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458 Fehler -Kurven mit endlicher Erstreckung . § 120 .

Die in der letzten Spalte stehenden Differenzen p ' sind nun die theoretischenAnzahlen, welche den beobachteten p in der vorhergehenden Tabelle S. 457 entsprechen ,und man hat daher folgende Vergleichung für die negativen s :

Grenzen
Anzahl der Fe

Theorie
P'

hier nach der
Erfahrung

P
Abweichung

0 und 0,5 214 209 + 5
0,5 , 1,5 369 375 — 6
1,5 , 2 .5 237 244 — 7
2,5 , 3,5 113 121 — 8
3,5 „ 4,5 41 14 + 27
4,5 „ 5,5 11 24 - 13
5,5 , OO 2 0 + 2

Summe 987 987 0
Die Übereinstimmung zwischen der Theorie und der Erfahrung ist so , dassman sagen kann, die Verteilung der Nullen folgt näherungsweise dem Gesetze von § 111.Allerdings die entsprechendeVerteilung der positiven e stimmt noch erheblich schlechtermit der Theorie, wir wollen diese Verteilung nicht auch noch vorführen, dieselbewird namentlich durch die vereinzelten grossen s (vgl. die Fig . auf S. 456 mit denrechts auslaufenden Werten bis 24) entstellt .
Solche Vergleichungen zwischen der Fehlerverteilung nach der Erfahrung und nach derTheorie des Ganss sehen Fehlergesetzes sind zuerst angestellt worden von Bessel in „fundamentaastronomiae “ S. 19 —20, mit drei Fehlerreihen , von denen die dritte , 470 Recfcascensionsbeobach -tungen umfassend , auch von Encke im „Berl . Aatr . Jahrbuch für 1834“ S. 274 —275 behandelt wirddieselbe war auch enthalten in der 2ten Auflage unseres „Handb . d . Verm ., 1. Band 1877 “, S. 101und 104).
Die neueste und bedeutendste Untersuchung dieser Art betrifft die Schlussfehler von 2238Dreiecken der Italienischen Triangulierung , behandelt auf Anregung von General Ferrero durchIngenieur Guarducci , mitgeteilt in der italienischen Zeitschrift „Rivista di topografia e catasto “,Roma 1889, Volume II , S. 1—12. Es sind 2 Gruppen , erstens 661 Dreiecke mit dem mittlerenSchlussfehler 14,08 " und zweitens 1577 Dreiecke mit Schlussfehler 17,13 ". Ein Bericbf ^ hierüberwird auch gegeben von Czuber in „Theorie der Beobachtungsfehler “, Leipzig 1891, S. 193—194,und ferner eine Reihe von 40 Teilstrichbestimmungen aus A. R . Clarkes Geodesy , mitgeteilt vonFaye in Comptes rendus , 106. Band , 1888, S. 783—786.
General Ferrero hat ferner in dem „Rapport sur les triangulations , presente a la dixiemeConference generale a Bruxelles en 1892“ eine Tafel mit 12 graphischen Darstellungen zu 18085Schlussfehlern gegeben , und berichtet auf 8. 4 dieses Rapports , dass er auf der Pariser Versamm¬lung 1889 eine Broschüre verteilt habe , welche an mehr als 5000 Dreiecksschlussfehlern die Über¬einstimmung zwischen Theorie und Beobachtung schlagend nachgewiesen habe .

§ 120 . Fehler -Kurven mit endlicher Erstreckung .
Bei der Bestimmung der Fehlerfunktion in § 111 . wurde die Annahme gemacht,dass die Fehlergrenzen die denkbar weitesten , nämlich — oo und + oo seien . DiePraxis steht dieser Annahme entgegen , nnd deswegen machen wir nun verschiedeneVersuche mit solchen Fehlerfunktionen , deren Kurven nicht asymptotisch auslanfen ,sondern die Achse berühren oder schneiden .
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Wir wollen sogar im Interesse möglichster Allgemeinheit mit dem gröbsten
Falle beginnen , dass nämlich die Fehler -Kurve eine begrenzte Gerade , parallel der

Achse, sei, wie in Fig . 1 . dargestellt ist .
Fig . i .
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I . Parallele Gerade (Rechteck) .

Wir nehmen zuerst unbestimmt an <p (e) = A und wollen die Konstante A so

bestimmen , dass zwischen den Grenzen — M und + M alle Fehler enthalten sind , d. h . :
M

2 j
'
cp (e) de = 1

o
M 1

2
J

"
Ade = 24M = 1 also A =

Das mittlere Fehlerquadrat wird :

TO2= 2j e2 (fi (e) d e = 2 J
d S =

2 M

m
TT

( 1)

also M 2 = 3 nfi M = 1,732 m (2)

Zu späteren Vergleichungen wollen wir auch den Mittelwert r 4 der 4ten Potenzen

ausrechnen :
.v .V
r / • i m 5

r 4 = 2J c4 cp (e) d e = 2
J ^ e4 d e =

und da M 2 = 3 ?n2 ist , hat man auch
9

-j)4 = — »n4 = 1,800 m4
5

(3)

IX. Parabel .

Die Feblerkurve soll vom Scheitel nach beiden Seiten symmetrisch abnehmen .

Fig . 2. Parabel .
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Die Funktion sei zunächst unbestimmt in dieser Form :

AL „ / « Wy = v («) = ~
m 11 ■ ■B M (4)

wobei die beiden Konstanten A und B so bestimmt werden sollen , dass erstens filre = — M oder M die Funktion = Null wird, und dass zweitens zwischen der Achseund der Kurve alle Fehler enthalten sind . Also :

M M
l = * l

'

q>{a) ae = *J± [ \ -

Also die Funktion :

B = 1

, „ A M *
M*j

de ~ 2
M \

M
BM *

4

y 4 m ( T
IM2) (5)

Dieses ist die Gleichung einer Parabel mit dem Parameter = — Mi . Damit wird :O

»?2
m

= 2 j «2 qp(e) de =
2 M

MS MS

M 2 = 5 rrfi

, . = 2/ e4 cp («) d e =
2 M

? 5 IM2

IM = 2,236 w

JM5 MT
35

MS
5

7 MS Mi

15
»4 = — m4 = 2,143 m4

(6)

(7)

1/Z Berührung erster Ordnung.

Wenn man von der Fehlerkurve verlangt , dass sie zunächst im Scheitel ähnlichwie die Parabel ansetzt, dann aber links und rechts in Abständen M symmetrisch dieAchse berühren soll , so kann man der Kurvengleichung 3 Coefficienten geben , und
M

diese bestimmen durch die 3 Bedingungen , dass erstens 2J <p (e) de = 1 , zweitens
o

y = 0 für e = M, und drittens = 0 für e = M. Ohne die Ausrechnung herzu-fit 6
setzen, (welche bequemer rückwärts kontrolliert wird) , geben wir die diesen 3 Bedingungenentsprechende Kurvengleichung :

2/ = <P («) =
p̂ ilM ( 1 ■

M
±V
M

15
16 M 1 — jeM 2

m (8 )

Für verschiedene Werte von — hat der zweite Faktor dieser Funktion fol-M
gende Werte :
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W = ° -° f1 “ ^ 1 -0000

0,2 0,9216
0,4 0,7056
0,6 0,7056
0,8 0,1296
1,0 0,0000

Da der erste Faktor in (8) konstant ist , kann man hiernach die Kurve für (8)
in beliebigem Massstabe auftragen , wie in nachfolgender Fig . 8 . zu sehen ist .

Fig . 3.
Fehlerkurve mit Berührung erster Ordnung .

Das mittlere Fehlerquadrat m2 und das mittlere Biquadrat »4 werden aus (8)
erhalten :

m2 t 2 <p (e) d e =

1

15 / I 1 34 3

r 4

?n2 = 342

342 = 7 « 2
M

r ]
= 2 / «4 qo (e) d e = g

! 34 ) 3 5 7

w = 0,3796 34 (

M = 2,64575 «i I

341 5 7 ^ 9

(9)

, 4 = - 344 »4 = 0,04762 344

■pi = 149 «*4 _ 1 m4 = 2,3333 »*4
21 o

(10)

ln gleicher Weise kann man auch den durchschnittlichen Fehler t und den wahr¬

scheinlichen Fehler r berechnen :

t = 134 = 0,3125 34 = ™ =
16 iP

m = 0,8268 m

r = 0,28108 34 = 0,74367 m
+ M

Dieses und weiteres hiezu , z . B . eine Tabelle für j <f>(e) ds haben wir früher

M

in der „ Zeitschr . f. Verm . 1878 “
, S . 39 und in der vorigen Auflage dieses Buches

„Handb . d . Verm . , 3 . Aufl., I . Band 1888 , S . 289- 291 gegeben .

IV . Berührung zwäter Ordnung.

Wenn man zu den 3 Bedingungen , welche im vorigen Falle III gestellt wurden ,

auch noch als vierte Bedingung hinzunimmt , dass für e = M auch die zweite Ah-
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(£2 y
leitung ^=- ir = 0 werde , so kann man der Funktion y noch ein weiteres Glied gehen,
und man wird dadurch erhalten :

35
V = <P («) = ;32 M

Hiernach ist berechnet :
6

1 — 3 + 8 ^ -

M = 0,0

0,2
0,4
0,6
0,8
1,0

e \4
U )

e2 \ «
’
M 2

= 1 j2 \ 3
'
M 2 ( 11 )

1,0000
0,8847
0,5927
0,2621
0,0466
0,0000

Damit ist die folgende Kurve (Fig . 4 .) aufgezeichnet.

Fig . 4.
Fehlerkurve mit Berührung zweiter Ordnung .

+ M- *
Aus der Funktion ( 11 ) wird auch wieder m2 und -r4 bestimmt :

m2 — e2 <P («) <2 « =
0
M2 = -i - 1142 ,

»>4 = 2J
‘
e4 q> (e) d « =

35 1_
16 ihr V 3

1
3

35 / I
16 M I 5

j A _ J
7 9

M = 3 m

MS

(12)

r4 = M M4 r 4 = 0,03030 M 4
1 07

r4 = 81 m4 = — m4 = 2,4545 m£öö 11 (13)

Die Fortsetzung dieser Entwicklungen giebt für Berührung von der rt e» Ordnung:

'
M 2

3
MS

y , , 1 3 . 5 . 7 . . . 2 « + l 1; f (®) — O O 4 fi o M ^2 2 . 4 . 6 . . . 2 w
1 j-4

5 + 2 « ’ M 4 _
(5 + 2 ») (7 + 2 «)

m2 _ 1 (3 m4
¥

(14)

(15)

• 1M 2 2 \ * ' ^16)
Wenn man mittelst ( 15) M 2 = (5 + 2 n) m2 in (14) einsetzt, und auch m selbst
durch ( 17) S . 432 in h ausdrückt, so wird (14) :

3 . 5 . 7 . . . 2 n + 1 h A „ 2 My = 2 . 4 . 6 . . . 2 « yio + 4 « 1 •
■2 n + ( 17)
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Mit n = t» geht der Faktor vor der Klammer über in - ~ , wegen des Wallis -
y n

sehen Ausdruckes für n (Zeitschr . f. Verm . 1894 S . 489) , und die Reihe in der

Klammer wird als Exponentialreihe (S . 434) gleich e— A’ s’ und damit geht mit

n = oo der Ausdruck (17) über in die Fehlerfunktion (13) S . 430 .

§ 121 . Der Maximalfehler.

Schon die allerersten Betrachtungen über das Wesen der Beobachtungsfehler

(vgl . § 3 . S . 11 ) führen darauf , dass diese Fehler zwar unvermeidlich , aber in gewisse

Grenzen eingeschlossen sind , welche sie nur überschreiten können beim Auftreten

sogenartnter grober Fehler , die aber von aller Theorie ausgeschlossen sind .
Im Gegensatz hiezu nimmt die allgemein anerkannte Fehlertheorie , die wir in

§ 111 . entwickelt haben , an , es bestehen keine endlichen Fehlergrenzen , sondern die

Grenzen Unendlich nach beiden Seiten , — oo und + oo .

Wenn man daher das Fehlergesetz auf gewöhnliche Beobachtungs¬

fehler anwendet , so begeht man eine Inkonsequenz , denn z. B . die Wahrscheinlichkeit ,

bei der Winkelmessung mit einem guten Theodolit einen Fehler von 1 ° zu begehen ,

ist ohne Frage = Null und nicht ein Wert , der von der Null verschieden ist .

Dieser Inkonsequenz muss man sich klar bewusst sein , und man darf das

theoretische Fehlergesetz nur als eine Annäherung an die Wirklichkeit , niemals aber

als das Gesetz der wirklichen Beobachtungsfehler selbst betrachten .

Als Analogie zu der Ungültigkeit des theoretischen Fehlergesetzes ausserhalb

gewisser Grenzen möchten wir ein Fortpflanzungsgesetz anderer Art betrachten , welches

ebenfalls innerhalb enger Grenzen gilt , aber auf weitere Ausdehnung völlig unzu¬

treffend wird :
Ein Mänse -Paar oder ein Paar anderer sich rasch vermehrender Tiere , Kanin¬

chen oder dergleichen , möge in 1 Jahr eine Nachkommenschaft von M Paaren

■erzeugen , welche im nächsten Jahre selbst fortpflanzungsfähig sind , und daher nach

dem Schlüsse des zweiten Jahres eine Anzahl von M 2 neue Paare hinterlassen . Wenn

das so fortgeht , so würde nach n Jahren eine Anzahl von M " solcher Paare vor¬

handen sein , d. h . wenn n nur einigermassen gross ist , würden bei Mäusen, Kanin¬

chen u . s . w. nach diesem Gesetze bald Millionen und Milliarden von Nachkommen

vorhanden sein . Wenn nicht vernichtende Kräfte einwirken , so tritt solch masslose

Vermehrung in der That ein (z. B. Kaninchen -Plage in Australien ) , im Allgemeinen

aber wird der Vermehrung der Tiere bald kräftig entgegengewirkt durch die zahl¬

reichen Feinde jener Tiere , namentlich die Vernichtung durch den Mensehen ; und

das Gesetz der Vermehrung M ” mag zwar durch einige Generationen wirksam sein,

(mit bereits auf mittlere Vernichtung gültigem M ), aber die Millionen - und Milliarden -

Vermehrung tritt thatsächlich nicht ein . ah - ä“

Ganz ähnlich verhält es sich mit den Beobachtungsfehlern ; das Gesetz - — e
Y n

gilt für kleine Werte e , etwa innerhalb des mittleren Fehlers e — M jedenfalls , aber

darüber hinaus , schon bei e = 2 m , e = & m und vollends s )> 3 in sind so viele V er-
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