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Nun muss man andererseits anch z aus den Normalgleichungen (2) bestimmen,

Elimination von & und %, was wir mach dem Verfahren der unbestimmten

Coefficienten thun wollen, d. h. wir multiplizieren die Gleichungen (2) mit den zu-

niichst noch unbestimmt gelassenen Coefficienten § , ¢)g . ()3, wodureh wir erhalten:

@1 I_-u I'| e Qi [re bly+Ghlaclz+ @ lal] 0 l
Qs [a b] x Qa[bb]ly -+ Qa[bele+ Qalbl] ) (3
Qslacl v+ Qsbely+QYalecle+Qalel] =0 I

Wenn man diese 8 Gleichungen addiert, so sollen 2 und y versechwinden und
¢ soll den (loefficienten = 1 erhalten, d. h. es wird iiber die Coefficienten @7 @y Qs

30 verfiigt, dass wird:

Oy [aa) + Qolab Gglacl=\ l
Q[ab] + Qubb] - Quloel =0 (19)
(LJl I’-J- .": : f‘.!'.;.’ _|'_r tl 1 "".J_i |f_' (& |

Damit piebt die Addition der 3 Gleichungen (9):
20 al] + Qa[bl] +-Qalcl]=10 (11)

s wird it der urspriinglichen Annahme, d. h. mif der dritten Gleichung von (6)

verglichen, und dazu ist notig, dass wir die Klammern [al] , [b1] , [el] in (11) auf-
losen und alles nach I, &y I3 1; ordnen, d. h.:
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Zur Vergleichung setzen wir die dritte Gleichung von (6) her, ndmlich:
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gt (10), so erhidlt man:

[a] = [aa] @ + [ab] @+ [ac] G = 0 (14a)
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Macht man dasselbe auch mift b und mit e, so bekommt man anch:
[by] =[ab] @ + [0 €+ [bel Q3 =0 (14b)
[e 7] = [ac] @+ [bc) Q2+ [cc] Qs = 1 (14¢)
Diese 3 Gleichungen [ay] =0, [byl=0, [ey] = 1 sind erhalten worden bei
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man analoge Gleichuneen erhalten und die Gesamtheit aller soleher Formeln ist:

[a ¢ I [bel=10 [ca] =10
T :';J- 1] { =1 ;r‘ :': 0 l (15}
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Auf diesem Were bekommt man fir die (20) folgendes

(3*) und (4*) 3. 88 entspricht:
aalley] + [ab][p7y]

(21 a)

(21 b)
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Wir nehmen diese Schlussgleichung von (21¢) zusammen mit (8) und haben:
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Da unsere Betracht

redanken nach nicht an drei g

iwrt, aber dem

gwar mit drei Elementen x y z gefil

bunden ist, heisst dieser Satz nach ) allgemein:
Wenn man die Normalgleichungen nach der (aussschen Methode allmiihlich
d: h. [b5.1] 5 [ce. 2

r Unbekannten fibrig bleibt, so ist

(]

u. 5. w. bildet, bis nur noch eine Gleichung mit

letzten Gleichung der Coefficient

nten zugleich das Gewicht der Unbekannten.

Diese Gewichtsbestimmungsmethode ist sehr gebriuchlich.
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