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164 Bedingungsgleichungen im Viereck . § 57.

Durch die vorstehenden Betrachtungen ist auch klar geworden , dass alle Aus¬

gleichungsaufgaben sich auf den Fall II . vermittelnde Beobachtungen , zurückführen
lassen, wie wir schon am Anfang von § 12 . S . 41 behauptet haben.

Aus diesem Grunde war es auch nur nötig , den Satz für den mittleren Fehler,
betreffs der Division mit n — u in (19 ) § 27. S . 87 für vermittelnde Beobachtungen
zu beweisen ; auf die übrigen Fälle könnte dieser Satz dann durch einfache Betracht¬

ungen über die Zahl der Beobachtungen und der Unbekannten übertragen werden,
wie z . B . für den allgemeinsten Fall V . in der vorstehenden Gleichung (10 ) ge¬
schehen ist .

Kapitel II .

Triangulierungs - Netze .
Die Ausgleichung der Triangulierungsnetze ist eine der wichtigsten Aufgaben der M. d . kl . Q-

und hat durch ihre Dringlichkeit am allermeisten zur Entwicklung der Ausgleichungstheorien bei¬

getragen . Diese Ausgleichung geschieht in den meisten Fällen nach bedingten Beobachtungen , und

wurde zum erstenmale von Gauss gelehrt im Jahre I82fi in der Abhandlung „supplementum theoriae

combinationis “ (vgl . S. 4.).
Die erste Aufgabe zur Triangulierungsausgleichung besteht in der Aufstellung der Beding¬

ungsgleichungen , mit welchen wir uns deshalb nun beschäftigen .

§ 57 . Bedingungsgleichungen im Viereck .

Ehe wir für Dreiecksnetze im Allgemeinen die Bedingungen aufsuchen, welche
zwischen den gemessenen Winkeln oder Richtungen bestehen , wollen wir den ein
fachen Fall eines Vierecks mit zwei Diagonalen vorausschicken, um an diesem Bei¬

spiele die Art der Behandlung zunächst kennen zu lernen.
In dem ebenen Viereck (Fig . 1 .) seien die

8 einzelnen Winkel gemessen, welche mit 1 , 2 , 3 . . . 8
numeriert sind , es sei z . B . (1 ) der Winkel D AG
und (2 ) sei der Winkel GAB . Es ist also ange¬
nommen , dass auf A zuerst nur A D und A C in
einem Satze angezielt sind , dann in einem zweiten
Satze A G und A B , oder kurz , es sind auf A die
zwei einzelnen Winkel ( 1 ) und (2) gemessen , und.
nicht ein Satz mit den 3 Richtungen AD , A C und
A B . (Der Fall von Richtungsmessungen wird erst
nachher behandelt werden .)

Nachdem also ü6er die Art der Messung Klarheit gegeben ist , überlegen wir,
dass 8 Winkel für die eindeutige Konstruktion eines Vierecks zu viel sind : 4 Winkel
würden ausreichen, um bei einer gegebenen Seite das Viereck zu konstruieren, es
sind also 4 Winkel überschüssig , und diesen müssen 4 unter sich unabhängige Be¬
dingungsgleichungen entsprechen.

Kg . l .
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Suchen wir diese Bedingungen auf, so sieht man zuerst , dass 4 geschlossene
Dreiecke da sind , welche geben :

Dreieck AB B ( 1 ) + (2) + (3) + (8) = 180 ° ( 1)
„ BGB (4) + (5) + (6) + (7) = 180 ° (2)
„ ABC ( 1 ) + (6) + (7) 4- (8) = 180 ° (3)
„ ABC (2) + (3 ) + (4) + (5) = 180 ° (4)

Diese 4 Gleichungen sind aber nicht von einander unabhängig; z . B . wenn
man (1 ) und (2) addiert und (3 ) subtrahiert , so erhält man (4) , oder allgemeiner,
wenn 3 Dreiecke schliessen, so schliesst das 4 ‘e von selbst.

Man bemerkt auch, dass wenn die einzelnen Dreiecke auf 180 ° schliessen , auch
von selbst das ganze Viereck auf 360 ° schliesst, d . h . :

( 1 ) + (2) -+- (3) + (4) + (5) + (6) + (7) + (8) = 360 ° (5)
Durch diese letzte Gleichung in Verbindung mit irgend welchen zweien der Gleich¬
ungen ( 1 )— (4) wird ebenfalls alles ausgedrückt , was über Winkelsummen in dem
ebenen Viereck (Fig . 1 .) gesagt werden kann.

Da wir also nur 3 unabhängige Winkelsummengleichungen gefunden haben ,
aber im Ganzen bei 8 Winkeln 4 Bedingungen bestehen müssen , müssen wir noch
eine 4te Gleichung suchen, welche auch bald durch die Konstruktion nach Fig . 2.
angedeutet wird .

Wenn nämlich auch die 4 Dreiecke in ihren
Winkelsummen je auf 180 ° schliessen , so ist damit
noch nicht gesichert , dass das Viereck als Ganzes
schliesst , denn es kann bei der Konstruktion von
der Basis A B aus , etwa bei B ein fehlerzeigendes
Dreieck B 1 2>2 B s entstehen , indem mit dem Drei¬
eck ABC begonnen wird , und dann die drei
Strahlen AB , B B , CB gezogen -werden , welche
im Allgemeinen sich nicht in einem Punkte schnei¬
den werden.

Fig . 2.

Um auszudrücken, dass das fehlerzeigende Dreieck auf einen Punkt zusammen¬
schrumpft , kann man z. B . B B ^ = B B s setzen , d . h . :

A B sin ( 1 -4- 2)BB , =

BBo =

sin (8)
A B sin (2) sin (5 ■ ■6)

(S)

sin (5) sin (7)
Diese beiden einander gleich gesetzt geben :

sin ( 1 + 2 ) sin (5) sin (7) = 1 (6)sin (8 ) sin (2) sin (5 + 6)
Dieses nennt man eine Seitengleichung, und zwar für B als Zentralpunkt, weil

nach Fig . 1 . die Gleichung (6) ausdrückt, dass B A über B B und B C in sich selbst
zurückgerechnet stimmen muss .

Dieses (6) ist nicht die einzige Form, in welcher das Schliessen des fehler-
zergenden Dreiecks ausgedrückt werden kann ; man kann z. B. auch A als Zentral¬
punkt nehmen und ausdrücken, dass A Bj = A JD2 werden soll , und das giebt :

(A) sin (3) sin (5) sin (7 8) _ ^
sin (6) sin (8) sin (3 -f- 4)

(7)
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Später werden wir sehen , dass es sogar 7 verschiedene Formen von Seiten¬

gleichungen in einem Viereck giebt, jedoch mag es hier genügen , wenigstens die

nötige und genügende Zahl von Gleichungen gefunden zu haben , indem wir etwa

(1 ) (2) (S) nebst (6) auswählen , und damit die schon zu Anfang erkannte Zahl von
4 unabhängigen Gleichungen haben .

Umformung der Bedingungsgleichungen.
In den bisherigen Gleichungen mögen ( 1 ) , (2 ) , (3 ) . . . die Winkel überhaupt

bezeichnen und z. B . die Gleichung ( 1 ) sagt , dass die Summe (1 ) + (2 ) + (3 ) + (8)
den Betrag 180 ° erfüllen soll , was bei beobachteten Winkeln wegen der unvermeid¬
lichen Beobachtungsfehler nicht der Fall ist . Wir werden deshalb nun unterscheiden
zwischen beobachtetenWinkeln ( 1 ) , (2) , (8) . . . und ausgeglichenenWinkeln [1 ] , [2] , [3] ...
und Winkel-Verbesserungen öj , ö2 , 6S

*) . . . in dieser Weise :

( l ) + ö1 = [ l ] , (2 ) + <S'2 = [2] , (3) 4- ö3 = [3] . . . (8)
Als Vergleichung mit den allgemeinen Formeln von § 37 . haben wir also die

(1) , (2) , (3) entsprechend den dortigen lt , l2 , I3 und die [ 1] , [2] , [3] entsprechend
den Xi , 052 , *3-

Die Summengleichung für ( 1 ) , (2 ) , (3) , (8 ) giebt also nun :

Ausgeglichen : [ 1] -t- [2 ] -|- [3] + [8] — 180 ° = 0 (9)
Setzt man aber die beobachteten (1) , (2) , (3) , (8) ein , so stimmt die Gleich¬

ung (9) nicht mehr, sondern es entsteht ein Widerspruch tv :
Beobachtet: ( 1) -f - (2) (3) + (8 ) — 180 ° = 10 ( 10)

Um den Widerspruch zu tilgen , werden den Beobachtungen gewisse Verbesserungen
81 , , 8S , ös zugeteilt , also :

( 1 ) + öi + (2) + ö2 + (3) + ö3 + (8 ) + ö8 — 180 ° = 0 ( 11)
Aus (10 ) und ( 11 ) folgt :

“f- d2 + 63 dg -{- w = 180 °

Als Zahlenbeispiel wollen wir zu Fig . 1 . folgende
annehmen, welche wir nach den 4 Dreiecken gruppieren :

( 1) =
(2 ) =
(3) =
(8 ) =

37 °
34
41
66

26 ' 41
35 25

"

I
17
40

34
24

180 ° 00'
w = -

(4 ) = 55 °
(5) = 48
(6) = 29
(7 ) = 46

58'
9

51
1

04"
- 4"

2"
2

26
27

179 ° 59 ' 57 ”
w = — 3”

72° 2' 6” (2 ) =
(3 ) =
(4) =
(5) =

34 °
41
55
48

35'
17
58

9

25 ' '
34

2
2

78 ° 0' 28”
(1 ) =
(81 =
(7) =
(6) =

37 °
66
46
29

180 c 00' 01 "
= -+ - 1”

(12)

Winkel als beobachtet

96 ° 75' 36”

180° 00 ' 03"
io = •+- 3"

26 ' 41”
40 27 |

1 27 |
51 26

112 ° 41 ' 54”

(13)

*) Die IFmMverbesserungen werden hier $ genannt , weil das sonst für Beobachtnngsver -

besserungen von uns benützte Zeichen v für die nachher folgenden .RicÄfnJjgsverbesserungen Vor¬
behalten werden soll .
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Diesen 4 Dreiecken entsprechen nach (12) folgende 4 Bedingungsgleichungcn:
ö ,

«4
( « 1

4 - Ö2 4 - d'3 -+- ög — 4" _ 0 ( 14)
- r 4 - 84 - r- 8S 4 - 3" = 0 (15 )
+ ÖS 4- ö6 4 ~ ö7 — 3” = 0 (16)
— Öq 4 - 6 7 4 - dg 4 - 1" — 0) (17 )

nur 3 Gleichungen unab -
(17) in Klammer gesetzt

davon sind aber, wie wir schon zu Anfang gesehen haben ,
hängig (was wir dadurch angedeutet haben , dass die letzte
wurde).

Nach diesem müssen wir auch die Seitengleichung (6) auf lineare Form bringen,
und rechnen dazu zunächst logarithmisch aus :

log sin Diff. für 10"
O0011»o ' 09 ' 02” 9 .872 0983 189

(7) = 46 01 27 9 .857 1109 203
( 1 4- 2) = 72 2 6 9 .978 2924 69

9 .707 5016

(8) = 66 ° 40 ' 27" 9 .962 9694 90
(2) = 34 35 25 9. 754 1220 306

00II+ 00 28 9 .990 4169 45
9 .707 5083

Probe 9 .707 5016 — 9 .707 5083 = — 0 .000 0067
oder in Einheiten der 7 . Stelle : w — — 67

( 18)

(19 )
Um eine Beziehung zwischen diesem logarithmischen Widerspruche und den

Winkelverbesserungen ö herzustellen, haben wir bei der logarithmischen Rechnung (18 )
die logarithmischen Differenzen für 10 ' ' aus der dabei benützten logarithmisch-trigono-
metrischen Tafel notiert , z . B . 189 für den Winkel (5 ) = 48 ° 9 '

. Wir wissen also,
dass eine Änderung dieses Winkels um 1" den Betrag 18,9 Einheiten der letzten
Stelle giebt , oder eine Winkeländerung = 8$ Sekunden wird 18,9 8S letzte Einheiten
bringen . Ebenso verhält es sich bei den anderen Winkeln , und man kommt daher
bald zu dem Schluss , dass die Winkeländerungen ö5 , d7 , 6'

i 4- ö2 , . . . den Wider¬
spruch w = — 67 in folgender Weise zusammenbringen müssen :

+ 18,9 8S + 20,3 8-, + 6,9 (tfj + ö2) — 9,0 8S - 30,6 Ö2 — 4,5 (ö5 + ö6) — 67 = 0 (20)
Dabei ist in Einheiten der 7 . Logarithmenstelle gerechnet , was aber nicht

wesentlich ist ; rechnet man in Einheiten der 6 . Stelle , so erhält man :
^ 1,89 Ö5 + 2,03ö7 + 0,69 (öj + ö2) - 0,90 8S — 3,06 ö2 — 0,45 (ö5 4 - ö6) — 6,7 = 0 (21)

Wenn man dieses zusammenfasst und ordnet , so erhält man :
4- 0,69 — 2,37 8Z -+- 1,44 85 — 0,45 8e + 2,03 S7 — 0,90 S8 — 6,70 = 0 (22)

Man kann überhaupt eine solche Gleichung mit jeder beliebigen Zahl multi¬
plizieren oder dividieren, ohne deren sachliche Bedeutuug für die Ausgleichung zu
ändern , und aus formellen Gründen ist es sehr nützlich, die Coefficienten der Seiten¬
gleichungen möglichst nahe = 1 zu machen , weil auch die Summengleichungs-Coeffi -
cienteu in (14) — (17 ) alle = 1 sind .

Rechenprobe für das Absolutglied der Seitengleichung .
Die logarithmisch-trigonometrische Rechnung (18 ) lässt man nicht gern ohne

robe , weil ein Fehler im Absolutgliede w sich durch die ganze Rechnung fort-
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pflanzen und erst am Schlüsse in schlimmer Weise zu Tage treten würde . Abge¬
sehen von der unmittelbaren Doppelrechnung nach demselben Verfahren hat man hier
bei sphärischen Dreiecken die erwünschte Probe, dass die Seitengleichung sowohl für
die unmittelbaren Dreieckswinkel gilt , als auch für die nach dem Legendreschen
Satze um je !/3 Excess verminderten Dreieckswinkel. Da in unserem Falle (13) —(18)
nur ein ebenes Viereck angenommen ist , können wir diese Probe hier nicht zeigen,
behalten uns aber vor , dieselbe später zu behandeln (§ 59 .) .

Theoretische Berechnung der Seitengleichungs-Coefftcienten .
Obgleich die Coefficienten 18,9 , 20,3 u . s . w. der linearen Seitengleichung (20)

sich unmittelbar empirisch als logarithmische Sinusdifferenzen ergeben haben , ist es
doch nicht überflüssig, diese Coefficienten auch theoretisch zu berechnen.

Wir wollen dazu etwas allgemeiner eine Seitengleichung so annehmen :
sin ( 1 ) sin (3 ) . . . = ^sin (2) sin ( 4 ) . . .

oder in logarithmischer Form :
log sin (1) — log sin (2) + log sin (3) — log (4) . . . = 0

Dieses soll sein , ist aber im Allgemeinen nicht erfüllt , sondern giebt einen logarith-
mischen Widerspruch tv :

log sin (1 ) — log sin (2) + log sin (3) — log sin (4) . . . = w (24)
Der Widerspruch w soll durch Zufügung der Verbesserungen ö'

j , ö3 . . . zu
den beobachteten Winkeln ( 1 ) , (2 ) . . . getilgt werden , d . h. es soll werden:

log sin ^(1) + d'
jJ — log sin ( (2 ) + + . . . = 0

Hiezu findet man nach dem Taylor sehen Satze :

log sin (( 1) + 6'
j ) = log sin (1 ) + p cotg (1 ) — (25)

Hiebei bedeutet p = 0,43429 . . . den logarithmischen Modulus und der Nenner
p = 206 265” ist zugesetzt , damit 5] im letzten Gliede in Sekunden gerechnet
werden kann. Durch Ausrechnung findet man :

log = 4 .32336 — 10J e
oder log - = 1 -32336

Q
p 0 -3236

Wir wollen den Coefficienten von
haben dann :

= 0,0000021 -055
Q

— = 21 .055 für 7 . log . Stelle |
Q (26>
„ 2,1055 „ 6 . , „

'

Ö1 in (25 ) kurz mit a1 bezeichnen , und

log sin (( 1 ) + öj ) — log sin (1 ) = ax öj mit cotg ( 1) (27)

Nehmen wir als Beispiel die Berechnung (18 ) , so ist :
(5) = 48 ° 09 ' 02” log cotg (5) = 9 .95214

log (fi ■■ q) = 1 .32336 für 7 . Stelle
log a5 = 1 27550

a5 = 18,858 für 7 . Stelle.
Dieses ist mit 18,9 in (20) hinreichend übereinstimmend.
Wenn man alle Coefficienten so ausrechnet, so erhält man statt (20) :

-+-18,858 05+ 20,2226; -*-6,827 (0 ] + ö3) — 9,079ö s — 30,532 — 4,472 (d'
5+ öe ) — 67,0 (28)
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Offenbar ist es streng genommen überflüssig, in solcher Weise die Coefflcienten
genauer zu berechnen als sie diejenige Logarithmentafel liefert, mit welcher man
den Widerspruch iv rechnet , oder mit welcher man nachher das Dreiecksnetz selbst
zu rechnen beabsichtigt ; indessen da man wegen der vielen im Laufe der langen
Rechnung sich häufenden Abrundungsfehler die Coefflcienten oft am Anfang mit mehr
Stellen schreibt, als man schliesslich braucht, so kann man bei sehr ausgedehnten
Netzen wohl lieber die Coefflcienten nach (26) ausrechnen, als die weiteren Stellen
mit Nullen ausfüllen.

Richtungs-Beobachtungen.
Bisher haben wir angenommen , man habe Fis- 8-

reine WwtfteZmessungen, d . h . in jedem Messungs¬
satze nur zwei Sichten, so dass in Fig . S . die 8 ein¬
zelnen Winkel T) A C = ( 1 ) , GAB = (2 ) u . s . w.
gemessen sind .

Statt dessen wollen wir nun die neue An¬
nahme machen , es sei auf jedem Punkte ein
voller Satz von Richtungen gemessen , also z . B .
in A seien die drei Sichten AB,AG,AB
gleichartig eingeschnitten. (Natürlich kann man
auch annehmen , es seien mehrere solche Sätze
gemessen, und in ein Mittel vereinigt.)

Dann hat man statt 8 Winkeln 12 Richtungen , wie in Pig . 3 . an den Pfeil¬
spitzen angeschrieben ist .

Wenn man wie bisher eine Winkelverbesserung mit ö bezeichnet und die
Richtungsverbesserungen der beiden Winkelschenkel nun mit Vi und v2 bezeichnet,
so ist lediglich 8 der Differenz v2 — « | gleich zu setzen , also in Fig . 3 . :

ö'
i = c2 — v x , ö2 = vs — «2 , d'

i + ^2 = »3 — « i u . s . w .
Auf diese Weise gehen die früheren Gleichungen (14) — (16 ) und (21 ) in fol¬

gende über :
(«3 — ®l ) + («5 — «4) + (« 12 — ®ll ) + 4" = 0
(«3 — «2

~
1 + («6 — vi ) fl- («8 — ) + 3 ' = 0

(«6 — «ö) -+■ («9 — «7) + («11 «io ) — 3" = 0
1,89 (»8 — v7) -f- 2,03 («n — « 10) + 0,69 (v3 — v^ — 0,90 (®12 — ®n ) — 3,06 (v3 — v2)

— 0,45 (vg — v7) — 6,7 = 0
Nach den Nummern geordnet und bzw . zusammengefasst giebt dieses :

— v1 + vs — v4 + v5 — vn -h v12 + 4" = 0 (29)
— «2 -+- «3 — «4 + «6 — « 7 + «3 + 3" = 0 (30)
— 7:5 -1- i'q — «7 -t- «9 — «10 -r «11 3 = 0 (31 )

- 0,69 v, + 3,06 «2 — 2,37 v3 — 1 .44 v7 + 1,89 vs — 0,45 ®9 — 2,03 ®10 -r 2,93 ®n
— 0,90 ®,2 — 6,7 = 0 (32)

Diese 4 Gleichungen (29)—(32) sind der Richtungs-Ausgleichung des Vierecks
(% • 3 . ) zu Grunde zu legen.

In jeder dieser Gleichungen (29)—(32 ) ist die algebraische Summe aller Coeffl¬
cienten gleich Null , nämlich in (29) bis (31 ) : 3 — 3 = 0 und in (32) : ^ 7,88 - 7,88 = 0 .
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Dieses ist nicht zufällig , sondern tritt hei Bedingungsgleichungen für Richtungs -

messungen immer ein , wie aus der Entstehung der Gleichungen leicht zu ersehen
ist . Auch die Richtungsverbesserungen v selbst geben , bei gleichen Gewichten, stations¬
weise addiert stets die Summen Null , wie am Schluss des nächsten § 58 . S . 176— 177
ausführlicher gezeigt werden wird .

§ 58. Allgemeine Betrachtung der Bedingungsgleichungen .

Mit dem was im vorhergehenden § 57 . über Bedingungsgleichungen gelehrt
wurde , kann man bereits an die Ausgleichung kleiner Netze , wie in § 59 . oder § 60.
gehen, indessen ist doch noch manches weitere über Bedingungsgleichungen in Drei¬
ecksnetzen zu sagen . Zuerst wollen wir die Zahl der unabhängigen Bedingungs¬
gleichungen überlegen.

Wir betrachten ein Dreiecksnetz, in welchem eine Grundlinie gemessen ist,
mit folgenden geometrischen Verhältnissen :

Anzahl der Eckpunkte . p )
Anzahl aller Verbindungslinien (1)
Anzahl der nur einseitig beobachteten Verbindungslinien . . . ?
Also Anzahl der beiderseitig beobachteten Verbindungslinien l — V

'

Je nachdem Winkelmessungen oder Richtungsmessungen vorliegen , habe man :
Anzahl der Winkelmessungen . . . . . . W
Anzahl der Richtungsmessungen . Roder

Die Richtungsmessungen sollen hiebei für jede Station in je einem vollen
Satze ausgeführt sein .

Wir wollen nun zuerst annehmen, dass man Winkelmessungen habe , und nach¬
her den Pall der Richtungsmessungen behandeln.

I . Winlcelmessungen .
Die Anzahl der unabhängigen Bedingungsgleichungen ist gleich der Anzahl

der überschüssigen Beobachtungen, denn jede überschüssige Beobachtung giebt eine
selbständige Messungsprobe. Wir bezeichnen :

Anzahl der unabhängigen Bedingungsgleichungen . . . . r

Die Anzahl der notwendigen Winkel findet man so : Unter Annahme einer
Basis liegen die zwei ersten Punkte , nämlich die beiden Basis-Endpunkte , ohne
Winkelmessungen fest, und jeder weitere Punkt braucht zur Anfügung an die gegebenen
Punkte 2 Winkel, also :

Basis mit 2 Punkten verlangt 0 Winkel
der 3 ‘e Punkt verlangt 2 ,

(p — 2 ) Punkte

Summe 0 + (jp — 2) 2 = 2p — 4 Winkel
Wenn also W Winkel gemessen sind , so sind W — (2p — 4) überschüssig oder
man hat :

r = W — 2 p -t- 4 Bedingungsgleichungen. (5)
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Diese Bedingungsgleiehungen teilen sich in zwei wesentlich verschiedene Gatt¬
ungen , nämlich Winkelgleichungen und Seitengleichungen.

Die Winkelgleichungen zerfallen abermals in zwei verschiedene Arten , nämlich
1) Horizontgleichungeu oder Stationsgleichungen , und 2) Dreiecksgleichungen oder
allgemeiner Polygongleichungen.

Als Beispiele von Horizontgleichungen haben wir in der nachfolgenden Fig . 3.
S . 174 die zwei Horizonte um Oggersheim und um Speyer; es sind auf Speyer die
5 einzelnen Winkel ( 12) . (15 ) , ( 16) , (19) , (22) gemessen , woraus die Probe entsteht -

( 12 ) + (15 ) + (16) + ( 19 ) + (22) = 360 °
und ähnlich bei Oggersheim.

Oder wenn z. B. in demselben Netze (Fig. 3 . S. 174) auf Donnersberg ausser
den zwei einzelnen Winkeln ( 1) und (27) auch noch der Summenwinkel Klobberg-
Calmit = (28) gemessen wäre , so würde man noch die Bedingung haben:

( 1 ) + (27) - (28) = 0

Allgemeiner kann man über Horizontgleichungen sagen : Auf einer Station mit
s Strahlen sind s :— 1 Winkel zur Festlegung dieser Strahlen unumgänglich nötig ;
sind mehr Winkel, etwa n Winkel gemessen , so hat man auf dieser Station

n — s -i- 1 Stationsgleichungen. (6)

Diese Art von Gleichungen tritt bei grossen Ausgleichungen im Netze meist
nicht auf , da man sie auf den einzelnen Stationen für sich behandelt. (Bei Ricbt-

ungsbeobachtungen in ganzen Sätzen giebt es überhaupt keine Stationsgleichungen.)
Die zweite Art der Winkelgleichungen betrifft zuerst die Summen ( 1 ) + (2) + (3 ) = 180 °

bzw. 180 ° -t- sphär. Excess, in den einzelnen Dreiecken , dann aber auch Vierecks¬
summen (l )-f- (2)-f- (3 )-t- (4) = 360 ° und allgemeiner ( 1) -f- (2) —f- . . . (« ) = (« — 2) 180 ° u . s. w.

Wenn man die Zahl dieser Gleichungenaufsuchen will , so bemerkt man zuerst,
dass einseitig beobachtete Linien hier nicht in Betracht kommen , z . B . in einem
Dreieck, in welchem nur auf zwei Ecken Messungen gemacht sind, hat man nur zwei
Winkel , folglich keine Summenprobe u . s . w .

Daraus folgt weiter , dass auch solche Punkte , welche nur durch einseitig
beobachtete Linien mit anderen Punkten Zusammenhängen , d . h . die entweder nur
vorwärts oder nur rückwärts eingeschnittenen Punkte , bei der Abzählung der Winkel¬

gleichungen nicht in Betracht kommen .
Die Anzahl der unabhängigen Dreiecksgleichungen ist im allgemeinen nicht

schlechthin gleich der Anzahl der Dreiecke selbst, auch wenn die einseitig beobachteten
Seiten ausgeschiedensind, denn eine Drciecksgleichungkann in der Summe oder Differenz
anderer solcher Gleichungen bereits enthalten sein , wie wir schon im vorigen § 57.
bei (1)— (4) S . 165 gesehen haben. Auch hat sich dort gezeigt, dass eine Vierecks¬

gleichung (5 ) in Verbindung mit 2 Dreiecksgleichungen dasselbe ausdrücken kann ,
wie 3 einzelne Dreiecksgleichungen.

Wenn man sich nach diesem Beispiele überzeugt hat , dass jede Polygongleichung
denselben Dienst leistet , wie eine Dreiecksgleichung, insofern verschiedenartige For¬

mierung der fraglichen Polygongleichungen möglich ist , so kommt man auch zur

Bestimmung der Anzahl der unabhängigen Polygongleichungen in folgender Weise :
Han denkt sich einen geschlossenen Zug über alle p Punkte gelegt. Dieser Zug
umfasst auch p Linien . Wenn man l Linien hat, so sind l — p Linien von dem Zuge
"och nicht getroffen , und jede dieser Linien giebt eine neue Gleichung. Also ein
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Polygonzug mit ^ Linien giebt eine Gleichung, die übrigen l — Linien geben
l — p Gleichungen , man hat also im ganzen:

1 -+- l — p Dreiecksgleichungen |
(allgemeine Polygongleichungen) /

Dieses gilt , wenn die l Linien alle hin und her gemessen sind , wenn darunter
V einseitig gemessene Linien sind , so hat man statt (7) :

1 -i- (l — V) — p Dreiecksgleichungen oder Polygongleichungen. (8)
Dabei sind aber auch etwaige nur vorwärts oder nur rückwärts eingeschnittene Punkte
unter den p Punkten nicht mitzuzählen.

Wir fanden noch ein zweites Verfahren zum Ab¬
zählen der Dreiecksgleichungen, nämlich so : Man zählt
die Anzahl A aller geschlossenen Dreiecke und dann
die Anzahl S aller Diagonalenschnitte , dann ist die
Anzahl der unabhängigen Dreiecksgleichungen:

(A — S) Dreiecksgleichungen (9)
Z . B . in Fig . 1 . hat man 11 geschlossene Dreiecke
und 2 Diagonalenschnitte, also 11 — 2 = 9 unabhängige
Dreiecksgleichungen, was auch mit der Begel (7) stimmt ,
indem l = 15 und p = 7 also 1 + 1 — p = 9 .

Oder wenn man in Fig . 2 . auch noch A G zieht,
so wird die Anzahl der geschlossenen Dreiecke um
3 vermehrt (EAG , FAG , BAG ) und es kommen
noch zwei Diagonalenschnitte auf E F und D F hinzu,

es wird also dann A = 14 , S = 4 also A — S = 10 Dreiecksgleichungen, was mit
16 +- 1 — 7 = 10 nach (7 ) stimmt.

Die Regel (9) , deren Begründung nach dem Anblick von Fig . 2 . sich leicht
allgemein geben lässt , ist namentlich bei den gewöhnlichen Dreiecksnetzen der Praxis ,
wo man die einzelnen Dreiecke ohnehin alle aufsuchen muss , sehr bequem .

Wir gehen über zu den Seitengleichungen .
Die Zahl der Seitengleichungen erhellt am besten aus folgender Betrachtung:

Man unterscheidet „Dreiecksnetz“ und „ Dreieckskette“ , indem man Dreieckskette
eine solche Aneinanderreihung von Dreiecken nennt , bei welcher man von irgend
einem Dreieck zu einem andern nur auf einem bestimmten Weg gelangen kann,
während bei einem Dreiecksnetz verschiedene Wege möglich sind. Nach dieser Auf¬
fassung ist ein Viereck mit einer Diagonale eine Kette , ein Viereck mit zwei Dia¬
gonalen ein Netz. Ob die Seiten sich schneiden oder nicht , ist nicht entscheidend ;
wenn die Seiten sich schneiden , hat man jedenfalls ein „ Netz “ , es giebt aber auch
„ Netze “ , ohne Diagonalenschnitte, z . B . mit Centralsystemen, vgl , die nachfolgendeFig. 3 .

Wenn man in einer Kette noch einen weiteren Winkel misst , wodurch eine
Sicht eingefügt wird , welcher die Kette zum Netz macht , so entsteht insofern eine
neue Bedingungsgleichung, als man die Länge der neu eingefügten Seite nun zwei¬
fach ausdrücken kann. Jede nicht zum Zusammenhang der Kette nötige Seite giebt
eine solche Seitengleichung. Eine Dreieckskette hat keine Seitengleichungen , es
folgt also die Regel :

Die Anzahl der Seitengleichungen eines Dreiecksnetzes ist gleich der Anzahl
von Seiten , welche gestrichen werden müssen, damit das Netz in eine Kette übergeht.

Um eine Formel hiefür zu bilden , überlegt man , dass zum Zusammenhang der

Fig . 1.



58 . Allgemeine Betrachtung der Bedingungsgleichungen. 173

8 ersten Punkte
sind, also :

(p — 3) Punkte

8 Linien und für jeden folgenden Punkt noch 2 Linien nötig

für die 3 ersten Punkte .
„ den 4*en Punkt . .
„ - 5ten , . . .

3 Linien
2 ,
2 .

für den ^>ten Punkt 2 Linien

• Summe 3 + (p — 3) 2 Linien = 2 p — 3 Linien.

Hat man l Linien , so sind davon l — (2p — 3 ) überschüssig, folglich bestehen

l — 2 p + 3 Seitengleichungen (10)

Nachdem schon im vorhergehenden § 57. Seitengleichungen in einem Vier¬
eck behandelt worden sind, wollen wir zu weiterer Fjg_ 2.
Erläuterung noch einen Fall nehmen:

In Fig . 2 . seien die angedeuteten 5 Winkel
gemessen . Die vorstehende Formel (10) giebt hier
mit l = 6 und p = 4 :

6 — 8 ^ 3 = 1 Seitengleichung.
Obgleich keines der 4 Dreiecke von Fig . 2 .

in Bezug auf 180 ° geschlossen ist , hat das Viereck
doch eine Probe ; man kann nämlich die Seite CD
aus AB zweifach* ableiten :

sin ( 1 + 2) sin (4)
1 ) CD = AB

2) CD = AB

sin ( 1 + 2 + 3) sin (5)
sin ( 2) sin (4)

sin (2 + 3 + 4) sin (4 + 5)
Setzt man diese beiden Ausdrücke einander gleich , so erhält man die Seiten -

Bedingungsgleichung:

^ sin ( 1 + 2) sin (2 + 3 + 4) sin (4 — 5) _ ^
sin ( 1 + 2 + 3) sin (2 ) sin (5)

Wenn diese Bedingung nicht erfüllt ist , so kann man mit den 5 Winkeln
(1) (2) (3 ) (4) (5 ) das Viereck Fig . 2 . nicht ohne Widerspruch konstruieren, sondern
man wird bei der Konstruktion in irgend einem Punkt ein fehlerzeigendes Dreieck
erhalten .

Im Zusammenhang haben wir nun , indem von den Stationsgleichungen abge¬
sehen wird , folgendes :

Bedingungsgleichungen für Winkelbeobachtungen .

W Winkelmessungen, p Punkte, l Linien, sämtlich hin und her beobachtet

Z— 2y? + 3 Seitengleichungen,
l — p + 1 Dreiecks - oder Polygongleichungen,

’ — \ ^ l Bedingungsgleichungen überhaupt.
r = W — 2 p + 4 )

Wenn unter den l Linien eine Anzahl V nur einseitig beobachtet ist , und.

(11 >
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unter den p Punkten eine Anzahl p'

sind, so hat man :
l — 2p -+- 3

1 — 1’ — ( P — P '
) + 1

r = 21 — V — 3 p 4- p ' + 4
r = W — 2 p 4- 4

nur vorwärts oder nur rückwärts eingeschnitten

Seitengleichungen, I
Dreiecks - oder Polygongleichungen, (

^
l Bedingungsgleichungen überhaupt . I

Beispiel eines Dreiecksnetzes mit Winkelbeobachtungen.

In der nachstehenden Fig . 3 . , welche ein badisches Dreiecksnetz vorstellt ,
sind 27 einzelne Winkel gemessen , und es handelt sich um die Aufsuchung der Be¬
dingungsgleichungen.

Fig . 3.
(Der Punkt Mannheim gehört nicht zu äem Netze .)

’ersnetm Mannheim

Calmit b'̂ -

St . Michael

l : loooooo

io AQ roICiloni-

I!T = 27 Winkel ,
p = 9 Punkte ,
l = 17 Linien.

I — 2p -u o = 2 Seitengleichungen,
l — p 4- 1 = 9 Dreiecksgleichungen ,

Ogg. u . Sp . = 2 Horizonte

W — 2p — 4 = 13 Gleichungen.
Nach den Regeln ( 11 ) haben wir in diesem Netze 2 Seitengleichungen und

9 Dreiecksgleichungen, ferner noch den unmittelbaren Anblick in Oggersheim und
Speyer je eine Horizontgleichung.

Es ist auch nicht schwer , diese 2 -f- 9 -t- 2 Gleichungen wirklich aufzustellen :
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Die Horizonte in Oggersheim und in Speyer geben :
(3 ) — (6) -+- (8 ) + (10) -t- (24) -t- (25 ) — 360 ° = 0 1
(12 ) — (15 ) + ( 16 ) + (19 ) + (22) — 360 ° = 0 | U ° '

Die 9 Dreieckswinkelgleichungen entsprechen einfach den 9 Dreiecken I , II .
III . . . IX, nämlich :

(1 ) -4- (2 ) -i- (3 ) — (180 ° + sphär. Excess ) = 0 ,
(4 ) -r (5 ) + (6 ) - . . . = 0j n , ,

(25) -j- (26) -+- (27) — ( 180 ° -+- sphär. Excess ) = 0 I

Die zwei Seitengleichungen beziehen sich auf die Centralpunkte Oggersheim
und Speyer , es wird z . B . ausgedrückt , dass von der Basis Oggersheim-Speyer mit
Sinusrechnung über die Dreiecke VIII , IX , I , II , III , IV die Basis wieder
herauskommen muss, also :

*

Ogg .-Sp . sin (22) sin (26) sin ( 1 ) sin (4 ) sin ( 7 ) sin (11 ) _
sin (23 ) sin ( 27) sin (2) sin (5 ) sin (9) sin ( 12)

in gleicher Weise behandelt man auch die Dreiecke um den Centralpunkt Speyer ,
und die beiden so entstehenden Seitengleichungen sind :

(0 )

( S )

Damit haben
Ausgleichung
legen sind .

sm ( 12) sin (9) sin (5 ) sin (2) sin (27) sin (23) j
sin (11 ) sin (7 ) sin (4) sin (I ) sin (26) sin (22) |

sin ( 10) sin (IS ) sin (17 ) sin (20) sin ( 23) _ j
°

sm (11 ) sin ( 14) sin (18 ) sin (21 ) sin (24)
wir in ( 13) , (14) , (15) die 2 + 9 + 2 = 13 Gleichungen, welche der
des Netzes mit den 27 einzelnen Winkelmessungen zu Grunde zu

(Die vollständig durchgeführte Ausgleichung dieses Beispiels war in unseren
3 früheren Auflagen enthalten . Diesesmal haben wir die Durchrechnung des Beispiels
nicht mehr aufgenommen, weil Ausgleichungen mit einzelnen IFiwIrfmessungen in
diesem Sinne , in neuerer Zeit immer mehr in Abgang kommen .)

II . Bichtungsmessungen.
Nachdem wir im Vorstehenden die Aufstellung der Bedingungsgleichungen für

IlinteZmessungen behandelt haben , ist es nicht schwer, davon auch auf Richtungs¬
messungen überzugehen, welche in der heutigen trigonometrischen Praxis die Haupt¬
rolle spielen . Trotzdem ist beim Aufstellen der Bedingungsgleichungen immer (wenig¬
stens in Gedanken ) die WinkeMorcn. massgebend, und erst von da geht man auf
Richtungen über.

Da wir den Grundgedanken des Übergangs von Winkelverbesserungen ö auf

Bichtungsverbessernngen v bereits an dem Vierecksbeispiel des vorigen § 57 . S . 169
gezeigt haben , nämlich Zerlegung ö = v2 — »j u . s . w ., so brauchen wir nicht mehr
viel dazu zu sagen, sondern nur die Sache noch etwas allgemeiner aufzufassen .

Wir setzen volle Richtungssätze voraus , (oder Mittelbildung ans mehrfachen
vollen Richtungssatzmessungen, was offenbar hier dasselbe ist) , und zwar auf allen
Stationen gleichgewichtig. Etwaige ungleiche Wiederholungen der Sätze auf ver¬
schiedenen Stationen würde verschiedene Gewichte in die Ausgleichung einführen ,
wovon aber jetzt nicht die Rede sein soll .
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Bei solcher Messungsart fallen die Horizontgleichungen, mit welchen wir es
hei der Ausgleichung von Winkelmessungen zu thun hatten , einfach weg .

Wir denken uns eine Station einerseits mit LP Winkelmessungen, ohne Hori¬

zontproben, und andererseits dieselben Sichten mit B Richtungsmessungen . Dann
ist offenbar B = W -+- 1 , d . h . auf jeder Station ist eine Richtung mehr als die
unabhängigen Winkel und in einem ganzen Netze mit p Punkten und W Winkeln ,
ohne Horizontproben, oder R Richtungen ist offenbar

W = R — p (16)
dabei sind aber etwaige nur vorwärts eingeschnittene Punkte unter p nicht mitzuzählen .

Bedingungsgleichungen für IHchtunffsmessungen .

R Richtungen, p Punkte , l Linien hin und her beobachtet. Mit (16 ) geht (11)
über in :

r =

l — 2 p + 3
l — p + 1

2 l — S p 4- 4
R — 3p + 4

Seitengleichungen,
Dreiecks- oder Polygongleichungen,

Bedingungsgleichungen überhaupt.
(17)

Dabei ist 2 l = R , denn wenn alle Linien hin und her gemessen sind, so hat
man doppelt so viel Richtungen als Linien.

W' enn unter den l Linien eine Anzahl V nur einseitig beobachtet ist , und
unter den p Punkten eine Anzahl p ’ nur vorwärts oder nur rückwärts eingeschnitten
sind , so hat man :

l — 2p -+- 3 Seitengleichungen, \
(l — l '

) — (p — p '
) -t- 1 Dreiecks- oder Polygongleichungen, J ( 18)

r = 21 — l ' — 3 p + p ' + 4 Bedingungsgleichungen überhaupt . I

Die beiden Abzählungsformeln l — p -}- 1 Dreiecksgleichungen und l — 2 p -j- 3 Seitengleich¬
ungen werden als „Gauss sehe Lehrsätze * mitgeteilt und bewiesen in Gerlings Ausgleichungsrech *

nungen , Hamburg 1848, S. 273 und S. 277 unter Citat von „Beiträge zur Geographie Kurhessens u . s. w.
von Gerling , Cassel 1839, S. 166.“

Eine andere Anleitung zur Abzählung der Bedingungsgleichungen nach geometrischer An¬

schauung , speziell für Richtungsmessungen , giebt Bessel auf S. 139 und 140 der Gradmessung in

Ostpreussen .
Zur besonderen Behandlung der nur emseitig eingeschnittenen Linien und Punkte in (12)

und (17) wurden wir durch entstandenes Bedürfnis geführt .

Wenn die Dreiecksnetz-Bedingungen sich auf Richtungen beziehen , so ist in
jeder Bedingungsgleichung die algebraische Summe der Coefflcienten gleich Null ,
und die Richtungsverbesserungen v geben stationsweise addiert ebenfalls je die Summe
gleich Null ; vorausgesetzt dass alle Messungsgewichte gleich sind.

Diese zwei Sätze lassen sich nach § . 57 und 58 und nach § . 39 sofort einsehen :
Wenn eine auf Winkel bezogene Bedingungsgleichung etwa heisst :

aü -t- #’ ö' + a" Ö" + . . . = 0
wo ö , 8’

, ö" . . . Winkelverbesserungen sind, so lautet die entsprechende Gleichung
für Richtungsverbesserungen und vr :

a (vr — vi ) + a! («/ — vl ) + a"
(v r" — v "

) + . . . = 0
o vr — a Vi + a ' v r

’ — a vt +- a" v ” — a" v " + . . . = 0
a — a h- a ' — a ' -+- a" — = 0hier ist :
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Was die v betrifft , so sind deren Formeln in (9 ) § 39. S . 119 gegeben ; wenn
man dort addiert, so bekommt man :

[n] = [a] fcj + [6] + M ^3
Versteht man nun unter [«] die Summierung für je eine Station, so gelten auch

[«] [6] [c] nur stationsweise, sind also = Null, folglich auch stationsweise [u] = Null.
Was die wirkliche Aufstellung der Bedingungsgleiehungen betrifft , so werden

die verschiedenen Winkelsummen-Gleichungen niemals Schwierigkeiten bereiten, und
wenn das Netz sich in lauter einzelne Dreiecke zerlegen lässt , so werden auch die
Seitengleichungen als Sinusprodukte für Vierecksdiagonalen oder Centralsysteme nach
Anleitung von § 57 . S . 167 und des vorstehenden Beispiels (Fig . 3 . S . 174) sich
leicht ergeben . Etwas schwieriger kann die Sache werden bei Punkten , welche ent¬
weder nur vorwärts oder nur rückwärts eingeschnitten sind , doch kann darüber hier
nichts allgemeines gesagt werden ; auch wird es sich oft empfehlen, solche Punkte
von der Gesamtausgleichung auszuschliessen, und nur nachher einzuschalten.

Dagegen ist hier noch ein allgemeines Wort zu sagen über Kram -Systeme ,
d . h . solche von Dreiecksketten umschlossene Polygone, welche einen leeren Baum
zwischen sich fassen . In der Gesamtausgleichung der Preussischen Landesaufnahme
haben solche Systeme eine wichtige Bolle gespielt, und wir wollen daher die geschicht¬
liche Entwicklung, welche diese Anlage und die zugehörigen Ausgleichungen genommen
haben, vorführen nach einer Mitteilung von Major Haupt in den „ astron. Nachrichten“
107 . Band , Nr. 2549 —2550 , (Sept. 1883) :

Als in den 60er Jahren dieses Jahrhunderts bei der preussischen Landes -Trian-
gulierung Ketten , welche einen von Dreiecken freien Landesteil umspannten, wieder
in sich zusammen schlossen , stellte sich der Übelstand heraus , dass trotz der Auf¬
stellung aller vorhandenen und notwendigen Winkelgleichungen und Seitengleichungen
identische Punkte , von verschiedenen Seiten her berechnet , nicht dieselben geogra¬
phischen Coordinateâ -hielten , und dass der von Dreiecken freie innere Baum , das
Polygon nicht die seinem Inhalt entsprechende Winkelsumme erhielt , denn es fehlten
die drei sogenannten Polygongleichungen.

Der erste , welcher eine Methode zur Aufstellung dieser Polygon -Gleichungen
gab, war der Premier-Lieutenant v . Prondzywski („ Astr. Nachr. “ Nr . 1690 , 71 . Band ,
1868 , S . 145— 154 und Nr. 1782 , 75. Band , 1869 , S . 81 —90) . Er zog Bichtungs-
Korrektionen der jüngsten Kette durch die ganzen Längen- , Breiten- und Azimut -
Bechnungen hindurch, und bildete so drei neue Gleichungen .

Demnächst gab Professor Börsch eine andere , aber im allgemeinen nicht ein¬
fachere Methode an ( „Astr . Nachr. “ Nr. 1697 und 1704 , 71 . Band (1868) , S . 265— 268
und S . 379— 380) , welche darauf gegründet ist , den inneren freien Baum zwischen
den verschiedenen Ketten mit zu rechnenden Dreiecken zu überspannen und so die
fehlenden Gleichungen aufzustellen.

Hier ist auch Zachariae : „Die geodätischen Hauptpunkte und ihre Coordinaten “
deutsch von Lamp , Berlin 1878) S. 156 , zu zitieren, wo für „Kranz -Systeme “ die
nötigen Gleichungen durch Einführung fingierter Messungen und Wiederelimination
derselben gewonnen werden.

Diese Methoden wurden bei der preussischen Landes -Triangulation nicht be¬
nützt ; das in Wirklichkeit von dieser Behörde angewandte Verfahren wurde von dem
damaligen Hauptmann Schreiber (jetzigen General ) angegeben , dasselbe liefert zwei

Jorrlan , Handb . d. Vermessungskunde . 4. Aufl . I . Ed . 12
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Gleichungen durch die Projektion der inneren Polygonkranz - Begrenzung auf ein

beliebig angenommenes rechtwinkliges, sphäroidisches Coordinaten-S3rstem.
Diese Sehreibersche Methode des Polygonkranz-Anschlusses durch rechtwinklige

Coordinaten ist mitgeteilt in dem Werke: „Die königlich preussische Landes-Trian-

gulation'
. Hauptdreiecke. Erster Teil , Berlin 1870 , S . 421 und Hauptdreiecke II . Teil,

Berlin 1874 , S . 605 “ .
Wir haben einen Bericht hierüber mit einem Beispiele gegeben in „Jordan-

Steppes , deutsches Vermessungswesen“ , 1882 , S . 81—85 und S . 103 , und bemerken
hiezu , dass die ersten Schreiberschen Formeln von 1870 ( „Hauptdreiecke I , S . 421 “)
sich rein sphärisch mit einem mittleren Krümmungs-Halbmesser entwickeln lassen,
und so mit den bekannten Soldnersehen Coordinaten-Formeln zusammenfallen, während
die zweiten Schreiberschen Formeln von 1874 ( „Hauptdreiecke II , S . 605 “) noch
höhere Glieder hinzufügen, entsprechend der Gauss sehen Abhandlung : „ Disquisitiones
generales circa superficies curvas “ .

Es giebt noch eine Frage , betreffend die günstigste Form der Seitengleichung in einem
Tiereck , welche hier angeschlossen werden könnte , jedoch wollen wir dieses auf den Schluss dieses

Kapitels verschieben , um den Übergang zu praktischen Ausgleichungsrechnungen nicht zu lange
aufzuhalten .

§ 59. Ausgleichung' eines Tierecks mit 4 vollen Richtungssätzen.
Als erstes Beispiel zur rechnerischen Durchführung nehmen wir ein Viereck

der badischen Triangulierung mit 4 vollen gleichgewichtigen Kichtungssätzen.
Die Ergebnisse der Messungen,

richtung bezogen , sollen sein :

Station Catharina.
Kandel . . . ( 11 = 0 ° 0 ’ 0,00 ' '
Feldberg . . (2 ) = 34 52 27,44
Belchen . . . (3) = 57 49 20,90

Station Belchen
Catharina . . (4 ) = 0 ° 0 ' 0,00 ' '
Kandel . . . ( 5 ) = 44 36 27,07
Feldberg . . (6) = 84 04 12,94

jeweils auf einen Anfangsstrahl als Null -

Station Kandel.
Feldberg . . (10 ) = 0 ° 0 ' 0,00 "
Belchen

"
. . (11 ) = 25 9 9,67

Catharina . ( 12 ) = 102 43 24,53
Station Feldherg

Belchen . . ( 7 ) = 0 ° 0 ' 0 .00"
Catharina . . (8 ) = 72 58 55,84
Kandel . . . . (9) = 115 23 06,40

Fig . 1.
Viereck mit vollen Richtungssätzen ,

Maasstab 1 : 400000 .
Catharina .

XandeZ.

Belchen .

Hier ist jeweils eine beliebige Sicht als Null-
strahl mit 0 ° 0' 0,00" angenommen , doch ist das
unwesentlich, und man soll sich sehr hüten , der so
formell bevorzugten Pachtung irgend eine sachlich
besondere Bedeutung beizulegen. Namentlich darf
man nicht glauben , man habe damit Winkel vor
sich in dem Sinne , wie er in § 57 . und § 58, im
Gegensatz zu Richtungen aufgestellt wurde . Der
Anfangswert0 ° 0 ' 0,00” muss vielmehr gerade ebenso
eine Ausgleichungsverbesserung erhalten , wie der
zweite Richtungswert 34 ° 52 ' 27,44" u . s . w . , und

J Teldberg man ändert an der Sache gar nichts , wenn man alle
Richtungen eines Satzes um ein beliebiges Maass
verschiebt.

Aus diesem Grunde macht man sich häufig
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(2 )

die Sache möglichst bequem für spätere Zwecke , indem man alle Richtungssätze
schon von Anfang an in Form von genäherten trigonometrischen Richtungswinkeln
aufstellt . (Katasterbezeichnung „Neigungen“ .) Die Orientierung für solche trigono¬
metrische Richtungswinkel hat man stets aus genäherten Anschlussrechnungen.

Um die Vorteile solcher Orientierung sofort ins richtige Licht zu stellen,
wollen wir gleich bei diesem unserem ersten Beispiel davon Gebrauch machen und
die unter (1 ) mitgeteilten Richtungsmessungssätze nochmals schreiben in genäherter
Orientierung (mit -+- x nach Norden und Richtungswinkelzählung von Nord über Ost) .

Catharina . Kandel .
(1 ) = 104 ° 33 ' 24,00" (10 ) = 181 ° 49 ' 59,47"
(2) = 139 25 51,44 (11 ) = 206 59 9,14
(3) = 162 22 44,90 (12 ) = 284 33 24,00

Belchen . Feldberg.
(4) = 342 ° 22 ' 40,13 " ( 7 ) = 246 ° 26' 53,07"
(5 ) = 126 59 7,20 (8) = 319 25 48,91
(6) = 166 26 53,07 (9) = 1 49 59,47

Die Richtung (1 ) stimmt mit der Gegenrichtung (12 ) , ebenso stimmt ( 10)
mit (9) , (7 ) mit (6) überein , weil dieses bei der willkürlichen Festsetzung der An¬
fangsrichtungen so angenommen worden ist ; dass die übrigen Richtungen , z . B . (5)
und (11 ) nicht stimmen , hat seinen Grund teils in den Beobachtungsfehlern, teils
aber auch in dem Umstand, dass die Dreiecke nicht eben , sondern sphärisch sind .

Zur Netzausgleichung braucht man zuerst die sphärischen Excesse , und hiezu
eine Seite des Netzes. Z . B . Catharina—Belchen = 34433” , log = 4 .53697 . Die
geographische Breite ist ungefähr 48 °

, und der Logarithmus des Erdhalbmessers
daher log r = 6 .80479 , womit man in bekannter Weise berechnet aus der Dreiecks¬
fläche :

Sphär. Excess e = — - (j mit log = 1 .70485

Z . B . das erste Dreieck Catharina— Belchen —Kandel hat genähert :
Catharina (1,3) = 57 ° 49 ' log sin 9 .92755
Belchen (4,5 ) = 44 36 '

„ „ 9 .84643
Kandel ( 11,12) = 77 34 '

„ „ 9 .98969
womit unter Zugrundlegung von log G B = 4 .53697 berechnet wird log G K = 4 .39371

und dann / \ , = ~ GB . GKsinC , log A = 8 .55720 und 8 = 1 .828” . Oder kurz , man
u

berechnet mit vorläufigen Seiten und Winkeln die Excesse , wie sie in folgender alle
4 Summenproben enthaltenden Zusammenstellung angegeben sind :

C . ( 1,3) = 57 ° 49 ' 20,90"
B . (4,5 ) = 44 36 27,07
K . (11,12 ) = 77 34 14,86

C . (2,3 ) = 22 ° 56' 53,46"
F . (7,8) = 72 58 55,84
B . (4,6 ) = 84 4 12,94

Summe 180 ° 0 '
soll 180 0

2,83"
1,83

Summe 180 ° 0 '
soll 180 0

2,24"
1,22

B .
F.

w = -+- 1,00"

(5,6) = 39 ° 27' 45,87 ”
(7,9) = 115 23 6,40

K . (10,11 ) = 25 9 9,67“
1,94"
0,67

w = 4- 1,02”

F . (8,9 ) = 42 ° 24 ' 10,56"
K . (10,12) = 102 43 24,53
C . (1,2 ) = 34 52 27,44

Summe 180 ° 0 '
soll 180 0

Summe 180 ° 0 '
soll 180 0

2,53 "
1,28

’ = + 1,27 " = -+- 1,25"

(3)
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Bezeichnet man die Richtungs-Verbesserungen mit rj v% . . . u12 , so folgen

aus diesen Probesummen folgende 4 Bedingungsgleichungen:
u3 — z>1 + u5 — + « ja — ®n + = 0
t?3 — Ug “l“ Vg — V'j + Ug — U4 -f- 1,02 ~ 0

Vq — U5 + Vg — U7 + ^11 — ^10 ~P 1,27” = 0

Vq — Ug + Z?j2 — ^ 10 “P ^ 2 — ^ 1 “P 1,25 = 0

In jeder dieser Gleichungen ist die Summe der Coefficienten = Null , wie sich

aus der Entstehung dieser Gleichungen unmittelbar ergiebt (vgl. die Anmerkung am

Schluss von § 57 . und S . 176—177 .
Wenn irgend welche 8 von diesen 4 Bedingungsgleichungen (4) erfüllt sind , so

ist die 4te von selbst erfüllt , man hat daher nur 8 von den Gleichungen (4) in die

Ausgleichung einzuführen .
Es besteht ferner eine Seitenbedingungsgleichung (Centralpunkt Feldberg) :

Es soll sein sin (1,2) sin (4,6) sin (10,11) (5)
sin (2,8) sin (5,6) sin (10,12)

Diese Gleichung ist allerdings zunächst dem ebenen Viereck entsprechend, ebenso wie

in § 57 . S . 165 gelehrt wurde , allein die Gleichung (5 ) gilt ebenso auch für ein

sphärisches Viereck , weil der Sinussatz, insofern er die Winkel eines Dreiecks betrifft ,

für ein ebenes und für ein sphärisches Dreieck gleichlautend ist (und die Sinus der

Centriwinkel am Erdmittelpunkt für die Dreiecksseiten hier nicht auftreten , ev. durch

die „Additamentenmethode“ der sphärischen Dreiecksberechnung berücksichtigt würden ;

vgl. unseren III . Band , 1890 , § 42 ) .
Der Seitengleichung (5) entspricht folgende logarithmisch - trigonometrische

Ausrechnung mit 7 stelligen Logarithmen :
Diff. für 10”

(1,2) = 34 ° 52 ' 27,44” logsin (1,2) 9.757 2273 + ■302
(4,6 ) = 84 4 12,94 log sin (4,6) 9 .997 6699 + 22

(10,11) = 25 9 9,67 log sin 10,11 ) 9 .628 4216 + 449
9 .383 3188 f'fi'1

(2,3) = 22 ° 56' 53,46” logsin (2,3) 9 .590 9515 + 498
> (Uj

(5,6) = 39 27 45,87 logsin (5,6) 9 .803 1677 + 256
(10,12 ) = 102 43 24,53 log sin 10,12 ) 9 .989 2025 — 48

9 .383 3217
Widerspruch 9 .383 3188 — 9 .383 3217 = — 0 .000 0029 = IO

Um für diese sehr wichtige logarithmisch-trigonometrische Berechnung des

Fehlergliedes 10 eine Probe zu erlangen, kann man sich der sphärischen Excesse

bedienen , welche in (3) bereits angegeben sind , indem man nach dem Legendresehen

Satze rechnend , jeden Dreieckswinkel um ein Drittel des sphärischen Excesses ver¬

mindert . So erhält man aus (3) :
c . (1,3) = 57 c149 ' 20,29” C . (2,3) = 22 c156' 53,05”

B. (4,5) = 44 36 26,46 F. (7,8) = 72 58 55,43
K. (11,12) = 77 34 14,25 B. (4,6 ) = 84 4 12,53

+ 1,00 + 1,01
B. (5,6) = 39 c127 ' 45,65 ” F. (8,9) = 42 ° 24' 10,13"

F . (7,9) = 115 23 6,18 K. (10,12) = 102 43 24,10
K. (10,11 ) = 25 9 9,45 C . (1,2) = 34 52 27,01

- 1,28 + 1,24

(’ )
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Die Summen -b 1,00 u . s . w. sollen den entsprechenden w in (3) gleich sein ,
und wenn das nicht völlig der Fall ist , so rührt es nur von der Abrundung bei der

Bildung der Drittel -Excesse her . Nun macht man mit den Winkeln (7) abermals

eine logarithmisch-trigonometrische Ausrechnung von der Form (6) :

Diff. für 10"

(1,2) = 34 c 52' 27,01 " logsin (1,2) 9 .757 2260 4 - 302

(4,6 ) = 84 4 12,53 logsin (4,6) 9 .997 6699 22

( 10,11) = 25 9 9,45 log sin (10,11) 9 .628 4206 + 449

9 .388 3165

(2,3) = 22 c 56 ' 53,05" logsin (2,3) 9 590 9495 4- 498
(5,6) = 39 27 45,65 logsin (5,6) 9 .803 1672 -1- 256

(10,12) = 102 43 24,10 logsin (10,12) 9 .989 2027 — 48

9 .883 3194

Widerspruch 9 .383 3165 — 9 .383 3194 = — 0 .000 0029 = w

Nun bekommt man aus (6) und (8) übereinstimmend die lineare Seitengleichung
in Einheiten der 7ten Logarithmendecimale :

-f- 30,2 (t’g — V| ) 4- 2,2 (ug — 4- 44,9 (u -n ^10) \
— 49,8 (vs — ®3) — 25,6 (v6 — ®5) 4- 4,8 (v12 — vn ) —- 29 = 0 I

Diese Gleichung kann man so weiter benützen , aber im Vergleich mit den Winkel¬

summengleichungen (4 ) hat die Gleichung (9) zu grosse Coefficienten , was formell

störend für die weitere Rechnung ist , und wir wollen deshalb lieber die Gleichung (9)
durchaus mit 10 dividieren, d . h , in Einheiten der 6ten Logarithmendecimalerechnen:

+ 3,02 (v2 — v{) 4- 0,22 (ve — v4) 4- 4,49 («u — « 10) l no )
- 4,98 (»3 — vz) — 2,56 (ve — t>5) + 0,48 (®12 — «! , ) — 2,9 = 0 j

Man kann eine solche Bedingungsgleichung (9) oder (10) mit jeder beliebigen
Zahl multiplizieren oder dividieren, ohne ihre Bedeutung für die Ausgleichung zu
ändern , (während man FWergleichungen nicht multiplizieren darf, ohne die Gewichts¬

verhältnisse zu ändern, vgl. (6) § 21 . S. 68. Am besten ist es , wenn die Coefficienten
der linearen Seitengleichungen im Mittel ungefähr den Wert 1 haben , weil auch die

Winkelsummengleichungen (4 ) alle die Coefficienten 1 haben ; man könnte daher
daran denken , die Gleichung (10) nochmals mit 2 oder 3 zu dividieren , indessen mit
der bequemen Rechnung in Einheiten der 0teli Stelle nach (10 ) kommt man gewöhn¬
lich gut durch, und wir bleiben daher bei ( 10 ) stehen , und finden daraus durch
Ordnen nach , »a , «3 . .

— 3,02 üj 4- 8,00 e2 — 4 .98 ®3 — 0,22 ®4 + 2,56 ®5 — 2,34 v6 — 4,97 vw
+ 4,49 »n 4 - 0,48 »12 — 2,9 = 0 ( 11)

Die Coeffieienten -Summe — 3,02 4- 8,00 . . . + 0,48 ist auch wieder = 0 , wie
hei den Gleichungen (4) .

Die lineare Seitengleichung ( 11) , nebst dreien von den 4 Winkelgleichungen
der Gruppe (4) bilden das vollständige System der Bedingungsgleichungen. Mit Aus¬

scheidung der dritten Gleichung der Gruppe (4) bilden wir die Tabelle der Coeffi¬
cienten der Bedingungsgleichungen :



182 Ausgleichung eines Vierecks mit 4 vollen Richtungssätzen.

Coefficienten der Bedingungsgleichungen:

59.

» 1 » 2 % « 4 « 5 »6 v7 » 8 » 9 » 10 » 11 » 12 W

kx a — 3,02 -j- 8,00 — 4,98 — 0,22 + 2,56 — 2,34 - 4,971+ 4,49 + 0,48 — 2,90

fr3 b - 1 + 1 — 1 + 1 - 1 + 1 + 1,00

h c — 1 + 1 - 1 + i — 1 + 1 + 1,02

fr* fl — 1 + 1 . . - 1 + 1 — 1 + 1 + 1,25

Die Bildung der Summen -Coefflcienten ist sehr einfach, es ist z . B . :
[a « ] = 3,022 + 8,002 + 4,982 + . + 0,482 = 155,09
[a b] = + 3,02 — 4,98 + 0,22 + 2,56 — 4,49 + 0,48 = — 3,19 u . s .
[a c] = — 8,00 + 4,98 + 0,22 — 2,34 = — 15,10
[a d] = + 3,02 + 8,00 + 4,97 + 0,48 = + 16,47

[& b] =
[6 c] = + 1 + 1 = -+- 2
[6 d] = + 1 + 1 = 4- 2

: = 6

[c c] = 12 + . . . = 6
[c d\ = + 1 + 1 = 2

(12)

[d d] = 12 + . . . = 6
Die Normalgleichungen sind also in abgekürzter Schreibweise:

a] b] c] d] io
[a 155,09 ^ — 3,19 kz — 15,10 kB + 16,47 — 2,90 = 0 1

[b 6,001-
2 + 2,00 ks + 2,001-

4 + 1,00 = 01 , 1Q>
[c 6,00 ks — 2,00 l-

4 + 1,02 = 0
'

[d 6,00 h4 + 1,25 = 0 )
Die Elimination und Auflösung giebt :

ftj = + 0,044 k2 = + 0,078 fc3 = — 0,232 k4 = — 0,431 (14)

Nach Anleitung der Tabelle der Bedingungsgleichungen (12) macht man folgende
tabellarische Berechnung der Verbesserungen v :

k 1 2 3 4 5 6 7 00 10 11 12

+ 0,044

+ 0,078

—0,232

—0,431

—0,132

—0,078

+ 0,431

+ 0,352

+ 0,232

—0,431

—0,218

+ 0,078

—0,232

—0,010 |+ 0,112

—0,078 + 0,078

+ 0,232 ! . . .

—0,103

—0,232 + 0,232

. . .

—0,232

+ 0,431 —0,431

—0,217 + 0,197

. . . —0,078

+ 0,431 . . .

+ 0,021

+ 0,078

—0,431

V

Summe

+ 0,2211+ 0,153

— 0,00:

- 0,372 + 0,1441+ 0,190

— 0,001

—0,335 4-0,232 + 0,199

0,000

—0,431 + 0,214 + 0,119 - 0,332

+ 0,001

Diese Werte v geben Stationsweise je die Summe 0,000 "
, abgesehen von kleinen

Abrundungsunsicherheiten 0,002" u . s . w.
Fügt man die so erhaltenen v zu den beobachteten Richtungen (2 ) hinzu ,

wobei wir auf 0,01" abrunden, so erhält man folgendes :
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Beobachtet Ausgeglichen
( 1 ) = 104 ° 33’ 24,00 " - 0,22" [ 1 ] = 104 ° 33' 24,22 " 0,0484
(2) = 139 25 51,44 H- 0,15 [2 ] = 139 25 51 .59 0,0225
(3) = 162 22 44,90 — 0,37 [3] = 162 22 44,53 0,1369

(4 ) = 342 ° 22’ 40,13 " = 0,14” [4 ] = 342 ° 22' 40,27" 0,0196
(5 ) = 26 59 7,20 — 0,19 [5] = 26 59 7,39 0,0361
(6) = 66 26 53,07 — 0,33 [6] = 66 26 52,74 0,1089

(71 = 246 ° 26 ' 53,07" - 0,23 " [7 ] = 246 ° 26' 53 .30" 0,0529
(8) = 319 25 48,91 - 0,20

'
[8] = 319 25 49,11 0,0400

(9 ) = 1 49 59,47 — 0,43 [9 ] = 1 49 59,04 0,1849

(10 ) = 181 ° 49 ' 59,47 ” + 0,21 "
[10] = 181 ° 49' 59,68" 0,0441

(11 ) = 206 59 9,14 0,12 [ 11 ] = 206 59 9,26 0,0144

(12 ) = 284 33 24,00 - 0,33 [12 ] = 284 33 23,67 0,1089

[rh | = 0,8176

(16)

Durch Subtraktionen dieser ausgeglichenen Richtungen bildet man die ausge¬
glichenen Winkel und stellt dieselben abermals wie früher bei (3) in Dreiecken zu¬
sammen. Zur Unterscheidung von den gemessenen Winkeln, welche mit (1,3) , (4,5) . . .
bezeichnet waren , bezeichnen wir die ausgeglichenen Winkel mit [ 1,3] , [4,5] . . . :

C . [ 1 .3] = 57 c’ 49 ' 20,31" C . [2 .3] = 22 ° 56’ 52,94 "

B . [4,5] = 44 36 27,12 F . [7 .8] = 72 58 55,81
K . [11,12] = 77 34 14,41 B. [4,6] = 84 4 12,47

Summe 180 c' 0 ' 1,84" Summe 180 ° 0 ' 1,22"

soll 1,83 soll 1,22

B . [5 .6] = 39 °127 ' 45,35" F. [8,9] = 42 ° 24 ' 9,93"

F. [7,9] = 115 23 5,74 K . [ 10,12 ] = 102 43 23,99
K . [ 10,11 ] = 25 9 9,58 C. [ 1.2] = 34 52 27,37

Summe 180 c1 0 ' 0 .67" Summe 180 ° 0 ' 1,29"

soll 0,67 soll 1,28

(17 )

Zur Untersuchung , ob die Seitengleichung stimmt, macht man statt der früheren

logarithmischen Rechnung (6 ) die folgende neue logarithmische Rechnung :

[ 1 .2] =
[4,6] =

[ 10,11] =

[2,3]
[5,6] :

34 c
84
25

22 c
39

[10, 12 ] = 102

52'
4
9

56'
27
43

27,37 "
12,47

9,58

52,94 "

45,35
23,99

log sin [ 1 .21 j 9 .757 2271
log sin [4,6] 9 .997 6699
logsin [ 10,11 ] 9 .628 4212

9 .383 3181

log sin [2,3] 9 .590 9490
log sin [5,6] | 9 .803 1664

log sin [10,12] ; 9 .989 2028

9 .383 3182

(18)

Mit den ausgeglichenen Richtungen berechnet
allen Wegen übereinstimmend. Als Basis nehmen wir
Belchen nach Angabe der badischen Landestriangulierung :

Catharina—Belchen = 34 432,57”

man alle Dreiecksseiten auf
hiezu die Seite Catharina—

(19)
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Unter Annahme dieser Länge wurden mit den ausgeglichenen Winkeln und
Sinnslogarithmen (18) nach der Additamentenmethode folgende Entfernungen wider-
sprachsfrei berechnet :

Catharina—Belchen . . = 34 432,57 ”* Ing = 4 .536 9695 \
Catharina—Feldberg . . = 35 816,62 4 .554 0846 i
Catharina—Kandel . . . = 24 760,43 4.393 7582 (

(20)Belchen — Feldberg . . . = 14 039,83 4 .147 3617 {
Belchen— Kandel . . . = 29 843,17 4 .474 8450 \
Feldberg — Kandel . . . = 20 994,59 4 .322 1074 /

Man kann auch entsprechend (7) und (8) nach dem Legendreschen Satze
rechnen , was dieselben Werte gehen muss wie (20) .

In Bezug auf Genauigkeitsbestimmung hat man zuerst die Summe [v v] = 0,8176
nach (16 ) ins Auge zu fassen . Eine Probe dafür bekommt man durch die Formel
[« «] = — [wie] , nach (4) § 41 . S . 122. Die Ausrechnung hiezu ist :

W1 = - 2,90 h = + 0,044 — iv-i ki = + 0,1276
M!2 = + 1,00 /f2 — + 0,078 — wfl k<> — 0,0780
«’3 = + 1,02 **

3 = — 0,232 — «»8 ^3 = + 0,2366
«’4 = + 1,25 h = — 0,431 — ioi k4 = + 0,5388

+ 0 .9030 — 0,0780
— |> fc] = + 0,8250 (21 )

Man kann auch noch die Formel (5) § 41 . S . 122 zuziehen , was wir aber hier
unterlassen , da wir auch die Elimination (13) — ( 14 ) nicht im Einzelnen vorgeführt
haben , und weil die Probe (21 ) neben der unmittelbaren Ausrechnung der einzelnen

in (16 ) vollauf genügt.
Wir nehmen im Mittel [vv ] = 0,82 , und haben damit den mittleren Fehler

einer beobachteten Richtung :

in —
j / = + 0,45"

(22)
und den mittleren Fehler eines Winkels vor der Ausgleichung :

= m 1/ 2 = + 0,64" (23)
Damit ist die Ausgleichung vollendet , und mit den Dreiecksseiten (20) nebst

den Winkeln ( 18) kann man nun auch die Coordinaten der Viereckspunkte in jedem
System berechnen, das in Frage kommt.

Die Coordinaten der 4 Punkte im badischen System sind in der „Zeitschr . f. Verra . 1878,“
S. 33—34 mitgeteilt . Ebendaselbst S. 20—25 sind auch die Originalmessungen mitgeteilt , welche zu
dieser Netzausgleichung geführt haben . Es sind viele einzelne nach dem Repetitionsverfahren
gemessene Winkel , welche wir zuerst stationsweise ausgeglichen und dann wie volle Richtunga¬
sätze weiter behandelt haben .

Die Messung voller gleichgewichtiger Richtungssätze auf allen 4 Punkten , welche wir am
Anfang in (1) oder (2) S. 179 angenommen haben , bat also thatsächlich nicht stattgefunden , und
wir haben deshalb unsere vorstehende Vierecksausgleichung entweder als ein Schulbeispiel mit
fingierten Richtungsmessungen aufzufassen , oder wir haben ein praktisches Beispiel vor uns für
ein zwar nicht formell strenges aber sehr nützliches , schon von Gauss in dem „supplementum
theoriae combinationis , 1826“ erstmals angewendetes Näherungsverfahren , darin bestehend , dass
man Winkelmessungen oder auch unvollständige Satzrichtungsmessungen , zuerst stationsweise
irgendwie (vielleicht nur näherungsweise ) ausgleicht und dann die Stationsergebnisse wie volle
Richtungssätze in die Netzausgleichung einführt .
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§ 60 . Triangulierungsnetz der Stadt Hannover.

Im Jahre 1891 ist das in Fig . 1 . gezeichnete Dreiecksnetz der Stadt Hannover

gemessen worden von dem Verfasser , welcher damals in vorübergehender Weise als

„Trigonometer “ der trigonometrischen Abteilung der Landesaufnahme funktionierte.
Über den technischen Teil dieser Messungen haben wir bereits in unserem

II . Bande , 4 . Aufl . 1898 , S . 246—285 mit Centrierungen u . s . w. berichtet , und es sei

Fig . 1.

Schanze

HocHschule

i~- 1- - 1- 1- 1- 1
0 1 2 3 4 8Kilom .

hier nur wiederholt , dass die Winkelmessungen mit dem daselbst auf S . 183 abge¬
bildeten kleinen Mikroskop- Theodolit mit 14™ -Kreis ausgeführt worden sind , und
zwar auf allen 8 Punkten von Fig . 1 . in je 12 Sätzen .
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Folgendes sind die Mittelwerte dieser Messungen in Form von Richtungssätzen ,
wobei jeweils die Richtung nach Aegidius oder Linden Wasserturm als 0 ° 0' 0"

eingeführt ist.
1 . Aegidius. 4. Steuerndieb.

Linden,Wasserturm 1 . 0 ° 0 ' 0,00" Willmer . . . 12 . 325 ° 34 ' 46,28 "

Hochschule . . . 63 38 53,31 Aegidius . . . 13. 0 0 0,00
Burg . 2 . 70 56 34,82 Dreifaltigkeit . 12 56 15,08
Schanze . . . . S . 110 42 21,36 Hochschule 24 5 46,54
Dreifaltigkeit . , 143 o'Todo Burg . . . . . 14 . 44 9 14,00
Steuerndieb . . . 4. 163 44 49,52 Schanze . . . . 15. 74 52 31,12
Willmer . . . . 5 . 259 4 4,67

2 . Linden , Wasserturm . 5. Schanze.
Burg . 6 . 284 ° 21 ' 15,98" Steuerndieb . 16. 307 ° 55 ' 0,00"
Hochschule . . 309 13 10,25 Dreifaltigkeit . 345 43 43,08
Aegidius . . . . 7. 0 0 0,00 Aegidius . . . 17. 0 0 0,00
Willmer . . . . 8 . 45 5 26,24 Burg . . . . . 18. 56 4 7,29

3 . Willmer . 6. Burg .
Linden,Wasserturm 9 . 326 ° 1 ' 19,33" Schanze . . . . 19. 275 ° 49 ' 51,50 "

Aegidius . . . 10. 0 0 0,00 Steuerndieb . 20. 316 57 24,36
Dreifaltigkeit . . 22 9 36,10 Dreifaltigkeit . 336 24 35,87
Steuerndieb . . 11 . 50 15 28,80 Aegidius . . . 21 . 0 0 0,00

Hochschule . . 6 43 55,93
Linden,Wasserturm22. 33 24 40,16

7. Hochschule . 8. Dreifaltigkeit .
Schanze . . . . 249 ° 12' 49,37 ' ' Willmer . . . 317 ° 33 ' 31,20 "
Steuerndieb . . 304 11 45,10 Aegidius . . 0 0 0,00
Dreifaltigkeit . . 316 13 35,82 Hochschule . . 56 12 25,93
Aegidius . . . 0 0 0,00 Burg . . . . 83 41 5,14
Linden, Wasserturm . 65 34 18,81 Schanze . . . 132 45 54,74
Burg . 194 1 35,18

Statt hier in jedem Satze eine beliebige Richtung = 0 ° 0 ' 0,00" anzunehmen ,
könnte man auch , wie in dem Beispiel des vorigen § 59 . bei (2) S . 179 , alle Sätze
sofort in Form von genäherten Richtungswinkeln (Katasterbezeichnung „Neigungen “)
aufführen, wir haben dieses diesesmal nicht gethan erstens, weil bei der trigono¬
metrischen Abteilung 1891 vorgeschrieben war , die Abrisse der einzelnen Sätze je
mit 0 ° 0 ' 0" zu beginnen, und zweitens weil es für Schulbeispiele wie dieses und
das vorige in § 59 . nützlich ist , beide Formen zur Anschauung zu bringen . In der
Praxis dagegen rechnen wir immer mit näherungsweise nach trigonometrischen Rich¬
tungswinkeln orientierten Messungsabrissen.

Die Einzelheiten der Satzmessungen sollen für einen Fall vorgeführt werden ;
wir wählen dazu das Beispiel Schanze, wo auf dem Erdboden und centrisch gemessen
werden konnte , und zwar 4 Sichten zusammen in je einem Satze . Dieses wurde
12 mal wiederholt, wie aus folgender Tabelle zu ersehen ist , in welcher, mit Weglassung
der Grade und Minuten, nur die Sekunden angegeben sind .
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Kreislage . 0° 15°
J 30° | 45° 60° 75° ! 90° l 105° : 120° ! 135° ; 150° i 165°

1 ) 1 ! I
Mittel

Aegidius . . . . 0,0 0,0 I 0,0 ! 0,0 0,0 0,0 ! 0,0 ! 0,0 ■ 0,0 0,0 1 0,0 i 0,0 0,00

Burg . 6,0 4,5 ! 10,5
'

6,0 11,0 8,5 10,0 i 6,0 : 8,5 • 3,5 i 5,5 ! 7,5 7,29

Steuerndieb . . 63,0 59,5 | 61,0 , 61,0 60,5 61,5 62,0 . 59,0 , 56,0 : 56,0 158,0 , 62,5 60,00

Dreifaltigkeit . 40,5 38,0 45,0 | 46,5 43,5 47,5 138,5 : 48,5 ■40,0 j 40,0 : 41,5 : 47,5 43,08

Satzmittel . . . 27,38 25,50 29,12 . 28,38 28,75 29.37 i 27,62 j 28,37 , 26,12 ! 24,88 ; 26,25 ; 29,38 27,59

Das Gesamtergebnis dieser 12 Sätze ist also , wenn nun auch die Grade und

Minuten zugesetzt werden :

Aegidius . . . . . 0 ° 0 ' 0,00 "

Burg . . . . . . . 56 4 7 .29

Steuerudieb . . . . 307 55 0,00

Dreifaltigkeit . . . . 345 43 43,08

Dieses ist dasselbe, wie oben S . 186 , unter 5 . Schanze angegeben ist .
Es ist nun zu sagen , dass solch volle Sätze , wie auf Schanze , nur auf den

wenigsten der 8 Stationen unseres Netzes gemessen sind , aus verschiedenen Gründen ,
teilweise vreil auf Türmen nicht mehr als 4 Sichten in einem Satz genommen werden
durften , namentlich aber w' egen der zahlreichen excentrischen Aufstellungen, indem
auf Aegidius , Hochschule, Dreifaltigkeit , Burg , überhaupt nicht ein Standpunkt zu
finden war , von welchem aus alle Sichten möglich gewesen wären . In diesen Fällen
wurden nach der Centrierung die Teilsätze einfach aneinander geschoben .

Man hat nun streng genommen nicht das Recht , solche zusammengeschobene
Sätze in die Ausgleichung als volle Sätze einzuführen; wir thun dieses aber doch ,
um glatte Rechnung zu haben , und bemerken dazu im allgemeinen, dass für Triangu¬
lierung III .—IV. Ordnung , vielleicht sogar in II . Ordnung , solches Näherungsver¬
fahren üblich und empfehlenswert ist , denn die Auseinanderhaltung aller Teilsätze
wäre viel zu umständlich und würde die Übersicht des Ganzen ungemein stören.

Durch die verschiedene Zeichnung der Sichten in Fig . 1 . , nämlich teilweise

ausgezogen , teilweise gestrichelt , und ferner durch die Numerierung eines Teiles der
Sichten haben wir bereits angedeutet , dass die 42 Richtungen nachher verschieden
behandelt werden sollen , indem die numerierten 22 Richtungen zusammen in eine
Korrelaten -Ausgleichung eingehen und dann die übrigen 20 Richtungen zur Einschal¬
tung der Punkte Hochschule und Dreifaltigkeit benützt werden sollen .

Sehen wir zunächst davon ab , so können wir unser Netz als ein Beispiel zur

Abzählung der Bedingungsgleichungen nach den Regeln von § 58. benützen. Wenn
alle Richtungen benützt werden , so haben wir ;

R ~ 42 Richtungen ,
p = 8 Punkte ,
l = 22 Linien,
lr = 2 einseitig (Hochschule—Schanze und Steuerndieb—Dreifaltigkeit),

dieses giebt nach (18 ) § 58 . S . 176 :
l — 2 p -+- 3 = 9 Seitengleichungen,

(1 — 2’) — p 1 = 13 Dreiecksgleichungen (180°),
R — 3p -h 4 = 22 Bedingungsgleichungen im Ganzen .

Wenn dagegen die punktierten Linien und damit die beiden Punkte Hochschule
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und Dreifaltigkeit aus dem Hauptnetze weggelassen werden , so bleibt eine Ausgleichung
mit nur 8 Bedingungsgleichungen , welche im nächsten § 61 . ausführlich durchge¬
nommen werden wird .

Vorher haben wir noch die beiden Basispunkte des Netzes anzugeben , nämlich

Aegidius und Linden Wasserturm .
Diese beiden Punkte wurden von der trigonometrischen Abteilung der Landes¬

aufnahme schon 1887 an das Netz I . Ordnung angeschlossen , wie in der „Zeitschr.
f. Verm . 1889 “

, S . 8—14 von uns berichtet und in unserem III . Bande , Handb . d.
Verm ., 8 . Aufl. 1890 , S . 835 und 452 mitgeteilt worden ist . Ausserdem kommt der

Punkt Celle als Ursprung unseres Kataster -Coordinaten -Systems in Betracht .

Folgendes sind die fraglichen geographischen Coordinaten der Landesaufnahme :

Breite
Aegidius , Helmstange 52 22 14,9611
Wasserturm , Fahnenstange 52 21 49,9080

Differenzen Aeg .-Wassert . 0 ' 25,0531 ”

Die amtliche Mitteilung von 1891 giebt :

Celle Coord. Nullpunkt 52 ° 37 ' 32,6709 ”

Aegidius , Helmstange 52 22 14,9611
Wasserturm , Fahnenstange 52 21 49,9080

Differenzen 0 ' 25,0531 ”

Länge
27 24 24,6290
27 22 25,0168

1 ' 59,6122 ”

27 ° 44 ' 54,8477 ”

27 24 24,6289
27 22 25,0167

1 ' 59,6122 ”

(3)

(1888)

(4)
(1891)

Die Längenangaben von 1891 sind um 0,0001 " kleiner als die von 1888 , was
nur etwa 2““ Verschiebung entspricht , also sachlich gleichgültig ist , doch musste
diese Kleinigkeit hier erwähnt werden , weil wir auch die Angaben von 1888 schon
mehrfach mitgeteilt haben .

Im rechtwinkligen conformen System der trigonometrischen Abteilung der
Landesaufnahme haben unsere beiden Basispunkte folgende Coordinaten :

Aegidius y — — 244656,090 ”* x = — 30624,971 “ ,
Linden , Wasserturm — 246956,479 — 31285,875 1 (5)

Differenzen -+- 2300,389 + 660,904 '

Aus den Angaben (4) haben wir folgende rechtwinklige Coordinaten im Kataster -

System berechnet :

Aegidius y = — 23271,813 “ x = — 28308,395 “ ,
Linden , Wasserturm — 25538,488 — 29071,474 j (6)

Differenzen + 2266,675 -+- 763,079

Um nun unsere Basis Aegidius — Wasserturm abzuleiten , können wir drei Wege
einschlagen , nämlich diese Basis aus den Angaben (4 ) oder (5) oder (6) berechnen.
Man wird in genügender Übereinstimmung finden :

Aegidius —Linden Wasserturm log S = 3,3787016 ) -m
S - 2391,672 “ (

Nebenbei sei hiezu bemerkt : Wenn man die Entfernung S unmittelbar aus den
geographischen Coordinaten (4) berechnen will , bedient man sich der Mittelbreiten -
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Formeln in unserem III . Bande, 3 . Aufl . 1890 , S . 398 ; zu (5) gehören die Formeln
desselben Bandes S . 451—452 (vor kurzem in d . „ Z . f. Verm . 1894 “

, S . 167—175 neu
entwickelt ) und zu (6 ) gehören die gewöhnlichen Soldnersehen Formeln in jenem
III. Bande , S . 271— 275 .

Wir werden später noch mit diesen verschiedenen Coordinaten zu thun haben,
bis auf Weiteres brauchen wir nur die Basisseite Aegidius —Wasserturm nach (7) .

Man könnte fragen , warum unser ganzes Netz (Fig . 1.) an die verhältnismässig kurze Seite

Aegidius —'Wasserturm angeschlossen und nicht etwa Steuerndieb als zweiter Basispunkt zusammen

mit Linden Wasserturm genommen wurde ? Der Punkt Aegidius , (sozusagen geodätisch geheiligt

durch Messungen von G-auss selbst 1823) hat so viele Vorteile , dass er immer als I . oder II . Ord¬

nung beibehalten werden wird ; Linden , Wasserturm wurde 1887 als Folgepunkt dazu genommen ,

zu einer Zeit , als Steuerndieb 1891 noch nicht gebaut war . Die Basis Aegidius —Wasserturin diente

1888 zuerst für Linden ; wäre die ganze Anlage erst 1891 zusammen mit Steuerndieb entschieden

worden , so würde wohl letzterer Punkt mit als Basispunkt genommen worden sein .

§ 61 . Ausgleichung des Hannoverschen Fünfecks .

Von den im vorigen § 60 . S . 186 mitgeteilten sämtlichen Hannoverschen

Richtungsmessungen benützen wir zunächst nur diejenigen , welche sich auf das

Hauptfünfeck mit dem Centralpunkt Aegidius beziehen, für welches die Seite Aegi¬
dius—Wasserturm = 2391,672 ™ als Basis dient . Die dazu gehörigen Messungs -Sichten
sind in der nachstehenden Fig . 1 . mit Pfeilen und Nummern versehen.

Fig . 1.

Schanze

Steuerndieb

l̂ r^ö .Aegidius
Linden

Wassert himi^

Wiltmer
I : 120 000

Kllom .0
Die zu dem Haupt-Fünfeck gehörigen Kichtungsmessungen haben wir von § 60.

S . 186 nochmals besonders ausgezogen und im folgenden besonders zusammengestellt.
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1 . Aegidius. 4 . Steuerndieb.
Wasserturm ( 1) = 0° 0' 0,00" Willmer (12 ) = 325 ° 34 ' 46,28”

Burg (2 ) = 70 56 34,82 Aegidius (13) = 0 0 0,00
Schanze (3) = 110 42 21,36 Burg (14) = 44 9 14,00
Steuerndieb (4) = 163 44 49,52 Schanze ( 15 ) = 74 52 31,12
Willmer (5 ) = 259 4 4,67

2. Wasserturm . 5 . Schanze.
Burg (6) = 284 ° 21 ' 15,98" Steuerndieb (16) = 307 ° 55 ' 0,00"

Aegidius (7) = 0 0 0,00 Aegidius ( 17 ) = 0 0 0,00
Willmer (8) = 45 5 26,24 Burg (18) = 56 4 7,29

3. Willmer. 6 . Burg .
Wasserturm (9) = 326 ° 1’ 19,33" Schanze (19 ) = 275 ° 49 ' 51,50"

Aegidius ( 10) = 0 0 0,00 Steuerndieb (20) = 316 57 24,36
Steuerndieb (11 ) = 50 15 28,80 Aegidius (21 ) = 0 0 0,00

Wasserturm (22) = 33 24 40,16

Man überlegt zuerst die Zahl und Art der Bedingungsgleichungen. Wir haben

p = 6 Punkte , 1 = 11 beidersbitig beobachtete Linien, also i ? = 2 1 = 22 beobachtete
Eichtungen . Damit bekommt man nach (17 ) § 58 . S . 176 :

l — 2 p -+- 3 = 2 Seitengleichungen,
l — p + 1 = 6 Dreiecksgleichungen,

11 — 3 p 4- 4 = 8 Gleichungen im Ganzen .
Diese Gleichungen sind auch leicht im Einzelnen nachzuweisen . Wir wollen

zuerst die 6 Dreiecksgleichungen aufstellen und dazu überlegen , oh die Dreiecke
geradezu als eben behandelt werden dürfen , oder ob die sphärischen Excesse sich
noch bemerklich machen ? Man hat für unsere Breite von rund 52 ° :

e = o wobei log — - = 1 .7044
r 2 ' J fl

und dabei giebt eine kleine Nebenrechnung die Excesse , wie sie im Nachstehenden
angegeben sind , nämlich zwischen 0,02" und 0,04 " für ein Dreieck , und für das
ganze Fünfeck den Betrag 0,15 " .

Obgleich nun eine Grösse 0,02” bei unseren Messungen keinen reellen Wert
mehr hat , indem die zweiten Decimalen 0,01 " überhaupt nur noch als reine Rechen -
stellen zum Schutze vor Abrundungsfehler der 0,1” mitgeführt werden , haben wir
doch die Excesse im Betrag von 0,02 " bis 0,04”

, da sie sich im Ganzen bis auf
6,15" häufen, nicht vernachlässigt, zumal ihre Mitführung gar keine Mühe verursacht .

Nun stellen , wir aus den Richtungsbeobachtungen (1 ) das erste Dreieck Aegi¬
dius—Wasserturm—Burg zusammen :

(2 ) = 70 ° 56 ' 34,82 "
( 7 ) = 0 ° 0 ’ 0,00 ” (22) = 33° 24' 40,16 "

(1 ) = 0 0 0,00 (6) = 284 21 15,98 (21 ) = 0 0 0,00_
(2) - ( 1) = 70 ° 56 ' 34,82 ”

( 7 )—(6) = 75 ° 38r 44;Ö2Tr
(22) — (21 ) = 33 °

Aegidius (2 )—(1 ) = 70 ° 56 ' 34,82”
Wasserturm (7 )— (6) = 75 38 44,02
Burg (22) — (21 ) = 33 24 40,16

Summe 179 ° 59 ’ 59,00 "
soll 180 ° -f- e = 180 ° 0 ' 0,02 "

w = — 1,02”
(c ')
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Bezeichnen wir nun mit ( 1) , (2) , (3 ) . . . die beobachteten Bichtungen , mit

[1] , [2] , [3] . . . die ausgeglichenen Bichtungen , und mit [1] — ( 1 ) = v1 , [2] — (2) = v2
u . s . w. die Bichtungsverbesserungen , so ist :

(2 ) - ( 1 ) + (7) — (6) + (22) — (21 ) = 179 ° 59 ' 59,00"

[2] — [ 1 ] + [7] — [6] + [22] — [21 ] = 180 ° 0' 0,02"

also v2 — Uj + t>7 — v6 + «22 — vzi — 1,02" = 0 (c )

Diese Gleichung haben wir mit (c) bezeichnet , weil sie in der späteren Liter-

ierung aller Bedingungsgleichungen die dritte werden wird.
Ebenso wie diese (c) bilden wir auch die übrigen Dreiecksgleichungen :

Aegidius
Willmer
Wasserturm

(1) —(5) = 100° 55' 55,33”

(10)—(91= 33 58 40,67
(8)- (7) — 45 5 26,24

Aegidius
Schanze
Burg

(3)—(2) = 39° 45' 46,54”

(18)—(17) = 56 4 7,29
(21)—(19) = 84 10 8,50

180 0 2,24
soll 180 0 0,02

180 0 2,33
soll 180 0 0,03

«1 ~ »6 + Vl0 ~
tv — -j- 2,22

- + i's — + 2,22” = 0 (d) v3 — v* + t'18 -
tv— *-j~ 2,30

- i'j* -f- ?’2i — 2,30” = 0 (g)

Aegidius
Steuerndieb
Willmer

(5)—(4j = 95° 19' 15,15”

(13) —(12) ~ 34 25 13,72
(11)—(10) = 50 15 28,80

Aegidius
Steuerndieb
Burg

(4)—(2) = 92° 48' 14,70”

(14) —(IS) = 44 9 14,00
(21)—(20) = 43 2 35,64

179 59 57,67
soll 180 0 0,03

180 0 4,34
soll 180 0 0,04

*6 ~ VK “
tu — — 2,36

- v13+ ?'u — vlQ— 2,36” = 0 w n — v2 + «« -
w = -f- 4,30

- !)ls + v2l — vt0 + 4,30” = 0 (h)

Aegidius
Steuerndieb
Schanze

(4)—(3) = 53° 2' 28,16 ”

(15) - (13) = 74 52 31,12
(17)—(16) = 52 5 0,00

Burg
Steuerndieb
Schanze

(20) —(19) = 41° 7' 32,86 ”

(15)—(14) = 30 43 17,12
(18)—(16) = 108 9 7,29

179 59 59,28
soll 180 0 0,04

179 59 57,27
soll 180 0 0,03

“ r 3 + Vir, "
w = — 0,76

~ *i3 4 *vi7 — fc'je — 0,76 ” = 0 (o

w — — 2,76 (i)

Dieses letzte Dreieck Burg — Steuerndieb— Schanze
unabhängigen Bedingungsgleichungen , weil es in (f) (g)

gehört nicht mehr zu den
— (h ) bereits enthalten ist .

Übergehend zu den Seitengleichungen bemerken wir sofort , dass das Central¬

system um Aegidius die erste , und die Diagonale Burg—Steuerndieb die zweite

Seitengleichung bietet . Denkt man sich die Basis Aegidius —Wasserturm durch alle
5 Dreiecke des Centralsystems hindurch in sich selbst zurückgerechnet, so erhält man :

sin (7—6) sin (10 —9) sin (13 — 12) sin (17—16) sin (21 —19) _ ^
.

sin (8 —7 ) sin ( 11— 10 ) sin (15 — 13 ) sin ( 18—17 ) sin (22— 21)

Wenn man zweitens ausdrückt, dass irgend welche von Schanze ausgehende
Seite des nördlichen Diagonalenvierecks in sich selbst zurückberechnet stimmen muss,
so erhält man :

sin (3 —2) sin ( 15 — 13 ) sin (20 - 19) = ;
sin (4— 3 ) sin ( 15 — 14 ) sin (21 — 19 )

Hiebei braucht man die kleinen sphärischen Excesse nicht zu berücksichtigen ,
weil ja der Sinussatz für die Dreieckswinkel auch auf der Kugel gilt , und man die

Seitenberechnung nach der sogenannten Additamentenmethode ausgeführt denken
kann. So giebt die Seitengleichung (A ) folgende logarithmische Ausrechnung :



192 Ausgleichung des Hannoverschen Fünfecks . § 61 .

(7 )—(6) = 75 ° 38' 44,02 " log sin = 9 .986 2255
Diff. für 10"

54

(10)—(9) = 33 58 40,67 9 .747 3139 313

(13)—(12) = 34 25 13,72 9 .752 2497 307

(17 )— (16) = 52 5 0,00 9 .897 0249 164

(21 )— (19 ) = 84 10 8,50 9 .997 7471 21

(8) — (7 ) = 45 ° 5 ' 26,24"
Z = 9 .380 5611

log sin = 9 .850 1708 210
(11 )—(10) = 50 15 28,80 9 .885 8874 175

(15)— (13 ) = 74 52 31,12 9 .984 6894 57

(181— (17 ) = 56 4 7,29 9 .918 9250 142

(22) — (21 ) = 33 24 40,16 9 .740 8703 319

N = 9 .S80 5429
Z — N = ■+- 0,000 0182

Die zugehörige lineare Seitengleichung ist für Einheiten der 6ten Logarith -

men -Stelle :

+ 0,54 (®y— Dg) + 3,13 (®n)— 'y9) + 3,07 (v13— ,yj2) + l,64 ('W17—®ie) + 0,21 (®ai —^ig)
—2,10(c8—ü7) — 1,75 (®U- »10)— 0,57 (»15—d13) —1,42 (c18—e17) — 3,19 («2a—®2i ) + 18 .2 = ()

oder zusammengefasst :

+ 2,64 ®7 + 4,88 ®jq + 3,64 ®}3 + 3,06®i7 |
— 0,54 «6 — 2,10 «8 — 3,13 ®9 — 1,75 ®n — 8,07 ®12 — 0,57 ®i 5 — 1,64 «16 — 1,42 «18 I , ,

+ 3,40 ®2i j
— 0,21 «19 — 3,19 »22 + 18,2 = 0 |

Ebenso giebt die zweite Seitengleichung (B ) folgende Ausrechnung :
Diff . für 10"

(3)— (2 ) = 39 ° 45 ' 46,54" log sin = 9 .805 9169 253
(15 ) — (13) = 74 52 31,12 9 .984 6894 57
(20) — (19) = 41 7 32,86

Z =

9 .818 0374

9 .608 6437

241

(4) - (3) = 53 ° 2 ' 28,16 " log sin = 9 .902 5835 158
(15 )—(14) = 30 43 17,12 9 .708 3056 354

"Bd 1! 00 10 8,50

N =

9 .997 7471

9 .608 6362

21

Z - N = + 0,000 0075
+ 2,53 (®3 — v2) + 0,57 (®jg — ®is ) + 2,41 (®2o — ®is )
— 1,58 (®4 — v3) — 3,54 (®16 — ®14) — 0,21 («21 — ®19) + 7,5 = 0

zusammengefasst :

+ 4,11 ®3 — 2,97 «25 — 2,20 ®19 1
— 2,53 v2 — 1,58 ®4 — 0,57 ®13 + 3,54 vu + 2,41 v20 - 0,21 ®21 + 7,5 = 0 )

w

Nun haben wir auf S . 191 —192 zerstreut die 8 linearen Bedingungsgleichungen
(c) (d) (e) (f) (g) (h) (a) (b) , welche wir jetzt in geordneter Form und in der Beihen-

folge (a) (b) . . . (h) in die Tabelle I . auf S. 194—195 oben , schreiben :
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Aus dieser Tabelle I . S . 194 u . 195 berechnet man leicht alle Summen -Coeffi-
cienten [a a] , [a 6] u. s . w. Z . B . :

a a2 a b ab a c
0,54 0,2916 + 3,64 — 0,57 — 2,0748 + 0,54
2,64 6,9696 — 0,57 — 2,97 + 1,6929 + 2,64

— 0,21 — 2,20 + 0,4620 - 3,40
3,19 10,1942 + 3,40 — 0,21 — 0,7140 — 3,19

[a a] = 107,1942 [a 6] = — 0,6339 [d c] = — 3,41 u . s . w .

Damit bildet man die Normalgleichungen , welche in abgekürzter Schreibweise und
zugleich mit abgerundeten Coefficienten (z. B . 107,19 statt 107,1942 ) sich so
darstellen (abgekürzte Schreibweise nach (2) und (3) unten auf S . 80) :

+ 107,19 *4 — 0,63 *2 — 3,41 fc8 + 3,27 *4 + 0,08 *5+ 0,49 A6 — 0,87 *7 — 0,24 *8+ 18,20 = 0
. . -= 58,16 *2 — 2,32 *3 • • + 1,01 *5—8,09 *6 + 8,63 *7 + 2,44 *8+ 7,50 = 0“

-1- 6 ,00 *3 — 2 ,00 *4 . . . . — 2 ,00 *7 — 2 ,00 *3— 1 ,02= 0
. . + 6,00 *4—2,00 *5 . + 2,22 = 0

• • + 6,00 *5—2,00 *6 . . — 2,00 *8— 2,36 = 0
+ 6,00 *6 — 2,00 *7 + 2,00 *8— 0,76 = 0

. . + 6,00 *7 + 2,00 *8+ 2,30 = 0
. . + 6,00 *8+ 4,30 = 0

Die Auflösung dieser 8 Gleichungen gab :

*! = — 0,177 *2 = — 0,048 *s = — 0,387 *4 = — 0,367
*5 = + 0,112 fc6 = + 0,422 fe7 = — 0,014 *8 = — 0,931

damit kann man die Verbesserungen v ausrechnen nach den Gleichungen (9) § 39.
S . 119, nämlich:

a t *i + 64 *2 + c] *3 + • ■•
*4 + &2 *2 + *3 + • • • u . s . w.

Man folgt dabei den Bedingungsgleichungen nach Vertikalreihen und bekommt
eine Ausrechnung, welche wir unmittelbar unter der Tabelle der Bedingungsgleich¬
ungen I . auf S . 194 u . 195 tabellarisch in II . dargestellt haben .

Eine erste Rechenprobe hat man hier darin, dass die v stationsweise gruppiert
je die Summe Null geben müssen. Dieses ist auf S . 194 u . 195 unten durch dickere
Vertikalstriche angedeutet, z . B . :

+ 0,020 + 0,679 — 0,633 — 0,545 + 0,479 = 0.

Diese Probe ist übrigens nicht tiefgreifend, denn wenn sogar die * ganz falsch wären ,
"würden die Stationssummen der v doch = 0 sein wegen der Gruppierung der Coeffi¬
cienten der Bedingungsgleichungen. Man wird möglichst rasch zu der entscheidenden
Probe eilen , ob die Verbesserungen v zu völligem Stimmen der Bedingungsgleichungen
führen ; dieses werden wir jedoch erst später auf S . 197 behandeln, und zunächst
(aus einigen formellen Gründen) die Ausrechnung der [i>2] = — [wk ] vornehmen , was
eine Bechenprobe enthält und auch sogleich zu dem mittleren Fehler führt.

Jordan , Handb . d . Vermessungelsunde . 4. Auü . I . Bd . 13
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i . Bedingungsgleichungen , z. B . -- 0,5k+ 2,6-

1>1 « 2 Vs ve « 7 ^ 8 «9 % ; »ii

h a
- 0,54 + 2,64 — 2,10 — 3,13 + <* - 1,71

b — 2,53 + 4,11 — 1,58 ■■

*3 c — 1 + i - 1 + 1

d + i — 1 — 1 + i . - 1 +1

K e — 1 + 1 - 1 + i

t — 1 + i

^1 9 „ 1 + i

k& h - 1 + i

II , Ausrechnung der Verbesserungen v aus den Komlatai i. B, -

*1= -- 0,177 _ + 0,096 — 0,467 + 0,372 + 0,554 - Oj» -j-0,31

X'3 = - - 0 .048 + 0,121 — 0,197 + 0,076

k3— ~- 0,387 + 0,387 — 0,387 + 0,387 — 0,387

** = -- 0,367 — 0,367 + 0,367 + 0,367 — 0,367 + 0,367 - ütf

7ch — -\- 0,132

k6 - + 0,422 — 0,422

— 0,112

+ 0,422

+ 0,112
- 0,1U+ 0,11

+ = -- 0,014 + 0,014 — 0,014

Ä‘8 = -- 0,931 + 0,931 — 0,931

+ 0,020
= i?i

+ 0,679
= v2

— 0,633
= v3

0,545
= H

+ 0,479
= vB

+ 0,483 - 0,487
= v1

+ 0,005 + 0,921

= ?>9

- US

—fll

+ 0,42
= i-ü

Fortsetzung des Textes von S. 19S unten .

Indem man die i> auf 0,01 ” abrundet , hat
V 1)2

l . + 0,02” 0,0004
2 . + 0,68 0,4624
3. — 0,63 0,3969
4. — 0,55 0,3025
5 . + 0,48 0,2304
6 . + 0,48 0,2304
7. — 0,49 0,2401
8. + 0,01 0,0001

1,8632

1 .
2.
3 .
4.
5 .
6.
7 .
8.

V 1)2
9 . + 0,92” 0,8464

10. — 1,34 1,7956
11 . + 0,42 0,1764
12. + 0,43 0,1849
13. + 0,00 0,0000
14. — 1,10 1,2100
15. + 0,67 0,4489
16. — 0,13 0,0169

4 6̂791

Controllrechnung :
w k

+ 18,20 — 0,177
+ 7,50 — 0,048
— 1,02 — 0,387
+ 2,22 — 0,367
— 2,36 + 0,112
— 0,76 + 0,422
+ 2,30 — 0,014
+ 4,30 — 0,931

man :
V

17. — 0,11" 0,0121
18. + 0,24 0,0576
19 . + 0,16 0,0256
20. + 0,81 0,6561
21 . — 1,15 1,3225
22. + 0,18 0,0324

2,1063
4,6791
1,8632
8,6486

— wie
3,2214
0,3600

— 0,3947
0,8147
0,2643
0,3207
0,0322
4,0033

(2)

8 .6219 (3)
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0,5ii+ 2,64 ®7 — 2,10 « 8 . . . — 3,19t )22 + 18,20 = 0

% »11 »12 » 13 » 14 » 15 » 16 » 17 » 18 » 19 » 20 » 21 » 22 W

+ !,S - 1,75 - 3,07 + 3,64 — 0,57 — 1,64 + 3,06 — 1,42 — 0,21 + 3,40 — 3,19 + 18,20
— 0,57 + 3,54 — 2,97 , . — 2,20 + 2,41 — 0,21 + 7,50

— 1 + i — 1,02
+1 + 2,22

+ i —1 + i — 2,36
— 1 + i — 1 + 1 — 0,76

— 1 + i — 1 + i + 2,30
- 1 + i - 1 + i + 4,30

Um i. B. = « i &1 + - bi &2 H- • • • = + 0,387 — 0,367 = + 0,020

-4,SSt10,310 + 0,543 — 0,644 + 0,101 + 0,290 — 0,541 + 0,251 + 0,037 — 0,602 + 0,565

+ 0,027 — 0,169 + 0,142 + 0,106 — 0,116 + 0,010
- + 0,387 — 0,387

i- tf
- 0,10+o,m- 0,112 + 0,112 .

- 0,422 + 0,422 — 0,422 + 0,422

. . | + 0,014 - 0,014 + 0,014 — 0,014

+ 0,931 — 0,931 + 0,931 — 0,931

- 1,30T0,422+ 0,431 + 0,004 — 1,100 + 0,665 — 0,132 — 0,105 + 0,237 + 0,157 + 0,815 — 1,150 + 0,178
= f„ = — y13 = ^ 4 — ?-'lG = t'w = va — *'te = Vl9 ——̂ 20 — Ü21 — i'ss

Fortsetzung des Textes von S. 194 unten .

Die Übereinstimmung zwischen 8,65 und 8,62 ist genügend, wir berechnen
daraus den mittleren Fehler einer Richtung , nämlich wegen der Anzahl 8 von Be¬
dingungsgleichungen:

= / 8f = : 1,04” (4 )

Nun wollen wir aber zu der letzten durchschlagendenProbe , nämlich Erfüllung
der Bedingungsgleichungen übergehen , und müssen hiezu die soeben berechneten v
den unter ( 1) auf S . 190 früher mitgeteilten beobachteten Richtungen zufügen .

Babei haben wir einige hleine formelle Abweichungen zu erklären , indem einzelne v
der nachfolgenden Tabelle S. 196 bis zu 0,01" von den soeben in (2) zusammengestellten v ab¬
weichen , z. B. «9 = -|- 0,92" erscheint nachher = + - 0,91". Da die 0,01'' in unserem Falle überhaupt
keinen reellen Wert mehr haben , sondern nur als letzte Kontroll -Bechenstelle mitlaufen , brauchten
wir kaum Beehensohaft über ein Schwankeu von 0,01" zu geben ; und es kommt bei solchen Aus¬
gleichungen oft vor , dass man kleine nach der Ausgleichung noch gebliebene Missstimmigkelten
in den Bedingungsgleichungen kurzer Hand nach Gutdünken vollends tilgt . Indessen in unserem
Falle haben wir neben der in vorstehendem mitgeteilten Ausgleichung noch eine zweite Ausgleichung
mit schärferer Fassung der zweiten Seiteugleichung durchgeführt , und diese zweite Ausgleichung
bei Ausetzen der endgültigen v mitbenützt , woraus die erwähnten weniger formellen Abweichungen
von 6,01"

hervorgegangen sind .
Wir werden am Schlüsse dieses Kapitels hierauf zurückkommen und auch einen anderen

formellen Umstand , betreffend die Reihenfolge der Bedingungsgleichungen in der Tabelle I , oben auf
S. 194—195 noch erörtern .
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beobachtet Verbes -

(vgl . S . 190) serung
Ausgeglichen

1 . Aegidius. V

Wasserturm . , . (1 ) = 0 ° 0' 0,00' + 0,02" 0 ° 0 ' 0,02"

Burg . . . . . (2) = 70 56 34,82 + 0,68 70 56 35,50

Schanze . . . . . (3) = 110 42 21,36 — 0,63 110 42 20,73

Steuerndieb . . . (4) = 163 44 49,52 — 0,55 163 44 48,97

Willmer . . . . (5) = 259 4 4,67 + 0,48 259 4 5,15
50,37 0,00 50,37

2. Wasserturm.
Burg . . . . . (6) = 284 ° 21 ' 15,98 " + 0,48" 284° 21 ’ 16,46"

Aegidius . . . . (7) = 0 0 0,00 — 0,48 359 59 59,52

Willmer . . . . (8) = 45 5 26,24 0,00 45 5 26,24
42,22 0,00 42,22

3 . Willmer .
Wasserturm . . . (9) = 326 ° 1' 19,38 ' + 0,91" 326 ° 1 ' 20,24"

Aegidius . . . . ( 10) = 00 0,00 — 1,33 359 59 58,67

Steuerndieb . . . (11 ) = 50 15 28,80 + 0,42 50 15 29,22
48,13 0,00 48,13

4 . Steuerndieb.
Willmer . . . . (12) = 325 ° 34' 46,28" + 0,43" 325 ° 34' 46,71

Aegidius . . . . (13) = 00 0,00 + 0,01 0 0 0,01

Burg . . (14) - 44 9 14,00 — 1,09 44 9 12,91

Schanze . . . . (15 ) = 74 52 31,12 + 0,66 74 52 31,78
31,40 + 0,01 31,41

5 . Schanze .
Steuerndieb . . . (16) = 307 ° 55’ 0,00" — 0,13" 307 ° 54' 59,87"

Aegidius . . . . (17 ) = 00 0,00 — 0,10" 359 59 59,90

Burg . . . . . (18) = 56 4 7,29 + 0,23 56 4 7,52
7,29 0,00 7,29

6. Burg .
Schanze . . . . (19) = 275 ° 49 ' 51,50" + 0,16" 275 ° 49 ' 51,66"

Steuerndieb . . . (20) = 316 57 24,36 + 0,81 316 57 25,17

Aegidius . . . . (21) = 00 0,00 — 1,15 359 59 58,85

Wasserturm . . . (22) = 33 24 40,16 + 0,17 33 24 40,33
56,02 — 0,01 56,01

Mit diesen ausgeglichenen Richtungen bildet man wieder die Dreieckswinkel

als Differenzen , ebenso wie früher in (c) bis (h) S . 191 mit den beobachteten Rich¬

tungen . Ausführlich schreiben wir dieses nur für das erste Dreieck :

[2] = 70 ° 56' 35,50 " [7] = 359 ° 59 ' 59,52" [22] = 38 ° 24' 40,3S
"

[1] = 0 0 0,02 [6] = 284 21 16,46 [21] = 359 59 58,85^

[2] — [1 ] = 70 ° 56' 35,48 "
[7]—[6] = 75° 38 ' 4p6 "

Aegidius [2] — [1] = 70 ° 56 ' 35,48"

Wasserturm [7] — [6] = 75 38 43,06
Burg [22]— [21] = 33 24 41,48

180 ° 0' 0,02" [c]



Genauigkeit einer Netzdiagonale . 197

In gleicher Weise bildet man auch die übrigen ausgeglichenen Dreiecke :

Aegidius [11—15] = 100° 55' 54,87" Aegidius [3]—[2] = 39° 45' 45,23 "

Willmer [10] - [9] = 33 58 38,43 Schanze [18]—[17] = 56 4 7,62

Wasserturm [8]- [7] = 45 5 26,72 Burg [21]—[19] = 84 10 7,19

180° 0 ' 0,02" [dl 180° 0' 0,04" ig]

Aegidius [5]- [4] = 95° 19' 16,18" Aegidius [4]- [2] = 92° 48' 13,47"

Steuerndieb [13]—[12] = 34 25 13,30 Steuerndieb [14]—[13] = 44 9 12,89

Willmer [11—[10] = 50 15 30,55 Burg [21]—[20] = 43 2 33,68

180° 0' 0,03" [e] 180° 0' 0,04" M

Aegidius [4]—[8] = 53° 2' 28,24" Burg [20]—[19] = 41° 7' 33,51"

Steuerndieb [15]—[13] = 74 52 31,77 Steuerndieb [15]—[14] = 30 43 18,88

Schanze [17]—[16] = 52 5 0,03 Schanze [18]- [16] = 108 9 7,65

180° 0' 0,04" M 180° 0' o o
!

^
1

M

Zur Dreiecksberechnung wird man die kleinen Excesse , welche zwischen 0,02"

und 0,04” betragen , noch auf die Dreieckswinkel verteilen , und dann braucht man

nur noch eine Basislänge , um alle Dreiecksseiten nach dem Sinussatz berechnen zu

können . Wie am Schlüsse des vorigen § 60 . S . 188 mitgeteilt wurde , ist die

Basisseite
Aegidius —Wasserturm S = 2391,672 "

log S = 3,378 7016

Damit wurden in der angegebenen Weise auch alle übrigen Dreiecksseiten wider¬

spruchsfrei berechnet mit folgenden Ergebnissen :
Aegidius —Wasserturm log S = 3 .378 7016

Aegidius —Willmer
Aegidius —Steuerndieb
Aegidius —Schanze
Aegidius —Burg
Wasserturm—Willmer
Willmer —Steuerndieb
Steuerndieb —Schanze
Schanze—Burg
Burg —Wasserturm
Burg —Steuerndieb

log S = 3 .481 5665
log S = 3 .615 2086
log S = 3 .702 8735
log S = 3 .624 0521
log S = 3 .623 4413
log S = 3 .727 4425
log S = 3 .620 7673

log S = 3 .511 0402

log 8 = 3.613 3487
log S ~ 3 .780 5583

(5)

§ 62. Genauigkeit einer Netzdiagonale.

Mit den ausgeglichenen Bichtungen , Winkeln und Dreiecksseiten des vorigen
I 61 . kann man alles znm weiteren geodätischen Gebrauch Erforderliche vollends

berechnen , und dem Praktiker raten wir deshalb , sofort von § 61 . zu § 63 . u. § 64.

überzugehen, wo wir die Coordinatenberechnung zu dem Fünfeck von § 61 . be¬

handeln werden.
Indessen für unseren theoretischen Gang ist es nützlich , hier eine Einschaltung

zu machen , betreffend die Genauigkeit irgend einer aus der Basis Aegidius —Wasser¬

arm abgeleiteten Dreiecksseite .
Da die Basis Aegidius —Wasserturm ziemlich klein ist im Vergleich mit der

usdehnung des Gesamtnetzes , ist es nicht ohne Interesse , die Fehlerübertragung
Von dieser Basis auf eine der längeren Seiten , z . B . auf die nahezu 2 72 mal so lange
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Diagonale Burg- Steuerndieb zu berechnen. Dabei handelt es sich nur um diejenigen
Fehler , welche durch die Winkelmessungen erzeugt und weiter getragen werden,
während die Basis Aegidius — Wasserturin selbst hier als fehlerfrei betrachtet wird.

Wir wollen hiemit eine Funktions -Gewichtsberechnung nach der Theorie von

§ 42 . machen.
Setzen wir die Basis Aegidius — Wasserturm = b und die Diagonale Burg—

Steuerndieb = s , so besteht nach Fig . 1 . § 61 . S . 189 die Beziehung :

% sin [7—6] sin [4—2] mS ~~ b sin [22—21 ] sin [14- 13]
Die beiden hiezu erforderlichen Dreiecke sind mit ihren ausgeglichenen Winkeln unter

[c] und [h] auf S . 196— 197 angegeben , nämlich mit Zufügung der Legendreschen
ebenen Winkel :

Aegidius [2—1 ] = 70 ° 56' 35,48"

Wasserturm [7 — 6] = 75 38 43,06
Burg [22—21 ] = 33 24 41,48

Legendre
70 ° 56' 35,47 "

75 38 43,06
33 24 41,47

180 ° 0' 0,02" 180 ° 0 ' 0,00 "

Aegidius [4—2] = 92 ° 48 ' 13,47 " 92 ° 48' 13,46"

Steuerndieb [14—13] = 44 9 12,89 44 9 12,88
Burg [21—20] = 43 2 33,68 43 2 33,66

180 ° 0' 0,04" 180 ° 0’ 0,00 "

Mit den Legendreschen Winkeln rechnet man :
Diff . für 10"

; Diflf. für 10"

log sin [7—6] = 9 .986 2250 54 log sin [22—21 ] = 9 .740 8745 319
log sin [4—2] = 9 .999 4798 — 11 log sin [14— 13] = 9 .842 9735 216

9 .985 7048 I — 9 .583 8480
= + 0 .416 1520

Aegidius —Wasserturm logb = 3 .378 7016
+ 9 .985 7048
+ 0 .416 1520

Burg — Steuerndieb log s = 3 .780 5584 , s = 6033,349 '" (2)
Dieses stimmt genügend mit 3 .780 5583 , wie auf S . 197 angegeben ist , und zwar
kommt, gelegentlich bemerkt , die kleine Abweichung von 1 Einheit der 7 . Stelle in

log s nur daher, dass die Werte (5) am Schluss von § 61 . S . 197 bei den Rechnungen
aus den verschiedenen Dreiecken in der letzten Stelle nötigenfalls gemittelt wurden.

Aus der vorstehenden logarithmischen Berechnung mit den beigesetzten Differ¬
enzen für logsin kann man die Fehlerfunktion anschreiben :
log s — log b = + 0,54 (d7 — <?6) — 0,11 (d4 — tf2) - 3,19 (dw — d21) — 2,16 (du — d13) (3)
dabei bedeuten d7 , d6 u . s . w. die Änderungen der gemessenen Richtungen (7) , (6) . . •
und zwar tf7 , d6 . . . in Sekunden, wenn leg s — log b in Einheiten der 6ten Logarith -

men -Decimale verstanden . Dieses Verfahren ist offenbar ganz entsprechend der Auf¬

stellung der linearen Seitengleichungen , welche wir in § 57 . S . 167 gelehrt haben ;
und man könnte auch die Coefflcienten 0 .54 u . s . w . ähnlich wie dort als Differential¬
quotienten der log sm-Funktion nachweisen , was nochmals auszuführen nun nicht

nötig ist .
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Wir betrachten nun die vorstehende Gleichung (3) als Punktion F in dem

Sinne von § 42 ., (indem unsere d denselben Charakter haben wie die x von ( 1)

§ 42. S . 123) und damit werden die Coefficienten f :

ft = + 0,54 f6 = - 0,54 f4 = - 0,11 f2 = + 0,11

f22 = - 3,19 f21 = + 3,19 fu = — 2,16 / i8 = + 2,16

alle anderen f sind = Null . Wir bilden eine Tabelle aller f und aller derjenigen

a b c . . welche mit den vorhandenen f zusammen Vorkommen. Die a b c ■ . .

sind von der früheren grossen Coefficiententabelle § 61 . S . 194—195 hierher übertragen .

2 4 6 7 13 14 21 22

a — 0,54 + 2,64 + 3,64 + 3,40 - 3,19

b — 2,53 — 1,58 . . — 0,57 + 3,54 - 0,21 ! . .

c + 1 — 1 + 1 — 1 + 1

d — 1
e — 1 + 1

f + 1 — 1

g — 1 . . + 1

h — 1 + 1 — 1 + 1 + 1

f + 0,11 — 0,11 — 0,54 + 0,54 + 2,16 — 2,16 + 3,19 — 3,19

Nun rechnet man alle af , bf , cf u . s . w ., z . B . :

a f af cf
— 0,54 — 0,54 + 0,2916 + 0,11

+ 2,64 + 0,54 + 1,4256 + 0,54

+ 3,64 - f- 2,16 + 7,8624 + 0,54
— 3,40 + 3,19 + 10,8460 3,19

— 3,19 — 3,19 + 10,1761 — 3,19

[af ] = 30,6017 [of ] = ~ 5,19

Dieses sind die Ersatzglieder für die Absolutglieder w der Normalgleichungen ,

und entsprechend (15 ) S . 125 haben wir folgendes Coefficientensystem :

a
b
c
cl
e

f

9
h
f

1*9 Üg k 4 1*5 kg 1"7 kg f

1 07,19 — 0,63 — 3,41 + 3,27 + 0,08 + 0,49 — 0,87 — 0,24 + 30,60

. . . + 58. 16 — 2,32 — 0,00 + 1,01 — 8,09 + 8,63 + 2,44 — 9,65

. . . -4- 6,00 — 2,00 . — 2,00 — 2,00 — 5,19

. . . + 6,00 — 2,00 . — 0,54

. . . + 6,00 — 2,00 . . . - 2,00 + 2,27

. . . + 6,00 — 2,00 + 2,00 — 2,27

7 . . + 6,00 + 2,00 + 3,08

. . . + 6,00 — 1,35

. . . + 30,29 = [ ff]

Dieses System wird 8 mal reduziert , d. h . es werden der Reihe nach kj , ka bis k8
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eliminiert und dabei das Schlussglied immer mitgeführt . Durch diese 8 Eliminationen
wird man erhalten (nach Gleichung ( 12) S . 124) :

30,29 — (8,74 + 1,54 + 3,63 + 1,68 -+- 0,33 + 3,01 -+- 1,39 -+- 0,87)

d . h . ~ = 30,29 — 21,19 = 9,10

Diese ganze Rechnung von S . 199 an ist nur mit dem Rechenschieber gemacht ,
deshalb höchstens auf 0,1 sicher, daher zu setzen rund :

Da der mittlere Fehler der Gewichtseinheit früher in (4) § 61 . S . 195 rund
m — 1,0" gefunden wurde , haben wir nun den mittleren Funktionsfehler :

M = m = 1,01/9,1 = ± 3,0 (3)

Dieses ist ein mittlerer Fehler in Einheiten der 6*en Logarithmenstelle , wir
haben also nach (2) und (3 ) :

logs = 3 .780 5584 + 30
also s = 6033,349 “ ± 0,042“

Dieses ist geradezu aus der Logarithmentafel erhalten , indem + 30 an der fraglichen
Stelle bei der Tafeldifferenz 72 den Betrag + 0,042 “ ausmacht. Mehr theoretisch
hat man :

d log s = ^ d s = + 0,0000030
ds 0,0000030
T =

0,434 . . .
' 0,000007

d . h . 7 Milliontel oder 7 Millimeter auf 1 Kilometer , was auf 6 Kilometer ausge¬
rechnet wieder + 42”“ giebt wie vorhin.

Dieses ist der mittlere zu fürchtende Fehler der Diagonale Burg— Steuerndieb ,
insofern diese Seite trigonometrisch aus der fehlerfrei angenommenen Seite Aegidius —
Wasserturm abgeleitet ist . Die erzielte Genauigkeit ist offenbar sehr befriedigend.

In gleicher Weise könnte man auch einen bei der Kürze der Basis nicht unge¬
fährlichen Verdrehungsfehler des Netzes bestimmen.

§ 68. Abrisse uud Coordinaten im System der Landesaufnahme.
Wie schon am Schluss von § 60. angegeben wurde , haben wir für unsere zwei

Basispunkte Aegidius und Linden Wasserturm Anschluss-Coordinaten im conformen
rechtwinkligen System der Landesaufnahme.

Diese Coordinaten sind für das allgemeine Verständnis der preussischen Geo¬
däsie sehr wichtig , dagegen hat das Kataster andere Coordinaten, welche wir nach¬
her in dem besonderen § 64 . behandeln werden .

Die Hauptformeln der conformen rechtwinkligen Coordinaten haben wir vor
Kurzem in der „ Zeitschr. f. Verm . 1894 “ , S . 167—171 entwickelt und wir wollen
hier nur die Gebrauchsformeln hersetzen, mit Beziehung auf Fig . 1 .

Ein Punkt A habe die Projektions-Coordinaten yx, und ein Punkt B habe
entsprechend as2 y%, dann hat man für die geradlinige Entfernung s und den Rich¬
tungswinkel lx in dem ebenen rechtwinkligen Systeme, wie immer :
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tang tj =

- XZ-

y %— y \
- xx
- xx

OCo
Kg . 1.

—= V(y2 — 2/i )2 + 0l
'

— *l)2
( 1)

sin ti cos ti
Ausserdem sei S die sphärische Entfernung

der Punkte A und B , hierzu dient das Vergrösser-
ungsverhältnis :

1/2 JL
2r 2 yi

2 -72670
(2)

^4 , = m = 1 + ~ z oder log m =dS 2 r2 a

wobei für 7stell . Logarithmen log ■

Für eine Entfernung S und ihre Projektion
s hat man in logarithmischer Form :

log s — log S =

wobei y a =

J *L
12 r2

y%

- (2/12 + 4y 02 + 2/22)-

und = 1 '94855y 12r2

(3)

Wenn yl und y2 nahe gleich sind , d. h. wenn die Differenz y2 — y\ verhält¬
nismässig klein ist im Vergleich mit y selbst , kann man genähert rechnen :

Genähert log s — log S = (yi ■+■ya)2>81
(4)

wo log -~ = 2 -12464 |

Weiter sei 2\ der sphärische (auch sphäroidische) Eichtungswinkel des Strahls
AB in A . Zur Reduktion von tj auf T: hat man -.

Ti — h = («2 — ah)
(2 2/1 + 6

und entsprechend :
r 2 — *2 = 0*1 — x z)

3 2 r2

(2 ;/2 + yi) e
3 2 »-2

(5)

wo log = 1 .40334

Wenn y2 — V\ klein ist im Vergleich mit i/j und y2 selbst , kann man auch
diese beiden Reduktionen gleich nehmen , nämlich genähert :

J-\ — — t '2 l 0*-'2 -*-1) OV’2 “P ?/ () j ?.2
* |

1 (6)
wo l°y ^ 2 = U0281 )

Der Ursprung des Sj'stems ist in dem Meridian für 31 ° Länge auf der Breite
52 ° 42 ’ 2,63251 "

(entsprechend 52 ° 40 ' auf der Gauss sehen conformen Kugel ) . Die
■+■ x werden nach Norden und die h- y nach Osten gezählt , wir haben daher in
der Gegend von Hannover — y und — x , und unsere beiden Basispunkte sind :

Aegidius y\ ~ ~~ 244 656,090 ”* * 1 = — 30 624,971 ™

Wasserturm y %=: — 246 956,479 ” = — 31 285,875 ™

2/1 — 2/2 = 2 300,389 ' xl — *2 = + 660,904™



202 Abrisse und Coordinaten im System der Landesaufnahme.

Wenn man hieraus die Entfernung und die beiden Richtungswinkel nach den

Formeln (3)—(6 ) berechnet, so erhält man :

log (2/l — 2/2) = 3 -S61 8013
log (xi — = 2.820 1384

log tang t% = 0 .541 6629 t2 = 73 ° 58 ' 14,12" (7)

s = y-± ~ 1 . . 3 .379 0236
sin t2 cos f2

log s — log S = 3220 nach Formel (3) oder (4)

also log S = 3 .378 7016 (8)

Dieses ist log S , wie schon in der Dreiecksausgleichung § 61 . S . 197 ange¬
geben ist .

Man rechnet noch t — T nach (5) oder (6 ) , und hat dann :

tj = 253 ° 58' 14,12 "
Tx — tx = + 0,41 "

Ta = 253 ° 58' 14,53"

t2 = 73 ° 58 ' 14,12 "

T2 — t2 = — 0,41"

T2 =
~
73 ° 58 ' 13,71" (9)

Um auch für die übrigen Dreiecksseiten die log s — log S und die t — T zu
berechnen, muss man zuerst durch abgerundete Annahmen vorläufige Näherungswerte
ermitteln , was übrigens auch aus anderen Gründen schon nützlich ist . Solche

Näherungswerte sind :
1. Aegiclius
2. Wasserturm
3. Willmer
4. Steuerndieb
5. Burg

y — — 244656,1’
— 246956,5
— 243280,9
— 241167,9
— 247076,5

: — 30625,0*»
— 312S5,9
— 33328,4
— 28421,4
— 27179,2

(10)

6. Schanze — 244244,4 — 25592,9

Bei der Berechnung der logs — log S ist es sehr angenehm , dass diese Re¬
duktionen nur von den Ordinaten y und gar nicht von den Abscissen x abhängen ;
man kann deswegen die Berechnung der log m ein für allemal durch eine Tabelle
erledigen. Wir haben für unseren Hannover sehen Messungsbereich eine solche Tafel
berechnet, von der wir aber hier der Raumersparung wegen nur die Hauptwerte für

y von 1km zu 1 hm wachsend angeben , und zwar log m in Einheiten der 7ten Logarith¬
menstelle :

y log m V log m y log m y log m x
230*™ 2819-4 240*™ 3069-9 250*™ 3331*0 260*»» 3602*8
231 2844*0 241 3095*5 251 3357*7 261 36306
232 2868 '6 242 3121 3 252 3384 -6 262 3658 .5
233 2893-4 243 3147*1 253 3411*5 263 3686*5
234 2918-3 244 31731 254 3438-5 264 3714*6

235 2943-3 245 31991 255 3465*6 265 3742 8
236 2968-4 246 3225-3 256 3492*8 266 3771*1
237 2993-6 247 3251*6 257 3520-2 267 3799*5
238 3018-9 248 32780 258 3547*6 268 3828*0
239 3044-4 249 3304-4 259 3575*2 269 3856.6 ^

Man kann diese Sache auch graphisch behandeln : man überzieht das Netzbild
der Triangulierung (Pig . 1 . § 60 . S . 185 mit einer Schaar von Ordinatenlinien kon¬
stanter log m und kann dann für jeden Punkt das zugehörige log m interpolatorisch
abgreifen. Die 7 te Logarithmenstelle bekommt man auf diesem Wege sogar in dem
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Meinen Maassstabe 1 : 80 000 von Fig . 1 . S . 185 noch nahezu richtig , und jedenfalls
hat man damit eine angemessene Kontrolle der Tafelberechnung oder der unmittel¬
baren Berechnung nach der Formel (3) oder (4) S. 201 .

Die preussische Landesaufnahme benützt eine ausführliche Tafel der log m
nach dem Prinzip unseres vorstehenden Beispiels (11 ) für ganz Preussen , nebenbei
ein kleines Zeichen dafür, wie viel angenehmer die Rechnung in conformen Coordinaten
ist im Vergleich mit den Soldner sehen Coordinaten . —

In solcher Weise sind die nachfolgenden Werte entstanden :
Dreiecksseite log S

(sphärisch)
log s — log S log s

(eben)
Aegidius—Wasserturm 3 .378 7016 + 3220 3 .379 0236
Aegidius—Willm er 3 .481 5665 + 3172 3 .481 8837
Aegidius— Steuerndieb 3 .615 2086 + 3145 3 .615 5231
Aegidius—Schanze 3 .702 8735 + 3185 3 .703 1920
Aegidius—Burg 3.624 0521 + 3222 3 .624 3743
Wasserturm—Willmer 3 .628 4413 + 3202 3 .623 7615
Willmer—Steuerndieb 3 .727 4425 + 3127 3 .727 7552
Steuerndieb— Schanze 3 .620 7673 + 3140 3 .621 0813
Schanze — Burg 3 .511 0402 + 3216 3 .511 3618
Burg—Wasserturm 3 .613 3487 + 3252 3 .613 6739
Burg— Steuerndieb 3.780 5583 + 3177 3 .780 8760

(12 )

Nach dieser Seitenberechnung kommt die Aufstellung der Richtungs-Abrisse
in der nachfolgenden Tabelle auf S. 204, in welcher aber nicht bloss die Richtungen
des Fünfecks von § 61 . S . 189 , sondern auch noch diejenigen Richtungen kommen ,
welche in den Messungstabellen von § 60. S. 186 sich auf die Richtungen nach den
zwei Punkten Hochschule und Dreifaltigkeit beziehen .

In diesem Abrisse stehen in erster Spalte die beobachteten Richtungen T,
d . h . solche Werte, welche gegen die unmittelbar beobachteten Richtungen von § 60.
S. 186 je um einen konstanten Betrag auf einer Station verschoben sind .

Insofern man beobachtete Sätze stets um einen willkürlichen Winkel im ganzen
drehen darf (gerade so wie auch schon die Annahme 0 ° 0 ' 0" für je einen Strahl
in den Messungssätzen von § 60 . S. 186 auf willkürlicher Verdrehung beruht) , kann
man die Zahlen der ersten Spalte von S . 204 immer noch als „beobachtet “ bezeich¬
nen , wenn ihre Verschiebung konstant ist , und es handelt sich nur noch um den

Betrag dieser Verschiebung, den wir an dem ersten Beispiel der Station Aegidius
dadurch ermitteln wollen , dass wir mit dem Einsetzen des ausgeglichenen 7.\ in der
dritten Spalte beginnen. Hier ist der ans den Basis-Coordinaten in (9) S . 202 be¬
rechnete Wert Tx = 253 ° 58 ' 14,53" einzusetzen , und da die Netzverbesserungen «
6er zweiten Spalte von § 61 . S . 196 her bekannt sind, haben wir auch das erste
beobachtete T = 253 ° 58 ' 14,53 " — 0,02 " = 253 ° 58' 14,51 , und die früher auf Station
Aegidiusbeobachtet angegebenen Werte von S. 196 erscheinen sämtlichum253° 58 14,51
vergrössert in der ersten Spalte von S . 204 , und um gleich viel vermehrt erscheinen
auch die ausgeglichenen Richtungen von S . 196 nun in der dritten Spalte von S . 204.
Hat man die t — T in die 4te Spalte von S . 204 eingesetzt , so bekommt man auch
alle Werte t der letzten Spalte von S . 204 und damit auch den Übergang zu den
anderen Stationen. Denn da die f ebenen geradlinigen Coordinaten entsprechen , gehen
sie von einem Punkte zum jenseitigen Punkte durch Zufügung von ± 180 ° über.
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Abriss im conformen System der Landesaufnahme . (13)

Beobachtet T
(sphärisch )

V Ausgeglichen T
(sphärisch )

t — T Ausgeglichen t
(eben )

1 . Aegidius . (r =2° 50' 49,56 ")
Wasserturm . . 1. 253° 58' 14,51" + 0,02" 253 58 14,53 - 0,41" 253 58 14,12
Hochschule . . 317 37 7,82 + 0,93 (317 37 8,TS)
Burg . . . . 2. 324 54 49,33 + 0,68 324 54 50,01 -1- 2,14 324 54 52,15
Schanze . . . 3. 4 40 35,87 - 0,63 4 40 35,24 + 3,11 4 40 38,35
Dreifaltigkeit . 37 38 22,91 + 0,88 . (37 38 23,74)
Steuerndieb . . 4. 57 43 4,03 — 0,55 57 43 3,48 + 1,36 57 43 4,84
■Willmer . . . 5. 153 2 19,18 + 0,48 153 2 19,66 — 1,67 153 2 17,99

2 . Wasserturm . (7= 2° 52' 23,46")
Burg . . . . 6. 358° 19' 30,17" + 0,48" 358 19 30,65 + 2,57" 358 19 33,22
Hochschule . . 23 11 24,44 + 1,35 (23 11 25,79)
Aegidius . . . 7. 73 58 14,19 — 0,48 73 58 13,71 + 0,41 73 58 14,12
"Williner . . . 8. 119 3 40,43 0,00 119 3 40,43 — 1,27 119 3 39,16

3 . Willmer. (7 =2° 49 ' 43,18")
Wasserturm . . 9. 299° 3' 36,98" + 0,91" 299 3 37,89 + 1,26" 299 3 39,15
Aegidius . . . 10. 333 2 17,65 — 1,33 333 2 16,32 + 1,67 333 2 17,99
Dreifaltigkeit . 355 11 53,75 + 2,49 (355 11 56,24)
Steuerndieb . . 11. 23 17 46,45 + 0,42 23 17 46,87 + 3,01 23 17 49,88

4 . Steuerndieb . (7=2° 48' 31,02")
"Willmer . . . 12. 203° 17' 52,46" + 0.43" 203 17 52,89 — 3,00" 203 17 49,89
Aegidius . . . 13. 237 43 6,18 + 0,01 237 43 6,19 — 1,35 237 43 4,84
Dreifaltigkeit . 250 39 21,26 — 0,53 (250 39 20,73)
Hochschule . . 261 48 52,72 — 0,43 (261 48 52,29)
Burg . . . . 14. 281 52 20,18 — 1,09 281 52 19,09 + 0,76 281 52 19,85
Schanze . . . 15. 312 35 37,30 + 0,66 312 35 37,96 + 1,73 312 35 39,69

5 . Schanze . (7= 2° 50' 49,06 ")
Steuerndieb . . 16. 132° 35' 41,56" — 0,13" 132 35 41,43 — 1,74" 132 35 39,69
Dreifaltigkeit . 170 24 24,64 - 2,28 (170 24 22,36)
Aegidius . . . 17. 184 40 41,56 - 0,10 184 40 41,46 - 3,11 184 40 38,35
Burg . . . . 18. 240 44 48,85 + 0,23 240 44 49,08 — 0,93 240 44 48,10

6. Burg . (7 =2° 52' 42,26 " )
Schanze . . . 19. 60= 44' 46,95" + 0,16" 60 44 47,11 -f 0,99" 60 44 48,10
Steuerndieb . . 20. 101 52 19,81 + 0,81 101 52 20,62 — 0,77 101 52 19,85
Dreifaltigkeit . 121 19 31,32 — 1,31 (121 19 30,01)
Aegidius . . . 21. 144 54 55,45 - 1,15 144 54 54,30 — 2,15 144 54 52,15
Hochschule . . 151 38 51,38 — 1,21 (151 33 50,17)
Wasserturm . . 22. 178 19 35,61 + 0,17 179 19 35,78 — 2,57 179 19 33,21

Die bei den ausgeglichenen T zugefügten Werte y sind die Meridianconver -

genzen . (Vgl . den späteren § 86 .)

Eine Bemerkung mag nur noch denjenigen Strahlen gelten , welche in der

Netzausgleichung bis jetzt noch gar nicht vorgekommen sind , nämlich betreffend die
Punkte Hochschule und Dreifaltigkeit , diese Strahlen sind von § 60 . S . 186 einfach
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mit herübergenommen und auf den bereits ausgeglichenen Stationen Aegidius, Wasser¬
turm u . s . w. werden diese neuen Strahlen ganz einfach mit den alten Strahlen
Ton selbst orientiert .

Auf den Stationen Hochschule und Dreifaltigkeit selbst ist dieses noch nicht möglich , und

könnte nur etwa näherungsweise geschehen , wovon aber erst im nächsten Kapitel bei der Doppel¬

punkteinschaltung Hochschule —Dreifaltigkeit gehandelt werden wird .

Nun enthalten die ausgeglichenen Seiten und Richtungen der Tabellen Ton
S . 203 und S . 204 alles was zur Coordinatenrechnung erforderlich ist ; man rechnet
mit den ebenen Seiten s und den ebenen Richtungswinkeln t wie immer in der Ebene :

t/2 = 2/i + si s n̂ h x2 = + «i cos ti u . s . w.

Folgendes sind die Ergebnisse dieser Coordinatenrechnung:

Coordinaten im eonformen System der Landesaufnahme .

1 . Aegidius
2 . Wasserturm
3 . Willmer
4 . Steuerndieh
5 . Burg
6 . Schanze

y = — 244 656,090 '»
— 246 956,479
— 243 280,909
— 241 167,896
— 247 076,504
— 244 244,387

* = — 30 624,971 '
— 31 285,875
— 33 328,385
— 28 421,362
— 27 179,218
— 25 592,941

(14)

§ 64. Abrisse und Coordinaten im Kataster -System mit dem
Nullpunkt Celle.

Für die Kataster - und Stadt-Vermessung ist ein anderes Coordinatensystem
Torgeschrieben , nach sog . Soldner scher Art , und zwar mit dem Ursprungspunkt Celle ,
in welchem wir nun, ganz unabhängig Ton dem vorigen § 63 . die ausgeglichenen

Richtungen , Winkel und Seiten von § 61 . in Abrissen und Coordinaten verwerten
werden.

Die schon in (6 ) § 60 . angegebenen Coordinaten unserer zwei Basispnnkte sind :

Aegidius yx = — 23271,813 xx = — 28308,395 .
Wasserturm y% = — 25538,488 ®2 = — 29071,474 I. (1)

2b — S0> = + 2266,675 w2 — x1 = + 763,079
'

In rein ebener Rechnung (entsprechend t und s des vorigen § 63 .) erhält man :

tan 9 « o = ~ — ~ ■
X1 —

a0 = 71 ° 23' 38,85 '

_ yi — _ x\ ~ xo
sin a0 cos a0

log Sq = 3 .378 7019 (2)

Man könnte nun vielleicht wohl , wenn man die Sache praktisch betrachtet ,
das ganze Netz (Fig . 1 . § 60 . S. 185 in dieser Weise schlechthin als eben nach

Coordinaten berechnen, allein die bekannten sphärischen Reduktionen für Soldnersehe

Coordinaten , (welche in unserem III . Bande , „Handb. d. Verm . “
, 3 . AufL , § 46 . — § 48.

angegeben sind) bringen in unserem Falle doch noch etwa 0,5" in den Richtungen,
und nachdem wir alles auf 0,01" ausgeglichen haben , wollen wir nun doch nicht
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schon wieder 0,5” vernachlässigen , zumal ja der mittlere Fehler einer gemessenen
Richtung nur + 1,0” nach der Netzausgleichung ist .

Oder in den Coordinaten würden wir in rein ebener Richtung schon Wider¬
sprüche in den Centimetern erhalten , während es bei einer Stadtvermessung angenehm
ist , alles Grundlegende bis auf l mm formell , jedenfalls aber auf l cm scharf durchzu¬
rechnen. Kurz aus diesen Gründen haben wir uns mit den Ergebnissen (1 ) und (2)
nicht begnügt , sondern haben die berührten Soldnersehen kleinen Korrektionsglieder,
•ohne dieselben im Einzelnen nachzuweisen , da sie ja als allgemein bekannt ange¬
nommen werden dürfen, mit in Rechnung gebracht und gefunden :

a , — a0 = + 0,41" — «0 + 180 ° = + 0,50”
, log s — logs Q = — 0,000 0008 (4)

also zu (2 ) hinzugefügt :

«! = 71 ° 23 ' 89,26 "
, «2 = 251 ° 23 ' B9 .35”

. log s = 3.378 7016 (5)
Das letzte log s stimmt überein mit dem log S des vorigen § 63 . S . 202 , die

« ! und a2 entsprechen den früheren Ti und T2 von § 63 . , sie sind um etwa

1

2

3456

° 35'
kleiner als jene T, weil die a nur die Meridianconvergenzgegen Celle , dagegen die
T die Meridianconvergenz gegen den 31 ten Längengrad (bei Berlin) enthalten .

Den soeben berechneten Richtungswinkel (Katasterbezeichnung „Neigung “)
« 2 = 251 ° 23 ' 39,35" findet man in dem Abrisse von S . 207 wieder als ersten Weit
ausgeglichen a , und mit Vj = + 0,02" aus der Netzausgleichung ij 61 . S . 196 bekommt
man erstes beobachtetes A = 251 ° 23 ' 39,33”

, woraus folgt , dass alle auf Aegidius
beobachteten Richtungen von § 60. S . 186 nun um 251 ° 23 ' 39,33 " verschoben werden
müssen, weil Aegidius —Wasserturm früher den Wert 0 ° 0 ' 0,00 " hatte .

Ebenso verfährt man auf Station Wasserturm mit dem Richtungswinkel Aegi¬
dius = 71 ° 23 ' 39,26” nach der soeben gemachten Rechnung (5) .

Um dann auch die übrigen Sätze vollends zu orientieren , hat man Willmer —
Wasserturm als Umkehrung von Wasserturm—Willmer zunächst = 330 ° 27 ' 44,48" ,
was aber wegen der sphärischen Korrektionen in 330 ° 27' 44,19 ” übergeht.

Diese kleinen sphärischen Korrektionen haben wir nicht mehr im einzelnen
nachgewiesen, sie entsprechen den t — T in dem Landesaufnahme-Abriss von § 63.
S . 204 . In jenem conformen System waren die t — T ebenso wie auch die log s — log 8
viel glatter und übersichtlicher zu behandeln als in dem Soldner sehen Katastersystem,
in welchem die kleinen Richtungs - und Entfernungs-Korrektionen bei der gewöhn¬
lichen Art der Berechnung mit in den Coordinaten -Korrektionen stecken , und auch
sonst nicht so bequem zu berechnen sind wie in einem conformen System.

Dieses nur nebenbei bemerkend geben wir im nachfolgenden die nach Soldner¬
scher Methode berechneten endgültigen Coordinaten:

Coordinaten im Kataster -System Celle.
1 . Aegidius y
2 . Wasserturm
3 . Willmer
4 . Steuerndieb
5 . Schanze
6 . Burg

— 23271,813 “
— 25538,488
— 21777,609
— 19888,668
— 23086,933
— 25842,799

x = — 28308,395 ’
— 29071,474
— 30945,359
— 25951,884
— 23266,607
— 24977,399

(7)
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Beobachtet A
I
| V Ausgeglichen cc

= A + v log S

1 . Aegidius .

Wasserfrurm . 1. 251° 23' 39,33 ” + 0,02” 251 23' 39,35” 3.378 7016

Hochschule . 315 2 32,64

Burg . . . . 2. 322 20 14,15 + 0,68 322 20 14,83 3.624 0521

Schanze . . . 3. 2 6 0,69 — 0,63 2 6 0,07 3.702 8735

Dreifaltigkeit . 35 3 47,73
Steuerndieb . 4. 55 8 28,85 - 0,55 55 S 28,30 3.615 2086

Willmer . . . 5 150 27 44,00 4 - 0,48 150 27 44,48 3.481 6665

2. Wasserturm .
Burg . . . . 6. 355° 44' 55,72” 4 - 0,48” 355° 44' 56,20” 3.613 3487

Hochschule . 20 36 49,99

Aegidius . . 7. 71 23 39,74 — 0,48 71 23 39,26 3.378 7016
"Willmer . . . 8. 116 29 5,98 0,00 116 29 5,98 3.623 4413

3 . Willmei
Wasserturm . 9. 296° 29' 4,85” + 0,91" 296° 29' 5,76” 3.623 4413

Aegidius . . 10. 330 27 45,52 — 1,33 330 27 44,19 3.4S1 5665

Dreifaltigkeit . 352 37 21,62
Steuerndieb . 11. 20 43 14,32 -j- 0,42 20 43 14,74 3.727 4425

4 . Steuerndi b.
"Willmer . . . 12. 200° 43' 14,83” 4- 0,43” 200° 43' 15,26” 3.727 4425

Aegidius . . 13 . 235 8 28,55 + 0,01 235 8 28,56 3.615 2086

Dreifaltigkeit . 248 4 43,63
Hochschule . 259 14 15,09

Burg . . . . 14. 279 17 42,55 — 1,09 279 17 41,46 3.780 5583

Schanze . . . 15. 310 0 59,67 + 0,66 310 1 0,31 3.620 7673

5. Schanze
Steuerndieb . 16. 130° r 0,73” — 0,13” 130° 1' 0,60” 3.620 7673

Dreifaltigkeit . 167 49 43,84

Aegidius . . 17. 182 6 0,73 — 0,10 182 6 0,66 3.702 8735

Burg . . . . 18. 238 10 8,02 + 0,23 238 10 8,24 3.5110402

6. Burg .
Schanze . . . . 19. 58° 10' 7,89” + 0,16" 58° 10' 8,03" 3.511 0402

Steuerndieb . . 20. 99 17 40,75 | + 0,81 1 99 17 41,58 3.780 5583

Dreifaltigkeit . , 118 44 52,26 ! 1
Aegidius . . . 21. 142 20 16,39 | — 1,16 | 142 20 15,24 s 3.624 0521

Hochschule . . 149 4 12,32 | i
Wasserturm . . 22. 175 44 56,55 | + 0,17 ; 175 44 56,73 3.613 3487

Die Mer angegebenen log S sind dieselben wie in (12) § 63 . S . 203.

§ 65. Schwerds Basis -Netz mit Winkelmessungen .

Nachdem wir die Dreiecksnetzausgleichung mit Ilichtungsm &ssungen an den

zwei Beispielen von § 59. und § 61 . kennen gelernt haben , wollen wir auch eine

Netz -Äusgleichung mit TFiwfcetaessungen behandeln .

I
1
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Ein gutes Beispiel hiezu giebt uns das Basisnetz von Schweröl , in welchem
einzelne Winkel mit verschiedenen Gewichten gemessen sind.

Professor Schweröl am Lyzeum in Speyer hat im Jahr 1820 (als Konkurrenz-
und Trutz-Arbeit gegen die amtliche Basismessung Speyer-Oggersheim) mit seinen
Lyzeumsschülern eine kleine 860 Meter lange Basis gemessen , und dieselbe durch
ein trigonometrisches Netz mit der Linie Speyer-Oggersheim verbunden.

Schwerd hat seine Messungen veröffentlicht in der Schrift : „Die kleine Speyrer
Basis , oder Beweis , dass man mit einem geringen Aufwand an Zeit, Mühe und Kosten
durch eine kleine genau gemessene Linie die Grundlage einer grossen Triangulation
bestimmen kann, Speyer, gedruckt hei Jakob Christian Kolb , 1822 . “ Da aber der
Verfasser seine trigonometrischen Messungen nur nach Gutdünken ( „ auf die natür¬
lichste Weise “ S . 64) ausgeglichen hat , schien uns eine Neuausgleichung von Schwerds
Messungen umsomehr am Platz , als dadurch die treffliche Gewichtsunterscheidung,
welche Schwerd in richtiger Erkenntnis der verschiedenen Bedeutung der mehr oder
weniger spitzen Winkel traf , voll ausgenützt werden kann.

Der Teil des Schwerd sehen Netzes, welchen wir behandeln wollen , ist in dem
Viereck Eig. 1 . gezeichnet. Das punktierte Dreieck Mannheim-Speyer-Oggersheim
gehört nicht zu unserer Ausgleichung, sondern dient zum Anschluss an die badische
Triangulierung.

Als Basis nehmen wir die aus der eigentlichen , nur 860 ™ langen gemessenen
Basis trigonometrisch abgeleitete Linie (Schwerd S . 69) :

D Sp — H = 4962,8282 -» (1)
(D Sp = Dom in Speyer , H = Heiligenstein .)

Die Originalwinkelmessungen, welche für unser Netz Eig . 1 . in Betracht kom¬
men , sind von Schwerd auf S . 48— 50 seines Buches
mitgeteilt , und auf S . 56 und 57 daselbst sind die
zugehörigen Zentrierungsreduktionen, sowie die Drit¬
tel von sphärischen Excessen angegeben. Indem wir
die Zentrierungsreduktionen an den gemessenen Win¬
keln anbringen , die von Schwerd mit hereingezogenen
sphärischen Excesse aber hier ausser Betracht lassen,
bekommen wir folgende Tabelle der gemessenen

Fig . 1.
Schwerd s Basisnetz .
Maassstab 1 : 400 000.

Winkel :

Schwerd
Seite

48 u . 56

Sh'

CO

ft

01 (D =

Winkel

81° 21' 43,36"

Gewicht
P
70

1 -V
p

0,0143
48 u . 56 60 (2) = 31 37 39,73 7 0,1429
49 u . 56 64 (3}= 25 16 28,85 101 0,0099
49 u . 56 65 (4)= 76 33 44,65 47 0,0213
48 u . 55 61 (5) = 73 21 46,35 85 0,0118
49 n . 55 62 (6) = 67 4 27,96 57 0,0175
50 u . 57 68 P ) = 28 25 42,53 10 0,1000
50 ii . 57 67 (8) = 7 56 6,92 28 0,0357 t
50 u . 57 66 (9) = 36 21 49,55 30 0,0333

Summa [p ] = 435 0,3867 .

(2)

Als Gewichte p sind hier die von Schwerd
angegebenen Bepetitionszahlen genommen.
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Wie man sieht , sind die Gewichte p sehr ungleich . Schwerd hat mit Recht
die spitzen Winkel , welche den Grundlinien gegenüber liegen , verstärkt gemessen .

Die Anzahl der Bedingungsgleichungen findet man nach Anleitung von § 58.
Es ist nämlich die Anzahl der gemessenen Winkel W = 9 , die Anzahl der Punkte
p = 4, die Anzahl der Verbindungslinien l = 6 , folglich hat man nach (11 ) § 58 . S . 173 :

W — 2 p -f- 4 = 5 Bedingungsgleichungen
und insbesondere :

l — 2 p -+- 3 = 1 Seitengleichung \
l — p 1 1 = 3 Dreiecksgleichungen J (3)

und für den Punkt M 1 Horizontgleichung I

also 1 -+- 3 -+- 1 = 5 Gleichungen im Ganzen wie oben .
Die Seitengleichung bilden wir für den Centralpunkt B Sp , d . h . wir drücken

aus , dass die Seite B Sp . — Man . ans der Basis B Sp . — H . auf beiden möglichen
Wegen gleich erhalten werde . Dieses giebt :

^ . sin ( 1)Es soll sem
sin (4) sin (8) = 1 (4 a)sm (dj sin (9) sin (2)

Die 3 Dreiecksschlüsse sind
Es soll sein ( 1) -+• (3) + (5) COo O+ fib) == 0 (4 b)
fl » » (4) + (6) + (9) - ( 180 -b £c) -= 0 (4 c )
* fl » (2) + (5) + (6) + (8 ) - (180 -+- &d) -= 0 (4 d)

die Horizontgleichung auf Mannheim :
Es soll sein (7) + (8 ) (9) = 0 (4 e)

Für die sphärischen Excesse berechnet man auf Grund der Basis BH = 4962,8282 "
nach (1 ), mit den gemessenen Winkeln , die sämtlichen Dreiecke vorläufig , die mittlere
geographische Breite ist etwa 49 ° 30’

, also logr — 6 .80487 , damit findet man nach

der Formel

für das Dreieck B H J
fl
fl

BJM
BHM

sb = 0,138"
ec = 0,505

= 0,151
(5)

Diese Excesse braucht man jedenfalls zum Aufstellen der Dreiecksgleichungen ,
man kann sie aber auch zur Bildung der Seitengleichung benützen .

Wir bilden zuerst die Dreieckssummenproben :
(1) = 81 ° 21 ' 43,36 "

(3) = 25 16 28,85
(5) = 73 21 46,35

179 59 58,560
soll 180 0 0,138

wb = — 1,578

(4) = 76 ° 33 ' 44,65 "

(6) = 67 4 27,96
(9 ) = 36 21 49,55

180 0 2,160
soll 180 0 0,505

m̂ Td655

(2) = 31 ° 37' 39,73"

(5) = 73 21 46,35
(6) = 67 4 27,96
(8 ) = 7 56 6,92

180 0 0,960
soll 180 0 0,151

wd = -+- 0,809
Die Bedingungsgleichungen werden nach Anleitung von § 57 .— 58. gebildet ,

dieselben sind :
a) Seitengleichung :

■0,320 ©j + 0,503 ©4 + 15,105 v8 — 4,459 v3 — 2,860 vg — 3,419 ©2 + 4,715 = 0 (7)
Jordan , Handb . d . Vermessungskunde . 4. Aufl . I. Bd . 14
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Es ist dabei in Einheiten der 6ten Logarithmen -Decimale gerechnet .

Die drei Dreiecksgleichungen werden nach (6) :

b) Vq -h v3 + 0,809 = 0 j
c) Vi + % + vs — 1,578 ” = 0 | (8)

dj) v4 + Vq + ■Vg ■+ 1,655 — 0

Endlich die Horizontgleichung :

e ) v7 + v8 — v9 -— 0,100 = 0 (9)
Die Winkelverbesserungen sind hier mit v bezeichnet , wie im allgemeinen die Verbesserungen ,

ln § 57. hatten wir unterschieden IViMfeelverbesserungen § und ie/C/ffMHgsverbesserungen v ; es wird

kaum nötig sein , zu erklären , dass diese Unterscheidung hier nicht mehr gemacht ist , weil es sich

in diesem § 65. überhaupt nur um einerlei Art von Verbesserungen handelt , für welche das allge¬

meine Zeichen v genommen ist .

Man schreibt die Coefficienten der Bedingungsgleichungen (7) , (8 ) , (9) nebst

den Gewichten in eine Tabelle :

» 1 «2 H n «5 ■v7 1’9 w

p 70 7 101 47 85 hl 10 28 - 30

1

p
0,0143 0,1429 0,0099 0,0213 0,0118 0,0175 0,1000 0,0357 0,0333

1 . a + 0,320 — 3,419 — 4,459 + 0 .5C3 + 15,105 — 2,860 + 4,715

2 . 6 + 1 • • + 1 + 1 + 1 + 0,809

3 . c + 1 + 1 + 1 — 1,578

4 . fl! + 1 . . + 1 + 1 + 1,655

5 . e • • + 1 + 1 — 1 — 0,100

Wenn man nun die Summen m KJ u . s . w . bildet , so bemerkt man ,

dass es von Schwerd mit Einsicht so geordnet wurde , dass zu den grossen Coefficienten

auch die grösseren Gewichte kommen . Die Ausrechnung giebt die Normalgleichungen

in abgekürzter Schreibweise (nach (2) und (3) unten auf S . 80 ) :

-I- 10,2941 + 0,0511 /c2 — 0,0396 fe3 — 0,0846 k4 + 0,6348 fc5 + 4,7150 = 0 ,
+ 0,2079 k2 + 0,0118 k3 + 0,0175 k4 + 0,0357 fc5 + 0,8090 = 0 |

+ 0,0360 ks . . . . — 1,5780 = oi

+ 0,0721 fc4 — 0,0333 k& + 1,6550 = 0

+ 0,1690 fc5 — 0,1000 = 0

(11 )

Die Auflösung dieser 5 Gleichungen giebt :

kx= - 0,3436 , t 2 = — 4,0814 , fc3 = + 44,7898 , A4 = — 23,2072 , &5 = — 1,8279 (12)

Bei der Berechnung der Verbesserungen v folgt man . wie immer , der Tabelle

(10 ) der Bedingungsgleichungen nach Vertikalreihen , z . B . :

* 1 = +
0,320
T (T
3,419

*1 + 7q h = + 0,638 ”

fcj + y
k2 = - 0,415 ”v2 =

7
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Die Tabelle aller v nebst ihrer Verwendung zur Verbesserung der gemessenen
Winkel zeigt folgendes:

Gemessen V Verbessert
( 1) == 81 ° 21 ' 43,360” H- 0,638” m == 81° 21' 43,998 ”

(2) == 31 37 39,730 — 0,415 [2 ] == 31 37 39,315
(3) == 25 16 28,850 0,459 [3 ] == 25 16 29,309
(4) == 76 33 44,650 — 0,497 [4] == 76 33 44,153
(5) == 73 21 46,350 0,479 [5] == 73 21 46,829
(6 ) == 67 4 27,960 — 0,479 [6] == 67 4 27,481
(7 ) == 28 25 42,530 —0,183 m == 28 25 42,347
(8) == 7 56 6,920 — 0,396 [8 ] == 7 56 6,524
(9 ) == 36 21 49,550 —0,680 [9] == 36 21 48,870

Nach Vollendung der Ausgleichung überzeugt man sich zuerst, ob die Bedin¬
gungsgleichungen erfüllt sind . Dieses ist der Ball ; und man kann nun alle Dreiecks-
seiten eindeutig berechnen. Die Ergebnisse für 4 Seiten sind :

D E = 4 962,8282“ (Basis )
i > M = 18 851,510 ±0,12 “
HM = 22 896,729
J M = 17 851,153 ±0,11 ”

(Die bei zwei Seiten angegebenen mittleren Fehler ±0,12 ” und ±0,11 ” sind
aus späteren Berechnungen hergesetzt .)

log D H = 3 .695 7292 -3
logD M = 4 .275 346D4
log HM = 4 .359 7734 -4
log J M = 4 .251 6662 -4

(14)

Zu Genauigkeitsberechnungen übergehend, bilden wir zuerst die Summe [p v «]
unmittelbar aus den einzelnen v und p , und dann zur Kontrolle nach der Formel
[j>« s] = — [toi -] wie aus der Ausrechnung im einzelnen hervorgeht :

V P p »a
1) + 0,638 0,4070 70 28,49
2) — 0,415 0,1722 7 1,21 V) k — wk
3) + 0,459 0,2107 101 21,28 1) + 4,715 — 0,3436 + 1,62
4) — 0,497 0,2470 47 11,61 2 ) + 0,809 — 4,0814 + 3,30
5) + 0,479 0,2294 85 19,50 3) — 1,578 + 44,7898 + 70,68
6) — 0,479 0,2294 57 13,08 4) + 1,655 — 23,2072 + 38,41
7) — 0,183 0,0335 10 0,34 5) — 0,100 — 1,8279 — 0,18
8) - 0,396 0,1568 28 4,39 113,83
9) - 0,680 0,4624 30 13,87 = — [wt ]

435 113,77
— [p v «]

Man hat in hinreichender Übereinstimmung = — [w 1] = 113,8 .
Der mittlere Fehler der Gewichtseinheit wird hieraus :

m = ±4,77 " (15)

Es soll noch das Gewicht und der mittlere Fehler der Seite D M nach der
Ausgleichung bestimmt werden .
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Die Seite DM wird aus D H am kürzesten abgeleitet durch die Gleichung :

D M = ? ~ sin [2] (16)
sin [8]

'

Es ist , wie immer in solchen Fällen , bequemer , zunächst die Funktion zu

logarithmieren , d . h . aus (16) zu bilden mit Weglassung des konstanten DR :

F = log sin [2] — log sin [8] ( 17)

Die Rechnung geht nun denselben Gang wie in § 62. S. 199. Es wird :

h = + 3,419 /s = — 15,105 (18)

alle anderen f sind gleich Null . Dann berechnet man :

m w . [j] = « ,»» , [!(] = -«
Diese Glieder setzt man an Stelle der Schlussglieder von ( 11) , eliminiert durch,

und findet :

KI - 9,82

CH - 0,32 = ■ (19)

daraus den mittleren Funktionsfehler :

M = m j/
'
^
p

= 4,77 "
|/0,31 = + 2,66 Einheiten der 6ten Logarithmen -Stelle,

(j . h . d log s = + 0 .0000026 '6 = ds , s = 18852“

d s = + 0,115”

Also im ganzen hat man die Entfernung :

D M = 18 851,510 ” + 0,115“ (Triangulierungsfehler ) (20)

wie auch schon bei (14) angegeben ist .
Dabei ist die Berechnungsbasis D H = 4962,8282 ” als fehlerfrei angenommen.

Wir wollen nun aber auch noch den mittleren Fehler der Basis selbst berücksichtigen ,

und seine Fortpflanzung auf die Linie D M berechnen .
Der mittlere Fehler der Basis D H wurde auf Grund verschiedener Angaben

von Schwerd zu + 9,7”” geschätzt .
Dieser Fehler vergrössert sich durch trigonometrische Übertragung auf die

18852 ” lange Linie DM , so dass er giebt :

9,7 = + 36,8”» (21)

und dazu tritt der Triangulierungsfehler der Linie D M , welcher nach (20) den Wert

-4- 115 ’”” hat , es ist also der mittlere Gesamtfehler der Linie D M :

= ]/36,82 + 1152 = ± 124””

Statt (20) werden wir also jetzt schreiben :

D 31 = 18 851,510 ” ± 0,124” (Gesamtfehler ) . (22)

Mittlerer Winkel -Fehler für mittleres Gewicht .

In (15 ) haben wir zwar den mittleren Fehler der Gewichtseinheit m = + 4,77"

bestimmt , und dieser Wert bildet die Grundlage aller weiteren strengen Genauigkeits -
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berechnungen , wie an dem Beispiel der Pehlerberechnung ( 16)—(20) zu sehen ist .
Allein jener Gewichtseinheitsfehler m befriedigt nicht den oft auftretenden Wunsch,
für die auf der Station im Mittel erreichte Winkelgenauigkeit ein anschauliches Maass
zu besitzen . Hiezu dient der mittlere Fehler für mittleres Gewicht , wobei aber das

rv
~\

mittlere Gewicht nicht etwa schlechthin als Durchschnittswert L
^ - der 9 Einzelge¬

wichte genommen werden darf , sondern der Definition der Gewichte als Reciproke
der mittleren Fehler -Quadrate und dem Princip des mittleren Fehlers selbst ent¬
sprechend so zu berechnen ist :

n L P
(23)

1
wo « die Zahl der Einzelgewichte ist . In unserem Falle sind die in der Ta -

P
belle (2) angegeben mit der Summe 0,3867 , es ist also

0,3867 0,04297 9 = 23,37 (24)

und der mittlere Fehler für dieses mittlere Gewicht :

4,77 I/O,04297 = ± 0,989 " (25)

Wenn auf jeder Station nicht mehr als die zur Stationsfestlegung selbst erfor¬
derliche Zahl von Winkeln gemessen wäre , so würde dieses n auch den mittleren Fehler
von mittlerem Gewicht eines auf der Station ausgeglichenen Winkels vorstellen. Es
ist aber in unserem Falle auf einer Station , nämlich Mannheim , ein Winkel über¬
zählig (vgl . Horizontgleichung (9) ) und deswegen hat unser fi in (25) eine etwas
andere Bedeutung, welche jetzt nicht weiter erörtert werden soll . Überhaupt haben
wir (25) nur als formelles Rechenbeispiel hier vorgeführt, denn wenn die Winkel
absichtlich sehr ungleich gewichtig sind , hat die Rechnung (25) nicht den inneren
Sinn , der ihr bei glatten durchlaufenden Ketten oder gleichförmig ausgebreiteten
Netzen zukommt .

§ 66. TriangulienmgsaasgleichuHg nach vermittelnden
Beobachtungen . Schwerds Basis-Netz .

Wenn schon die Winkelausgleichung des vorigen § 65 . nicht ein Beispiel für
die laufende Praxis war , so ist das noch weniger der Fall bei einer Dreiecksnetz¬
ausgleichung mit Winkeln nach vermittelnden Beobachtungen, die wir noch anfügen
wollen . Es ist aber wohl nützlich einzusehen , dass man eine derartige Ausgleichung
nicht notwendig nach Korrelaten machen muss , sondern dass man auch andere Formen
dafür zur Verfügung hat .

Schon in der allgemeinen Theorie § 37 . wurde angegeben, dass man Messungen,
welche sich zunächst in der Form von bedingten Beobachtungen darbieten, auch auf
vermittelnde Beobachtungen reduzieren kann. Ob dieses nützlich ist , kommt auf
den einzelnen Fall an ; bei unserem Schwerd sehen Basisnetz kann man wohl so ver¬
fahren, und zwar bekommt man dann nur 4 Normalgleichungen aufzulösen , gegen 5
bei der Korrelaten-Methode. Die Reduktion auf vermittelnde Beobachtungen wird
aber auch noch andere Vorteile, bei Genauigkeitsuntersuchungen, bieten .
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Fig . i .
Schwerd s Basisnetz .
Maassstah 1 : 400 000.

Nach dem vorigen § 65 . (7) bis (10) S . 209 bis
210 bestehen für das Schwerd sehe Netz Big. 1.
folgende 5 unabhängige Bedingungsgleichungen:

+ 0,320 «! — 3,419 v2 — 4,459 v3 + 0,503 v4
+ 15,105 v8 — 2,860 vB + 4,715 = 0

»2 + ^5 + v6 + ®8 + 0,809 = 0
»1 + v3 4- v& — 1,578 = 0
v4 + «e + ^9 + 1 .655 = 0
v7 + — vg — 0,100 = 0

Von den 9 gemessenen Winkeln wählen wir
die 4 Winkel ( 1 ) (2) (3) und (8) als unabhängige
Unbekannte aus , oder , sofort zu den Verbesserungen
übergehend, nehmen wir die Verbesserungen Uj , %
vs , vs als unabhängige Unbekannte der Ausgleichung,
und es entsteht die Aufgabe, mit Hilfe der Be¬
dingungsgleichungen ( 1 ) alle anderen v in diesen
»1 , v2 , vB , vs auszudrücken.

Nach gewöhnlichen algebraischen Methoden
erhalten wir hiefür :

vs — — v -i — vs + 1,578
Vg = + rq — v2 + Vg —■'üg — 2,387 #
Vg = — 0,054 v4 — 0,867 v2 — 1,475 vs 4 - 4,641 v&+ 1,511 (2)
v4 = — 0,946 vt + 1,867 v2 + 0,475 vs — 3,641 vs — 0,779
v7 — — 0,054 rq — 0,867 v2 — 1,475 Vg -I- 3,641 Vg + 1,611

Dazu kommen noch die Fehlergleichungen für die unabhängigen v selbst, nämlich :

» l = ®1 v2 = v2 »3 = % (3)

Die Gewichte p sind schon bei (2) S . 208 angegeben , es ist uns aber dieses
Mal bequemer, die Gewichtseinheit lOOfach kleiner zu nehmen, und damit bekommen
wir folgende Tabelle der Coefficienten der Fehlergleichungen (2) und (3) und der

Gewichte p , nehst Yp :

Fehlergleichungen :

tq = + 1,000 tq
v2 = . . + 1,000 v2
Vg = . . . . + 1,000 vs
vs = . . . . . . + 1,000 Vg . .
»5 = — 1,000 tq . . — 1,000 vg . . + 1,578
u6 = + 1,000 tq — 1,000 v2 + 1,000 vs — 1,000 v8 — 2,387
v4 = — 0,946 v4 + 1,867 v2 + 0,475 vs — 3,641 vg — 0,779
©7 = — 0,054 iq — 0,867 v2 — 1,475 vs + 3,641 vs + 1,611
v9 = — 0,054 iq — 0,867 v2 — 1,475 vs + 4,641 vs + 1,511

Um die Gewichte ein für alle mal zu berücksichtigen

p Yp
l 0,70 0,837
' 0,07 0,265

1,01 1,005
0,28 0,529

i 0,85 0,922
; 0,57 0,755

0,47 0,686
j 0,10 0,316
I 0,30 0,548

multiplizieren wir die
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Coefficienten und Absolutglieder der Fehlergleichungen bzw . mit ]/ p und bekommen

damit folgende neue Tabelle :

Gleichgewichtige Fehlergleichungen:

VpiVi = + 0,84 ®!
V

'
^ 2 ®2 = . . -h 0,26 ®2

V^3 ~ ■ • • ■ + 1 )00 ®3 . .
VPs vs — • ■ ■ ■ ■ ■ + 0,53 ®8
Vp5 vö = — 0,92 ®! . . — 0,92 ®3 . .

yPß ®6 = + 0,75 ®j — 0,75 ®2 + 0,75 ®3 — 0,75 ®8 -

yPi vi = — 0,65 ®x -{- 1,28 ®2 -+- 0,33 ®s — 2,49 ®8 -

yp 7 ®7 = — 0,02 ®j — 0,27 ®2 -t- 0,46 ®3 + 1,15 ®8 -

y pgVg — — 0,03 ®! — 0,48 ®2 — 0,81 ®3 -t- 2,55 ®8 ■

- 1,46
- 1,80
- 0,53
■0,51
- 0,83

(5)

Die Abrundung auf 0,01 ist hinreichend zur Erlangung einer Winkelgenauig
keit von 0,01" .

Die hiezu gehörigen Normalgleichungen sind in abgekürzter Schreibweise :

+ 2,54 vj — 1,37 ®2 + 1,23 ®3 + 0,96 vs — 2,38 = 0

+ 2,57 ®2 -+- 0,37 ®s — 4,16 ®8 + 0,14 = 0

+ 3,39 ®s — 3,98 ®8 — 3,77 = 0 \ (6)
-t- 14,87 ®8 -j- 5,37 — 0

+ 6,60

Die Auflösung dieses Systems von 4 Gleichungen gab :

®! = -H 0,64 " ®2 — — 0,41" ®s = + 0,46" ®4 = — 0,40" (7)

Durch Einsetzen dieser 4 ersten v in die Fehlergleichungen (4) bekommt man

auch alle anderen ®, und zwar überall auf etwa 0,01” übereinstimmend mit den

früheren Resultaten v von (13) § 65 . S . 211 , weshalb wir diese Zahlen nicht noch

einmal hersetzen .
Die Elimination der Normalgleichungen (6) giebt auch ein Schlussglied :

[11 . 4] = 1,14 (8)

was ebenfalls mit 113,8 nach (15 ) § 65 . S . 211 genügend stimmt , mit Rücksicht auf

die nun 100 mal kleinere Gewichtseinheit .
Der mittlere Winkelfehler für die Gewichtseinheit ist jetzt :

(9)

, S 211 bei 100 fachDieses entspricht dem früheren 4,77 nach ( 15) §
grösserer Gewichtseinheit . wintel he-Wir wollen noch das Gewicht einer Funktion der

.
ausgeg ic

^stimmen, und zwar soll diese Funktion die Seite JM sein . ie
fehlerfreie Basis , die Funktion ist daher :

oder logarithmisch :

JM = DH sin [ 1] sin [6]
sin [3] sin [9]

log J M = log D H -h log sin [ 1] + log sin [6] — log sin [3] — log sin [9]

( 10 )

( 11 )
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Das Differential ist :

dlog J M — — cotg [ 1] d [ 1] + ^ cotg [6] d [6] — - cotg [3] d [3] — ^ cotg [9] d [9]

dlog J M — 0,32 d [1 ] + 0,90 d [6] — 4,46 d [3] — 2,86 d [9] (12)
Hier sind aber nur [ 1 ] und [3 ] unabhängige Unbekannte der Ausgleichung ,

und es dürfen daher nur <2 [1] und <Z [3] , oder die Differentiale d [2] und d [8] der
ebenfalls unabhängigen ausgeglichenen Unbekannten [2] und [8] in (12 ) Vorkommen .
Um daher d [6] und d [9] zu eliminieren , betrachten wir die Fehlergleichungen (2)
und bilden daraus :

d [9] = — 0,054 d [ 1] - 0,867 d [2] — 1,475 d [3] + 4,641 d [8] 1
d [6] = d [ 1 ] — d (2] + d [3] — d [8] (

1 ’

Diese Gleichungen sind deswegen richtig , weil in den Fehlergleichungen die
Absolutglieder l verschwinden, wenn man von den ausgeglichenen Winkeln [ 1 ] [2 ] . . .
statt von den beobachteten Winkeln ( 1 ) (2 ) . . . ausgeht , und entsprechend d [1] d \2] . . .
statt zj, «2 • • • setzt. Die zweite Gleichung (13) kann man unmittelbar aus der
Figur ablesen .

Setzt man also ( 13 ) in (12) , so erhält man :
dlogJM = + 1,37 d [ 1 ] + 1,58 d [2] + 0,66 d [3 ] — 14,17 d [8] (14)

also :
fi = — 14,17 /j = + 0,66 /, = + 1,37 ^ = + 1,58 (15)

Wir haben hier die Ordnung fs fs /) f% angenommen, weil es uns für spätere
Zwecke interessiert , v2 als letzte Unbekannte zu haben , um das Gewicht von u2 Se"
legentlich mit zu erhalten. Setzt man nun , um der Anweisung von § 29 . S . 93 zu
entsprechen, die bei ( 15 ) berechneten Werte f an Stelle der Absolutglieder der Normal-

(16)

(17)

(18)

( 19)

( 20 )

gleichungen (6) , und ordnet nach der Folge fs fs /, f2, so findet man :
+ 14,87 qs — 3,98 33 + 0,96 3l — 4,16 q2 + 14,17 = 0 j

+ 3,39 + 1,23 2l + 0,37 g2 — 0,66 = 0 (
+ 2,54 gl — 1,37 32 — 1,37 = 0 j

+ 2,57 32 — 1,58 = 0 )
Die Weiterelimination giebt :

+ 2,32 33 + 1,49 3 ! — 0,74 32 + 3,12 = 0 >
+ 2,483, - 1,1032 - 2,28 = 0

+ 1,41 32 + 2,39 = 0
'

+ 1,52 3, — 0,62 32 — 4,28 = 0 1
+ 1,17 32 + 3,38 = 0 )
+ 0,92 32 — 1,61 = 0

Die hier geschriebenen 3 sind bloss Zeichen für die Ordnung der früheren
Nach Anleitung von (13) § 29 . S . 94 hat man nun :

1 _ 14,172 3,122 4,282 1,612 j
P ~

14437
+ p2 + Ü52

" +
0792

' 1
= 13,50 + 4,20 + 12,05 + 2,81 = 32,56 I

M = m j/y = 0,477 1/32756 = + 2,72 (21)
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Dieses ist der mittlere Fehler der Funktion ( 11 ) in Einheiten der 6ten Decimale , also :

log J M = 4.252 6662 '4 + 27 -2
J M = 17 851,15 “ ±0,11 “

(22 )

(23)
Dieses ist schon in ( 14) § 65 . beigefügt worden.

Gelegentlich hat man auch in dem letzten Coefficienten von g2 in (19) das
Gewicht der Winkelkorrektion «2 erhalten , nämlich :

P 2 = 0,92 (24)
(derselbe Coefficient 0,92 würde auch erhalten , wenn man die schon früher vor¬
handenen Gleichungen (6) so auflöste , dass u2 die letzte Unbekannte wäre ) .

Hieraus findet man auch den mittleren Fehler des ausgeglichenen Winkels
(2) «2 = [2] , nämlich :

m

(die Eliminationen dieses § sind nur mit dem Rechenschieber gemacht , also überall
nur auf etwa 2—8 Stellen genau) .

§ 67 . Stationsausgleichung mit Winkelmessungen .

Wenn Winkelmessungen so verteilt sind, dass auf einer Station mit s Strahlen
mehr als s — 1 Winkel vorliegen , so kann man für jeden auf der Station über¬

schüssigen Winkel eine Bedingung in die Netzausgleichung einfügen , wie in dem

Beispiele des Schwerd sehen Basisnetzes § 65 . S . 209 mit der Station Mannheim

gezeigt worden ist .
Wenn aber die Zahl der auf den Stationen überzähligen Winkel gross ist , so

wird dieses Verfahren sehr umständlich , und ist deswegen im grossen nicht anzuwenden.
Man hat deswegen zu dem Verfahren gegriffen , zuerst die Stationen für sich

auszugleichen.
Indem wir die Frage , wie dann die Stationsausgleichungen ins Netz übergehen

sollen , vorerst bei Seite lassen , behandeln wir die Stationsausgleichung mit Winkeln
jetzt als selbständige vorläufige Aufgabe.

I . Summenprobe im Horizont .

Ein einfacher , in früherer Zeit , als man Repetitionswinkel mass , oft vorge-

kommener Fall liegt vor , wenn mehrere Winkel , welche den ganzen Horizont von
360 ° füllen , einzeln gemessen werden und dann auf die Horizontprobe abgestimmt
werden müssen . Z . B . in Fig . 3 . § . 58 . S . 174 hatten wir 2 solche Horizontproben,
mit (3 ) + (6 ) + (8) + (10) + (24) + (25) im Horizont Oggersheim und mit + (12) + ( 15)

! (16) + (19 ) + (22 ) im Horizont Speyer. Auch die Probe auf Mannheim in Fig . 1 .
§ 65 . S . 208 erscheint von dieser Art , wenn man (7) , (8) und 360 ° (9) als drei
einzelne Winkelmessungen auffasst , welche den Horizont 360 ° füllen müssen.

Die Ausgleichung eines solchen Horizontes besteht bei gleichen Gewichten der

einzelnen Winkel lediglich darin , dass man den Horizontwidevspruch zu gleichen
Teilen auf alle beteiligten Winkel umlegt , und wenn die Winkel ungleiche Gewichte
haben , so erfolgt die Verteilung des Widerspruches umgekehrt proportional den Gewichten.

Man kann dieses nach dem Prinzip des arithmetischen Mittels zweier ungleich
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genauer Messungen behandeln, ähnlich wie die schon früher in § 10 . behandelte
Winkelausgleichung in einem Dreieck.

Wir nehmen hiezu folgendes an :
Gemessen : A 1 A 3 An
mit den Gewichten : p x p % p s . . . jp»
Es soll sein : A1 -h A 2 + As + . . . + A „ — 360 ° = 0
Es ist A | -f- A %-f- A%-t- . . . + An — 360 ° = w (1)

Gemessen :

Es ist
Der ausgeglichene Wert des ersten Winkels sei x \ es liegen also zur Be¬

stimmung von x zwei Beohachtungsresultate vor :
1) x = A x mit dem Gewicht p x
2) x — 360 ° — (Ä2 + A s -+- . . . A„) = A1 — w mit dem Gewicht p'

Das Gewicht p ' wird bestimmt durch
1

_ _ l
_

l
_ _

1
_ _ P 1 1 _ L

P ' ~ +
Ps

" '
Li >J Pi

Der ausgeglichene Wert x ist nach (4) § 8 . S . 25 :

= A Pi + (Ax — w) p ’
= __ / _ w

_l_ .vC ^ n . WPl + p ' PlA - p '

und mit Einführung des Wertes von p ' aus (2) :

Da eine ähnliche Formel für die übrigen Winkel gilt , so hat man das Resultat
in Worten : der Widerspruch w wird auf die einzelnen Winkel umgekehrt proportional
ihren Gewichten verteilt.

Die Verbesserung vx des ersten gemessenen Winkels beträgt :

und da eine ähnliche Formel auch für die anderen Winkel gilt , so hat man :
1 W'2

£ T
R [}]

!
Der mittlere Fehler m einer Beobachtung vom Gewicht 1 ist :

walso m =

Der mittlere Fehler Mi des ersten ausgeglichenen Winkels x wird erhalten ,
indem man m mit der Quadratwurzel der Gewichtssumme p x -+- p ' dividiert, die Aus¬
führung giebt :

r MLffJ piJ (7)
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Wenn alle Gewichte ft = ft =
fachex, nämlich :

# = —-

V

. p n = 1 werden, so werden die Formeln ein-

Vn — 1 n
= w h - = - _n y yn — 1

(8)

(9)

(10)

Aus (10) und (9) folgt , dass die Genauigkeit eines Winkels nach der Aus¬

gleichung im Vergleich mit der Genauigkeit vor der Ausgleichung gewachsen ist im

Verhältnis Y n : ]/ »? — 1 .
Der Genauigkeitsgewinn für einen Winkel ist also verhältnismässig klein , wenn

viele Winkel im Horizont gemessen sind.

II . Horizontabschluss nach vermittelnden Beobachtungen .

Wir behandeln mit Fig . 1 . die Messung von 6 einzelnen Winkeln zwischen

4 Strahlen , d . h. Winkelbeobachtungen in allen Kombinationen , und gleichen nach

vermittelnden Beobachtungen aus. Die 6 Messungen sollen sein :

1 . = 48 ° 17' 1,4" 4 . = 48 ° 35' 14,3”

2 . = 96 52 16,8 5 . = 104 37 7,8
48,9

( 11)

Fig . 1.

c

3 . = 152 54 6,8 6 . = 56
Zur gegenseitigen Festlegung der 4 Strahlen ABGD

sind 3 Winkel nötig , wir führen deshalb 3 Winkel als

unabhängige Unbekannte ein, wir nehmen :
Unbekannte : A J B , A IC , AID
Als erste Näherungswerte der Unbekannten neh¬

men wir die 3 ersten Messungen selbst .
Näherungswerte : Verbesserungen :

(AJB ) = 48° 17' 1,4” « |
(iJC ) = 96 52 16,8 y | (12 )

[AJZ >) ~ 152 54 6,8 « '
Ferner bezeichnen wir , wie sonst , die 6 Verbesserungen
der Beobachtungen mit t>2 ®3 ®4 ®6> un<̂ nun
die 3 ersten Fehlergleichungen offenbar sehr einfach :

= x h — y ®3 = z ( 1®)
weil nämlich die 3 ersten Beobachtungen selbst als Nähe¬

rungen genommen sind . Die 4te Fehlergleichung wird :
48 ° 35 '

14,3” + u4 = (96 0 52' 16,8" + y) — (48 ° 17 ' 1,4" + *)
1)4 = — ® + y -+- 1,1"

In ähnlicher Weise wird auch die 5*® und die 6 ‘e Fehlergleichung gebildet ,
wir haben daher die Zusammenstellung aller 6 Fehlergleichungen :

f Vi = + x . •
« 2 = • • A- y
®s = • ■ ■ •

vi = — x ^- y
f 5 = — x . .
®6 = • • — y -

(13)
- z . .

. + 1, 1"
- a - 2,4”

■z + 1,1"

(14)
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Mit gleichen Gewichten bekommt man die Normalgleichungen :
3 * — y — « + ( + 2,4 — 1,1 ) = 0 oder 3a ; — y — » + 1,3 = 0

— » + 3 y — « + ( + 1,1 — 1,1 ) = 0
—

+ 3 y — z + 0,0 = 0 ^ ( 15)
— x — y + 3 « + ( — 2,4 + 1,1) = 0 3 » — 1,3 = 0

Die Auflösung giebt ;
x = — 0,3" y = 0,0" g = + 0,3"

(16)

Fügt man diese Verbesserungen den gemessenen Winkeln 1 . 2. 3 . oder , was
hier dasselbe ist , den Näherungen ( 1) (2) (3 ) zu, so bekommt man das Stationsergebnis:

Winkel AB = 48 ° 17' 1,1 " ,
„ iC = 96 52 16,8 (17)
„ AD = 152 54 7,1 I

Man kann eine solche Ausgleichung auch allgemeiner behandeln. Bei 4 Strahlen
und 6 Winkelmessungen sollen die Absolutglieder der Fehlergleichungen , welche
in ( 14) die Werte + 1,1 "

, — 2,4"
, + 1,1 " hatten , allgemein mit li , 1$ , lg

bezeichnet sein , und damit erhält man ;
Fehlergleichungen:

Vi = x . .
®2 = • • V ■ • • •
vs = . . . . z . .
'«4 = — * + V ■ ■ + h
vs = — x . . + g + ls
v&= ■ ■ — y + * + h

Normalgleichungen:

ix — y — z — lA — lg = 0
— x —l—3 y — z —t—lA — Iq == 0
— x — y -+ 3 z + ■lg —t- Iq ■— 0

(18)

Die Auflösung der Normalgleichungen giebt :

x = lA±h y =
- j±±k z = ( 19)

In dem oben mit (14) behandelten Zahlenbeispiele war :
l4 = + 1,1" h = — 2,4" 16 = + 1,1"

woraus folgt :
x = — 0,3" y = 0,0" g = + 0,3" (20)

dieses ist übereinstimmend mit dem früheren (16) .
Die vorstehende Behandlung der Winkelausgleichung von Fig . 1 . , wo alle

6 Winkel zwischen 4 Strahlen gleichgewichtig gemessen sind , hat sich beim ersten
Anblick der Sache von selbst dargeboten. Die allgemeinere und viel elegantere Be¬
handlung von gleichgewichtigen Winkelmessungen in allen Combinationen wird in
§ 77 . gegeben werden .

Wenn die Gewichte a priori nicht gleich sind, so wird auch bei symmetrischer
Anordnung der Messungen die Ausgleichung doch nicht mehr symmetrisch.

Wir wollen zu den 6 Messungen , welche oben behandelt wurden, bzw . zu den
6 Fehlergleichungen (14) folgende Gewichte annehmen :

Pi = 30 p 2 = 20 p s = 26 p A = 25 p s = 28 y>6 = 44 (21)
Damit wird :

[p a a] = + 30 + 25 + 28 = + 83
\p a 6] = — 25 u. s . w.
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und die Normalgleichungen in abgekürzter Schreibweise :
+ 83,0 a; — 25,0 y — 28,0 z + 39,7 = 0

89,0 y — 44,0 g — 20,9 = 0
98,0 z — 18,8 = 0

244,77
Die Auflösung giebt :

x — — 0,34”

y = -h 0,24
z = + 0,20
[p ll . 3] = [p v v]

p* = 54,6
Pv = 50,4
p * = 54,8
= 222,5

(22)

(23)
Damit wird der mittlere Fehler einer Beobachtung vom Gewicht 1 :

» = / S = ± 8 ’61"

Die mittleren Fehler der ausgeglichenen x y z werden demnach :

8,618,61
1,17 " : = + 1 ,21 " 8,61 = + 1,16 ” (24)

1/54,6
~

1/50,4
—

1/54,8
Alle 6 ausgeglichenen Winkelwerte erhält man durch Zufügen der Verbesser¬

ungen x y z zu den angenommenen Näherungswerten (12 ) , zugleich bildet man auch
durch Subtraktionen die 3 übrigen Winkel und findet damit :

Winkel Gemessen V Ausgeglichen u2 P p xfi
1. = AB 48 ° 17 ' 1,4” — 0,34” 48 ° 17 ' 1,06" 0,12 30 3,60
2 . = 40 96 52 16,8 + 0,24 96 52 17,04 0,06 20 1,20
3. = AD 152 54 6,8 + 0,20 152 54 7,00 0,04 26 1,04
4 . = B G 48 35 14,3 + 1,68 48 35 15,98 2,82 25 70,50
5 . = BD 104 37 7,8 — 1,86 104 37 5,94 3,46 28 96,89
&. = CD 56 1 48,9 + 1,06 56 1 49,96 1,12 44 49,28

222,51

0 ,00”
1,06

17,04
7,00

(26)

(25)
Die Übereinstimmung von [p v u] nach (23) und (25) bestätigt die Richtigkeit

der Rechnung.
Man kann dieses Ausgleichungs -Ergebnis auch in Gestalt eines ausgeglichenen

Richtungssatzes aufstellen :

Richtung J A = 0 ° 0 '

„ JB = 48 17

„ J C = 96 52

„ JD = 152 54
Und wenn man von den verschiedenen Gewichtsunterscheidungen , die in einem

solchen ausgeglichenen Satze enthalten sind, absehen will , so führt man den Satz (26)
schlechthin wie einen unmittelbar voll gemessenen Satz in eine Netzausgleichung ein,
die dann in der Form von § 59 . oder § 61 . weitergeführt wird.

In solcher Weise hat Gerling als Schüler von Gauss die Horizontabschlüsse
und namentlich deren Einführung in die Netzausgleichung behandelt und das vor¬
stehende Beispiel ist aus Gerlings Ausgleichungsrechnung der praktischen Geometrie
1843 , § , 56 — 57 entlehnt . In welcher Weise die ungleichen Gewichte p nach (21)
zwischen 20 und 44 entstanden sind, etwa als Repetitionszahlen der Winkelmessungen
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oder oh sie bloss von Gerling für ein Schulbeispiel fingiert sind , mag dahingestellt
bleiben. Viel wichtiger als eine Ausgleichung mit ungleichen Gewichten ist die Aus¬

gleichung von gleichgewichtigen Winkelmessungen in allen Combinationen, worauf
wir später in § 77 . ausführlicher zurückkommen werden .

III . Horizontabschluss nach dem Korrelatenverfahren .

Wir wollen nun den bisher behandelten Fall von Fig . 1 . auch nach bedingten
Beobachtungen, mit Korrelaten, behandeln, und finden , dass zwischen den 6 gemessenen
Winkeln folgende 3 Bedingungsgleichungen bestehen :

a) — n- i:2 - • — vi • ■ . . 4 - m>4 = 0 , w 4 = 4 - 1,1 "
j

b ) — «i . . + »3 . . — c5 . . + «>5 = 0 , w5 = — 2,4 j
- (27)

c) . . — u2 + «3 . . . . — «6 -t - *e6 = 0 , we = 4- 1,1
'

Man kann diese Gleichungen unmittelbar aus der Figur ablesen , mit Einsetzung
der Beobachtungen (11 ) . Diese Gleichungen (27 ) sind aber auch schon in der zweiten
Hälfte der früheren Fehlergleichungen (18) enthalten , wenn man daselbst setzt :

x = Uj y = »2 z = t/3 und l4 = w4 l5 = leg l6 = io6 (28)

Die Bedingungsgleichungen (27) geben folgende Normalgleichungen:
4 - 3 hj 4- kg — kg 4- w 4 = 0 i
4- lCi -b 3 1*

2 "4 &3 ~h Wß — 0 | (29 )
— kj 4- kg 4- 3 &3 4- Wq = 0 )

Die allgemeine Auflösung hievon ist :

7.
- 2 w4 4- io6 — we 7, 4- w4 — 2 w 5 4- w6 — w 4 4 - w 5 — 2 we

1
- , % = -

4
- . h - -

1
- (-W)

und die Korrektionsformeln, welche den Bedingungsgleichungen (27 ) nach Vertikal¬
reihen folgen , geben :

(31)
- io 5 4- to 6 1
- 2 M>5 — W6
- «154 2 Wß I

nach der

4: Vi — — ki — kg — 4~ ~4 ZO5 4 u4 — — ki — 4~ 2 w4 -
4 u2 = 4- k4 — k3 = — w4 4- io6 4 -i?5 = — 7c2 = — w4 -
4 = 4- kg 4- k3 = — — Wß 4Vß — — k3 — 4- zo4 -

Damit haben wir wieder dasselbe , was früher in (19) enthalten war,
bei (28) angegebenen Bezeichnungsänderung.

Wenn man also , wie in diesem Falle , gleichgewichtige Winkelbeobachtungen
in allen Kombinationen hat , und wenn es sich um allgemeine Formeln handelt , so
führt die Korrelatenmethode auf einem weiteren Weg zu demselben Resultat wie die
Methode der vermittelnden Beobachtungen.

Wenn die Messungen nicht gleichgewichtig, oder nicht in allen Kombinationen
.angestellt sind , so ist die Korrelatenmethode zur numerischen Ausgleichung unter
Umständen sehr nützlich.

Zur Vergleichung der Ausgleichung nach vermittelnden oder nach bedingten
Beobachtungen stellen wir folgende Betrachtung an :

Zur Festlegung von s Strahlen sind s — 1 Winkel nötig ; hat man also
W Winkel gemessen , so bestehen :

für vermittelnde Beobachtungen: s — 1 unabhängige Unbekannte (32)
für bedingte Beobachtungen: W — (s — 1 ) Bedingungsgleichungen (33)

und entsprechend ist in beiden Fällen die Anzahl der aufzulösenden Normalgleichungen .
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Z. B . bei s = 4 Strahlen und
W = 6 Winkeln hat man in
beiden Fällen 3 Gleichungen
aufzulösen.

Dagegen bei vielen Strah¬
len und verhältnismässig weni¬
gen Bedingungsgleichungen ist
die Korrelatenmethode sehr am
Platz , wie folgendes Beispiel
zeigt :

Nach Fig . 2 . sind 6 un¬
abhängige Winkel ( 1 ) (2) (3)
(4) (5) (6 ) gemessen. Ausser
diesen 6 sollen nur 2 Kontroll-
winkel gemessen sein , nämlich
die Summe ( 1 ) 4 - (2) = (7) und
die Gesamtsumme ( l ) + (2) + (3)
+ (4) + (5) + (6) = (8) , es be¬
stehen also nur 2 Bedingungs¬
gleichungen .

Fig . 2.

Trirt ■

Folgendes sind die Messungen in neuer Teilung und die Gewichte :

Nr . Zielpunkt links Zielpunkt rechts Gemessene Winkel . Gewicht p

Feldberg . . . . Belchen . . . . (1) = 27,94758ff 5
2 Belchen . . . . Catharina . . . . (2) = 86,18972 12
B Catkarina . . . . Strassburg . . . (3) — 63,70226 4
4 Strassburg . . . Hünersedel . . . (4) = 8,76737 3
5 Hünersedel . . . Hornisgrinde . . (5) = 26,27865 4
6 Hornisgrinde . . Trinitatis . . . . (6) = 82,73775 3

7 Feldberg . . . . Catharina . . . . (7) = 114,13753 5
8 Feldberg . . . . Trinitatis . . . . (8) — 295,62484 5

41

Die erste Bedingungsgleichung heisst :
27,94758 -t- vx + 86,18972 + v2 = 114,13753 + v7

oder zusammengefasst, mit Annahme der Centesimalsekunde als Einheit :

v l -h «2 — v7 — 2,3 = 0
In gleicher Weise stellt man die zweite Bedingungsgleichung auf :

®i H- -+- va + «4 4- r>5 + v6 — vs — 15,1 = 0

Die Coefficienten der beiden Normalgleichungen werden :

+ — + -i - = 0,200 4 - 0,083 + 0,143 = 4 - 0,426 u . s . w.
12

Die zwei Normalgleichungen selbst sind :

+ 0,426 kx 4 - 0,283 k2 — 2,3 = 0

+ ÖÜ83 kx 4 - 1,649 *2 — 15,1 = 0

(34)

(35)

(36)
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Deren Auflösung giebt :
k1 = — 0,8 h = + 9,3

Damit bestimmt man die Verbesserungen v nach (9) § 139 . S . 119 :

= 4 - (— 0,8 + 9,3 ) = + 1,7
ö

Ebenso werden die übrigen v berechnet, alle zusammen sind :
V] — + 1,7 ■y2 ~ —l- 0,7 Ug = + 2,3 ^ — + 3,1 ^ — + 2,3 Vg— + 3,1 ‘ü7 = ~f- 0,2 Wg— 1,9
diese v in Einheiten von 1 “ = 0,0001 9 zu den gemessenen Winkeln (34) hinzugefügt
geben die ausgeglichenen Winkel, welche keine Widersprüche mehr zeigen .

Die Summe [pvv ] wird aus den einzelnen v in Übereinstimmung mit der
Formel — [w k] erhalten :

[p v *] = 138,6
also der mittlere Fehler eines Winkels vom Gewicht 1 :

m = = ± 8,3“ oder = + 2,7 " .

(In unserer vorigen Auflage S . 226 war dieses Beispiel ausführlicher behandelt .)

§ 68. Berechnung voller Richtungs -Sätze.
Wenn eine volle Satzmessung in gleichartiger Weise , nur mit verdrehtem

Limbus , mehrfach wiederholt wird , so besteht die Berechnung des Schlussergebnisses
lediglich in einer Mittelbildung, wie wir an dem Beispiele von § 60 . S . 187 bereits
gezeigt haben.

Die Limbusverstellung zwischen je 2 Sätzen macht man bekanntlich wegen
der Elimination der Teilungsfehler mit gleichen Intervallen , z . B . von 45 ° zu 45 °,
wenn man 4 Sätze nehmen will , von 30 ° zu 30° bei 6 Sätzen u . s . w. Die ver¬
schiedenen Sätze macht man gewöhnlich dadurch vergleichbar, dass man irgend eine
Sicht, etwa als Anfang , in allen Sätzen auf einen gemeinsamen Wert , z . B . 0 ° 0' 0"
bringt (oder auch auf einen genäherten Richtungswinkel) , doch könnte man die
Mittelbildung, wenn man wollte , auch ohne solche vorhergehende Zusammenschiebung
machen, indem man ja immer auch nach der Mittelbildung den Satz nochmals be¬
liebig verschieben kann.

All dieses Bekannte hier vorzuführen, sind wir nur veranlasst , weil wir noch
die Berechnung des mittleren Fehlers aus mehreren Satzwiederholungen zeigen wollen ,
und zwar im Anschluss an unser früheres Beispiel der Hannoversehen Triangulierung,
Station Schanze , in § 60. S. 187 .

Es sind dort 12 Sätze genommen , von welchen wir aber nun nur 6 , d . h . die
Hälfte benützen wollen , erstens weil 12 Sätze ungewöhnlich viel sind , und zweitens,
weil es hier um ein übersichtliches Schulbeispiel zu thun ist , bei ' welchem zu viele
Wiederholungen die Übersichtlichkeit stören würden .

Mit Weglassung der Grade und Minuten haben wir so die 6 Richtungssätze
erhalten , welche in der Tabelle auf S . 225 in der Abteilung I eingesetzt sind, und
zwar mit 60,0" als Anfangsrichtung auf _P <> statt mit 0,0"

, damit bei den Satzver¬
schiebungen keine negativen Werte entstehen.

Man bildet nun in der Abteilung I wie gewöhnlich die Quersummen und die
Richtungsmittel , und zur Kontrolle auch nach den Vertikalspalten die Satzsummen .
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Berechnung des mittleren Fehlers einer Richtungsmessung aus 6 Sätzen
mit 4 Zielpunkten.

Satz -Nr .
Kreislage

1.
0°

2.
30°

3.
60°

4.
90®

5.
120°

6.
150°

Quer¬
summe

Richtungs -
Mittel A

t Zielpunkt P ® 60,0" 60,0" 60,0" 60,0" 60,0" 60,0" 360,0" 60,00"— A°

i - p ' 6,0 10,5 11,0 10,0 8,5 5,5 51,6 8,58 — A'
1

. p " 63,0 61,0 60,5 62,0 56,0 58,0 360,5 60,08 = A"

P '" 40,5 45,0 43,5 38,5 40,0 41,5 249,0 41,50 = A'"

Summen 169,5 176,5 175,0 170,5 164,5 165,0 i1021,0 170,16
Satzmittel B 42,38 44,12 43,75 42,62 41,12 41,25 255,25 42,54

255,24 — A0
Satzverschiebung A0 — B + 0,16 - 1,58 — 1,21 00oo1 + 1,42 + 1,29 0,00

, 60,16 58,42 58,79 59,92 61,42 61,29 360,00 60,00 = 4 °

11= / -Hi , - 75) 1 P
p „

6,16
63,16

8,92
59,42

9,79
59,29

9,92
61,92

9,92
57,42

6,79
59,29

51,50
360,50

8,58 = A'

60,08 = 4 "
\ P " ' 40,66 43,42 42,29 38,42 41,42 42,79 249,00 41,50 = A"'

Summen 170,14 170,18 170,16 170,18 170,18 170,16 1021,00
Satzmittel B ’ 42,54 42,54 42,54 42,54 42,54 42,54 255,24

*° = A° - P ° — 0,16 + 1,58 + 1,21 + 0,08 — 1,42 — 1,29 0,00

in r
= a ' - pt + 2,42 — 0,34 — 1,21 — 1,34 - 1,34 + 1,79 — 0,02

j v" = A” - P " — 3,08 + 0,66 + 0,79 — 1,84 + 2,66 + 0,79 — 0,02
' v"r= A'" — P "' + 0,84 - 1,92 - 0,79 + 3,08 + 0,08 — 1,29 0,00

Summen + 0,02 — 0,02 0,00 — 0,02 — 0,02 0,00 — 0,04

0,03 2,50 1,46 0,01 2,02 1,66 7,68

IV J 5,86 0,12 1,46 1,80 1,80 3,20 14,24
I v" 2 9,49 0,44 0,62 3,39 7,08 0,62 21,64
y v'»2 0,71 3,69 0,62 9,49 0,01 1,66 16,18

16,09 6,75 4,16 14,69 10,91 7,14 59,74 i

.
59,74 i = [03]

[t»S] / 69,74 (1)
V (» — i) (®- i ) )

' (6 - 1) (4 - 1) y i5 -

Die Quersumme 1021,0 muss mit der Vertikal-Addition der Quersummen der ein¬
zelnen Sätze stimmen . Die Richtungsmittel A , welche sich aus den Quersummen
durch Division mit 6 ergeben , enthalten nun bereits alles , was zur Ausrechnung
der Richtungssätze an sich gehört , denn man hat , wenn man wieder die Grade und
Minuten von (2) S . 187 zusetzt , das Ergebnis :

P ° = 60,00 ’' Aegidius ©oooli 00,00 "

P ' = 8,68" Burg = 56 ° 04' 08,58"

p " = 60,08 " Steuerndieb = 307 ° 55 ' 0,08"

OOI5II Dreifaltigkeit = 345 ° 48' 41,50"

Um weiter zur Berechnung eines mittleren Richtungsfehlers zu gelangen , bilden
wir auch die Satzmittel B , bei denen der Blick sich sogleich darauf richten wird, ob
s>e nahezu gleich sind und dann bildet man aus diesen Satzmitteln B wieder ein
Mittel Aq = 42,54 , welches mit den einzelnen B verglichen , die Satzverschiebungen

Jordan , Handb . d. Vermessungskunde . 4. Aufl . I. Bd. 15
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_ B gieht. Diese A 0 — B zu den Richtungswerten in I addiert , geben die ver¬

schobenen Richtungen in der Abtheilung II . (S . 225 .)
Verfährt man in II ebenso wie vorher in I , so bekommt man in Hinsicht auf

die Richtungsmittel A durchaus nichts neues , aber die Satzmittel B ’ werden anders

als vorher, nämlich die B ' werden, wie beabsichtigt war, alle gleich , und wenn man

nun die Fehler v durch Vergleichung der Richtungsmittel A ° A' A" A' " mit den

verschobenen Richtungen der Abteilung II bildet , wie in HI geschehen ist , so wird

nach Kolumnen und Linien addiert überall die Summe = 0 , oder höchstens 0,02 wegen
Abrundungen. Endlich werden diese v quadriert , wie in Abteilung IV zu sehen ist,
und die Summe aller u2 , nach Spalten und Linien addiert , wird [u2] = 59,74 . Der

Nenner zur Berechnung des mittleren Fehlers ist = (n — 1) (s — 1 ) , wo n die Anzahl

der Sätze (Gyren ) und s die Anzahl der Richtungen (Strahlen) in jedem Satze be¬

deutet , also in unserem Falle w = 6 und s = 4 oder (n — 1) (s — 1) = 15 , womit

sich ergiebt :

± 2 ,00”

Dieses ist der mittlere Fehler einer Richtung in einem Satze, und bei 6 maliger
Satzwiederholung wird der mittlere Fehler einer 6 fach gemittelten (d . h . ausge¬
glichenen ) Richtung :

M = = + 0,98 ” (3)ye
Wenn man , ebenso wie die hier behandelten 6 Sätze , alle die 12 Sätze von

(2) § 60. S . 187 zusammen berechnet, so erhält man zu Fig . 1 . § 60 . S . 185

m = ± 2,31"
, M = ± 0,67"

Was die Begründung des Rechenverfahrens nach S . 225 in Hinsicht auf die

einzelnen v und [u2] betrifft, so mag es zunächst genügen, dass in Abteilung III die

v nach Spalten und Linien durchaus die Summen Null gehen, dass also in allen

Beziehungen das Prinzip des arithmetischen Mittels eingehalten ist . Die schärfere

Begründung ist aus dem späteren § 71 . zu entnehmen.

Anmerkung über Teilungsfehler.
Wenn die Satzverschiehungen Aa — B in der Rechnüng von S . 225 einen ge-

setzmässigenVerlauf zeigen (flüssige Curve beim Aufträgen der M0 — B als Ordinaten
zu den Kreislagen als Abscissen ) , so enthält das eine Andeutung von systematischen
Teilungsfehlern , zugleich aber auch die Beruhigung , dass der wirkliche mittlere

Richtungsfehler , wie er nachher in das Netz eingeht , kleiner sein wird, als der
Fehler m , hzw . M nach der Rechnung (2) und (3) , denn ein Teil der Wertbeträge
der v wird in den systematischen Teilungsfehlern seinen Grund haben , und daher
durch die symmetrischen Kreisstellungen sich grossenteils eliminieren.

In unserem Falle zeigen die M0 — B auf 8 . 225 in der That gesetzmässigen
Verlauf, und der Schlussfehler M — + 0,67" nach (4) wäre also noch zu gross . Die

Netzausgleichung § 61 . gab in (4) S . 195 m = + 1,04”
, was mit vorigem M — + 0,67"

vergleichbar wäre , wenn nicht noch eine Menge anderer Umstände , die vielen Cen -

trierungen auf hohen (vielleicht schwankenden) Türmen u. s . w. dazu kämen .
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§ 69 . Genäherte Berechnung unvollständiger Bichtungssätze .
Hat man Bichtungsbeobachtungen in lauter vollen Sätzen , so besteht die Aus¬

gleichung lediglich in der Mittelbildung für alle Ablesungen je eines Zielpunktes,
wie im vorigen § 68 . gezeigt ist .

Sind die einzelnen Sätze nicht alle vollständig, so ist die strenge Ausgleichung
nach unserem späteren § 71 . zu machen .

Es giebt aber eine zweckmässigesNäherungsverfahren zur Ausgleichung unvoll¬
ständiger Bichtungssätze , welches in dem Werke „ Ordnance trigonometrical survey of
Great Britain and Ireland “

, London 1858 , S . 62— 66 , zuerst angegeben und in Helmert
„Ausgleichungsrechnungnach der M. d . kl . Q ., 1872 “ , S . 154 behandelt wird .

Ais Zahlenbeispiel hiezu haben wir auf S . 228 eine willkürliche Auswahl aus
den Messungen auf der Station Trenk der Gradmessung in Ostpreussen getroffen , und
dabei angenommen , dass wenigstens ein Zielpunkt (Mednicken ) in allen Sätzen einge¬
schnitten ist , so dass alle Sätze auf Mednicken = 0 ° 0 ' 0" reduziert werden können.
Dieses ist jedoch nicht wesentlich ; wäre z . B . in dem 8ten Satz nur Wargelitten und
Galtgarben gemessen , nicht aber Mednicken, so würde man etwa diesen Satz auf das
Mittel der sämtlichen vorhergehenden Ablesungen von Wargelitten oder Galtgarben
bringen. Mit einigem Geschick wird man sich in solchen Fällen leicht helfen können ,
so dass alle Sätze in gemeinsamer genäherter Orientierung zum Beginn der Aus¬
gleichung dastehen.

Hat man so das Beobachtungsmaterial in der Tabelle I a geordnet, so bildet
man in allen Kolumnen die Mittel A , und wenn die Sätze nur sehr wenig lücken¬
haft waren , oder wenn es sich nur um eine flüchtige Ausgleichung handelte, so würde
man die Mittelwerte A sofort als Ergebnisse beibehalten.

Die weitere Ausgleichung gestaltet sich so :
I b . Man bildet die Differenzen A — l = v zwischen den Mitteln A der ersten

Stufe und ihren darüber stehenden l, z . B . :
Fuchsberg Num. 1 . 85,8" — 36,2" = — 0,4"

2 . 35,8 — 37,5 = — 1,7
3 .o . . .
4 . 35,8 — 33,7 = + 2,1
5 . 35,8 — 36,1 = — 0,3
6 . 35,8 — 34,7 = + 1,1
7 . 35,8 — 36,5 = — 0,7

+ 3,2 — 3,1 = + 0,1 soll = 0,0Summe
Die algebraischen Summen dieser A — l = v sind bekanntlich = Null , was

als Bechenprobe der Abteilung II . dient und hier mit + 0,1 statt 0,0 genügend stimmt.
Weiter bildet man für die Abteilung I b die Quersummen und die Quermittel,

+ 0,4"0,0" — 0,4" -+- 1,9" + 0,2"
4

Diese x der letzten Spalte von Ib setzt man unverändert hinauf nach Ia .
II . Die soeben besprochenen x werden zu den I in I a addiert, und die Summen

nach II a heruntergesetzt . Hier bildet man wieder spaltenweise die Mittel B , welche
als Besultat gelten.
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Genäherte Ausgleichung unvollständiger Richtungssätze . (Station Trent )

Satz
Num .

Ia . Be
Mednicken

1°

obachtete Bichtungen . Erste Stufe .
Euchsberg i Wargelitten 1 Galtgarben

V ! 1" V" X

1 0 ° 0 ' 0,0 " 83 ° 30 ' 36,2 " 287 ° 14 ' 11,0 ' 346 ° 24 ' 18,4 " + 0,4

2 0,0 37,5 14,5 - 1,1

3 0,0 12,5 18,0 + 0,3

4 0,0 33,7 14,1 + 0,3

5 0,0 36,1 13,4 — 0,3 von I b.

6 0,0 34,7 19,6 0,0 / heraufgesetzt .

7 0,0 36,5 — 0,3

8 0,0 13,7 20,5 — 0,9

9 0,0 11,2 + 0,8

10 0,0 i 16,5 + 1,0

10 . 0,0 " 6 . 214,7 " 7 . 90,4 ' i 5 . 93,0" 10 + 6 + 7 + 5= 28

Mittel A. 0 ° 0’ 0,0 " 83 ° 30 ' 35,8 " 287 ° 14 ' 12,9 ' :346 ° 24 ' 18,6 "

I b . Differenzen A — l — v Quer¬
summen

Anzahl
<7

Mittel
X

1 0,0 " — 0,4 " + 1 .9" + 0,2 " + 1,7 4 + 0,4"

2 0,0 — 1,7 — 1,6 — 3,3 3 - 1,1

3 0,0 + 0,4 + 0,6 4 - 1,0 3 + 0,3

4 0,0 + 2,1 — 1,2 + 0,9 3 4 - 0,3

5 0,0 - 0,3 — 0,5 — 0,8 3 - 0,3

6 0,0 + 1 )1 - 1,0 + 0,1 3 0,0

7 0,0 - 0,7 — 0,7 2 — 0,3

8 0,0 — 0,8 - 1,9 — 2,7 3 - 0,9

9 0,0 + 1,7 + 1,7 2 + 0,8

10 0,0 ‘ ‘ 4 - 2,1 + 2,1 2 - 1- 1,0

Summen 0,0 " -f - 3,2 " 4 - 4,0 " + 2,9 " 28
— 3,1 - 4,1 — 2,9

0,0 — 0 .1 0,0
Probe,soll: 0,0 0,0 0,0 0,0

II a . Verbesserte Bichtungen l - f x . Zweite Stufe .

1 359 ° 59 ' 60,4 " 83 ° 30 ' 36,6 " 287 ° 14 ' 11,4 " 346 ° 24 ' 18,8 "

2 58,9 36,4 13,4
3 60,8 12,8 18,3
4 60,3 34,0 14,4 Diese Werte werden

5 59,7 35,8 13,1 durch Additionen

6 60,0 34,7 19,6 l —H X
7 59,7 36,2 von I . gebildet .

8 59,1 12,8 19,6
9 60,8 12,0

10 61,0 17,5

Summen10 . 600,2 ” 6 . 213,7 " 7 . 89,9 " 5 . 93,8 "

Mittel B. 0 ° 0 ' 0,0 " 83 ° 30 ' 35,6 " 287 ° 14 ' 12,8 " 346 ° 24 ' 18,8 "
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Um dieses Verfahren zu begründen , erinnern wir uns , dass es immer darauf
ankommt , die Differenzen v zwischen den Resultaten und den Beobachtungen in ihrer
Quadratsumme [« «] möglichst klein zu machen . Man kann nun in diesem Falle die
Gesamtsumme [uc ] in zweifacher Weise zerlegt denken:

1) Zerlegung nach Kolumnen [v v ] = [v ° v °] [v ' v'
] + [v" »"] + . . . ( 1)

2) Zerlegung nach Linien [v u] = [»x Uj] + [n?2 v2] + [1)3 »3] -+- [«4 ^4] + . . . (2)
Durch die Bildung der Kolumnenmittel A wird in jeder Kolumne für sich die

Summe [!)° i>°] , bzw . [v1 »' ] oder [u" v"
] möglichst klein gemacht, und in den einzelnen

Linien wird dann [Dj cx] , bzw . [u2 ®2] u . s . w. noch verkleinert durch Anbringung
der Satzverschiebungen aJx x% u . s . w . , welche die arithmetischen Mittel der v jeder
Linie sind .

Letzteres zeigt sich am deutlichsten an derjenigen Kolumne , welche am Anfang
zur Hauptorientierung gedient hat , in unserem Beispiel an der Kolumne Mednicken ;
diese erhält in der Tabelle I b alle v = 0 , d . h. alle Widersprüche werden dadurch
den anderen Kolumnen zugeschoben , und erst nach Einführung der Verschiebungen x
tritt eine gerechtere Verteilung der v ein .

Die allmähliche Verkleinerung von [v «] , zuerst in den Kolumnen, dann in den
Linien, entspricht näherungsweise der M. d . kl . Q . , welche bei strenger Anwendung
eine gemeinsame Berücksichtigung aller Beziehungen in den Kolumnen und in den
Linien verlangen würde.

Die Zahlenwerte der Tabelle II a haben immer noch den Charakter von Ori¬
ginal-Beobachtungen , denn es sind nur die Ablesungen jedes Satzes um eine konstante
Grösse x verschoben worden , und solche Verschiebung ist bei Richtungs-Beobachtungs-
Sätzen immer willkürlich zulässig.

Man kann daher, mit der Tabelle II a von neuem anfangend, die ganze Rech¬
nung wiederholen , eine dritte Stufe III bilden , und es ist möglich , dass man durch
fortgesetzte Wiederholungen dieser Art den Resultaten einör strengen Ausgleichung
nach der M . d . kl . Q. unbegrenzt nahe kommt.

Dabei kann man auch für jede Ausgleichungsstufe die Quadratsumme [u2] der
übrig bleibenden Fehler ausrechnen und an deren allmählicher Abnahme sehen , ob
die Recbnungsgang convergiert. Wir haben das an unserem Beispiele S . 228 bis
zur dritten Stufe durchgeführt und folgendes erhalten :

Station Trenk

Mednicken .
Fuchsberg .
Wargelitten .
Galtgarben .

Stufe I
0 ° 0' 0 ,0

”
83 30 35,8

287 14 12,9
346 24 18,6
[»2] = 30,22

Stufe II
0 ° 0 ’ 0 ,0"

83 30 35,6
287 14 12,8
346 24 18,8
[u2] = 18,42

Stufe III
0 ° 0 ' 0 ,00”

83 30 35,55
287 14 12,67
346 24 18,81

|>2] = 17,97
Von der II . zur III . Stufe ist kaum noch merkliche Änderung. Aus der

Summe [t>z] kann man auch einen mittleren Fehler einer Richtung berechnen, nämlich :

m - t/JL 8L x/ffl = + 1,09"
Z

7
28 — 13 y 15 —

Der Nenner 28 — 13 ist hier dadurch entstanden , dass 28 gemessene Richtungen
vorhanden sind , welchen aber als Unbekannte gegenüber stehen erstens 3 unabhängige
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Winkel zwischen 4 Sichten und 10 Orientierungs-Unbekannte in 10 gemessenen
Sätzen , also 13 Unbekannte.

Die in Vorstehendem behandelte Näherungsausgieichung empfiehlt sich aus
vielen Gründen , und sie dürfte vielleicht in neuer Zeit noch mehr Bedeutung des¬
wegen gewinnen , weil die strenge Ausgleichung unvollständiger Bichtungssätze, welche
wir im nachfolgenden § 71 . lehren werden , mit der dazu gehörigen formell strengen
Bessel sehen Netz-Ausgleichung (§ 72 .) allmählich gegen andere Verfahren zurücktritt .

§ 70. Unterscheidung von TVinhelmessung und Richtnngsmessung.

Wir haben schon im Bisherigen mehrfach die Unterscheidung von Winkel¬
messungen und Bichtungsmessungen gemacht , ohne dabei scharfe Erklärungen zu
geben , indem diese Benennungen heute so allgemein, schon bei den Messungen , ge¬
braucht werden , dass ihr Sinn als bekannt vorausgesetzt werden konnte, nämlich so,
dass eine Winkelmessung (im engeren Sinne ) sich stets auf zivei Sichtstrahlen, links
und rechts , bezieht , während ein Satz von Richtungsmessungen beliebig viele Sicht¬
strahlen enthalten kann.

Winkelmessung erscheint also als besonderer Fall der Bichtungsmessung, und
wenn man mehrere Winkelmessungen aneinander setzt , so bekommt man für die
trigonometrischen Rechnungen dasselbe , was ein Satz von Bichtungsmessungen bietet,
und nur wenn es sich um Ausgleichungs- und Genauigkeitsfragen handelt , ist die
Unterscheidung von Winkeln und Richtungen in dem angegebenen Sinne von Bedeutung.

Die heutigen Benennungen Winkelmessung und Richtungsmessung haben sieb
in diesem Sinne erst in den letzten Jahrzehnten festgesetzt . Gauss unterschied 1821
(Astr . Nachr. 1 . Band , S. 81 ) „Winkelmessungen auf einmal gemacht“ (Richtungen)
und „Winkelmessungen unabhängig gemacht“ (Winkeimessungen im engeren Sinne ),
Bessel und Hagen gebrauchten 1837 die Worte Winkel und Richtung ohne scharfe
Unterscheidung nach dem heutigen Sinne , welche wie es scheint von Hansen her¬
rührt , der eine Ausgleichung nach „Richtungen “ 1841 in „Astr . Nachr., 18. Band“,
S . 173 , gab . Auch Gerling gebraucht in seinen „Ausgleichungs-Rechnungen“ 1843,
„Winkel “ und „Richtungen“

, so wie heute gebräuchlich ist .
Nach diesen Vorbemerkungen wollen wir die wichtigsten

Begriffe über mittlere Fehler und Gewichte von Winkeln und
3 Richtungen ABC
2 Winkel 1. 2.

0 Richtungen festsetzen.
Ein Winkel kann immer betrachtet werden als Differenz

zweier Richtungen ; z . B . in Fig . 1 . ist :
Winkel A J B = Richtung J B — Richtung J A (1)

Ist daher r ein mittlerer Richtungsfehler und m ein mittlerer

g Winkelfehler, so ist nach (1 ) :
+ m = + r + r

»i2 — r2 + r2 = 2 r2
J

C

oder in Gewichtsverhältnissen, wenn p ein Winkelgewicht und q ein Richtungs¬
gewicht ist :
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oder p = ~

1 oder = 1 : 2

q = 2p

231

(3)

d . h . eine Winkelmessung hat nur halbes Gewicht p im Vergleich mit dem Gewicht q
einer Richtungsmessung.

Da durch Messungswiederholung auch das Gewicht verdoppelt wird , ergiebt
sich auch , dass die Doppelmessung eines Winkels gleiches Gewicht hat mit der ein¬
fachen Messung einer Richtung.

Eine einzelne Richtungsmessung ist für praktische Zwecke wertlos , denn eine
solche Messung bestimmt nur den Winkel, welcher eine Theodolit-Sicht mit der Sicht
für die Null-Ablesung bildet , z . B . wenn man bei einer Theodolit-Aufstellung einen
Punkt A anzielt und 26 ° 17' 20 ' ' abliest , so heisst das , die Sicht A macht den
Winkel 26 ° 17' 20" mit derjenigen Sichtlinie, welche man bei der Ablesung 0 ° 0 ' 0 ' '

hat . Würde man nun den Theodolit wegnehmen , so hätte man für trigonometrische
Berechnungen absolut Nichts erhalten . Man muss für geodätische Zwecke immer
mindestens zwei Richtungen zusammen messen . Die Richtungen , welche bei einer
und derselben Limbusstellung gemessen werden , bilden zusammen einen Satz (oder
Gyrus) .

Wenn nach Fig . 1 . die 3 Richtungen ABC in einem Satz eingeschnitten
sind, so ist jede Richtung mit einem besonderen Fehler v A , v B , vC behaftet , und
wenn die 3 Messungen in eine Ausgleichung eingehen, so muss wrnrden :

(v Äf + (v B)2 + (u C)2 + . . . = Minimum (4)
Wenn andererseits die 3 Strahlen ABC durch 2 Winketaessungen A B und

A C gegen einander festgelegt werden , so entsprechen diesen 2 Winkelmessungen
4 Richtungsverbesserungen, es ist nämlich :

Winkelverbesserung öy = v By — v Ay | ^
Winkelverbesserung d2 = v C2 — v A2 j

wo und ö2 Winkelverbesserungen, und v Ay , v By , v A %, v C2 Richtungsverbesserungen
sind. Wenn man nun nach Richtungen ausgleicht , so besteht die Bedingung (für
gleiche Gewichte ) :

(v Ay)2 -h (v Byfi + (« A 2)2 4- (v C2)2 + . . . Minimum (6)
während bei einer Ausgleichung nach Winkeln gälte :

Pl Ö? + Pa öl py (v By — v Ayf + p 2 (vC 2 — v A2f + . . . = Minimum (7)
wo py und p 2 die Winkelgewichte sind.

Angenommen , man habe die Ausgleichung nach dieser letzten Bedingung (7)
bewirkt , so ist man zur Kenntnis der Differenzen v By — v Ay u . s . w . gelangt, welche
in (5) mit öj , ö2 u . s . w . bezeichnet wurden ; die einzelnen v Ay , v By u . s . w . kennt
man vorerst noch nicht . Wenn aber diese Richtungsverbesserungenri ; , cF ; a . s w .
in gar keinen anderen Verbindungen in die Rechnung eingehen , als eben in diesen
Differenzen äy , ö2 u . s . w . , so hat man das Recht , bei der Zerlegung der Winkel -

Verbesserungen ö in je 2 RichtungsVerbesserungen abermals das Prinzip der kleinsten
Quadratsumme anzuwenden und zu setzen :

V Ay = Öl
2 v By

vA 2 = Ö2
2 v B‘

(8 )
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denn jede andere Verteilung würde eine grössere Quadratsumme (v Afß -+- (v Bj 2 + . . .
geben . Setzt man die Werte für v A x, v B1 u . s . w. von (8) in (6) und (7) ein , so wird:

i ö* + tff + . . . = Minimum (6 *)
Li Li

Pl + Vz + ■• • = Minimum (7*)

Diese 2 Bedingungen werden identisch, wenn man jh — P2 — ■• ■ ~ ~ir setzt,
a

d . h . wenn man jedem Winkel das halbe Gewicht einer Richtung giebt, was der schon
zu Anfang erkannten Beziehung (3) entspricht .

Wir haben also erkannt , dass , wenn nur Winkelmessungen vorliegen , man zu
gleichen Ergebnissen gelangt , gleichviel, ob man nach Winkeln oder nach Richtungen
ausgleicht, und da die Winkelausgleichung einfacher ist , wird man dann wohl meistens
bei derselben bleiben. Wenn aber in einem Satze mehr als 2 Richtungen Vorkommen ,
so ist Winkelausgleichung unmöglich und es muss nach Richtungen , entsprechend
der Minimumsbedingung (6) , ausgeglichen werden.

Richtungsmessungen haben noch das Eigentümliche , dass alle Ablesungen eines
Satzes um eine beliebige Grösse verändert werden dürfen, wie folgendes Beispiel zeigt

Zielpunkt
Gemessene Reduktion Reduktion
Richtungen auf A = 0 auf A = 57 ° 37 ' 3"

A 165 ° 46 ' 12" 0 ° 0 ' 0" 57 ° 87 ' 3”
j

B 205 45 37 39 59 25 97 36 28
G 286 54 20 121 8 8 178 45 11

‘

Die Differenzen der Richtungen , d . h . die Winkel, auf welche es bei trigono¬
metrischen Berechnungen allein ankommt, bleiben immer dieselben, mag man die
Originalablesungen benützen, oder dieselben auf einen Strahl = 0 ° 0 ' 0" reduzieren,
oder einem Strahl seinen trigonometrischen Richtungswinkel als Richtung zuteilen,
wie in der letzten Spalte der Zusammenstellung (9) angenommen ist .

§ 71 . Strenge Ausgleichung unvollständiger Richtungssätze .
(Bessels Methode .)

Fig . 1.
Riclitungsmessungen . Satz 1.

! 0 ,

Wenn mehrere unvollständige Sätze auf
einer Station gemessen sind , wie etwa in dem
Beispiel von § 69 . S . 228 , so ist es zunächst
immer angenehm, wenn wenigstens eine Sicht m
allen Sätzen vorkommt, damit man alle Sätze an
diese eine Sicht etwa als Nullstrahl anhängen
und alles übrige vorläufig ordnen kann. Indessen
ist dieses nicht wesentlich; die streng theoretische
Ausgleichung solcher unvollständiger Richtungs¬
sätze ist von solcher Ordnung auf einen gemein¬
samen Anfangsstrahl unabhängig, und macht nur
etwa zur Gewinnung erster Näherungen davon
Gebrauch.

Auf einem ersten Beobachtungspunkt J\
(Fig . 1 .) wird ein Limbuskreis aufgestellt , dessen
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Nullhalbmesser die Lage 0 1 hat ; und beim Einschneiden der geodätischen Strahlen
P ° pi p " pm wer(jen an (jem Limbuskreisrand die Ablesungen li ° Zj

'
Zj

" l{
macht. Obgleich hiebei die Lage des Kreisnullhalbniessers J 1 Oj gegen die
strahlen ohne alle geodätische Bedeutung ist,
muss doch ein Winkel «lt welcher den Nullhalb¬
messer Oj gegen einen der genannten Strahlen
festlegt , mit in Rechnung genommen werden .

Alles dieses wird mit verstelltem Limbus
wiederholt, wie in Fig . 2 . angedeutet ist ; und
indem wir nun die Sätze mit l 23 . . . nume¬
rieren , die Zielpunkte aber, und alles , was sich
darauf bezieht, mit 0 . unterscheiden,
haben wir folgende Übersicht :

Satz ; h ° h ' h " h '" • ■ z x
Satz 2 h ° h ’ h " h '" ■ ■ z2
SätlZg 7 o W h " h ' " • ■ - 3 • ( i )

Satz, , i„° ln' ln” ln" ’ ■ • Zn

ge-
Ziel-

Fig . 2.
Eichtungsmessungen . Satz 2.

i o.

Die Gewichte der Beobachtungen sollen entsprechend durch jjj ® p{ pj " . . .
bezeichnet werden ; es sind zwar gewöhnlich alle Gewichte der Beobachtungen auf
einer Station einander gleich , es ist aber die allgemeine Einführung von Gewichten
dennoch nötig, damit man das Ausfallen einzelner Beobachtungen mathematisch ans¬
drücken kann . Wenn z . B . im zweiten Satz der Zielpunkt P '” fehlt , so ist p 2

" = 0 -
Durch die Ausgleichung werden allen Messungen Verbesserungen zugeteilt,

welche mit v bezeichnet werden sollen ; wir haben also ausser ( 1) noch folgende
Bezeichnungen festgestellt :

Gewichte: Verbesserungen:
t»i ° «V »i "Satzj Pi ° Pi P \

" Pi "
Satz 2 p .2

° p { pi ’
Pa ° Pa Pa" Pi "

Pa "
i>2 ° v2 v2

" v2
Satz 3 %° ®s

' %" *3
"

Die Beobachtungswerte l sind Richtungen. Man kann dieselben in jedem ein¬
zelnen Satz als Winkel betrachten , welche die Strahlen nach P ° P ' P " P ' " mit
einem gemeinschaftlichen aber unbekannten Anfangsstrahl nach 0 bilden . Diese

Beobachtungen l sind gemacht worden zur Bestimmung derjenigen Winkel , welche
die Strahlen P ° P ' P " P ” ' unter sieh bilden, und da diese 4 Strahlen durch 3 Winkel

gegenseitig festgelegt sind , so führen wir als unabhängige Unbekannte folgende
Winkel ein :

Winkel P ° P ' = af j
Winkel P ° P " = x" | (3)
Winkel P ° P " ' = x ' " I

Es ist hiebei unwesentlich, dass diese Winkel einen Strahl , nämlich P ° gemein¬
sam haben , man könnte auch z . B . die 3 Winkel P ° P '

, P ' P "
> P " P " als un¬

abhängige Unbekannte einführen.
Nun kann zur Aufstellung der Peblergleichnngen geschritten werden . Z . B . für

die Messung l2 " hat man nach Pig . 2 . : Es soll sein l2
" = z2 + x" '

, also mit Zu¬

fügung der Verbesserung v<>
" :

+ v2
' " = *2 +

oder Fehlergleichung : v{" = z2 -+- x '" — Z2
' "
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Das ganze System dieser Gleichungen ist :
Satzx «1

° = «1— h ° — J%i —1“ X — l]
*

Uj
" = Z1 -hx " — li " 1« i '" = Zi -hx '" — l{ "

Satz2 ^2
° ” ^2 — 2̂

° vi = »2 + *' — h' V%
n = — ^2 — V”

Satzg VS
° — Z3 — h ° v3 — % + ^ — h'

Vs
" = Z3 + X" — ls"

Vs
" — Zs + x '" — ls "

Bleiben wir der Übersicht wegen bei 3 Sätzen und 4 Zielpunkten stehen , so
haben diese Fehlergleichungen die allgemeine Form :

v = a ' z1 -+- 6' + c' zs + a x ' + b of c x'" — l (5)
und die Coefflcienten bilden folgende Tabelle :

Coefficienten der Fehlergleichungen :

Satz Ziel- *1 «2 «3 xr x" x ,n
l p

punkt ar V c' a b c

Allgemein :
po + 1 - h ° pi °

Anzahl = s J 1 P ' -4- 1 + 1 - h' Pi
P " -+- 1 + 1 — w Pi

I -
pn , + 1 + 1 - h '" Pi "

2 po + 1 - h ° P2
0

Anzahl = s J 2 P ' + 1 + 1 - k' Pi
2 P " -+- 1 + 1 - k" Pi '

1 2 jptn + 1 + 1 - h '" Pi "

3 po + 1 - h ° Ps °

Anzahl = s J 3 P ' + 1 + 1 - h' Pi
3 P " + 1 + 1 — w Pi '

1 3 pnr + 1 + 1 - h" ' Pi "

Anzahl = n Anzahl = s — 1 [p]
Vor Bildung der Normalgleichungen wollen wir folgende Suinmenbezeichnungen

einführen :

P\ ° + P\ + P \
' + Pi " • • • = l> i ] ■

Pz° + Vz + Pi ' + Pi " • • • = [Pz\ I

Pi + pz + ps + • • • = ry ] > w

P\
" + Pi ' + Pi ' + ■■■ = [ p”

J l

dabei ist [ Pl ] + [p2] + [ p3] -+- . . . = [p °] + [ p '
] -+- [ p"

j + . . . = [p]
Indem wir annehmen, dass alle Sätze einzeln aufgeführt sind (ohne Zusammen¬

fassung gleichartiger Sätze) ist [ p] = B gleich der Anzahl aller eingeschnittenen
Bichtungen .

Der erste quadratische Normalgleichungs -Coefficient wird nach der Tabelle (6) :
n ° l®+ v{ i2 + pi " i2 + P{" i2 = pi 0 -+•p{ + p{ ' + vi " = Ipi \

und die erste Normalgleichung wird :
[Pl ] *i + 0 «a + 0 zs p { x ' + p { ' x " + Pi ” x" ' — [p { y = 0
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Wenn die Gewichte p alle an und für sich gleich , nämlich = 1 sind, so ist

es in den Verbindungen mit l nicht nötig , die Gewichte p überhaupt zu schreiben,

denn es ist [ Pi y = P\ ° l\ ° + Px h ' + Px
" h " Pl " h '"

> d . h . die Summe aller

derjenigen l, welche mit der Nummer j überhaupt Vorkommen , und das kann man

kürzer auch durch [Zj] ausdrücken. Auf diese Weise erhält man das folgende System
der Normalgleichungen in ausführlicher Schreibweise :

LPi] *i - ■ • • + P \ d + p { ’ x” + p { " x” ' — [y = 0 \

• • M % • • + p { d + p{ ' d ' d " — [12] = 0 J

Mfs + P8
' *' + P3" *" + Ps"' *"' — [W = ° f

p{ ^2 ^- P3
, zs + Lp'

] d + • • • • — Ul = o /
Pl " s \ “h P%

' Z2 + Ps ' ZS ■ ■ [p " l x” + • ■ — P” ] = 0 1

Pl " Z1 + Pi ' + Pi " *3 • • • • [p " x" ’ P' ' ] = o 1
[H] /

Da viele Coefficienten ausfallen , kann man zuerst , mittelst der 3 ersten

Gleichungen, ^ «2 23 in d x " d " ausdrücken :

- «! =

— «2 =

ZZ ~

Px d + px
" x" + Pi " d " - pi ]

[ft ]
P2 d -t- p %

' x" -+- Pz " X " — [Z2]
M

Ps d -+- ps
" x" + Pz ' d " — p3]

(9)

Setzt man diese Ausdrücke (9) in die 3 letzten Gleichungen (8) , so bekommt

man ein reduziertes Normalgleichungssystem , welches nur noch die Unbekannten x ' x" d "

enthält. Dasselbe System bekommt man auch , wenn man die Gleichungen (8) all¬

mählich nach dem Schema S. 61 der Coefficienten [6 6 . 1 ] u . s . f. reduziert ; die erste

so reduzierte Gleichung ist :

{[n ] ~
tfti

0) *2 + (0 _
ffti

0) ' * + {p * - * ' + • • • = °

d. h . die mit [p2] z% anfangende zweite Gleichung der Gruppe (8) bleibt bei der

ersten Reduktion unverändert .
Ebenso ist es mit der dritten Gleichung von (8) . Die vierte Gleichung von (8)

giebt bei der ersten Reduktion :

([p, ] ~ fh Pi
'
] x ' + (0 ~

m
pi

" ] * " + (0 ~ fk ]
p {

" ] x " ' ~ m ~
m

Pll ) = 0

Verfolgt man dieses Alles zu Ende , so erhält man ein System von folgender Form

in abgekürzter Schreibweise :

(a a) d + (a 6) x" -I- (a c) d " + (a l) = 0
(6 6) x" + (6 c) d " + (6 l) = 0

(c c) x'" + (c l ) = 0
« l)

10)
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Die Coefficienten haben folgende Bedeutungen :

(rt o) = [p '
] —

— (aV) =

— (a c) =

(b b) = [ / '
] —

— (6 e) =

(c c) = [p ' "
] -

Die Absolutglieder sind :

- (al ) = [l>] -

Pl
M
Pi
Ipi\
Pi
Ipi\
pj _
Ipi \
P \

'

[pil
Pi "

[Pi ]

— (» *) = P"]

- (c l) = [»' "
] -

Pi
[Pi ]
Pi "

[ Pi ]
Pi " '

Pi

Pi '

Pi "

Pi '

Pi "

Pi "

Pi]

Pi ]

Pi ] -

P2,
M
P%

Pi
M

. i 'i '

[ Pal
PJL
[ Pa]

. PJL

Pi —

Pi

Pa

Pa

Pi " +

Pi

Ps
[ Ps]
Pa'

[Ps]
Ps
[ Psl
Ps"

[ p3]
Ps '

[ Psl
P s

" „
[ p 3]

ps

Ps — •

Ps

Ps

P3 — •

PS

(11

Pa
[ P2]
P2

”
Pal Ps

[ Ps]
Ps

Ps] - - - -

[ PJW
-

& M — ■■

-
" '

w ■

(12)

(JZ) = pq ■ (13)

[Pi ] [ Pa]
Endlich das Fehlerquadrat -Summenglied:

. [J1J2 _ W _ CM2 .
[ Pi ] [ Pa] [ Psl

Bei den Coefficienten (11 ) und den Absolutgliedern (12) können alle gleich¬
artigen Sätze zusammengefasst werden , dagegen hei (13) müssen alle Ablesungen
eimein behandelt werden . Das System (10) wird nun wie gewöhnlich weiter behandelt
(vgl . § 25 .) , und giebt sowohl die Unbekannten x ' x" x ' "

, als auch alle Gewichts-
Coefficienten [a a] [« /3] u . s . w . , und die Fehlerquadratsumme :

O u] = (ll . 3) (14)
aus welcher das mittlere Fehlerquadrat berechnet wird :

(15)R — n — (s — 1)
Um den Nenner li — n — (s — 1) zu verstehen, muss man nach (6) überlegen ,

dass R die Anzahl aller eingeschnittenen Richtungen ist , n die Anzahl der Sätze
und s die Anzahl der Zielpunkte. Damit ist auch n die Anzahl der Nullpunkts-
Korrektionen q , 8, und bei s Strahlen ist s — 1 die Anzahl der unabhängigen
unbekannten Winkel x ' x" x" ' . . . also n + (.s — 1 ) die Anzahl aller Unbekannten ,
woraus bei R Beobachtungen, nach dem Satze (19) § 27 . S . 87 der Nenner n — «
= R — (n ■+- (s — 1)) in (15 ) folgt.

Indem wir zu einem Zahlenbeispiel übergehen, bemerken wir , dass man unter
1° V l" u . s . w . nicht die vollen Winkelablesungen zu verstehen braucht , sondern
dass man die Grade , Minuten und beliebige Sekunden ein für allemal absondern darf.
So haben wir bei dem folgenden Beispiel S . 238 , welches aus der „ Gradmessung in
Ostpreussen“ S . 101 und 102 ausgewählt ist , bei V und l" bzw . 26 ° 14' 50" und
87 ° 4 ' 50" vorn abgesondert.

Nach den Formeln (11 ) und nach dem Anblick der Tabelle S . 238 bildet man
die Coefficienten :
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(a a) = 31 —

— (ab ) -

(ib 6) = 24 —

02 192 122
24 38

~
36

~ = + 17,500

0 19 „ 12 „
14 12 + 38 ^ - 1236 = + 4,000

122 02 122
~
24 158

- - D6~ = + 14,000

und nach den Formeln (12) die Absolutglieder :

— (a Z) = 68,25 — ^ 37,25 — ^ 48,50 — ^ 53,25 = + 26,250
<s4 oo ob
io n io

— (61) = 70,75 — ^ 37,25 — ^ 48,50 — 53,25 = 4- 34,375

Dieses ist die unmittelbare Anwendung der Formeln (11 ) und (12) , man wird
sich aber bald gewöhnen, nach dem Anblick der Tabelle S . 238 kürzer so schreiben:

(« «) = 31 — 4 - 0 — 4 - 19 - ^ 12 = + 17,500
Z Z o

- (ab ) = | - 124 4 - 0 + yl2 = + 4,000

(6 6) = 24 — 4 - 12 — 4 - 0 — 4 12 = + 14,000
Z u o

Das Fehlersummenglied wird nach (13) so berechnet :

(l l) = 496,43 165,68 168,73
2 2

285,42
3 234,09

Die Normalgleichungen sind also in abgekürzter Schreibweise :

+ 17,50 x' — 4,00 x" — 26,25 = 0 >
+ 14,00 .*" — 34,37 = 0 } (10)

+ 234,09 )

Wenn man hier nach § 25 . S . 82 einmal reduziert, so erhält man :

+ 13,086 x" — 40,370 = 0
+ 194,72

70,18 = [u t>]

also x" = + = + 2 -205 ™d zugleich [ß ß] =
13 ^gg

= 0,0764

Kehrt man die Eliminationsordnung um , so bekommt man auch x' und [a «] .
Die Auflösung der Normalgleichungen (16 ) giebt also zunächst:

x' = + 2,205 x" = + 3,085 (17)

[v v] = 70,2 (18)

Fügt man diese x ' und x" von (18 ) zu den Näherungsannahmen für Gilge
und Lattenwalde hinzu , welche oben in der Tabelle auf S . 238 angegeben sind , so
hat man die auf der Station Nidden ausgeglichenen Winkel :

Kalleninken-Gilge = 26 ° 14' 50" + x ' = 26 ° 14' 52,205" I _
Kalleninken-Lattenwalde = 87 ° 4' 50” + *” = 87 ° 4 ' 53,085" )

Wir brauchen auch noch die Gewichts -Coefficienten der Normalgleichungen (16)
und können dazu irgend eines der Verfahren von § 28 . oder § 33 . benützen . Den
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Station Nidden .

Quer¬
summen

fP,l

Kalle -
ninken

7°

a \
Gilge

l'

b
Latten¬
walde

l"

7°+ 2' + l"
= Pd Z' 2 l" 2 PJ*

0° 0 ' 00 ' ' 26 ° 14' 50” 87 ° 4 ' 50"
2 + 0,00” + 5,00" 5,00 25,00 25,00
2 0,00 5,75 5,75 33,06 33,06
2 0,00 5,50 5,50 30,25 30,25
2 0,00 7,00 7,00 49,00 49,00
2 0,00 2,00 2,00 4,00 4,00
2 0,00 2,75 2,75 7,56 7,56

lO < 2 0,00 1,50 1,50 2,25 2,25
2 0,00 2,50 2,50 6,25 6,25
2 0,00 0,50 0,50 0,25 0,25
2 0,00 1,75 1,75 3,06 3,06
2 0,00 1,00 1,00 1,00 1,00
2 0,00 2,00 2,00 4,00 4,00

37,25 37,25 165,68 165,68
M = 24 (12) (0) (12)

2 + 0,00 + 4,25 4,25 18,06 18,06
2 0,00 3,00 3,00 9,00 9,00
2 0,00 0,75 0,75 0,56 0,56.
2 0,00 3,50 3,50 12,25 12,25
2 0,00 4,00 4,00 16,00 16,00
2 0,00 2,50 2,50 6,25 6,25
2 0,00 1,25 1,25 1,56 1,56
2 0,00 4,50 4,50 20,25 20,25
2 0,00 3,00 3,00 9,00 9 .00

19 2 0,00 6,00 6,00 36,00 36,00
2 0,00 1,75 1,75 3,06 3,06
2 0,00 2,75 2,75 7,56 7,56
2 0,00 2,25 2,25 5,06 5,06
2 0,00 0,00 0,00 0,00 0,00
2 0,00 2,00 2,00 4,00 4,00
2 0,00 1,75 1,75 3,06 3,06
2 0,00 0,25 0,25 0,06 0,06
2 0,00 1,00 1,00 1,00 1,00
2 0,00 4,00 4,00 16,00 16,00

48,50 48,50 168,73 168,73
38 (19) (19) (0)

3 0,00 + 0,00 + 2,75 2,75 0,00 7,56 7,56
3 0,00 3,50 2,75 6,25 12,25 7,56 39,06
3 0,00 1,25 3,00 4,25 1,56 9,00 18,06
3 0,00 3,25 4,75 8,00 10,56 22,56 64,00
3 0,00 2,25 3,75 6,00 5,06 14,06 36,00
3 0,00 3,75 3,25 7,00 14,06 10,56 49,00
3 0,00 - 0,25 1,25 1,00 0,06 1,56 1,00
3 0,00 1,25 1,75 3,00 1,56 3,06 9,00
3 0,00 2,25 1,00 3,25 5,06 1,00 10,56
3 0,00 0,50 2,25 2,75 0,25 5,06 7,56
3 0,00 1,00 4,75 5,75 1,00 22,56 33,06
3 0,00 1,00 2,25 3,25 1,00 5,06 10,56

19,75 33,50 53,25 52,42 109,60 285,42
M = 36 (12) 1 (12) (12) s . o. 168,73 165,68

[p\ = 98 \ p °1 = 43 [p' ] = 31 [ p" ] = 24 496,43
[7'

] = 68,25 P"
] = 70,75
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einen Wert [ß ß] = 0,0764 haben wir schon gelegentlich bei (16) gefunden . Um alle
Gewichts-Coefficienten zusammen zu erhalten , verfährt man etwa nach (20) S . 90,
d. h. man bildet aus unseren Normalgleichungen (16) die folgenden (voll ausgeschrie¬
benen ) Gewichtsgleichungen:

+ 17,50 [a «] — 4,00 [« ß] = 1 ! + 17,50 [a ß] — 4,00 [ß ß] = 0
- 4,00 [« ß] + 14,00 [a ß] = 0 j — 4,00 [« ß] -+- 14,00 [ß ß] = 1

daraus erhält man die Gewichts-Coefflcienten
[« «] = + 0,0611 [a ß] = + 0,0175 (

[ß ß] = + 0,0764 |
Der mittlere Fehler einer gemessenen Richtung wird nach (15) und (18) :

-, / 70^2 -,/7Ö £ ^ 11K„m = ]/ 98 = 43 = 2
= = ± 1>15

98 — 43 — 2
Damit ist die Stationsausgleichung Nidden erledigt.

(20 )

(21 )

(22 )

Die im Vorstehenden behandelte Stationsausgleichung ist zuerst von Bessel in der „Grad -

messung in Ostpreussen “ 1838, S. 69—71 gelehrt worden , jedoch ohne die Berechnung des Fehler¬

quadratsummengliedes und des mittleren Fehlers nach den Formeln (13)—(15) , welche erst später

dazu gekommen sind .
Bessel hat auf S. 70 der Gradmessung in Ostpreussen statt unserer l die Bezeichnungen

m, m4' , w3
' u . s . w . , und statt unserer z lf z2, z% die Zeichen x , aq, x3 u . s . w . , ferner entsprechen

unseren x , x", x’" die Bessel sehen A, B , C. Unsere zt , z2, ss stehen in einer gewissen Beziehung

zu derjenigen Grösse , welche auf S. 134 der G-radmessung in Ostpreussen von Bessel mit z be¬

zeichnet ist , vgl . hiezu unseren späteren § 74.

Die Fehlerquadratsumme O v] haben wir hier nur aus der Elimination im Anschluss ' an (16)

bestimmt , was sehr einfach geht , und z . B. bei der Landesaufnahme , in der Zeit dieser Methode ,
immer so gemacht wurde ; man kann aber auch , was eine durchschlagende Probe giebt , ausserdem

alle v einzein ausrechnen , wozu die z nach (9) erforderlich sind . Die Einzelausrechnung und

Quadrierung aller v findet man angewendet in dem Rheinischen Dreiecksnetz des geodätischen

Instituts Heft III , 1882, vgl . „Zeitschr . f. Verm . 1884“, S. 73.

§ 72 . Dreiecksnetz -Ausgleichung nach Bessels Methode .

Wir schneiden ans dem
Netz der Gradmessung in Ost¬
preussen das in Fig . 1 . gezeich¬
nete Viereck mit zwei Diagonalen
heraus, und wählen von den Ori¬
ginalmessungen der Gradmessung
in Ostpreussen diejenigen aus ,
welche sich auf dieses Viereck
beziehen. (Die Messungen in
Kalleninken sind mit einem
schwächeren Instrument gemacht,
als die Messungen auf Nidden,
Lattenwalde und Gilge ; da es
sich aber hier nur um ein ein¬
faches Reehenbeispiel handelt , so
werden wir von diesem Unter¬
schiede absehen , und alle Origi-
nalmessungen als gleichberechtigt
m die Ausgleichung einführen.)

Fig . l .
Viereck der Gradmessung in Ostpreussen .

IFzdden

20000 Toisen
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Die Beobachtungen und die Ausgleichung für die Station Nidden haben wir
bereits im vorigen § 71 . behandelt ; für die übrigen Stationen geben wir die Original¬
messungen nicht mehr , sondern nur die Ergebnisse der Stationsausgleichungen ; es
sind dieses zuerst die ausgeglichenen Winkel und dann die Gewichts -Coefflcienten :

62 ° 58 ' 36,167"
|> a ] = + 0,1667

.46 = 110 28 23,667

Gewichts -Coefflcienten .
[aa ] = + 0,0611 [a fl = + 0,0175

[ßß ] = + 0,0764

[« (3] = + 0,0745
[(3 0] = + 0,0805

[a0 ] = + 0,0833
[(f} /3] = + 0,1667

(1)

(2)

(3)

(4)

Station Nidden . Winkel .
Kalleninken —Gilge . . A 1= 26 ° 14 ' 52,205 "

Kalleninken —Lattenwalde A2 = 87 4 53,085
Station Lattenwalde .

Nidden —Kalleninken . . A3 = 45 ° 25 ' 28,827 "
[« a ] = + 0,1431

Nidden —Gilge . . . . A* = 72 48 53,486
Station Kalleninken .

Gilge —Lattenwalde
Gilge —Nidden . .

Station Gilge .
Lattenwalde - Kalleninken Ai = 89 ° 37 ' 54,583 [a « ] = + 0,3333

Die Anzahl der Bedingungsgleichungen ist nach den allgemeinen Regeln von
§ 58 . leicht anzugeben ; man hat :

W = 7 Winkel ,
p = 4 Punkte ,
l = 6 Linien , darunter V = 1 einseitig gemessene Linie , also nach (12)

§ 58. S . 174
l — 2 p + 3 = 1 Seitengleichung ,

l — y — jp + 1 = 2 Dreiecksgleichungen ,
W — 2 ^>+ 4 = 3 Gleichungen im Ganzen .

Als Grundlinie wählen wir nach S . 168 der „ Gradmessung in Ostpreussen “

die Seite :
Nidden —Lattenwalde = 14 047,7228 Toisen = 27 379,522 Meter

( log = 4 .147 6059 -3) (log = 4 .437 4258 '6

Als Krümmungshalbmesser zur Excessberechnung nimmt Bessel auf S . 253 der

Gradmessung in Ostpreussen den Aquatorhalbmesser der Erde , welcher dem metrischen
System zu Grunde liegt , nämlich r = 3 271 628,89 Toisen = 6 376 522 Meter .

(log — 6 .80458 für Meter ) und damit wird :
für Toisen : für Meter :

(5)

; = 1 .98387 — 10 (6), 0 _ log ~—= = 1 .40423 — 10 1
2 j-2 y 2 r2 )

Ohne diese Annahme des Krümmungshalbmessers hier weiter zu erörtern , be¬
halten wir die Konstante (6 ) bei , berechnen mit der Basis (5) und den bei ( 1 )—(4)
angegebenen Winkeln das Netz vorläufig durch und finden die sphärischen Excesse:

für das Dreieck L G K : e = 1,430"

„ „ „ LNK -. e = 1,835"

Nun stellen wir die Winkel nach den Angaben ( 1)—(4) in Dreiecken zusammen :

Lattenwalde Ai -
Gilge . .
Kalleninken

- + 3 = 27 ° 23 ' 34,659 "

Al = 89 37 54,583
Aö = 62 58 36,167

soll
180 ° 0 '
180 0

5,409"
1,430

w = + 3,979"

Nidden . .
Lattenwalde
Kalleninken

+ 2 =
A3 =

+ 6 — J5 =

soll

87 ° 4 ' 53,085"
i

45 25 23,827
47 29 47,500

180 °
180

4,412"
1,835

- 2,577"

(7)
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Indem wir die Winkelverbesserungen mit (1 ) , (2) , . . . (7) bezeichnen , haben
wir die (7) entsprechenden Bedingungsgleichungen:

(4) - (3) + (7 ) + (5) + 3,979" = 01
(2) + (3) + (6) - (5) + 2,577 = 0 ) w

Zur Bildung der Seitengleichung kann man für Q als Centralpunkt die Seite
GTL auf zweifache Art aus GL ableiten, dieses giebt :

_ „ . sin A4 sin A5 sin A 1
Es soll sein . A„- var—: . . . .- = r = 1

sm (A 2 — A' ) sm A° sm (A4 — A3)

was auf folgende logarithmische Rechnung führt :
Diff. für 10'

A* = 72 c 48 ' 58,486 " log sin Ai 9 .980 1680 -4 + 65
A5 = 62 58 36,167 " log sin A5 9 .949 7909 -0 + 107
Al = 26 14 52,205 " log sin Al 9 .645 6725 -3 + 427

Summe Z 9 .575 6314 -7

A3 — Al = 60 c 50' 0,880 " log sin (A3 — Al ) 9 .941 1176-2 + 117
A6 = 110 28 23,667 log sin A6 9 .971 6634 -1 — 78

Ai — A3 = 27 23 34,659 log sin (A4 — A3 ) 9 .662 8434 -6 + 406

Summe N 9 .575 6244 -9

Summe Z — Summe N — w = + 69 -8.

Damit wird die Seitengleichung für Einheiten der 6*™ Logarithmendecimale:
+ 0,65 (4) + 1,07 (5 ) + 4,27 ( 1) — 1,17 (2 — 1 ) + 0,78 (6) — 4,06 (4 — 3) + 6,98 = 0

Wenn man die Coefficienten mit den Cotangenten nach (26 ) § 57 . S . 168
genauer berechnet, und auch das Absolutglied nach dem Legendreschen Satz kontro-
liert (vgl . (10 ) § 59. S . 197) , so wird vorstehende Gleichung mit mehr Decimalen :

+ 0,6511 (4) + 1,0739 (5) + 4,2698 (1) — 1,1751 (2 — 1) + 0,7861 (7) 1
— 4,0630 (4 — 3) + 7,0100 = 0 (

Wenn man nach den Nummern ordnet, und dabei wieder eine Decimale fallen
lässt, bekommt man :
+ 5,445 ( 1) — 1,175 (2 ) + 4,063 (3) — 3,412 (4) + 1,074 (5) + 0,786 (6) + 7,010 = 0 ( 10)

Nun ist alles so weit vorbereitet , dass die Ausgleichung nach der Formelan¬
weisung von § 55 . S . 156 - 160 beginnen kann. Wir haben diese ganze Ausgleichung
in der Tabelle auf S . 244—245 vereinigt , wobei jedoch die klein gedruckten Teile ,
welche sich auf ein Funktions -Gewicht nach der Ausgleichung beziehen , vorerst
ausser Betracht bleiben. Folgendes ist der Gang der Rechnung:

I . Man setzt die Coefficienten der Bedingungsgleichungen (9) und (8) in die
Tabelle S . 244. Diese Coefficienten sind ebenso wie auf S . 157 mit ABO bezeichnet.

II . Man setzt die Gewichts -Coefficienten [« cT] und [a (f j u . s . w . von ( 1) (4)
S. 240 ebenfalls tabellarisch auf S . 244 ein (vgl . S . 158) .

•Jordan , Handb . d. Vermessungskunde . 4, Auü. I . Ed. 16
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III . Die Übertragungs -Coefficieuten I 33 n . s . w. werden nach den Formeln
von S . 158 berechnet , z . B . :

31] — Ax [ et er] 4- A %[n: ß] 4- Ag [u: / ] 4- ■. .
= 5,445 X 0,0611 — 1,175 X 0,0175
= 0,3327 — 0,0206 = 4 - 0,3121 .

IV . Ausrechnung der Normalgleichungs -Goefficienten [II ] u . s . w . nach S . 158,
z . B . :

[II ] = [A 51] = 4 - 5,445 x 0,3121
— 1,175 x 0,0053

zusammen = 4 - 3,3628 .
[III ] = [A SB] oder = ['31 .B] , mit Probe = — 0,0544 u . s . w.

So erhält man die Normalgleichungen in abgekürzter Schreibweise :

4- 3,3628 Ttx — 0,0544 /c2 4- 0,3084 fc3 4- 7,010 = 0
4- 0,5745 fc2 — 0,1519 Tcs + 3,979 = 0

+ 0,3861 Tcs + 2,577 = 0
(U )

Die Auflösung , welche bei IV . S . 245 in zwei Reduktionen angedeutet ist ,
giebt die Korrelaten :

(12 )V . fc, = — 1,384 *2 = — 9,520 k s = — 9,313

und nebenbei auch die Fehlerquadratsumme des Netzes :

( 13)[SBSB] = 71,5863V.

Die Korrelaten k setzt man auf S . 244 nacli III . hinauf und hat dann die Winkel¬
korrektionen nach S . 159 unmittelbar , z . B . :

( 1) — 3t | kx 4- S8j 1*
2 4 - .©i 1*3

( 1) = — 0,3121 x 1,384 . . . — 0,0175 X 9,313
( 1 ) = — 0,4319 — 0,1630 = — 0,5949"

VI.

(14)

Zur Probe kann man auch die Hilfsgrössen [ 1] [2 ] u . s . w . benützen , z . B . nach S . 159 :

VII . [ 1] = A x fc, 4- liy fj + . . . = 5,445 (— 1,384 ) = — 7,5358

Diese [ 1] [2] u . s . w. sind auf S . 244 als VII . oben unter I . beigesetzt .
Hat man sie alle berechnet , so hat man nach den Gewichtsgleichungen von S . 159 :

(! ) = [ ! ] [« «] + [2] +
= — 7,536 4- 0,0611 — 7,687 4 - 0,0175

(15)( 1 ) = — 0,4604 — 0,1345 = — 0,5949

übereinstimmend mit ( 14 ) . Alle diese Winkelverbesserungen sind unter der Bezeich¬
nung (a) in dem am Schluss S . 343 angegebenen Abrisse enthalten .

Wenn alle diese Winkelkorrektionen (1 ) (2) . . . (7) so kontrolliert sind, so fügt
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man sie zu den ursprünglich gegebenen Winkeln hinzu , und hat dann folgende aus¬
geglichene Winkel :

Nidden

Kalleninken

Lattenwalde

Gilge

A i -+- ( l ) = 26 ° 14 ' 51,610 "
A2 + ( 2) = 87 4 52,366
A3 + (3) = 45 ° 25' 22,694 "
Ai + (4) = 72 48 57,696
A ^ + (5) = 62 ° 58 ' 35,018"
AB + (6) = 110 28 ' 21,792
Ai + (7) = 89 ° 37 ' 51,410”

(16 )

Damit lässt sich das Netz ohne Widerspruch berechnen, und zwar giebt die sphärische
Dreiecksberechnung mit 7 stelligen Logarithmen unter Zugrundlegung der schon oben
bei (5) angegebenen Basisseite L N die Seitenlogarithmen, welche in dem nachfolgenden
Abriss enthalten sind. Dabei sind auch die in (16) bereits mitgeteilten ausgeglichenen
Winkel nochmals in Form von Richtungen vorgeführt .

Abriss der Netzausgleichung zu Fig . 1 . S. 239 nach Bessels Methode .

Zielpunkt Stations-
Ausgleichung A

Netzver¬
besserung

(a)

Netz -
Ausgleichung

A + (a)
log S

1 . Station Nidden
Kalleninken . 0 ° 0 ' 0 .000" öOo 0,000" 4 . 132 6080 -0
Gilge . . . . Ai 26 14 52,205 — 0,595" 26 14 51,610 4 .268 2865 -1
Lattenwalde . . A3 87 4 53,085 — 0,719 87 4 52,366 4 .147 6059 -3

2. Station Lattemoalde
Nidden . . . 0 ° 0' 0,000 " 0 ° 0 ’ 0,000" 4.147 6059 -3
Kalleninken . . A3 45 25 23,827 — 1,133" 45 25 22,694 4.279 4379 -2
Gilge . . . . Ai 72 48 58,486 — 0,790 72 48 57,696 4 .229 2360 -8

3 . Station Kalleninken
Gilge . . 0 ° 0 ' 0,000" 0 ° 0 ' 0,000" 3 .942 2898 -3
Lattenwalde . . A3 62 58 36,167 — 1,149" 62 58 35.018 4 .279 4379 -2
Nidden . . . AB 110 28 23,667 — 1,875 110 28 21,792 4 .132 6080 -0

4 . Station Gilge
Lattenwalde . 0 ° 0 ' 0,000" 0 ° 0 ' 0,000" 4.229 2360 -8
Kalleninken . . A 7 89 37 54,583 — 3,173" 89 37 51,410 3.942 2898 -3

!
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§ 78. Geuauigkeitsbestinnnung - für die Besselsche Dreiecksnetz-
Ausgleichung .

Das im vorhergehenden § 72 . behandelte Vierecksbeispiel zeigt unmittelbar die
Besselsche Methode , welche zuerst bei der Gradmessung in Ostpreussen 1834 zur
Anwendung kam , und auch bei den darauf folgenden Preussischen Triangulierungen
beibehalten wurde . Bessel hat seine Methode ohne Genauigkeitsuntersuchungen ab¬
geschlossen ; und erst in den Arbeiten der Landesaufnahme seit 1870 haben wir die
naturgemässe Weiterentwicklung der Bessel sehen Methode auch in Hinsicht auf die
Genauigkeitsuntersuchungen, welche wir nun an unserem Vierecksbeispiel behandeln:

Der mittlere Gewichtseinheitsfehler wird für jede Station durch die Stations¬
ausgleichung geliefert, wie für Nidden in (21 ) § 71 . S . 239 angegeben wurde .

Für alle 4 Stationen wurde so erhalten :

Nidden

Latten walde

Kalleninken

Gilge

m =

m =

m =

m =

V 53
7/ 6p "

_
r 48
7 / ii | _v 22 _
Z ' ~

12,6
T

~

±1,15

±1,20

±2,89

+ 1,59

(1)

Diese Bestimmungen entsprechen der ersten Formel ml oder /Zj S . 157. Alle
4 Stationen zusammen geben nach der zweiten Formel toj oder ^ S . 157 :

mi = V70,2 + 68,6 + 183,3 + 12,6
53 + 48 + 22 + 5 Y334,7

128
“ = + 1,62" (2)

Übergehend zu der Fehlerquadratsumme , welche in der Netzausgleichung zu
Tage tritt (bei der Landesaufnahme mit [S5 Sß] bezeichnet) , haben wir nach S . 159,
unten , 3 Formeln , welche wir mit dem Material der Tabelle S . 244—245 alle aus¬
rechnen :

1) [v" v" ] = [58 58] = ( 1 ) [1] + (2) [2] + (3 ) [3] + .
( • ) [ • ] ( • ) [ • ]

l . — 0,595 — 7,536 + 4,484
2 . — 0,719 — 7,687 + 5,527
3. — 1,133 — 5,416 + 6,136
4. — 0,790 — 4,798 + 3,790
5 . — 1,149 — 1,693 + 1,945
6 . — 1,875 — 10,401 + 19,502
7 . — 3,173 — 9,520 + 30,207

71,591 = [58 58]
>" d" ] = [58 58] = — [w K\

w1 = + 7,010 h = -- 1,384 — Wi hi = + 9,702
no2 = 4- 3,979 — - 9,520 — zp2 1c2 = ■+■37,880
ws = + 2,577 Ä:3 = -- 9,313 — w8 ks = + 24,000

— O fc] = 71,582 = [SS58] (4)
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3) [«" v"
] = [33 SS] = h-,2 [Wo . 1] - [Wo, . 2]2“

[TTJ
+

[IIII . 1]
+

[IIIIII . 2]

_ 7,01002 4,09242 2,98222~
3^ 628 +

0,5736
+ '

p202
= 14,613 + 29,198 + 27,775 = 71,586 = [SBÜJ] (5)

Dasselbe Resultat (5) steht übrigens auch schon unten auf S . 245 , wo es
schematisch gelegentlich mitberechnet worden ist .

Wir haben also nun in hinreichender Übereinstimmung aus (3) (4) und (5) :

[iß SB] = 71,58 .
Da die Anzahl der Netzbedingungsgleichungen r = 3 ist , so erhält man den

mittleren Richtungsfehler aus der Netzausgleichung nach der Formel m 2 unten auf
S. 159 :

Obgleich unser Beispiel in Bezug auf die Gewichtsbestimmung auf Kalleninken
ein fingiertes ist (wie schon zu Anfang von § 72 . S . 239 bemerkt wurde ) , so wird
doch die allgemeine Erfahrung auch hier bestätigt , dass die Netzausgleichung einen

grösseren mittleren Fehler m 2 ergiebt , als die Stationsausgleichungen m 1 = + 1,62"

nach (2) .
Aus den Stationen und aus dem Netz zusammen hat man nun nach der Formel

für m oben auf S . 160 :

Da in dieser allgemeinen Formel (7) die Stationsausgleichungen, wie immer ,
bedeutend überwiegen, so ist (7) nicht erheblich verschieden von (2) .

Um auch eine Anwendung der Theorie der Funktionsgewichte zu haben , be¬
stimmen wir noch das Gewicht der Seite G K als Funktion der als fehlerfrei ange¬
nommenen Basis LN und der ausgeglichenen Viereckswinkel , d . h . es handelt sich
um die Funktion :

A sin A2 sin (A4 — A 3)
(r JX — Jj iV —: 7~Ta- 7T7 : fF,sm (A6 — AL5) sin a ‘

oder für die Rechnung bequemer, um die logarithmische Funktion :

F = log sin A2 + log sin (A4 — A3) — log sin (A5 — A5) — log sin A 7 (8)

GK = LN

wobei unter A4 A 2 . . . die ausgeglichenen Winkel verstanden sind . Die partiellen
Differentialquotienten dieser Funktion werden in gleicher Weise berechnet, wie die
Coefficienten Ax A 2 . . . der Seitenbedingungsgleichung (9) oder (10 ) § 72 . S . 241 .
Die Resultate sind für Einheiten der 6ten Logarithmendecimale:

ft = 0 , f2 = + 0,107 , fs = — 4,063 = + 4,063 , /’
5 = + 1,929

fe = - 1,929 , ft == — 0,013
Diese f fügt man der Tabelle S . 244 in der Abteilung I . bei (kleingedruckt) .

Dann folgt die Berechnung der q nach den Formeln von S . 160. Diese q
schliessen sich auf S . 244 unmittelbar den 31 SB® an . Man hat :



248 Genauigkeitsbestimmung für die Bessel sehe Dreiecksnetz-Ausgleichung. § 73.

2 f f 2
2i = 0,107 X 0,0175 == + 0,0019
22 = 0,107 X 0,0764 == + 0,0082 + 0,107 + 0,0009
2s = -- 4,063X 0,1431 + 4,063 X 0,0745 == — 0,2787 - 4,063 + 1,1324
24 = -- 4,063X 0,0745 + 4,063 X 0,0805 == + 0,0244 + 4,063 + 0,0991
25 = 1,929X 0,1667— 1,929X 0,0833 == + 0,1609 + 1,929 + 0,3104
26 = 1,929X 0,0833— 1,929X 0,1667 == —0,1609 — 1,929 + 0,3104
27 = - 0,013X 0,3333 = — 0,0043 — 0,013 + 0,0000

1,8532
= [f 2]

Hier haben wir die Berechnung der Produkt -Summe [f g] sogleich an die Be¬
rechnung der q angeschlossen.

Es folgt die Berechnung der Ersatzglieder nach den Doppelformeln von S . 160 :
A 2 Aq % f

1 . + 5,445 + 0,0019 + 0,0103 + 0,3121 0,0000
2 . — 1,175 + 0,0082 — 0,0096 + 0,0053 + 0,107 + 0,0006
3 . + 4,063 — 0,2787 - 1,1324 + 0,3270 — 4,063 — 1,3286
4 . — 3,412 + 0,0244 — 0,0833 -1- 0,0282 + 4,063 + 0,1146
5 . + 1,074 + 0 .1609 + 0,1720 + 0,2445 + 1,929 + 0,4716
6. + 0,786 - 0,1609 — 0,1260 + 0,2205 - 1,929 — 0,4253
7 — 0,0043 0,0000 — 0,013 0,0000

— 1,1690 — 1,1671
= [ -12 ] = [« fl

Die übrigen Ersatzglieder werden ebenso berechnet ; alle 3 Ersatzglieder sind
— 1,168 + 0,459 — 0,592 . Diese werden nebst dem schon bei (10 ) angegebenen
Ifq ] = 1,853 in der Tabelle S . 245 rechts (im Kleingedruckten) beigesetzt, worauf
die Elimination ganz von selbst auf den Wert führt :

y = 0,677

Dieses entspricht der Formel für unten auf S . 160, es kann auch ausführ¬
licher so geschrieben werden:

1 _ 1,1682 0,4402 0,3722
P " ’ 8,363 0,573 0,320

= 1,853 — 0,400 — 0,338 — 0,432 = 0,677
Der mittlere Gewichtseinheitsfehler ist bereits in (7) berechnet, in = 1,76' ' ,

also nun nach der Schlussformel von S . 130 :

M = m ]/ -̂ = 1,76 1/07677 = 1.448

Dieses ist ein mittlerer Fehler in Einheiten der 6ten Logarithmendecimale, es
ist also nach der Ausgleichung:

log GK = 3 .942 2898 -4 + 14-5 .
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§ 74 . Die Besselsche Nullpunkts -Korrektion * .
Die Besselsche Methode rechnet durchaus mit Winkeln, und nicht mit Rich¬

tungen ; auf jeder Station mit s Strahlen werden s — 1 Winkel als unabhängige Un¬
bekannte eingeführt (während die Zahl der Richtungen = s wäre) . Es sind daher
die Grössen x ' x" x '" auf den Stationen Winkelkorrektionen, und ebenso sind auch
die (1 ) (2) (3 ) . . . Winkelkorrektionen im Netz .

Wir wollen für die Station Nidden unseres Vierecks von § 72 . die allmähliche
Verbesserung nach § 71 . und § 72 . zusammenstellen:

Station Nidden :
erste Annahme

S . 238 :
Stations-AusgleichungZielpunkt : 1ö“XXLlô XOXL.l.lLlLi£̂

S . 237 :
0 ° 0 ' 0 ,000”Kalleninken 0 ° 0 ' 0”

Gilge 26 14 50
Lattenwalde 87 4 50

x ’ = -h 2,205 ” 26 14 52,205
x" = + 3,085 87 4 53,085

Zielpunkt:
Stations-Ausgleichung Netz-Ausgleichung |Anschnitts-

S . 243 und S . 243 : | zahlen :
Kalleninken 0 ° 0’ 0,000”
Gilge 26 14 52,205
Lattenwalde 87 4 53,085

0 ° 0 ’ 0,000"
; b °] = 43

( 1 ) = — 0,595 26 14 51,610 [p '
] = 31

(2 ) = — 0,719 87 4 52,366 | [ p"
_]_

=
_
24

Wir haben hier sogleich die Anschnittszahlen nach der Stations-Tabelle § 71 .
S . 238 hinzugesetzt, weil hierauf sich eine passende Verteilung der Netzverbesserungen
(1) und (2) auf alle drei Strahlen gründen lässt , man rechnet nämlich nach Bessel :

[p °] 0 + [p ] ( 1 ) + [p"
1 (2) __ [ jf ] ( l ) + [p ”

] (2 ) + . . .
( 1)z =

[ .p
°] + 1y ] -+- w ]

31 (— 0,595 ) + 24 (— 0,719)
98

35,701

Diese Änderung bringt man an allen Winkeln und an dem Nullwert des An¬
fangsstrahls an , und reduziert damit die Winkel auf Richtungen :

Zielpunkt : Stations-Ausgleichung : Netz-Ausgleichung:
— 0,364 359 ° 59 ' 59,636 ”Kalleninken 0 ° 0 ' 0,000 ”

Gilge 26 14 52,205
Lattenwalde 87 4 53,085

— 0,595 — 0,364 = - 0,959 26 14 51,246
__ 0,719 - 0,364 — 1,083 87 4 52,002

Sachlich hat man offenbar gar nichts geändert , denn die Differenzen der
Richtungen , auf welche es allein ankommt , sind dieselben geblieben . Deswegen ist
auch diese von Bessel bei der Gradmessung in Ostpreussen eingeführte Richtungs-
Reduktion später (z . B . bei der Landesaufnahme) als überflüssig wieder fallen gelassen
worden , zumal die Formel ( 1 ) für z , im allgemeinen gar nicht streng begründet
werden , sondern nur als Hilfsmittel zu einer passenden Verteilung der ( 1 ) (2) (3) . . .
auf alle Strahlen, empfohlen werden kann.

Um dieses näher zu untersuchen , betrachten wir die Nullpunktsverbesserungen
in den einzelnen Sätzen , nämlich nach (9 ) § 71 . S . 235 :
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— U =

- «2 :

Pl x ' + ft " — ft " ' a:" ' — ftl ]
[ft ]

. ft ' « ' + ft " «" + ft ' " «=' " — [ J2]

• H —Pz & + Ps
[ft ]

1*" + ft ' '
(2)

M
[ft ]

Wenn man den gj z2 zs bzw . die Gewichte [jq ] [p 2] [po] zuteilt , und dem
entsprechend den Mittelwert (z) bildet , so erhält man :

Mittelwert - (« ) = ^
+ [ ft ]I *2 + 1[ft ] .̂ 3

(3)
[ ft ] + M + [ft ]

und mit Einsetzung der Werte g1 z2 «3 aus der Gleichungsgruppe [2 ) -.

_ . , _ [p ' ] + w ’
} + [ p" '

] — raw "
Lp]

Wir haben früher in § 71 . diesen Mittelwert (z ) nicht bestimmt , weil weder
dieser , noch auch die Einzelwerte Zj z2 zs . . . für die Netzausgleichung gebraucht
wurden , jedoch kann man nun Zusehen , was aus (z ) wird, wenn man in (4), statt
der Werte x' x" x’"

, welche die Stationsausgleichungen geliefert haben, die ent¬
sprechenden Werte der Netzausgleichung einsetzt. Infolge der Netzausgleichung gehen
die x ' x” x" ' über in x ' + (1 ) , x" -t- (2 ) , x '" + (S) , und (z) soll übergehen in
(2) -t- z , d . h . man erhält aus (4 ) folgendes :

[ p ' j {x ' + (1 )) + [p"
] (x" + (2 )) + [ / "

] (X' " + (3 )) - [l]— ( 0 ) + «0 =
[i >]

(5)

IP "
] (3)

(6)

Vergleicht man dieses wieder mit (4) , so folgt :

_ , _ [? '
] q ) + [P" ] (2 ) -

M
Dieses ist die zu Anfang angegebene Besselsche Formel ( 1 ).
Das Besselsche z ist also die Änderung , welche das arithmetische Mittel («)

der einzelnen Satz -Nullpunkts-Verbesserungen z± z2 zs , oder das Mittel der Stations¬
winkel-Verbesserungen x ' x" x ' "

, durch Zuziehung der Netz-Verbesserungen ( 1) (2)
(3 ) . . . erfährt.

Eine bestimmte in der Gesamtausgleichung liegende Veranlassung, diese Mittel
zu bilden , liegt aber nicht vor , die Besselsche Ausgleichung verzichtet von vorn¬
herein auf symmetrische Fehlerverteilung , weil auf jeder Station ein Strahl als An¬
fangsstrahl bevorzugt wird , und diesem Umstand kann nachträglich durch Berechnung
des willkürlichen z nicht mehr abgeholfen werden .

Es giebt nur wenige Fälle, in welchen die Berechnung des Bessel sehen z als
passende Näherung einem Bedürfnis entspricht , wenn es nämlich sich darum handelt,
die Fehlerverteilung in Hinsicht auf etwaige unbekannte Fehlerquellen zu unter¬
suchen ; in diesem Falle muss man jedem Strahl einen Fehler zuteilen, und kann
nicht auf jeder Station einen Strahl als Anfangsstrahl korrektionslos lassen.

Mau vergleiche hiezu eine Erörterung von Helmert in der Yierteljahrsschrift der astron
Gesellschaft 1877, S. 206 —208, und von Schreiber in der Zeitschr . f. Verm . 1879 , S. 103.
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§ 75 . Theorie der vollen Richtungssätze .

Die Berechnung voller Richtungssätze haben wir bereits in § 68. behandelt ;
es zeigte sich , dass diese Berechnung an sich lediglich in der Mittelbildung aus den
einzelnen Ablesungen besteht , und es hat sich auch daran die Berechnung eines
mittleren Richtungsfehlers leicht angeschlossen. Indessen konnten wir die Begrün¬
dung für jene Fehlerberechnung in § 68 . noch nicht streng geben , und da auch
sonst noch manches hiezu zu sagen ist , behandeln wir die vollen Richtungssätze hier
nochmals, indem wir dieselben als besonderen Fall der allgemeinen Richtungsaus¬
gleichung von § 70 . auffassen.

Wenn wir bei $ Sichten oder Zielpunkten in jedem Satze eine Anzahl von n
vollen Sätzen haben, so geben die Formeln (7 ) § 71 . S . 234 ;
die Satzgewichte [p °] = [ p’j = [p"

J = [p" '
] . . . = n ( 1)

und bei s Zielpunkten [ pj ] = [p 2] = [ ^3] . . . = s (2)
Damit werden die Normalgleichungs-Coefficienten nach ( 11) und (12 ) § 71 . S . 236 :

(a o ) = , , , n— (ab ) = ~

(b b) = n — ~

— (« «) = —

, . n
(c c) = n - —

m
s
m
s
ui

~ (al ) = [l '
] —

- (b l) = [ l" ) ~

- (c *) = [*" ' ] —
(3)

Die voll geschriebenen Normalgleichungen sind daher :

Anzahl 0 > (4)x ' -+- ln

x" + n

Zum Zweck der Auflösung nach x ' x" x" 1 werden alle diese Gleichungen
addiert und geben :

- E = 0
8

(5 )

Vergleicht man diese Summengleichung (5) mit den einzelnen Gleichungen (4)
so erhält man die Auflösungen:

m in in
(6 )

n n n
d . h . ein einfaches Resultat , welches mit der Mittelbildung in § 68 . übereinstimmt.

Das mittlere Fehlerquadrat einer Richtung wird nach (15) § 71 . S . 236, weil
die Anzahl aller gemessenen Richtungen R = ns ist :

[n ] __ [* «]_ _
R - ■(s — 1) ns — n — (s — 1) (n — 1) (s — 1)

(7)

Um die Summe [r u] zu bestimmen, muss man die einzelnen v ausrechnen und
quadrieren, was hier wohl der einzige zweckmässige Weg ist , (vgl . die klein gedruckte
Anmerkung am Schlüsse von § 71 . S . 239) und zwar wollen wir nun zeigen , dass
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das schon in § 68. fast ohne Theorie gefundene Verfahren den Formeln von § 71 .
entspricht .

Wir wollen dazu der Zahlenrechnung von § 68. mit unseren Formeln folgen,
jedoch zuvor bemerken , dass in § 68. und § 71 . die Zahlentabellen in Bezug auf
Spalten und Linien verschieden angeordnet sind , indem in § 68 . die Sätze in Ver¬
tikalspalten und in § 71 . die Sätze in Horizontallinien stehen . Nachfolgendes ent-
spricht § 68 . S . 225 :

Zielpunkt Satzj Satz2 Satz 3 Richtungsmittel

po

P '

P "

h °

h '

h"

h °

7a
"

h °

h f

h ' r

B = o
1

n
m = , '
n

n

Satzmittel

Satzverschiebung

Verschobene
Sätze

lh ]
[ Px ]

[lj ] x ' -4- x"

Pal
Oa ]

[Ir,] X' + X"

M
[ Ps\

[2s] x’ -x- x"
Ol ]

~
fei

= zi
h ° — «i
h ' ~ zi
h" - z1

[ Pil [ Pi]
= «2

h ° — H
1% — z%
1% —

Os ] O3]
= «3

23° — z3
h ' — zz
lo ' ' — Z%

Z\ + H + 03 +
0
x'
x"

Satzmittel

Übrig bleibende

Pj ] „
«i ° = 0 — (2i ° — *i )

m „

r2
° = 0 — (h ° ~~ z2)

[23] ,
Ob ]

- *3
vs ° = 0 — ( ls

° — zs)
Fehler v = x ' — gl) v{ = x ' — (2a

' — zz) V3
' = x’ — (2g

' — zs)
«a

" = x" ~ ih " ~ va
" = x" — ( ls

” — ea)

Diese v sind übereinstimmend mit den v in (4) § 71 . S . 284 (nur sind jene
in § 71 . nach Spalten und Linien umgekehrt geordnet im Vergleich mit diesen) ;
damit ist die in § 68 . gelehrte Berechnung der v und der \v v\ und dann die Be¬
rechnung des mittleren Fehlers theoretisch begründet.

Gewichtsberechnung für volle Sätze.

Die Gewichts-Coefflcienten [« a ] , [« $] . . . zu den Normalgleichungen (4) be¬
kommt man nach (20) § 28 . S . 90 dadurch, dass man die Absolutglieder der Normal¬
gleichungen durch — 1 , 0 , 0 . . . ersetzt , d . h . man bekommt aus (4) folgende Ge¬
wichtsgleichungen:
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(y ) [M

— y [« «] + (« — y ) [« £] - y [« y]

— -7 t« «] — y [« ßl -h (« - y ) [« l]

Um diese Gleichungen aufzulösen, bildet man zuerst ihre Summe :

y [« «] + y [« 0] + y [a ?] + • • • = 1

Diese Summengleichung zu jeder einzelnen Gleichung der Gruppe (8) hinzugefügt giebt :
w [a « ] . . . . = 2

» [a ß] . . . . = 1
m [re /] = 1

und da ähnliche Beziehungen auch für j$ ß] u . s . w . gelten , haben wir nun :

[« «] = [00 ] = [// ] = • • • = y (9)

[aß ) = [K y] = . . . [ßy] = . . . = 1 (10)

Die [a «] , [(3 j£f] , [y y] . . . sind die Gewichtsreciproken der Winkel x '
, x"

, x '" . . .
welche der zweite , dritte . . . Strahl , P '

, P "
, P '" . . . mit dem ersten Strahl P °

bilden (vgl . Fig . 1 . S . 232) und für den Winkel P ' P "
, welcher = x " — x ist ,

erhält man die Gewichts -Reciproke nach der Theorie von § 29.

(mit fi — — 1 , f%— -+- 1 , /*
3 — 0 in (3) S . 92) :

p-jh ?j
= [“ “] - 2 [« « + ^ p'

] = | — ¥ + 4 = ¥ (11)
Dasselbe gilt für jeden Winkel zwischen je zwei Strahlen eines vollen Richtungs¬
satzes , und deswegen können wir nun allgemein aussprechen :

Wenn eine Gruppe von n gleichartigen Richtungssätzen mit beliebig vielen

Strahlen durch Mittelbildung in einen Satz zusammengezogen wird , so hat jedes aus¬

geglichene Richtungs -Mittel das Gewicht = n, und jeder Winkel zwischen zwei solchen

Richtungen das Gewicht = wobei das Gewicht = 1 zu einer ursprünglichen Rieh-
a

tung gehört , oder in Zusammenstellung :
Gewicht einer beobachteten Richtung = 1 1

„ „ ausgeglichenen Richtung = n |

„ eines ausgeglichenen Winkels = -
g
- j

"

Eine Nebenbemerkung wollen wir noch anstellen in Bezug auf die Fehler¬

berechnung in einem so zusammengefassten Richtungssatze . Wie die soeben ange-

stellte Gewichtsbestimmung (12) zeigt , kann man statt n beobachteter einzelner

Richtungen, deren Mittelwert als eine Richtung mit dem Gewichte = n in weitere

Rechnungen, z . B . in eine Netzausgleichung , einführen , gerade wie bei dem arith¬

metischen Mittel in § 7 . ; und wenn mehrere ungleichartige Sätze je in sich wieder¬

holt , zusammen ausgeglichen werden sollen , so kann man auch statt aller gleich -

gewichtigen ursprünglichen Einzelsätze die Mittel aus den gleichartigen Sätzen als

Anzahl
= s — 1

i
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ungleichgewichtige Elemente in die Ausgleichung einführen , so lange es sich nur
um die Ausgleichung seihst und um Gewichte handelt , z . B . die ganze Tabelle für
die Station Nidden in § 71 . auf S . 238 könnte vor der Ausgleichung in 3 Sätzen
dargestellt werden , von denen der erste nur 1° und l" mit p x = 12 , der zweite 1° und
l ' mit p %= 19 und der dritte 1° , V , l" mit p s = 12 enthielte . Damit würde man
genau dieselben x’

, ai ' auch [a a] , [a/3] , [ß ß] erhalten , wie bei der ausführlichen
Rechnung in § 71 . , aber die Summe [® o] und der mittlere Fehler würden anders
und viel weniger zuverlässig.

Wollte man das Mittel aus n Sätzen als einen Satz mit dem Gewicht = n
(ohne andere Sätze oder Satzmittel ) in sich selbst ausgleichen, und die Formeln des
§ 71 . auf diesen Fall anwenden , so wurde man natürlich zunächst den Satz selbst
mit dem Gewicht = n wiederfinden , wollte man aber auch die Fehlerberechnung mit
[ r d] darauf anwenden , so würde man finden :

to2 = (13)[» v] _ 0
(w — 1 ) (s — 1 ) 0

oder in Worten : Wenn lauter volle Sätze in der Anzahl n vorliegen , so besteht die
Stationsausgleichung lediglich in einer Mittelbildung, wodurch ein Satz vom Gewichte
= n erhalten wird, der aber an sich keinen Aufschluss über die Genauigkeit giebt.
Zur Genauigkeitsuntersuchung muss man vielmehr auf die einzelnen Sätze zurückgehen .

§ 76. Besonderer Fall dreier Sichtstrahlen .
Der Fall dreier Sichten, welche in verschiedenen Kombinationen zusammen

gemessen sind, bietet besonderes Interesse, weil in diesem Falle, ebenso wie bei der
Mittelbildung aus gleichartigen Sätzen , es möglich sein wird, das ganze Ergebnis der
Ausgleichung in Form von 3 einzelnen Richtungen mit gewissen Gewichten darzu¬
stellen . Bei mehr als drei Sichten ist das im Allgemeinen nicht mehr der Fall.

Wir wollen den Fall dreier Sichtstrahlen zuerst in ( 1 ) — ( 10 ) noch nicht erschöpfend
behandeln, sondern zunächst nur annehmen, dass die 3 Winkel gemessen sind , welche
zwischen den 3 Strahlen möglich sind.

Wir haben hiezu zwei Figuren gezeichnet, Fig . 1 . und Fig . 2 . , von denen die

Fig . 1.
3 Richtungen und 3 Winkel .

p °

Fig . 2.
3 Richtungen und 3 Winkel .

erste Fig . 1 . sich mehr den früheren Bezeichnungen von § 71 . anschliesst , während
Fig . 2 . mehr der Symmetrie Rechnung trägt .
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Nach Pig . 2. nehmen wir folgendes an :
Strahlen ABC

Gemessene Winkel 0 B = « mit dem Gewicht p x \
w n A C — ß n * * P% 1
„ „ B A = 7 „ „

'

Die drei Winkel « , ß , y in Pig . 2 . müssen der Bedingung genügen :
Es soll sein a + ß p y — 360 ° = 0

Wegen der Beobachtungsfehler wird werden :

( 1)

« + ß + y — 360 ° = w (2)

Zur Tilgung des Widerspruches w werden die Verbesserungen « j , v2 , v3 angebracht,
so dass wird :

(a + »j ) + (ß + v2) {y + v3) = 0

Dieses mit dem vorhergehenden zusammengenommengiebt :
+ U2 -h «3 + = 0 (3)

Dieses ist eine Bedingungsgleichung von der Form (4) § 43 . S . 126 , d . h . es ist :

% = 1 <z3 = 1 o3 = 1 (4)
Die Ausgleichungselbst, die uns hier weniger interessiert , wird lediglich darauf führen,
den Widerspruch io in (2 ) umgekehrt proportional den Gewichten , p2 , Ps auf
die drei Winkel « , ß , y zu verteilen (ähnlich wie in dem Dreiecksbeispiel S . 34 ) .

Wir wollen aber dann das Gewicht P a des ausgeglichenen Winkels a bestimmen
nach der Anleitung von (13) S . 125, welche in unserem Palle giebt :

FH - r/i
Da die Ausgleichungsfunktion F — a ist , also / ) = 1 und f2 = 0 , /r — 0 , so wird
mit den Coefficienten a in (4) und mit den Gewichten p in ( 1 ) sehr einfach :

rn i pn = L r® -l = - + — + — =
pJ -

Pi ’ LpJ 2>1
’

L 2> J Pi j>2 P»
Aus diesen Vorbereitungen setzt sich (5) so zusammen :

1 / 1 . 1

J _ _ 1
Pa

~
Pi

; i
oder

Pa
. Pl \ P2

KJ
(6 )

Dieses stimmt überein mit der Bedeutung von (17 ) und (21 ) S . 34 (mit geän¬
dertem Zeichen pa statt Pi u . s . w.) und man kann auch unsere Formel (6) wieder
ebenso wie früher die Formeln von S . 34 kurz so begründen, dass man das Gewicht
des ausgeglichenen Winkels a zusammensetzt aus dem Gewichte pi des gemessenen

Winkels a selbst und dem Gewichte der Bestimmung von a auf dem Umweg
Pi + Ps

über 360° - (ß + y) .
Indessen , solche Nebenentwicklungen nicht weiter verfolgend , betrachten wir
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die zweite Form in (6 ) , welcher man noch eine andere sehr wichtige Bedeutung
unterlegen kann , indem man schreibt :

1 1
äs 22

wobei 1
äs

1_
Pa

l 1
Pl Pi

[yJ
(7)

22

1 1
P \ Pzm (8)

Hier haben qs und q% die Bedeutung unabhängiger Richtungs -Gewichte .
Wenn man die Formeln (8) auf alle Kombinationen 1 . 2 , 2 . 3 , 2 . 3 anwendet

und auch noch etwas umformt, so hat man folgendes :
1 J .

Pl1
21

1
22

1
2s

Pa_ Psm
1

Pl P3 _ _ Pi _
P1P2 + P1P3PP2P3

pi P2 + P1 P3 + P2 P3
oder 2l = (ihä + l ’s) -

22 = {Pz + P \ ) -+

- P
1 1

Pl P2M P3
PlPi -+ PlP3 + P2P3 23 = Ol G- Pz ) ■

PiP3
Pl

PS Pl
Pi

Pl Pi
P3

(9 a)

(9b)

(9 c)

„ _ Pi + P3
« 1 — —

2
-

Hiezu gilt auch (7) in allen Kombinationen; und wir können nun den Satz
aussprechen, dass , in Hinsicht auf die ausgeglichenen Winkel a ß y , man die durch
Ausgleichung erlangte Genauigkeit darstellen kann durch Bichtungsgewichte 2i i 22 1 23>
aus welchen sich die Winkelgewichte P a , Pß , Py nach der Ausgleichung ebenso
zusammensetzen, wie wenn die q zu unabhängigen Richtungsmessungen gehörten.
(Vgl . hiezu Fig . 2 .)

Als Gewichts -Einheit , p = 1 , dient hiebei eine Winkelmessung (a , ß oder /)
vom Gewichte 1 , und wenn wir nun die Änderung machen wollen , dass ein Rich-
tungsgewicht zur Einheit wird , so müssen wir nach (3) § 70 . S . 231 statt (9 a) schreiben:

(10)
2 Pi

wobei nun z. B . das Gewicht der gemessenen Richtung B und das Gewicht der
gemessenen Richtung C ist , welche nach Fig . 2 . den Winkel a zusammensetzen,
wobei ausserdem angenommen ist , dass auch ein Satz A G mit 2 Richtungsgewichten
P2 und ein Satz B A mit 2 Richtungsgewichten p s gemessen ist .

Die Formel (9a) oder ( 10) hat das eigenthümliche , dass sie = 00 giebt,
wenn Pi = 0 wird ; wenn also der Winkel a gar nicht gemessen ist , aber der Winkel ß
mit dem Gewicht p 2 und der Winkel / mit dem Gewicht p 3, so bekommt die Rich¬
tung A das Gewicht q1 = 00 , die Richtung B das Gewicht q2 = p3 und die Rich¬
tung G das Gewicht qs = p 2 -, oder man kann sagen , wenn nur 2 Winkel zwischen
3 Sichten gemessen sind , so werden die Richtungsgewichte nur eine erzwungene
Form , welche die ursprünglichen Winkelgewichte wieder in sich schliesst. Der Um¬
stand, dass einzelne Gewichte unendlich werden , schadet übrigens nichts , wenn man
solche Messungenin Richtungsform in eine Triangulierungsausgleichung nach bedingten
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Fig . 3.

Beobachtungen einführen will , weil hiebei (nach § 40 .) stets die Gewichts reciproken
gebraucht werden , z . B . [ y ] ■ Kr ] u . s . w . auszurechnen ist , was mit einzelnen

p = oo entsprechende Glieder-Null giebt , ohne die Rechnung formell zu beeinträchtigen.

Allgemeinster Fall für 3 Sichten .
Ausser den drei möglichen Winkeln zwi¬

schen drei Sichten kann auch noch ein Richtungs¬
satz gemessen sein , welcher alle 3 Sichten zusam¬
men trifft, und dann haben wir den allgemeinsten
Fall der Messungs - Combinationen zwischen 3
Sichten , wie in Pig . 3 . gezeigt und in nach¬
folgendem Schema dargestellt ist , im Anschluss
an die Bezeichnungen von § 71 .
Satz i
Satz g
Satz o

Pl Pi ■ ■
Pi ■ • Pi
■ ■ Ps Ps”

dabei ist [^>x] = 2 p 1
M = 2 jJ 2
l> 3] = 2 ps
[ Pi \ = 3 Pi

( 11 )

Satz 4 pf
Wenn man hierauf die allgemeinen Formeln (11 ) § 71 . S . 236 anwendet, so

bekommt man :

(a a ) = p 1 + P3 + P4 -

- (ab )

(bb ) = Pi -f- * 3 + * 4 -

Pl 2 Ps2 Pt 2 3 fi + Sp 3+ 4 *4
2 Pi 2 *3 % Pi 6

* 32
2 Pi

+
ü?
!
»

ü 3 *3 +
6

2 *4

Pi 2 * 32 * 42
. . 3 *2 + 3 ps + 4 *4

2 Pi 2 Ps 3 Pi 6
rauchen wir hieraus nach § 17 . S. 58—59

( 12 )

[ßß ] = [aa \~
D

D = [a a] [b b] — [a b] [a b]
r , [b b] — [a b]
[« «] = . [« ß] = — g —J

Die Ausführung mit (12 ) giebt :
T) = 3 (* 1 pj + Pl * 3 + * 2 Ps) + 4 Pi (P ! + * 2 + * 3 + Pi)

12 ( 15)
Daraus kann man zunächst die TFi«fceZgewichte bilden ; nämlich das Gewicht P (A B)
des Winkels AB und das Gewicht P ( 4C ) des Winkels 4C sind so bestimmt:

p \ ab )
= ^ und

PjAC )
= ^ ^ (16)

der Winkel B G setzt sich zusammen aus 40 — AB und deswegen wird das Ge¬
wicht des Winkels B C nach (11 ) und (12) S . 78 (mit ft = — 1 , f2 = + 1) be¬
stimmt durch :

^ = [M ] + W ] - 2M ] (17)

All dieses kann man auf die Form von Richtungsgewichten q bringen, indem
man bestimmt , dass sein soll :

JL - . 1 1 1 _ 1 , i 1 _ _1 , JL
P (A B)

~
qa

+
qb

’ P (AC )
~

q*
"

q,■
’ P ( B G) q> qc

Jordan , Handb . d . Vermessungskunde . 4. Aufi . I . Bd . 17

(18)
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Dieses sind 3 Gleichungen zur Bestimmung von q a , qb , qc, wozu die 3 Gleich¬

ungen ( 16 ) und ( 17 ) gerade hinreichen ; man findet aus ( 16) , (17 ) , (18) die Auflösungen:
1 1

■[ « ffl■= [« ß] , — = [« «] — [<* ß] , ~ = lßß ] -
<la %b qc

Vor der Einsetzung wollen wir noch zur Abkürzung schreiben :

El + E2 + E3 + E4 = [> ]
und damit gieht die Ausführung von ( 19 ) mit (13) —(15) :

1 3 (j^ p 2 + pi p 3 + jP2 Ps ) + 4 p4 [ p]
Eichtungsgewicht qa =

q„ =

qc -

2 3p 3 + 2p 4
1 3 (j )1 ff 2 + i >i ^ 3 + j >2E3 ) + 4 E4 [ p ]
2 3 P2 + 2 p>4

— 1 3 (ff ; y>2 + Pi P3 + Pi Pz ) + 4 Pi [ P ]
3 El + 2 E4

(19)

(20 )

(21)

Die Bedeutung der einzelnen p und q liegt in Big . 3 . S . 257 .
Zuerst überzeugen wir uns , dass qc nach (21 ) mit dem früheren q\ in (10)

identisch wird , wenn p4 = Null gesetzt wird , wie es sein muss , wenn man die Be¬

deutungen der verschiedenen p und q in Big . 2 . und Big . 3. vergleicht .
Wir wollen die Bormein (21) auf den Ball unseres Beispieles Station Nidden

von S. 238 anwenden, und haben dann :

Satz 1
A — Kalleninken

2>i = 19
B = Gilge
Pi = 19

C = Lattenwalde

Satz 2 E2 = 12 Pz = 12
Satz 3 Pz = 0
Satz 4 Pi = 12 Pi = 12 Pi = 12 -

Nach (20) und (21 ) : |> ] = 19 + 12 + 12 = 43

qa ; 1374
24

“

E1 E2 + E1 Pz

= 57,25 , q b =

BE 2 E3 = 19 X 12 = 228

“ 22,90 ■ * = '
8i

1374 1
qc = = 16,96

Zur Probe haben wir von früher (21) § 71 . S . 239 :

[a a ] = 0,0611 [aß ] = 0,0175 [ß ß] = 0,0764
also nach (19) :

— = 0,0175
ä«
qa = 57,14

— = 0,0436
q»
qb = 22,94

— = 0,0589
qc
qc = 16,98 (24)

Die Ergebnisse von (23) und (24) stimmen genügend überein.
Zur Vergleichung wollen wir auch die sogenannten „Anschnittszahlen “ her -

setzen , welche man zuweilen als Eichtungsgewichte genommen hat .
Als „ Anschnittszahl “ wurde genommen die Anzahl von Einstellungen , welche

eine Sicht im ganzen Verlaufe der Messungen auf einer Station erfahren hat , ohne
Eücksicht auf die übrigen Sichten und die Verbindungen der Sichten unter sich.

Das Beispiel (22) giebt nach dieser Erklärung die Anschnittszahlen :
Kalleninken Gilge Lattenwalde

Anschnittszahl q„
' — 43 qb = 31 ql = 24 (25)

Wollte man diese (25) als Näherungen für die richtigen Gewichte (23) oder
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(24) gelten lassen , so würde man also in A erheblich zu wenig und in B und G
zu viel erhalten.

Wir wollen auch nochmals die Eigenthümlichkeit hervorheben , dass ein Rich -
tungsgewicht q = co werden kann, z . B . p s = 0 und = 0 giebt q„ = oo und dabei

qt = ^rP \ und qe = -^- p 2, also wieder wie schon bei (9) und ( 10) bemerkt wurde ,u u

nur gezwungene Richtungsform und thatsächlich Zerfällung in Winkelgewichte. Das¬
selbe wird auch stattfinden bei mehr als 3 Strahlen, wenn gar nichts überschüssiges
gemessen ist .

Wir wollen hieran auch noch die Bemerkung knüpfen , dass die Vierecksaus¬
gleichung von § 72 , da das Viereck in keinem Punkte mehr als 3 Richtungen hat,
auch nach dem Verfahren der Richtungsgewichte ausgeglichen werden könnte, indem
man einfach die Gewichte , q nach den Formeln (21 ) für alle Richtungen zu bestimmen
und dann im wesentlichen nach § 59 . (jedoch mit Zuziehung dieser Richtungsgewichte)
zu verfahren hätte . Als Anwendung im Grossen ist aber ein solches Verfahren un¬
möglich, weil die Punkte eines Netzes im Allgemeinen mekr als 3 Strahlen haben .

§ 77 . Winkelmessung in allen Combinationen.

Fig . 1.

Die Winkelmessung in allen Combinationen ist nach den vollen Sätzen (§ 75.)
und dem Falle dreier Strahlen (§ 76 .) die dritte wichtige Anordnung von Winkel¬
messungen , weil sie , wie die beiden vorher erwähnten, die Ausgleichung mit der
Form von Richtungsgewichten bieten wird.

Schon von Gauss und Gerling als Ideal gepriesen und von Hansen 1871 theo¬
retisch behandelt, ist die Winkelmessung in allen Combinationen in neuester Zeit
durch General Schreiber bei der Landesaufnahme zu neuem Leben gebracht worden ,
und bildet seit etwa 1880 den Grundton der preussischen Triangulierungen I . Ordnung.

Schon in § 67 . haben wir die vorliegende Aufgabe mit einem Beispiele nach
Gerling behandelt , und zwar mit gleichen und mit ungleichen Gewichten. Die un¬
gleichen unregelmässig zerstreuten Gewichte sind
aber in diesem Falle nicht erwünscht; gerade
die gleichen Gewichte in Verbindung mit der
gleichmässigen Verteilung geben dem Verfahren
die Geschmeidigkeit und Übersichtlichkeit, welche
seine Vorteile ausmachen.

Damit nehmen wir nun mit Fig . 1 . an ,
man habe zwischen 4 Strahlen alle 6 möglichen
Winkel gleichartig gemessen , nämlich:

Gemessene Winkel
(1 .2) , (1,8) , (1,4) , (2,3) , (2,4) , (3,4) ( 1)

Als unabhängigeUnbekannte sollen die S Winkel
zwischen dem ersten Strahl und den 3 folgenden
Strahlen gelten, welche zur Unterscheidungvon den
gemessenen Winkeln (1,2) , ( 1,3 ) , (1,3) nun mit [ 1,2] , [1,3] , [1,4 ] bezeichnet werden ,
und damit bekommen wir für die 6 gemessenen Winkel folgende 6 Fehlergleichungen:
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Fehlergleichungen.

§ 77.

1 [1,2] [1,3] [ 1 .4] (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

* 12 = [1 .2] - (1,2)
* 13 = [ 1,3] . . . - ( 1,3)
* 14 = . . . [ 1 .4] . . . - ( 1,4) . . .
* 23 = - [1,2] + [1,3] . . . - (2,3) . . .
* 24 = - [ 1,2] + [14 ] - (2,4)
* 34 = - [1,3] + [1,4 ] - (3,4)

(2)

Daraus bildet man die

Normalgleichungen
3 [1,2] - [1,3] - [ 1,4] — (1,2) . . . . + (2,3) + (2,4 ) , . = 0j

— [1,2] + 3 [1,3] — [1,4] . . - (1,3) . . - (2,3 ) . . + (8,4) = 0 l
(8)

- [1,2] - [ 1,3 ] + 3 [1,4] . . . . — ( 1,4 ) . . - (2,4 ) - (3,4) = 0 j

Um diese Normalgleichungen aufzulösen , bildet man zuerst deren Summe :

[1,2] -+- [1,3] -+- [1,4] — (1,2 ) — (1,3) — ( 1,4) = 0 (4)
Diese Summengleichung (4) zu jeder einzelnen der Gleichungen (3) addiert

giebt, ohne weitere Elimination sofort die Auflösungen nach den 3 Unbekannten:

Winkel [1,2] = « ( l .a ) + ( lJ ?) -
_m±MziM (5)

Winkel [1,3] = ?m±M = m±m±m (6)

Winkel [ 1,4 ] = 2 (M ) + ( 1,2 ) + (2,4 ) + ( l ,3 ) + jM )
(7)

Diese Auflösungen kann man in Worten so darstellen : Um irgend einen Winkel

[i,- jfc] endgültig zu berechnen, nimmt man zunächst seine unmittelbare eigene Messung
(i , Je) mit doppeltem Gewichte , und dazu etngewichtig alle diejenigen Werte des
Winkels, welche man aus den übrigen Winkelmessungen durch Subtraktion oder Ad¬
dition von je zweien anderen Winkeln zusammensetzen kann, und aus all diesem
bildet man das Mittel mit Rücksicht auf die Gewichte.

Zu einem Zahlenbeispiele hiefür wollen wir das Gerling sehe Beispiel von § 67 .
S . 231 nochmals vornehmen, nämlich :

(1,2) = 48 ° 17 ' 1,4" (1,3) = 96 ° 52 ' 16,8" (1,4) = 152 ° 54' 6,8" >
(2,3) = 48 ° 35' 14,3"

(2,4) = 104 ° 37' 7,8" i (8)
(3,4) = 56 ° 1 ' 48,9" J

Den Gleichungen (4)—(6) entspricht folgende Ausrechnung:
48 ° 17 ' 1,4"

| 96 ° 52 ' 16,8"
| 152 ° 54 ' 6,8"

48 17 1,4 | 96 52 16,8 ( 152 54 6,8
17 2,5 17,9 9,2
16 59,0 15,7 5,7

4,3 27,2 28,5
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[ 1,2] = 48 ° 17 ' 1,075” [1,3] = 96 ° 52' 16,800 ” [2,3] = 152 ° 54 ' 7,125" ,
Ebenso auch [2,3] = 48 ° 35 ' 15,725"

[2,4] = 104 ° 37 ' 6,050” 1 (9)
[3,4] = 56 ° 1 ' 50,325 ” I

Diese ausgeglichenen [1,2] . . . mit den gemessenen (1,2) verglichen, geben die
iibrigbleibenden Fehler u und deren Quadrate:

« 12 = - - 0,225 ”
Djg = 0,000 " « 14 = + ° ,325

1/23 ~~t ~ 1,425 u 24 = — 1,7 50

«34 = + 1,425

1)2 . . . 0,0506 0,0000 0,1056
2,0306 3,0625

2,0306

[e d ] = 7,2799 ,
-. /V2799m = / /

6 —K = — 1,56

Dieses m ist der mittlere Fehler eines gemessenen Winkels (vor der Ausgleichung).
Wir wollen einen Schritt weiter gehen , und die Rechnung in die Form von

Richtungen bringen, indem wir (2,1 ) = — (1,2) einführen, und auch noch der Symmetrie
wegen (1,1 ) = 0 und (2,2) = 0 hinzufügen , so dass die Gleichung (5) folgende Ge¬
stalt annimmt:

Winkel [1 2] = (74 ) + (1,2) -f - (1,3) + (1,4) _ (2,1) + (2,2) -+- (2,3 ) + (2,4)
l- ’ J 4 4

Die ausgeglichenen Richtungen (bzw . deren Verbesserungen) , sollen nach Fig . 1 . mit
A , B , G . . . bezeichnet werden , dann hat man für 3 Strahlen :

Richtung m = - M±M +M±M± ^ ]
Richtung B — (2,1 ) + (2,2) + (2,3) + (2,4) + . . .

(u )

Ekht„g ]
. . . . u . s . w, . . . .

dann braucht man nur die hiernach berechneten A , B , C . . . wie unabhängig in
einem, Satze gemessene Richtungen von einander zu subtrahieren , um alle ausge¬
glichenen Winkel zu erhalten ; oder man kann auch mit den nach den Formeln (11 )
berechneten Richtungen weiter rechnen, wie wenn es gemessene Richtungen wären .

Die Anwendung der neuen Formeln (11 ) wollen wir an einem grösseren Bei¬
spiele mit 5 Sichtstrahlen zeigen , und zwar mit Station Keulenberg der Märkisch-
Schlesischen Kette in dem Werke „Die Königl . Preuss. Landes-Triangulation, Haupt¬
dreiecke , II . Teil , Berlin 1874 “

, S . 357—361 .
Wenn man alle dort angegebenenWerte im Mittel zusammenzieht, so erhält man :

I . Station Keulenberg. 10 Winkelmessungen .

1 . Collm . 2 . Strauch. 3 . Brautberg. 4 . Brandberg. 5 . Hochstein.

! ■ ! 0 ° 0 ' 0,000”
2. j
3 . |
4.
5.

25 ° 54 ' 20,367"
25 54 20,000

76 ° 40 ' 49,008”
76 40 47,658
76 40 49,000

127° 17 ' 42,100 ”

127 17 42,958
127 17 43,100
127 17 42,000

175 ° 20 ' 21,075 "
175 20 20,392
175 20 21,725
175 20 20,667

(12)
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Dieses sind 10 Winkel, welche aber in der Form von 14 Bichtungen zusam¬
mengestellt sind , indem die 5 Werte der ersten Linie erhalten wurden aus 4 Winkeln ,
welche sämtlich den linken Schenkel Collm = 0 ° 0 ’ 0" gemeinsam haben , und ebenso
in der zweiten Linie 3 Winkel, welche alle den linken Schenkel Strauch = 25 ° 54' 20"

gemeinsam haben.
Aus der vorstehenden Tabelle bilden wir mit Absonderung von Näherungs¬

werten folgende zweite Tabelle :

II . Station Keulenberg. Ausgleichung von 10 Winkeln in Richtungsform.

1.
0° 0' 0"

2.
25° 54' 20"

3.
76° 40' 49"

4.
127° 17' 42"

5.
175° 20' 21"

Quer¬
summe

1. 0,000" + 0,367" 4- 0,008" + 0,100" + 0,075 " + 0,550"

2. - 0,367 0,000 - 1,342 4- 0,958 — 0,608 — 1,359
3. — 0,008 + 1,342 0,000 + 1,100 + 0,725 + 3,159
4. — 0,100 — 0,958 — 1,100 0,000 — 0,333 — 2,491
5. — 0,075 -f- 0,608 — 0,725 + 0,333 0,000 + 0,141

Summen S — 0,550 + 1,359 — 3,159 4- 2,491 — 0,141
Mittel II 1 © © 5 = 4 - 0,272" £7= — 0,632" D = 4 - 0,498" E = — 0,028"

Ausgeglichene
Eichtung 359° 59' 59,890" 25° 54' 20,272 " 76° 40' 48,368" 127° 17' 42,498 " 175° 20' 20,972"

[ ( 13)
oder 0° 0' 0,000" 25° 54' 20,382" 76° 40' 48,478 " 127° 17' 42,608 " 175° 20' 21,082"

Die letzte Linie ist aus der vorhergehenden entstanden durch Zufügung von
0,110"

, um die Anfangsrichtung wieder auf 0 ° 0 ' 0" zu bringen.
Diese Ausgleichung (12)—(13) bietet in etwas anderer Form dasselbe , was zuerst in der Ab¬

handlung von General Schreiber in der „Zeitschr . f. Verm . 1878“, S. 220 u . S. 232 gegeben wurde .
Unsere Summen 5 sind ~ s — ö jener Abhandlung S. 220.

Um auch den mittleren Fehler zu bestimmen, hat man jedenfalls den sicheren
Weg, auf die eigentlichen 10 Winkelmessungen zurückzugreifen, und sie mit den
ausgeglichenen Winkeln (die man durch Subtraktionen aus (13) erhält) zu vergleichen .
Wir wollen dieses im folgenden thun , indem wieder mit (1,2) ein gemessener und
mit [ 1,2 ] ein ausgeglichener Winkel bezeichnet wird :

(1.2) = 25°

[1.2] = 25
54' 20,367'

54 20,382

= + 0,015

V
+ 0,015 0,0002
— 0,530 0,2809
+ 0,508 0,2581
+ 0,007 0,0000
+ 0,438 0,1918
— 0,732 0,5358
+ 0,308 0,0949
+ 0,030 0,0009
- 0,121 0,0146
— 0,193 0,0372

[v c] = 1,4144

(1.3) = 76° 40' 49,008 "

[1,8] = 76 40 48,478

vi3 = — 0,530

(2.3) = 50° 46' 27,658"

(2.3) = 50 46 28,096

t/jg = -j- 0,438

(1,4) = 127e117' 42,100"

[1,4] = 127 17 42,608

ViH = + 0,508

(2,4) = 101° 22' 22,958 "

[2,4] = 101 22 22,226

vzn — — 0,732

(3,4) = 50° 36' 54,100"

[3,4] = 50 36 54,130

— + 0,030

(1,5) = 175° 20' 21,075"

[1,5] = 175 20 21,082

= + 0,007

(2,5) = 49° 26' 0,392"

[2,5] = 49 26 0,700

*>35 = + 0,308

(3,5) = 98° 39' 32,725"

[3,5] = 98 39 32,604

r35 “ — 0,121

(4,5) = 48° 2' 38,667"

[4,5] = 48 2 38,474

— — 0,193

! = /f & ± 0-*86" (14)
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Dieses m ist der mittlere Fehler eines gemessenen Winkels (mittlerer Winkelfehler
vor der Ausgleichung).

Ausser dieser unmittelbar sich darbietenden Berechnung (14 ) kann man auch
eine Berechnung von [y y] an die Ausrechnung von ( 13 ) anschliessen , indem man
der Formel (8 ) S . 85 folgt , welche wegen der einfachen Form unseres Falles , mit
[a 6] = 0 , [a c] = 0 u . s . w . sich 50 darstellt :

[yy ] L J
[aa ] [6 i ]

[df
[cc ]

" • (15 )

Die Ausrechnung nach (15 ) giebt mit den Zahlen der Tabelle von (13) folgendes :
l r-

+ 0,367 0,1847 [a l ] = 0,550 [n l] 2 = 0,3025 [an ] = 5
-+- 0,008 0,0001 [& 1} = + 1,359 [6 l] 2 = 1,8469 [6 6] = 5
+ 0,100 0,0100 je l ] = — 3,159 [c l\2 = 9,9793 [c c] = 5
4- 0,075 0,0056 [d 1} = + 2,491 [d If = 6,2051 [dtf] = 5
— 1,342 1,8010 j> l] = — 0,141 [e If = 0,0199 [e e ] = 5
+ 0,958 0,9178 18,3537
— 0,608 0,3697
+ 1,100 1,2100
+ 0,725 0,5256
- 0,333 0,1109

5,0854

[y y] = 5,0854 — = 5,0854 — 3,6707 = 1,4147 (16)

Dieses stimmt genügend mit 1,4144 , also auch wieder der mittlere Fehler eines
gemessenen W' inkels

i = t/ ^y io
4147 = + 0,486"

4
(17)

Der Nenner 10 — 4 = 6 gilt hier für 5 Strahlen ; im allgemeinen Falle mit

s Strahlen ist die Anzahl der Winkel in allen Combinationen = —— und die

Anzahl der unabhängigen Winkel

n — w

= s — 1 , also nach (19) § 28 . S. 87 :

also der mittlere Fehler eines gemessenen Winkels :

/ 2 [y y]
w ~ V (^ Tiy ^ TT )

und der mittlere Fehler einer gemessenen Richtung:

m 7 / [y < l
~~

ft = yty (^ i ) (s - 2)
Die Ausrechnung (16) entspricht der „Königl . Prenss . Landestriangulation ,

S. 361, welcher wir unser Beispiel entlehnt haben , es steht nämlich dort .

( 18)

(19 )

Teil , 1874“,

( r V) = ( V V 'I —(a — = 82,05 - 22,01 = 60,04 mit Divisor = 116.' 0 0 (ss ) (5 6)
■"

Dieses ist mit unserem (16) und (17) deswegen nicht unmittelbar zu vergleichen , weil ln der Landes¬

triangulation S. 357—360, 120 Einzelwinkel (je aus l und r zusammengesetzt ) verwertet sind , welche
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wir in unserer Tabelle (12) in 10 Mittelwerte zusammengezogen und auch nur als 10 Winkel weiter
benützt haben . Jener „Divisor = 116“ ist entstanden aus 120 — 4 entsprechend unserem 10 — 4.
Der Abzug — 22,01 steht auch noch in inniger Beziehung zu unserem 18,3537 in (16), es ist nämlich

8,30*+ 8,l53 + . . . 660,63bei der Landestriangulation S. 360 (al ) — — 3,30 , (aa ) = 30 u . s. w ., woraus - —— - = ■■■—-
30 30

= 22,021 oder das 6 fache unseres Abzuges 3,6707.
Das im Vorstehenden benützte Beispiel Station Keulenberg , Beobachter Schreiber , Mai-

Juni 1872 (Preuss . Landes -Triang ., XI. Teil , 2. Abt . 1874, S. 357—361) stammt aus der ersten Zeit der
Einführung von Winkelmessungen in allen Combinationen , und zwar mit je 12facher Wiederholung
jedes einzelnen Winkels in Fernrohrlage I. oder II . Diese Wiederholungszahl 12 bei 5 = 5 Rich¬
tungen ist aber noch nicht der später weiter ausgebildeten Schreiberschen Methode entsprechend ,
welche bei 5 Richtungen nur 10 Wiederholungen nimmt , wie in unserem späteren § 79. gezeigt
werden wird .

Gewichtsbestimmung .
Aus den Normalgleichungen (3) S . 260 , welche sich auf Winkel beziehen ,

erhält man nach (20) § 28 . S . 90 folgende Gewiohtsgleichungen:
o r ™ r „. üi r ~ «n _ i

[« «] + 3 [a ß] [« 7] = 0L“ L / J w <
[aß ] + 3 [ay ] = 0 )

(20 )

Um diese Gleichungen aufzulösen , bildet man wieder ihre Summe:
[a a ] + [a ß] + [a y] = 1

dieses zu jeder einzelnen der Gleichungen (20) addiert giebt :

[« «] = { . [« ß] = 0 , [a y] = 0

dieses gilt aber zunächst nur für den besonderen Pall von 4 Sichtstrahlen ; allgemein
für s Strahlen bekommt man :

\a «] = -?- , [a ß] = 0 , [a y] = 0 , [ ce <5] = 0

[aß ] = 0 , [ßß ] = 1
, [ßy ] = 0 , [(1 (5] = 0 (21)und

. . . . . . . . . . . . u . s . w.
Die [« «] , [(3 (1] , . . . sind die reciproken Werte der Winkelgewichte nach

der Ausgleichung, es ist also das Gewicht eines ausgeglichenen Winkels hei s Strahlen

in unserem Palle P = + also in dem kleinen Gerling sehen Beispiel (8)—(10) mit

s = 4 Strahlen, P — 2 und folglich der mittlere Fehler eines Winkels nach der Aus¬
gleichung M = m : Y 2 = + 1,10" .

Da alle [aß ] , [a y] . . . = Null sind, kann man die Winkelgewichte auch leicht
in Richtungsgewichte zerfallen , wenn nämlich q1 , g2 > 23 • • • die Richtungsgewichte
nach der Ausgleichung sind : so muss sein :

JL_ JL - l
2i P

~
s

(22 )also s
Dabei ist als Einheit das Gewicht eines gemessenen Winkels angenommen;

wird ein Richtungsgewicht als Einheit genommen , welches gleich dem doppelten
Winkelgewicht ist , so werden die P und die q nach der Ausgleichung die Hälften
der vorigen. Wir wollen dieses alles übersichtlich zusammenstellen:
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g fg _ ^
Zwischen s Strahlen werden die Winkel in allen — — ’ Combinationen ge-

U

messen, wobei (s — 1 ) unabhängige Winkel oder s Richtungen bestimmt werden .
Wenn ein gemessener Winkel das Gewicht = 1 hat , so erhält jeder Winkel

nach der Ausgleichung das Gewicht P = oder jede ausgeglichene Richtung das

Gewicht q = s (z . B . s = 2 giebt P = 1 und q = 2 ).
Wenn eine gemessene Richtung das Gewicht = 1 hat , also ein gemessener

Winkel das Gewicht = -t- , so erhält jeder Winkel nach der Ausgleichung das Ge-
u

• s s
wicht P = und jede ausgeglichene Richtung das Gewicht q = (z. B . s = 2 giebt

P = und q = 1 wie es sein muss).

Der mittlere Gewichtseinheitsfehler wird immer nach den schon früher ange¬
gebenen Formeln (18) oder (19) berechnet, wozu [v t' ] nach dem Beispiel (14) oder (16)
zu bestimmen ist .

Zweite Entwicklung für Winkelmessungin allen Combinationen .
Um die wichtige und elegante Ausgleichung unseres Falles nach allen Be¬

ziehungen zu beleuchten, wollen wir noch eine zweite von allem früheren unabhängige
Entwicklung vornehmen, und dabei von vornherein auf Richtungen ausgehen, deren
ausgeglichene Werte mit 4 , B , C, D nach Fig . 1 . S . 259 bezeichnet seien ; die gemes¬
senen Winkel seien ( 1,2) , ( 1,3) u . s . w.

Dann nehmen die Fehlergleichungen statt ( 1) folgende Form an :
«12 = — A + B . . . . — (1,2 ) .
«13 = — A . . -h C . - ( 1,3) . . .
«u = — A . . . . + D . — (1,4)
« 23 = • • — B + C . •

«24 = • • — B . . + D .
»34 ^

(2,3)
(23)

. - (2 ,4) • • •
«84 = • • . . — C + D . - (3,4)

Wenn man diese 6 Ausdrücke der « einzeln quadriert und addiert, so erhält

[« d] = 8A2 — 2 AB — 2AC — 2aZ ) + 2A ( ( 1,2 ) + (1,3) + ( 1 .4 ))

+ 352 — 2BC — 2BD -h2B ( (2,3) + (2,4) — (1,2))

+ 3 02 - 2 CB + 2C ( (3,4) — ( 1,3) — (2,3))

+ 3 2)2 + 2 5 ( - ( 1,4) — (2,4) — (3,4))
+ (1,2 )2 + (1,3)2 + . . . (3,4)2

; (24)

Dieses wird zunächst auf folgende Form gebracht :
[« ■»] = 4 ( 3 4 — 5 — 0 — 5 ) + 2 4 ( (1,2) + (1,3) + (1,4 ))

+ £ (- 4 + 35 - C — 5 ) + 25 ( (2,3) + (2,4) - (1,2 ))

+ C (— 4 — 5 + 30 — 5 ») + 2 C ( (3,4) — (1,3) - (2,3))

+ 5 (— 4 — 5 — C + 32 ?) + 25 ( - ( 1,4 ) - (2,4) — (3,4))
+ ( 1,2)2 + (1,3)2 + . . . (3,4)2
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Nun wird die an sich willkürliche Bedingung eingeführt :

A + B + C + D = 0
und damit wird , wenn zugleich (1,3 ) = — (3,1 ) u . s . w . gesetzt wird :

[vv] = 4 M2 + 2 M ((1,2) + (1,3) 4- ( 1,4)) 4- (1,2)2 + ( 1,3)2
■2 B ( (2,3 ) + (2,4 ) + (2,1 ) ) 4- ( 1,4 )2 + (2,3 ) 2

- 2 C ((8,4 ) 4 - (3,1 ) + (3,2 )) + (2,4 )2 + ■(3,4 )2

■2 D ((4,1 ) + (4,2 ) + (4,3 ))
Die Bedingung , dass dieses (26 ) ein Minimum werde , führt auf :

( 1,2 ) + (1,8 ) + ( 1,4 )

- 4D2

- 4 C2 -

41)2

A =

B = (2,3 ) -
4

■(2,4 ) ■ (2 , 1 )

0 =

D :

(3,4 ) + (3,1 ) + (3,2 )

(4 , 1) ■
4

• (4,2 ) ■ ■(4,3 )

(25)

(26)

(27)

Dieses stimmt überein mit dem früheren (11 ) S . 261 , indem dort ( 1,1 ) = 0 u . s . w .
zugesetzt wurde . Setzt man nun wieder die A , B , C , D aus (27 ) in (26 ) , so erhält man :

[v v] = ( 1,2)2 + (1,3)2 + (1,4 )2 + (2,3 )2 + (2,4)2 + (3,4 )2
— 4 (M2 4- £ 2 + C2 + Z>2)

dieses gilt für 4 Strahlen ; allgemein für s Strahlen hat man :
[v v] = (1,2 )2 + (1,3 )2 + (1,4 ) 2 . . . (2,3 )2 + (2,4 )2 + . . . (s - l,s )2 1

— S ( M2 + £ 2 + G2 + i »2 + JB2 + . . . S2 ) I
Dieses ist übereinstimmend mit dem früheren ( 15) S . 263 , womit nun alles auf ver¬
schiedenen Wegen bestimmt ist .

(28)

Winkelmessung in symmetrischer Anordnung.
Nicht bloss bei Winkelmessungen in allen Combinationen , d . h . Combinationen der Strahlen

zu je zweien , kann man die Ausgleichungs -Ergebnisse der Station in Form von Richtungen mit
Richtungsgewichten darstellen , sondern auch noch in dem allgemeineren Falle der Stationsbeob¬
achtungen in irgendwie symmetrischer Anordnung .

Dieser Fall ist von Vogler und Helmert in der „Zeitschr . f . Verm . 1885“ S. 49—59 unct
S. 263—266 behandelt worden . Auch hier , wie bei Winkelmessungen mit je 2 Strahlen findet man
eine Zerfällung der Gewichtsgleichungen in Einzelgewichte . Wenn man p Strahlen in symmetrischen
Sätzen von je %Richtungen , also in (̂ \ ^ Combinationen beobachtet , so wird das Gewicht eines aus¬

geglichenen Winkels P = ~~. y . oder wenn die Zahl der Strahlen — s gesetzt wird , so ist2 t \ i — 2/
6* fs — 2\ (8 — 2\ sP =

2
~. \ . _ 2j > a 8̂0 i = 2 , wird f = 1 und P = —. Dabei ist das Gewicht einer ge*

messenen Richtung = 1 gesetzt .
Würde man das Gewicht eines gemessenen Winkels = 1 setzen , so würde das Gewicht eines

ausgeglichenen Winkels werden P = — ( s — 2
) , also mit i = 2 würde P = — , was mit un -

l ( • - V ' 2
serem Ergebnis von S. 265 stimmt .
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§ 78 . Winkelmessung in allen Combinationenmit Anschlusszwang .

Kg . 1.

Bei Ausgleichung freier Dreiecksnetze, mit denen wir uns in diesem Kapitel
hauptsächlich beschäftigen , kommt Anschlusszwang nur ausnahmsweise vor . (Ein

praktisches Beispiel dazu bietet die in dem späteren § 80 . zu behandelnde Elbkette ) .
Um indessen alles im Zusammenhänge zu

haben , was sich auf Winkelmessungen in allen
Combinationen bezieht, wollen wir auch den An .
sehlusszwang mit 2 festen Strahlen , nach Fig . 1 . ,
hier behandeln , indem dabei angenommen wird,
es seien 0 A und 0 D zwei feste aus älteren
Messungen und Ausgleichungen unabänderlich
festliegende Strahlen , an welche zwei neue Strahlen
0 B und 0 C durch Winkelmessungen ange¬
schlossen werden sollen .

Nach den Kegeln von General Schreiber
(Zeitschr. f. Verm . 1878 S . 217 ) sind zwei solche
feste Anschlussstrahlen bezüglich der Anordnung
der Beobachtungen wie eine einzige Richtung
anzusehen und jede neue zu bestimmende Richtung ist ebenso oft mit der einen wie
mit der anderen Anschlussrichtung zu verbinden.

In Fig . 1 . ist angenommen, dass OA und OB zwei feste Richtungen sind,
welche einen unabänderlich gegebenen Winkel W zwischen sich fassen , und die
neuen Strahlen 0 B und 0 0 sollen durch Winkelmessungen gegen A und D und
unter sich bestimmt werden .

Es seien gemessen:
Winkel (1,2) mit dem Gewichte 1

(U3)
(1,4)
(2 .3)
(2 .4)
(3 .4)

0 d . h . nicht gemessen
2
1
1

Bei dieser Anordnung kann man die ganze Behandlung auf den Fall eines
festen Strahles A , d . h . auf den Fall gänzlich freier Winkelmessung zwischen
3 Strahlen A , B , C zurückführen , indem man bei gegebenem Winkel A 0 D = W
den Winkel (2,4) reduziert auf W — (2,4) = (1,2) und ebenso W — (3,4) = (1,3 ).

Wir wollen dieses sogleich an einem Beispiele erproben , und zwar aus der
. Vermessung der freien Hansestadt Bremen, von Geister , 1890 “

, S . 18—19, Station
Weyerberg, wo 2 feste Strahlen und 2 neue Strahlen vorhanden sind , nämlich :

1 . Bremen A = 207 ° 40' 32,91" fest gegeben
2 . Oberblockland B
3 . Scharmbeck G
4 . Garlstedt D = 291 ° 6' 9,47" fest gegeben

[ 1,4] = W = D — A = 88 ° 25' 36,56"

Die 5 gemessenen Winkel stellen wir nun nebst dem fest gegebenen [1,4] in
gleicher Form zusammen , wie wenn [1,4] auch gemessen wäre :
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(1,2 ) = 4 ° 58 ' 20,18 ”
( 1,3 ) = 71 ° 38 ' 27,73 ”

f (2,3) = 66 ° 45 ’ 8,99 ”
I (2,3) = 66 45 8,99

( 1 .4) = 83 ° 25 ' 36,56 " = W

(2 .4) = 78 ° 32 ' 15,69”

(3.4) = 11 ° 47 ' 9,22"
Nach dem angegebenen Prinzip der Reduktion von 4 . auf 1 . erhält man :

( 1 .2) = 4 ° 53 ' 20,18 ”
W — (2,4) = 4 53 20,87

(1 .2 )
' = 4 ° 53 ' 20,525 ”

W ■
( 1 . 3) = 71 ° 38 ' 27,73 "
(3.4) = 71 38 27,34

(1,3)
' = 71 ° 38 ' 27,535 ”

t (2,3) ' = 66 ° 45 ’ 8,990 ”
Diese 3 Winkel (1,2 )

'
, (1,3)

' und (2,3)
' werden nun unter sich ausgeglichen

wie gewöhnlich:
(1,2)

' = 4 ° 53’ 20,525 ” I
20,525 |

(1,3) ’ — (2,3) ’ = 18,545
Mittel [1,2] = 4 ° 53 ' 19,865”

( 1.3)
’ = 71 ° 38 ' 27,535 ” |

27,535 (
( 1,2 )

' + (2,3)
' = 29,515

[ 1 .3] = 71 ° 38 ' 28,195 ”

(2,3) ' = 66 ° 45 ' 8,990 " !
8,990 (

(1,3)
' — ( 1,2)

' = 7,010
Mittel [2,3] = 66 ° 45 ' 8,330 ”

Diese ausgeglichenen Winkel stimmen überein mit den von Geisler auf S . 19
der Bremer Triangulierung auf anderem Wege erhaltenen Werten , und indem man
diese Winkel an die festen Richtungen anschliesst, hat man das Schluss -Ergebnis :

Station Weyerberg.
1 . Bremen A = 207 ° 40' 32,91 ” fest gegeben
2. Oberblockland B = 212 33 52,77 eingeschaltet
3 . Scharmbeck O = 279 19 1,10 „
4 . Garlstedt B = 291 6 9,47 fest gegeben

Dieses ist ein Messungsabriss in Form von orientierten Richtungswinkeln
(Katasterbezeichnung „Neigungen“) , die zwei neuen Richtungen B und C gehen in
eine Netzausgleichung oder eine Coordinatenausgleichung als beobachtet ein .

Bei Winkelmessung auf einer Station mit Anschluss an beliebig viele feste
Strahlen kann man die Winkelausgleichung und die Fehlerberechnung , kurz alles,
was sich auf eine solche Station bezieht , mittelst des angegebenen formellen Kunst¬
griffs immer auf den Fall eines festen Strahles , oder was hier dasselbe ist , auf den
Fall völlig freier Strahlen zurückführen, so dass es nicht nötig ist , für Stations-
Winkelausgleichung mit Anschlusszwang an feste Strahlen besondere Formeln auf¬
zustellen.

§ 79 . Triangulierung nach Schreibers Methode .
Nachdem in § 77. S . 265 erkannt ist, dass die Winkelmessung in allen Com -

binationen sich nach der Stationsausgleichung darstellen lässt als ein Satz von Rich¬
tungsmessungen mit einem gewissen Gewichte für jede ausgeglichene Richtung, kann
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man auch einsehen, dass ein ganzes Dreiecksnetz mit lauter so behandelten Stationen
schlechthin nach Richtungen ausgeglichen werden kann, ähnlich wie an den zwei
kleinen Beispielen von § 59 . und § 61 . früher gezeigt worden ist.

Der einzige Unterschied besteht noch darin , dass zwar alle ausgeglichenen
Eichtungen derselben Station gleichgewichtig sind , dass aber verschiedene Stationen
mit verschieden vielen Sichten , ungleichgewichtige Richtungen ergehen , weil das
Gewicht nach der Ausgleichung von der Anzahl der Sichten selbst abhängt. Diesem
Umstande wurde von General Schreiber dadurch Rechnung getragen, dass er die
Combinationsmessungen an sich mehrfach wiederholte, und es wurden die Wieder -
holungszahlen n der Stationen so bemessen , dass die schliesslich erscheinenden Rich¬
tungsgewichte möglichst gleich werden , wie folgende Übersichtstabelle zeigt :

Anzahl der
Strahlen einer

Station

ohne Wiederholung
Wieder¬

holungszahl
2 n

bei 2 « facher Wiederholung
Anzahl der

Winkel
s — 1

2

Richtungsgewicht
für

1 Aus -
Messung igleichung

Winkelgewicht
11s

p = ir

Richtungsgewicht

q == 2 p = n s

2 i i 1,0 24 12 24
3 3 i 1,5 16 12 24
4 6 i 2,0 12 12 24
5 10 i 2,5 10 12,5 25
6 15 i 3,0 8 12 24
7 21 i 3,5 8 14 28
8 28 i 4,0 6 12 24

Als Messung für die Gewichtseinheit p = 1 zählt hiebei die Messung einer
Richtung in einer Fernrohrlage I oder II , oder , was dasselbe bedeutet, die Messung
eines Winkels in zwei Fernrohrlagen I und II . Die angegebene Wiederholungszahl2 n
bezieht sich auf Richtungen oder Winkel in einer Fernrohrlage , also 2n = 24malige
Wiederholung eines Winkels bedeutet n = 12 Messungen des Winkels in Fernrohr¬
lage I und n = 12 Messungen in Fernrohrlage II bei denselben Kreisstellungen wie
in Lage I . Bei den Messungen der Landesaufnahmesind die Fernrohrlagen I und II
(in den amtlichen Druckwerken gewöhnlich mit l und r bezeichnet) stets auseinander¬
gehalten , und auf diese getrennten Messungen der beiden Fernrohrlagen beziehen sich
also die Wiederholungszahlen 2 n.

Die Wiederholungen werden nun natürlich nicht an denselben Kreisstellungen
gemacht, sondern zur Eliminierung der Teilungsfehler an Kreisstellungen, welche für

n Wiederholungen ie um oder - °u = d gegenseitig verdreht sind , so dass die
2 n n

Kreisstellungen 0, d, 2 d, 3 d . . . auftreten . Weiter kommt es darauf an , die Kreis¬

stellungen auf die - Ü Winkel so zu verteilen , dass keine Richtung in irgend
2

einer Kreisstellung mehr als emmal vorkommt, und dass die Anzahl der Kreisstell-

ungen möglichst klein wird . Da man nun

180°

ii ?- — Winkel zu messen , also s (s —■1)

ichtungseinstellungen paarweise zu machen hat , also in einer Kreisstellung höchstens
« Richtungen Vorkommen dürfen , wenn s eine gerade Zahl ist , und höchstens s — 1

Achtungen , wenn s eine ungerade Zahl ist , so muss irgend eine Richtung in zwei



270 Triangulierung nach Schreibers Methode . 79 .

aufeinander folgenden Kreisstellungen um den Betrag
180 °

d oder 180 °
n sn (s — 1)

verändert erscheinen, je nachdem (s — 1) eine ungerade Zahl ist , oder s eine unge¬
rade Zahl.

Nach diesen Grundsätzen sind die nachfolgenden Tabellen aufgestellt (nach
Mitteilung von General Schreiber in „ Zeitschr. f. Verm . 1878 “

, S . 215—217 und
„ Königl. Preuss . Landes-Triangulation “

, IV . Teil, die Elbkette , 1891 , S . 54—55).
Dabei bedeuten I und II die Fernrohrlagen und 0 ° , 15 °

, 30 ° . . . die Kreisstellungen .

s = 2 Richtungen , s — 1
s —s— = 1 Winkeln = 12 2 « (s — 1) = 12 , 180°

d = -
W = ls

180°

12
= 15°

Winkel I I I I I II II II II II II

1,2 o° 15° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165°

s = 3 Richtungen ,
>7 = 8

• = 3 Winkel 180°
, d = — - = 22,5 ° 180°

= 7,5°

Winkel I I 11 II II II

1,2 0° 22,5° 45° 67,5 90° 112,5° 135° 157,5°
1,3 7,5° 30° 52,5° 75° 97,5° 120° 142,5° 165°
2,3 15° 37,5° 60° 82,5° 105° 127,5° 150° 172,5°

5 = 4 Richtungen
>7= 6 s

s — 1
2

= 6 Winkel « (« — 1) = 18

"Winkel I I I II II II

1,2 0° 30° 60° 90° 120° 150° 180°

1,3 10 40 70 100 130 160 6
1,4 20 50 80 110 140 170 180°
2,3 20 . 50 80 110 140 170 18
2,4 10 40 70 100 130 100
3,4 0 30 60 90 120 150

5 = 5 Richtungen , s .5' — ! _ 10 Winkel , » s = 25>7= ö 2

Winkel II II II

1,2 0° 36° 72° 108° 144°
1,3 7,2 43,2 79,2 115,2 151,2 180°

1,4 14,4 50,4 86,4 122,4 158,4 5
1,5 21,6 57,6 93,6 129,6 165,6 „ 180°
2,3 14,4 50,4 86,4 122,4 158,4 ° 25
2,4 21,6 57,6 93,6 129,6 165,6
2,5 28,8 64,8 100,8 136,8 172,8
3,4 28,8 64,8 100,8 136,8 172,8
3,5 0 36 72 108 144
4,5 7,2 43,2 79,2 115,2 151,2

Zu der Tabelle für s = 5 wollen wir bemerken , dass das frühere Beispiel von § 77. S. 262,
Station Keulenberg , auch s = 5 Strahlen hat , aber nicht n = 5 Wiederholungen , sondern n — 6 ', d. h.
jenes Beispiel Keulenberg von 1872 war zwar in Hinsiebt auf die Winkelmessungen in allen Com*
binationen , aber noch nicht in Hinsicht auf die Wiederholungszahlen nach der neuen Schreiber scheu
Methode angeordnet .
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$ _- X
5 = 6 Richtungen , s —— = 15 Winkel

» = 4 , d = = 45»
4

* (s - l ) = 20 5 = ^ ~ = 9"

5 = 7 Richtungen , s = 21 Winkel

, 180°
n = 4 , cZ= - = 45°

4
180°

ns = 28° ^ = —— = 6,4286 °

Winkel I 11 II

1,2 0° 45° 90° 135°

1,3 9 54 99 144
1,4 18 63 108 153
1,5 27 72 117 162
1,6 36 81 126 171
2,3 36 81 126 171
2,4 27 72 117 162
2,5 9 54 99 144
2,6 18 63 108 153
3,4 0 45 90 135
3,5 18 63 108 153
3,6 27 72 117 162
4,5 36 81 126 171
4,6 9 54 99 144
5,6 0 45 90 135

Winkel I I II II

1,2 0,0° 45,0° 90,0° 135,0°

1,3 6,4 51,4 96,4 141,4
1,4 12,9 57,9 102,9 147,9
1,5 19,3 64,3 109,3 154,3
1,6 25,7 70,7 115,7 160,7
1,7 32,1 77,1 122,1 167,1
2,3 13,9 57,9 102,9 147,9
2,4 19,3 64,3 109,3 154,3
2,5 25,7 70,7 115,7 160,7
2,6 32,1 77,1 122,1 167,1
2,7 38,6 83,6 128,6 173,6
3,4 25,7 70,7 115,7 160,7
3,5 32,1 77,1 122,1 167,1
3,6 38,6 83,6 128,6 173,6
3,7 0,0 45,0 90,0 135,0
4,5 38,6 83,6 128,6 173,6
4,6 0,0 45,0 90,0 135,0
4,7 6,4 51,4 96,4 141,4
5,6 6,4 51,4 96,4 141,4
5,7 12,9 57,9 102,9 147,9
6,7 19,3 64,3 109,3 154,3

Diese vorstehenden Tabellen gelten für freie Stationen; dagegen für Stationen
mit Anschlusszwang wird nach § 78 . verfahren, wie folgendes Beispiel zeigt , mit
2 festen Richtungen 1 . und 2 . und 3 neuen Richtungen 3 . 4 . 5 .

Winkel I I . II I . II II II

i 1.3 0° 60° 120°

12,3 30° 90° 150°

1 1,4 10 70 130
1 2,4 40 100 160

S1.5 20 80 140
1 2,5 50 110 170

I I I II II II

3,4 20° 50° 80° 110° 140° 170°

3,5 10 40 70 100 130 160

4,5 0 30 60 90 120 150

Dieses Täfelchen ist wie folgt zu lesen :
Winkel 1,3 wird gemessen :

in der Kreisstellung 0 °
, Hingang und Rückgang in Fernrohrlage I

, „ „ 60 , Hingang in I, Rückgang in II
, » „ 120 , Hingang und Rückgang in II .
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Winkel 2 , 3 wird gemessen :
in der Kreisstellung 30 °

, Hingang und Rückgang in Fernrohrlage I
„ „ „ 90 , Hingang in I , Rückgang in II
„ „ „ 150 , Hingang und Rückgang in II u . s . w.

Da jeder Winkel im ganzen ebenso oft in Fernrohrlage I wie in Fernrohr¬
lage II gemessen werden muss, so ist es bei ungerader Kreisstellungszahl nicht anders
zu machen, als mindestens in einer Kreisstellung Hingang und Rückgang in verschie¬
denen Fernrohrlagen zu messen .

Wenn die Winkelmessungen nach den vorstehenden Regeln auf allen Stat onen
angeordnet und ausgeglichen sind, so nimmt die Netzausgleichung in allem Wesent¬
lichen die Form der Richtungsausgleichungen von § 59 . und § 61 . an , nur mit dem
kleinen Unterschied, dass die einzelnen Richtungen nicht alle gleiches Gewicht (Ge¬
wicht = 1) haben , sondern Gewichte, welche nach der Tabelle auf S . 269 zwischen
24 und 28 schwanken . Man könnte vielleicht wohl auch die Gewichtsunterscheidungen
zwischen 24 , 25 und äusserstenfalls 28 vernachlässigen, doch bringt deren Mitführung
gar keine Schwierigkeit.

Der Nachweiss , dass die allgemeine Besselsche Netzausgleichung von § 72.
mit § 55 . durch die Schreibersche Winkelmessung in allen Combinationen übergeht
in Netzausgleichung mit einzelnen Richtungen , ist in unserer vorigen 3 . Auflage ,
1890 , S. 252 — 256 im einzelnen formell geführt worden , was wir diesesmal übergehen
wollen , da der Grundgedanke dazu im Vorhergehenden genügend dargelegt ist . Statt
dessen wollen wir im nächsten § 80 . noch ein Netz -Beispiel zu dem besprochenen
Verfahren betrachten.

§ 80 . Die Elbkette .
Zu einem Beispiel der Triangulierungsbehandlung nach Schreibers Winkel-

Methode nehmen wir die „Elbkette “
, deren Netzbild auf S . 280—281 gegeben ist, nach

dem amtlichen Werke : „ Die königl. preussische Landestriangulation “ . Hauptdreiecke .
Vierter Teil. Die Elbkette . Zweite Abteilung , die Beobachtungen und deren Aus¬
gleichung, gemessen und bearbeitet von der trigonometrischen Abteilung der Landes¬
aufnahme. Berlin 1891 , (vgl . Zeitschr. f. Verm . 1888 , S . 399 und 1891 , S . 455 —459.
Zur Anlage dieser Kette im Allgemeinen ist mitzuteilen :

Die Elbkette hat im Osten und im Westen feste Anschlüsse , welche in der
Zeichnung auf S . 280 —281 durch starke Linien angedeutet sind , nämlich :

im Osten Küstenvermessung:
Eichstädt -Eichherg log S = 4 .619 7943 • 5
Azimut (Et — Eg ) = 177 ° 19 ’ 53,221 "

„ (Eg — Et ) = 357 ° 21 ' 14,480 "
im Westen : Baursberg-Havighorst log S = 4 .430 7451 ■8

Baursberg-Kaiserberg log S = 4 .638 2214 ■6
Winkel Havighorst-Baursberg-Kaiserberg = 236 ° 39 ' 50,203 "
Der Anschluss im Osten ist ein in allen Beziehungen fester , während im

Westen , mit zwei Seiten und einem Winkel, nur ein Anschluss in Hinsicht auf die
relative Lage der drei Punkte Kaiserberg, Baursberg, Havighorst stattfindet .

Abgesehen von den Nebenpunkten Schwarzenberg, Lüneburg und Brockhöfe
hat die Elbkette :
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p = 28 Punkte ,
l = 62 zweiseitige Sichtlinien.

Es folgen hieraus nach den Regeln (11 ) S . 173 :
l — 2 p -t- 3 = 9 Seitengleichungen

undZ — p + 1 = 35 Dreiecksgleichungen.
Im Ganzen 44 Bedingungsgleichungen.

Hiezu kommen aber noch zwei Seitengleichungen (V und XLYI ) für linearen
Zwangsanschluss , erstens im Westen mit den zwei Seiten Kaiserberg-Baursberg und
Baursberg-Havighorst , und zweitens eine durchlaufende Seitengleichung von Westen
nach Osten bei Eichstädt -Eichberg . Was den Winkelzwaog in Baursberg betrifft,
so erzeugt dieser nicht eine neue Gleichung, sondern wird dadurch ausgedrückt, dass
die Richtungen von Baursberg nach Kaiserberg und nach Havighorst beide die gleiche
Verbesserung erhalten . (Verbesserung (6) in der Gesamtnumerierung.)

Was die Anordnung der Messungen betrifft , so besteht die Eigentümlichkeit,
dass die Messungen teils nach der alten Bessel sehen Satzmethode , teils nach der
Schreiberschen Methode ausgeführt sind , und zwar in folgender Verteilung (S . 280—281) :

Stationen mit Winkelmessung in allen Stationen mit Richtungsmessungen nach
Combinationen nach Schreibers Methode . der alten, Bessel sehen Methode .

1 . Kaisersberg . . 2 Sichten 15. Dolchauer Berg . 6 Sichten
2 . Stade . . . 3 17 . Polkern . . . . 4
3 . Baursberg . . 5 , (4) 18. Woltersdorf . . 6 n
4 . Litberg . . . 4 19 . Ruhnerberg . . 3 n
5 . Havighorst . . 3 20 . Hexenberg . . . 3 n
6 . Vahrendorf . . 5 21 . Landsberg . . . 5 n
7 . Wilsede . . . 5 22. Arneburg . . . 6
8 . Steinhöhe . . 5 23 . Stöllner Berg . . 7
9 . Hohen -Bünstorf 6 24 . Gollwitzer Berg . 5

10 . Lüss . . . . 3 25. Götzer Berg . . 5
11 . Glienitz . . . 4 26 . Hagelsberg . . . 3
12 . Kedemoissel 4 27 . Eichstädt . . . 3
13 . Pugelatz . . 6 28 . Eichberg . . . 3 n
14 . Höhheck . . 7 Summe 59 Sichten
16 . Zichtauer Berg 3

Summe 65 Sichten
Im Ganzen 65 -1- 59 = 124 Sichten, entsprechend den schon vorher erwähnten

1 = 62 zweiseitigen gemessenen Verbindungslinien.
Die Station Bauersberg hat swei feste Anschlussrichtungen, weshalb die Wiukel -

messung und Ausgleichung nach dem in § 78. beschriebenen Verfahren geschah .
Die Station Baursberg giebt nochmals Gelegenheit zur Ausgleichungvon Winkeln

mit Anschluss an zwei feste Richtungen . Man hat nämlich aus „Kön . Preuss. Landes-
Triang., Hauptdreiecke, IV. Teil“

, die Elbkette 1891 , S . 69—70 durch Mittelbildung
die folgenden 9 gemessenen Winkel und dazu einen fest gegebenen Winkel [1,5 ] .

1. Havighorst | 2. Vahrendorf 3. Litberg . 4. Stade . 5. Kaiserberg .
1(1,2) = 50° 46 ' 35,17" (1,3)= 107° 55' 45,37" (1,4)= 178° 56' 37,13" [l,5 ] = 236° 41'37,75"

1 1 z>= 1 p = i fest gegeben
(2,3)= 57° 9' 10,24" (2,4) = 128° 10' 3,29"

(2,5) = 186° 55' 0,50"
i>= 2 j>= 2

(3,4) = 71° 0' 52,95"
jo = 2

P = 1

(3.5) = 128° 45' 51,98"
P - 1

(4.5)= 57° 44'58,60"
^ = 1

Jordan , Handb . d. Vermessungskunde . 4. Aufi . I. Bd . 18
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Zuerst eliminiert man den Anschlusszwang, wobei wir nur noch die Sekunden
schreiben :

(1,3) = 45,37"

[1,5 ] — (3,5) = 45,77
(1,2) = 35,17"

[1,5 ] — (2,5) = 37,25 [1 .5] -
(1,4) = 37,13"

- (4,5) = 39,15
Mittel (1,2) = 36,21 "
Dazu von oben :

Mittel (1,3) = 45,57 "

(2,3) = 10,24
Mittel (1,4) = 38,14"

(2.4) = 3,29
(3 .4) = 52,95

Diese 6 Winkel haben nun alle p = 2, sind also gleichgewichtig. Man gleicht
dieselben so aus :

n 2 ) _ J 36’2
( 36,2 (1,3) = 45,57 ”

, , , , ( 38,14 "
( 1 ’4) =

t38,14 (2,3) = 10,24"
( 36,21 ”

1,21
^ ’"; -

) 45,57 v‘ ’ *' -
| 38,14 V“ ’"' ' _

U0,24
(1 .3)— (2,3) = 35,33 (1,4)— (3,4) = 45,19 ( l,2 ) + (2,4) = 39,50 (1,3) — (1,2 ) = 9,36
( 1 .4)— (2,4) = 34,85 ( 1,2)—(2,3) = 46,45 ( l,3 ) + (3,4) = 38,52 (3,4) —(2,4) = 10,34
Mittel [1,2] = 35,65 "

[1,3] = 45,70 "
[1,4] = 38,58 "

[2,3] = 10,04"

Ebenso auch noch [2,4] = 2,92” und [3,4] = 52,88 " .
Wenn man alles zusammen nimmt, die Grade und Minuten wieder zusetzt ,

und das Ergebnis der Ausgleichung in Form eines Richtungssatzes mit Havighorst
als Anfang = 0 ° 0 ' 0" schreibt, so hat man :

1 . Havighorst = 0 ° 0’ 0,00"
2 . Vahrendorf = 50 46 35,65
3. Litberg = 107 55 45,70
4 . Stade = 178 56 38,58
5 . Kaiserberg = 236 41 37,75

Betrachten wir weiter beispielshalber die Station Litberg näher , so sehen wir
zuerst, dass dieselbe 4 Richtungen hat : Baursberg, Vahrendorf, Wilsede, Stade ; es
ist daher nach der Tabelle von § 79. auf S. 270 mit s = 4 gemessen worden , d. h.
6 Winkel mit n = 6 facher Wiederholung in Lage I und II oder 2 n = 12 facher
Wiederholung der Einzellagen. Es treten daher auf S . 72—73 des amtlichen Werkes
„Elbkette “ im Ganzen 72 Winkelmessungen auf mit den Normalgleichungen:

24 A = + 1,35"
24 B = + 1,20
24 O = — 3,80
24 D = + 1,25

A = 4- 0,056" i
B = + 0,050 I
C = — 0,158 |
D = + 0,052 )

Die hiezu gehörigen Gewichtsgleichungen werden ebenso einfach , nämlich :
( 10 ) = 0,0417 [10] |
(11 ) = 0,0417 [11 ] (

(b)
(12) = 0,0417 [12] (
(13) = 0,0417 [13] )

Diese Gewichtsgleichungen sind entsprechend den GewichtsgleichungenXV auf
S . 159, deren erste heisst :

(!) = (« «) [ l ] + (« ß [2] H- (« y) [3]
Es ist also in der vorstehenden Gleichungsgruppe (5) :

(aa ) = (ßß ) = (y y) = 0,0417 = ^
(« (!] = (« /) = . . . = 0
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Auch die vorstehende Gruppe (a) ist im allgemeinen Falle durch die viel um¬
ständlicheren Gleichungen III und VIII c unten auf S, 156 vertreten .

Man sieht also deutlich , dass die Schreibersche Methode in der allgemeinen
alten Besselsehen Methode von S . 156— 160 in aller Strenge mit enthalten ist , aber
viel einfacher ist als jene .

In allem übrigen verweisen wir auf das oben S . 272 citierte amtliche Original-
Werk „die Elbkette “ .

Litteratur-Angaben zu § 75 .—80.
Die ersten allgemeinen theoretischen Untersuchungen über Stations - und Netzausgleichungen

mit Winkeln und Eichtungen hat Hansen angestellt in seinen Abhandlungen „Von der Methode der
kleinsten Quadrate 1868—1871“, (vgl . die Anmerkung unten auf S. 145). Hansen hat bereits die
8 Fälle erkannt , in welchen Stationsausgleichungen in Form von unabhängigen Richtungen darge¬
stellt werden können , nämlich 1) lauter volle Sätze , 2) nicht mehr als 3 Strahlen , 3) Winkelmessung
in allen Gombinationen . Namentlich diesen dritten Fall hat Hansen behandelt in „fortgesetzte
geodätische Untersuchungen , bestehend in 10 Supplementen “ u . s. w. Abh . d . math . phys . CI. d .
K. sächs . Ges. d . Wiss ., IX . Band , 1871, S. 169—184, „das Beobachtungsverfahren betreffend , welches
Gauss in der Hannoverschen Gradmessung angewendet hat .“

General Schreiber hat die Methode der Winkelmessung in allen Combinationen , sowohl
theoretisch behandelt als auch praktisch verwertet in dem amtlichen Werk : „Die Königl . Preuss .
Landes - Triangulation , Hauptdreiecke , XI. Teil . , 2. Abteilung , Berlin 1874“. Dazu gehört auch
„Über die Anordnung von Horizontalwinkel -Beobachtungen auf der Station “, von Schreiber , „Zeitschr .
f. Verm . 1878“, S. 209—237 und Richtungsbeobachtungen und Winkelbeobachtungen , Schreiber ,
„Zeitschr . f. Verm ., 1879“, S. 97- 149.

Die Charakterisierung des Verfahrens der Winkelmessung in allen Combinationen ist von
General Schreiber in der „Zeitschr . f . Verm . 1878“, S. 209—211 gegeben worden , wobei die
Zeichen p , n, q andere Bedeutungen haben als in unserem Vorhergehenden , wie folgt :

pWenn auf einer Station n Richtungen vorhanden und p volle Beobachtungsreihen oder —

volle Sätze (zwei Beobachtungsreihen hin und her bilden einen Satz ) gemessen sind , so ist mit
np Einstellungen das Gewicht p für jede Richtung erreicht , wobei das Gewicht einer einmaligen
Richtungsbeobachtung gleich 1 gesetzt ist . Misst man dagegen jeden Winkel q mal , so ist die An¬
zahl der Einstellungen gleich n (n — 1) q, (da n Richtungen V» n (n — Winkel bilden ). Um daher
in beiden Fällen gleiche Gewichte der Resultate zu erhalten , muss man haben :

n q 2 p— = p , woraus q = —
2 r n

Es wird somit das Gewicht p für jede Richtung erreicht :
1) mit np Einstellungen bei Messung voller Sätze ,
2) mit 2 (n — 1) p Einstellungen bei Messung von Winkeln .

Demnach erfordern Winkelbeobachtungen mehr , niemals aber doppelt so viel Einstellungen
als Richtungsbeobachtungen , selbst niebt in deren günstigstem Falle (bei vollen Sätzen ). Je weniger
es auf einer Station möglich gewesen ist , in lauter vollen Sätzen zu beobachten (was schon bei
Stationen von 4 Richtungen selten möglich ist ), um so mehr geht die Überlegenheit der Richtungs¬
beobachtungen bezüglich der Einstellungszahl verloren ; immerhin bleiben die letzteren gegen
V’

inkelbeobachtungen im Vorteil . Oder mit andern Worten : je länger auf einer Station die Beob¬
achtungsreihen , desto weniger Einstellungen sind nötig , um ein bestimmtes Gewicht der Resultate
zu erreichen .

Trotz dieses Ergebnisses und im Widerspruch mit der seit Bessel allgemein befolgten geo¬
dätischen Praxis bin ich bei der Preussischen Landestriangulation (1868 18 (4) immer mehr zu der
Überzeugung gekommen , dass üie Überlegenheit langer Beobachtungsreihen gegenüber den kurzen ,
im Sinne der wie oben berechneten Gewichte , nur eine nominelle , an wirklicher Genauigkeit aber
eine illusorische ist ; dass vielmehr kurze Beobachtungsreihen den langen , insbesondere aber die
kürzesten allen andern , d . h . reine Winkelbeobachtungen den Richtungsbeobachtungen vorzuziehen sind ,
iveil sie bei gleichem Zeitaufwand genauere Resultate geben .

Die Gründe , die mich zu der oben ausgesprochenen Ansicht geführt haben , sind folgende :
1. Eine kurze Beobachtungsreihe giebt die Richtungsunterschiede im Allgemeinen genauer ,
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als eine lange , und dies ist um so mehr der Fall , je weniger fest die Aufstellung des Instrumentes

und dieses selbst ist . Der obige Vergleich der Einstellungszahlen bei gleichen Gewichten der

Resultate wird dadurch wesentlich zu Gunsten der Winkelbeobachtungen modifiziert . Dies tritt

im stärksten Masse bei Pfeilerdrehung hervor , die bei Triangulationen in flachen , und selbst in

bergigen , aber waldreichen Gegenden gar nicht zu vermeiden ist .
2. Bei kurzen Beobachtungsreihen kann man in derselben Zeit mehr Einstellungen machen ,

als bei langen , besonders aus dem Grunde , weil bei diesen der Zeitverlust infolge des Ausbleibens

von Lichtern und sonstiger Unterbrechungen viel grosser ist , als bei jenen .

3. Bei Anwendung von Winkelbeobachtungen kann auf jeder Station nach einem bestimmten ,

im voraus entworfenen Beobachtungsplan , welcher die Anzahl der Messungen jedes Winkels , die

Fernrohr - und Kreislagen u . s . w . genau vorschreibt , beobachtet werden , während eine derartige

Anordnung für Richtungsbeobachtungen undurchführbar ist . Bei erstem wird dadurch eine weit

vollständigere Elimination von konstanten Fehlern und Teilungsfehlern möglich .
4. Auf den meisten Stationen giebt es eine oder mehrere Richtungen , deren Beobachtung

weit schwerer und seltener als die der übrigen , und nur mittelst rascher Wahrnehmung einzelner

Gelegenheiten von kurzer Dauer gelingt . Zur Ausnützung solcher Gelegenheiten ist die Winkel -

methode weit geeigneter als die Richtungsmethode .
Diese Erwägungen und Erfahrungen sind es , die mich schon seit dem Jahre 1871 zur aus¬

schliesslichen Anwendung von Winkelbeobachtungen geführt haben (vgl . Hauptdreiecke , 2. Baud ,

2. Abteilung : die Stationen Marienberg , Brautberg , Keulenberg , Brandberg und Schneekoppe der

Märkisch -Schlesischen Kette , sowie im 3. Bande sämtliche Stationen des Märkischen Netzes ); aber

erst 1875 habe ich dieser Methode diejenige Ausbildung gegeben , in der sie seitdem konsequent

von der trigonometrischen Abteilung für alle Messungen erster Ordnung angewandt ist , und

zwar mit grossem Gewinn , nicht nur an Genauigkeit , sondern auch an Zeit .

Hauptdreiecke.
Kg . 1.

§ 81 . Allgemeine Beziehungen zwischen Winkelausgleichung
und Bichtnngsansgleichung .

Nachdem wir im Bisherigen schon manche Beziehungen zwischen Winkeln
und Richtungen betrachtet haben , z. B . die Stationsausgleichung von Winkelmessungen
in allen Combinationen sowohl mit Winkeln als auch mit .Richtungen als Unbe¬
kannten (§ 77 .) , wollen wir noch eine zur Aufklärung im Allgemeinen nützliche
Theorie vorfuhren aus dem Werke : „Die Königlich Preussische Landestriangulation“.

Zweiter Teil. Zweite Abteilung. Berlin 1874 . Auf S. 303—318

daselbst findet sich eine Abhandlung von Schreiber: „Vereinfachte
Form der Stationsausgleichungsresultate “ , deren Grundgedanken
darin besteht , dass den Stationsausgleichungsresultaten nicht (wie

bei Bessel ) die Form von Winkeln . . . , sondern die Form von

Sichtungen gegeben wird.
Wenn 3 Strahlen 0 P ° OP ' 0 P ” mehrfach eingeschnitten

sind , so kann man als Unbekannte der Ausgleichung zunächst
die 2 Winkel A , B betrachten , welche die Strahlen 0 P ' 0 P

mit dem Strahl 0 P ° bilden (Fig . 1 .). In dieser Weise wird bei

der Bessel sehen Ausgleichung verfahren (welche in unserem § 71 .

gelehrt wurde ) . Wir gehen nun aber zu einer anderen Anschau¬

ung über, und betrachten nach Fig . 2 . die 3 Richtungen ABC

als Unbekannte, dann ist vorerst so viel klar , dass B —■A nach

Fig . 2 . — A nach Fig . 1. ist , oder allgemeiner:
Annahme Fig . 1 . Annahme Fig . 2.

Winkel A = Richtungsunterschied B — A ßj
„ B „ C - A
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Um die zweite Annahme aus der ersten hervorgehen zu lassen , erinnere man
sich , dass „Richtungen “ nichts anderes sind , als Winkel , welche die geodätischen
Strahlen 0 P ° OP ' 0 P " mit irgend einem , seiner geodätischen Lage nach unbe¬
kannten , aber für alle Richtungen gemeinsamen Anfangsstrahl 0 N bilden , weshalb
die Richtungen A , B , C von Fig . 2. ausführlicher durch
Fig. 3 . dargestellt werden können. Wenn nun in Fig . 3.
0 N ebenfalls ein geodätischer, miteingeschnittener Strahl
wäre , so würde man offenbar für Pig . 3 . ein Normal-
gleicliungssystem von der allgemeinen Form (10 ) § . 71 . S . 235
erhalten , nämlich :

(a a) A -+- (a b) B -+- (o c) C + (o 1) = 0 i
(ab ) A -
(a c) A ■

(6 b) B -
■(6 c) B -

{bc ) C -
(cc ) 0 -

■(bl ) = 0
(c l ) + 0

(2 )

Fig . 3.

wobei die Coefficienten (a a) (ab ) . . . die Bedeutungen von § 71 . S . 236 haben, jedoch
so , dass (nach Pig . 3 .) p ° dem fingierten Strahl ON entspricht , p ' dem Strahl
P ° u . s . w.

Um vollends die Normalgleichungen (2) völlig dem Palle von Pig . 3 . oder

Fig, 2. anzupassen, hat man nichts zu thun,. als alle p °
, d . h . p \ ° , p %

° , Ps ° • • • = Null
zu setzen . Thut man dieses in (8) , (9) und (11 ) § 71 . S . 235—236 , so findet man :

(a a) + (a b) + (a c) = [p '] — ~ ~ (pi + P \
" + Pi " ■+ ■• ■)

W + PJ ' + & " + - )

Nun ist aber in diesem Palle , weil alle p ° = 0 sind,

[P \} = P \ + P{ ' + p{" + ■■■
[pil — P<z -+- p4 ' + p { " + • • • u- s- w-

also (a a) + (o 6) + (a c) = [p ' \ —- QV -\- p{ -1- 7)3
' + . . .) = 0

Auf ähnliche Weise beweist man auch , dass alle anderen Yertikalreihen der

Normalgleichungen (2) die Summe Null geben , d. h . :
(o a) -+- (a b) + (a c) = 0 t
(a b) + (b b) + (bc ) = 0 [ (3)
(a c) -+■(5 c) -1- ( c c) = 0

*

(o l) (6 l) + (c l) = 0 (4)

Naturgemäss haben wir damit gefunden , dass ein Normalgleichungssystem von
der Form (2 ) , welches sich auf Richtungen A , B , C . . . bezieht, keine eindeutige
Auflösung zulässt , denn diese Gleichungen (2) sind vermöge (3) und (4) nicht unter¬
einander unabhängig .

Obgleich die elementare Algebra die Unmöglichkeit einer eindeutigen Auf¬

lösung der Gleichungen (2) lehrt , wollen wir dieses doch noch unmittelbar verfolgen :
Wenn A , B , C ein System ist , welches den Gleichungen (2) genügt , und man
setzt an deren Stelle bzw. A -h z , B -j- z , C -+- z , so hat man aus (2) :

(a a) (A -+- z) -\- (a b) (B + z) + (a c) (0 + z) + (a l) = 0,
h -: (a a) A -h (a b) B -h (a c) C A- (a l) + j(a a) + (a b) + (a c) \ z = 0
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Fig . 4. Der erste Teil verschwindet wegen (2) und der zweite Teil
wegen (3) ; es ist also die Gleichung, welche für A , 5 , G befrie¬
digt war , auch für 4l + .? , 5 + z , G + z allgemein richtig.P

G
B

P " solche = 0 setzen , z . B . A = 0 gesetzt, giebt aus (2 ) :
(a 6) 5 + (o c) C + (a Z) = 0 \
(bb ) B - }- (6 c) C + (b Z) = 0 | (5)
(6 c) B + (c c) 0 + ( e Z) = 0 I

Da eine Richtung unbestimmt bleibt , so kann man eine

(b b) 5 + (bc ) C + (bZ ) = 0
(6 c) B -+- (e c) G + ( e Z) — 00

Wegen (3 ) und (4) kann man hier eine Gleichung beliebig
weglassen, z . B . die erste , und dann erhält man die
Winkel B und G (Big. 4 . ) eindeutig bestimmt durch
die Gleichungen:

(b b) B + (6 c) 0 + (6Z ) = 0
(6 c ) 5 + (e c) G + (c Z) = 0P'

Die umgekehrte Operation , nämlich Winkel¬
gleichungen in Richtungsgleichungen zu verwandeln ,
ergiebt sich ebenfalls aus (3) und (4) , wie an einem
Zahlenbeispiel erläutert werden soll.

Wenn gegeben ist (zu Big. 5 . ) :
+ 27 A — dB — 40 + 13,4 = 0 i
— 9M + 18 5 — 60 — 7,0 = 0 | (7)
- 44 - 65 + 150 — 12,9 = 0 I

so bildet man die Summengleichung :
+ 14A + 35 + 5C — 6,5 = 0

den Gleichungen (7) ; also :
Summen :
— 22 — 14 A — SB — 5C + 6,5 = 0 |
+ 14 + 27 A — 95 - 40 + 13,4 = 0 I ,g,
+ 3 — 9A + 18 5 — 60 — 7,0 = 0 j

U

+ 5 — 4 A — 6 5 + 15 0 — 12,9 = 0 '

Endlich bildet man daraus , mit Verschiebung der Be¬
zeichnungen A B C D nach Big. 1 . und Big. 2 . :

-h 22 A — 14 5 — 30 — 5 5 + 6,5 = 0 i
— 14 A -h 27 5 — 9C — 45 + 13,4 = 0 I ,g,
— 34 - 95 + 18 0 — 6 5 — 7,0 = 0

|
U

— 54 - 45 — 6C + 15 D — 12,9 = 0 )

— 22 — 14 A — 3 5 — 5C + 6,5 = 0
+ 14 + 27 41 - 95 - 40 + 13,4 = 0
+ 3 — 9A + 18 5 — 60 — 7,0 = 0

Endlich bildet man daraus , mit Verschiebung der Be¬
zeichnungen A B C D nach Big. 1 . und Big. 2 . :

+ 22 A — 14 5 — 30 — 5 D + 6,5 = 0

— 34 - 95 + 18 0 — 6 5 — 7,0 = 0

Dadurch haben wir nun die 3 Normalgleichungen (7),
welche sich auf 3 Winkel A , 5,0 von Big. 5 . beziehen,

_ r . -r-, • 1

Man kann nun wieder irgend eine andere Rieft-

— 14M + 275 — 9C -+- 13,4 = 0 [ (1°.
— SA — 95 + 18 0 — 7,0 = 0 J

(10)
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Dieses Winkelsystem (10) bezieht sich auf dieselben 4 Strahlen wie das Winkel -
System (7) , abgesehen von den Bezeichnungen ABC (vgl . Fig . 5 . und 7 . ) . Man kann
also durch Vermittlung von Richtungen ein Winkelsystem auf andere Nullpunkte
reduzieren .

Wir wollen diese allgemeine Theorie dazu benützen ,
bzw. daran erproben, dass wir den schon in § 77. erledigten
Pall von Winkelmessungen in allen Combinationen nochmals
vornehmen :

Pig . 8. stellt einen solchen Pall mit 4 Strahlen und
6 Winkeln vor .

Zwischen den Strahlen 1 , 2, 8, 4 sind alle 6 Winkel-
combinationen ( 1,2) ( 1,3) (1,4) (2,3) (2,4) (3,4) gemessen .

Die 3 Winkel ABC von Fig . 8 . seien die unabhängigen
Unbekannten , dann hat man für die erste Messung die Fehlergleichung:

®12 = .A — ( 1,2),
oder für die 4te Messung besteht die Fehlergleichung :

u2g — B — A — (2,3 ) u . s . w.
Alle 6 derartigen Fehlergleichungen sind (ebenso wie in (2) S . 260 ) :

Fig . 8.

1

®I2 — + A . . . . — (1,2 ) 1

®13 = • • -+- B • • — ( 1,3 ) j
®u = . . . . + C — (1,4) (
v23 = — A + B . . — (2,3) /
v2i = — A , . + C — (2,4) 1
®34 = . . — B -h C — (3,4) /

die Normalgleichungen hiezu :
3M — B — C — (a 1) = 0 j

— 4 + 3B - C — (bl ) = 0 1
— A — B -hSC — (cZ) = 0 I

Die Absolutglieder hiezu sind (ebenso wie bei (3) S . 260) :

( 11 )

(12)

(aZ) = (1,2) - (2,3) - (2,4) j
(6 l) = (1,8) + (2,3) - (3,4) (13)
(c l) = (1,4) + (2,4) + (3,4) >

Nach dem Verfahren, welches an dem Beispiel von ( 7) bis (9) erläutert wurde ,
wird das auf Winkel ABC bezügliche System (12 ) in ein für Richtungen giltiges
System umgewandelt, worin nach Pig . 8. jetzt die Richtungen X , A'

, B '
, C' statt

der Winkel ABC eingeführt sind.
Man findet:

X — A’ — B ' — C (a l) + (b l) (c l) = ° |
x + 3 A' - B ' — C ' - (al ) ” 0 | (14)X — A' + 3 C ' - (& l) = 0 ( ’

X — A' — B ’ + 3C ' — (c l) = 0 1

( 14) ein dem Winkelsystem (12 ) äquivalentes Richtungssystem ist,
2®igt sich darin, dass die Summen -Beziehungen (3) und (4) in (14) erfüllt sind .

(Fortsetzung s, S. 282.)
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(16)

(Fortsetzung von S. 279.)
Da das System ( 14) keine eindeutige Lösung giebt , muss eine Willkür ein-

treten ; man nimmt möglichst bequem :
X + A' + B ' + C ' = 0 (15)

addiert diese Gleichung zu jeder einzelnen von (14) und erhält damit :
4X . + (al ) -+- (bl ) + (cl ) = 0

4 A ' . . . . — (a l)
AB ' . . — {bl )

4 C ' + {cl )
Damit bekommt man 4 Werte X , A'

, B '
, C '

B ' — X , C ' — X nichts anderes sind als die A B 0 aus (12) , was sich am ein¬
fachsten dadurch beweist , dass man in (12) die Summe der 3 Gleichungen zu jeder
einzeln addiert und dann bequem nach ABO auflöst.

Dem System (16) entspricht das folgende Gewichtsgleichungssystem :
4 (a a) . = 0

4 (aß ) . = 0
4 (« y) . . . = 0

4 (« ö) = 0

woraus (a a ) =

= 0

= 0

= 0

deren Differenzen Al — X,

(aß ) = 0 (a y) — 0 (a Ö) = 0
oder allgemein für eine Station mit s Strahlen :

(aa ) = (ßtf ) = (yy) = . . . = i

(a ß) = (a y) = (ß y) = . . . = 0
Damit haben wir die Hauptteile der Theorie von § 77 . auf einem zweiten

Wege gefunden .

§ 82. Genäherte Richtungsgewichte .
Die Zusammenfassung und Ausgleichung von Stationsmessungen ist in Form

von Richtungen mit Richtungsgewichten nach dem bisherigen möglich in 3 Fällen :
1 ) bei lauter vollen Richtungssätzen (§ 75 .),
2 ) in dem Falle dreier Richtungen (§ 76 .) ,
3 ) bei Winkelmessungen in allen Combinationen (§ 77 .)

In diesen Fällen kann die Gesamtheit aller auf einer Station gemachten Theo¬
dolitmessungen für Netzausgleichungszwecke vollkommen ersetzt werden durch einen
Satz von Richtungsmessungen, dessen Richtungen gewisse angebbare (bei 1) und 3)
gleiche) Einzelgewichte zukommen , so dass darauf eine Ausgleichung nach § 40.
gegründet werden kann.

In fast allen anderen Fällen von Stationsmessungen kann das Ergebnis der
Stationsausgleichung nur als ein Satz von Winkeln oder Richtungen in Verbindung mit
einer Gruppe von Gewichtsgleichungenweiter zur Netzausgleichung benützt werden, und
diese Gewichtsgleichungen (XV . S . 159) mit ihren Gewichtscoefflcienten [a a ] , [« ßl
[a y] . . . sind es hauptsächlich , welche eine derartige Netzausgleichung ungemein
schwerfällig und mühsam machen , wie schon an unserem kleinen Schulbeispiel von
§ 72. gesehen werden kann.
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Aber auch abgesehen von dieser Rechenmühe hat diese Besselsche Netzaus¬

gleichung mit Gewichtsgleichungen sich stets mit einem noch wichtigeren Übelstande

behaftet gezeigt , indem der mittlere Fehler der JVeteausgleichung (m2 oder p.2 unten

auf S . 159) erheblich grösser gefunden wurde als der mittlere Stationsfehler (ml oder ßi
auf S . 157), was auf Fehlerursachen hindeutet , welche auf den Stationen verborgen
bleiben und erst im Netze zu Tage treten .

Alle diese Umstände haben schon lange den Wunsch der Geodäten erzeugt,

Netzausgleichungen für beliebige Stationsmessungen ohne Gewichtsgleichungen, mit

näherungsweise anzunehmenden Einzelgewichten der Richtungen durchzuführen. So

wurde schon etwa 1850 die grosse britische Triangulierung (Ordnance trigonometri-

cal survey ) nach Einzelgewichten ausgeglichen, wobei teils die Abweichungen der

einzelnen Richtungsmessungen von ihrem Mittel, teils die Zahl der Einstellungen
als Genauigkeitsmass diente . Damals vor 1858 war die Theorie der Netzausgleich¬

ungen überhaupt noch nicht völlig klar vorhanden , und jedenfalls den britischen

Geodäten noch nicht verfügbar ; jenes Verfahren war das Ergebnis einer gesunden

Empirie .
Später, etwa um 1870 haben wir ein ähnliches Verfahren bei der Neuausgleich¬

ung der alten Bayerischen Triangulierung durch v . Orff, welcher schlechtweg die

,Anschnittszahlen“ als Richtungsgewichte nahm , wie wir beispielshalber in § 76 .
S. 258 gezeigt haben.

Einen wesentlichen Fortschritt hat die Bestimmung genäherter Richtungs¬
gewichte gemacht in einer Theorie von Helmert, welche enthalten ist in der „Veröffent¬

lichung des Königlich preussischen Geodätischen Instituts und Centralbureaus der

internationalen Erdmessung . Die Europäische Längengradmessung in 52 Grad Breite
von Greenwich bis Warschau. I. Heft, Hauptdreiecke und Grundlinienanschlüsse von

England bis Polen“ , Berlin 1893, S . 37—42 , und in einer Abhandlung in „Astr.
Nachrichten “

, 134. Band , 1893 , S . 281—296 „Über eine Vereinfachung bei der Ein¬

führung von Stationsergebnissen in der Ausgleichung eines Dreiecksnetzes . “ (Bericht
hierüber Z . f. V. 1894 , S . 212 —222 ).

Indem wir diese Theorie hier mitteilen , wollen wir auch die Helmert sehen

Bezeichnungen wegen des Anschlusses an die citierten Originalschriften, hier beibe¬
halten , und müssen dazu zuerst bemerken , dass nun mit q eine Gewichts -Reciproke
bezeichnet werden soll im Gegensatz zu unserem vorhergehenden § 76 . u . s . w., wo q
das Gewicht selbst einer ausgeglichenen Richtung war .

Auch seien die Gewichts-Coefficienten , welche in unserem früheren § 28. teils
mit Qi , » Qs» teils mit [a «] , [« fl] , [« y\ u . s . w. bezeichnet waren , nun in
erster Linie mit Q22 , Q23 , q 2i u . s . w . bezeichnet.

Wenn eine Stationsausgleichung nach § 71 . vorliegt mit zwei Winkeln x ' und x”

als unabhängigen Unbekannten , so findet man die Gewichte von x' und x" bei der

Ausgleichung bzw . p' = und »" = wobei fa a] und Iß ß] die Gewichts -
[« «] [P PJ

Coefficienten nach § 28. und § 29 . sind. Auch das Gewicht P der Differenz x" — x ' ,
d- h . des Winkels zwischen den zwei Strahlen P ' und P " von Fig . 1 . S . 232 lässt
sich angeben , denn es ist x" x’ eine lineare Funktion der unabhängigen x ' und x" ,
nämlich nach ( 1 ) S . 92 . :

a" — x' = F = fi x ' + f2 x" + f8 x'"

fl = — 1 , fä = + 1 > fs — 0wobei
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folglich nach (3 ) S . 92 :
1 = [« «] - 2 [« /*] + [JS

Eine solche Formel gilt für jeden nach der Ausgleichung erhaltenen Winkel ,
und wenn wir nach dem vorhergehenden Citate die Gewichtscoefficienten anders be¬
zeichnen , nämlich [aa ] = <922 , [a ß ] = Q2i , [ß ß ] = Q33 , und die Winkel selbst
a:' = (1,2 ) , x " — (1,3 ) , also x " — x ’ = (2,3 ) , so wird die Gewichtsreciproke des
Winkels (2,3 ) ausgedrückt durch

223 = Q22 — 2 <223 4 - Qas
Nach diesen Festsetzungen über die Wahl der Bezeichnungen betrachten wir

zunächst den Fall einer Stationsausgleichung mit 4 Strahlen .
Zwischen diesen 4 Strahlen 1 , 2 , 3 , 4 bestehen 6 Winkel , welche nach der

Ausgleichung folgende Gewichte haben sollen :

Winkel (1,2 )
. ( 1 .8)
, (1 .4)
. (2,3 )
, (2,4 )
. (3,4 )

mit Gewicht

» j»
» *
n n

= 1 : Q22 = 1 : äl2
1 : $ 33 = 1 : 2 i 3
1 Qu — 1 2«
1 : ($ 22 + $ 33 — 2 Q 23) = 1 : 223
1 : ($ 22 + $ 44 — 2 Q u ) = 1 : 224
1 : (Q33 + Qu — 2 $ 34) = 1 : 234

(1)

Nun soll ein Satz von Richtungsmessungen mit Einzelgewichten der einzelnen Strahlen
an die Stelle des Ausgleichungsergebnisses gesetzt werden ; sind die Reciproken der
Einzelgewichte der 4 Strahlen bzw . 2i , 22 , 23 , 24 , so müssen die Gleichungen
bestehen ;

2i2 — 21 + 22 213 — 2i + 23 214 — 2l + 24 j
223 = 22 + 23 224 = 22 + 24 (2>

234 = 23 + 24 ’
Wenn nur drei Strahlen vorhanden wären , so würden auch nur 3 von diesen

Gleichungen vorhanden sein , nämlich :
212 = 2i + 22 2i3 = 2l + 23 I (3)

223 = 22 + 23 )
und daraus lassen sich die 3 Unbekannten 21 , 22 > 23 geradezu bestimmen, nämlich :

„ _ 212 + 213 — 2232i -
2

-

„ _ 212 — 213 + 22322 - -
2
-

— 212 + 213 + 22323 - -
2
-

Wenn man nach ( 1) hier einführt :
2i2 = $ 22 > 2is = $ 33 , 223 = Q22 + $ 33 — 2 Qas ,

so erhält man aus (4) die Gewichtsreciproken (ebenso wie (19 ) S . 258 ) :
2i = Q23 , 22 = Q22 — $ 23 , 23 = $ 33 — $ 23 (®)

Durch diese Gleichungen (3)—(5) haben wir in neuer Form nochmals dasselbe
gefunden , was als Spezialfall schon in § 76. behandelt worden ist , nämlich dass in
dem besonderen Falle dreier Strahlen die Stationsausgleichung sich stets in der Form

von Richtungen mit Einzelgewichten — der ausgeglichenenRichtungen erledigen lässt.
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Nun hehren wir zu dem Palle von 4 Strahlen mit den Gleichungen (1) und
(2) zurück .

Da man hier 6 Gleichungen in der Gruppe (2) und nur 4 Unbekannte qi , g2,
q3 , 24 hat , ist eine völlige Lösung nicht möglich , es sollen daher die 4 Werte q
so bestimmt werden, dass sie den Gleichungen (2) möglichst (nach der M. d. kl. Q.)
genügen . Betrachtet man die obenstehenden 6 Gleichungen (2) als Fehlergleichungen ,
so gehen sie folgende 4 Normalgleichungen :

3
_2x -+- 22 + fe + 24 — si = 0 wo «j = 212 + 2i3 + 2u
gl + 3 22 + 23 + 24 — «2 = 0 s2 = 212 + 223 + 224
2l + 22 + 8 23 + 24 — SS — 0 % = 2l3 + 223 + 234
2l + 22 + 23 + 3 24 ~ s4, = 0 s4 = 2u + 224 + 234

S = -t- s2 -+- S3 -+- S4
Die Auflösung dieser 4 Gleichungen gieht :

Gewichts -Reciproke 21 = tt — tö 1

„ _ £2 _ mit der Summe f
9 9 ~ 2 12 \

S 1
= 2l + 22 + 23 + 24 = -7T [

9 9 2 12 b l

_ «4 S )
» » 24 - 2 12 /

(6)

(7 )’

Dieses (6) Und (7 ) gilt für den besonderen Pall mit 4 Strahlen ; im allgemeinen-

Falle mit n Strahlen ist eine ganz analoge allgemeinere Behandlung zu machen, wo¬
bei die Normalgleichungen statt (6 ) folgende werden :

(« — 1 ) 2l + 22 + 23 +
2i + 0 — 1) 22 + 23 +
2l + 22 + (w — 7) qs +

-H 2» — Si = 0
+ 2» — s2 = 0
-f~ qn —■% = 0 (8 )

2i + 22 + 23 + ■ • • (n 7) rjn s„ — 0

Die Absolutglieder s haben hier folgende Bedeutungen:

212 + 213 + 2h + • • • ?i» =

221 + 223 + 224 + • • • 22» = s2
dabei ist q12 = g2iN 231 + 232 + 234 + • • • 23» = ss
213 = 231 s . w. ) .

2» i + 2» 2 + 2« s + • • • 2c»- 1) » ~ Sn

S4 -j- s2 -t- S3 -H . . . -S» = <S
Zur Probe hat man direkt aus den Q :

S = 2 (n - 1) (Q22 + & 3 + & 4 + • • • Qnn) - 4 (Ob + ft 4 + . . . + « w + . . . Q<- v ) (10)

Die allgemeine Formel zur Berechnung eines q ist :

Sl J _^ n — 2 2 (re — 1) (w — 2)
s2_ S_

n — 2 2 (w — 1) (w — 2)22 = u. s . w .,
(11)
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wobei noch die Summenprobe besteht :
ß

2l + 22 + 23 + • • • 2» =
2 (n _ p)

(^ )

Geht man auf die Bedeutung von s und S als Funktionen der Q zurück , so
findet man die Formeln :

_ 2 (Q23 + Q24 + ■. •)
(n — 1) (»? — 2)

. . n 2 (^23 + $ 24 + $ 25 + ■• • $ 2»)
22 = 2i + V22 -

n _ 2
-

23 = gl + Oss - - (<382 + ' ' M

(18)

u . s . w. , wobei in den Summen nur nichtquadratische Indices zu beachten sind,
also nur z . B . Q& , <J)34 . . . nicht aber Q 88, u . s . w.

Wir betrachten bei n Strahlen die (n — 1) Winkel , welche irgend ein Strahl
mit den übrigen Strahlen bildet , z . B . den Strahl 1 in Verbindung mit den Strahlen
2 , 3, 4 . . . , dann kann man die Fehlerquadratsumme für solche n — 1 Winkel doppelt
ausdrücken , sowohl in den g12 , 213 . als auch in den 21 , 22 > 23 - - - > nämlich

wegen (9) :
2i2 + 2i3 + 2h + • • • = s l

oder zweitens wegen der Normalgleichung (8) :

(2i + 22) + (2i + 2a) + (2i + 24) + • • • = (n — 1 ) 2i + 22 + 23 + • • • = si M
Diese beiden Summen sind also gleich , was sehr zu Gunsten der Näherungen 21 > 2ä>
23 ) 24 spricht , während es nicht günstig ist , dass die Abweichungen zwischen 212
und 21 + 22 u- s- w- in der Ausgleichung alle als gleich zulässig behandelt wurden.
Den besonderen Fall nur dreier Strahlen haben wir bereits bei (3) —(5) als Zwischen¬
bemerkung abgehandelt , und wir haben in (5) gesehen , dass man die Reciproken q
der Richtungsgewichte schlechthin in den Gewichtscoefficienten ausdrücken kann ;
indessen kann man in diesem einfachen Falle auch alles in den Normalgleichungs -

Ooefficienten [aa ] , [ab ] , [6 6] selbst ausdrücken , denn nach (18) und (19) S . 58 ist :

[« ] = fe = ^ , [« ffl = <223 = = L^ , [ßß ] = Qss = ^ y (15)

wo D — [a a] [6 6] — [a 6] [a 6]
daraus findet man in Verbindung mit (5) :

. - [« &] . [bb ] + [ab ]
2i = . 22 - n . 23 = [a a ] + [a 6]_ (16)

dieses (15) gilt dann , wenn die Stationsausgleichung mit 2 Winkeln als Unbekannten
gemacht ist ; wenn dagegen 3 Richtungen als Unbekannte eingeführt sind , so werden
die Normalgleichungen folgende Formen annehmen :

(aa ) 4 + (a 6) B -1- (a c) G -+- (a l) = 0 *
(a 6) A + (6 6 ) B + (6 c) C + (6 l) = 0 i (I 7)

(a c ) A + ( 6 c) B + (c c) 0 + (c l) = 0 )

Da A , B , C Richtungen (und nicht zwei Winkel) sind , können diese 3 Gleichungen
nicht unabhängig sein , sondern nach (3) § 81 . S . 277 bestehen die Beziehungen :

(a a ) + (a 6) + (a c) — 0 , (a 6) + (6 6) + (6 c) = 0 , (a c) + ■(6 c) + (c c) = 0 (18)



§ 82. Genäherte Richtungsgewichte. 287

und eine der 3 Unhekannten ist willkürlich , weshalb etwa A = 0 gesetzt wird und
dann bleibt von (17 ) nur :

(bb ) B + (bc) C + (bl ) = 0 I
(ic ) R + (cc ) C + (cl ) = 0 )

^ j

Bei zwei Gleichungen kann man aber wieder die Gewichtscoefflcienten Q unmittelbar
in den Coefficienten (6 6) (ft c) ausdrücken, nämlich ebenso wie bei (15 ) :

(« ) n _ m
§ 22 =

(ft ft) (e c) — (ft c) (6 c)

§ 23 =

§ 33 —

(ftc)
(ftft) (cc) — (6c) (6c)

(20 )

(6 ft) (c c) — (6 c) (6 c)
Wegen (18) lässt sich (20) mit (5) auf folgende Form bringen:

2i (6 c)
i - a . M (« &) (& c) (21 )

(ac )
(g c) (ft c)

?s
' ' (« 6)

In den allgemeinen Formeln muss auch der Fall inbegriffen sein , dass zwischen

= (« «) •

n Strahlen alle n n — 1 Winkel gleichgewichtig gemessen sind . Setzt man dabei das

Gewicht eines gemessenen Winkels = 1 , so werden nach § 77. S . 265 nach der

Ausgleichung alle Winkelgewichte = also die Reciproken der Gewichte werden :

Sis — ? I3 = 1u — 31 (*- ii — "

dann nach (9 ) :

?12 ■

Ebenso auch s, , $,2 > *3

■? 13 + ? 14 + • • • + 21 o - i ) — ■

. s„ und also S = n sj = 2 (« -

2 (w — 1)
n

■1)

= «1

Also nun nach (11) :

2l : 2 (« — 1 ) 2 (n — 1 ) 1
nn (n — 2) 2 (« — 1 ) (n — 2)

d. h . das Gewicht einer ausgeglichenen Richtung ist = n , als Ergebnis des Näherungs*
■Verfahrens, was mit dem strengen Verfahren stimmt.

Hat man endlich m volle Sätze bei n Strahlen, so sind nach der Mittelbildung
alle Richtungsgewichte = in oder die Reciproken der Winkelgewichte:

2
312 — 313 - :

also Sj _ s2 — . . .

2 (n — 1)

m
2 (m — 1)

m
S = 2 n (n — 1 )

2i = ;
2 n (n — 1) _ _ 1 _

■2 )
—

m
(n — 2) m 2 m (n — 1 ) (w -

also wieder Übereinstimmung mit der strengen Theorie .
Das Helmert sehe Näherungsverfahren befolgt also in den betrachteten 3 Fällen,
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in welchen strenge Richtungsgewichte möglich sind, die strenge Theorie und schliesst
sich im übrigen näherungsweise an.

Um ein vollständiges Beispiel zu haben , nehmen wir eine Stationsausgleichung,
welche an anderem Orte (Jordan-Steppes, deutsches Vermessungswesen I . S . 66) völlig
durchgerechnet wurde, nach Königl. Preuss. Landestriangulation , Hauptdreiecke, I . Teil ,
2 . Auflage. Berlin 1870 , S. 57.

Station Lautern :
Sternberg , Paulinen , Schippenbeil , Rössel
Pi ° = 18 P< = 18 Pi " = 18 Pi " = 18 M = 72
P2 ° = 6 . . ft '" = 6 [P2] = 12

Pb' = 6 Ps" = 6 P»
' " = 6 [p3] = 18

[p °l = 24 [p '
J = 24 [!»" ] = 24 [p '"

] = 30 [p \ = 102
Nach (11 ) § 71 . S . 236 berechnet man :

1 9
(ao ) = 24 - ±| l8 - . - s - 17,50

(« &) = 18 18“
72

18 •- Ä — 6,50 u . s . w.

Die Stationsausgleichung selbst interessiert uns hier nicht , sondern nur die
Gewichtsbestimmungen; wir bilden daher sofort die Gewichtsgleichungennach (20) S. 90 :

Auflösung
4 - 17,50 [a «] — 6,50 [« (3] — 6,50 [a y] — 1 = 0 [« a ] = 0,094
— 6,50 [a a ] + 17,50 [« ff] — 6,50 [a y] = 0 [aß ] = 0,052
— 6,50 [a a] - 6,50 [a ß] + 20,50 [a y] = 0 [« / ] = 0,046

Die beiden anderen Gruppen von Gewichtsgleichungen geben auch noch :

[j? ß] = 0,093 , [ßy ] = 0,046 , [yy] = 0,078
Wenn wir nun die Bezeichnungen § nach ( 1 ) anwenden, haben wir :

§ 22 = [<r k] = + 0,094 = gj2 § 23 — 0,052 j
633 = [ß ß ] = + 0,093 = § 24 = 0,046 | 0,144
§44 = 17 ?] — + 0,078 = qu § 34 = 0,046 J

§ 22 § 33 — 2 § 23 = 0,094 4 - 0,093 — 0,104 = - f- 0,083 =
§ 22 4 - § 44 — 2 § 24 = 0,094 4 - 0,078 — 0,092 = - }- 0,080 = <̂24
§ 33 + § 44 — 2 § 34 = 0,093 4 - 0,078 — 0,092 = 4 - 0,079 = q u

2i2 + 2i3 + 2i4 = «i = 0,265 j
212 + 223 4 - 224 = s2 = 0,257 I
213 4 - 223 + 234 = s3 = 0,255 j
214 + 224 + 234 = s4 = 0,237 J

Dann nach (7) :
2x = 0,1325 - 0,0845 = 0,0480 j

= 0,1285 — 0,0845 = 0,0440 I
23 = 0,1275 — 0,0845 = 0,0430 j
24 = 0,1185 — 0,0845 = 0,0340 )

S = 1,014 12 : 0,0845

0,1690 = (Probe)
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Um auch noch die Formeln (13 ) anzuwenden , haben wir mit n — 4 :
0,144 0,048

q2 = 0,048 + 0,094 — 0,098 = 0,044
qs = 0,048 + 0,093 — 0,098 = 0,043
24 = 0,048 + 0,078 — 0,092 = 0,034

Damit haben wir alle q und deren Beciproken , d. h . die Bichtungsgewichte —

berechnet , und sogar mit Proben.
Nun handelt es sich noch darum, zu sehen , wie genau die Näherungsgewichte

mit den strengen Gewichten oder die Näherungs-Gewichts -Beciproken mit den strengen
Gewichtsreciproken aller Winkel übereinstimmen. Z . B . der erste Winkel Stemberg-
Paulinen hat die strenge Gewichtsreciproke ql2 = 0,094 und genähert q\ + q2 — 0,092
was sehr nahe stimmt.

Für alle 6 Winkel ergiebt sich folgende Vergleichung:

streng
7i2 = 0,094

? 13 = 0 *093

2u = 0,078
723 = 0,083
724 = 0,080
234 = 0,079

genähert
21 + 22 = 0,092
gj + gg = 0,091
71 + 74 = 0,082
72 + 73 = 0,087
22 + 24 = 0,078
23 + 24 — 0,077

Abweichung
— 0,002
— 0,001 durchschnittliche
+ 0,004 Abweichung
+ 0,004 = 0,0025
— 0,002 oder 3 %
— 0,002

Dieses sind die Gewichts-Beciproken ; wir wollen auch noch die Gewichte selbst
ausrechnen und mit den Anschnittszahlen vergleichen:

2j = 0,048
22 = 0,044
2S = 0,043
24 = 0,034

Gewicht Anschnittszahl Abweichung
1 = 2! = 20,8 |> ° 1 = 24 + 3,2 \
1 : 22 = 22,7 [P 1 = 24 + 1,3 1
1 : 2s = 23,3 [P"

] = 24 + 0,7 I
1 : 24 = 29,4 Lp'"

] = 30 + 0,6 )

Durchschnitt 1,45 oder 6 % .
Die Anschnittszahlen weichen von den Näherungsgewichten im Mittel nur um

6 % ab, es könnten daher die Anschnittszahlen in diesem Falle wohl auch noch als
Näherungsgewichte benützt werden , indessen ist unser Fall ein sehr einfacher ; im
allgemeinen werden die Anschnittszahlen grössere Abweichungen von den theoretischen
Gewichten geben.

Ein grösseres Beispiel zur Vergleichung zwischen den strengen und den ge¬
näherten Winkelgewichten , sowie zwischen den genäherten Eichtungsgewichten und
den Anschnittszahlen giebt die bereits citierte Helmertsehe Abhandlung in „Astr.
Nachr., 134. Band, 1893 “

, S . 287 ; es ist eine spanische Station mit 12 Bichtungen ;
die strengen 212 > 213 • • • weichen von den genäherten 21 + 22 > 2i + 23 • • • ab im
Mittel um 11 o/0j äusserstenfalls um 30 % . Zwischen den q und den Beciproken der
Anschnittszahlen besteht eine durchschnittliche Abweichung von 31 % .

Ebendaselbst S . 289 wird auch über die Anwendung des Näherungsverfahrens
auf 12 Stationen mit zusammen 71 Bichtungen berichtet . Zwischen den strengen

Jordan , Handb . d . Vermessungskunde . 4. Aufl . I . Bd. 19
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? 12 > 213 aIs Gewichts -Reciproken der Winkel und den genäherten 2i + 22 > ? i + ft • • •

ergab sich im Mittel eine Abweichung von 9 %.
Zur weiteren Charakterisierung des Verfahrens wird noch auf S . 290 —291 der

citierten Astr . Nachr . für das kleine Württembergische aus 6 Dreiecken bestehenden
Dreiecksnetz für Erdmessung (von E . Hammer , Stuttgart 1892 ) die von Helmert
nach seinem Näherungsverfahren durchgeführte .Ausgleichung mitgeteilt , in Vergleich¬
ung mit der strengen Ausgleichung . Die grösste Differenz der beiderseitigen Er¬

gebnisse für die 33 möglichen Winkel beträgt 0,038 ”
; die mittere Veränderung ist

-+- 0,014” bei einem mittleren Fehler eines auf der Station ausgeglichenen Winkels

von + 0,47” und einem mittleren Fehler eines im Netz ausgeglichenen Winkels
von + 0,4" . Letzteres bekundet eine mittlere Veränderung von nur + 3,5 o/0 und
eine maximale Änderung von 9,5 %.

Teilungsfehler und Netsfehler .
Die im vorstehenden behandelte Theorie betrifft nur die reinen Messungsfehler

im engeren Sinne, nämlich Einstellungsfehler (mit dem Fernrohr) und Ablesungsfehler
(am Mikroskop oder Nonius ) , oder die „nackten “ Beobachtungsfehler . Die Teilungs¬
fehler des Theodolitkreises können durch symmetrische Kreisverstellungen in den ver¬
schiedenen Messungssätzen teilweise eliminiert sein , sie spielen aber immer noch eine
Rolle in dem Gesamtfehler einer Richtung .

Im Allgemeinen darf für eine Sicht nicht schlechthin ein Beobachtungsfehler
angenommen werden, sondern eine Zusammenwirkung von verschiedenen Fehlerursachen,
welche teils unregelmässig , (nackter Beobachtungsfehler ) teils regelmässig oder gar
konstant sind.

Als konstante Fehler treten auf : Die Instrumentalfehler , besonders die regel¬
mässigen Teilungsfehler und die zufälligen Teilungsfehler , die persönlichen Fehler
des Beobachters bei der Auffassung der Zielpunkte , Centrierungsfehler , zeitliche Ver¬

änderungen in der Lage der Stationen — „aus den verschiedensten Gründen “ — und
seitliche Brechungen der Lichtstrahlen in der Luft . Wenn diese Fehler unter Um¬
ständen bei verschiedenen Gruppen der Winkelmessungen einer Station von Gruppe
zu Gruppe in wechselnder Weise wirken , so ist ihr Einfluss ein systematischer .

Von dieser Anschauung ausgehend verfährt Helmert auf S . 36 der oben S . 283
citierten Veröffentlichung weiter so :

Angenommen man habe einen Satz unabhängiger ungleich gewichtiger Rich¬

tungen , von denen eine das Gewicht n habe , oder mit wfacher Einstellung einer
ideellen Einheitsvisur gleichgewichtig sei , und es sei g der mittlere nackte Beob-

ni
achtungsfehler für die Gewichtseinheit , so ist — der mittlere nackte Beobachtungs-

n
t 2

fehler der fraglichen Richtung . Ferner sei — der Einfluss des zufälligen Teilungs-
r

fehlers bei r gleich verteilten Einstellungen . Dann hat man das mittlere Fehler -

quadrat der Richtung nach dem bisherigen = — h- .n r
Nun wird aber hierzu noch ein mittlerer Weterichtungsfehler v genommen ,

welcher sich aus den konstanten Fehlern zusammensetzt , die in der Regel auf den
Stationen verborgen bleiben und erst in den Widersprüchen des Netzes erkannt
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werden können . Dazu gehören auch Beste regelmässiger Teilungsfehler und anderer
systematischer Einflüsse, die eigentlich durch das Messverfahren eliminiert sein sollten.

Auf diese Weise wird das vollständige mittlere Pehlerquadrat einer Richtung
dargestellt durch :

i/2 t2m = ^
(22)n r K '

Um r2 kennen zu lernen wurde ein Durchschnittswert von M% aus den Wider¬
sprüchen der Dreiecksabschlüsse oder aus älteren Netzausgleichungen und zum Teil
aus der Vergleichung von Stationsergebnissen verschiedener Epochen entnommen ,
ju

'3 und t 2 aber nach Möglichkeit geschätzt. Nach S . 55, 56, 89 , 109, 110, 125 der
citierten Veröffentlichung sind solche Ermittlungen r2 = 0,19 , 0,43 , 0,09 , 0,18,
0,09 , 0,15 , 0,09

Im Mittel p2 = 0,17 oder v = + 0,4"
(23)

Dieser Netzfehler r = + 0,4" ist ein verhältnismässig hoher Wert !
Noch eine Eigentümlichkeit wird auf S . 37 hinzugefügt : Wenn auf derselben

Station Messungen aus verschiedenen Jahren mit einander zu verbinden waren , so
wurde zunächst M2 für jede Epoche für sich berechnet. Dafür sprach das Auftreten
grosser Differenzen selbst in den besten Messungen verschiedener Jahre , wobei es
allerdings unaufgeklärt blieb , was die Gründe solcher Änderungen mit der Zeit
sein mögen .

§ . 83. Das Belgisch -Deutsche Yerhindungsnetz mit Ausgleichung
von Helmert .

Aus der Veröffentlichung des geodätischen Instituts von 1893 (Citat s . oben
S. 283) entnehmen wir von S. 87—95 das „Belgisch -Deutsche Verbindungsnetz“ ,
welches in unserer nachfolgenden Fig . 1 . dargestellt ist , und wir führen die Haupt-
momente der Richtungsausgleichung vor , welche nach der neuen Helmertsehen Ge¬
wichtstheorie (im vorigen § 82 .) gemacht ist.

Das Netz hat 10 Stationen folgender Herkunft :

Belgische Messungen Belgische und Preussische
Messungen

Preussische Messungen

Nederweert Roermond Erkelenz
Lommel Ubagsberg Langschoss

Peer Henri-Chapelle
Montaigu
Tongres

0 £Q"
Ms = u’°l _ _ + 0,63"

y 2 - 1+ 0,79"
Mb= ± 0,73"

, Mr= {
-

0j66„
O 73"

MP = 9 = -+- 0,52"
V 2

-
Die hier sofort beigesetzten mittleren Winkelfehler + 0,89" und + 0,73 sind

aus Dreiecksschlüssen der Belgischen Triangulierung und des neueren rheinischen
Dreiecksnetzes des geodätischen Institutes im Allgemeinen ermittelt , und geben den
mittleren Fehler einer im Netz ausgeglichenen Belgischen Richtung oder Preussischen
Sichtung bzw. = + 0,63" und + 0,52"

, während die Vergleichungen auf den An-
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schluss -Stationen grössere Beträge ergaben, nämlich + 0,73” für Belgien, und + 0,79 ' '

für Preussen 1861 , + 0,66" für Preussen 1869 .
Aus solchen Erwägungen wurde für Belgien im Allgemeinen M = ± 0,64" ,

3/2 = + 0,41 angenommen, und für Preussen die M2 nach der Theorie der Gleich¬
ung (22) im vorigen § 82 . S . 291 im einzelnen bestimmt , was auf S . 89—90 der
Veröffentlichung selbst nachzusehen ist .

Fig . l .
Das Belgisch -Deutsche Verbindungsnetz .

S.Nederweerh

3 .Roermond
9 . Lommel QVj

2 .Erkelenz
7 .Peer

-M,38 ‘

+ 0,94

6 .Tongres

1 : 1000000

i- 1- :- 1- 1—- , .
o 5oKm .

Als Gewichtseinheit ist derjenige Wert p = — genommen , welcher zu dem

mittleren Fehlerquadrat M2 = 0,17 einer in das Netz eingehenden Richtung gehört,
1 3/2 f M \ 2 1also : q = — = —- = = - -- ■■■■- = Gewichts -Reciproke
p 0,17 \ 0,412 / r I m

0,17 /0,412V3 . . , , I
p = = 1 = ö’e'wlc “i: elner Richtung J

So sind die Gewichte p bemessen , welche in dem vollständigen Abrisse der Netzaus¬
gleichung auf S . 293 angegeben sind.

Das Netz ist nicht ein völlig freies , sondern ein auf den 3 Stationen Bommel ,
Peer und Montaigu festgebundenesNetz, wodurch die Bedingungsgleichungen in jener
nordwestlichen Gegend beeinflusst werden.

Ehe darauf eingegangen wird , ist zu den „beobachteten Richtungen“ eine
Bemerkung zu machen bei den Stationen Lommel und Montaigu, weil in dem Abrisse
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Ausgleichungs -Abriss des Belgisch -Deutschen Verbindungsnetzes.

vor der Ausgleichung nach der Ausgleichung

No.
Ziel - mittl .

1
beobachtete Netz - ausgeglichene v Y p v2p

punkt Fehler
( M \ 2 Richtung verbess . Richtung _ 0,412 v _ v2

M “
[ o£ iy

A V A -\- v — iit u .s .w. M <2

1. Langsclioss .
1 H . Ch. ±0,79 " | 3,7 0° 0' 0,00" 1+ 1,30" 0° 0' 0,00" 0,67" I 0,45
2 TJb. 0,34 0,7 37 39 39,16 i— 0,29 37 39 37,57 0,35 1 0,12
3 Er . 0,34 | 0,7 89 38 19,68 + 0,04 89 38 18,42 0,05 i 0,00

2, Erkelenz .
4 La . ± 0,32" 0,6 0° 0' 0,00" + 0,27" 0° 0' 0,00" 0,35"
5 Üb . 0,41 1,0 42 11 47,80 — 0,29 42 11 47,24 0,29
6 Ro . 0,41 1,0 117 3 49,47 — 0,16 117 3 49,04 0,16

8. Roermond .
7 Er . ± 0,34" 0,7 0° 0' 0,00" + 0,26" 0° 0' 0,00" 0,31"
8 Ub . 0,34 0,7 64 6 33,96 — 0,06 64 6 33,64 0,07
9 Pe . 0,37 0,8 140 18 33,79 - 0,15 140 18 33,38 0,17

10 Ne . 0,37 2,9 182 4 19,06 — 0,24 182 4 18,56 0,14

4. Ubagsberg .
11 Ro . ± 0,34" 0,7 0° 0' 0,00" I1-J- 0,07" 0° 0' 0,00" 0,08" 0,01
12 Er . 0,34 0,7 41 1 27,05 |:— 0,06 41 1 26,92 0,07 0,00
13 La . 0,34 0,7 126 51 1,84 — 0,10 126 51 1,67 0,12 0,01
14 H. Ch. 0,49 1,4 183 39 50,22 i:+ 0,45 183 39 50,60 0,37 0,14
15 To . 0,37 0,8 255 2 35,84 |i+ 0,16 255 2 35,93 0,17 0,03
16 Pe . 0,37 0,8 309 6 7,89 jj —0,30 309 6 7,52 0,33 0,11

5. Henri -Chapelle .
17 ! To . ± 0,47" 1,3 0° 0' 0,00" + 0,50" 0° 0' 0,00" 0,44"
18 Ub . 0,47 1,3 76 53 13,63 — 0,53 76 53 12,60 0,46
19 | La . 0,47 1,3 162 24 47,82 + 0,03 162 24 47,35 0,03

6. Tongres .
Mo . ± 0,64" 2,4 0° 0' 0,00" j| + 0,58" 0° 0' 0,00" 0,37"
Pe . 0,64 2,4 55 26 16,96 |!+ 0,35 55 26 16,73 0,22
Ub . 0,64 2,4 134 41 43,47 1 — 1,22 134 41 41,67 0,77
H. Ch. 0,64 2,4 166 25 45,66 |]+ 0,28 166 25 45,36 0,18

24
25
26
27

7. Peer .
Ne . ± 0,73" 3,1 0° 0' 0,00" i+ 0,04" 0° 0' 0,00" 0,02"
Ro . 0,70 2,9 28 32 11,13 1+ 0,56 28 32 11,65 0,33
Ub . 0,70 2,9 81 26 24,22 1— 1,10 81 26 23,08 0,64
To . 0,43 1,1 128 7 30,03 ,— 0,01 128 7 29,98 0,97
Mo. 0,34 0,7 192 34 27,58 \

'
+ 0,13 192 34 27,67 0,16

Lo . 0,34 0,7 267 43 23,04 !
75° 8' 55,46"

i+ 0,13 267 43 23,13 0,16

0,00
0,11
0,41
0,01
0,03
0,03

Ro . ± 0,64" | 2,4
Pe . 0,64 ; 2,4
Lo . 0,64 1 2,4

Ne. ± 0,00" I
Pe . 0,90 | 4,8

Pe . ± 0,00"
To . 0,71 3,0

8 . Nederweert ,
0° 0' 0,00"

109 42 5,72
137 11 35,79

+ 0,56"
— 0,76
+ 0,21

9, Lommel .
0° 0' 0,00"

60 13 54,99 - 1,93"

10. Montaigu .
0° 0' 0,00"

60 6 48,90 + 0,01"

0° 0' 0,00" 0,36" 0,13
109 42 4,40 0,48 0,23
137 11 35,44 0,13 0,02

0° 0' 0,00"
60 13 53,06 0,87" 0,76

0* 0' 0,00"
60 6 48,91 0,01" 0,00

4J9



294 Das Belgisch-Deutsche Verbindungsnetz mit Ausgleichung von Helmert. § 83.

S. 293 für 32 und 33 nicht eigentlich Richtungen , sondern Winkel eingesetzt sind , indem
z . B. auf Montaigu die Richtung von Peer als fest und fehlerfrei betrachtet und nur
die Richtung nach Tongres als fehlerhaft mit den Gewichtsreciproken q = 3,0 einge¬
führt ist . Warum das so angeordnet ist , hängt wahrscheinlich mit den Gewichts¬
untersuchungen zusammen; rein formell betrachtet hätte die Sache auch so gemacht
werden können , dass zwei Messungsrichtungen Montaigu-Peer und Montaigu-Tongres
mit Gewichtsreciproken je = 1,5 angesetzt würden, und ähnlich auf Lommel .

Auf der Station Peer ist der Winkel zwischen Montaigu und Lommel unab¬
änderlich fest gegeben = 75 ° 8' 55,46 ”

, was in den beobachteteil Richtungen A auf
S . 293 bereits dadurch ausgedrückt ist , dass die Richtungen Peer-Montaigu und Peer-
Lommel mit dieser Differenz in Ansatz gebracht sind. (Man kann sich etwa denken,
die Stationsausgleichung auf Peer sei nach § 78 . gemacht.) Damit nun durch die
Netzausgleichung dieser Anschlusswinkel nicht nochmals geändert werde , sind die
Richtungsverbesserungen Peer -Montaigu und Peer-Lommel beide gleich anzunehmen
und deswegen mit derselben Nummer 28 und 28 bezeichnet.

Nach diesem zu den Bedingungsgleichungen übergehend, betrachten wir zuerst
das Netz als völlig frei , und dann wäre bei p = 10 Punkten und l = 18 Linien Mn
und her , nach den Regeln von (17) S . 176 , l — 2p + 3 = 1 Seitengleichung und
l — p + 1 = 9 Dreiecksgleichungen (mit 180 ° + Excess ) zu berücksichtigen. Diese
10 Gleichungen sind jedenfalls da , aber es kommt wegen des Anschlusses im Nord¬
westen noch eine Zwangsseitengleichung hinzu , so dass im Ganzen 11 Bedingungs¬
gleichungen auftreten werden .

Betrachten wir zuerst die 9 Dreiecksschlüsse, so werden dieselben ganz ebenso
gemacht, wie früher bei den kleinen Beispielen S . 178 und S . 189 . Z . B . das erste
Dreieck I . gieht :

(1,2 ) = 37 ° 39' 39,16”
(13,14 ) = 56 48 48,38
(18,19 ) = 85 31 34,19

180 ° 00 ' 0,73"
soll 180 ° + Excess 1,25

Widerspruch W = + 0,48"

Also die zugehörige Bedingungsgleichung :
I . — «i + «2 — v13 + vu — v ls + «i 9 + 0,48" = 0 (a)

Die übrigen Dreiecksschlussgleichungen werden ebenso gebildet :
II . — «2 + «3 — «4 + «5 — « i 2 + «13 + 0,26" = 0 (b)

III . — 1)5 + «6 — «7 + «8 — «n + c12 + 0,32" = 0 («)
IV. — «14 + »J5 — «17 + «ig — «22 + «23 — 0,17" = 0 (ä)

V. — «15 + «lg — «21 + «22 — «26 + «27 "t* 0,94" = 0 (e)
VI. — «8 + Vg + «U — «16 — «25 + «26 + 1 .38" = 0 (0

VIII . — «9 + «jo — «24 + «25 — «29 + «30 + 0,89" = 0 (h)
IX. + «24 — «2g — «30 + «31 + «32 + 1,05" = 0 (1)
X . —• «20 ■+• «21 — «27 ■+- «28 "+- «33 + 0,08" = 0 (^)

Die Widersprüche + 0,48” zu I . , + 0,26 ” zu II . u . s . w. sind auch in dem
Netzbilde Pig . 1 . S. 292 in den betreffenden Dreiecken eingeschrieben.
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Übergehend zu den Seitengleichungen haben wir für das Centralsystem Ubags -

berg, als Sinusrechnung durch die Dreiecke I , II , III , VI , V , IV die Bedingung :
sin (2,3 ) sin (5,6) sin (8,9) sin (26,27) sin (22,23 ) sin (18,19) __
sin (1,2) sin (4,5) sin (7,8) sin (25,26) sin (21,22) sin (17,18)

Die Ausrechnung ist ebenso wie schon früher auf S . 180 und S . 192, weshalb
wir hier nur einen Teil der Ausrechnung schreiben :

Diff. für 10”

(2,3) = 51 ° 58' 40,52 ” log sin (2,3) = 9 .896 4014 165
(5,6) = 74 52 1,67 „ „ (5,6) = 9 .984 6727 57

log Zähler = 9 .449 8818

Ebenso log Nenner = 9 .449 8995
—̂ VfT

Also die lineare Seitengleichung zunächst in Einheiten der 6ten Logarithmen-
Decimale :

+ 1,65 (% — %) + 0,57 (Vq — %) + . . . — 2,73 (% — %) 17,7 - 0
+ 1,65 % — 4,38 «2 • • • - 17,7 = 0 (g

')
Diese streng zu erfüllende Bedingungsgleichung wollen wir noch mit 2 dividieren,
wodurch sie nun , voll ausgeschrieben , wird :

-T 1,37 % — 2,19 «2 + 0,82 % + 1,16 % — 1,45 % + 0,29 % + 0,51 e 7 j
0,77 Vg + 0,26 'Vg + 0,25 %7 — 0,33 + 0,08 + 0,20 | (g)

■1,91 %2 + 1,71 %3 + 0,79 %5 — 1,79 + 1,00 V27 — 8,85 = 0
Der Umstand , dass wir die ursprüngliche Gleichung (g

'
) mit 2 dividiert haben,

um die endgültige Gleichung (g) zu erhalten , beruht auf dem Wunsche , die Coeffi -
cienten aller Bedingungsgleichungen möglichst einander gleich zu machen, und da alle
vorhergehenden Gleichungen (a) bis (k) die Coefflcienten = 1 (nämlich + 1 oder — 1)
hatten, war es angezeigt , auch die Coefflcienten in (g') noch etwas zu verkleinern,
doch ist das nur eine Sache der Bechenbequemlichkeit , und von Willkür abhängig,
ob man in Einheiten der 6ten Logarithmendecimale , oder wie hier in halben solchen
Einheiten rechnen will (vgl . den späteren § 84. und 85 .) .

Man könnte für die Seitengleichung (g ') , d . h . für deren wichtiges Absolutglied
— 17,7 auch noch eine Kontrollrechnung nach dem Legendreschen Satze machen, wie
m (8) S . 181 , doch sei davon jetzt nicht die Bede.

Dagegen wollen wir nun die andere, nämlich die .Ziww^s -Seitenberechnung
zum Anschluss an die beiden Grundlinien Lommel-Peer und Peer-Montaigu vornehmen.

Als unabänderlich sind gegeben :
Lommel-Peer Peer-Montaigu

hg = 4 .155 0388 -4 log s2 = 4.570 5942 -6 (2)

Wir rechnen nach der sogenannten Additamentenmethode (in unserem III . Bande
Handb. d. Verm. , 3 . Aufl. 1890 , S . 240 - 243 ) und berechnen das logarithmische

Additament einer Seite s nach der Formel *2’ w0 ** = ° >43429 nnd r der Brdhalb‘

messer in unserem Falle für 51 ° 10' Breite log r = 6.80495 , dieses giebt :

6, -272 S12 6, -2*2' 24-63 -6
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Diese Werte von den obigen log Sj und log Sg abgezogen geben :
log Sl

' = 4 .155 0334 -8 log s2
' = 4 .570 5918 -0 (3)

log = 9 .584 4416 -8
s 2

und nun besteht nach dem Anblick des Netzbildes Pig . 1 . S . 292 folgende Gleichung :
s{ sin (32) sin (29,30 ) sin (8,9) sin (15,16 ) sin (20,21 ) _

s2
' sin (30,31 ) sin (9,10) sin ( 16,11 ) sin (21,22 ) sin (33)

Die Ausrechnung giebt zunächst in Einheiten der 6ten Logarithmen -Deeimale :
1,21 u32 — 0,75 (vgQ — »29) + 0,52 (ug — Vg) + . . . — 2,36 («jq D9) . . . 6,2 = 0

Wenn man wieder halbiert und nach den Nummern der v ordnet und zusammenfasst,
bekommt man die vollständige lineare Zwangsanschluss -Seitengleichung :

+ 0,26v 8 — 1,44 v9 + 1,18 v10 + 0,86 r>u -4- 0,76 ®15 — 1,62 v16 1
+ 0,73 v2q — 0,93 Vgi - |- 0,20 v22 — 0,38 v 29 — 1,65 v3q + 2,03 Vm
— 0,61 ü32 + 0,61 -y33 + 3,10 = 0

Nun besitzen wir in (a) (b) . . . (1) die richtige Anzahl von 11 linearen Be¬
dingungsgleichungen , welche zuvörderst in eine Tabelle , ähnlich wie früher in (12)
S , 182 oder S . 194—195 geordnet werden müssen. Zur Baumersparung sind wir
genötigt , diese Tabelle hier nur anzudeuten :

1 2 3 4 5 6 7 8

1 _
p

- 2 = 3,7 0,7 0,7 0,6 1,0 1,0 0,7 0,7 ! . .
1

1 a — 1 4- 1
2 b — 1 4- 1 — 1 + 1
3 c — 1 + 1 — 1 + 1
4 d
5 e
6 f - 1
7 g 4- 1,37 — 2,19 4- 0,82 + 1,16 — 145 + 0,29 + 0,51 — 0,77

(4)

Es folgt die Berechnung der Summen u . s . w. als Coefflcienten der Nor¬

malgleichungen (5) S . 126, z . B . :

[ — ] = [qaa } = 3,7 + 0,7 . . . = + 9,1

[ y ] = [? « »] = = - 1,4

[ y ] = [2 oc] = = °

[ — ] = [7 « g] = — 1,37 X 3,7 — 2,19 X 0,7 . . . = — 6,07

[4 ] = [* » »! =
I

1,372 x 3,7 + 2,192 x 0,7 + 0,822 x 0,7

7,00 + 3,36 4- 0,47 . . . = 42,70
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Nachdem so alle Coeffieienten ohne Schwierigkeiten ausgerechnet sind , bildet
man die Normalgleichungen (5) S . 126 , welche in abgekürzter Schreibweise (nach
S . 80 unten ) sich so darstellen :

h h h h h h *7 fc8 h | ^10 ku | w

-f- 9,1 — 1,4 — 2,7 — 6,07 + 0,48
+ 4,4 ~ 1,7 — 0,05 + 0,26

+ 4,8 - 1,4 + 0,84 — 0,42 + 0,32
+ 9,6 — 3,2 + 7,92 + 0,13 — 0,17

+ 10,4 - 3,7 + 1,23 — 3,5 + 0,80 + 0,94
H- 8,8 — 6,73 - 3,7 + 0,57 + 1,38

+ 42,70 + 2,08 — 0,62 - 1,81 — 8,85
+ 14,5 — 5,5 + 1,52 + 0,89

+ 13,4 - 0,7 + 5,90 + 1,05
+ 9,6 — 2,15 + 0,08

+ 31,97 - 3,10

Die Auflösung dieser Normalgleichungen giebt ;

\ = + 0,0010 k5 = — 0,3748 ka = — 0,2897
*2 = — 0,1459 ke = — 0,2942 k10 = — 0,1082
ks = — 0,2329 kn = + 0,2569 kn = + 0,1849
k4 = — 0,3213 *-

8 = — 0,3025

Mit diesen Werten k berechnet man die Verbesserungen v nach den Formeln

(3) S . 120, wobei man der Tabelle (4) nach Vertikalspalten folgt , z . B . :

p l v1 = — kl + 1,37 kn = — 0,001 4- 0,352 = + 0,351

dabei ist — = o, = 3,7
P\

also Uj = + 1,30”
, wie es bereits auf S . 293 eingeschrieben ist .

Übrigens macht man diese Ausrechnung aller v selbst tabellarisch , wie früher
S . 194—195 gezeigt worden ist , weshalb dazu nun nichts weiter bemerkt wird . Die

Ausrechnung der verbesserten Richtungen durch Zufügung der v zu den gemessenen

Bichtungen ist auch auf der Abriss -Tabelle S . 293 bereits gemacht , und es wäre

dazu nur zu bemerken , dass die ausgeglichenen Richtungen i + t nochmals in jedem
Satze so verschoben wurden , dass der Satz wieder mit 0 ° 0 ' 0” beginnt , was rein

formelle Änderung ist .
Das nächste ist nun , auch die ausgeglichenen Winkel als Differenzen der Rich¬

tungen auszuziehen , die 9 Dreiecke auf 180 ° 0 ' 0” + Excess zu erproben und alle

Dreiecksseiten auszurechnen . Anleitung dazu ist nicht nötig , da solche Ausrechnungen
bereits auf S . 183—184 und auf S . 196—197 durchgenommen sind ; die Dreiecks¬

seiten können in unserem Falle im Anschluss an die Basisseiten (2) bzw . (3) nach

der „Additamentenmethode “ oder auch nach dem Legendreschen Satze berechnet

werden.
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Folgendes sind hiefür die Ergebnisse , nur mit Nummern nach Fig . 1 . S . 292
bezeichnet:

1 . log s = 4 .415 6477 19. 15. log s = 4.546 5598 22 .
2 . 4 .491 6525 13. 16. 4 .676 9917 26.
3 . •n 4 .663 3423 4 . 17. n 4.534 6840 23.
5 . jt 4 .650 8960 12 . 20. fl 4 .610 2294 33.
6. fl 4 .423 9849 7. 21 . fl 4 .592 9508 27.
8. » 4 .591 5057 11 . 24. fl 4.429 2849 30.
9 . fl 4 .579 5859 25. 28 . » 4 .570 5943 (33 .)

10. fl 4 .284 9536 29. 28. n 4. 155 0338 (32.)
14. fl 4 .279 0039 18. 31 . fl 4.490 4037 32.
Mehr Interesse bietet die Verteilung der v und die aus den v zu ziehenden

Genauigkeitsberechnungen. Wir haben in dem Gesamtabriss S . 293 ausser den v selbst
auch die v Y p und die u2 p nebst der Summe [d2 p ] ausgerechnet , welche den mitt¬
leren Gewichtseinheitsfehler giebt :

m = = ± 0,62"
(5)

(Man hat dazu auch die Probe — [w fc] , welche ausgerechnet ebenfalls sehr nahe
= 4,2 giebt übereinstimmend mit [v^ p ] = 4,19) .

Dieses m = + 0,62" ist zu vergleichen mit der ursprünglichen Festsetzung
M = 0,412 " bei (1) als Gewichtseinheitsfehler vor der Ausgleichung, und das Ver¬
hältnis 0,62 : 0,41 = 1,5 pflegt in solchen Fällen als Massstab für die Güte der Ge¬
nauigkeitsschätzung vor der Ausgleichung genommen zu werden . In unserem Falle
sind also bei 1,5 die Fehler im Allgemeinen nach der Ausgleichung um 50 °/o grösser
als vor der Ausgleichung erwartet war , und ein ähnliches Verhältnis pflegt sich in
solchen Fällen in der Kegel einzustellen und gilt noch als befriedigend, während ein
erheblich grösserer Wert des Verhältnisses m : M als 1,5 vielleicht Veranlassung geben
könnte, die Ausgleichung mit neuen Gewichtsannahmen zu wiederholen. —

Auch abgesehen von diesem Verhältnis m : M , welches im Allgemeinen gilt,
bietet die Abrisstabelle von S . 293 noch Stoff zu Überlegungen, ob in den eimeinen
Richtungsfällen die Schätzungen gut waren . Es sind nämlich die v Y p die auf
die Gewichtseinheit p = 1 reduzierten Fehler , und man wird desshalb nun nach-
sehen , welche v ]/p erheblich grösser als 0,41" sind “? Doppelt so gross als 0,41"
oder noch grösser sind nur die zwei Fälle v27 und vS2, welche nun etwa Veran¬
lassung zu näherer Untersuchung geben könnten , von welcher aber hier, wo wir
das Ganze nur als formelles Schulbeispiel durchgenommen haben , nicht die Bede
sein kann.

Überblicken wir zum Schluss nochmals im Ganzen die neue Helmert sehe
Theorie der Netzausgleichung, so finden wir darin Fortschritte gegen früher in mehr
als einer Hinsicht . Zuvörderst ist die Theorie mit den Bichtungsgewichten 1 : 2
eine Vervollkommnung der früheren roheren Annahmen von „ Anschnittszahlen“ als
Gewichten, und in solchen Fällen , welche bei der Längengradmessung die Begel
waren , bei welchen nämlich bereits strenge Ausgleichungen nach Bessels Theorie
mit den Coefflcienten [aa \ , [a jS] . . . in bequemster Weise zur Verfügung bereit
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lagen , war die neue Theorie der q ausgezeichnet am Platze. Wenn aber künftig die
[aß ] , [« /3] u . s . w, für den Zweck der q besonders auszurechnen sein werden , wird
die Bequemlichkeit des neuen Verfahrens vermindert, während die sonstigen Vorzüge
bestehen bleiben.

Das zweite unterscheidende Merkmal der neuen Theorie gegen frühere Ver¬
fahren ist die Einführung des Netzrichtimgsfehlers v in der Gleichung (22) S . 291 ,
welcher im Mittel zu v = + 0,4” gefunden wurde ; und es ist nur zu fragen , mit
welchem Grade von Zuverlässigkeit ein solches p wohl im einzelnen Palle eingeführt
werden kann ? —

§ 84. Günstigste Wahl der Seitengleichung im Viereck.
Am Schlüsse von § 58 . S . 178 haben wir eine Frage, betreffend die günstigste

Form der Seitengleichung in einem Vierecke kurz erwähnt und auf den Schluss
dieses Kapitels verschoben, so dass wir nun diese Sache zu behandeln haben .

Ebenso wie die Winkelsummen-Bedingungenin verschiedenen Formen ausgedrückt
werden konnten (s. § 57 . Gleichungen (14)—(17 ) S . 167, so kann auch die Bedingung
übereinstimmender Seitenberechnung in einem Viereck in verschiedenen Formen fest¬
gelegt werden , und es ist für die Schärfe der Bechnung nicht gleichgültig , welche
von diesen Formen gewählt wird .

Eine erste Begel, welche sich von selbst darbietet , lautet , man soll die spitzen
Winkel, welche bei Schnittpunktsbestimmungen auftreten, unmittelbar in die Seiten¬
gleichungen einführen ; man erhält dadurch grosse Cotangenten als Coefficienten .

Eine erste tiefergehende Untersuchung dieser Frage wurde von Zachariae an¬
gestellt in dem Werke „ Die geodätischen Hauptpunkte und ihre Coordinaten “

, aus
dem Dänischen ins Deutsche übersetzt von Lamp , S . 152 u . ff. Wir haben hierüber
in der „ Zeitschr. für Verm. 1880 “ S . 65 —73 berichtet und noch einige Ergebnisse
hinzu gewonnen , wie im Folgenden dargelegt wird :

Das Wesen der Seitengleichung im Viereck besteht darin , dass , bei Annahme
einer beliebigen Seite als Basis , jede andere Seite auf allen möglichen Wegen aus
dieser Basis übereinstimmend erhalten werden muss , man hat daher zunächst so viele
Formen von Seitengleichungen, als die Zahl der Kombinationen der 6 Seiten zu

zweien beträgt , nämlich X
| = 15 . Diese 15 Fälle sind durch Fig . 1 . a , b , c, d , e , f

veranschaulicht .
Fig . l .

d fb ea c

8 gliedrige Seitengleichungen , 3 Fälle6 gliedrige Seitengleicbungen , 12 Fälle

ci bis d enthalten je 8 Kombinationen, nämlich die Verbindungvon je 2 solchen
Seiten , welche einen Winkelpunkt gemeinsam haben , e und f enthalten zusammen
3 Fälle , nämlich die Verbindungen von je 2 Gegenseiten und die Diagonalenkom¬
bination doppelt.
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Fig . 2.
Vollständiges Viereck .

AD = (1)

oder

Z . B . entspricht es der Big. 1 . a , wenn in Big. 2 . bestimmt wird , dass A D
aus der Basis A B abgeleitet , eindeutig werden soll , d . h . :

A B sin (3) _ A B sin (3 + 4) sin (6)
sin (8) sin (5) sin ( 7 + 8)

sin (3) sin (5) sin (7 -t- 8 ) _ ^sin (8 + 4) sin (6) sin (8)
—

Genau dieselbe Gleichung bekommt man durch
die Bestimmung , dass AC aus der Basis AB gleich¬
wertig hervorgehe , überhaupt liefert jede der Biguren
a , b, c, d nur je eine Gleichung, welche mit Bezug¬
nahme auf Big. 2 . bzw. mit (X) , ( B) , (C) , (D) be¬
zeichnet sein möge .

Berner entspricht es der Big. 1 . e , wenn in Big. 2 . bestimmt wird , dass D C
aus A B abgeleitet eindeutig werde , d. h . :

A B sin (1 + 2) sin (4) _ A B sin (3 + 4) sin (1 )
sin (8) sin (5

sin ( 1

DO

oder

■6) sin (5) sin (7
- 2 ) sin (4) sin (5) sin (7 + 8)

■8 )

= 1 (3)sin ( 1) sin (3 -+- 4 ) sin (5 + 6) sin (8)
Die Bälle a bis d Big. 1 . liefern 6gliederige , e und f liefern 8 gliederige

Seitengleichungen.
Wir behandeln zunächst nur die Bälle Big. 1 . a bis d, d . h . die Zentralsysteme

(A) , (B) , (C) , (D ) und machen folgende Vergleichung der Günstigkeit :
Den Zentralsystemen (A) und (B) entsprechen die folgenden 2 Bedingungs-

gleichungen :
sin (3) sin (5) sin ( 7 + 8)

(4)

(C)

sin (6) sin (8) sin (3 + 4)
sin (2) sin (4) sin (7 + 8)

= 1

1

(4)

(5)sin ( 1 ) sin (7) sin (3 + 4)
Diese 2 ■Gleichungen können aber nicht unmittelbar verglichen werden , weil

sie sich auf verschiedene Winkel beziehen . Es wird nun zunächst angenommen , dass
entweder nur 5 Winkel gemessen sind , welche keine Winkelgleichung, aber eben des¬
wegen eine Seitengleichung bilden , oder dass heim Vorhandensein weiterer Winkel¬
messungen die hierauf bezüglichen Summenproben stimmen , oder kurz , wir nehmen
zunächst an , dass alle einzelnen Dreiecke für sich schliessen , dass aber bei der Zu¬
sammensetzung dieser einzelnen Dreiecke zu einem Viereck , oder bei der Konstruktion
des Vierecks aus den Winkeln der Einzeldreiecke an irgend welcher Stelle ein fehler¬
zeigendes Dreieck entsteht , wie z . B . D 1 X>2 D s in Big. 3.

rig. 3< Wenn die 5 Winkel (1) , (2) , (5) , (6) , (8) ge¬
messen sind, so muss man die 2 Seitengleichungen (4
und (C) auf diese 5 Winkel reduzieren, wozu man hat :

(3) = 180 ° — ( 1 + 2 + 8)
(7) + (8) = 180 ° — ( 1 + 6)
(3) + (4) = 180 ° — (2 + 5)

(4) = ( 1) + (8) - (5)
(7) = 180 ° — ( 1 + 6 + 8)

(6)
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Damit gehen (A) und (Oj über in :

(A' )
sin (1 + 2 + 8) sin (5) sin (1 + 6)

sin (6) sin (8) sin (2 + 5)
— (7)

(C ')
sin (2) sin (1 - 1- 8 — 5) sin (1 + 6)
sin ( 1) sin (1 + 6 + 8) sin (2 + 5)

— (8)

Wegen der Beobachtungsfehler sind diese Gleichungen nicht erfüllt , sondern
es stellen sich Widersprüche ein , welche in logarithmischer Form in der Bechnung
auftreten . Wenn man die Gleichung (7) vermöge ihrer Entstehung aus ( 1 ) , (2) und (4 )
mit Fig. 3 . vergleicht, so findet man :

sin (1 + 2 + 8 ) sin (5) sin (1 + 6) _ 4J »1 _ DiD 2
sin (6) sin (8) sin (2 + 5)

—
A D 2

~~ A D 2
oder wenn man die Gleichung ( 7) logarithmisch ausführt , so erhält man auf der
rechten Seite statt log 1 = 0 den Widerspruch :

D , D,
(9)A D 2

wo g = 0,43429 der logarithmische Modul ist . Dieser Wert (9) ist das Absolutglied
der linearen Seitengleichung, welche durch Differentiieren von (7 ) entsteht , man hat
daher, ohne Bücksicht auf das Vorzeichen , für den Zentralpunkt A das relative Mass
für das Absolutglied der Seitengleichung :

X>1 D 2
AD(«) = }- fr (10)

wo im Nenner schlechthin A D statt A D 2 hinreichend genau geschrieben ist.
Wenn man Alles analog für den Zentralpunkt C macht, so bekommt man :

(e) - D 2
(C> GD (11)

Aus (10) und (11) findet man die Vergleichung:
(a) _ D x D 2 CD

(12)
( c) D 2 D 3 A D

Es ist aber : Di J >2 sw (I)
D 2 Ds

~ sin (8)

und nach Fig . 2 : 0 D sin (7) C M
(13)

A D sin (8) A M
folglich ist das Verhältnis der Absolutglieder in den Seitengleichungen (7 ) und (8) :

(o) _ C M H4 \
{e ) AM

Dasselbe Verhältnis würde man erhalten, wenn man die Absolutglieder der
Seitengleichungen für A und C nicht durch das fehlerzeigende Dreieck in D , sondern
durch das fehlerzeigende Dreieck in B zur Anschauung brächte , wie man durch

Wiederholung der Untersuchung in Bezug auf B finden würde , was jedoch auch schon
daraus erhellt, dass in dem Verhältnis (a) : (c) keine auf D oder B bezügliche Vier¬
ecksgrösse vorkommt.

In dieser Vergleichung (14) der Absolutglieder ist der Zachariae sehe Satz
enthalten , denn für die Schärfe der logarithmischen Rechnung sind die Grössen der
Absolutglieder der Seitengleichungen ( A ) , (B) , (C) , (D ) massgebend .
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Wir machen die Vergleichung im Anschluss an Fig . 4 . und erhalten Folgendes :
Fig . 4.

A ist günstiger als G weil A M <iC M
B » * „ D „ BMCDM
A , „ B „ AS '

< BS '

„ B „ AS < BS
B „ » C „ BS < 0 S
B » „ O , DS ' < C 8 '

(14a)

Aus allen 6 Vergleichungen folgt , dass A der
günstigste Zentralpunkt für den Ansatz einer Seiten¬
gleichung ist . Dabei sind nur die 6 gliederigen Seiten¬
gleichungen entspr . (Fig . 1 . o bis d) verglichen.

Wie weit sich die Sache ändert , wenn nicht bloss
5 Winkel gemessen sind, oder allgemeiner ausgedrückt ,
wenn ausser einer Seitengleichung auch noch Winkel¬
summen mit Widerspruchsgliedern existieren, behandeln
wir im Anschluss an ein Zahlenbeispiel, welches sich
auf Fig . 4 . bezieht, und zwar mag gelegentlich erwähnt
werden , dass diese Figur das Schwerdsche Basisnetz¬
viereck von S . 208 vorstellt , das wir in § 65. ausge¬
glichen haben . Die auf 1 ' abgerundeten und insofern
fingierten Winkel sind diese :

( 1 ) = 49 ° 44 '
(2 ) = 31 38
(3) = 73 22
(8) = 25 17

180 ° 1 '

( 1 ) = 49 ° 44'

(8) = 25 17
(7) = 76 34
(6) = 28 26

180 ° 1 '

(2 ) = 31 ° 38'

(3 ) = 73 22
(4) = 67 4
(5) = 7 57

180 ° 1 '

(7) = 76 ° 34'
(4) = 67 4
(6) = 28 26
(5) = 7 57

180 ° 1'

(15)

Bezeichnet man die Winkelverbesserungen mit . . . , so erhält man hieraus
zunächst die (nicht von einander unabhängigen) 4 Winkelbedingungsgleichungen:

®i + ®2 + ®3 + «8 + ! ' = 0 I
+ ®g + Z>7 + Vq + 1 = 0 I

®2 + ®3 + ®4 + ®5 + 1 ' = 0 |
« 7 + + ®6 + + ' 1 ' = 0 '

(16)

Der Zentralpunkt A giebt eine Seitengleichung (2) , welche auf folgende loga -
rithmische Rechnung führt :

(7 + 8) = 101 ° 51 '

(5) = 7 57
(3) = 73 22

log sin (7 + 8)
log sin (5)
log sin (3)

log Diff. für 1 '
= 9 .99064

‘
— 2

= 9.14085 + 90
= 9 .98144 + 3

9 .11293

(6 ) = 28 ° 26' log sin (6) = 9 .67773 + 23
(3 + 4) = 140 26 log sin (3 + 4) = 9 .80412 — 15

(8 ) = 25 17 log sin (8) = 9 .63052 + 27

9 . 11237
9 .11293 — 9 .11237 = + 0 .00056
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also in Einheiten der fünften Dezimale hat man die Seitengleichung :
— 2 {V’j - f- t.'g) H- 90 W5 - i—3 Vg — 23 Vq - 1- 15 (u 8 - }- v 4) — 27 Vg - f- 56 = 0

(A ) oder : 18 v3 + 15 v4 4 - 90 n5 — 23 v6 — 2 v7 — 29 vs -h 56 = 0 ( 17)
Ganz in derselben Weise findet man auch die 3 Seitengleichungen für die

Zentralpunkte B , C und D , nämlich :

(B) + 2 »] — 19 + 73 «5 — 17 v8 + 3u7 — 27 ®8 + 41 = 0 ( 18 )
(C) + 11 Vi — 21 u2 — 15 vs — 20 + 5 »7 -+- 2 v8 + 1 = 0 (19)

(D) -+- 9 v1 — 2fl a + 3 ^3 — 5 «4 + 17v 5 — 6n e + 16 = 0 (20)

In Verbindung mit dreien Gleichungen der Gruppe (16) genügt eine von den
Gleichungen (17)— (20) zum allseitigen Schliessen des Vierecks, es muss daher mög¬
lich sein , alle diese 4 Gleichungen ( 17)—(20) auf eine Form zu bringen , und wenn
etwa nur 5 Winkel gemessen wären , welche keine Winkelgleichung bildeten , so müsste
eine einzige Seitengleichung bestehen , welche aus (17 ) , ( 18 ) , (19) oder (20) ableitbar
sein müsste . Wir stellen daher die Aufgabe : Es sollen die 4 Gleichungsformen
(17) , (18) , ( 19 ) , (20) auf eine gemeinsame Form gebracht werden, in welcher nur
«i , v2, v§, ve, vs Vorkommen , d . h . die Verbesserungen solcher 5 Winkel , welche für
sieh allein das Viereck mit einer Seitengleichung bestimmen :

Man hat nun mit Hilfe der Gruppe (16) alle übrigen v in Uj, v2, v5 , Cg
auszudrücken , und damit diese übrigen v aus (17)—(20) zu eliminieren. Aus (16)
erhält man :

^ 3 = — — « 2 — ®8 — 1
)

n = + *l — ^5 + «8 I (21 )
V7 — — V1 ~ ®6 — * 8 ~ 1

'

Durch Einsetzen dieser Ausdrücke in die Gleichungen (17 )— (20) erhält man :

W ) — 1 v1 — 18 i>2 + 75 vs — 21 v6 — 30 vg + 40 = 0 |
(£ '

) — 1 Vi — 19 + 73 u5 — 20 vs — 30 vs + 38 = 0 I .
(G1

) 1 m — 6 u2 -+- 20 v5 — 5 vB— 8 va -+- 11 = 0 j
(D '

) 1 Vi — 5vg -h22v 6 — 6vg — 8z>8 + 13 = 0 )

Abgesehen von einer erklärlichen Abrundungsunsicherheit von + 1 in den
Coefficienten sind diese 4 Gleichungen algebraisch identisch , wie es sein soll , praktisch
genommen ist aber die erste (A '

) wegen der grösseren Coefficienten allen anderen
vorzuziehen .

Das Verhältnis der Coefficienten und Absolutglieder in den Gleichungen (22),
nämlich 40 : 38 : 11 : 13 hängt nicht von der Wahl der 5 Winkel ( 1) , ( 2 ) , (5) , (6) , (8)
ab , sondern nur von der Gestalt des Vierecks , und dieses theoretische Verhältnis stellt
sich immer ein , wenn die Gleichungen auf irgend welche 5 Winkel reduziert werden .
Wenn aber mehr als 5 Winkel gemessen sind, so ist ein solches Reduzieren praktisch
nicht nötig , wenn z. B . die 8 Winkel von Fig . 4 . gemessen sind, so kann man irgend
eine der Gleichungen (17 )— (20) unmittelbar in die Rechnung einführen ; fragt man
aber hiebei wieder nach der Grösse der Absolutglieder , so ist doch wieder das Ver¬
hältnis derselben in den reduzierten Gleichungen (22) massgebend , denn die Gleich¬
ungen (16) und alle hierauf bezüglichen Operationen, durch welche der Übergang
zwischen (A ) und (A '

) , (B ) und (B 1
) etc . vermittelt wird , sind im Vergleich mit den

logarithmischen Absolutgliedern selbst als fehlerfrei zu betrachten.
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Fig . 5.
Zentralpunkte S und 8 ' .

8 glieäerige Seitengleichungen.
Das Bisherige ist im Wesentlichen von Zachariae in dem Eingangs citierten

Buche angegeben worden; es sind dabei nur die 4 Formen a , b , c, d Fig . 1 . berück¬
sichtigt worden . (S . 299 .)

Eine Vervollständigung dieser Theorie
ist nun zunächst in dem Sinn möglich,
dass auch die 8 gliederigen Seitengleich¬
ungen e und f von Fig . 1 . hinzugezogen
werden . Betrachten wir zuerst die 8 glie¬
derte Seitengleichung (3) , so kann man
derselben eine Beziehung zu dem Punkt
S von Fig . 5 . geben, es ist nämlich :

sin ( 1 -f- 2)SB = S A

SD = SB

SC = SD

SA = SO

sin (3 -t- 4)
sin (4)
sin (8)

sin (7 + 8)
sin (5 -+- 6)

sin (5)
sin (1)

Alles multipliziert giebt :
sin ( 1 -+- 2) sin (4) sin ( 5) sin (7

(S )
■8 )

• 4)
= 1sin (8) sin (5 -+- 6 ) sin ( 1) sin (3 •

Dieses ist übereinstimmend mit (3) .
Diese Gleichung (S) ist der Quotient aus (A ) und (D ) , nämlich :

sin (7 + 8) sin (5) sin (3)M)

(D )

sin (6) sin (3 + 4) sin (8)
sin (5 -t- 6) sin (3) sin ( 1 )

= 1

= 1sin (4) sin (1 -+- 2) sin (6)
also wenn man die logarithmischen Absolutglieder mit (s ) , (a) , (d) bezeichnet:

(s) = (a) - (d) (23)
Dabei ist vorausgesetzt, dass bei (A) und ( D ) in demselben Sinn gezählt wird,

d. h . wenn in (A ) der Weg DGB D von links nach rechts genommen ist , so muss
auch in (D ) der Weg CB AG von links nach rechts genommen werden .

Mit analogen Bezeichnungen hat man auch
(*) = (b) - (c) l24)

und ebenso findet man
(*') = («) - (6) = (d) — («) (25)

Endlich kann man diejenige auf e und f (Fig . 1 .) bezügliche 8 gliederige
Gleichung, welche die Beziehung zwischen den Diagonalen AC und BD herstellt ,
dem Punkte M zuteilen , dem sie auch als Zentralpunkt zugehört , wenn man M als
fingierte Winkelstation nimmt ; die Gleichung heisst nämlich :

sin (1 ) sin (3) sin (5) sin (7)(M ) sin (2) sin (4) sin (6) sin (8)
= 1



Günstigste Wahl der Seitengleichung im Viereck . 305
S 84.

Diese Gleichung ist das Produkt aus (A) und (C) oder (B ) und (D ) , z .- B . :

M)

( C)

sin (7 + 8) sin (5) sin (3) _sin (6) sin (3 + 4) sin (8)
sin (3 -+- 4) sin ( 1) sin (7) _sin (2) sin (7 -+- 8) sin (4)

—

woraus durch Multiplikation (26) folgt .

Die Absolutglieder gehen die Beziehung :

(m) = (o) + (c) = (6) + (d) (27)

Dreiecksflächen als Mass der Günstigkeit.
Die Zachariae sehe Theorie verlangt zur Auffindung des günstigsten Zentral¬

punktes nach (14 a) eine sechsfache Vergleichung von Diagonalenstrecken , um schliess¬
lich aus allen 6 Vergleichungen den gün¬
stigsten Fall herauszufinden .

Dieses lässt sich auf eine viel be¬
quemere mit einem Blick zu erledigende
.FlcWtmvergleichving zuiückführen , wie wir
nun zeigen werden :

Wir betrachten die Formel (14 ) in
Verbindung mit Fig . 5. oder Fig . 6 . und
finden :

(a ) CM /\ B D C
(c)

~ AM ~
& ABD

d. h . die Ahsolutglieder (o) -und (c) sind
den Flächen der Dreiecke B D C und
AB D proportional. Nimmt man nun
noch die Gleichungen (23) , (24 ) , (26) und
(25) hinzu , so bekommt man folgende Zu¬
sammenstellung , und damit das Gesamt -
Ergebnis unserer Untersuchung :

Zentralpunkt

Fig . 6.
Flächenverhältnisse « ß y § zu

Gleichung (28) und (29).

'v/
' S

Mass der Günstigkeit (Fig . 6 .)
A mit 6 gliederiger Seitengleichung Fläche ß ■+- yB » „ „ „ y -+- 8
0 » n » » a + ^

r r „ „ CC-f- ß
S mit 8 gliederiger Seitengleichung Fläche y — a
S '

. , . ß ~ 9

(28)

(29)

Am günstigsten ist die Seitengleichung (26) für den Zentralpunkt M , jedochist dieselbe 8 gliederig .
Wenn 2 Vierecksseiten parallel werden , so versagt die ihrem Schnitt ent¬

sprechende 8 gliederte Gleichung vollständig , wenn z. B . AB parallel DG ist , so
Jordan , Handb . d . Vermessungskunde . 4. Aufl . I . Bd . 20



306 Günstigste Wahl der Seitengleichung im Viereck.

wird ß = S und die Gleichung für S ’ löst sich

auf in 0 . . . -+- 0 . = 0 , was man auch

direkt nachweisen kann.
Wenn die 4 Punkte AB CD nicht ein

eigentliches Viereck wie Pig . 6 . bilden , sondern

ein Dreieck ABC mit einem Innenpunkt D,
wie z . B . Pig . 7 . , so bekommt man folgende

Vergleichung betreffs der Günstigkeit der 7 mög¬

lichen Seitengleichungen :
A S JS

Zentralpunkt Mass der Günstigkeit (Pig . 9 .)
A mit 6 gliederiger Seitengleichung Fläche a
B „ „ » !! ß
Gr » » » I

-D » » » „ <* + 0 + Z
S mit 8 gliederiger Seitengleichung Fläche ß + y
8 '

„ » » » o! -h ß | (31)
M „ , „ „ a -hy ’

In diesem Falle ist unbedingt die Seitengleichung für den Zentralpunkt D

die günstigste , denn sie ist nur 6 gliederig und hat die grössten Zahlen -Coefficienten .

Wenn im vorstehenden auch die 8 gliederigen Formen zur Vergleichung beige¬

zogen wurden , so geschah dieses wegen der theoretischen Vollständigkeit , denn bei

wirklichen Ausgleichungsrechnungen überwiegt oft die Rücksicht auf geringe Zahl

der Glieder, und man wird dann nur unter den 4 Fällen A B C D zu wählen haben,

und insofern die Wahl nach (28) oder (30) treffen.

Die Ausscheidung der 8 gliederigen Seitengleichungen ist aber durchaus nicht

immer gerechtfertigt , im Gegenteil , wir halten die absolut günstigste Seitengleichung

(26) für den fingierten Zentralpunkt M der Fig . 5 . , welche zudem so symmetrischen
Bau hat , dass sie für jedes Viereck aus dem Kopf angeschrieben werden kann , für

die einzig empfehlenswerte in Fällen , wo es auf scharfe Rechnung ankommt.

Beispielshalber haben wir die Ausgleichung des Hannoverschen Fünfecks Fig- >>•

S . 189 nochmals gemacht unter Einführung der schärfsten 8 gliederigen Form für das

Viereck Aegidius -Burg -Schanze-Steuerndieb , nämlich nach Fig . 1 . S . 189 :

sin (17 — 16) sin (14 — 13) sin (3 — 2 ) sin (20 — 19) _ _
sin (18 — 17) sin (15 — 14) sin (4 — 3) sin (21 — 20)

—

Die Ausrechnung mit den Winkeln von S . 190—191 gab in Einheiten der 6ten Loga -

rithmendecimale : i

-r 1,64 (t'17 — Viß ) -+- 2,16 (u14 — ^13) -+- 2,53 (vs — »2) H - 2,41 (02o — Vjg)
+ 1,42 (rjj7 — -ojg) -f- 3,54 (044 — 075} + 1,58 (»3 — 04) + 2,25 (0 2o — ^21) 4 "" ®

j
oder geordnet : )

~ 2,53 02 A- 4,11 V3 — 1,58 04 — 2,16013 + 5,70 074 — 3,54 075 j
— 1,64 «16 + 3,06 ui, — 1,42 018 — 2,41 019 + 4,66 02O — 2,25 02] + 6,5 = 0 I

Diese Gleichung wurde an Stelle der zweiten Gleichung (6) oben auf S . 194 —19® 1

Fig . 7.
Flächenverhältnisse a ß y zu

Gleichung (30) und (31).

c
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gesetzt und alles übrige gelassen ; die Normalgleichungenwerden an Stelle von S . 193
die folgenden (in abgekürzter Schreibweise nach S. 80 unten) :
-+-107,19* 1+ 1,08 *2 — 3,41 *s + 3,27 *4+ 0,08 *5+ 0,49 *6 — 0,87 *7 — 0,24 *s + 18,20 = 0

+ 122,13 *2 — 0,28 *3 • • —0,58 *5—2,37 *6 + 2,32 *7 + 1,90 *8+ 6,50 = 0
+ 6 ,00 *3—2 ,00 *4 . . . . — 2 ,00 *7 — 2 ,00 *8— 1,02 = 0

+ 6 ,00fe4—2,00 *5 . + 2,22 = 0
+ 6,00 *5—2,00 *6 . . — 2,00*8 - 2,36 = 0

+ 6,00 *6 — 2,00 *7 + 2,00 *8— 0,76 = 0
+ 6,00 *7 + 2,00 *8+ 2,30 = 0

+ 6,00 *8+ 4,30 = 0
Die Auflösung gab :

fej = — 0,175 *2 = — 0,027 *3 = — 0,386 fc4 = — 0,366
*5 = + 0,111 *6 = + 0,462 *7 = — 0,059 *8 = — 0,941

Die Weiterrechnung gab die v ein klein wenig anders, als sie in der Tabelle II
von S . 194 — 195 erhalten wurden und zwar zu Gunsten der neuen Ausgleichung

’
; des¬

halb sind auf S . 196 diese neuen v und nicht die alten von S . 194—195 eingesetzt,
wie bereits auf S. 195 im Kleingedruckten auseinandergesetzt ist . Die neue Rech¬
nung mit der schärferen Seitengleichung hat also Verbesserungen bis zum Betrag
von rund 0,01" gebracht , ohne dabei mehr Mühe zu verursachen , als eine weniger
günstige Seitengleichung.

Zur vorliegenden Frage mag auch noch ein Citat genommen werden aus „ Astr.
geod . Arbeiten f. d . Europ. Gradm . im Königreich Sachsen , II . Abt. das trig . Netz ,
I . Ordnung von A . Nagel , 1890 “

, S . 492 : v Zachariae hat zuerst eine tiefergehende
Untersuchung dieser Frage angestellt , welche von Jordan nicht unwesentlich erweitert
worden ist. “ Nagel macht dabei so gut es geht, praktischen Gebrauch von der frag¬
lichen Theorie .

Division und Multiplikation der Seitengleichungen .
Im Anschluss an die vorstehende Untersuchung über die günstigste Seitengleichungsform

möge auch noch eine andere Formfrage erledigt werden , welche eigentlich nicht hierher gehört ,
aber doch gelegentlich hier mit erörtert werden soll , weil sie in der „Zeitschr . f. Term . 1894“, S. 236
in Zusammenhang mit der Seitengleichungsfrage gebracht wurde .

Es handelt sich darum , dass eine Seitengleichung , wenn ihre Coefficienten unbequem gross
werden , beliebig mit 10, 100, 1000, kurz mit jeder beliebigen Zahl dividiert (oder auch multipliziert )
werden darf , ohne dass ihr mathematischer Sinn oder ihre Schärfe geändert würde , wenn nur keine
Wegwerfang von Decimalen stattfindet .

Dieses ist bereits in § 47. S. 134—135 angegeben (wie auch schon in den früheren Auflagen
dieses Buches ).

Diese einfache Sache scheint dem Verfasser oben erwähnter Bemerkungen in der „Zeitschr .
t Verm . 1894“, S. 236 nicht geläufig gewesen zu sein , als er 1893 in einem Buche über „M. d .
kl . Q.“, s . 251 zu unserer vorstehenden Theorie schrieb : „Dabei wird sich ergeben , dass für die
sehr kleinen Winkel verhältnismässig sehr grosse Coefficienten der Verbesserungen in die umge¬
formten Bedingungsgleichungen eintreten , wodurch in den weiteren Rechnungen die übrigen Coeffi -
cieuten im Zusammenwirken erdrückt werden und dass daher die Benutzung zehnstelliger Loga¬
rithmen bei Auflösung der Endgleichungen u . s. w . noch keine genügende Genauigkeit erreichen
lässt “ und in „Zeitschr . f . Venn . 1894“, S. 236 : dass „Jordan im § 69 . seines Handbuches I . Band 1888
(übereinstimmend mit vorstehendem § 84.) immer nur die Wichtigkeit sehr grosser Coefficienten
betont und danach nicht angenommen werden konnte , dass er die grossen Coefficienten durch
Division wieder beseitigen werde .“
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Diese Kritik giebt nun Veranlassung , die Sache jetzt noch deutlicher auszudrücken , als in

der vorigen Auflage 1888 , § 69. für nötig gehalten wurde .
Die Benennung „grosse tt Coefficienten kann bei diesen Erörterungen zweierlei bedeuten ,

z . B. in den Gleichungen (22) S. 303 hat 30 v8 einen grossen Coefficienten 30 im Vergleich mit 8 %,
welches nur den kleinen Coefficienten 8 hat . Wenn man aber die erste Gleichung von (22) mit

10 dividiert und dazu die 4te Gleichung geradezu nimmt , so hat man :
— 0,1 — 1,8 vs -+- 7,5 vs — 2,1 v6 — 3,0 v8 -+- 4,0 = 0
-(- 1 vt — 5 -+- 22 Vß— 6 Vß— 8 Z'8 ~\~ 13 = 0

Nun könnte man sagen , 3,0 ist ein kleiner Coefficient im Vergleich mit 8 ; allein in anderem
30

Sinne ist 3,0 doch ein grösserer Coefficient als 8, weil 3,0 aus — entstanden mit ± 1 Einheit seiner

letzten Stelle , auf ^ oder 3,3 °/0 seines Wertes genau ist , dagegen 8 mit ± 1 seiner letzten Stelle

nur auf ~ oder 12 % seines Wertes genau , oder nehmen wir die Coefficienten von v6 , nämlich 7,5

und 22, so ist 7,5 in dieser Form zwar kleiner als 22 , aber doch ist 7,5 im Sinne der hier behan¬
delten Theorie der grössere Coefficient , weil es auf die Stellung des Kommas nicht ankommt .

Oder kurz , die grossen Coefficienten sind deswegen die besseren , weil sie , mag man sie auch

mit 10, 100 und beliebig dividieren , immer noch relativ genauer sind als die ursprünglich kleineren

Coefficienten . Damit dürfte für jeden in solchen Sachen nicht unerfahrenen Rechner der Vorwurf

„die grossen Coefficienten durch Division wieder zu beseitigen a — erledigt sein .
Wir werden im nächsten § 85. durch ein Zahlenbeispiel zu dieser Sache noch weitere Auf¬

klärung geben , hier aber sei die ganz einfache Frage der Division der Gleichungen noch etwas

weiter dargelegt .
In den beiden ersten Triangulierungsausgleichungen , welche wir haben , nämlich in dem

„supplementum theoriae combinationis 1826", rechnet Gauss die Seitengleichungen in Einheiten der

siebenten Logarithmenstelle , und dabei tritt der Übelstand ein , der oben mit „Erdrücken “ der kleinen

Coefficienten benannt wurde , denn es lautet z. B. die erste Normalgleichung in Art . 24. des suppl .
theor . comb . :

— 1,368 = + 6 4 - 25 - 2 (7 — 2D + 184,72 F - 19,85 G
Hier ist der Coefficient 184,72 zu gross , was in unserem Commentar hiezu (in Jordan -Steppes

deutsches Vermessungswesen 1882, S. 13) bemerkt wurde .
Als Verfasser nach dem klassischen Muster des suppl . theor . comb , seine ersten Ausgleick -

ungsversuche machte , welche in Taschenbuch der prakt . Geom . 1873, § 147 u . ff. veröffentlicht sind ,
wurde dem Gauss sehen Vorbild entsprechend ebenfalls in Einheiten der 7ten Log .-Stelle gerechnet
aber in der folgenden Auflage , 1878, 2. Band S. 147—148 der daraus folgende Übelstand erkannt ,
und bei einem Teile der Ausgleichungen jenes Bandes berücksichtigt , durch Rechnung in Einheiten
der 6ten Log .-Stelle und S. 148 dazu bemerkt : Man braucht überhaupt keine bestimmte Logarith -

mendecimale als Einheit der linearen Seitengleichungen zu nehmen , sondern man kann diese Seiten¬

gleichungen mit jeder beliebigen Konstanten multiplizieren . Man vergleiche hiezu auch eine Be¬

merkung in dem Werke . Die königl . prenss . Landes -Triangulation , Hauptdreiecke , I . Teil , 2. Aufl-,
Berlin 1870“, S. 24.

Seit unserer 3. Auflage haben wir bei solchen Ausgleichungen stets in Einheiten der 6. Loga -

rithmendecimale gerechnet , was das bequemste ist .
Endlich sind die neueren Ausgleichungen von Helmert hier zu erwähnen , von denen ein

Beispiel in unserem vorhergehenden § 83. enthalten ist . Es wird hier in der Gleichung (g) S. 295

in halben Einheiten der 6ten Logar .-Stelle gerechnet , wodurch der Vorteil entsteht , dass die Coeffi¬

cienten der linearen Seitengleichungen noch mehr den Coefficienten -+- 1 oder — 1 der Dreiecks¬

gleichungen nahe gebracht werden .
Man sieht aus diesen Citaten , dass die kleine formelle Frage der Masseinheit in den linearen

Seitengleichungen bereits ihre Geschichte hat , und dem nicht unerfahrenen Rechner längst geläufig ist .

§ 85 . Günstige und ungünstige Seitengleichung in einem
Vierecks -Beispiel .

Zu weiterer Klarlegung der im vorigen § 84 . behandelten Theorie für mehr
oder weniger scharfe Aufstellung der Seitengleichung in einem Vierecke wollen wir
im Nachfolgenden ein Zahlenbeispiel durchrechnen mit einer Vierecksform (Fig . !■•)»



85 . Günstige und ungünstige Seitengleichung in einem Vierecks -Beispiel . 309

welche als charakteristisch für die Wahl des Zentralsystems bezeichnet worden ist
(nach „ Zeitschr. f. Verm . 1894 “

, S . 176—182 und S. 235—240).
Die Anwendung unseres Flächensatzes (28) § 84. S . 305 giebt hier :

Zentralpunkt Mass der Günstigkeit
A Dreiecksfläche B J K
B „ AJK
J „ AB K
IC „ AB J

( 1)

Es ist also J der günstigste Zentral¬
punkt , weil die abgewandte Fläche ABK
am grössten ist , und K erscheint als un¬
günstigster Zentralpunkt , weil die abgewandte
Fläche A B J am kleinsten ist .

Die Seitengleichungen für diese beiden
Fälle sind :

Fig. l.

Zentralpunkt J ,

Zentralpunkt K,

sin ( 1 + 2 ) sin (7) sin (5) _
sin (8) sin (5 -t- 6) sin (2)
sin (1 4- 2 ) sin (4) sin (6)
sin (3) sin (5 + 6 ) sin (1)

~

(2)

(3)

Hierzu nehmen wir folgende Winkel als gemessen an :

( 1 ) = 62 ° 14' 30" ( 1) = 62 ° 14' 30"
(2 ) = 5 ° 42' 33"

(4) = 84 ° 17 ' 25"
(8 ) = 27 43 30 (2) = 5 42 33 (3) = 84 17 26 (5) = 5 42 32
(7) = 27 45 28 (3) == 84 17 26 (4) = 84 17 25 (6) = 62 14 29

’ (4)(6 ) = 62 14 29 (8) = 27 45 30 (5) = 5 42 32 (7) = 27 45 28

179 ° 59' 57" 179 ° 59 ' 59" 179 ° 59' 56" 179° 59 ' 54"

w = — 3” w = — 1 ” io = — 4" io = — 6” J

Dazu gehören die Winkelbedingungsgleichungen:

j i>i -+- vs ■+■®7 4- ve — 3" = 0 (5)

unabhängig | Uj -+- + t'3 + »g — 1" = 0 (6)
l «4 4- »5 4- Vg 4- *7 — 6" = 0 (7)

abhängig (V2 4 - l>3 4 - « 4 4 - « 5 — 4 " = 0) (8)

Von diesen 4 Gleichungen sind aber nur 3 unabhängig, wir wollen etwa (5)
( 6) und ( 7) in die Ausgleichung aufnehmen. Ausserdem muss eine Seitengleichung
genommen werden .

Das Zentralsystem J nach (2) giebt folgende trigonometrische Ausrechnung
mit 7 stelligen Logarithmen :
«'« (1 + 2) . . 9 .9670151 Diff. für 10" 86 sin (8) . . 9 .6681466 Diff. für 10” 400
sin (7 ) . . 9 .6681386 400 sin (5 + 6) . . 9 .9670134 86
sin (5) . . 8 .9977101 2106 i sin (2) . . 8 .9977312 2106

8 .63289128 .6328638
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Die dazu gehörige lineare Seitengleichung ist für Einheiten der 6ten Logar .-Stelle :
- t- 0,86 («j + ®2) + 4,00 «7 + 21,06 «5 — 4,00 «g — 0,86 («5 + ®6) — 21,06 «2 — 27,4 = 0 |
oder geordnet : > (9)
(J ) + 0,86 «! — 20,20 «2 + 20,20 c5 — 0,86 «6 + 4,00 «7 — 4,00 »8 — 27,4 = 0 >

Das zweite Zentralsystem K mit der Gleichung (3) giebt :

sin ( 1 + 2 ) . . 9 .9670151 Diff. für 10" 86 | sin (3) . . 9 .9978402 Diff. für 10" 21
sin (4 ) . . 9 .9978399 21 j sin (5 + 6 ) . . 9 .9670134 86
sin (6) . . 9 .9469029 111 j sin ( 1 ) . . 9 .9469040 110

9 .9117579 j 9 .9117576

Lineare Seitengleichung für Einheiten der 7 . Deciniale :

8,6 (t’j + ®2) + 2,1 «4 + 11,1 «6 — 2,1 «3 — 8,6 («5 + «6) — 11,0 «j - !- 3 = 0 \
oder geordnet : > (10)
( K) — 2,4 «j + 8,6 «2 — 2,1 «3 + 2,1 «4 — 8,6 «5 + 2,4 ®6 + 3 = 0 '

Dasselbe in Einheiten der 6ten Decimale :
— 0,24 « j + 0,86 «2 — 0,21 «3 + 0,21 «4 — 0,86 v5 + 0,24 ®6 + 0,3 = 0 (11 )

Wir wollen nun zuerst zeigen , dass man die Gleichung (9 ) in die Form (10)
oder ( 11 ) überführen kann ; man braucht nur ®7 und ®8 aus (9) zu eliminieren , näm¬
lich aus (7) und (6) hat man :

®7 = — ®4 — v5 - v6 + 6"

*8 = — V1 ~ «2 “ % + 1"

Diese beiden in (9 ) eingesetzt werden geben :

+ 4,86 — 16,20 ®2 + 4,00 v3 — 4,00 ®4 + 16,20 «5 — 4,86 ®6 — 7,00 = 0 (12)

Wenn man dieses mit — 3 : 7 multipliziert , so kommt :
— 2,08 « i + 6,94 e2 — 1,71 »3 + 1,71 ®4 — 6,94 ®5 + 2,08 «6 + 3,00 = 0 (13)

dieses stimmt mit (10) zwar im Absolutgliede 3,0 überein, aber die Coefflcienten
selbst , welche in (11 ) und ( 13) ebenfalls stimmen sollten , weichen ganz erheblich ab ,
z . B . — 2,4 gegen — 2,08 u. s . w. und darin zeigt sich bereits die Überlegenheit
der Gleichung (2) mit dem Zentralpunkt J über (3 ) mit dem Zentralpunkt K . Aller¬
dings wenn die Absolutglieder in (9) und (10) trigonometrisch etwa mit 8 — 10 stelligen
Logarithmen berechnet worden wären , überhaupt wenn diese Absolutglieder ganz
scharf wären , so müsste auch die Umwandlung von (9) in (10) ebenfalls scharf stim¬
men . Wir haben aber absichtlich nur mit 7 stelligen Logarithmen gerechnet , um
eben die unvermeidlichen Fehler dieser Bechnung ins richtige Licht zu stellen .

Nun sind uns aber die Coefflcienten in (9 ) immer noch zu gross im Vergleich
mit den Coefflcienten 1 der Winkelsummengleichungen ; wir wollen daher die Gleich¬
ung (9) mit 8 dividieren , indem dadurch der Mittelwert der Coefflcienten nahezu
auf 1 gebracht wird. Man erhält auf diesem Wege aus (9) :

+ 0,108 «! — 2,525 «2 + 2,525 «5 — 0,108 »6 + 0,500 ®7 — 0,500 »5 — 3,425 = 0 (14)
Nun wollen wir die Ausgleichung unseres Vierecks völlig zweifach machen:

I . Ausgleichung mit den Bedingungsgleichungen (14) , (5) , (6 ) , (7)
n . „ , „ (10 ) , (5) , (6) , (7).
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Bedingungsgleichungen I . (14) , (5) , (6) , (7) (15)

*1 '»2 *3 Hi Hq Hl ®8 W

(14) + 0,108 — 2,525 + 2,525 — 0,1081 + 0,500 - 0,500 — 3,425
(5) + 1 + 1 + 1 + 1 — 3
(6) + 1 + 1 + 1 . . + 1 — 1

( 7) + 1 + 1 + 1 + 1 — 6

Die zugehörigen Normalgleichungen finden sich mit 0,1082 + 2,5252 + . . .
= 13,275 u . s . w. und im Ganzen erhält man in abgekürzter Schreibweise (nach (2)
und (3) S. 80) :

+ 13,275 fr . . — 2,917 ifc8 + 2,917 &4 — 3,425 = 0 )
—H 4- H- ^ fcg

+ 4
— 3
— 1

o
o

II
II (16)

+ 4 fc4 — 6 = 0 I
Die Auflösung giebt :

fcl = — 0,0245 , k2 = — 0,2500 , k3 = + 0,3573 , k4 = + 1,6428 ( 17)

Damit macht man die Ausrechnung der einzelnen v, indem man der Tabelle (15)
nach Vertikalreihen folgt . Die Ergebnisse sind :

rr = -t- 0,1047 " «2 = + 0,4191 " *3 = + 0,3573" u4 = + 1,6428” 1 g.
= + 1,5810” v6 = + 1,3954 " v7 = + 1,3806" v8 = + 0,1195" )

J

Wenn man diese Verbesserungen den gemessenen Winkeln hinzufügt , so be¬
kommt man statt der früheren (4) nun die ausgeglichenen Dreiecke :

[ 1] = 62 ° 14' 30,1047 "

f8] = 27 45 30,1195
[7] = 27 45 29,3806
[6] = 62 14 30,3954

180 ° 0' 0 .00027'

[2] = 5 ° 42 ' 33,4191 "

[3] = 84 17 26,3573
[4] = 84 17 26,6428
[5] = 5 42 33,5810

180 ° 0 ' 0,0002"

[ 1] = 62 ° 14' 30,1047"

[2] = 5 42 33,4191
[3] = 84 17 26,3573
[8] = 27 45 30,1195

180 ° 0 ' 0,0006”

[4] = 84° 17 ' 26,6428"

[5] = 5 42 33,5810
[6] = 62 14 30,3954
[7 ] = 27 45 29,3806

179° 59 ' 59,9998"

(19)

Wie man sieht , schliessen alle 4 Dreiecke nahe auf 0,000"
, und völlig genügend

stimmen auch die Seitengleichungen , wie nachstehende Rechnung mit 7 stelligen
Logarithmen zeigen wird :

Zentralsystem J
sin [ 1 + 2] . . 9 .9670155
sin [7] . . 9 .6681441
sin [5] . . 8 .9977434

8 .6329030
sin [8] . . 9 .6681470
sin [5 + 6] . . 9 .9670159
sin [2] . . 8 .9977400

8 6329029

Zentralsystem K
sin [ 1 + 2] . . 9 .9670155
sin [4] . . 9 .9978403
sin [6] . . 9 .9469044

9 .9117602

sin [3] . . 9 .9978403
sin [5 -+- 6] . . 9 .9670159
sin \ 1 ) . . 9 .9469041

9 .9117603

(20 )
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Damit ist unsere ganze erste Ausgleichung I ganz glatt vollendet und die
dabei benützte Seitengleichung (9) mit dem Zentralpunkt J oder die Umformung (14)hat gar keine Übelstände , weder sachliche , noch rechnerisch formelle zur Folge gehabt .

Wir gehen über zur Ausgleichung II mit den Bedingungsgleichungen (10),
(5) , (6) , (7) . Es wurde derselbe Gang eingehalten wie bei I, wir können die Dar¬
stellung daher nun kürzer fassen. Die Normalgleichungen und deren Auflösungen sind :

+ 168,26 fc, . . + 4,10 *3 — 4,10 ?c4 + 3,00 = 9 |+ 4 *2 + 2 *3 + 2 *4 — 3 = 0 | ,91 ,
4 - 4 *3 . . — 1 = 0

+ 4 fc4 — 6 = 0 I
*1 = + 0,01330 , *2 = — 0,2500 , *3 = 4- 0,3613 , *4 = + 1,6387 (22)

Hier sollen *2 *3 *4 mit den entsprechenden * in ( 17) stimmen , was ungefährder Fall ist , aber bereits bei *3 und fc4 Abweichungen giebt . Die Normalgleichungen
(21) unterscheiden sich ungünstig von (16) , indem die Coefficienten in (21 ) viel mehr
unter sich ungleich sind als in (16) ; das rührt von der Seitengleichung (10) K her,welche erstens an und für sich ungünstig ist (nach der Theorie des vorigen § 84 .)und zweitens in Einheiten der 7ten Logarithmen -Decimale angesetzt ist , was die
Coefficienten mit ungeschickter Stellung der Decimal -Kommas auftreten lässt .

Bechnen wir nun mit den Correlaten (22) weiter, so erhalten wir die Winkel¬
verbesserungen :

«1 = + 0,0794 " «2 = + 0,4757 " va = + 0,3334 ' ' v4 = + 1,6666 1
v5 = + 1,5243 ' ' v6 = + 1,4206 " v7 = + 1,3887 ” e8 = + 0,1113 )

1 ü'
Hiermit die geschlossenen Dreiecke :

[ 1] = 62 ° 14' 30,0794 ”
[ 1] = 62° 14' 30,0794 ”

[8] = 27 45 30,1113 [2] = 5 42 33,4757
[7] = 27 45 29,3887 [3] = 84 17 26,3334
[6] = 62 14 30,4206 [8] = 27 45 30,1113

180 ° 0 ' 0 ,0000” 179 ° 59' 59,9998 ”

[2] = 5 ° 42 ' 33,4757 ” [4] = 84 ° 17 ' 26,6666 ”
[3] = 84 17 26,3334 [5] = 5 42 33,5243
[4] = 84 17 26,6666 [6] = 62 14 30,4206
[5] = 5 42 33,5243 [7] = 27 45 29,3887

180 ° 0 ' 0 ,0000” 180 ° 0' 0 ,0002”
die Seitengleichungen :

Zentralpunkt J Zentralpunkt K
sin [ 1 + 2] . . 9 .967 0156 sin [ 1 + 2] . . 9 .967 0156
sin [7] . . 9 .668 1441 sin [4] . 9 .997 8403
sin [5] . . 8 .997 7422 sin [6] . . 9 .946 9044

8 .632 9019 9 .911 7603
sin [8] . . 9 .668 1470 sin [3] . . 9 .997 8403
sin [5 + 6] . . 9 .967 0159 sin [5 + 6] . . 9 .967 0159
sin [2] . . ,8 .997 7412 sin [1] . . 9 . 946 9041

8.632 9041 9 .911 7603
w = — 22 (!)

(25 )



§ 85 . Günstige und ungünstige Seitengleichung in einem Vierecks -Beispiel . 313

Betrachten wir diese zweite Ausgleichung (24) (25 ) mit der Seitengleichung ( 10)K, und ihre Vergleichung mit der ersten Ausgleichung (19) (21), der die Seiten¬
gleichung (9) J zu Grunde liegt , so fällt zuerst auf , dass die Dreiecks Schlüsse ( 19)
und (24) zwar beide vorzüglich stimmen, jedenfalls auf 0,001"

, dass aber die einzelnen
Winkel schon in 0,01" und sogar um 0,05" abweichen . Das erklärt sich daraus ,
dass die Winkelsummengleichungen (5) (6) (7) in beiden Fällen gleich scharf einge¬
führt sind , während die Seitengleichungen (9) J und (10) R ungleich scharf sind,
und zwar zu Ungunsten von (10) IC. Allerdings die Seitengleichung (10 ) R selbst
stimmt in beiden Fällen auf die letzte Einheit der 7 . Logarithmenstelle, aber in der
zweiten Ausgleichung stimmt die andere Seitengleichung (9) J nicht, sondern lässt
einen Fehler von 22 Einheiten der 7 . Logarithmenstelle. (Vgl . (25 ) mit (20) .

Damit ist nun die Vergleichung unbedingt zu Gunsten von (9 ) J nach dem
Flächen-Satze von (28) § 84 . S . 305 entschieden, denn diese Ausgleichung ist nicht
nur numerisch gut (nahe gleiche Coefficienten der Normalgleichungen) , sondern
sie bringt , was die Hauptsache ist , alle Widersprüche zum Verschwinden , während
bei (10) R das nur teilweise der Fall ist .

In dem bisher behandelten Beispiele waren die kleinsten Winkel immer noch
5 ° 43 '

, und man kann noch fragen, wie sich die Sache gestaltet in dem extremen
Falle, dass die spitzen Winkel nur noch einige Minuten betragen.

Zu diesem Zwecke wollen wir unser erstes Beispiel mit Fig . 1 . S . 309 so
abändern, dass die Winkel (1) , (8) , (7) , (6) von früher in (4) bleiben , während die
Winkel (2) , (3) , (4) , (5) folgende neue Werte annehmen sollen :

(2) = 0 ° 5 ' 33" (3) = 89 ° 54' 26" )
(5 ) = 0 5 32 (4) = 89 54 25 | ( ’

dabei bleiben die Winkelsummen in allen 4 Dreiecken dieselben wie früher in (4) S . 309 .
Dagegen die Seitengleichungen werden anders , nämlich bei der Rechnung mi

7 stelligen Logarithmen :
Zentralpunkt J

( 1 + 2) 9 .9472719 111
(7) 9 .6681386 400
(5) 7 .2067128 129650

6 .8221233
(8) 9 .6681466 400

(5 + 6) 9.9472700 111
( 2) 7 .2080189 129650

6 .8234355

Zentralpunkt K
( 1 + 2) 9.9472722 111

(4) 9.9999994 0
(6) 9 .9469029 110

9 .8941745
(3) 9 .9999994 0

(5 + 6) 9.9472700 111
( 1) 9 .9469040 110

(27)

In Einheiten der 6 . Logarithmenstelle bekommt man aus diesem J (27) :
1,11 uj — 1295,39 v2 + 1295,39 v5 — 1,11 ve + 4,00 *7 — 4,00 vs — 1312,2 = 0 (28)

und aus R (27) :
+ 0,01 Uj +- 1,11 *2 — U 1 *>5 + U = 0 (29)

In diesen beiden Gleichungen sind die Coefficienten sehr ungleich; man darf
deswegen , wenn man mit gewöhnlicher Rechenschärfe zufrieden sein will , die kleinen
Glieder neben den grossen Gliedern vernachlässigen und erhält damit :
aus (28) : - 1295,39 (v2 — e5) — 1312,2 = 0 (J ) (30)
Ms (29 ) : + 1,11 (v2 - vs) + 1,1 = 0 (IC) (31 )
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Beide Gleichungen gehen eine Bedingung für die Differenz v%— vs , die man
so schreiben kann ;
aus (30) : v2 — ^ 1,0130” = 0 (J ) (32)
aus (31 ) : v2 — vs ■+- 0,99" = 0 (K ) (38)

Im Ganzen stimmen diese beiden Gleichungen überein, aber die Gleichung (32),
welche auf dem Zentralsystem J beruht , ist viel schärfer als die aus dem ungünstigen
Zentralsystem K hergeleitete Gleichung ( 33) , welche bei der Rechnung mit 7 stelligen
Logarithmen hier einen Fehler von 0,02 " gebracht hat , der aber nur zufällig sehr
klein ist und ganz gut auch 0,1" werden könnte , denn 6 zusammen genommene
7 stellige Logarithmen in (27) werden im Mittel 0 '25 ]/ 6 = 0 '6 Einheiten der 7 . De-
cimale als Fehler bringen , was aber auch auf 2*0 Einheiten der 7 . Stelle oder 0,2
Einheiten der 6 . Stelle anwachsen kann und dann in (31 ) und (33) einen Fehler von
0,2" erzeugt, während die andere Gleichung (32 ) J stets auf 0,001 " scharf bleibt .

Nachdem durch die vorstehenden Zahlenbeispiele aufs deutlichste gezeigt ist , dass die
Theorie unseres vorhergehenden § 84. mit dem Zachariä sehen Satze , „welcher von Jordan auf die
anschauliche Form des Flächenmasses gebracht wurde “ — vollständig richtig und praktisch sehr
wertvoll ist , müssen wir noch eine Kritik und Controverse aus der „Zeitschr . f . Verm . 1894“, S. 175
bis 182 und S. 235—240 hier zum Abschluss bringen . —

Den ersten Teil dieser Sache , betreffend die beliebige Division der grossen Coefflcienteu
haben wir bereits am Schlüsse des vorigen § 84. S. 308 erledigt , und auch einen kleinen Rechen¬
fehler , der in unseren Gleichungen (27)—(33) untergelaufen war , nämlich logsin (1 -J- 2) = 9.9472719
statt 9.9472722 , haben wir im vorstehenden bei (33) insofern behandelt , als gezeigt wurde , dass ein
solcher Fehler von 2 bis 3 Einheiten der 7. Decimale , welcher durch ungünstige Häufung von ge*
wohnlichen Abrundungen zusammen hei 6 Logarithmen Vorkommen kann , gerade in der ungünstigen
Gleichung (31) K tausendfach schlimmer wirkt als in der günstigen Gleichung (30) J , weil in letzterer
die Coefficienten mehr als 1000 fach grösser sind als in (31) K. Also gerade der kleine Rechenfehler ,
welcher in „Zeitschr . f. Verm . 1894“, S. 239 bemerkt wurde , spricht nicht gegen den „Zachariae *
Jordanschen Satz “, sondern am lautesten für denselben , indem dadurch gezeigt wird , wie die
unvermeidlichen Abrundungsfehler hei 7 stelligen Logarithmen ganz verschieden wirken , je nach-
dem man eine günstige Gleichungsform mit grossen Coefficienten oder eine ungünstige Form mî
kleinen Coefficienten anwendet .

Weiter wurde auf S. 239 „Zeitschr . f . Verm . 1894“ gesagt : „Die kleinen Abweichungen , (welche
bei günstiger oder ungünstiger Form der Seitengleichung auftreten ), haben , für die weitere Be¬
nützung der Winkel keine praktische Bedeutung , wenn man sich nicht gerade darauf versteift , die
Dreiecksseiten aus den am schlechtesten geformten Dreiecken zu berechnen .“

Dieses zeugt wieder von Missverständnis der Sache : Wenn wir in (32) oder (33) die Differenz
v2 — % scharf auf 0,001 ", also jedenfalls vollauf genügend für 0,01 " einführen , oder diese Differenz
um + 0,1" bis ± 0,2" schwankend einführen , so kommt das nicht bloss den „schlechtesten “ Drei'
ecken , sondern allen Dreiecken und Winkeln zu Gute oder zu Schaden , und es wäre doch un¬
rationell , in eine Ausgleichung , die man sonst auf 0,01" führt , einen Fehler von 0,1" hineinzutragen
und also alle 0,01" illusorisch zu machen , ohne dadurch die mindeste Arbeitserleichterung zu
erzielen , aus keinem anderen Grunde , als weil der Rechner den inneren Zusammenhang zwischen
den 0,1" in der Bedingungsgleichung und den 0,01" in den Verbesserungen nicht erfasst , oder sich
der richtigen Theorie „nicht angeschlossen “ hat .

Damit dürfte diese Sache genügend klar gelegt und der Vorteil der Theorie von § 84. ge'
nügend bewiesen sein . Zu der vorstehenden breiten Behandlung einer verhältnismässig einfachen
Sache sind wir gezwungen worden durch die in der „Zeitschr . f. Verm . 1894“, S. 235 —240 nait-
geteilten Verhältnisse .

Reihenfolge der Bedingungsgleichungen,
Wenn die Bedingungsgleichungen einzeln aufgestellt sind, so ist über die Aus¬

gleichung im Übrigen so viel entschieden, dass jeder Gleichung eine bestimmte Korre¬
late k zukommt, unabhängig davon , in welcher Reihenfolge die Bedingungsgleichungen
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weiter behandelt werden ; jedoch ist für die Frage der Bequemlichkeit der Elimination
auch diese Reihenfolge nicht gleichgültig .

Wir wollen das kleine Beispiel (15)—(16) im Vorstehenden S . 311 nochmals
vornehmen und nun die Bedingungsgleichungen so umstellen :

- Dx . . . + d6 + v1 + Dg — 3 = 6
h Di - !- D2 + Dg . . . . . . + Dg — 1 = 0

. . . . . . + D4 “f“ D5 H- Vq + D7 • - — 6 = 0
-h 0,108 d x — 2,525 d2 . . . . -1- 2,525 u 5 — 0,108 u 6 -+- 0,500 u7 — 0,500 d 8 — 3,425 = 0

Die zugehörigen Normalgleichungen werden in abgekürzter Schreibweise :
-+- 4,000k, -+- 2,000 k2 + 2,000 fo, — 3,000 = 0 I

+ 4,000 k2 • • — 2,917 — 1,000 = 0 (
-4- 4,000 ics + 2,917k4 — 6,000 = 0 |

+ 13,275 — 3,425 = 0 J

Dieses sind dieselben Gleichungen wie (16) S . 311 , nur in anderer Ordnung,
welche insofern etwas , bequemer ist , als die frühere Ordnung, weil zu Anfang nur
ganze Zahlen 4, 2 u . s. w. als Coefficienten Vorkommen.

Die Elimination in dieser neuen Ordnung giebt :
*i = — 0,2500 , *2 = -+- 0,3567 , ks = + 1,6430 , ki = ~ 0,0252

Dieses stimmt im Wesentlichen mit dem früheren k in (17 ) S . 311 ; das neue k4 = — 0,0252
entspricht dem früheren fcj = — 0,0245 und zwar ist nun 0,0252 etwas weniger genau,
weil bei der Elimination in der neuen , bequemeren Ordnung am Ende zu wenig Wert-
steilen übrig geblieben sind. Es ist das ein Beispiel dafür, dass die Bequemlichkeit
mit den ganzen Zahlen 4 , 2 , 2 . . . am Anfänge noch nicht allein ausschlaggebend
ist. Man muss immer darnach trachten , die Quotienten der ersten Reduktionen,

nämlich U- g- w< möglichst klein zu haben , und namentlich ist zu ver-
[a a] [a a]

meiden , dass ein solcher Quotient grösser als 1 werde , weil dadurch auch die Ab¬
rundungsunsicherheiten vergrössert übertragen würden . Zur Vergleichung von ver¬
schiedenen Eliminationsformen dieser Art können dienen das Hannoversche Fünfeck
mit Normalgleichungen S . 193 und das frühere Lindener Sechseck in Handb . II . Band ,
3 . Aufl. 1893, S . 291 .

In der „ Zeitschr. f. Verm. 1875 “ , S . 411 hat Koppe zu einer Auflösung von
34 Normalgleichungen seiner Gotthardtriangulierung zwei Tabellen , Beilage A und
Beilage B gegeben , von denen die erste eine unbequeme Ordnung und die zweite eine
günstigere und zwar solche Reihenfolge hat , dass die vollen Glieder möglichst zusammen¬
stehen, in der Nähe der Diagonale der quadratischen Glieder zusammengedrängt.

Auch in der Triangulierungsausgleichung von Nagel (vgl . das Citat von S, 307)
mit Auflösung von 159 Gleichungen sind die Normalgleichungen S . 579 604 so
geordnet, dass in der Nähe der Diagonale der quadratischen Glieder die Glieder voll,
und entfernt davon die Glieder leer sind.

§ 86 . Ergänzungen zur Theorie der Stationsausgleichungen .
Zum Schluss des Kapitels über Ausgleichungvon Triangulierungs-Netzen haben

sich noch einige Bemerkungen ergeben, welche die Stationsausgleichungen von § 69.
's 11 ., 75. bis 77 . und 82 . zusammen betreffen .
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I . Ausrechnung der einzelnen z and ©.
In der Näherungsausgleichung von § 69 . S . 228 wird darauf ausgegangen , die

Richtungsverbesserungen v sowohl nach Sätzen als auch nach Sichten geordnet (nach
Linien und nach Spalten auf S . 228 geordnet ) auf die Summen Null zu bringen , und
wir wollen mit der Theorie von § 71 . zeigen , dass dieses streng der Fall sein muss ,
•d . h . dass nach der Stationsausgleiehung in jedem einzelnen Satze [©„] = 0 und für
jede Sicht [©"] = 0 sein muss .

Hiezu haben wir ans den Gleichungen (8) S . 235 durch Summierung der 3
ersten und dann der 3 letzten Gleichungen :

M «i + M *2 + W «s + M * '+ [i >"] * " + [p "K -
(m - pi o) ^ + ([p2] - p 2

°) ^ ( Ips1 - ps o) ^ + [ p’
} x ' + [p ' '

}x' ' + [p ' ' '
}^ ' ^ m - [n )= ^

Diese beiden Gleichungen zusammen geben :

Pl ° Z\ + i>2
° «2 + f>3

° *3 + P °] = 0 W
Wenn man alle Sätze einzeln zählt , so sind die p ° alle = 1 , und man kann

dann kurz so schreiben :
Zi Z2 Z^ — — [l °

j (2)
wobei die 1° die Beobachtungswerte der ersten Richtung z. B . Kalleninken auf S . 238 ,sind . Diese 1° kann man aber bekanntlich alle gleich Null machen, indem man
jeden Satz mit 0 ° 0 ' 0" in der fraglichen Richtung beginnen lässt , und dann stellt
sich (2) noch kürzer so dar :

Z\ + ^2 ^3 “1* . . . = 0 oder [0] = 0 (3)
Dann ist nach S . (234) in der ersten Kolumne von (4) :

[ü °] = M — [Z°] = 0 (4)
und in der zweiten Kolumne von (4) S. 234 hat man :

[»'] = Pi ' «1 + P2 «2 + Pi z3 + . . . + [p ’
] x ' — [/'] (5)

dieses ist aber gleich Null wegen der 4 . Gleichung in (8 ) S . 235 , und ebenso ist es
auch mit [©

"
] , [»" '

] u. s . w. , d . h . wir haben nun gezeigt , dass die v nach Kolumnen
addiert in allen Richtungen die Summen Null geben müssen .

Aber auch die Summierung nach Linien giebt dasselbe , z . B . die erste Linie
in (4) S . 234 giebt :

[©] ] = [^ j] z1 ~h pi cd f- Pi ’ x " + p { " x " ' + [Zt]
dieses ist gleich Null wegen der ersten Gleichung von (8 ) S . 235 . Wir haben also
nun beispielshalber bei 3 Sätzen mit 4 Zielpunkten :

*1
° ®l

'
V v{ "

M = 0
V «2 * 2

" *2
" '

M = 0
V »8 *8

" ©3
" '

M = 0

[* °] = 0 [©'] = 0 [ ©"
] = 0 [«"'

] = 0 [« ] = 0
Allerdings haben wir hier zunächst angenommen , dass alle 1° = 0 seien, allein

wenn dieses auch nicht der Pall sein sollte , so braucht man nur V — 1° an Stelle
von l ' u. s. w. zu setzen , und alles bleibt dann wie im Vorstehenden .

Wir wissen also nun aus (6) ganz allgemein , dass die Fehlersummierung [*] = ®
nach Linien und nach Kolumnen , welche bei vollen Sätzen , in IV. S . 225 selbstver¬
ständlich war , auch bei beliebig verteilten lückenhaften Sätzen nach der Ausgleichung
immer stattfinden muss , und dass also auch eine Näherungsausgleichung nach S. 228
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als abgeschlossen und mit der strengen Ausgleichung hinreichend übereinstimmend
zu betrachten ist , sobald jene Summen [u] = 0 nach Linien und Kolumnen genügend
stimmen .

Die einzelnen Satz Verschiebungen z hat man aus (9) S . 235 :
Pi ] Pi x ’ + p \

" x " + p { " x"
*1 =

«2

M [ p {\

JM _ ffz
' * ' + P -i + p { " *"

Ipz]
^3 — .

= L X— XX

— Lo — Xo
M

. -D3 — «:3

Die hier mit L und x abgesondert bezeichneten Teile sind erstens die Satz¬
mittel L und zweitens die auf die betreffenden Sätze entfallenden Beträge x von
den »'

, x"
, x ' " . . .

Das Zahlenbeispiel Nidden S . 238 mit » ' = + 2,205” und x " = + 3,085”

giebt für die 12 ersten Sätze :
x"

* 1 = X2 = • • ■» 12 =
Y

= + 1 ’542 "
’

für die folgenden Sätze :

* 18 = =

und * 82 — * 33

• * 31

• • * 43 :

X

x' + x"
= + 1 , 102”

= + 1,763"

Die Ausrechnung der z selbst wird nach S . 238 so :

Num . 1° v 1 l" ! m
i

L — X
L — x

= z

1 0,00 5,00 5,00 2,500 — 1,542 + 0,958
2 0,00 5,75 ! 5,75 2,875 — 1,542 + 1,333
3 0,00 5,50 ; 5,50 2,750 — 1,542 + 1,208
4 0,00 7,00 ; 7,00 3,500 — l,542j + l,958
5 0,00 2,00 ; 2,00 1,000 — 1,542 - 0,542

12

Summen 37,25 37 .25 18,625 —18,504 + 0,121

1 0,00 4,25 4,25 2,125 — 1,102 + 1,023
2 0,00 3,00 i 3,00 1,500 — 1,102 + 0,398

19 . .

Summen 0,00 48,50 48,50 24,250 —20,938 + 3,312

1 0,00 0,00 2,75 , 2,75 0,917 — 1,763 — 0,846
2 0,00 3,50 2,75 i 6,25 2,083 — 1,763 + 0,820

12 . . i
Summen 0,00 19,75 j 33,50 53,25 , 17,750 1- 21,156 ;— 3,406
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Die Summe aller z ist + 0,121 + 3,312 — 3,406 = + 0,027 , was in diesem
Falle hinreichend mit Null stimmt . Diese so berechneten g bringt man als Satz¬
verschiebungen an allen Bichtungsbeobachtungen an , worauf die Vergleichung mit
den ausgeglichenen af x" auch alsbald alle v geben muss. Wir wollen dieses nur
noch kurz andeuten :

Verschobene Sätze V = x — (l - *)
^' 2 v" 2,

l ° — z V — z l" - z V* v"

— 0,958 + 4,042 + 0,958 — 0,957 0,92 0,92
— 1,333 + 4,417 + 1,333 — 1,332 1,78 1,78
— 1,208 + 4,292 + 1,208 — 1,207 1,46 1,46

Summe der ersten Gruppe 12,45 . , 12,45
zweiten „ 11,81 11,81
dritten „ 6,43 8,65 6,46

30,69 20,46 18,91
Die Gesamtsumme [v v] = 70,06 stimmt hinreichend mit 70,18 oder rund 70,2

von S. 237 und S . 239 . (Vgl. hiezu S . 239 im Kleingedruckten.)
Der mittlere Fehler einer Bichtungsmessung ist auf S . 239 bereits berechnet

mit dem Nenner 98—45 , wo 98 = [j) °] + [p '
] + [p " ] ist , und der Abzug 45 sich

aus den 43 einzelnen z nebst x' und x" erklärt . Um auch für jede der 3 einzelnen
Sichten einen solchen mittleren Fehler zu berechnen, wollen wir die Verteilung der
Abzüge so machen : die Abzüge für die g in den einzelnen Eichtungen entsprechen
-den Abzügen bei (aa ) , (bi ) in (11 ) S . 236 :

[ .P °J - • • . = 43 - 12
2

19
2

12
3

. = 31 — 19
2

12
3

[*"] - • ■. . = 24 — 12
2

12
3

= 43 — 19,5 = 23,5

= 31 — 13,5 = 17,5

= 24 — 10,0 = 14,0

(7)

Für Winkelausgleichung kommt nun noch — 2 wegen x ' und x" hinzu, und man bat
dann den Abzug 43 + 2 , wie auf S . 239 . Wenn wir aber nach Bichtungen abtrennen
wollen , so gelten 3 Eichtungen als Unbekannte, aber dafür wieder ein z als Willkür-
lieh, und daraus folgen die Nenner :

N ° = 43 — 1 — 19,5 + 0,333 = 22,833
N ' = 31 — 1 — 13,5 + 0,333 = 16,833
N " = 24 — 1 — 10,0 + 0,333 = 13,333

Summe 52,999 = 53
Wenn man mit diesen Nennern und den im Vorhergehenden ausgerechneten »2

die mittleren Fehler für die 3 einzelnen Sichten ausrechnet, so erhält man (vgl , S . 238) :
Kalleninken Gilge Lattenwalde

mO -. / 30,69
Y

'
22,833

± 1,16"
V-20,46

f6,833
1 , 10 "

m
(9)
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Für alle 8 Sichten zusammen ist (wie schon auf S . 239 angegeben ist ) :

±1,15 " ( 10 )

Man kann auch m2 aus den Einzelwerten ro °a , m' 2 und «j"2 so zusammgesetzt
denken (wie immer in solchen Fällen) :

N ° m °2 + N ' m' 2 4- N ” m"2
N ° + N ' + N "

Die in (9 ) gemachte Zerlegung des mittleren Fehlers in die Teilfehler für die
einzelnen Eichtungen kann von praktischem Werte sein zur Untersuchung, ob infolge
verschiedener Zielschärfe, verschiedene Arten der Signalisierung, Beleuchtung u . s . w.
den einzelnen Eichtungeri verschiedene Gewichte zuzuteilen wären , abgesehen von
der Verknüpfung der Sätze unter sich . (Weiteres hiezu s . S. 322— 323 .)

II . Stations-Ausgleichung in Richtungsform.
Um die Besselsehe Stationsausgleichung von § 71 ., welche bei s Strahlen

s — 1 Winkel als Unbekannte hat , auf s Richtungen zu reduzieren , kann man nach
der allgemeinen Theorie von § 81 . die Summen der Normalgleichungs-Coefficienten
bilden , wie in (7)—(9 ) S . 278 an einem Beispiele gezeigt ist .

Um dieses auf § 71 . anzuwenden , wollen wir zuerst für die Coefflcienten (aa ),
(ah ) u . s. w . auf S . 236 noch besondere Teilbezeichnungen einführen :

(« «) = [? '] - [ff
'
] - (« &) = - [*'

„] , M = - [A'
,„]

m = Lp"
] - [ff

"
] - (& c) = - [/>" , „](6 c) = - [*"„ ,] ( 11)

M = [± ” ] - [ff
"T

Dabei sind mit g und h gewisse , aus den Gruppierungen der Sätze folgende Zahlen
bezeichnet , deren Bildungsgesetze aus S . 236 und S . 237 leicht zu erkennen sind .

Wenn ein Normalgleichungs-System (10) S. 235 vorliegt mit 3 Winkeln
x'

, x"
, so kann man nach § 81 . daraus ein System für 4 Eichtungen x ° x' x" x '"

bilden in dieser Weise :
(A A) x° 4- (A a ) x' j- (A b) x" 4- (A c) x" ' 4- (A l) = 0

(a a) x ' -t- (a 6) x" 4- (a c) x" ’ + (fl i) = 0
(6 6) + (6 c) x’" 4- (6 l) = 0

(c c) x’" 4 ( c l) = 0

( 12 )

Dabei muss sein :
(AA ) 4- (Aa ) 4- (Ab ) 4- (A c) = 0
( A a) 4 (a a) + (fl S) + {fl c) = 0
(A b) 4- (fli ) + (b b) 4- (6 c) = 0
(A c) 4~ (a c) 4- (b c) + (c c) = 0

( 13)

Diese Beziehungen sind durch § 81 . bewiesen ; man kann sie aber auch un¬
mittelbar aus (11 ) nachweisen . Die (A A ) u . s . w. werden nach demselben Gesetze
gebildet wie die (a a) u . s . w., z . B . ist :

(A A ) = [y>°] — [0 °] , ( 4n ) = - [h °
,] , (Ab ) = — [h °„ ] u . s . w.

Wenn man dann die Bedeutungen der g und h verfolgt, so findet man bald :

[g °] + [h °
, ] + [h ° n] + [Ä±, ] = [JP

°]
r t , rz./ i i r &' l _i_ Th' 1 — [V/ 1

[ff
"

] + [A"
o ] + P "

, ] H- = [p " \
(14 )
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Auch im Übrigen braucht man nur eine Art Abzählung, ohne weitere Theorie,um die Gültigkeit der Gleichungen ( 13) und (12) unmittelbar einzusehen .Praktischen Wert haben die Gleichungen (12) insofern zunächst nicht , als siekeine eindeutige Auflösung zulassen , man könnte sie zur Auflösung nach x °
, x '

, x"
, x '",etwa durch fortgesetztes Probieren benützen , wie schon Gerling mit solchen Gleich¬ungen gethan hat .

Insofern die Summen [gr] und [/i] im Allgemeinen Meiner sind , als die [jp],kann man daran denken, die (A A) , (aa ) , (bb ) u . s . w. als genäherte Bichtungs -
gewichte in dem Sinne von § 82 . anznnehmen, also z . B . :

Eichtungsgewicht P ° = (ii ) = [p °] — [^ °]
10 IQ 10S . 238 : P ° = 43 — — —■~ — 23,5u u O

Dabei ist [p °] = 43 die auf S . 258 erwähnte , Anschnittszahl“ , und wenn mandie (4 4 ) , (aa ) u. s. w. als genäherte Richtungsgewichte nehmen wollte , so wäredamit ausgesprochen, dass die Eichtungsgewichte im Allgemeinen kleiner als dieAnschnittszahlen sein müssen , was nicht behauptet werden kann , denn nach S. 258u . 259 sind die richtigen Eichtungsgewichte teils kleiner , teils grösser als die An¬schnittszahlen , ja die richtigen Eichtungsgewichte können sogar unendlich worden,wie auf S. 259 gezeigt wurde und nachher noch besonders behandelt werden soll.Auch manche andere Überlegungen mehr theoretischer Art führen dazu , dassdie (A Ä) , (ci o) u . s . w. , welche sich aus einer Gruppe von Sätzen stets rasch ab-zählen lassen würden, als genäherte Richtungsgewichte im Allgemeinen nicht eignen,und als erste rohe Näherungen für Richtungsgewichte bleiben also die Anschnittszahlen.Wir haben das Beispiel von S . 228 mit 4 Sichten , welches dort in 3 Stufengenähert ausgeglichen ist , auch noch streng ausgeglichen , und dann die mittleren
Eichtungsfehler nach dem Verfahren von (7)—(9) getrennt behandelt und mit denAnschnittszahlen als theoretischen Gewichten zusammengenommen, worauf eine Ver¬
gleichung zwischen solcher Näherungsrechnung und strenger Rechnung möglich wird.Was zunächst die strenge Ausgleichung von S . 228 betrifft, so zeigt sich , wiezu erwarten war, sehr nahe Übereinstimmung mit der Stufe III . von S. 229, undausserdem die Gewichts-Coefflcienten :

[ et a] = 0,299 [a ß] = 0,098 [« y] = 0,081
[fl ß] = 0,263 [ß y] = 0,092

{y y] = 0,348
Mit Zuziehung des Gewichtseinheitsfehlers m V17,97

15 =1,09" oder rund= 1,1"
wurden damit die mittleren Fehler der 6 ausgeglichenen Winkel (nach den Formeln
(1) S. 284 mit [a a ] = , [« ß] = u . s . w.) berechnet :

±0,60 ” ±0,56 " ±0,65 " |± 0,66 " ± 0,76 " 1
± 0,72" )Die Behandlung nach dem Verfahren von (7)—(9 ) hat ergeben :

l/s .V 5, !
75
50

0,93"

Dazu im Ganzen

/ IS «" - / I435
>,17

± 1,17

98
83

1,25"
17,97

15 : 1,09"

m =

(13 )

/
2,89
% 60

± 1,08"
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(Dieses entspricht dem damit gleichen 1,09 ” unten auf S . 229 .)
Indem man dann noch die Anschnittszahlen von S . 228 als Richtungsgewichte

nimmt , bekommt man die Richtungsfehler :

M ° _ 0,93~ VTo
± 0,29”

M’ hll
1/6

■0,48 ”

M " 1 ,25

yf
: 0,47”

M ’" = 1,08“
vt

± 0,48”
Endlich zur Vergleichung mit (15) die Winkelfehler , nämlich :

l/0,29 2 -+- 0,48 2 = ± 0,56 ” u . s . w . , im Ganzen :
±0,56 ” ±0,55 ” ±0,56 ”

^
±0,67 " ±0,68 ” i (16)

±0,67 ” I
Dieses (16 ) stimmt mit dem strengen (15 ) ziemlich überein , doch kann natürlich

kein allgemeiner Schluss aus einem solchen Zahlenbeispiel gezogen werden , welches
nur andeuten soll , wie man etwa in erster Näherung (ohne Kenntnis der [a a ] , [a ß]
u . s . w .) rechnen könnte , wenn man zugleich die Verschiedenheit der Zielschärfen
in den einzelnen Sichten mit berücksichtigen wollte . (Weiteres hiezu s . S . 322 — 323 ) .

III . Vierter Fall strenger Bichtungsgewichte.
Ausser den 3 Fällen strenger Richtungsgewichte , welche auf S . 282 als Anfang

von § 82 . aufgeführt sind , zu welchen auch noch die unten auf S. 266 (im Klein¬
gedruckten ) erwähnten Fälle symmetrischer Richtungssatz -Anordnungen als Erweiter¬
ungen des 3ten Falles gehören , giebt es auch noch einen 4 ten Fall , der als hierher
gehörig schon in § 76 . S . 259 kurz erwähnt worden ist , nämlich den Fall von Winkel¬
messungen , welche alle einen Strahl gemeinsam haben , z . B . so :

Pi ° Pl ■ ■
p2

° ■ ■ Pz
Ps °

Anschnittszahlen [p °] p { p { '
pz

"

Richtungsgewiehte oo —- —| - •

Wie man sofort einsieht , kann man all diesen Messungen einen Richtungssatz
substituieren mit dem Anfangsgewichte = oo und den halben Anschnittszahlen als
Gewichten der übrigen Richtungen , denn es ist dann z . B . das erste Winkelgewicht P '

bestimmt durch

j _ _ i_ _^ _
2

_ = 0 , _
2_

P ' ~
OO Pl

~
Pl

also P ' = & - wie es sein soll .

Man kann auch sagen (wie schon S . 259 ) , dass der Fall (17) nur gezwungen
sich der Richtungsform fügt , und dass man gerade so gut die Winkel selbst in die
"weitere Ausgleichung einführen könnte .

In früherer Zeit , als man Repetitionswinkel mass , war der Fall (17 ) mit Aus¬
wahl eines gut beleuchteten Zielpunktes für p ° sehr oft vorkommend .

Noch allgemeiner kann man sagen : Wenn bei s Strahlen nicht mehr als
s — 1 Winkel gemessen sind (also ohne Ausgleichung ) , so kann man dafür jedenfalls
s Richtungen mit bestimmten Richtungs -Gewichten substituieren .

Jordan , Handb . d . Vermessungskunde . 4. Aufl . I . Bd . 21
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IV . Schärfere Trennung der Fehler nach Richtungen.
Die Fehlertrennung , welche wir in den Gleichungen (7) —(9) S . 318 ohne Theorie

angegeben haben , ist für den angegebenen Zweck hinreichend , aber nicht streng
richtig , und kann nur auf umständlichem Wege , mit Zuziehung der Gewichts -Coeffl-
cienten [a a ] , [a j3] u . s . w. genauer gemacht werden . Obgleich zunächst kein dring¬
liches Bedürfnis dazu vorliegt , wollen wir doch aus theoretischem Interesse dieses
auch noch kurz behandeln:

Es handelt sich um Formeln von der Art (19) S . 87 , wobei aber die Gesamt¬
summe [ot ] in verschiedene Gruppen [s ° « 0] , [ v' v '

] , [v" v"
] . . . zerfällt werden soll

und auch die entsprechendenNenner gesucht werden sollen , bzw. die Abzüge u°
, u’

, « . . .
in folgenden Formeln (für n Sätze mit s Richtungen) :

j ° 2 = o ° « °

[p °] — u °
wobei [« “ t 0] -+- [» ' v ']

[p °] + [*>' ] -
und « ° + «' + w" -+

,' 2 ^ !>
'

< 1

[ p" ] -[P r] — «'
+- [«" v"

] + . . . = [« u]
- [p"

] + • • • = Lp]
. . . = « = 11 + 8 - 1 (vgl . (15 ) S . 236)

(18)

Der Weg , auf dem die Hauptformel (19 ) auf S . 86—87 gefunden wurde , ist nicht
geeignet für die Trennung der w, dagegen kann man durch die Gewichts-Coefflcienten
von § 28 . und die reduzierten Fehlergleichungen § 26 . den Zweck erreichen. Man
kann die Differenz [e «] — [« ®] von S . 86 auffassen als Summe der mittleren Fehler¬
quadrate der v als Funktionen von x , y , z , woraus sich alsbald ergiebt :

[8e] — [» «] = m2 -' [o a] [« er] -+- 2 [a h] [a |ffj + 2 [oc] [« 7] -+- . . . + \bl ] [(3ß ] -+- • • •) (19)
Wegen (20) S . 90 ist die hier als Coefficient von m2 erscheinende Klammer

= 1 + 1 + 1 für 3 Unbekannte x , y, z , allgemein ist die Klammer = u für u Un¬
bekannte , und daraus ergiebt sich dann alsbald die Gleichung (19 ) S . 87 . was als
zweite Begründung dieser wichtigen Gleichung auftritt .

Um nun zur Trennung der u überzugeben , wollen wir die reduzierten Fehler¬
gleichungen von § 26 . betrachten. Wenn nämlich bei 3 Unbekannten x , y, z eine
erste Unbekannte x eliminiert ist , und ein System von Gleichungen (5) S . 83 übrig
geblieben ist , so entspricht diesen auch ein System (7) S . 83 mit nur noch 2 Ele¬
menten, welchem auch in (20) . S . 90 nur 2 Elemente und dann ein Wert « = 1 + 1 = 2
zukommen , so dass im Ganzen doch wieder n — 1 — 2 = n — 3 herauskommt. In
ähnlicher Weise wollen wir nun auch die Trennung der u bei unserer Stationsaus¬
gleichung vornehmen .

Was zuerst die z betrifft , so kann man deren Einfluss am besten bestimmen,
indem man die x vorläufig als fehlerfrei annimmt , denn dann ist nach (9) S . 235
das z eines Satzes gleich dem Mittel aus allen Werten l dieses Satzes , also das
mittlere Fehlerquadrat dieses z gleich rrfig (mit g nach (11 ) S . 319 ) , und die zu dem
vorhergehenden (19) analoge Theorie giebt dann alsbald die Abzüge [gr

°] , [g1
] , [g"

] • • •
für die Nenner zur Berechnung des mittleren Fehlerquadrates in den Richtungen
P °

, P '
, P " . . . ; d. h . wir haben damit dieselbe Berechnung , welche für die z

ohne strenge Begründung bereits in (7) S . 318 , mit — 19,5 , — 13,5 , — 10,0 ge¬
geben ist.

Schwieriger ist der Einfluss der x zu bestimmen . Nach Elimination der 1
vermittelst (9) S . 235 nehmen die v von (4) S . 234 folgende Formen an , wobei g
und h die bereits oben in (11 ) auf S . 319 eingeführten Bedeutungen haben sollen :
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für die Richtung P ° : v ° = — h, ° x ' — h, ° x" — h„ ° x '" + . . . |
» k » P ■ v = ( 1 g ) af h„ x ' h,,, ' x '" -+- . . . ( -
. , » P " : v" = — h," af + {l - g"

) x” - h„
' " x" ' + . . . [

w

» , , P ' " ■ V" = - h," ' X' — h,r x” + (1 - g" '
) x ' ” + . . . I

Dabei sind die Absolutglieder, welche wir hier nicht brauchen, weggelassen
(durch . . . angedeutet) . Zur Bedeutung der schon früher eingeführten h und g sei
auch nochmals erwähnt, dass es lediglich die zu S. 236 erforderlichen Verhältnis¬
zahlen sind , und dass z . B . h,,' " = h„ ,

" u . s . w.
Die Gleichungen (20) sind nun reduzierte Fehlergleichungen in dem Sinne von

§ 26 ., nämlich Fehlergleichungen für die v nach Elimination der z . Deswegen muss
auch z . B . sein :

|> ,
°2] + [(1 — p'

)2] + [h,"*\ + [Ä," ' 2] = (o a) von (11 ) S. 236 >
+ [h, ° h„ °) - [ ( 1 - / ) h„l

] - [h," (1 - <?" )] + [V " h„
' " ] = (a b) S . 236 (21 )

u . s. w. . )
Man kann dieses aus der Einzelbedeutung der g und h durch Vergleichung

mit (11) S . 236 leicht nachweisen .
All dieses haben wir auf das Zahlenbeispiel von S . 228 angewendet und

gefunden :
0,757 + 0,396 + 0,174 0,868 + 0,284 0,646
2,590 — 0,854 — 0,410 0,396 + 0,062 0,174
0,396 — 0,854 + 0,062 3,035 — 0,632 0,285
0,174 -+■0,062 — 0,410 0,285 — 0,632 2,146
3,917 — 1,250 — 0,584 4,584 — 0,918 3,251

= (a a) = (ab ) = (ae ) = (6 6) = (6c) = (« c)
Dazu wurde auch bestimmt

0,299 0,195
(vgl . S . 320) :

0,162 0,263 0,183 0,348
= [« «] = 2 [aß \ = 2 [« y] £5LC5II = 2 [ßri = trrl

Damit berechnet sich der Abzug für den Nenner des Fehlerquadrats der ersten
Richtung (für x ° ) :

0,577 [a «] + 0,396 (2 [a (3] ) + 0,174 (2 [a f[ ) + . . . = 0,837
und entsprechend die 3 anderen : 0,718 , 0,743 , 0,704 .

Damit bekommt man die richtigen Nenner zur Berechnung der mittleren
Fehlerquadrate der 4 einzelnen Richtungen von S . 228 :

po P ' P " P ' " Quersumme
Anschnittszahlen 10 6 7 5 28
Abzüge für die z \ — 3,75 — 2,08 — 2,42 — 1,75 — 10,00
Abzüge für die x \ — 0,84 — 0,72 — 0,74 — 0,70 — 3,00
Nenner 5,41 3,20 3,84 2,55 15,00

Die Näherungswerte von S . 320 unten waren :
Näherungen 5,50 3,17 3,83 2,50

Jene Näherungen waren also genügend richtig. Obgleich die praktische An¬
wendung des Vorstehenden zunächst von geringer Bedeutung ist , schien uns doch
die Theorie soweit wichtig, dass ihre, wenn auch nur sehr gedrängte Mitteilung am
Platze war .
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§ 87 . Geographische Coordinaten und Azimute des
Hannoverschen Fünfecks .

Nicht zur Ausgleichung selbst gehörig , aber aus praktischen Gründen daran
anzuschliessen, sind die geographischen Coordinaten und die Azimute des Netzes
Fig . 1 . S . 189 . Wir werden diese Werte hier als Nachtrag zu § 60.—64 . bringen.

Die Grundwerte der geographischen Längen und Breiten im System der
Landesaufnahme für die zwei Basispunkte Aegidius und Wasserturm sind bereits
unter (4) S . 188 mitgeteilt , und im Anschluss hieran, mit den ausgeglichenen Winkeln
und Seiten von § 61 . und § 63 . haben wir teils nach den Bechenvorschriften der
Landesaufnahme, teils nach den Gauss sehen Mittelbreiten - Formeln in unserem
III . Bande, 3. Aufl . 1890 , S. 398 folgendes berechnet :

Punkt Breite Länge
Aegidius 52 ° 22 ' 14,9611 " 27 ° 24 ' 24,6289 "
Linden Wasserturm 52 21 49,9080 27 22 25,0167
Willmer 52 20 49,8613 27 25 44,2318
Steuerndieb 52 23 31,6871 27 27 22,9670
Schanze 52 24 58,1187 27 24 33,1515
Burg 52 24 2,3220 27 22 7,7967

Ferner Meridianconvergenzen und die sämtlichen geodätischen Azimute (von
Nord über Ost gezählt) und dazu nochmals die Logarithmen der Dreiecksseiten von
(5 ) S . 197 oder (12) S . 203 :

Station
Richtung

Meridianconvergenz y
Azimut cc log S

1. Aegidius . y = 2° 50' 49,56"
Wasserturm . . . a = 251 7 24,97 3.378 7016
Burg . • . 322 4 0,45 3.624 0521
Schanze . 1 49 45,68 3.702 8735
Steuerndieb . . . 54 52 13,92 3.615 2086
Willmer . . . 150 11 30,10 3.481 5665

2. Wasserturm . <NII?«» 52' 23,46"
Burg . a = 355 27 7,19 3.613 3487
Aegidius . . . . 71 5 50,25 3.378 7016
Willmer . . . 116 11 16,97 3.623 4413

3. Willmer . y = 2“ 49' 43,18 "
Wasserturm . . . a = 296 13 54,71 3.623 4413
Aegidius . . . . . . 330 12 33,14 3 4815665
Steuerndieb . . . 20 28 3,69 3.727 4425

4. Steuerndieb . y = 2° 48' 31,02"
Willmer . a = 200 29 21,87 3.727 4425
Aegidius . . . . . . 234 54 35,17 3.615 2086
Burg . . . 279 3 48,07 3.780 5583
Schanze . 47 6,94 3.620 7673

o . Schanze . ii ot 50' 49,06 "
Steuerndieb . . . cc= 129 44 52,37 3.620 7673
Aegidius . . . . . . 181 49 52,40 3.702 8735
Burg . 54 0,02 3.511 0402

6 . Burg . y = 2° 52' 42,26 "
Schanze . a = 57 52 4,85 3.511 0402
Steuerndieb . . . 98 59 38,36 3.780 5583
Aegidius . . . . . . 142 2 12,04 3.624 0521
Wasserturm . . . . . 175 26 53,52 3.613 3487
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Die hier mit aufgenommenenMeridianconvergenzen y sind dieselben , wie schon
auf S . 204 angegeben, und die Summen y + a geben die ausgeglichenen T von S . 204.

Wenn man aus den vorher mitgeteilten Breiten und Längen wieder die Azimute ,
Meridianconvergenzen und die log S rückwärts berechnet, so wird man die letzten
Stellen nicht völlig in Übereinstimmung finden , erstens aus begreiflichenAbrundungs¬
gründen, zweitens aber auch deswegen , weil in den Rechnungen der Landesaufnahme
die Meridianconvergenzen und Azimute nicht bloss aus den geographischen Coordi-
naten , sondern auch auf dem schärferen Wege der rechtwinkligen Coordinaten (14)
S . 205 übertragen werden , was in vorstehenden y und a geschehen ist .

Unsere in diesem § 87 . zusammengestellten Werte nebst den früheren von
| 61 . und § 68 . sind diejenigen, welche voraussichtlich in den „ Abrissen und Coordi¬
naten “ der trigonometrischen Abteilung der Landesaufnahme, etwa Band XVII, ver¬
öffentlicht werden werden .

Kapitel III.

Punktbestimmung durch Coordinatenausgleichung.

§ 88. Allgemeines.

Im vorigen Kapitel haben wir die Ausgleichung von Triangulierungs-Netzen
nach der Methode der bedingten Beobachtungen behandelt, wobei zuerst die Beding¬
ungsgleichungen aufgesucht werden mussten, welche zwischen den gemessenen Winkeln
oder Richtungen nach der Natur des geometrischen Netzzusammenhanges bestehen;
worauf eine der Zahl dieser Bedingungsgleichungen gleiche Zahl von Normalgleich¬
ungen aufzulösen war.

Wir gehen nun über zu einer anderen Art der Ausgleichung trigonometrischer
Messungen , wobei die Coordinaten der zu bestimmenden Punkte als unabhängige
Unbekannte angenommen, und die gemessenen Winkel oder Richtungen als Punktionen
dieser Coordinaten dargestellt werden , so dass darauf eine Ausgleichung nach vermit¬
telnden Beobachtungen gegründet werden lcann.

Der einfachste Fall von Coordinatenausgleichung liegt vor , wenn ein neuer
Punkt an mehrere fest gegebene alte Punkte angeschlossen werden soll. Wir werden
daher im folgenden zuerst auf diese einfachste Aufgabe ausgehen .

§ 89. Sichtungs -Änderung und Coordinaten-Änderung.

Bei allen Coordinatenausgleichungen werden wir eine Grundaufgabe wieder¬
kehren sehen, welche wir deshalb ein- für allemal vorausschicken .

In Pig . 1 . S . 826 haben wir einen festen Punkt P 1 mit den rechtwinkligen
Coordinaten x\ , y\ und einen zweiten veränderlichen Punkt P mit den Coordi¬
naten xx / ; die Entfernung von P x nach P sei = s und der Richtungswinkel (Ka-
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