«! = 96 ° 53' = 3,452
«2 = 184 ° 17 ' r2 = 0,602
«3 = 55 ° 55' rs = 0,666
«4 = 4 ° 13' r4 = 0,249« 4 = 4 ° l d

Die Interpolationsformel heisst jetzt :

f = 3,452 sin (96 ° 53' + <jp) + 0,602 sin (184 ° 17' + 2 cp) }
4 - 0,666 sin (55 ° 55 ' 4- 3 cp) + 0,249 sin (4 ° 13 ' + 4 qp) |

(20 )

oder die ganze Formel nach ( 1 ) :
F ' = 758,26 + f

Hiernach sind die ausgeglichenen Werte f und F ' der Tabelle unten auf S . 113 berechnet.
Durch Vergleichung der beobachteten und der ausgeglichenen Funktionswerte F

oder f erhält man die Widersprüche v , deren Quadratsumme sich in der vorstehenden
Tabelle (S . 113) durch unmittelbare Rechnung [u v] = 2,19 ergiebt . Zur durchgreifenden
Kontrolierung der ganzen Ausgleichungsrechnung bestimmt man diese Summe auch
noch nach (17 ) :

[rr ] = 12,784
6 [r r] = 76,704

<W
[v ®] = [f f ] — -f [r »•] = 78,89 - 76,70 = 2,19

was mit der unmittelbaren Ausrechnung von [v «] = 2,19 vollständig stimmt . End¬
lich hat man noch den mittleren Fehler einer Beobachtung nach (18) :

± 0,85’
12—9 (21 )

Wenn man nur bis zu den Gliedern mit 3 cp gehen will , so hat man lediglich
in (20) das letzte Glied wegzulassen , und umgekehrt , wenn man mit der Überein¬
stimmung zwischen der Rechnung und Beobachtung nicht zufrieden ist , und deswegen
ein weiteres Glied in die Formel aufnehmen will , so fügt man , mit Beibehaltung
aller erstmals erhaltenen Resultate , weitere Glieder bei .

Wie viele Glieder man der Interpolationsformel ( 1) geben soll , ist natürlich
nicht allgemein festzusetzen , man kann nur verlangen , dass der mittlere Fehler (18)
nach der Ausgleichung , den Abweichungen , welche die Beobachtungen vor der Aus¬

gleichung unter sich zeigten , möglichst entspreche.
Die hier behandelte Interpolationsrechnung ist zuerst von Bessel in den astr . Nachrichten

6. Band 1828 S. 333 —356 behandelt worden : „Über die Bestimmung des Gesetzes einer periodischen
Erscheinung “. Unsere vorstehende Darstellung giebt das Bessel sehe Verfahren , nur in etwas mehr
anschaulicher Darstellung .
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Die Coefücienten sin i stn 2 i sin 3 i . . . cos i cos 2 i cos 3 i . . welche wir in (19) für n — 12
also i = 30° ausgerechnet haben, kann man auch für andere Fälle ein für allemal berechnen,
z. B. « 5= 73, t = 4° 55' 53" (5tägige Mittel, n = 365 : 5) sind die Logarithmen solcher Coefficienten
mitgeteilt in : „Des anomalies de la temperature observees ä Geneve par Plantamour , Genf und
Basel 1867“ S. 20 und 21, wobei jedoch die Amplitude cp anders gezählt ist , so dass die Formeln
und die zugehörigen Coefficienten nicht unmittelbar mit den unsrigen übereinstimmen.

Hiezu ist auch zu berichten : Ein graphisches Verfahren zur Herleitung der Coefficienten
der Bessel sehen Reihe, von Prof. Dr. Paul Schreiber in der Meteorologischen Zeitschrift, Juni 1891,
S. 237.

Bedingte Beobachtungen .

Nachdem wir in § 12.—36. die vermittelnden Beobachtungen als unmittelbare Folge des
allgemeinen Ausgleichungsprinzips von § 12. vollständig durchgenommen haben , gehen wir über
zu einer zweiten Form der Ausgleichungsaufgaben , den bedingten Beobachtungen , und zwar wollen
wir im nächsten § 37. zuerst zeigen , wie sich die Ausgleichung bedingter Beobachtungen auf die
bereits bekannte Ausgleichung vermittelnder Beobachtungen zurückführen lässt , worauf in § 33 ,
39 u. ff. die selbständige Lösung der neuen Aufgabe sich anschliessen wird .

§ 87. Bedingte Beobachtungen , zurückgeführt anf vermittelnde
Beobachtungen.

Es wurden n Grössen unmittelbar beobachtet , zwischen denen r streng zu
erfüllende Bedingungsgleichungen bestehen , wobei n grösser als r ist ; es sollen die
wahrscheinlichsten Werte der n Grössen bestimmt werden .

Ein sehr einfacher Fall dieser Art ist z . B . die Messung von 3 Winkeln
* 2 » 8 in einem Dreieck , wobei eine Bedingungsgleichung ®i 4 - x 2 4 - x 3 — 180 ° = 0

besteht (bzw . 180 ° 4- sphär . Excess) , also n = 3 , r = 1 .
Wir haben diese Aufgabe bereits in § 10 . S . 31—35 auf eine Ausgleichung

nach dem arithmetischen Mittel znrückgeführt.
Man kann immer die Ausgleichung bedingter Beobachtungen anf vermittelnde

Beobachtungen zurückführen , was wir nun zeigen werden .
Wir nehmen an , es seien n unbekannte Grössen x^ x% xs . . . xn zu bestimmen

und man habe hiefür die gleich genauen Messungen Zj lg h • • • 1» gemacht. Zwischen
den Unbekannten x bestehen folgende r streng zu erfüllende Bedingungsgleichungen:

Anzahl =

ctQ 4- o.^ X] ~f- a2 a.*2 ~ o3 x3 4~ . . . 4~ Xn Xn — 0
5q 4~ -f- bg #2 4~ b3 x3 -f- . . . 4- Xn — 0
Cq -4“ Cj Xi 4~ Cg £Cg 4“ C3 Xq 4~ . . . 4~ Cn X% — 0 ’

Tq —4 X^ 4 " T2 X2 4 ~ 9*3 ££3 —{- . . . 4 ~ Tn Xn — 0

(1 )

Anzahl = n

Setzt man an Stelle der Unbekannten x die Beobachtungswerte l, so sind die
Gleichungen (1 ) nicht mehr befriedigt, sondern sie geben :

(Iq - f- 1] 4 ~ Q>2 1% 4 " 0 3 4 ~ . • • 4 ~ &n ln — 901
—j—bj 4~ bg 2̂ 4~ b3 ?3 4- . • • 4 " 5« ~ 90g

c0 4 “ C1 ^1 “b c2 2̂ 4 “ c3 ^3 ~b* * . ■4 “ cn ln — 903 (2)

Tq 4 - T\ 4 “ 9*2 lg 4 “ 9*
3 4 “ * * - 4 “ Tn ln — 90,
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