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Preuss . Landestriangulation , V . Teil , Berlin 1893 “ , aus welchem wir in S . 95 —165
das Vorstehende entlehnt haben, auch für alle anderen Stationen die Abrisse auf
S, 147 u . ff. Dieses Schlesisch -Posen sehe Dreiecksnetz ist eines der elegantesten
Beispiele für Netzeinschaltung mit Coordinaten -Ausgleichung, welche von General
Schreiber etwa seit 1876 bei der trigonometrischen Abteilung der preussischen Landes¬
aufnahme eingeführt worden ist .

Wenn man solche mehrpunktige Coordinaten - Ausgleichung auch in einem
Soldner sehen Coordinatensystem, etwa in einem der 40 preussischen Kataster-Systeme
ausführen will, so bleibt im Wesentlichen die Anordnung bestehen, nur sind die
Beduktionen t — T im Soldnersehen System umständlicher zu bestimmen als im
conformen System (vgl . S . 206 ) ; beschränkt man sich aber auf geringe Ausdehnung ,
III . Ordnung (etwa wie in § 99. S . 374) , so würden in massigem Abstand von der

Haupt -Achse des Systems die t — T verschwindend klein und damit die Coordinaten -

Ausgleichung sehr bequem , nämlich mit der im vorstehenden § 108. vorgetragenen
übereinstimmend, wenn man nur alle t — T gleich Null setzt.

Kapitel IV.

Theorie der Fehlerwahrscheinlichkeit .

§ 109. Hauptsätze der Wahrscheinlichkeitsrechnung.

Die Wahrscheinlichkeitsrechnung beschäftigt sich mit zufälligen Ereignissen,
d , h . mit Ereignissen , deren Ursachen im einzelnen Palle unbekannt sind . Solche

Ereignisse sind z . B . das Ziehen aus einer Urne , das Pallen eines Würfels , hei Ver¬

sicherungsanstalten das Eintreten eines Brandfalles oder eines Todesfalles , in der

Methode der kleinsten Quadrate das Vorkommen eines Beobachtungsfehlers.
Wenn die Ursachen solcher Ereignisse auch nicht gänzlich unbekannt sind ,

so wird diesen Ursachen doch im einzelnen Palle nicht weiter nachgeforscht , wenn

es sich um Wahrscheinlichkeitsrechnung handelt.

Mathematische Wahrscheinlichkeit.

Die Wahrscheinlichkeit w eines Ereignisses ist das Verhältnis der Anzahl der

dem Ereignis günstigen Palle zu der Anzahl der überhaupt möglichen Fälle.

Z . B. die Wahrscheinlichkeit, mit einem gewöhnlichen Würfel die Zahl 6 zu

werfen, ist = 1 : 6 , weil 1 Pall günstig und 6 Fälle möglich sind .
Die mathematische Wahrscheinlichkeit ist immer ein echter Bruch , mit den

Grenzen Null für Unmöglichkeit, und Eins für Gewissheit .
Wenn man im Stande ist , die möglichen und die günstigen Fälle abzuzählen ,

so kann man hiernach immer die mathematische Wahrscheinlichkeit angeben . Wir

fragen z . B. nach der Wahrscheinlichkeit, mit 2 gewöhnlichen Würfeln die Augen¬

summe = 7 zu werfen ; dazu überlegen wir , dass 36 Fälle überhaupt möglich sind ,

weil zu jedem Fall des einen Würfels 6 Fälle des anderen Würfels liiiizukoinmen
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können ; weiter zählen wir ab , dass der Wurf 7 im Ganzen 6mal Vorkommen kann,nämlich :
1 + 6 , 2 + 5 , 3 + 4 , 4 + 3 , 5 + 2 , 6 + 1

daraus folgt, dass der Wurf 7 bei zwei Würfeln die Wahrscheinlichkeit
In gleicher Weise kann man auch geradezu abzählen , dass der Wurf 2 die2 1Wahrscheinlichkeit 55 = vo hat u- s- w-ob lo
Indessen statt des unmittelbaren Abzählens kann man zu solchen Fällen auchdie Sätze über Summen und Produkte von Wahrscheinlichkeiten anwenden, zu welchenwir nun übergehen.

Summe von Wahrscheinlichkeiten.
Sind iv und «>' die Wahrscheinlichkeiten zweier sich ausschliessender Ereig¬nisse , so ist die Wahrscheinlichkeit w , dass eines oder das andere eintritt , gleichder Summe der beiden Einzelnwahrscheinlichkeiten, d . h . :

W = io + 10'
( 1)Denken wir uns in einer Urne a schwarze , 6 weisse und c sonstige Kugeln ,dann ist die Wahrscheinlichkeit, bei einem Zug eine schwarze Kugel zu erhalten ;

a
b + cdesgleichen für eine weisse Kugel :

a + 6 + c
und für eine schwarze oder eine weisse Kugel , da nun a und b günstig sind :

Damit ist die oben geschriebene Gleichung (1) nachgewiesen, für alle Fälle , welchein Hinsicht auf Wahrscheinlichkeit dem gewählten Urnenbeispiel entsprechen.Dieser Satz von der Summe der Wahrscheinlichkeiten lässt sich auch auf mehrals zwei Ereignisse anwenden und giebt dann : Wenn w , w '
, w" . . . die Wahr¬scheinlichkeiten beliebig vieler Ereignisse sind, so ist die Wahrscheinlichkeit für dasEintreten des ersten oder des zweiten oder des dritten u . s . w. gleich der Summealler Einzelwahrscheinlichkeiten.

Wir werden diesen Satz später auf Beobachtungsfehler anwenden, etwa indieser Form : Bei irgend welchen Messungen sei die Wahrscheinlichkeit einem Fehlere zu begehen = w , die Wahrscheinlichkeit einem Fehler e ' zu begehen = tv'
, dieWahrscheinlichkeit einen Fehler s" zu begehen = 10" u . s . w . , dann ist die Wahr¬scheinlichkeit, einen Fehler e oder e ' oder e " u . s . w. zu begehen, die Summeder Einzelwahrscheinlichkeiten:

(2 )
W = w + iv ' + w" + . . .

Produkt von Wahrscheinlichheiten.
Sind w' und w" die Wahrscheinlichkeiten zweier von einander unabhängigerEreignisse , so ist die Wahrscheinlichkeit W, dass beide zusammen eintreten , gleichdem Produkt der beiden EinzelWahrscheinlichkeiten, d . h . :

W = 10 . je'
(3 )
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Man denke sich hiezu zwei Urnen mit a und a ' schwarzen , nebst 6 und 6'
anderen Kugeln ; bei diesen Urnen sind die Wahrscheinlichkeitenfür Schwarz :

a , , a
w = - - bezw. io = - -

a + b o + 6
Nun fragt man nach der Wahrscheinlichkeit, dass bei zwei Zügen aus beiden

Urnen, beidemal schwarz erscheint. Hier sind a a' Fälle günstig, weil zu jeder Kugel
o eine Kugel a ' kommen kann, und möglich sind (o + 6) (a' + b' ) Fälle , es ist also :
Die Wahrscheinlichkeit für Schwarz und Schwarz :

W = oder =
(o + 6) (o + 6 ) o

a a
— . . , - jr = w . w
+ 6 a! + V

Damit ist die oben geschriebene Gleichung (2) nachgewiesen für die dem
Urnenbeispiel entsprechenden Wahrscheinlichkeiten; und ebenso wie für 2 Ereignisse
gilt das Produkt auch für die Wahrscheinlichkeit des Zusammentreffens von mehr
als 2 Ereignissen , z . B . in der Fehlertheorie werden wir nachher eine Anwendung
von folgender Form haben : Die Wahrscheinlichkeit eines Fehlers « sei w , die Wahr¬
scheinlichkeit eines Fehlers e ' sei w'

, ferner s " mit w" a . s . w . Dann ist die
Wahrscheinlichkeit bei 3 Beobachtungen gerade die Fehler e , « '

, s " und keine
anderen zu erhalten , oder allgemeiner, die Wahrscheinlichkeit bei einer Beobachtungs¬
reihe die Felder e , e '

, s " u. s . w . zu erhalten, ausgedrückt durch das Produkt :
W = w . ii) ' . w" . . . (4)

Das Gesetz der grossen Zahlen. . Wenn man eine Wahrscheinlichkeit aus den
Ursachen a priori nicht berechnen kann, so giebt es einen Schluss aus der Häufigkeit
des Vorkommens rückwärts auf die Wahrscheinlichkeit.

Wenn z . B. von 1000 geborenen Knaben nur 250 das 50ste Lebensjahr erreichen ,
so schliesst man daraus , dass für irgend ein heute geborenes männliches Kind die

Wahrscheinlichkeit = oder = 4- besteht, das 50ste Lebensjahr zu erreichen .
1000 4

Oder wenn bei einem Doppelnivellement unter 491 Vergleichungen 209 Ver¬

gleichung die Differenz l ”m gegeben haben , und wenn andere Differenzen als 0””“,
1™™, 2mm überhaupt nicht Vorkommen können , so ist die Wahrscheinlichkeit für die

Differenz l ”,m, der Bruch ^ = 0,43 .491
Wahrscheinlichkeitsrechnung als Hilfswissenschaft der Methode der kleinsten fQuadrate

giebt Hagen „G-rundzüge der Wahrscheinlichkeitsrechnung .“ 2. Aufl . Berlin 1867.

§ 110. Wahrscheinlichkeit der Beobachtungsfehler.

Um die Wahrscheinlichkeitsrechnung auf Beob&chtungsfehler anzuwenden , muss
man voraussetzen , dass die Beobachtungsfehler zufällige Ereignisse in dem Sinne
sind, wie am Anfang des vorigen § 109. auseinandergesetzt wurde . (Grobe Fehler
sollen ausgeschlossen sein , vgl . S . 11 .)

Wir wollen weiter annehmen, man habe sich eine längere Beihe von Beobach¬

tungsfehlern verschafft. Es ist allerdings oft schwer , wahre Beobachtungsfehlerkennen
zu lernen , indessen giebt es doch manche Wahrnehmungen, welche zwar nicht reine
Fehler sind, aber doch völlig deren Charakter haben , z . B . die Dreieckswidersprüche
von Triangulierungen (vgl. S . 12 ) oder die Differenzen von Doppelmessungen n . s . w.
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oder man begnügt sich , statt wahrer Fehler mit scheinbaren Fehlern , z . B . denDifferenzen einer grossen Zahl gleichartiger Messungen einer Grösse und deren arith¬metischem Mittel (vgl . S . 23 ).

Wir wollen dabei annehmen, die Beobachtungen seien von einseitigen Feuer¬wirkungen frei, und deswegen sei die Verteilung der Fehler nach der positiven undnegativen Seite nahezu gleich.
Wenn man nun solche Fehler nach ihrer Grösse ordnet , so macht man dieErfahrung , dass die Verteilung derselben einem gewissen Gesetz folgt , dessen Er¬

forschung nun unsere Aufgabe ist . Man findet , dass kleine Fehler häufiger sind alsgrosse , und dass namentlich um den Wert Null sich die Fehler häufen , währendgrössere Fehler , welche das zwei - bis dreifache des mittleren Fehlers übersteigen,sehr selten Vorkommen .
Schon die geringe Zahl von 18 Beobachtungen, welche wir früher in § 7.S . 23 behandelt haben , zeigt dieses ; man hat nämlich 10 positive und 8 negativeFehler : und wenn man ohne Rücksicht auf das Vorzeichen nach der Grösse ordnet,so erhält man folgende Reihe :
0,10" 0,12" 0,12” 0,13” 0,30" 0,38" 0,62" 0,83" 1,12" I
1,13 1,17 1,27 1,38 1,63 1,71 2,09 2,63 4,62 { ^ '

Die Verteilung nach der Grösse giebt
zwischen 0" und 1 " . . . 8 Fehler

» 1" , 2"
. . . 7 n

2" , 3" . . . 2 n
n 3"

„ 4" . . . 0 n
4"

„ 5"
. . . 1 it

Summe 18 Fehler.
Es ist ganz augenscheinlich, dass kleine Fehler häufiger sind als grosse , denn

z . B . zwischen 0" und 1" haben wir 8 Fälle , dagegen zwischen 4" und 5" nur1 Fall .
Da ähnliche Erfahrungen bei allen längeren Beobachtungsreihen gemachtwurden , hat man allgemein geschlossen, dass die Häufigkeit des Vorkommens oderdie Wahrscheinlichkeit, eines Fehlers von der Grösse des Fehlers abhängig sei .In der vorstehenden kleinen Reihe haben wir z . B . 8 Fehler zwischen 0" und 1",und da im Ganzen 18 Fehler vorliegen, können wir sagen, die Wahrscheinlichkeiteines Fehlers zwischen 0" und 1" sei = 8 : 18, oder indem wir alle Fehler zwischen0" und 1" mit ihrem Mittelwerte 0,5" in Rechnung nehmen, können wir näherungs¬weise auch sagen :

W (0,5" ) = jg = 0,444 . . .
d . h. in diesem Falle ist die Wahrscheinlichkeit, einen Fehler von ungefähr 0,5" zubegehen = 0,44 . . .

Diese Wahrscheinlichkeit ist aber offenbar nicht bloss abhängig von der Grössedes Fehlers, (in diesem Falle 0,5" ) , sondern auch von dem Intervall innerhalb dessender Mittelwert 0,5" gelten soll ; dieses Intervall war im vorigen Falle 1"
, und würdeman dieses Intervall enger genommen haben , etwa halb so gross , so dass 0,5" nurzwischen 0,25 und 0,75 gerechnet würde , so würde man nur noch 3 Fälle gefundenhaben und die Wahrscheinlichkeit würde W (0,5"

) = 3 : 18. Bei einer grossen Zahl
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von Fehlern und engen Intervallen wird man wohl annehmen dürfen , dass die Wahr¬
scheinlichkeit eines Fehlers proportional der Grösse des Intervalls ist , innerhalb
dessen er gerechnet wird.

Indem wir nun das Ergebnis dieser Betrachtungen in die Formen der Ana¬

lysis bringen wollen , bezeichnen wir die Wahrscheinlichkeit eines Fehlers e durch
W (e) und da diese Wahrscheinlichkeit abhängig sein soll von der Grösse von e ,
was analytisch durch eine Funktion von s etwa <p (s ) ausgedrückt sei, und da ferner
die Wahrscheinlichkeit proportional dem Intervall sein muss , das mit de bezeichnet
sein soll, müssen wir setzen :

Wahrscheinlichkeitsfunktion: cp (e)
Wahrscheinlichkeit : W (e) = cp (e) d e

Dieses ist die Wahrscheinlichkeit eines Fehlers e mit dem Intervall de ,
also z. B . die Wahrscheinlichkeit, dass ein Fehler e liege zwischen den Grenzen

oder auch e — de und e
„ „ e und e + d e.

Je enger man die Grenzen e und e + de zusammenzieht , um so kleiner
wird qj (e) de und nimmt man de unendlich klein , so wird auch q>(e) de d . h . die

Wahrscheinlichkeit einen bestimmten Fehler e zu begehen, unendlich klein . Wir

machen die Annahme, es sei de unendlich klein , im Sinne der Differentialrechnung
und damit können wir die Wahrscheinlichkeit für das Fallen eines Fehlers zwischen

irgend welchen Grenzen nach dem Satz von der Summe der Wahrscheinlichkeiten

§ 109 . S . 424 bestimmen.
Ist nämlich die Wahrscheinlichkeit eines Fehlers e gegeben durch <jp (e) de

und für einen Fehler e ' durch <jp («'
) d e , ebenso für e " durch (<p e ” ) d e und

denkt man sich die Fehler e , e '
, s " . . . je mit dem Intervall de an einander

gereiht, so ist die Wahrscheinlichkeit irgend einen Fehler aus dieser Reihe zu treffen ,

gleich der Wahrscheinlichkeit, entweder den Fehler e oder den Fehler e ' oder den

Fehler e " u. s . f. zu treffen , d . h . nach dem Satze (2) S . 424 ist es die Summe

aller dieser Einzelwahrscheinlichkeiten und endlich wenn d e nnendlich klein ist,
tritt an die Stelle der Summe das bestimmte Integral , und wir können daher nun

sagen , die Wahrscheinlichkeit einen Fehler zwischen gegebenen Grenzen a und b zu

begehen , ist :

cp (e) de

§ 111 . Fekler -Wakrscheinlichkeits -Funktion.

Um zur Bestimmung der Funktion cp (e) zu gelangen , betrachten wir zuerst

die Grenzwerte von e .
Wie schon hei der Beobachtungsreihe (1 ) § 110. S . 426 angegeben wurde ,

hat die Erfahrung gezeigt , dass kleine Fehler wahrscheinlicher sind als grössere ,

woraus wir schliessen , dass die Funktion qp (e) mit 8 = 0 ihr Maximum haben

muss , d. h . : ( 1)
cp (0) = Maximum
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Ausser der unteren Grenze e = 0 betrachten wir die obere Grenze . OhneZweifel giebt es für jede Beobachtungsart eine gewisse Grenze , welche von denFehlern nicht überschritten werden kann ; da aber diese Grenze sich nicht allgemeinangeben lässt , wird in der allgemeinen Fehlertheorie die denkbar äusserste Grenze,nämlich Unendlich, angenommen, und zwar nach beiden Seiten , — oo und -+- oo.Für diese Grenzen muss die Fehlerwahrscheinlichkeit gleich Null werden , also :
<jp (+ oo ) = 0

(2)Die Wahrscheinlichkeit, dass ein Fehler zwischen den Grenzen — oo und + ooliege, ist die Gewissheit = 1 ; wenn man also in der Gleichung (5) am Schlüsse desvorigen § 110. S . 427 a = — oo und 6 = + oo setzt, so erhält man :
■+■OO

(3)
Als zweite Bedingung, welcher die Funktion cp (e) genügen soll , nehmen wiran , es soll dieselbe so beschaffen sein , dass , ihr zu Folge , das arithmetische Mittelmehrerer gleich genauer Beobachtungen der wahrscheinlichste Wert der beobachtetenGrösse ist . Wenn also mehrere Beobachtungen einer Unbekannten die Werte 12 h ■• ■gegeben haben, und man nimmt an , es sei x der wahrscheinlichste Wert der Unbe¬kannten , so muss man damit auch annehmen, dass folgende Fehler als wahrschein¬lichste begangen wurden :

s1 — x — lx
= x — 12
= * — ls (4)

Nun soll die Wahrscheinlichkeit von x und damit die Wahrscheinlichkeit desFehlersystems Sj s2 e3 . . . ein Maximum werden. Diese letztere Wahrscheinlichkeithaben wir bereits in dem Satze von dem Produkt von Wahrscheinlichkeiten bei (4)§ 109 . S . 425 behandelt ; wir wissen von dort , dass diese Wahrscheinlichkeit gleichdem Produkt aller Einzelwahrscheinlichkeiten qp (e) d s ist , d . h. :
W (x) = qp (ej) de . qp (e2) de . qp (e3) de . . . — Maximum .Da man das Maximum eines Produktes bequemer in logarithmischer Form behandelt,bilden wir hieraus :

log cp (ej) -+- log cp (e2) -+- log qp (e3) -f- . . . = Maximum .
Das Maximum soll in Beziehung auf die unabhängige Veränderliche x erzielt werden ,man müsste also die vorstehende Logarithmen-Summe nach x differenzieren, da aber
wegen (4) auch d x = d e^ = d «2 ■• • ist , schreiben wir nun :

d log cp (ej ) ^ d log cp (e2) d log cp (e3)
d ei de 2 d es (5)= 0

Da die e nach (4) einem arithmetischen Mittel x angehören, muss ihre Summe= Null sein, d. h . :
(6 )Cj - e2 -}—e3 -p- . . . — 0

Diese Gleichung (6) und die vorhergehende (5 ) können für beliebig viele e
(mehr als zwei) nur dann allgemein zusammen bestehen, wenn folgende Gleichungengelten :

d log cp (e,) d log cp (s2) d log cp (e3)de 1 1 de 2 “ d e3
ö
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oder es muss allgemein gültig sein :

oder integriert :

dlog cp (s ) = cd s

log <p (e) = -
g

- k e2 + G

wobei C Integrations -Konstante ist . Wenn log natürliche Logarithmen mit der Basis e
bedeutet, so folgt hieraus :

(y * + oj v y *
qo (e ) = e = e e

Die Konstante & muss notwendig negativ sein , weil nach ( 1) die Funktion q>(«) mit
f = 0 ihren grössten Wert hat , und von da an immer abnimmt, wir schreiben daher :

it = - P

Zugleich können wir die Integrations -Konstante e kürzer = A bezeichnen und haben
daher :

(7)

Es handelt sich noch um die Bestimmungder Integrations-Konstanten A ; wozu
die noch unbenutzte Bedingung (3) für das bestimmte Integral zwischen den Grenzen
— w und -+- oo dient, nämlich:

*/ 'e de = 1

dtmit he = t, also de = was die Grenzen — oo und -+- oo unverändert lässt,

wird dieses : / e
12d t = 1 (8 )

Um dieses bestimmte Integral auszu¬
werten , nehmen wir eine geometrische Betrach¬
tung zu Hilfe :

Durch Fig . 1 . sei eine Umdrehungsfläche
dargestellt , deren Gleichung ist :

z = e oder z = e (6)
Um das Volumen zu bestimmen, welches

zwischen der krummen Fläche und der x y Ebene
sich befindet , schlagen wir zwei verschiedene
Wege ein :

Erstens giebt die Zerlegung nach d x und
dy das Flächendifferential :

dV = dxdyz
also

Fig . l .

re
~ix2+ j,2>dxdy =J

'
ß

* dxdy
—00

r -/fi
- CO

wobei die Grenzen — « und + co sich auf beide Integrationen beziehen .
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Indem man zuerst nach x und dann nach y integriert , hat man :
+ CO -4- 00

V = je
x

e
y

dy
'
j

dx oder V =
j

'
e

x d xJe
y dy

- 00 - 00Da in einem bestimmten Integral die Bezeichnung der ursprünglichen Ver¬änderlichen mit x , y oder t unwesentlich ist , können wir dafür auch schreiben:

V =

Zweitens kann man auch eine Zerlegung nach Cylinder-Elementen vornehmenund hiezu ist nach Fig . 1 . S . 429 die Kreisringfläche in der x y Ebene = 2rndr , alsodas Volumen eines Hohlcylinders vom Halbmesser r , der Dicke dr und der Höhe g :
- r1d V = 2 r n dr z = 2r n dr e

daraus das Gesamt-Volumen :
CO

Hier ist das allgemeine Integral :

es lässt sich also auch das bestimmte Integral angeben, nämlich mit der oberenGrenze r = »e und der unteren Grenze r = 0 :
00

Jr,r ' ar - t~ = (10)0
folglich wegen (9 a) :

V = n (10a)Die Vergleichung von (9) und (10 a) giebt :
*4- 001

a,
"

11 ai
(11)

also wegen (8) :

II
(12)

damit wird (7) :
h — k2

<jP (e) = e
y 7i (13)

Damit haben wir die analytische Form der gesuchten Wahrscheinlichkeitsfunktionbestimmt, und wir können damit auch die Wahrscheinlichkeit für das Fallen einesFehlers zwischen gewissen Grenzen a und b angeben, nämlich nach (5) § 110. S . 427 :
i

e de

oder mit he = t , also de
und t = b h übergehen :

d t
T wodurch die Grenzen e = a und e = b in t = ah

p
dt (14)
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In unseren Schlussformeln (13) und (14) ist noch eine Konstante h geblieben ,
welche nicht wie die Integrations -Konstante A durch irgend welche Nebenbedingung
allgemein bestimmt werden kann, sondern in den allgemeinen Formeln als eine Art
Parameter bleiben muss. Diese Konstante h hängt nämlich von der Art der jewei¬
ligen Beobachtung, d . h . von der Genauigkeit ab , und es ist auch an sich ganz
begreiflich , dass die Wahrscheinlichkeit eines Fehlers e durchaus nicht bloss von der
Grösse e (und dem Intervall d e) allein abhängen kann , sondern auch auf die Genauig¬
keit der Messungsart Rücksicht nehmen muss . Die Konstante h, w'elche in der ange¬
deuteten Weise von der Genauigkeit abhängt, nennt man die Genauigkeitszahl .

Bestimmung der Konstanten h .

Bei einer Beobachtungsart, welche die Genauigkeit h hat , sind die Wahrschein¬
lichkeiten , dass die Fehler ej ea «3 . . . entstehen, bzw . die folgenden :

h - w fP h — h- 62-
d « u . s . w.e dt d e —̂ 1. e

y 77y 7ty 71
Die Wahrscheinlichkeit, diese sämtlichen Fehler , s2 , «3 . . . bei einer Beob¬

achtungsreihe zusammen zu erhalten , ist nach (4) § 109. S . 425 das Produkt aller
Einzelwahrscheinlichkeiten. Diese Wahrscheinlichkeit ist also bei n Beobachtungen
proportional dem Ausdruck :

h* 6.»

(15)

wobei, wie sonst, mit [e2] die Summe ej 2 4 e22 4 - «32 . . . bezeichnet ist .

Um hieraus h zu bestimmen, ist eine Schlussfolge der allgemeinen Wahrschein¬

lichkeitsrechnung anzuwenden in dieser Weise :
Das Fehlersystem «j , e 2 , 83 . . . ist erzeugt worden durch eine Beobachtungs¬

art mit der Genauigkeitszahl h , welche als Ursache und massgebende Norm bei der

Erzeugung der Fehler e zu betrachten ist, so dass kleine Fehler e auf einen grossen
Wert h hindeuten und umgekehrt . Indessen kann irgend ein System e3 % . . .,
da hier der Zufall mitspielt , möglicherweise von verschiedenen h herrühren, und

namentlich wenn nur wenige e vorliegen , wird der Rückschluss von den e auf das

wirksam gewesene h ein unsicherer sein . Der leitende Gedanke für diesen Rückschluss

besteht darin , dass stets einem solchen h der Vorzug gegeben wird , welches mehr

befähigt ist , oder an sich mehr Wahrscheinlichkeit darbietet für die Erzeugung des

vorliegenden Fehlersystems e2 «3 • ■■ als ein anderes h.

Man hat also anzunehmen, dass eine solche Beobachtungsart bei der Erzeugung
eines Fehlersystems Cj e2 *3 • • • Vorgelegen hat , welche mit grösster Wahrscheinlich¬

keit dieses Fehlersystem erzeugt ; oder es muss angenommen werden , dass die Beob¬

achtungen eine solche Genauigkeit h hatten , für welche der Ausdruck (15 ) ein Maxi¬

mum wird , und man bestimmt h aus der Gleichung :

h \ » - t«2l
e

0 d . h . dh
= 0
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Die Ausführung dieser Differenzierung giebt , mit '

Weglassung des konstantenNenners
d (hne

~ V
[e2l — ä2 [e2]0 = “

-AÜL^ - J = + h*e (— 2Ä [«2])äh L J
0 = ft»- 1e

>2 [tSJ
(n — 2 M [«2])Dieses Produkt kann nur = Null werden , wenn der Paktor in der Klam¬mer = Null wird , also :

c«2! = j _n 2 ft2
Ie2lDer hier zum Vorschein kommende Mittelwert ist nichts anderes, als dasnQuadrat des uns schon längst bekannten mittleren Fehlers m, es ist also :

( 16)

C
f

] = m2 = 2
'
P

also m = — = oder ft = - —
h y 2 m y 2Setzt man dieses in (13) ein , so erhält man

( 17)

V (*) = — Tfp e 2 »2
(18)m y 2 nDie Wahrscheinlichkeit eines Fehlers s ist :

g2
TF («) = y (e) de = — ~ e

~~
e (19)my ‘ln

Nun wollen wir noch einführen :
— = x und ~ 8

_ — d x (20)mm
d . h . wir zählen die Fehler als Verhältniszahlen e : m oder in Einheiten des mittlerenFehlers m ; damit wird :

W {e) = W {m a) = —U e 2 dx (21)Y2n
X2

oder q>(x) = —~ e 3
(22)]/2n

Es ist für die Übersicht und auch sachlich am besten , alle weiteren Entwick¬
lungen und Berechnungen in dieser letzten Form mit — = x zu führen, wobei also xmeine reine Zahl und auch y (x) eine reine Zahl ist ; indessen haben wir in Folgendemdiese Form nur teilweise angewendet und sonst s selbst nebst h eingeführt , um denAnschluss unserer Berechnungen an die seit Gaues üblichen Formen nicht zu verlieren(und zum Teil wegen der typographischen Schwierigkeiten der Formen ( 18)—(21)) .

§ 112. Reihen -Entwicklungen und Fehlerkurven .
Die Wahrscheinlichkeitsfunktion ist nach (13) § 111 . S. 430 :

h — w «2
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Diese Funktion kann man für irgend welche Werte yon h und von « geradezu
ausrechnen, und zwar logarithmisch , da log e = log 2,71828 . . . = 0 .4342945 . . . = fi
und log ]/ n — 0. 2485749 ist :

log <P («) = 9 .7514251 + logh — pbh%«2 (2)
Hiernach sind folgende Zahlenwerte berechnet :

£ V
für h = 1

(«)
für h = 2

8 <p (e)
für h — 1 | für h = 2

0,0 0,56419 1,12838 1,0 0,20755 0,02067
0,1 0,55858 0,08413 i,i 0,16824 0,00892
0,2 0,54207 0,96514 1,2 0,13367 0,00356
0,8 0,51563 0,78724 1,3 0,10410 0,00131
0,4 0,48077 0,59499 1,4 0,07947 0,00044

0,5 0,43939 0,41511 1,5 0,04946 0,00014
0,6 0,39362 0,26734 1,6 0,04361 0,00004
0,7 0,34564 0,15894 1,7 0,03136 0,00001
0,8 0,29749 0,08723 1,8 0,02210 0,000003
0,9 0,25098 0,04419 1,9 0,01526 0,0000006
1,0 0,20755 0,02067 2,0 0,01033 0,0000001

3,0 0,00007 0,0 . . .
OO 0 0

Man kann eine solche Funktion auch graphisch darstellen , indem man die
Werte cp (*) als Ordinaten zu den Werten e als Abscissen aufträgt . Die so erhaltene
Curye für h = 1 ist in der nachfolgenden Fig . 1 . am Schlüsse dieses § S . 436 gegeben.

Wir wollen auch die Integralfunktion in Zahlenwerten und graphisch darstellen,
nämlich nach (14) § 111 . S . 430 die Funktion

b h

W ffl = —L : [ e
~

t (3)
YnJ

ah

Dieses ist die Wahrscheinlichkeit für das Fallen eines Fehlers zwischen die Grenzen

a und b, und man erhält daraus auch die Wahrscheinlichkeit für das Fallen zwischen
die Grenzen — a und + a :

—ah

Weil aber gleich grosse positive oder negative Fehler gleich wahrscheinlich sind,
also die Wahrscheinlichkeiten zwischen — a und Null einerseits , und Null und + o

andererseits , einander gleich sind , kann man hiefür setzen , ohne Rücksicht auf das

Vorzeichen von a :
ah

0

Jordan , Handb . d. Vermessungskunde . 4. Aufl . I . Bd . 28
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Um dieses Integral auszurechnen , müssen wir eine Reihenentwicklung an-wenden . Hiezu dient die Exponentialreihe :
* , X X- xS

e - 1 + TT + 2T + 8T + • ■•
Diese giebt mit x = — t2 :

- 12 t2 J4
1 !

te
"
3 r +

4T

/ ■
T

I

■p
dt — t ■ ts

e dt = T -

3 . 1 !

T3

5 . 2 !

2’5
7 . 3 !

y ?

19
'
974 !

‘

279
3 . 1 ! 5 . 2 ! 7 . 3 ! 9 . 4 ! (5)

Diese Reihe (5) konvergiert für endliche Werte von T jedenfalls, denn es istder Quotient 2 zweier auf einander folgender Glieder , wenn man bis n ! im Nenner
fortgeht, :

(2 m — 1 ) T 2
2 =

(2 m + 1) n
Da die Reihe abwechselnd positive und negative Glieder hat , so genügt es fürdie Konvergenz, wenn von irgend welcher Stelle an immer q <; 1 wird, dieses ist aberfür jeden endlichen Wert von T der Pall , wenn man nur die Reihe lang genug fortsetzt.Allerdings muss man für grössere Werte T sehr viele Glieder nehmen, um nurüberhaupt an den Anfang der Konvergenz zu gelangen , doch genügt uns hier dietheoretische Möglichkeit der Rechnung nach der Reihe (5) .
(Im übrigen verweisen wir hiezu auf Brünnow , „ Lehrbuch der sphärischenAstronomie,“ 3 . Ausgabe S . 34 und Theorie der Beobachtungsfehler von EmanuelCzuber , Leipzig 1891 , S . 115—120) .
Aus (4) und (5) haben wir nun die Wahrscheinlichkeit, dass ein Fehler zwischenden Grenzen — a und + a liegt :

y7
a h - (« ä)s

, (ah )5
'

3 . 1 !
+ 57¥ !

' (ahy
7 . 3 !

' (ah )9'
{TTT

Z . B . mit ah = 0,1 erhält man damit :
( Wo) = 1,12838 (0,100000— 0,000333 + 0,000001 ) = 0,112 463

Folgendes sind einige Zahlenwerte für die Funktion w (o) nach der Gleichung (6) :

a h W© a h w (S) 1 ah w [t) a h w{t)
0,0 0,00000 1,0 0,84270 2,0 0,99532 3,0 0,99997 790,1 0,11246 1,1 0,88020 2,1 0,99702 3,1 0,99998 840,2 0,22270 1,2 0,91031 2,2 0,99814 3,2 0,99999 400,3 0,32863 1,3 0,93401 2,3 0,99886 3,3 0,99999 690,4

0,47694
0,42839
0,5

1,4 0,95229 2,4 0,99931 3,4 0,99999 85
0,5 0,52050 1,5 0,96611 2,5 0,99959 3,5 0,99999 260,6 0,60386 1,6 0,97635 2,6 0,99976 3,6 0,99999 960,7 0,67780 1,7 0,98379 2,7 0,99987 3,7 0,99999 980,8 0,74210 1,8 0,98909 2,8 0,99992 3,8 0,99999 990,9 0,79691 1,9 0,99279 2,9 0,99996 O© 1,0
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Eine ausführlichere Tafel dieser Art gab Enche im „Berliner astron. Jahrbuch
für 1834 “

, S . 305 — 308 und Czuber , „Theorie der Beobachtungsfehler , Leipzig 1891 “,
S . 121 und S . 411 —413 und Ferrero , espositione del metodo dei minimi quadrati,
Firenze 1876 “

, S . 223—225 .
In der vorstehenden kleinen Tafel haben wir einen Wert ah = 0,47694 be¬

sonders hervorgehoben, es ist derjenige, welcher zu w (S) = i gehört. Mit diesem
Werte 0,47694 oder genauer 0,4769363 . . . werden wir uns im nächsten § 113. aus¬
führlicher beschäftigen ; inzwischen ist von demselben nur so viel zu sagen , dass er
in die Reihe (6) eingesetzt , wie jeder andere das zugehörige w (t) zu berechnen ge¬
stattet , und zwar wird die Ausrechnung hiefür w (

“
) = 0,50000 geben .

Führt man im Vorstehenden statt der Genauigkeitszahl h den mittleren Fehler
m ein, nämlich nach (17 ) § 111. S. 432 .

h =

so bekommt man :
2 ff a

m 1/2
also ah =

i y 2

+ • • • (7)a \ 3 I _ / a_ \ 5
_l_ / a W t

\ my
~
2 ) 3 . 1 ! \my

'
2 ) b . 2 \ l/T/7 . 3 !

Dieses ist nur eine andere Form für (6) ; wenn man jedoch den Nenner j/ 2 absondert

und damit das Verhältnis — als Veränderliche herstellt , so erhält man noch eine
m

etwas andere Form :

"'ß - Yl ( (=) - 1 {ih SS ih- » (h + m (s) - • ' ')
Oder indem man das Verhältnis — = n setzt, kann man dasselbe auch noch so schreiben :

m

Oder es ist dieses die Wahrscheinlichkeit für das Fallen eines Fehlers zwischen die
Grenzen Null und den n fachen mittleren Fehler, als Funktion von n.

Hiernach ist unsere Tafel im Anhänge S . [21 ] berechnet.

Graphische Darstellungen.
Die nachstehende Fig . 1 . giebt Kurven für die Funktionen (1) , (2) und (6) , (8)

nebst einer Kurve für Wh , von welcher erst in § 113. beim wahrscheinlichen Fehler
die Rede sein wird , in (6) S . 439 .

Die mit cp (e ) bezeichnete Kurve entspricht der Funktion <jp (e) und der zuge¬
hörigen Tabelle auf S . 433 mit h = 1 .

Die Kurve W entspricht der Funktion (6) oder (8) mit der Tabelle auf S. 434 ,
wobei wieder h = 1 angenommen ist .

Die graphische Darstellung führt weiter zu folgenden geometrischen Betrach¬

tungen :
Die Wahrscheinlichkeit eines Fehlers e , oder genauer , die Wahrscheinlichkeit,

dass ein Fehler zwischen den Grenzen e und e - f- de liegt , ist :

W = cp («) ä f.
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und die geometrische Darstellung hievon ist ein schmales, unendlich kleines Eechteck ,dessen Höhe gleich der Ordinate = qp (e) der ersten Kurve , und dessen Breite = de
in der Bichtung OX gemessen ist . Entsprechend ist die Wahrscheinlichkeit , dass
ein Fehler zwischen den Grenzen a und b liegt :

cp (e) d e (10)
a

Pig . 1.

r ; r,o

f A
•m —

Dieses ist geometrisch dargestellt durch eine Fläche,Jwelche begrenzt ist durchdie Abscissenaxe, durch die Kurve cp (e) seihst und durch die zwei Ordinaten, welchezu den Abscissen e — a und e = 6 gehören. Z . B . ist die Wahrscheinlichkeit , dassein Fehler zwischen den Grenzen e = 0,477 und e = 0,707 liegt , in Fig . 1 . darge¬stellt durch die Fläche A C D B.
Die Gesamtfläche zwischen der Abscissenaxe (Asymptote) und der Kurve <p (e)ist = 1 , was der Gleichung (3) § 111 . S . 428 entspricht , nämlich :

00 00

(11)oder
—00

Wendepunkt der Kurve <p (e) .
Noch eine merkwürdige Beziehung besteht zwischen dem Wendepunkt derKurve cp («) und dem mittleren Fehler m , es ist nämlich die Abscisse dieses Wende¬

punktes gleich dem mittleren Fehler.
Im Wendepunkt einer Kurve ist bekanntlich der zweite Differentialquotient= Null . Man hat also :

2 Me

de2 yW |

(12)
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Dieses kann nur dadurch Null werden , dass die Klammer = Null gesetzt wird,
woraus folgt :

1 — 2 «2 = o

1
h l/

~
2

m
Nach ( 17 ) § 111 . S . 432 ist dieses = m ; es ist also derjenige besondere Wert

von e , welcher die zweite Ableitung der Funktion cp (e) zum Verschwinden bringt ,

gleich dem mittleren Fehler m . Oder in Fig . 1. ist OG = m für den Wendepunkt

D , und insbesondere mit h = 1 wird 0 C = 4= = 0,707 . . . , wie in Fig . 1 . einge -
j/2

schrieben ist .

Fehlerfunktion für m — 1 .

In der Tabelle S . 433 und in der zugehörigen Kurve Fig . 1 . S . 436 ist die

zuerst sich darbietende einfache Annahme gemacht h — 1 oder h — 2 , indessen ist

das zwar mathematisch einfach , aber im Sinne der Fehler -Anschaulichkeit nicht nütz¬

lich ; in letzterem Sinne ist es besser , alles auf den mittleren Fehler m = 1 zu

reduzieren , wie wir schon am Schlüsse von § 111 . S . 432 angedeutet haben mit der

Bezeichnung :

— = * (14)
m

y = cp (x) = — e 2 (15)
y 2 n

x = 0 giebt cp0 =
1 = 0,39894 (16)

y 2 «

x = 1 , oder e = m giebt qpi = - —— = 0,24197 (17)s m ym
und die übrige Ausrechnung giebt :

log y = 9 .6009106 — 0.21714724 »2

wonach folgende Tabelle berechnet wurde :

6
— = X
m

<P (»)
i B
i — = X

m
cp (x)

0,0 0,39894 0,7 0,31225

0,1 0,39695 0,8 0,28969

0,2 0,39104 0,9 0,26609

0,3 0,38139 1,0 0,24197

0,4 0,36827 1,5 0,12951

0,5 0,35206 2,0 0,05399

0,6 0,33322 3,0 0,00443

0,7 0,81225 oo 0,00000
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Hiernach ist die folgende Fig . 2. aufgetragen , welche im Vergleich mit derfrüheren verzerrten Fig . 1 . S . 436 nun die Fehlerfunktion sozusagen in natürlichenVerhältnissen darstellt . (Die Wendepunkts-Tangente ist leider im Holzschnitt schlechtausgefallen.)

Fig . 2.

0,4
jwendepunki

- 2,0 - yj - 0,5 0 0,5 1,0 1,5 2 2,5 3,0

m

§ 113 . Der wahrscheinliche Fehler .
Der besondere Wert w (o) = 0,5 , welcher im vorigen § 112 . bei der Tabellevon S . 434 betrachtet wurde , führt zur Einführung eines neuen Begriffs , nämlich deswahrscheinlichen Fehlers.
Wenn nämlich die Wahrscheinlichkeit für das Fallen eines Fehlers zwischendie Grenzen 0 und a den Wert 0,5 hat , so muss die Wahrscheinlichkeit für dasFallen zwischen die Grenzen o und » ebenfalls = 0,5 sein , weil für das Fallenzwischen die äussersten Grenzen 0 und o© die Gesamtwahrscheinlichkeit = 1 ist.Bezeichnen wir also den besonderen Wert von a , für welchen dieses stattfindet , mitr ,so haben wir :

Der dadurch bestimmte Wert r heisst der „ wahrscheinliche Fehler * . Derselbe stelltdie Grenze vor , unter welcher ebenso viele kleinere Fehler zu erwarten sind , als
grössere über ihr .

Der wahrscheinliche Fehler r wird mit Hilfe der Reihe (6) § 112. S . 434
dadurch bestimmt , dass jene Reihe den Wert = geben muss, wenn a = r wird , d. h. :U

(rh )3 (»• h)5 (r hy

da r hier immer zusammen mit h vorkommt, wird das Produkt rh besonders be¬zeichnet, nämlich :

(2)rh = g
und damit giebt vorstehende Gleichung folgende Bestimmung für g :

Um diese Gleichung nach g aufzulösen , hat man in erster Näherung :

g = ^ = 0,443113 . . . = p
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wobei lediglich zur Abkürzung vorübergehend das Zeichen p eingeführt ist . Indem
dann auch in erster Näherung p3 — pS gesetzt wird , hat man in zweiter Näherung:

weiter

also

3p2

3
= p °

pö' 3

t- pb und p5 = pö .

pö
10

= P

30P° -

So fortfahrend erhält man in nächster Näherungsstufe:

P • po
30po - 127

‘
630P ‘ ■

g = 0,4431 + 0,0290 + 0,0040 + 0,0007
g - 0,4768

Durch solche und ähnliche Näherungen, wozu namentlich auch die Benützung
einer ausführlichen Tafel von der Art von § 112. S . 434 gehört , kann man den Wert p
mit beliebig weit getriebener Näherung berechnen. Nach Angabe von Gauss ist
der Wert :

rh = g = 0,476 9363 log g = 9 .678 4064 (3)

(nach Gauss , Bestimmung der Genauigkeit der Beobachtungen, Zeitschrift für Astro¬

nomie und verwandte Wissenschaften, herausgegebenvon Lindenau und Bohnenberger ,

Tübingen 1816 S . 194) .
Nachdem somit der Zahlenwert von g genau bestimmt ist , verfolgen wir die

Bedeutung desselben weiter und nehmen nochmals die Gleichung (2) vor, nämlich :

9 (4)r h oder h =

Man sieht hieraus, dass h umgekehrt proportional dem wahrscheinlichen Fehler r ist ;
man nennt deswegen h die Genauiglceitszahl . Setzt man h = 1 , so wird r = g,
d . h . es ist g der wahrscheinliche Fehler für die Genauigkeitszahl 1 .

Durch Einführung von an Stelle von h in die Reihe (6) § 112 . S . 434 kann
r

man dieselbe auf eine mehr anschauliche Form bringen . Es wird damit :

w' G) =^J -V
]/zrV

Das Verhältnis — irgend eines Fehlers a zum wahrscheinlichen Fehler r be¬

zeichnen wir mit n , und entsprechend nennen wir nun w (V) die Wahrscheinlichkeit,
dass ein Fehler zwischen den Grenzen 0 und dem n fachen wahrscheinlichen Fehler

liegt , damit nimmt (5) folgende Form an :
2 ( (n p)3 . (n p)5

_ 1 _' s .Ti
1 f a

572 ! IV 7 . 3 ! I r Q <s >

w (v )= (wp )3
« p -

3TTT
-

3 . 1 ! - 5 . 2 !
oder mit Ausrechnung der Coefficienten :

1F (Y ) = 0,538 1650 n — 0,040 8051 rß
+ 0,000 0067 nS

(ng )7 . {n p)3
7 . 3 ! 9 . 4 •'

" (n p)n
■ir .T ;

'

• 0,002 7846 «s — 0,000 1508 n7

• 0,000 0002 «11 -f- . . .

(6 )

(? )
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Eine Kontrolle dieser Gleichung besteht für den besonderen Fall n = 1 , dennmit n — 1 muss sie den Wert 0,5 geben , was bis auf 7 Decimalstellen hinreichendder Fall ist .
Folgendes sind die genaueren Coefflcienten -Logarithmen für die Formel (7) :[9.730 9154 ] n — [8.610 7149 wS + [7 .444 7570 ] nö — [6 .178 428] w?

-+- [4.824 14] «9 - [3 .3949 ] »n + . . .Im Anhang S . [20] haben wir eine Tafel der Funktionswerte (6) , (7) zusammen¬gestellt , d . h . der Wahrscheinlichkeit , dass der Fehler einer Beobachtung zwischenden Grenzen Null und dem n fachen wahrscheinlichen Fehler liegt . Diese Tafel istaus der Tafel II von Encke im Berl. astr . Jahrb . 1834 , S. 309—312 mit Weglassungder 5 ten Decimale gebildet. Ein Teil der Tafelwerte wurde direkt nach den For¬meln (6) und (7) nachgerechnet, und einzelne Werte nach der Bessel sehen Original¬tafel in dem Werk fundamenta astronomiae S . 36 und 37 bestimmt .Die Encke sehe Tafel ist auch abgedruckt und erläutert von Czuber , Theorieder Beobachtungsfehler, Leipzig 1891 , S . 414—416 und S . 189 .
Bestimmung des wahrscheinlichen Fehlers aus dem mittleren Fehler .

Wenn man die vorstehende Gleichung (4) mit der früheren Gleichung (17)§ 111 . S . 432 verbindet, so hat man
r h = p und = m j / 2

also r = q y 2 m (9)Dabei ist g Y 2 ein konstanter Faktor , dessen Ausrechnung giebt :
qV

~
2 = 0,674 4898 log q ]/¥ = 9.828 9754 (10)

Bestimmung des wahrscheinlichen Fehlers durch Abzählen.Hat man sich eine grössere Zahl gleichartiger wahrer Beobachtungsfehler aufirgend welche Art verschafft , und ordnet dieselben nach ihrer absoluten Grösse , sokann man denjenigen Grenzwert als wahrscheinlichen Fehler nehmen , welcher dieFehlerreihe so teilt , dass die Werte der einen Hälfte kleiner und die der anderenHälfte grösser als er sind . Bei einer ungeraden Zahl von Fehlern nimmt man denin die Mitte fallenden Fehler und bei einer geraden Anzahl das Mittel der beidenin die Mitte fallenden Fehler als wahrscheinlichen Fehler. Wenn man z . B . dieschon mehrfach benützten 18 Werte v von § 7 . S. 23 nach ihrer Grösse ordnet, wieauf S . 426 geschehen ist , so hat man :
Mitte

Erste Hälfte Zweite Hälfte
0,83 1,12 1,13 1,17

Die zwei in der Mitte liegenden Fehler sind 1,12 und 1,13 , man nimmt alsonach der gegebenen Begel 1,125 als wahrscheinlichen Fehler .Offenbar ist diese Bestimmung eine sehr unsichere , denn es kommt dabei dieabsolute Grösse aller andern als gerade der in der Mitte liegenden Fehler nicht inBetracht . Die beste Bestimmung des wahrscheinlichen Fehlers ist immer diejenigenach (9) , auf dem Wege über den mittleren Fehler m.
Der wahrscheinliche Fehler ist ohne das Gesetz der Fehlerwahrscheinlichkeitnicht zu bestimmen , während der mittlere Fehler ganz unabhängig von der Fehler-
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Wahrscheinlichkeit besteht , wie aus der Einführung desselben in § 4 . S . 13 —15 her¬

vorgeht . Man hat früher als charakteristisches Genauigkeitsmaass häufig (z, B . in

der Astronomie) den wahrscheinlichen Dehler angegeben , in der Geodäsie meist den

mittleren Dehler , nach Anweisung von Gauss seihst, welcher in dem „Briefwechsel
zwischen Gauss und Schumacher“ I . S . 435 sagt : „Die sogenannten wahrscheinlichen
Dehler wünsche ich eigentlich , als von Hypothese abhängig , ganz proscribiert; man

mag sie aber berechnen, indem man die mittleren Fehler mit 0,6744897 multipliziert.“

114. Der durchschnittliche Fehler.

Auch dem schon in § 3 . eingeffihrten , aber dann zurückgestelltendurchschnitt¬

lichen Dehler können wir nun näher treten .
Die Wahrscheinlichkeit eines Fehlers s ist nach § 111 aus (3) S. 427 u. ( 13) S. 430 :

h — hi s ?
W («) = (jp (e) d s = —— e de

yn
Unter n Fällen wird daher der Fehler e Vorkommen in der Anzahl n W (s) und die

Summe aller Dehler von dem Betrag e ist daher:
h - wv

e denW (e) e = ne —— ey n
das ist nun erst die Summe derjenigen Fehler, welche die besondere Grösse e haben ,

und die Summe aller Fehler, welche überhaupt auftreten, ist daher :
n h

[e] = Ine e deh den e —— ey n
Hiezu ist aber noch eine Überlegung zu machen , wegen der Vorzeichen der e und

wegen der Integrations -Grenzen . Wenn [«] nur für positive e gelten soll, so müssen

die Grenzen 0 und oo für die Integration genommen werden und für negative e

wären die Grenzen 0 und — oo . Will man die positiven e und die negativen e

ohne Rücksicht auf das Vorzeichen summieren , so darf man nicht etwa die Grenzen

— oo und -+- oo nehmen , weil sonst das Integral = Null würde , man bekommt

aber den richtigen Wert für alle + e , wenn man das Integral zwischen 0 und oo

nimmt und dann verdoppelt, also :

[+ «] = 2 »
0

OO
( 1)

oder
0

Dabei ist mit t der durchschnittliche Fehler bezeichnet . Um dieses Integral auszu¬

rechnen , setzen wir he = t , also t = ^ , de = was die Grenzen unverändert

lässt, also : 00

0

(2 )
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Hier ist das allgemeine Integral :

j
'
t e dt = -

(3)
und mit Einführung der Grenzen 0 und oo wird das bestimmte Integral , (ebensowie früher bei (10) § 111 . S . 430 ) :

ß p lt e d t — -f-

dieses giebt nach (2) : '
^ _ 1 _

h yir
Es ist aber nach ( 17) § 111 . S. 432 :

= vi y 2h
also : t = J/ I

r TT

und m = 7/ *-
r 2

m = 0,79788m

t = 1,2583 t

W

(5)

Damit haben wir gefunden , dass der durchschnittliche Fehler t und der mittlereFehler m in einem konstanten Verhältnis stehen , dass man also stets den einen ausdem andern berechnen kann.
Man kann davon insofern praktischen Gebrauch machen, als der durchschnitt¬liche Fehler t bei gegebenen Elementen e bequemer zu berechnen ist , als der mitt¬lere Fehler m, indem man bei t das Quadrieren der e erspart , hat man also denDurchschnittswert t berechnet, so braucht man ihn nur mit 1,2533 zu multiplizierenum auch m zu haben.
Diese Berechnung von m, auf dem Umweg über t ist jedoch weniger zuver¬lässig, als die unmittelbare Berechnung von m aus den e2 , und da die Quadrierungder s bzw . der v einer Ausgleichung keine grosse Mühe ist , so hat die besprocheneBerechnung von t und m = 1,2533 t fast nur bei flüchtigen und Überschlags-Ge¬nauigkeitsrechnungen praktische Bedeutung. Weiteres hierüber wird in § 124 . ver¬handelt werden .

§ 115. Beziehungen zwischen dem mittleren , wahrscheinlichenund durchschnittlichen Fehler .
Nachdem im Bisherigen der wahrscheinliche und der mittlere Fehler , und dannder wahrscheinliche und der durchschnittliche Fehler zu einander in Beziehung gesetztsind, können wir die gegenseitigen Beziehungen aller dieser 3 Fehler unter sich bilden .Es gelten die Bezeichnungen:

Mittlerer Fehler = m
Wahrscheinlicher Fehler = r
Durchschnittlicher Fehler .= t.

Wenn man « wahre Fehler e hat , so ist :

m = t/E t = [±4r n n (i)
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Zur gegenseitigen Verwandlung von m , r und t hat man die Zahlenwerte :

p = 0,476 9363 log = 9 .678 4603 .8

r = p y
'
2 m = 0,684 4898 m log = 9 .828 9753-8

r = p Yn t = 0,845 3476 t log = 9 .927 0353-1
1

m = - ^ r
QV 2 1,482 6021 r

. = t = 1,253 3141 1

: = j/ ~~ ni = 0,797 8846 m

log = 0 . 171 0246 -2

% = 0 .098 0599-4

t = -
pl/w

. r = 1,182 9372 »-

log = 9,901 9400-6

log = 0 .072 9616 -9

(2)

Dabei ist p = 0,476 9363 zu Grunde gelegt nach Gauss ’
„Bestimmung der Ge¬

nauigkeit der Beobachtungen“ Art . 1 (s . o . § 113. S . 439) .
Hat man statt der wahren Fehler e nur scheinbare Fehler v zur Verfügung ,

so rechnet man bei einer Unbekannten nach § 7 . S . 21 oder § 11 . 8 . 39 :

[S2] _ [«2]
n n — 1 (3)

und deswegen : (4)

Um auch in der Berechnung von t die scheinbaren Fehler einzuführen , dient

folgende Betrachtung :
Indem man nun annimmt , dass die v demselben Fehlergesetz folgen wie die e,

kann man schliessen, dass die einzelnen e2 durchschnittlich im Verhältnis n : (n — 1)

grösser sind als die entsprechenden vz , oder dass die einzelnen e durchschnittlich

grösser sind als die entsprechenden v im Verhältnis Yn '- Yn
weiter schliessen:

[+ e] : [+ u] = Yn : f/w — 1

Also der durchschnittliche Fehler :
[±e ] = [± d]

Yn (n — 1 )

[+ n]

■1, folglich kann man

(5)

t = n
und der mittlere Fehler nach (2) :

= = 1,2533

(6)

(7)
Yn (n — 1)

Dieses ist die Formel von Peters.
Bei mehr als einer Unbekannten, wir nehmen an bei w Unbekannten , und

n Fehlergleichungen, wird nach (19) § 28 . S . 87 :

m = j/M = l/ -M - (8)
Y n y n — u

und um eine entsprechende Formel auch für t zu erlangen , machen wir (ähnlich wie

hei (5)) die Annahme zu (8) : _ _
e : v = y n : y w

[± e] : [± v] = Y n :

■u
■u
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also

r± «] _ [± «i
Yn (n — u)und der mittlere Fehler :

]/n (n — u) (10 )
Diese Formel ist von Lüroth .
Bei bedingten Beobachtungen mit r Bedingungsgleichungen ist n — u = r zusetzen , also nach (8) § 88 . S . 116 :

( 11 )und entsprechend für (10) :
[± «]

( 12 )
m = 1,25331

}/ n r
Die Formeln (7) , (9) und (12) sind die gebräuchlichsten zur Berechnung mitden ersten Potenzen v scheinbarer Fehler statt der Quadrate u2.Die Peters sehe Formel (7 ) hat aber den Übelstand , dass sie für den einfachenFall zweier Beobachtungen , also n — 2 mit der strengen Formel (4) nicht überein¬stimmt , denn wenn man 2 Beobachtungen mit der Differenz d annimmt , dann istnach (4) mit n = 2 :

(13)= 0,70711 d« 2 =
2 — 1 y 2

dagegen nach (7) :
d d

n d
0,88623 d2 y 2 . i (14)

Man kann nun auf den Gedanken kommen , die Formeln (7) und (4) dadurchauf den Fall n = 2 zum Stimmen zu bringen , dass man in dem Nenner von (7) stattn — 1 einen vorerst unbestimmt gelassenen Wert n — x setzt , und nachher x sobestimmt , dass für n = 2 beide Formeln (7) und (4) zusammen fallen . Man nimmtalso zunächst nach (7 ) :

2 f/njn ^ x) (15)
und speziell für n = 2 :

d d

2 y 2 (2 — x) 2 y2 (2 — x)
und dieses der strengen Formel ( 13 ) gleichgesetzt giebt :

2 (2 — x)
Diese Gleichung nach x aufgelöst giebt :

4 — n
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Setzt man dann noch näherungsweise n = 3 , so wird * = — und damit wird (15 ) :

m = Vn — = 1,77245 - —
]/n (2 n — 1) ]/n (2 n — 1)

Fechner sehe Formel.

(16)

Was Im Vorstehenden von (5) bis (16) mitgeteilt ist , enthält meist keine strengen Entwich -

Jungen , sondern nur Plausibelmachung der betreffenden Formeln . Folgendes sind die näheren

Quellenangaben dazu :

Die Formel (7) oder (6) , t = - — wurde zuerst von Peters im 44. Band der „Astr ,
yn (n — 1)

Nachrichten 11S. 29 (1856) aufgestellt ,
r± v\

Die erweiterte Formel (9), t — - — -— wurde von Lüroth im 73. Bd . (1869) S. 187 der

y n (n — 74)

„Astr . Nachrichten 11gegeben .
Helmert hat diese Sache genauer behandelt in „Astr . Nachr .“ 85. Band (1875) S. 353—366

und 88. Band (1876) S. 118 —132, und hat dabei gefunden , dass nur die Peters sehe Formel (7) für

eine Unbekannte streng richtig ist , während die Formel (10) für u Unbekannte , mit dem Nenner

y [n — u ) nur etwa als eine Näherungsformel zu betrachten ist .

Hier sind noch zwei Abhandlungen von Helmert zu zitieren in Schlömilchs „Zeitschr . f .

M. u . Pb .“ 1875 S. 300—303 : „Über die Berechnung des wahrscheinlichen Fehlers aus einer endlichen

Zahl wahrer Beobachtungsfehler “ und 1876 S. 192 bis 218 : „Über die Wahrscheinlichkeit der Potenz¬

summen der Beobachtungsfehler und über einige damit im Zusammenhänge stehende Fragen .“

Was endlish die Fechner sehe Formel (16) betrifft , so ist dieselbe von Fechner entwickelt

in Poggendorffs „Annalen der Physik “, Jubelband , 1874, S. 66 bis 81, und eine kritische Unter¬

suchung dieser Formel ist von Helmert im 88. Band der Astr . Nachrichten (1876) S. 120 —127, gege¬

ben worden . Hiernach ist die Fechner sehe Formel die beste derjenigen Formeln , welche den

wahrscheinlichen oder mittleren Fehler statt aus der Quadratsumme \v7], aus der absoluten Summe

[± v] der übrigbleibenden Fehler v berechnen .
Alle Formeln mit [±v ] sind von der Annahme über das Fehlerwahrscheinlichkeitsgesetz

abhängig und auch abgesehen davon weniger genau als die Formeln mit den Quadraten , nämlich

Formel (3) und (8), letzteres wird allerdings erst später in § 117 bewiesen werden , mag aber jetzt

schon (zusammen mit der Frage der Abhängigkeit vom Fehlergesetz ) zu der Bemerkung führen ,

dass alle die Formeln mit [+ «/] nur insofern Interesse verdienen , als man damit das Ausrechnen

der Quadrate i>2, d . h . eine verhältnismässig geringe Arbeit , sparen kann . —

§ 116. Verschiedene Fehler -Potenzsummen.

Dieselbe Überlegung, welche am Anfang von § 114. zu der Formel ( 1) S . 441

mit der Summe [+ e] der ersten Potenzen wahrer Fehler e geführt hat , kann auch

angewendet werden auf andere Potenzen und giebt weiter auf 2*e, 4te u. s . w . Po¬

tenzen angewendet :

_ 2 h f* — ft3 e2
je 2 e ds ( 1)

n V nj
0

f

00
M 2h /■ - V e2 ,' si e de (2)
n

0
co

[fl 2h ,/. _ £2£2
«re de (3)

nallgemein
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Wir wollen hievon zunächst das quadratische Mittel nach (1 ) behandeln, ob¬gleich wir hiebei nichts neues finden können (denn es muss w 2 = m2 herauskommen).Zunächst wird mit he = t aus ( 1 ) :

2 /■ — «a
rrfl = - — jfte dt

}ft yW
Teilweise Integration giebt :

/ * — p i — t- i r — ptte dt = -
g- te -+- -

g- / e d
Von ( 11) § 111. S. 430 wissen wir :

-i- 00 CG

je dt Jt oder J
'
e d t = ß ]/

(4)

(5)

( 6)

Wenn man daher die Grenzen 0 und oo in (5) einsetzt , so wird der erstet — p tTeil von (5), nämlich e = beidemale = 0 , was man für t = oo nötigenfalls
durch Anwendung der Reihe für zeigen kann ; im Ganzenund (6) :

hat man also aus ( 5)

r - p i ._
j t2 e dt = 0 -h -j ~ Y 7T ( 7)

also nach (4) :
6

1)12 = - ~ Y n =
wy n 4 r (8)

Nach ( 17) § 111 . S!. 432 ist dieses aber :

(9).
d . h . wir haben hier nichts neues, sondern nur eine Probe unserer Entwicklunggefunden.

Um zu den 4t<® Potenzen überzugehen, nehmen wir von (2) mit eh = t :

» MYn ß — &
t^ e dt ( 10 )

durch teilweises Integrieren hat man:

ß - P
t3 te dt = ft ß — &

fie dt ( ii )
Setzt man hier die Grenzen 0 und oo ein , so wird der erste Teil ft e— <2

beidemal = 0 (was ebenso wie oben bei (5) und (7) einzusehen ist) und der zweiteTeil von (11) giebt mit den Grenzen 0 und oo das schon oben bei (6) gefundeneIntegral ; man hat also im Ganzen aus (10) und (11) :
[«*] _ 2 3 1 3
n ~ M 2 ‘ 4 y ^ - 4 hi ( 12 )

Mit Rücksicht auf b2 = 1 : 2 rrft in (9 ) haben wir also nun die Mittelwerteder ersten , zweiten und vierten Potenzen als Zusammenfassung:
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l̂ - t = L oder _ l/I »
n hy n r ji (13)

[e2] - m2 = 1
„ = 7n?n 2 h * (14)

M . 3- — = = "TTT » = 3 mi
n 4M (15)

In gleicher Weise kann man alle Potenzsummen auswerten , denn eine allmäh¬
liche Rekursion wie bei ( 11 ) führt bei geraden Potenzen auf das Integral (6) und bei
ungeraden Potenzen auf das leicht anzugebende Integral (4) § 114 . S. 442 ; man
kann also alle beliebigen Potenzsummen allmählich auf [e2] oder [+ e] zurückfuhren .

Die allgemeine Rekursionsformel ist :
[£»+2] _ 1 [er] oder = (p + 1 ) m?

n 2 h? n “ ' ' n
Der allgemeine Ausdruck für die Potenzen wird:

■wenn p ungerade :
P — 1

I± 6P1
n

1 . 2 . 3 . . .

h ‘‘
1

y n
[± er] = (m y 2 f l 2 p —

n y 7i 2

[er]
n

wenn p gerade:

_ 1 . 3 . 5 . . . (p — 1)
(hvn (16)

[er] = 1 . 3 . 5 . . . ( p — 1) (17)

Die allgemeinen Formeln ( 16 ) , (17 ) enthalten die besonderen Fälle (13) — (15) in
sich, und geben noch weiter angewendet das Folgende :

= 7/ 2/ — m L«2! = m2
n r 71 n

27 / — nß m = 3 mi
n r TT- n

M = 81 / 2
“

- = 15 mß
n V 7t n

L±; a = 48 ^
/ 2

~
,/ — m i

71

m
n

= 105 ms

Umgekehrt können diese Formeln dazu dienen , um auf dem Umwege aus irgend
welchen Potenzsummen den mittleren Fehler zu berechnen , was z . B . für die 4*en

Potenzen geben würde :
(19 )

V 3 n
Indessen zur praktischen Anwendung für irgend welche Fehlerberechnungen

sind nur die ersten und die zweiten Potenzen (e und e2) geeignet.

§ 117 . Mittlerer Fehler des mittleren Fehlers .

Das mittlere Fehlerquadrat m2 ist nach der im Anfang § 4 . S . 13 gegebenen

Definition ein Mittelwert aus einer Anzahl von wahren Einzelfehlerquadraten e2, und

es ist für die Zuverlässigkeit einer solchen Ausrechnung von e2 durchaus nicht gleich -
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gültig , oh mehr oder weniger einzelne «2 Zllr Verfügung stehen , sondern ein « 2 ausnur zwei oder drei einzelnen e2 wird zweifellos viel unsicherer sein als eine Mittel-
hildung aus hunderten von e2, gerade so wie ja auch das arithmetische Mittel x ausmehreren Messungen l weniger oder mehr zuverlässig ist , je nachdem wenige oderviele Messungen l vorhanden sind (vgl . § 7 . Gleichung (6) S . 21 und die Kurve S . 23).Dazu kommt noch eine zweite Frage , betreffend die Art und Weise der Be¬
stimmung des mittleren Fehlers . Wir haben nämlich in § 114 . gesehen , dass man den
mittleren Fehler m auch auf dem bequemen Wege über den durchschnittlichen Fehler t
berechnen kann, nach der Formel (6) S . 442 m = q Y n t = 1,2583 1, ja wir haben amSchlüsse von § 116 . S . 447 sogar gesehen , dass man den mittleren Fehler m auchauf dem Umweg über die 3ten 4ten u, s . w. Potenzen wahrer Fehler e berechnen
könnte , und es entsteht daher die Frage nach der Zuverlässigkeit dieser verschiedenen
Arten der Bestimmung von m .

Indem wir dieser Frage näher treten , bleiben wir zunächst bei der Annahmestehen , man sei im Besitze einer gewissen Anzahl n von wahren Fehlern e , indemder Übergang zu scheinbaren Fehlern v erst später in § 118 . vorgenommen werden soll .Zur Bezeichnung mittlerer Fehler wollen wir das Zeichen m wie ein Funktions¬zeichen anwenden , d. h . es soll z. B . der mittlere Fehler irgend eine Grösse x mitm (x) bezeichnet werden, ähnlich wie f (*) eine Funktion von x bedeutet also
m (sc) = mittlerer Fehler von * (1)

Nach diesen Vorbemerkungen beginnen wir mit der Kechnungsart der ersten
Potenzen e .

Der durchschnittliche Fehler wird berechnet aus der Gleichung :

t = + e 2 ~t ~ e3 + • • • _ [± e]
n n

Wenn wir nach dem mittleren Fehler dieses t fragen , so handelt es sich umdie Abweichung des t von demjenigen theoretischen Werte t0 , den man erhaltenwürde, wenn nicht bloss n Zufallswerte ^ e2 • • • *»> sondern unendlich viele Werte e
vorhanden wären. Einen solchen Wert t0 wollen wir den wahren Wert nennen, also
t0 — «x > tQ— e2 u- s - w. die wahren Fehler der zufällig beobachteten e2 • • •dann ist das mittlere Fehlerquadrat eines einzelnen e :

(f0 — «i ) 2 + {to — e2) 2 (t0 — e„)2(m («) )2 =

also das mittlere Fehlerquadrat von t,
einzelnen e ist , nach (6) § 7 . S . 21 :

(m (e))2 _ (t0 — 8l )a

n
insofern

(3)
t ein arithmetisches Mittel aus n

(m (t ) )2 = ■ (<o — e2)2 - , (t() - Sn)2
n 2 (4)

Die Ausrechnung der Quadrate im Zähler , wobei alle e nur absolut (z . B . alle
e positiv ) gezählt werden, giebt :

(m (t)) 2 =
n t$2 — 210 f4- g] -f- [s2] 1 , I± «] 1

,
[*2J 1

n t0 n t02,
Hier ist [± «1= t und

n

{m (#))2 =

= m2 also :

<o2 m2
(5)
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Da aber nicht bekannt ist , ob t0 grösser oder kleiner als t ist , darf man hier
n
W

2 Tt
t = t0 nehmen und da ferner nach (6) § 114. S . 442 , — = — = hat man aus ( 5) :

+2 f jr
{m ({))2 = ~ ( 1 — 2 + -s -

fä In — 2
2 I

~ » V
”

2
daraus die Wurzel gezogen :

«* (0 = ± -7=
y w

■1 (6)

Dieses ist der mittlere Fehler der Bestimmung von t aus dem Mittel aller + e , wir
können also schreiben:

* = I±L
n

71
T+ - L /- y «

"

, = (1± 1 7/fZ:
» V y n f 2oder « = ( 1 ± // — 11 (7)

Wenn man von dem durchschnittlichen Fehler zum mittleren Fehler übergeht,

nach (6) § 114. S. 442 mit m = ~
j/ ~ t , so erhält man aus (7 ) :

oder m = 1,2533 [±e ] 1 +

V
0,7555
Y n

( 9 )

In gleicher Weise , wie wir hier den mittleren Fehler des durchschnittlichen

Fehlers bestimmt haben , kann man auch den mittleren Fehler des mittleren Fehlers

selbst bestimmen, wozu wir haben :

2 _ fl 2 + e22 + + . • • e«2
_ [/ -“]

~ n n

Der wahre Wert von m2 d . h . derjenige , welchen man bei unendlich vielen e

(ti = co ) erhalten würde , sei m02, dann wird der mittlere Fehler m (e2) eines ein¬

zelnen e2 bestimmt durch :

(m (42)) 2 = (m 02 - c t 2)2 + K 2 - s 22)3 + • • • K 2 ~ e »2)2

(m (e2))2 =
n — 2 otq2 [®2] + M

n
)«04 1

Man setzt nun wieder (ähnlich wie bei (5)) :

2 [e2]
|

[«*]
’

n otq2 n mo4
( 10)

= «i02 und nach (15) § 116. S . 447 Li = 3 m*

also, indem die Unterscheidung zwischen w-o und m nicht mehr nötig ist , aus (10 ) :

(m (e2))2 = mi ( 1 — 2 + 3 ) = 2 » i< (11 )

oder m (e2) = m2 ]/ 2

Dieses ist der mittere Fehler eines einzelnen e2, und da m2 als arithmetisches Mittel

Jordan , Handb . d . Vermessungskunde . 4. Aufl . I . Bd . 29
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aus n solcher e3 erhalten wird, muss man nach der Regel (6 ) § 7. S . 21 des arith¬
metischen Mittels den mittleren Fehler von »re3 so berechnen :

m (m2) = m (iLL = m!2 l/ — (12)y n ' n
Dieses ist der mittlere Fehler der Bestimmung von m2 aus der Quadratsummealler e2, also :

_
M3 = M + Bi2 / l = w (1 + j/± )n r n n \ r n J

Um zu m selbst überzugehen , betrachten wir den mittleren Fehler stets als
verhältnismässig Mein, und nehmen daher :

’- V^ yW)
.

^
Vergleicht man dieses mit (8 ) oder (9) , so findet man , dass die Berechnung

von m aus den Quadraten e2 günstiger ist als die Berechnung aus den e selbst und
zwar im Verhältnis 0,7555 : 0,7071 .

Die Fortsetzung dieser Untersuchungen auf höhere Potenzen , welche keine
praktische Bedeutung mehr haben, giebt folgende Beihe , in welche wir des Zusammen¬
hangs wegen auch die beiden Werte (9) und ( 14) für erste und zweite Potenzen
nochmals aufnehmen :

1) m = 1,2533 ^ *
-3 |n 1

( + 0,7555'

V
~

V
~
n .

2) m = f 0,7071 '

v
1 ± y ;

3) »re = 0,8557 j/ n
( 0,7371 '

V n .
4) m = 0,7598 ( 0,8165 '

Vn ,

9) m = 0,5293j /
/

[±J ?] |
/ 2,1408 ’

V
1 — Vn ,

10) vn = 0,5040 y
f 2,7058 '

V
1 — V n ,

( 15)

Die günstigste Bestimmung von m ist die Bestimmung aus den Quadraten e2,denn diese Bestimmung 2) hat den kleinsten mittleren Fehler , nämlich 0,7071 m.Die Bestimmung aus den 10t«n Potenzen der e hat nach 10) den nahezu 4mal grösserenFehler 2,7058 »re.
Hiezu gehört das Citat der Quellenschrift von Gauss , Bestimmung der G-enauigkeit derBeobachtungen (s. unsere Einleitung S. 3 unten ), auch Encke , „Berl . Astr . Jahrb . für 1834“, S. 289 bis293, wobei aber ja nicht zu übersehen ist , dass Gauss und Encke durchaus mit wahrscheinlichenFehlern rechnen , sowohl bei den Potenzmitteln , als auch bei deren Unsicherheiten , sie geben alsostets den wahrscheinlichen Fehler mit seinem wahrscheinlichen Fehler , während unsere Rechnungim Vorstehenden sich stets auf mittlere Fehler und mittlere Fehler der mittleren Fehler beziehen ;es sind daher alle unsere Coefficienten im Verhältnis 1 : q Y

~
2 oder 1 : 0,6745 grösser als die Coef -ficienten nach Gauss -Encke .
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§ 118. Scheinbare Fehler v statt wahrer Fehler s.

Eine weitergehende Frage ist nun , in welchem Maasse die Zuverlässigkeit
einer Bestimmung des mittleren Fehlers sich vermindert , wenn man nicht wie bisher

angenommen , wahre Fehler e, sondern nur die scheinbaren Fehler v , (welche bei
■einer Ausgleichung übrig bleiben ) , zur Verfügung hat .

Wenn die Ausgleichung n Beobachtungen und u Unbekannte hatte , so berechnet
■man aus der Quadratsumme [u2] der scheinbaren Fehler bekanntlich das mittlere

Fehlerquadrat nach der Formel :
t*ü = m _ m
n n — u ' ■*

28 . S . 87 entwickelt , auch in

m2
n —

Wir haben diese wichtige Formel in (19) §
§ 86. bei (19) S . 322 noch eine zweite Begründung für den Nenner n — w kurz an¬

gedeutet . Aus (1) hat man mit u = 1 :
[e2] _ [u2]
n n — 1

Nach ( 12) § 27 . S. 86 ist die Beziehung zwischen [u2] und [e2] :

[a e]2 [b «]2 [c e]2

m2 = - ( la )

(2)

Bleiben wir
aus (2 ) erhalten :

[aa ] [56 .1] [cc . 2]

zunächst bei einer Unbekannten stehen , so wird mit u = 1

ot2 = [>2]
[e2] - W 2

n für u = 1 (3)
n — 1 n — 1

Wenn nun m02 der wahre Wert von irfi , d. h . derjenige Wert ist , der bei

unendlich vielen « (also n = oo ) erhalten würde , so stellt m2 — »Jq2 den Fehler

von »n2 in einem einzelnen Falle vor, und wenn wir den Mittelwert von (m3 — « o2)2

wüssten , so hätten wir damit das Quadrat des mittleren Fehlers von m2, d. h . in

unserer Bezeichnungsart nach (1 ) S . 418 :

(m (m3))2 = Mittelwert von (m3 — mo2)2 (^)

- ■ • (tj - i
/ \ 2

. I ii [e2] — [e2] — n (n — 1)
n (n — 1) / \

: Mittelwert von

/ fß [f2]2 _ 2 n [s2] [*]3 — 2 «2 (n — 1) [e2] n»02\

_ . j -+• [e]4 + 2 » (« — 1) [e]2 m02
j (5)

n (n 1)/ y + rß (« — l )3 j

Von diesen 6 Gliedern muss man nun einzeln die Mittelwerte bestimmen ,

"Wozu wir bereits manche Vorbereitungen haben . Jedenfalls ist algebraisch .

[e2] 2 = (6l 2 + e22 + . . .)2 = (ex4 + e24 + ■• •) + 2 («l s £s

Die Summe
gefunden :

■«U V

der 4ten Potenzen der Fehler hat man in (15)

[ei] = 3 n « o4

+ • • •) (6)
116. S . 447

(7)
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und die Summe aller «x2 e22 4- . . . d. h. mit Ausscheidung aller ßj2 2 . . welchein (7) enthalten sind, lässt sich leicht abzählen und giebt im Mittel :
Sj 2 ß22 + «i2 «s2 4 - . ■• = n (n — 1) m02 ra02 = n (n — 1 ) m0*

Es wird also aus (6) mit (7) und (8) :
(8)

[e2]3 = (3 n 4- n (« — 1 )) »i04 = n (n -f - 2)
damit hat man das erste Glied der Klammer von (5 ) .

Ähnlich entwickelt man auch das zweite Glied von (5) , nämlich :
[e2] [ß]2 — («[2 4- ß22 4- • . .) (®i + «2 + • ■-)2

= (®12 4 - ß22 4- • • •) (ßj 2 4- e22 4 - . . . 4“ 2 e x e2 ~t~ 2 ßx 83 . . .)
Da aber der Mittelwert einer Gruppe ungerader Potenzen , wegen des wechselnden
Vorzeichens der e, verschwindet , so wird auch wie bei (9) :

[i 2] [ß]2 = [ß2] [ß2] = [ß2] 2 = (n2 + 2 n) m04
(10)

Von den übrigen Gliedern in (5) wollen wir nur noch [e]4 ausführlich dar¬
legen , nämlich :

[ß] 4 — (®i + e2 + • • -)4 — (®i 4 + ®24 + . . •) + (6 e x2 ß22 4- . . . ) 4- (4 ex ß28 4 - . . .)
da aber die ungeraden Potenzen verschwinden , bleibt nur :

[e4] = Sn m04 + 8 n (n — 1) w 04 = 3 w2 m04 (11)
Wenn man in dieser Weise alle Glieder von (5) behandelt , so bekommt man:

/ 1 in2 (n2 -h 2 n ) m04 — 2 « (w2 + 2w ) m04 — 2 ns (n — l ) » o4
|^ = L I + 3 »2mo4 + 2 »H ® - l ) Wo4 f (12)' ' 4 4- w2 (m — 1 )2 to04 I

(m (m2))2 2 fß m04n (n — 1)

(13)
Dieses ist der mittlere Fehler von m2, insolern m2 nach ( la ) berechnet ist, ,also aus ( 1 a) und (13) zusammen :

2
= |

n — 1 n (14)4- m2

Wenn m (m2) verhältnismässig klein ist gegen m2 selbst , kann man auch
schreiben :

Dieses unterscheidet sich von dem früheren (14) § 117 . S . 450 nur dadurch, dass
nun überall v an Stelle von e und n — 1 an Stelle von n steht .

Übergang zu zwei und mehr Unbekannten.
Die bisherige Betrachtung von (3) bis (13) bezog sich auf eine Unbekannte ,wie sie im arithmetischen Mittel vorkommt , wobei auch der Fall ungleich genauer

Einzelbeobachtungen (§ 8 .) und der Fall von Coefficienten a wie bei (10) § 12 . S . 43
mit inbegriffen ist , insofern man dafür Reduktion auf gleiche Gewichte , also e f/p u . s . w.
annimmt .
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Auch hei zwei Unbekannten lässt sich die vorhergehende Behandlungsweise
noch im Wesentlichen beibehalten. Nach (12) § 27. S . 86 ist für 2 Unbekannte:

W = [fi2] ~ jof
“ Und m2 = n - 2 (16)

Wenn also m 02 das wahre mittlere Fehlerquadrat ist , und mit »i (m2) der mitt¬

lere Fehler von wi2 bezeichnet wird , so hat man :
|\atf [be . lf \ 2

„2
> ] -

m (ro2) J = Mittelwert von

1 \ 2

[o a] [6 6 . 1]

m (m2) ) = Mittelwert von

m (m2) ] = Mittelwert von

[«*] - [o ef

- 2
[b e . I ]2

- ♦V

0 fi] [5 6 . 1]

W - z
M [e2]~2 [e2] “ 2 (”~2) [t2] m°2

[« «] * , 0 M 2 [6e .l ] 2 4 aW m *+ R 2 + 2 IH [60 ]
+ l }

[aa]
m°

Ml ™,2

- (w — 2) w02 (17 )

(18)

+ : + 2 (n —2) - m 0‘
[66Tl ]2 1 " v "

[6 6 . 1]
-t- (n — 2 )2 m04

Von den 10 Gliedern, welche in dieser Klammer auftreten, sind die Mittel¬

werte einzeln zu bilden, und man sieht bald, dass für alle diejenigen Glieder , welche

kein [6e . l ] enthalten , die früheren Betrachtungen (6)— (10) , sowie das frühere (16)

S . 86 u . s . w. wieder gebraucht werden können , und was die Glieder mit [6 e . 1]

betrifft, so braucht man nur dieselben in [6 e] — ^ -̂ j [ae ] aufzulösen , um alles auf

I« e] , [6 e] u . s . w. zurückzuführen.
Die Ausführung ist umständlich, sie giebt :

j + n (n + 2 ) — 2 (n + 2) — 2 (n + 2) — 2 (n — 2) n 1

TOq2 ^ 2 J + 3 + 2 -+- 2 (n — 2)
_ ' + 3 + 2 (n — 2)

-+• (n — 2)2

und da man nun »i2 und m02 nicht mehr zu unterscheiden braucht :

m («i2) = « 2 j/ ^ ZT2

oder in anderer Form :

m (m2) ) = n — 2

(19)

Die Ausdehnung auf mehr als 2 Unbekannte, allgemein u Unbekannte wird geben .

(20)= 7/J '
?3L U + j/ _ —

f n — m \ / 2 (n — it)



454 Vergleichung des Fehlergesetzes mit Beobachtungsreihen. § 119.
Ohne auch dieses noch durchznführen , wollen wir nur bemerken , dass man dazu ver¬schiedene Wege Anschlägen kann , etwa mit Einführung der b' $ in m, wie in (14) § 28. S. 86, woheraber die Bildung der Mittelwerte nicht so einfach ist wie dort .Die erste Quelle der Sache ist Art . 39—40 der Gauss sehen theoria combinationis (vgl . S. 4)rwobei die Coefficienten [a a ] u . s . w. unseres § 28. S. 89 unten gebraucht werden . Gauss behandeltdie Aufgabe zunächst ohne eine bestimmte Annahme über das Fehlergesetz und findet alle auf¬tretenden Mittelwerte ausdruckbar in w02 und in v4 in dem Sinne von (15) § 116. S. 447. Es wirdalso bei unbestimmtem Fehlergesetz zunächst nicht 1'4 = 8 m4 gesetzt , sondern f 4 unbestimmtgelassen . Trotzdem lasst sich das gesuchte m (w 2) in gewisse Grenzen einschliessen , welche auchohne die Kenntnis von v4 zu einer plausiblen Schätzung von m (m2) führen , und dann mit j 4= 3m *zu dem Schlussergebnis führen , welches in unserer Gleichung (20) enthalten ist . Es ist auch dieentsprechende Bearbeitung aus Helmert , „Ausgleichungsrechnung nach d . M. d . kl . Q. 1872%S. 111—113 zu zitieren , mit einer Unbekannten , wobei unsere Gleichung (4a ) in der Form auftritt'[£2] - [a s] [er e]

Wenn man die Gleichung (20) auf den Fall bedingter Beobachtungen mit runabhängigen Bedingungsgleichungen anwendet , z . B. Triangulierung mit r Beding¬ungsgleichungen, so wird n — u = r also

(21 )
Nehmen wir hiezu beispielshalber das belgisch-deutsche Verbindungsnetz von§ 83 ., so haben wir nach S . 298 die Summe [n2jp] = 4,2 , also in unserem Sinne zu (21) r

[d2] = 4,2 und r = 11also

m = ± 0,618" (1 ± 0,213 ) = ± (0,618" ± 0,132 " )d . h . der mittlere Fehler 0,618" ist aus jener Triangulierung hervorgegangen miteiner Unsicherheit von rund 21 o/0 seines eigenen Betrags oder 0,13 " .

§ 119. Vergleichung des Fehlergesetzes mit Beobachtungsreilien .
Um das auf rein theoretischem Wege gefundene Fehlerverteilungs -Gesetz von

h — h2 63
§ 111 . , nämlich qp («) = ~— e mit der Erfahrung zu vergleichen, muss man siebY n
eine Reihe wahrer Beobachtungsfehler oder eine Reihe solcher zufälliger Ereignisseverschaffen , von denen man annehmen kann , dass sie gleichen Bedingungen unter¬worfen sind , wie Beobacbtungsfehler.

Als solche Zufallsreihe wollen wir die Verteilung der Nullen in einer Logarith¬mentafel nehmen.
Wir haben nach Vega -Hiilsse (Leipzig 1840 ) gezählt, und zwar nach S . 2— 185 ,wo die 7 stelligen Logarithmen der Zahlen von 1 bis 99999 stehen . Dieselben Loga¬rithmen stehen natürlich auch in Vega -Bremiker , und in Schrön in gleicher Anord¬nung , nur mit dem kleinen Unterschied bei Vega -Bremiker , dass in jeder Kolumnenicht 50, sondern 51 Werte stehen, weil am Fusse die Zahl von der folgenden Seitewiederholt steht . Sehen wir davon ab , so haben wir in jeder Kolumne 50 Logarith¬men , und die Zählung erstreckte sich auf die Zahl der Nullen in der 6*«® Stelle,wie folgendes Beispiel einet Seitenabzählung zeigt :
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Zählung der Nullen in der 6tm Logarithmenstelle .

0 1 2 3 4 5 6 7 8 9

2000 0300 0517 0734 0951 1168 1386 1603 1820 2037 2254

2001 2471 2688 2905 3122 3339 3556 3773 3990 4207 4424

2002 4641 4858 5075 5291 5508 5725 5942 6159 6376 6593

2008 6809 7026 7243 7460 7677 7893 8110 8327 8544 8760

2004 8977 9194 9411 9627 9844 0061 0277 0494 0711 0927

2045 6933 7145 7358 7570 7783 7995 8207 8419 8632 8844

2046 9056 9269 9481 9693 9905 0117 0330 0542 0754 0966

2047 1178 1391 1603 1815 2027 2239 2451 2663 2875 3087

2048 3300 3512 3724 3936 4148 4360 4572 4784 4996 5208

2049 5420 5632 5843 6055 6267 6479 6691 6903 7115 7327

Summe 9 1 7 6 6 4 8 5 6 3

Es wurden 1800 solcher Spalten mit zusammen 90 000 Ziffern in Hinsicht auf

Nullen durchgezählt .

Einiges Nähere hierüber haben wir in der „Zeitschr . f . Yerm . 1890“, S. 560—564 mitgeteilt ,

auch sei zu . dem entsprechenden Beispiele in den früheren Auflagen dieses Buches (z. B. 3. Aufl .

I . Band 1888, S. 282—285) bemerkt , dass jenes frühere Beispiel in zweifacher Beziehung ein anderes

war , erstens waren nur 600 Spalten , statt jetzt 1800 Spalten behandelt , und zweitens waren die

Spalten nicht einzeln , sondern je 2 zusammen behandelt .

Im Einzelnen gab die Zählung Folgendes :

Anzahl der Nullen
in einer Spalte

l

kommt vor
P

Produkt
pl

Fehler

p t zl— 5 = e «2

0 24mal 0 — 5 25 600

1 14 14 — 4 16 224

2 121 242 — 3 9 1089

8 244 732 — 2 4 976

4 375 1500 — 1 1 375

5 (Mittelwert ) 417 (Maximum ) 2085 0 0 0

6 312 1872 4- 1 1 312

7 140 980 4 - 2 4 560

8 88 704 4 - 3 9 792

9 24 216 4- 4 16 384

10 21 210 + 5 25 525

11 6 66 4 - 6 36 216

12 5 60 + 7 49 245

13 4 52 4- 8 64 256

14 2 28 4- 9 81 162

18 1 18 4- 13 169 169

24 2 48 4- 19 361 722

Summe 1800 | 8827



456 Vergleichung des Fehlergesetzes mit Beobachtungsreihen. § H9.
Hiezu wurde auch folgende graphische Darstellung gemacht :

2 tl- 11 6 5 'l; 2_ L_ ^ i - :- !- 1- u — n — - Q~ L— - - - q - - 1 - n0 1 2 3 It 5 6 7 8 9 HO 11 12 13 1*1- 15 16 17 18 19 20 21 22 23 2ft-! I l I ! i- 5 +0 +5 + 10 + 15 + 19

- - - - 200 ( 0rdinaten - Summe =1800)

- HOD

— 300

Die Ahscissen 0, 1 , 2 . . . 24 beziehen sich auf die Anzahl l der Nullen, welchein je einer fünfziggliedrigen Kolumne gefunden wurden. Die Ordinaten p = 24,p = 14 . . . p = 417 . . . p — 2 geben die Zahl der Fälle , in welchen die Nullen¬zahl l gefunden wurde, z. B . wurden 4 Nullen in je einer Kolumne 375mal gefunden ,oder 5 Nullen in je einer Kolumne 417mal u . s . w.Nun rechnen wir weiter, wie wenn unsere l die Ergebnisse von unabhängigengleichartigen Beobachtungen einer Unbekannten x wären , welche dann als arith¬metisches Mittel aller l berechnet wird :

Dieser Wert x = 4,9033 ist kleiner als der Wert * = 5 , welcher bei gleich -massiger Verteilung der Ziffern in den abgezählten Spalten zu erwarten war . Wirwollen nicht den beobachteten Mittelwert x = 4,9033 , sondern den theoretischenWert x = 5 den weiteren Berechnungen zu Grunde legen, indem wir nun die Differ¬enzen l — x = 6 wie wahre Beobachtungsfehler weiter behandeln.Jedoch betrachten wir zuvor nochmals die graphische Darstellung , wobei indie Augen fällt , dass diese Curve nicht symmetrisch gegen die Achse ist . Eine solcheUnsymmetrie, oder ungleiche Wahrscheinlichkeiten für — s und für e , ist auchvon vornherein zu erwarten gewesen , namentlich bei den Grenzwerten; denn derFehler e = — 5 , oder 0 Nullen, ist unbedingt die untere Grenze, weil e = — 6 , oderweniger als 0 Nullen , in einer Spalte undenkbar ist , während auf der positiven Seitemit e = •+- 5 oder 10 Nullen in einer Spalte die Sache gar nicht abgeschlossen ist,und es kommen darüber hinaus 11 , 12, 13, 14 Nullen noch ganz stetig vor , woraufzwei Lücken folgen , und die Reihe mit zweimal 24 Nullen in einer Spalte abschliesst.Trotz dieser Unsymmetrie im Ganzen können wir einen mittleren Fehler be¬rechnen, wozu die Quadrate fc2 schon oben in der Hauptzusammenstellung von S . 455
enthalten sind , nämlich [e2] = 7607 , also mittlerer Fehler + 2,056 .



§ 119 - Vergleichung des Fehlergesetzes mit Beobachtungsreihen . 457

Ausserdem wollen wir noch die beiden Teile , — e und -+- e, getrennt behandeln ,
und zwar soll der wichtige Fall e = 0 mit n = 417 dabei hälftig nach der negativen
Seite und hälftig nach der positiven Seite hin gezählt werden , so dass wir erhalten :

negative Fehler :
e2 p

986,5 3264

+

+

positive Fehler :
e2 p
0 208,5

4343

- = SI = 3'8»8’
m = + 1,8190

4-%4-R
W2 = Ä5 = 5 ’3387

m = + 2,3106

Die nächste Betrachtung soll sich auf die negativen Fehler allein erstrecken ,
und wir wollen die Verteilung mit dem theoretischen Fehlergesetze von § 111. ver¬

gleichen , wozu es zuerst nötig ist , das Intervall d e = 1 in Teilen des mittleren

Fehlers m auszudrücken . Aus m = 1,8190 folgt :

<76 = 1 = 0,54976 m

und 4
® = 0,5 = 0,27488 m

ü
Nun bestimmt man nach der Tabelle S . [21] des Anhangs die Wahrscheinlich¬

keiten W für das Fallen eines Fehlers zwischen die Grenzen Null und den « fachen

mittleren Fehler und rechnet zugleich weiter , wie nachstehende Tabelle zeigt :

0

G

und e

renzen

0 und n

w
nach

Seite [21]
986,5 W

Differ¬
enzen

P'

0 0,5 0 0,27488 0,2166 213,7
213.7
368.7

0 1,5 0 0,82464 0,5904 582,4 237,1
0 2,5 0 1,37440 0,8307 819,5

113,3
0 3,5 0 1,92416 0,9456 932,8 40 .6
0 4,5 0 2,47392 0,9867 973,4 10,6
0 5,5 0 3,02368 0,9975 984,0 2,5
0 oo 0 OO 1,0000 986,5

986,5
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Die in der letzten Spalte stehenden Differenzen p ' sind nun die theoretischenAnzahlen, welche den beobachteten p in der vorhergehenden Tabelle S. 457 entsprechen ,und man hat daher folgende Vergleichung für die negativen s :

Grenzen
Anzahl der Fe

Theorie
P'

hier nach der
Erfahrung

P
Abweichung

0 und 0,5 214 209 + 5
0,5 , 1,5 369 375 — 6
1,5 , 2 .5 237 244 — 7
2,5 , 3,5 113 121 — 8
3,5 „ 4,5 41 14 + 27
4,5 „ 5,5 11 24 - 13
5,5 , OO 2 0 + 2

Summe 987 987 0
Die Übereinstimmung zwischen der Theorie und der Erfahrung ist so , dassman sagen kann, die Verteilung der Nullen folgt näherungsweise dem Gesetze von § 111.Allerdings die entsprechendeVerteilung der positiven e stimmt noch erheblich schlechtermit der Theorie, wir wollen diese Verteilung nicht auch noch vorführen, dieselbewird namentlich durch die vereinzelten grossen s (vgl. die Fig . auf S. 456 mit denrechts auslaufenden Werten bis 24) entstellt .
Solche Vergleichungen zwischen der Fehlerverteilung nach der Erfahrung und nach derTheorie des Ganss sehen Fehlergesetzes sind zuerst angestellt worden von Bessel in „fundamentaastronomiae “ S. 19 —20, mit drei Fehlerreihen , von denen die dritte , 470 Recfcascensionsbeobach -tungen umfassend , auch von Encke im „Berl . Aatr . Jahrbuch für 1834“ S. 274 —275 behandelt wirddieselbe war auch enthalten in der 2ten Auflage unseres „Handb . d . Verm ., 1. Band 1877 “, S. 101und 104).
Die neueste und bedeutendste Untersuchung dieser Art betrifft die Schlussfehler von 2238Dreiecken der Italienischen Triangulierung , behandelt auf Anregung von General Ferrero durchIngenieur Guarducci , mitgeteilt in der italienischen Zeitschrift „Rivista di topografia e catasto “,Roma 1889, Volume II , S. 1—12. Es sind 2 Gruppen , erstens 661 Dreiecke mit dem mittlerenSchlussfehler 14,08 " und zweitens 1577 Dreiecke mit Schlussfehler 17,13 ". Ein Bericbf ^ hierüberwird auch gegeben von Czuber in „Theorie der Beobachtungsfehler “, Leipzig 1891, S. 193—194,und ferner eine Reihe von 40 Teilstrichbestimmungen aus A. R . Clarkes Geodesy , mitgeteilt vonFaye in Comptes rendus , 106. Band , 1888, S. 783—786.
General Ferrero hat ferner in dem „Rapport sur les triangulations , presente a la dixiemeConference generale a Bruxelles en 1892“ eine Tafel mit 12 graphischen Darstellungen zu 18085Schlussfehlern gegeben , und berichtet auf 8. 4 dieses Rapports , dass er auf der Pariser Versamm¬lung 1889 eine Broschüre verteilt habe , welche an mehr als 5000 Dreiecksschlussfehlern die Über¬einstimmung zwischen Theorie und Beobachtung schlagend nachgewiesen habe .

§ 120 . Fehler -Kurven mit endlicher Erstreckung .
Bei der Bestimmung der Fehlerfunktion in § 111 . wurde die Annahme gemacht,dass die Fehlergrenzen die denkbar weitesten , nämlich — oo und + oo seien . DiePraxis steht dieser Annahme entgegen , nnd deswegen machen wir nun verschiedeneVersuche mit solchen Fehlerfunktionen , deren Kurven nicht asymptotisch auslanfen ,sondern die Achse berühren oder schneiden .
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Wir wollen sogar im Interesse möglichster Allgemeinheit mit dem gröbsten
Falle beginnen , dass nämlich die Fehler -Kurve eine begrenzte Gerade , parallel der

Achse, sei, wie in Fig . 1 . dargestellt ist .
Fig . i .

M2

Ve = 2 M
~

3 m2

— 0,5

/
0,2887

1 ^ '
^ 1

'<- M - >

I . Parallele Gerade (Rechteck) .

Wir nehmen zuerst unbestimmt an <p (e) = A und wollen die Konstante A so

bestimmen , dass zwischen den Grenzen — M und + M alle Fehler enthalten sind , d. h . :
M

2 j
'
cp (e) de = 1

o
M 1

2
J

"
Ade = 24M = 1 also A =

Das mittlere Fehlerquadrat wird :

TO2= 2j e2 (fi (e) d e = 2 J
d S =

2 M

m
TT

( 1)

also M 2 = 3 nfi M = 1,732 m (2)

Zu späteren Vergleichungen wollen wir auch den Mittelwert r 4 der 4ten Potenzen

ausrechnen :
.v .V
r / • i m 5

r 4 = 2J c4 cp (e) d e = 2
J ^ e4 d e =

und da M 2 = 3 ?n2 ist , hat man auch
9

-j)4 = — »n4 = 1,800 m4
5

(3)

IX. Parabel .

Die Feblerkurve soll vom Scheitel nach beiden Seiten symmetrisch abnehmen .

Fig . 2. Parabel .
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Die Funktion sei zunächst unbestimmt in dieser Form :

AL „ / « Wy = v («) = ~
m 11 ■ ■B M (4)

wobei die beiden Konstanten A und B so bestimmt werden sollen , dass erstens filre = — M oder M die Funktion = Null wird, und dass zweitens zwischen der Achseund der Kurve alle Fehler enthalten sind . Also :

M M
l = * l

'

q>{a) ae = *J± [ \ -

Also die Funktion :

B = 1

, „ A M *
M*j

de ~ 2
M \

M
BM *

4

y 4 m ( T
IM2) (5)

Dieses ist die Gleichung einer Parabel mit dem Parameter = — Mi . Damit wird :O

»?2
m

= 2 j «2 qp(e) de =
2 M

MS MS

M 2 = 5 rrfi

, . = 2/ e4 cp («) d e =
2 M

? 5 IM2

IM = 2,236 w

JM5 MT
35

MS
5

7 MS Mi

15
»4 = — m4 = 2,143 m4

(6)

(7)

1/Z Berührung erster Ordnung.

Wenn man von der Fehlerkurve verlangt , dass sie zunächst im Scheitel ähnlichwie die Parabel ansetzt, dann aber links und rechts in Abständen M symmetrisch dieAchse berühren soll , so kann man der Kurvengleichung 3 Coefficienten geben , und
M

diese bestimmen durch die 3 Bedingungen , dass erstens 2J <p (e) de = 1 , zweitens
o

y = 0 für e = M, und drittens = 0 für e = M. Ohne die Ausrechnung herzu-fit 6
setzen, (welche bequemer rückwärts kontrolliert wird) , geben wir die diesen 3 Bedingungenentsprechende Kurvengleichung :

2/ = <P («) =
p̂ ilM ( 1 ■

M
±V
M

15
16 M 1 — jeM 2

m (8 )

Für verschiedene Werte von — hat der zweite Faktor dieser Funktion fol-M
gende Werte :
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W = ° -° f1 “ ^ 1 -0000

0,2 0,9216
0,4 0,7056
0,6 0,7056
0,8 0,1296
1,0 0,0000

Da der erste Faktor in (8) konstant ist , kann man hiernach die Kurve für (8)
in beliebigem Massstabe auftragen , wie in nachfolgender Fig . 8 . zu sehen ist .

Fig . 3.
Fehlerkurve mit Berührung erster Ordnung .

Das mittlere Fehlerquadrat m2 und das mittlere Biquadrat »4 werden aus (8)
erhalten :

m2 t 2 <p (e) d e =

1

15 / I 1 34 3

r 4

?n2 = 342

342 = 7 « 2
M

r ]
= 2 / «4 qo (e) d e = g

! 34 ) 3 5 7

w = 0,3796 34 (

M = 2,64575 «i I

341 5 7 ^ 9

(9)

, 4 = - 344 »4 = 0,04762 344

■pi = 149 «*4 _ 1 m4 = 2,3333 »*4
21 o

(10)

ln gleicher Weise kann man auch den durchschnittlichen Fehler t und den wahr¬

scheinlichen Fehler r berechnen :

t = 134 = 0,3125 34 = ™ =
16 iP

m = 0,8268 m

r = 0,28108 34 = 0,74367 m
+ M

Dieses und weiteres hiezu , z . B . eine Tabelle für j <f>(e) ds haben wir früher

M

in der „ Zeitschr . f. Verm . 1878 “
, S . 39 und in der vorigen Auflage dieses Buches

„Handb . d . Verm . , 3 . Aufl., I . Band 1888 , S . 289- 291 gegeben .

IV . Berührung zwäter Ordnung.

Wenn man zu den 3 Bedingungen , welche im vorigen Falle III gestellt wurden ,

auch noch als vierte Bedingung hinzunimmt , dass für e = M auch die zweite Ah-
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(£2 y
leitung ^=- ir = 0 werde , so kann man der Funktion y noch ein weiteres Glied gehen,
und man wird dadurch erhalten :

35
V = <P («) = ;32 M

Hiernach ist berechnet :
6

1 — 3 + 8 ^ -

M = 0,0

0,2
0,4
0,6
0,8
1,0

e \4
U )

e2 \ «
’
M 2

= 1 j2 \ 3
'
M 2 ( 11 )

1,0000
0,8847
0,5927
0,2621
0,0466
0,0000

Damit ist die folgende Kurve (Fig . 4 .) aufgezeichnet.

Fig . 4.
Fehlerkurve mit Berührung zweiter Ordnung .

+ M- *
Aus der Funktion ( 11 ) wird auch wieder m2 und -r4 bestimmt :

m2 — e2 <P («) <2 « =
0
M2 = -i - 1142 ,

»>4 = 2J
‘
e4 q> (e) d « =

35 1_
16 ihr V 3

1
3

35 / I
16 M I 5

j A _ J
7 9

M = 3 m

MS

(12)

r4 = M M4 r 4 = 0,03030 M 4
1 07

r4 = 81 m4 = — m4 = 2,4545 m£öö 11 (13)

Die Fortsetzung dieser Entwicklungen giebt für Berührung von der rt e» Ordnung:

'
M 2

3
MS

y , , 1 3 . 5 . 7 . . . 2 « + l 1; f (®) — O O 4 fi o M ^2 2 . 4 . 6 . . . 2 w
1 j-4

5 + 2 « ’ M 4 _
(5 + 2 ») (7 + 2 «)

m2 _ 1 (3 m4
¥

(14)

(15)

• 1M 2 2 \ * ' ^16)
Wenn man mittelst ( 15) M 2 = (5 + 2 n) m2 in (14) einsetzt, und auch m selbst
durch ( 17) S . 432 in h ausdrückt, so wird (14) :

3 . 5 . 7 . . . 2 n + 1 h A „ 2 My = 2 . 4 . 6 . . . 2 « yio + 4 « 1 •
■2 n + ( 17)
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Mit n = t» geht der Faktor vor der Klammer über in - ~ , wegen des Wallis -
y n

sehen Ausdruckes für n (Zeitschr . f. Verm . 1894 S . 489) , und die Reihe in der

Klammer wird als Exponentialreihe (S . 434) gleich e— A’ s’ und damit geht mit

n = oo der Ausdruck (17) über in die Fehlerfunktion (13) S . 430 .

§ 121 . Der Maximalfehler.

Schon die allerersten Betrachtungen über das Wesen der Beobachtungsfehler

(vgl . § 3 . S . 11 ) führen darauf , dass diese Fehler zwar unvermeidlich , aber in gewisse

Grenzen eingeschlossen sind , welche sie nur überschreiten können beim Auftreten

sogenartnter grober Fehler , die aber von aller Theorie ausgeschlossen sind .
Im Gegensatz hiezu nimmt die allgemein anerkannte Fehlertheorie , die wir in

§ 111 . entwickelt haben , an , es bestehen keine endlichen Fehlergrenzen , sondern die

Grenzen Unendlich nach beiden Seiten , — oo und + oo .

Wenn man daher das Fehlergesetz auf gewöhnliche Beobachtungs¬

fehler anwendet , so begeht man eine Inkonsequenz , denn z. B . die Wahrscheinlichkeit ,

bei der Winkelmessung mit einem guten Theodolit einen Fehler von 1 ° zu begehen ,

ist ohne Frage = Null und nicht ein Wert , der von der Null verschieden ist .

Dieser Inkonsequenz muss man sich klar bewusst sein , und man darf das

theoretische Fehlergesetz nur als eine Annäherung an die Wirklichkeit , niemals aber

als das Gesetz der wirklichen Beobachtungsfehler selbst betrachten .

Als Analogie zu der Ungültigkeit des theoretischen Fehlergesetzes ausserhalb

gewisser Grenzen möchten wir ein Fortpflanzungsgesetz anderer Art betrachten , welches

ebenfalls innerhalb enger Grenzen gilt , aber auf weitere Ausdehnung völlig unzu¬

treffend wird :
Ein Mänse -Paar oder ein Paar anderer sich rasch vermehrender Tiere , Kanin¬

chen oder dergleichen , möge in 1 Jahr eine Nachkommenschaft von M Paaren

■erzeugen , welche im nächsten Jahre selbst fortpflanzungsfähig sind , und daher nach

dem Schlüsse des zweiten Jahres eine Anzahl von M 2 neue Paare hinterlassen . Wenn

das so fortgeht , so würde nach n Jahren eine Anzahl von M " solcher Paare vor¬

handen sein , d. h . wenn n nur einigermassen gross ist , würden bei Mäusen, Kanin¬

chen u . s . w. nach diesem Gesetze bald Millionen und Milliarden von Nachkommen

vorhanden sein . Wenn nicht vernichtende Kräfte einwirken , so tritt solch masslose

Vermehrung in der That ein (z. B. Kaninchen -Plage in Australien ) , im Allgemeinen

aber wird der Vermehrung der Tiere bald kräftig entgegengewirkt durch die zahl¬

reichen Feinde jener Tiere , namentlich die Vernichtung durch den Mensehen ; und

das Gesetz der Vermehrung M ” mag zwar durch einige Generationen wirksam sein,

(mit bereits auf mittlere Vernichtung gültigem M ), aber die Millionen - und Milliarden -

Vermehrung tritt thatsächlich nicht ein . ah - ä“

Ganz ähnlich verhält es sich mit den Beobachtungsfehlern ; das Gesetz - — e
Y n

gilt für kleine Werte e , etwa innerhalb des mittleren Fehlers e — M jedenfalls , aber

darüber hinaus , schon bei e = 2 m , e = & m und vollends s )> 3 in sind so viele V er-
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nichtungskräfte für die Fehler vorhanden, dass sehr grosse Fehler überhaupt nichtmehr zu stände kommen können .
Um die Unmöglichkeit sehr grosser Fehler , etwa über dem 5—lOfachen mittlerenFehler , naehzuweisen , wollen wir das dem Geodäten am nächsten liegende Beispielder Winkelsumme eines Dreiecks (a -+■ß -+- y, bezw. « + ß + y + sph . Excess) betrachten.Zuerst kommen die Teilungsfehler der Theodolitkreise in Frage , allein schon

diese Kreise sind, ehe sie der Geodät in die Hand bekommt, schon so gründlich kon¬trolliert , dass die Fehler nur ein gewisses Durchschnittsmass , aber nicht darüber
erreichen können . Jeder Mechaniker weiss schon aus dem Verlaufe der Teilungs -
Arbeit , ob der Kreis für gewisse Zwecke zulässig ist oder nicht ; er wird zum min¬
desten den Kreis , ehe er ihn abliefert , nochmals summarisch durchgehen , ob er ihn
ohne Schaden für sein Geschäft abliefern kann. Sollte aber auch das nicht sein , sowürde doch der ausübende Geodät, schon nach den ersten Wochen , etwaige starkeFehler selbst finden , den Kreis zurückschicken und die etwa bereits damit gemachten
Messungen streichen.

Sei nun der Kreis innerhalb gewisser Grenzen richtig , dann wird auch der
Geodät schon im Felde etwaige vorstehende Abweichungen seiner Ablesungen ent¬
decken , dann in der Berechnung seiner Satzmittel u. dergl. wird er starke Messungs¬fehler finden ; er wird — auch hei strengster Objektivität — sehr starke Fehler un¬
barmherzig ausmerzen . Sollte ein solcher Fehler , etwa gleich dem lOfachen mittleren
Fehler , sich bis zur Zusammenstellung der Dreieckssummen durchwinden, so wird nach
dem Auftreten desselben nochmals eine Revision bis herunter zu der Aufschreibungder Ablesungen in den Feldbüchern stattfinden , und — ein Grund zum Ausscheiden
wird gefunden werden , auch hei Wahrung der strengsten Unparteilichkeit . —

Wir wollen unterlassen , all diese Einzelheiten noch weiter zu verfolgen . Jeder
Praktiker weiss , dass starke Fehler die zahlreichen Kontrollstationen geodätischer
Messung und Berechnung einfach nicht passieren können .

Dieses eine Beispiel mag genügen zur Begründung des Satzes , dass das gewöhn¬liche Fehlergesetz qp (e) als strenges Gesetz nur gültig ist für Fehler e kleiner als
der mittlere Fehler m , oder gleich demselben und wenig darüber hinaus , dass aber
für e grösser als m ein anderes allmählich von dem ersten cp (e) abweichendes Gesetz
zur Geltung kommt.

Dieses hat uns dazu geführt , in der nachfolgenden Fig . 1 . eine Fehlerkurve

M = 3m



§ 121 . Der Maximalfehler . 465

zu betrachten , welche aus zwei Teilen zusammengesetzt ist, nämlich erstens aus einem
Teil AD nach der Gausssehen Funktion von § 111 , und zweitens einem Teile DB ,
welcher in D die erste Kurve A D und in B die Achse berührt, und zwar sollen die
beiden Berührungen in D und in B nicht bloss von erster, sondern von zweiter
Ordnung sein.

Für den Kurventheil A D haben wir nach § 111 :
h - A’ S»

y = «p («) = - - - e
y n (1 )

dy 2 /i3 — W e3
= - = sede y n

(2)

d? ii 2 hß — / \
rf ' -

yT A
“ “

)
(3)

Die zweite Abteilung gleich Null gesetzt giebt die Wendepunktsabscisse, welche
nach ( 17) § 111 . S . 432 gleich dem mittleren Fehler ist , nämlich :

1
00 = oder h2 =

2 in2hy 2

Die Scheitel-Ordinate wird mit e = 0 :

_ h __
1 _ 0,39894

y 7i m y 2 n m

Die Wendepunkts-Ordinate mit e = m wird
h . 1 1__ = 0 2̂4197

m y 2 e n m2/1 =
y n

T_¥ = ■

Die Wendepunkts-Tangente giebt mit e = m :

dyl 2 äsdjf ] = _
d eJr y n

: in e~~ — Vi
m

(4)

(5)

(6)

(? )

Diesem entspricht in Fig . 1 . die Tangente D E , welche den Punkt E im Ab¬

stande C E = m liefert.

Nun soll eine Kurve D B so gelegt werden , dass sie in D und in B Berührung

zweiter Ordnung hat . Man wird dieses durch Rechnung mit unbestimmten Coeffi -

cienten erzielen , mit dem Ergebnis :

V = 2/1 m / lo
(8)

dabei sind die Abscissen ö von 0 an gezählt , also 6 = e

(8) giebt :
dg
d ö

WA
4 \ m

— m . Die Gleichung

(9)

& y _ j/i/A / A ) _ A (JLY ) ( io )
dä 2 m* \ 2 \ m ) 4 \ mJ )

Man überblickt alsbald, dass die Gleichung (8) mit (9) und (10) den vorher

ausgesprochenen Bedingungen der Kurve D B von Fig . 1 . entspricht.

Jordan , Handb . d . Vermessimgsiunde . 4. Aufl . 1. Ed . 30
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Hiezu wollen wir zuerst den Maximalwert von 6 bestimmen , welcher y = 0macht ; es ist 6 = 2 m , wie sich aus (8) erprobt , nämlich :

Es ist also :
8 max — % m und « „„z = M = 3 m ( 11 )

Als Probe für die Berührungen in D und B hat man aus (9) mit 6 = 0 den¬selben Wert wie früher (7) und mit 6 = 2 m giebt (9) den Wert Null. Ferner (10)wird = Null erstens mit 6 = 0 und zweitens mit 6 = 2m .
Als Hauptergebnis wollen wir die Beziehung (11 ) mit M = Bm betrachten ;d. h . wenn man die Gausssche Funktion <jp (e) nur bis e = m gelten lässt , und danneine Funktion anschliesst , welche als Kurve betrachtet nicht asymptotisch ausläuft,sondern die Achse mit Berührung zweiter Ordnung erreicht , so wird der Maximal¬fehler M gleich dem dreifachen mittleren Fehler .
Um hieraus einen Rückschluss auf die Verhältnisse wirklicher Beobachtungs¬fehler zu ermöglichen , müssen wir zuerst allgemein die Kurve als Bild irgend einerErscheinung auffassen, wie bei graphischen Darstellungen der Technik , der Sta¬tistik u . s . w . täglich geschieht.
Eine unbegrenzt der Null sich nähernde Funktion ist unserem geistigen Vor¬stellungsvermögen viel schwieriger auszudenken , als eine asymptotisch auslaufendeKurve mit dem physischen Auge erfasst wird . Das geometrische Asymptotenbilderleichtert uns den vorher geschaffenen Begriff des unbegrenzten Abnehmens mitgeistigem Auge zu erfassen. Umgekehrt muss für einen neuen Begriff, für welchenein abstrakter Ausdruck fehlt , das Kurvenbild aushelfen.
In diesem Sinne sagen wir , die berührende Kurve D B erleichtert uns dieVorstellung eines allmählichen Abweichens von dem abstrakten Gausssehen Fehler¬gesetz, und in demselben Sinne sind auch die Kurven von § 120 aufzufassen.
Nun kann aber das Verhältnis M : m , welches, in Fig . 1 . S. 464, = 3 ange¬nommen wurde , überhaupt nicht allgemein bestimmt werden , ebensowenig, als dieKonstante h des Fehlergesetzes (1 ) allgemein bestimmbar ist . Wie jeder Beobacht¬ungsart eine gewisse Genauigkeitskonstante h zukommt, ebenso hat auch jede Be¬obachtungsbehandlung ein gewisses Verhältnis M : m. Je gewissenhafter und objek¬tiver ein Beobachter ist, desto grösser wird bei ihm M : m werden , und je mehr ineiner Beobachtungstabelle grosse Fehler ausgeschieden wurden , — bewusst oderunbewusst — desto kleiner wird M : m sein.
Es kommt nun darauf an , dieses mathematisch zu fassen , und dazu scheinen

Im Gauss sehen Fehlergesetz ist v* : «ri = 3 (nach ( 15 ) § 116 . S . 447) , unddabei sind Fehler e von Null bis Unendlich angenommen, werden aber die grossenFehler von einer gewissen Grenze an ausgeschieden, so drückt das auf die Biqua¬drate «4 viel stärker als auf die Quadrate e%, und das Verhältnis fl : ml wird indiesem Fall Meiner als 3 werden ; oder das Verhältnis fl : »ri im Allgemeinen wirdeinen Massstab für das Ausscheiden grosser Fehler abgeben.
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Aus den theoretischen Fehlergesetzannahmen von § 120 . bilden wir folgende

Vergleichung :

1) Eechteck S . 459 iot

»
li

l
3

= 0,3333
^4 9

“
5

= 1,8000

2 ) Parabel S . 460 »
1
5

= 0,2000 if
15
7

= 2,1429

3 ) Berührung 1 . Ordnung S . 461 „
1
7

= 0,1429 ff
7
3

= 2,3333

4 ) 2 . , S . 462 „
1
9

= 0,1111 n
27
11

= 2,4545

5 ) Asymptote S . 447 n
1
oe>= 0,0000 it

3
1

= 3,0000

Der Anblick dieser Zahlen , und mehr noch ihre Darstellung in einer Kurve ,

• , ^ 2
giebt zweifellos zu erkennen , dass das Verhältnis in einer gewissen Beziehung zu

fi
dem anderen Verhältnis j steht , welche bereits in ( 16) § 120 . S . 462 allgemein

gegeben ist durch die Gleichung :
nfi 1 / 3
P

1 oder
»0 (12 )

2 ( rt
Wir denken uns eine Beobachtungsart , welche in Hinsicht auf M : m unter¬

sucht werden soll , irgend einer der unendlich vielen Funktionen (14) S . 462 angepasst

durch Vermittung des Verhältnisses m i : vi nach der vorstehenden Gleichung (12) .

Zu einer ersten Anwendung dieser Theorie wollen wir die 22 Dreiecksschluss¬

fehler benützen , welche in § 3 . S . 12 . mitgeteilt sind . Wenn man dieselben quadriert

und biquadriert , so erhält man :

Damit nach (12 ) :

m 2 =

ml = 1,924
'»)4

= 1,654

m — 1,178
■pi

3 - —A = 1,346
m* '

li - «-«
= 0 .638

M ’
M— = 1,568m

(13)

Da »i = l,178 ist , müsste also M = 1,568 X 1,178 = 1,847 werden , und in

der That ist der grösste Wert auf S . 12 , mit der Nummer 14 , = -+• 1,86 "
, also

sehr nahe dem theoretischen 1,847 .
Das Verhältnis M : m = 1,568 ist hier erheblich kleiner als das Verhältnis

M : m = 3 , welches für asymptotisches Fehlergesetz gilt , und man kann daraus auf

Ausscheidungen der grossen Fehler schliessen .

Auch schon das Verhältnis des mittleren Fehlers m zum durchschnittlichen

Fehler t lässt sich in solcher Weise verwerten , dieses Verhältnis ist im Falle unserer

22 Dreiecksschlüsse (vgl . S . 22 ) m : t = 1,18 : 1,03 = 1,15 , während für das asymp¬

totische Fehlergesetz dieses Verhältnis = 1,25 , also grösser sein soll , woraus aber¬

mals auf Ausmerzung der grössten Fehler , welche in m stärker ins Gewicht fallen
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würden, geschlossen werden kann, jedoch mit geringerer Sicherheit als bei Benützungvon j>4 und in4. Ausser den 4ten Potenzen könnten auch noch die 6ten, 8ten u . s . w.Potenzen von e zugezogen werden .
Mag unsere vorstehende Gleichung (12) so bleiben, oder noch weiter behandelt

[e2l r«4iwerden, jedenfalls haben wir in der Vergleichung der Werte irfi = und = kl¬
einen ersten Weg zur Auffindung des bis jetzt von aller Theorie ausgeschlossengewesenen Maximalfehlers eröffnet .

Wenn zu den vielen Tausenden von Dreiecksschlussfehlern w , welche in dem
Tw2]nachfolgenden § 123. u . ff. zu berichten sein werden , nicht bloss die Mittelwerte 4—-
n\W4]sondern auch noch — — ausgerechnet würden, so könnte daran unsere Theorie dern

Gleichung ( 12) erprobt werden . —

Kapitel Y .

Genauigkeit der Triangulierungen . Geschichtliche Abrisse .

§ 122. Allgemeines .
Die Frage nach der Genauigkeit der Messungen und die Beantwortung dieser

Frage ist der Anfang und das Ende aller feineren geodätischen Untersuchungen,und zur Gewinnung eines Urteils über solche Fragen ist es von besonderer Wichtig¬keit , die Werke der Vergangenheit in Hinsicht auf die erstrebte und die erreichte
Genauigkeit zu studieren.

Wie wir schon in der Einleitung S. 8 bemerkt haben , sind die Genauigkeits-Untersuchungen in der früheren geodätischen Litteratur viel zu wenig gepflegt worden.Vor etwa 30 Jahren , zu Beginn der Europäischen Gradmessnng, diente als
Anhaltspunkt zur geodätischen Genauigkeitsschätzung eine gelegentliche Bemerkungvon General Baeyer in seinem „Messen auf der sphäroidischen Oberfläche “ 1862 , S . 79,nämlich : „den wahrscheinlichen Fehler der besten Winkelmessungen können wir nicht
unter - j

4 Sekunde annehmen. “ Die Gradmessung in Ostpreussen bot gar keine Ge¬
nauigkeitsberechnung , und die „Bestimmung des mittleren Fehlers der Winkelmess¬
ungen in Baeyers berühmter „Küstenvermessung“

, erwies sich beim ersten Blick imSinne der M . d. kl . Q. als unzutreffend.
Über die klassischen Messungen von Gauss in Hannover war nichts bekannt.
Ebenso war es in Süddeutschland. Über die Bayerische Triangulierung , das

geodätische Hauptwerk Deutschlands im Anfang des Jahrhunderts , gab die BayerischeLitteratur , in welcher man nachzuschlagen berechtigt war, nur unbestimmte Auskunftüber „befriedigende Übereinstimmung“ oder dergl. Auch das amtliche Württem-
bergische Landesvermessungswerk ging allen Genauigkeitsfragen entweder geflissent-
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