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berechnungen , wie an dem Beispiel der Pehlerberechnung ( 16)—(20) zu sehen ist .
Allein jener Gewichtseinheitsfehler m befriedigt nicht den oft auftretenden Wunsch,
für die auf der Station im Mittel erreichte Winkelgenauigkeit ein anschauliches Maass
zu besitzen . Hiezu dient der mittlere Fehler für mittleres Gewicht , wobei aber das

rv
~\

mittlere Gewicht nicht etwa schlechthin als Durchschnittswert L
^ - der 9 Einzelge¬

wichte genommen werden darf , sondern der Definition der Gewichte als Reciproke
der mittleren Fehler -Quadrate und dem Princip des mittleren Fehlers selbst ent¬
sprechend so zu berechnen ist :

n L P
(23)

1
wo « die Zahl der Einzelgewichte ist . In unserem Falle sind die in der Ta -

P
belle (2) angegeben mit der Summe 0,3867 , es ist also

0,3867 0,04297 9 = 23,37 (24)

und der mittlere Fehler für dieses mittlere Gewicht :

4,77 I/O,04297 = ± 0,989 " (25)

Wenn auf jeder Station nicht mehr als die zur Stationsfestlegung selbst erfor¬
derliche Zahl von Winkeln gemessen wäre , so würde dieses n auch den mittleren Fehler
von mittlerem Gewicht eines auf der Station ausgeglichenen Winkels vorstellen. Es
ist aber in unserem Falle auf einer Station , nämlich Mannheim , ein Winkel über¬
zählig (vgl . Horizontgleichung (9) ) und deswegen hat unser fi in (25) eine etwas
andere Bedeutung, welche jetzt nicht weiter erörtert werden soll . Überhaupt haben
wir (25) nur als formelles Rechenbeispiel hier vorgeführt, denn wenn die Winkel
absichtlich sehr ungleich gewichtig sind , hat die Rechnung (25) nicht den inneren
Sinn , der ihr bei glatten durchlaufenden Ketten oder gleichförmig ausgebreiteten
Netzen zukommt .

§ 66. TriangulienmgsaasgleichuHg nach vermittelnden
Beobachtungen . Schwerds Basis-Netz .

Wenn schon die Winkelausgleichung des vorigen § 65 . nicht ein Beispiel für
die laufende Praxis war , so ist das noch weniger der Fall bei einer Dreiecksnetz¬
ausgleichung mit Winkeln nach vermittelnden Beobachtungen, die wir noch anfügen
wollen . Es ist aber wohl nützlich einzusehen , dass man eine derartige Ausgleichung
nicht notwendig nach Korrelaten machen muss , sondern dass man auch andere Formen
dafür zur Verfügung hat .

Schon in der allgemeinen Theorie § 37 . wurde angegeben, dass man Messungen,
welche sich zunächst in der Form von bedingten Beobachtungen darbieten, auch auf
vermittelnde Beobachtungen reduzieren kann. Ob dieses nützlich ist , kommt auf
den einzelnen Fall an ; bei unserem Schwerd sehen Basisnetz kann man wohl so ver¬
fahren, und zwar bekommt man dann nur 4 Normalgleichungen aufzulösen , gegen 5
bei der Korrelaten-Methode. Die Reduktion auf vermittelnde Beobachtungen wird
aber auch noch andere Vorteile, bei Genauigkeitsuntersuchungen, bieten .
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Fig . i .
Schwerd s Basisnetz .
Maassstah 1 : 400 000.

Nach dem vorigen § 65 . (7) bis (10) S . 209 bis
210 bestehen für das Schwerd sehe Netz Big. 1.
folgende 5 unabhängige Bedingungsgleichungen:

+ 0,320 «! — 3,419 v2 — 4,459 v3 + 0,503 v4
+ 15,105 v8 — 2,860 vB + 4,715 = 0

»2 + ^5 + v6 + ®8 + 0,809 = 0
»1 + v3 4- v& — 1,578 = 0
v4 + «e + ^9 + 1 .655 = 0
v7 + — vg — 0,100 = 0

Von den 9 gemessenen Winkeln wählen wir
die 4 Winkel ( 1 ) (2) (3) und (8) als unabhängige
Unbekannte aus , oder , sofort zu den Verbesserungen
übergehend, nehmen wir die Verbesserungen Uj , %
vs , vs als unabhängige Unbekannte der Ausgleichung,
und es entsteht die Aufgabe, mit Hilfe der Be¬
dingungsgleichungen ( 1 ) alle anderen v in diesen
»1 , v2 , vB , vs auszudrücken.

Nach gewöhnlichen algebraischen Methoden
erhalten wir hiefür :

vs — — v -i — vs + 1,578
Vg = + rq — v2 + Vg —■'üg — 2,387 #
Vg = — 0,054 v4 — 0,867 v2 — 1,475 vs 4 - 4,641 v&+ 1,511 (2)
v4 = — 0,946 vt + 1,867 v2 + 0,475 vs — 3,641 vs — 0,779
v7 — — 0,054 rq — 0,867 v2 — 1,475 Vg -I- 3,641 Vg + 1,611

Dazu kommen noch die Fehlergleichungen für die unabhängigen v selbst, nämlich :

» l = ®1 v2 = v2 »3 = % (3)

Die Gewichte p sind schon bei (2) S . 208 angegeben , es ist uns aber dieses
Mal bequemer, die Gewichtseinheit lOOfach kleiner zu nehmen, und damit bekommen
wir folgende Tabelle der Coefficienten der Fehlergleichungen (2) und (3) und der

Gewichte p , nehst Yp :

Fehlergleichungen :

tq = + 1,000 tq
v2 = . . + 1,000 v2
Vg = . . . . + 1,000 vs
vs = . . . . . . + 1,000 Vg . .
»5 = — 1,000 tq . . — 1,000 vg . . + 1,578
u6 = + 1,000 tq — 1,000 v2 + 1,000 vs — 1,000 v8 — 2,387
v4 = — 0,946 v4 + 1,867 v2 + 0,475 vs — 3,641 vg — 0,779
©7 = — 0,054 iq — 0,867 v2 — 1,475 vs + 3,641 vs + 1,611
v9 = — 0,054 iq — 0,867 v2 — 1,475 vs + 4,641 vs + 1,511

Um die Gewichte ein für alle mal zu berücksichtigen

p Yp
l 0,70 0,837
' 0,07 0,265

1,01 1,005
0,28 0,529

i 0,85 0,922
; 0,57 0,755

0,47 0,686
j 0,10 0,316
I 0,30 0,548

multiplizieren wir die
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Coefficienten und Absolutglieder der Fehlergleichungen bzw . mit ]/ p und bekommen

damit folgende neue Tabelle :

Gleichgewichtige Fehlergleichungen:

VpiVi = + 0,84 ®!
V

'
^ 2 ®2 = . . -h 0,26 ®2

V^3 ~ ■ • • ■ + 1 )00 ®3 . .
VPs vs — • ■ ■ ■ ■ ■ + 0,53 ®8
Vp5 vö = — 0,92 ®! . . — 0,92 ®3 . .

yPß ®6 = + 0,75 ®j — 0,75 ®2 + 0,75 ®3 — 0,75 ®8 -

yPi vi = — 0,65 ®x -{- 1,28 ®2 -+- 0,33 ®s — 2,49 ®8 -

yp 7 ®7 = — 0,02 ®j — 0,27 ®2 -t- 0,46 ®3 + 1,15 ®8 -

y pgVg — — 0,03 ®! — 0,48 ®2 — 0,81 ®3 -t- 2,55 ®8 ■

- 1,46
- 1,80
- 0,53
■0,51
- 0,83

(5)

Die Abrundung auf 0,01 ist hinreichend zur Erlangung einer Winkelgenauig
keit von 0,01" .

Die hiezu gehörigen Normalgleichungen sind in abgekürzter Schreibweise :

+ 2,54 vj — 1,37 ®2 + 1,23 ®3 + 0,96 vs — 2,38 = 0

+ 2,57 ®2 -+- 0,37 ®s — 4,16 ®8 + 0,14 = 0

+ 3,39 ®s — 3,98 ®8 — 3,77 = 0 \ (6)
-t- 14,87 ®8 -j- 5,37 — 0

+ 6,60

Die Auflösung dieses Systems von 4 Gleichungen gab :

®! = -H 0,64 " ®2 — — 0,41" ®s = + 0,46" ®4 = — 0,40" (7)

Durch Einsetzen dieser 4 ersten v in die Fehlergleichungen (4) bekommt man

auch alle anderen ®, und zwar überall auf etwa 0,01” übereinstimmend mit den

früheren Resultaten v von (13) § 65 . S . 211 , weshalb wir diese Zahlen nicht noch

einmal hersetzen .
Die Elimination der Normalgleichungen (6) giebt auch ein Schlussglied :

[11 . 4] = 1,14 (8)

was ebenfalls mit 113,8 nach (15 ) § 65 . S . 211 genügend stimmt , mit Rücksicht auf

die nun 100 mal kleinere Gewichtseinheit .
Der mittlere Winkelfehler für die Gewichtseinheit ist jetzt :

(9)

, S 211 bei 100 fachDieses entspricht dem früheren 4,77 nach ( 15) §
grösserer Gewichtseinheit . wintel he-Wir wollen noch das Gewicht einer Funktion der

.
ausgeg ic

^stimmen, und zwar soll diese Funktion die Seite JM sein . ie
fehlerfreie Basis , die Funktion ist daher :

oder logarithmisch :

JM = DH sin [ 1] sin [6]
sin [3] sin [9]

log J M = log D H -h log sin [ 1] + log sin [6] — log sin [3] — log sin [9]

( 10 )

( 11 )
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Das Differential ist :

dlog J M — — cotg [ 1] d [ 1] + ^ cotg [6] d [6] — - cotg [3] d [3] — ^ cotg [9] d [9]

dlog J M — 0,32 d [1 ] + 0,90 d [6] — 4,46 d [3] — 2,86 d [9] (12)
Hier sind aber nur [ 1 ] und [3 ] unabhängige Unbekannte der Ausgleichung ,

und es dürfen daher nur <2 [1] und <Z [3] , oder die Differentiale d [2] und d [8] der
ebenfalls unabhängigen ausgeglichenen Unbekannten [2] und [8] in (12 ) Vorkommen .
Um daher d [6] und d [9] zu eliminieren , betrachten wir die Fehlergleichungen (2)
und bilden daraus :

d [9] = — 0,054 d [ 1] - 0,867 d [2] — 1,475 d [3] + 4,641 d [8] 1
d [6] = d [ 1 ] — d (2] + d [3] — d [8] (

1 ’

Diese Gleichungen sind deswegen richtig , weil in den Fehlergleichungen die
Absolutglieder l verschwinden, wenn man von den ausgeglichenen Winkeln [ 1 ] [2 ] . . .
statt von den beobachteten Winkeln ( 1 ) (2 ) . . . ausgeht , und entsprechend d [1] d \2] . . .
statt zj, «2 • • • setzt. Die zweite Gleichung (13) kann man unmittelbar aus der
Figur ablesen .

Setzt man also ( 13 ) in (12) , so erhält man :
dlogJM = + 1,37 d [ 1 ] + 1,58 d [2] + 0,66 d [3 ] — 14,17 d [8] (14)

also :
fi = — 14,17 /j = + 0,66 /, = + 1,37 ^ = + 1,58 (15)

Wir haben hier die Ordnung fs fs /) f% angenommen, weil es uns für spätere
Zwecke interessiert , v2 als letzte Unbekannte zu haben , um das Gewicht von u2 Se"
legentlich mit zu erhalten. Setzt man nun , um der Anweisung von § 29 . S . 93 zu
entsprechen, die bei ( 15 ) berechneten Werte f an Stelle der Absolutglieder der Normal-

(16)

(17)

(18)

( 19)

( 20 )

gleichungen (6) , und ordnet nach der Folge fs fs /, f2, so findet man :
+ 14,87 qs — 3,98 33 + 0,96 3l — 4,16 q2 + 14,17 = 0 j

+ 3,39 + 1,23 2l + 0,37 g2 — 0,66 = 0 (
+ 2,54 gl — 1,37 32 — 1,37 = 0 j

+ 2,57 32 — 1,58 = 0 )
Die Weiterelimination giebt :

+ 2,32 33 + 1,49 3 ! — 0,74 32 + 3,12 = 0 >
+ 2,483, - 1,1032 - 2,28 = 0

+ 1,41 32 + 2,39 = 0
'

+ 1,52 3, — 0,62 32 — 4,28 = 0 1
+ 1,17 32 + 3,38 = 0 )
+ 0,92 32 — 1,61 = 0

Die hier geschriebenen 3 sind bloss Zeichen für die Ordnung der früheren
Nach Anleitung von (13) § 29 . S . 94 hat man nun :

1 _ 14,172 3,122 4,282 1,612 j
P ~

14437
+ p2 + Ü52

" +
0792

' 1
= 13,50 + 4,20 + 12,05 + 2,81 = 32,56 I

M = m j/y = 0,477 1/32756 = + 2,72 (21)
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Dieses ist der mittlere Fehler der Funktion ( 11 ) in Einheiten der 6ten Decimale , also :

log J M = 4.252 6662 '4 + 27 -2
J M = 17 851,15 “ ±0,11 “

(22 )

(23)
Dieses ist schon in ( 14) § 65 . beigefügt worden.

Gelegentlich hat man auch in dem letzten Coefficienten von g2 in (19) das
Gewicht der Winkelkorrektion «2 erhalten , nämlich :

P 2 = 0,92 (24)
(derselbe Coefficient 0,92 würde auch erhalten , wenn man die schon früher vor¬
handenen Gleichungen (6) so auflöste , dass u2 die letzte Unbekannte wäre ) .

Hieraus findet man auch den mittleren Fehler des ausgeglichenen Winkels
(2) «2 = [2] , nämlich :

m

(die Eliminationen dieses § sind nur mit dem Rechenschieber gemacht , also überall
nur auf etwa 2—8 Stellen genau) .

§ 67 . Stationsausgleichung mit Winkelmessungen .

Wenn Winkelmessungen so verteilt sind, dass auf einer Station mit s Strahlen
mehr als s — 1 Winkel vorliegen , so kann man für jeden auf der Station über¬

schüssigen Winkel eine Bedingung in die Netzausgleichung einfügen , wie in dem

Beispiele des Schwerd sehen Basisnetzes § 65 . S . 209 mit der Station Mannheim

gezeigt worden ist .
Wenn aber die Zahl der auf den Stationen überzähligen Winkel gross ist , so

wird dieses Verfahren sehr umständlich , und ist deswegen im grossen nicht anzuwenden.
Man hat deswegen zu dem Verfahren gegriffen , zuerst die Stationen für sich

auszugleichen.
Indem wir die Frage , wie dann die Stationsausgleichungen ins Netz übergehen

sollen , vorerst bei Seite lassen , behandeln wir die Stationsausgleichung mit Winkeln
jetzt als selbständige vorläufige Aufgabe.

I . Summenprobe im Horizont .

Ein einfacher , in früherer Zeit , als man Repetitionswinkel mass , oft vorge-

kommener Fall liegt vor , wenn mehrere Winkel , welche den ganzen Horizont von
360 ° füllen , einzeln gemessen werden und dann auf die Horizontprobe abgestimmt
werden müssen . Z . B . in Fig . 3 . § . 58 . S . 174 hatten wir 2 solche Horizontproben,
mit (3 ) + (6 ) + (8) + (10) + (24) + (25) im Horizont Oggersheim und mit + (12) + ( 15)

! (16) + (19 ) + (22 ) im Horizont Speyer. Auch die Probe auf Mannheim in Fig . 1 .
§ 65 . S . 208 erscheint von dieser Art , wenn man (7) , (8) und 360 ° (9) als drei
einzelne Winkelmessungen auffasst , welche den Horizont 360 ° füllen müssen.

Die Ausgleichung eines solchen Horizontes besteht bei gleichen Gewichten der

einzelnen Winkel lediglich darin , dass man den Horizontwidevspruch zu gleichen
Teilen auf alle beteiligten Winkel umlegt , und wenn die Winkel ungleiche Gewichte
haben , so erfolgt die Verteilung des Widerspruches umgekehrt proportional den Gewichten.

Man kann dieses nach dem Prinzip des arithmetischen Mittels zweier ungleich
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