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§ 146. Theorie des Maximalfehlers. 565

Tabelle der Bedingungsgleichungen (13) , (14) , (15) , (16) .

^1 v9 ^3 *5 *6 ^9 ®10 ®ll ^12 VJ

— 1 + 1 + 1 — 1 + i — 1 — 1 + i + i "

— 1 + 1 — 1 + i + 1 — 1 + i — 1 + 6"

— 1 + i — 1 + 1 — 1 + i - 1 + i + 1"

+ 2,75 — 5,81 J+ 3,06 -{- 2,40 — 3,82 + 1,42 + 1,89 — 5,56 + 3,67 + 2,03 - 2,93 + 0,90 — 7,2

Die dazu gehörigen Normalgleichungen werden :

+ 8ij _ . . . . — 0,0025 (8 ft,) + 1,00 = 0

. . + 8ft , . , — 0,3150 (8 ft,) + 1,00 = 0

+ 8is _
— 0,2025 (8 ft,) + 6,00 = 0

+ 16,8152 (8 i, ) — 7,20 = 0

(17)

(18)

8 fr, = — 0,99916 8 fts = — 0,89294 8 ft3 = — 5,93117 8 ft, = + 0,83988

* t = — 0,125 k, = — 0,112 k, = — 0,741 fr, = + 0,04248

Weiter wollen wir dieses Zahlenbeispiel nicht führen , die Weiterrechnung ist

die gewöhnliche , sie giebt mit einer Tabelle in der Anordnung wie (17) (vgl . z . B .

S . 181 unten , und S . 194, II ) die folgenden 12 Richtungsverbesserungen e (in der

Ordnung wie oben bei (17) :
+ 0,35" + 0,38" — 0,74" | + 0,97" — 1,01" + 0,05” | + 0,09" - 0,87" + 0,77" | — 0,53" + 0,73" — 0,20"

Wenn man diese v zu den 12 Richtungen hinzufügt , welche oben unter (10)

gegeben waren , und die Summen proben u . s . w. bildet , so wird man alles stimmend

finden .
Es kam uns hier nur darauf an, mit der Tabelle (17) und den Normalgleichungen

( 18) zu zeigen , dass die Bedingungsgleichungen (17) voller werden als bei der gewöhn¬

lichen Behandlung ( 12) S. 182, dass aber dafür die Normalgleichungen (18) bequemer

werden als (13) S . 182, indem bei der neuen Behandlung mehrere Glieder fortfallen ;

und die neue Behandlung hat den Vorzug der unbedingt grösseren Schärfe.

Den Vorteil der Rechenschärfe kann man allerdings bei einem solchen kleinen

Beispiel von einem Viereck nicht zum Ausdruck bringen , wenn aber ein solches Vier¬

eck Bestandteil einer grösseren Netzausgleichung mit 30—40 Bedingungsgleichungen

ist , dann ist es sehr wichtig , die Bedingungen von vorn herein so scharf als möglich

einzufiihren , um der lawinenartigen Fehlerhäufung der langen Elimination entgegen

zu wirken . Die Tabelle (17 ) hat auch schon den formellen Vorteil , dass die Gruppierung

ihrer Glieder leicht erkennbare Proben geben (z. B . 2,75 + 3,06 = 5,81 u. s . w.) , was

bei der gewöhnlichen Behandlung S . 182 nicht der Fall ist .

§ 146. Theorie des Maxiinalfehlers .

Die Formeln von § 120. und § 121 . (S . 462 unten and S . 467) , welche dort

empirisch -induktorisch gefunden wurden , sind auch einer allgemeineren Behandlung

fähig .
Dazu kommt , dass in den Formeln (14) und (17) S . 462 eine Verwechslung von

n und n + 1 stattgefnnden hat , was noch ein zweiter Grund ist , nochmals auf die

Sache zurückzukommen :
Wir betrachten eine Fehlerfunktion y = qp (e) , welche auf verschiedene Fälle

n = 1 , 2 . . . . n angewendet , diese Form hat :
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yn = q> («)» =_ 1 3 . 5 . 7 . . . (2 n + 1) (2 n + 3) 1 / e2 \ » + i
(2n -+ 2 ) M \

L
mj ( 1 )2 2 . 4 . 6 . . . 2 n

Diese Funktion stellt geometrisch eine Kurve vor , ungefähr von der Form
Fig . 3. S . 461 oder Fig . 4. S. 462, und zwar mit Berührung wter Ordnung ; z . B. mit
n — 1 geht vorstehende Gleichung über in (8) S . 460 , und mit n = 2 geht ( 1) überin ( 11 ) S . 462, wie sich unmittelbar einsehen lässt , und deswegen ist auch zunächstfür n = 1 und n = 2 :

M
2j (p (s) d e = 1 ( 2 )

Allgemeiner betrachtet giebt die Funktion ( 1 ) auch schon durch ihre Form zuerkennen, dass für e = + M sowohl die Funktion selbst als auch ihre n ersten Ab¬
leitungen sämtlich = Null werden , und auch das Integral der Funktion ( 1 ) giebtdie Gleichung (2 ) allgemein erfüllt , für jeden Wert n.

Um dieses zu zeij
kursionsformein:

Xi ( 1 — CC2)” " 2 d X ■■

bilden wir durch teilweises Integrieren folgende Re-

= x (1 — x2)’* + 2 »y ®2 (1 — x -Y - 1 d x (3)

r3 2
(1 X2)" ~ 1 -( g

- (m 1)j
(x* ( 1 — cc2)“ - 2 dx (4)

t 5 0
■
y (l - x3f - 2 + y

(x® ( l — ®2)» - 4 d x (5)

/• 2» /vi2n +■1
x (1 — x2)0 d x = -- -v ' 2 » + 1 (6)

Wenn man die Grenzen x — 0 und * = 1 nimmt , so fallen alle Glieder x ( 1 — cc2)"u. s. w. fort, und man bekommt:

/ (1 — a2)” d x = 2 n (2 n — 2) (2 n — 4) . . .
i . 3 :

~ i
. . . (2m — 1 ) (2 » + l ) (7)

Wenn man im Zähler umgekehrt ordnet und zugleich die Gleichung auf n + 1anwendet, so bekommt man :

(1 — x2)n + 1 dx = 2 . 4 . 6 . . . 2 m (2 « + 2)
3 . 5 . 7 . . . (2 n -+- 1 ) (2 n + 3)V>

Zur Anwendung auf die Form (1 ) wollen wir noch schreiben:

: x , also de = Mdx

(8)

6
M

und für die Grenzen , e — M entspricht x = 1
Also nach ( 1 ) :

M
de = 3 . 5 . 7 . . . (2 « -4- 1 ) (2 w + 3)

2 . 4 . 6 . . . 2 n (2n + 2) ,

1
■J \1 — x2)” "1 d x

(9)
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Wenn man dieses mit (8 ) vergleicht , so sieht man sofort :
v

2j

'
q (e)„ d e = 1 (10)

Die Funktion (1) erfüllt also allgemein alle die Bedingungen , von welchen wir

in den besonderen Fällen von § 120. ansgegangen sind.
Weiter müssen wir nun auch für diese Funktion das mittlere Fehlerquadrat und

das mittlere Fehlerbiquadrat bestimmen , nämlich ganz analog dem früheren in § 116 -

S . 445 oder § 120 . S . 459—462 , wenn nun p die Anzahl aller e ist :
M

p-2 = = 2ft
* <jp (e)„ d s«1/

M

»■„4 = = 2J
"
ei q (e)„ cl e

0

oder mit (1) und (9)

m 2 - gjL5 - (2 n + 1 } Mn* i
'
x* (1 - *2)“ + 1 d x

m" ' 2 . 4 . 6 . . . 2 n (2n + 2 )
1XnJ y ’

folglich auch :

+ + m r 4 (1 _ ^ .
2 . 4 . 6 . . . 2 n (2 n + 2) J

1 d x

1

“ ' 1 2 . 4 . 6 . . . 2 n K ’ J
0

Durch teilweises Integrieren findet man :

‘ 2 /
7*2 ( 1 — ®2)» + l dx = -

g (ra+ 1) jx
^ il — x^ dx

0
0

also mit Anwendung auf (13) und (15) :

m„* _ p» - i 4 2 n + 3 2 (« + 1)
~
M,2

~ 57 - ,4 2 n + 2 3

/ / r4 \ 2 « + 3
0del \ m ) n

=
W ) n - ^ 3

" '

Aus den Bekursions -Integralen (4)— (6) bilden wir auch :

/ • 2 . 4 . 6 . . . (2 n — 2)

y ®2 (1 — *2)" " 1 = 37577777 (2 « + 1)

also auch

/• 2 . 4 . 6 . . . (2 » — 2) 2 » (2 « + 2)

J *2 (1 - ®2) • + 1 d as = 3757T777(27 +Wir+ 3) (2 » + 5)

(11 )

(12 )

(13)

(14)

(15)

(16)

(1^)
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folglich wegen (13) :
' nfi\ _ _ 1 _
mj .

~ 2 « + 5 (18)
Die zwei Gleichungen (16) und (18) enthalten nun schon das Wesentliche unserer

Theorie , sie beziehen sich aber noch auf ungleiche Grade n und n — 1 und deswegenmüssen wir aus (18) zuerst bilden :
W2 \ 1 1
mj , _ i

~
2 (n — 1 ) + 5 ~

2n -+- 3 ( 19)

also nun aus (16) , (18) , (19) :
/ m2\ _ f m2 \ 2 n -+- 3
[w )„ \ W ) n - 1 2¥ + 5

/ r 4 \ _ 3 / wß\ _ 3 / ?n2\
[ w ) n _ !

~
[ wj n - ,

- 2 ^ - 1) + 7 {w ) n _ !
und nach demselben Gesetze :

/ ■»i \ 3 / »j2 \
2 >i + 7 \ M2j „ (20 )

und dann noch aus (18) und (20) :

3
(2 n + 5) (2 n -+- 7) ( 21 )

Indem wir nun annehmen es handle sich stets um Werte M z, m? , v4, welche
zu derselben Gradzahl n gehören , brauchen wir die Indices n u . s . w . nicht mehr zuschreiben und haben daher aus (18) und (21) :

m2 1
m =

2w + 5

_ 3_M4 (2 n + 5) (2 m + - 7)
v4 2 « + 5

3 ni4 ~
2 » -+- 7

( 22 )

(23)

(24)

Aus (22 ) und (24) findet man auch :
m2 1/3 m4
M = ¥ oder 1 3 ro4 — i>4

¥ V4 (25)

Dieses sind dieselben Formeln , welche wir schon in (15 ) und ( 16) S . 462 und
(12) S. 467 lediglich aus dem gesetzmässigen Verlaufe der Coefficienten in den Ent¬
wicklungen S . 459 —462 hergeleitet hatten .

Man kann auch die Gradzahl n , oder 2 n aus (22) nnd (24) bestimmen :
Mi

2 « = +T2 - 5 (26)

2 n =
— 15 rni -+- 7 v4

3 m4 — v4 (27)
Wenn 3 m4 = r 4 ist , so wird n = oo und auch M = oo , was daran erinnert ,dass nach (15) S. 447 das Verhältnis i>4 \ m4 = 3 der asymptotischen Funktion von

§ 111 . entspricht , nämlich nach (13) S . 430 :
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oder nach der Exponentialreihe S . 434 :

h —Wei
2/ = <*>(«) = ~r= e

Yn

y _ h - ( \ e2 . M ei

Yn \ 1
+ 2

7j6 es" TT '

569

(28)

(29)

Wir wollen noch zeigen , wie schon auf S. 462 unten his 465 angedeutet ist ,

dass unsere Punktion (1) S . 566 für w = oo in diese Beihe (29) übergeht . Wenn

man M aus (22) in m ausdrückt , so giebt (1 ) :

1 3 . 5 . 7 . . . (2w + l ) (2n + 3) 1_ { _ e2 _
2 n (2n -h2) m + l l (2 n + s) W

1
2 2 . 4 .

Dazu wegen (17) S . 432 , h» — gieht :

_ 3 . 5 . 7 ■. ■ (2 n + 1) (2 k + 3) _ h ,
^ 2 . 4 . 6 . . . 2 w (2 w + 2) | /4 w _)_ io

Die Exponentialfunktion von (31) giebt :

2 h»
2 n - «2 (31)

1 i
(w + 1) w 4_

2 n +- 5 1 . 2 (2 n + 5)2
hi ei ■

für n = oo geht dieses in die Klammer von (29) über , und dass auch der Faktor ,

h
vor der Klammer in (30) mit - in (29) übereinstimmend wird , haben wir auch schon

Yn
auf S . 463 oben durch Citat des Wallis sehen Ausdrucks für n gezeigt .

§ 147 . Ausrechnung des Maximalfehlers .

Wie man aus einer Beihe wahrer Beobachtungsfehler e den zugehörigen theo¬

retischen Maximalfehler berechnen kann , haben wir bereits in § 121 . an einem kleinen

Beispiele (13)—( 14) S. 467 gezeigt , und wir wollen noch den innern Sinn einer solchen

Rechnung dahin zusammenfassen , dass wir von den unendlich vielen Fehlerfunktionen ,

welche in der Form (1) § 146 . S. 566 enthalten sind , diejenige auswählen , welche

einer Fehlerreihe ej , e a , e3 . . . sich am besten anschmiegt , nach Massgabe der zwei

Mittelwerte m2 und r 4 ; und den zugehörigen Wert M betrachten wir als den theo¬

retischen Maximalfehler jener Fehlergruppe «j , «2 > €s • • •> 4er aber nicht notwendig

mit demjenigen Wert sm zusammenfallen muss , welcher unter allen e der grösste ist ,

ebenso wenig , als der theoretische wahrscheinliche Fehler , den man aus (9) §. 113.

S. 440 berechnet , mit dem durch Abzählen (nach S . 440 unten ) erhaltenen Wert

zusammenfallen muss .
Alles dieses bezieht sich aber auf wahre Fehler e , welche im Allgemeinen nicht

bekannt und durch die scheinbaren Fehler o der Ausgleichungen zu ersetzen sind,

was wir hier nur wenigstens für eine Unbekannte , d . h . für das arithmetische Mittel ,

durchführen wollen. Es wird sich um eine Formel für das mittlere Fehlerbiquadrat

fi handeln , welche der längst bekannten Formel für das mittlere Fehlerquadrat m»

nach (10) S . 21 mit dem Nenner n — 1 entspricht .

Dabei wollen wir wieder wie früher S . 21 mit n die Anzahl der Beobachtungen

bezeichnen , was keine Verwechslung geben wird mit dem Zeichen n , welches im

vorigen § 146. die Gradzahl der Kurvenberührung bedeutet hat .
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