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2 I . Was ist Analytische Geometrie ?

1 . Zeichne die Figuren , deren
Punkte die Koordinaten¬
gleichungen erfüllen :

a ) y = 2x - 1

b) 2x + 3y = 6

c) x = 5

d) y = - 2

2. Zeichne die Figuren , deren
Punkte die Koordinaten¬
gleichungen erfüllen :

a ) y = x2

b) y2 = x

c) y = - (x- 1 )2 + 2

d) y = - x2 + 4x

3. Zeichne die Figuren , deren Punktedie Koordinatengleichungen erfüllen :
a ) y = I x I b ) I y | = x
c) I y I = I x I d ) I y | = x — 1
e ) I y I = — I x I f ) ly - l | = x - l
g) I y | = 1 x - 11 h ) | y - 11 = | x |

y, zz
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I . Was ist Analytische Geometrie ? 3

b) x < 2y
e) I yl + 1 x | < 1

Beschreibe die Punktmengen mit
Koordinatengleichungen :

a ) y = | x - 3

b) y = - | x + 5

c) x = — 2

d) y = 0



4 I Was ist Analytische Geometrie ?

& Beschreibe die Punktmengen mit Koordinatengleichungen

a ) y = - (x+ l )(x+5 ) b ) y = \ (x- 2 )(x- 6 ) = \ x2 - 4x + 6= - x2 - 6x - 5 1 2

7. Beschreibe die Punktmengen durch Koordinatengleichungen

a ) v2 = x2 oder b ) y = t - I x
I y I = I x | oder (y- x)(y+x ) = 0

8. Beschreibe die Punktmengen mit Koordinatenungleichungen

a ) y > - fx - 2 b) y < 2 - x2



5I . Was ist Analytische Geometrie ?

c) I y I < x

d ) 2| x | + 3| y | < 12

9. Berechne die

a) g : y = 2x
h : y = - | x +

d) g : x - u = 0

h : y + k = 0

10 . DELISCHES PROBLEM
Die Bewohner der griechischen Insel Delos sollten zur Abwendung der Pest nach einem Orakel¬

spruch Apollon einen würfelförmigen Altar bauen , dessen Volumen doppelt so groß werden sollte

wie das des vorhandenen Altarwürfels . Weil sie die Kante des neuen Würfels nicht konstruieren

konnten , fragten sie PLATON um Rat , und er antwortete ihnen : Apollon braucht einen so großen

Altar gar nicht , er wollte euch nur zeigen , daß ihr euch zu wenig um Mathematik kümmert und

nichts von Geometrie haltet !
Wir wissen heute , daß fliese Aufgabe mit Zirkel und Lineal nicht lösbar ist . Die neije
Kante müßte nämlich S2 mal so lang sein wie die alte , aber eine Strecke der Länge y ‘ \

ist nicht konstruierbar . Der griechische Mathematiker MENAICHMOS (4 .Jh .v .Chr .)

fand zwar eine Konstruktion mithilfe von Parabeln , doch als exakte Lösung im Sinn

der klassischen Geometrie wurde sie natürlich nicht anerkannt .
Zeichne die Parabeln p : x = 0,5y2 und q : y = x2 und berechne ihre Schnittpunkte .

Wieso ist damit das Delische Problem erledigt ?

p : x = | y2 => y2 = 2x ; setzt man y = x2

ein , ergibt sich: x4 = 2x => x4 - 2x = 0

=> x(x3 — 2) = 0 => x = 0 oder x = ^ 2

Die Strecke der Länge y[2 ergibt sich als
x -Wert des Schnittpunkts von p und q.
Wenn jene Geometriemuffel von Delos
im KOSY die Einheit so lang machen
wie die Kante ihres alten Altarwürfels ,
dann ist der Abstand des Schnittpunkts
von der y-Achse gleich der gesuchten
Kantenlänge des neuen Altarwürfels .

y := X

Schnittpunkte der Geraden: a) ( 1 ! 2) b) (31 2)
b) g : 3x - 2y = 5 c) g : y — 2 = 0

5
2 h: x = 3 h : x = - 2y + 4 c) (01 2) d) (7t 1- 7t)

e) keiner da : g IIh
e) g : 2x - 6y = 0 f ) g: y =

3 x - 2

u 1 1h: y = 3 X + 3 h: x = | y + 3 f ) (x | | x - 2 ) , xeR



6
_ II . Lineare Gleichungssysteme

1 . Bestimme die Lösungen und zeichne die zugehörigen Geraden :a ) I x1 + x2 = 1
II 2x x - x2 = 8

b ) I - 4xx + 2x2 = - 6
II 6xa - 3x2 = 9

c) I xx - x2 = 0
II xx + x2 = 0d) I 6x x - 9x2 = 6

II 4x x - 6x2 = 0
e) I 3xj - 0,5x2 = 0

II - 6xt + x2 = 0
f) I x1 = l

II x2 = 2

a ) genau eine Lösung (3 | - 2)

b ) unendlich viele Lösungen
(a I 2a - 3 ) bzw . ( | b + | | b )

c) genau eine Lösung (01 0)

d ) keine Lösung (Parallelität )

e ) unendlich viele Lösungen
(a I 6a ) bzw . ( | b I b)

f ) genau eine Lösung ( 11 2)

( 31 - 2)

2. Gib ein 2,2-System an , das die Lösung j hat und
a ) keine weitere Lösung hat
b ) auch noch die Lösung (J ] hat c ) homogen ist .

a ) z.B. I 2x1 + x2 = 0
II xx — x2 = — 6

b ) I 5xx + x2 = 6
II 5xx + x2 = 6

c) I 2x± + xz = 0
II 2xx + x2 = 0

3. Ein m,2 -System hat die Lösung ( 3 j . Gib ein Beispiel an für m = 1 , 2 , 3
Kann man es so einrichten , daß ( 3 ) jeweils die einzige Lösung ist ?
für m = 1, 2 , 3 ist jeweils ein Beispiel angegeben
m = 1 : I 3xj - 2x2 = 0
m = 2: I 3x x - 2x2 = 0

II 3xj - 2x2 = 0
oder

I 3xx - 2x2 = 0
II x: + x2 = 5

m = 3: I 3xx - 2xz = 0
II 3xx - 2x2 = 0

III 3xj - 2x2 = 0

es gibt immer unendlich viele Lösungen

unendlich viele Lösungen

genau eine Lösung (2 I 3 )

unendlich viele Lösungen



II . 1 . Beziehungen 7

oder
I 3x ! — 2x2 = 0

II 3x x — 2x2 = 0
III Xj + x2 = 5 genau eine Lösung (2 I 3 )

oder
I 3x x - 2x 2 = 0

II Xi + x2 = 5
III xx - x2 = — 1 genau eine Lösung (2 I 3 )

4 I 3xj - x2 + 2x 3 = 1
II 2x1 + 2x2_ = 0_ Gib die Koeffizienten an : an , a12 , a21 , a23 und bj .

a ll - 3 a l2 - —1

a 21 = ^ a 23 = 0
br = l

5. Gib ein 3,2-System an , für das gilt :
a ) an = a21 = 1 , bj = — b2 = 2 a12 = b3 = 0 , a31 = 2a32 = — a22 = 6
b ) a, ! = 1 , ak2 = - l , bj = j ( i , j , k = 1 , 2,3 )
c) a,k = i + k , bj = 0 ( i , j = 1 , 2,3 ; k = 1 , 2)_
a ) I Xj = 2 b ) I Xj — x2 = 1 c) I 2xx + 3x2 = 0

II xx - 6x2 = - 2 II Xj — x2 = 2 II 3x1 + 4x2 = 0
III 6xj + 3x2 = 0 III Xj - x2 = 3 III 4xx + 5x2 = 0

6. In einem homogenen 3,3-System gilt a21 = - 1 , a 13 = a 23 = 2
und aik = - aki (i , k = 1 , 2 , 3 ) . Schreib das Gleichungssystem hin .

I x2 + 2x3 = 0
II — Xj + 2x3 = 0

III —2xj - 2x2 = 0



8 II . Lineare Gleichungssysteme
1 . Löse die Gleichungssysteme

f 1 >
r 1 'i- 2 2
13J

- 19x

f - 0,25 \ r ° i0,5 0
l 0,75 j

l keine Lösung

g ) l keine Lösung
r 1 ! ro > ( 2 ) r 1 ! ( 2\ f0 'sh ) a 0 + ß i oder v 1 + 8 0 oder e 1+ C 1

l- 2v [ oj l°J 1-2 J
i ) Xj + 5x2 - 2x 3 = 0

- 2xj - x2 - 3x s = 0
4x x + 3x2 - x3 = 0

j) Xi + 2x 2- 3x 3 - 0
2xx - x2+ 4x 3 = 0
4xj + 3x 2— 2x 3 = 0

X 2

, hom .Sys. :

2. Löse die Gleichungssysteme und die zugehörigen homogenen Systeme

x3 = 16



II . 2 . Das Einsetzverfahren 9

c ) x 1 + 2x2 + 3x 3 = 3
2xx + 3x2 + 8xs = 4
3x 3 + 2x2 + 17x3 = 1

1 ° J
f - 7

2
l 1 oder

f 6 \

vT1 ;
+ (i

- 3 ,5 %
1 oder

< 0 >
12/7 + V

( 1 "l
- 217

0,5 J ,_ 14 y - x4 ,

hom .Sys . : A ] 2
\ r- 3,5 % 1 j

oder ji 1 oder v - 2/v
) V 0,5 J

d ) 2x 7 — x2 + 3x3 = 4
4x 1 - 2x2 + 6x3 = 8

- 6x 7 + 3x2 - 9x3 = - 12

0 \
0

44 j

A,5
+ a °. + P S

0 \
oder

r 2 \

vOy
+ Y

^ 0,5

0
+ 5 0

- 1,5 's
oder

f 0 ^
- 4

0
+ e

fl ,5 % f 0 % ( 0,5 (- 1,5 %
hom .Sys . : a 0 + ß 1,5 oder 7 1 + 5 0

l- l ) l ° '5 J k 0 ) , _ 1 ,

f0,5 % f 0 >
1 + c 1,5

l 0 y lo .5 ,

0,5 \ 0 %
oder e 1 1 + q 1 -6

0 0,5

3. Einfach - aber nicht leicht (jedes System ist ein 3,3 -System !)

f 2- 1 ,5p h

0,5
[0,5/

<3

\ P )

e ) x1 + 2x3 = 3 I f ) x 1= x2
I jx + CoIXCOII x2= X3

x3 = 1 1 x3= Xj
fl %
4

yl \
1



io II . Lineare Gleichungssysteme
4. Kleine Ursache - große Wirkung d)

a) 2,01 Xl + x2 + x3 = 201
Xl 4 x3 = 200

- x2 + x3 = 200
( 100 's
- 100

l 100 ;

c ) 2Xj + x2 4- x3 =201
Xl 4 x3 =200

- x2 + x3 =200

l keine Lösung

b ) L99X ;! + x2 + x3 = 201
Xj + x3 = 200

- x2 + x3 = 200
/

\

- 100 '
100
300

d ) 2J01XJ + x2 + x3 = 200
Xj + x3 = 200

— x2 + xs = 200

o

O
©
O

Di

6.

e ) 2xj 4 X2 + s3 = 200
Xl + x3 = 200

- x2 + x3 = 200
( ‘m 'y- 200 + k 1
l 0 ;

f ) l,99xi + Xo + x3 = 200
x x + x3 = 200

- x2 + x3 = 200
0 \
0

200

einem neuen System:

es hat die Lösungen a = —2 , b = 1 und c = 1

die Lösung eingesetzt führt zur
Gleichung k(7 - a) = 0
Lösung: a = 7

die Lösung eingesetzt führt zur Gleichungk(a - 1 )= 0
Lösung: a = 1

daß das System die angegebene Lösung hat (k ist ein freier Parameter ):

Lösung :

Lösung:

Lösung:

[2



II . 2 . Das Einsetzverfahren 11

d) - 3x 4 + 2x2 + ax3 = 0
Xj + ax 2 + 2x 3 = 0

- x2 + x3 = 0
Das System hat 001 Lösungen .

Wegen des homogenen Systems setzt man die
Al

Lösung ohne Konstantenteil an

eingesetzt führt das zur speziellerenLösung ß und die wiederum zu (i(a + 2 ) = 0 .

Der Fall ji = 0 fällt flach , weils dann nur die Lösung (01 01 0 ) gibt - verlangt sind

ja oo 1 Lösungen , g muß beliebig sein , also muß a = —2 sein .

6. Parabeln durch gegebene Punkte
Bestimme die Koeffizienten von y = ax2 + bx + c so , daß die zugehörige
Parabel durch die angegebenen Punkte geht .

a ) P ( 1 [ 1 ) Q(- 2 | - 2 ) R(3 I —7 ) b ) S(0 | - 3 ) T( 1 I - 1 ) U (2 | 3 )

c) I( lll ) J (- ll - l ) K(21 14) d ) E ( 11 1) F (213 ) G(- l | - 3 )

e) U ( llO ) V(Oll )_ f ) W( l | 2 )_

Man setzt die gegebenen Koordinatenpaare ein in y = ax2 + bx + c und steht

dann vor einem Gleichungssystem mit den Unbekannten a , b und c .

a ) y = — x2 + 2 b ) y = x2 + x - 3 c) y = 4x2 + x - 4

d) y = 2x - 1 e) y = ax2 - (a+ l )x + 1 d) y = ax2 + bx + 2 - a- b

zu

1

7. Bestimme die Lösungen der 4,4 -Systeme

m fl \
2 2
3 3

V 4 7

c ) x 1 + 2x3 + x4 = 0
x2 + x3 - x4 = 0

- x 1 + x2 = 0
- 3xj + 3x2 — x3 - 2x4 = 0

f 3co }
3co

- 2co
i CO i

d) x1 - x2 + 2x3 - x4 = 1
3x 4 - 3x2 + 6x3 — 3x4 = 3

- 2x 1 + 2x2 - 4x3 + 2x4 = - 2
4x 4 - 4x2 + 8x3 - 4x4 = 4

^ l + X- 2g +v ^

X
ß

V v J
g



II . Lineare Gleichungssysteme12

8. Überbestimmte Systeme

x 2 - ~ 13x2 ~ — 5

keine Lösung

- Xj + 2x2 - 3x ,

keine Lösung aus IV folgt xx = 4x2 - 2 , eingesetzt in I , II
und III ergibt das jedesmal die Gleichung
x2 + x3 = 3 , das heißt x2 = - x3 + 3
freier Parameter x3 = k

Lösung
/ !0 'l

v ° y

y - 4 \
+ X

z .B.: sM?

keine Lösung

e) 2x 1 + x2
Xi - 3x2

x3 + 3x4 = 0
x4 = 3

/ 3h
z .B.:

/ 3 h

9. Unterbestimmte Systeme

z .B.:
( 0 ^

4,5
0

+ k
y

/ ly

vOy
+ h

/ Oy

v 2 y

c) 6x : - 2x2 + 3x3 = 9
2x i - 2/3x2 + x3 = 0 d) 2x x — x2 + 2x 3 = 6

z.B .:
/ ly ( 0 y

- 6 + k 2 + h 2
l o J l ° y UJ

f) X1 + x2 = 1
x3 + x4 = 1

0
6 + x 1

7 + g
0
5 z .B . : 0

1 + k i
0 + h

0
- 1VO ) lo ; l 0 ;

r



II . 3 . Mathematischer Hintergrund 13

I
i
!

1 . a)
Xl

3Xi

+ x2
+ 3x2
+ x2

= 1 1 s 3 ) /- L
. v 0 Jemand behauptet ,+ x3 ——

- 2 + x - 1
l 2 J, Ae IR liefere

Lösungen des Gleichungssystems .
Wie ist eine Probe möglich ?

/ 3 \ 3
- 2 eingesetzt muß das inhomogene System erfüllen : 3

V 1 J 9

2 = 1
6 + 1 = - 2
2 - 1 = 6

I
£

( 1 1
1

- 1 eingesetzt muß das homogene System erfüllen : 1
l 2 J 3

oder
f 3 + 1 X
- 2 - 1

V1 + 21 j
eingesetzt muß das inhomogene System erfüllen :

(3 + 1) + (- 2 - X) = 1
(3 + X) + 3 (- 2 - X) + ( 1 + 2Z ) = - 2

3(3 + 1) + (- 2 - 1 ) - ( 1 + 21 ) = 6

1 = 0
3 + 2 = 0
1 - 2 = 0

b) Begründe den Satz :
A . . \

Sind Xi

l " V

= D

V " J

+ A.
L“ ‘ J

+ 1+ Vi

V ’V

mit X, ge IR Lösungen des Gleichung¬

systems mit der i-ten Zeile a^Xj + ai2x2 + . . . +ain xn = b , ,

dann erfüllt
( • • •i

Ti das Gleichungssystem und Ui beziehungsweise
/ . . . X

Vj
." V J V' " /

das zugehörige homogene Gleichungssystem .

bj — a^ X! + . . . + äj n x n
= % + lu x + gVi) + . . . + ajn ( rn + A,un + gvn)
= (a^ + . . . + ain rn ) + Ma^ Ui + . . . + ain u n) + hla ^ V! + . . . + ain vn)

^ = H = 0 = > a ^ rj + . . . + a in r n = bi

Damit gilt : 0 = Xfa^ Uj + . . . + ain un) + ^( an v1 + . . . + ain vn )
X = l , |+ = 0 => ajjU! + . . . + ain un = 0
X = 0, (j. = 1 => au Vj + . . . + ain vn = 0 qed.

2 . x x - 2x2 + 3x 3 = 0
3xj — x2 — x3 = 0
2xj + x2 - 4x3 = 0 a ) Löse das Gleichungssystem .



14 II . Lineare Gleichungssysteme

III ' 5x 9 - lOXq = 0
III " 0 = 0 x3 = % Lösung : X

f . . . \

Zeige : b ) ist eine Lösung , dann ist es auch k
V ’ V

4.

Eine Lösung für X=X0 ist X0
r 1 \

v 1 ; , also ist auch für eine Lösung : kko
( 1 \

viy

f . . . \
f )Zeige: c ) sind und bi Lösungen , dann ist es auch a i + bi

V ” ) l • • • )
f 1 '\ / 1 \

2 Lösungen : kj
V1 !

und 2
, also ist auch X = Xx + ^ eine Lösung : (Aj + A2) 2

3. Zeige allgemein :
a ) Hat man eine Lösung eines homogenen Systems , dann ist auch jedesVielfache eine Lösung .

Allgemeines homogenes System : a,^ + aj2 x2 + . . . + ain xn = 0Ist (vj v2 1 . . J vn) eine Lösung , das heißt a^Vx + ai2v2 + . . . + a invn = 0 ,dann gilt X(ailv1 + ai2v2 + . . . + ainvn) = A-0,das heißt &iTl(Xv1 + Av2 + . . . +Av ) = 0,also ist auch das Vielfache (AvJ AvJ . . . I Avn ) Lösung .
b ) Hat man zwei Lösungen eines homogenen Systems , dann ist auch ihre

Summe eine Lösung .
Zwei Lösungen : (vj v2 l . . . | vn ) und (wj w2| . . . | wn ) ,also auV! + ai2v2 + . . . + ainvn = 0 und a^Wj + ai2w2 + . . . + ainwn = 0,dann gilt ( a^ + ai2v2 + . . . + ainvn ) + (auWx + ai2w2 + . . . + a^w,, ) = 0 ,das heißt , a^ Cv^i-Wx ) + aj2(v2+w2 ) + . . . + aji (vn+wn ) = 0 ,also ist auch die Summe (vx+wj v2 +w2l . . . | vn+wn ) Lösung .

c) a ) und b ) sind falsch für echte inhomogene Systeme .
Allgemeines inhomogenes System ( bj * 0 ) : a;i xa + . . . + a in xn = b;
a ) Beispiel A=3 , b, = 7

Ist (vj . . .I vn ) eine Lösung , gilt also anVx + . . . + ainvn = 7 ,dann ist (3vj | . . . | 3vn ) eine Lösung von a^ Vx + . . . + ain3vn = 3 -7 ,aber nicht von a^ Vj + . . . + ain3vn = 7 (Widerspruch ) .



II . 3 . Mathematischer Hintergrund 15

b) Beispiel b; = 2
Ist (vj . . . | vn) eine Lösung , gilt also anVj + . . . + ainvn = 7 und
ist (w -J . . . I wn ) eine Lösung , gilt also + . . . + ainwn = 7 , dann ist
(v1+w1l . . . | vn+wn ) eine Lösung von a^Cvi+W!) + . . . + ain(vn+wn ) = 7+7 ,
aber nicht von a^Cvi+W! ) + . . . + ain(vn+wn ) = 7 (Widerspruch ).

4. Zeige : Hat ein homogenes System mehr als eine Lösung ,

_ dann hat es gleich unendlich viele ._
Eine (die triviale ) Lösung sei (01 . . . I 0) , die andere Lösung sei (vj . . .1 vn) ,
dann ist nach 3a ) auch das Vielfache (Lvjl . . . i Xvn) Lösung . Weils unendlich
viele L-Werte gibt , gibts auch unendlich viele Lösungen .

5. Unendlich viel oder nichts xx + x2 - x3 = 0
- 2x 1 + x2 + x3 = 0

a) Bestimme die Lösung . 3Xj - 2x3 = 0

l '
l

2

I Xl + x2 - x 3 = 0 Xl = X3 - x 2

II - 2x t + x2 + x3 = 0
III 3xj - 2x 3 = 0

II ' 3x 2 - x 3 = 0 X3 — 3x 2
III ' - 3x 2 + X3 =: 0
III " 0 = 0 X2 = X Lösung : X

( 2 \
1

b) Gib ein zugehöriges inhomogenes System an , das keine Lösung hat .

II ' und III ' sind bis aufs Vorzeichen gleich . Ersetzt man bei III ' die rechte
Seite zum Beispiel durch 13 , dann ergibt sich ein Widerspruch zu II '

. Weil
III ' aus III entstanden ist , wird dieser Widerspruch im Gleichungssystem
erzeugt , wenn man bei III ebenfalls die rechte Seite durch 13 ersetzt .

I xi + x2 — x3 = 0
II - 2xj + x2 + x3 = 0

III 3Xi - 2x3 = 13

c ) Gib ein zugehöriges inhomogenes System an , das Lösungen hat .

Ansatz xx + X2 - X3 = a /
- 2xj + x2 + x3 — b Lösung , z .B . : +o

o
1
p

=

3x, - 2x3 = c V

Lösung eingesetzt ergibt : l + 2p + p - 3p = a => a = l
- 2- 4p + p + 3p = b => b = - 2
3 + 6p - 6p = c =+ c = 3

d) Warum gibt es kein zugehöriges inhomogenes System , das genau eine

Lösung oder °°2 Lösungen hat ?_



Iß II . Lineare Gleiehungssysteme
Die allgemeine Lösung eines inhomogenen Systems läßt sich darstellenals Summe einer speziellen Lösung des inhomogenen Systems und der
allgemeinen Lösung des homogenen Systems .
Weil das homogene System °o x Lösungen hat , kann das zugehörige inhi
mogene System weder bestehen aus nur genau einer Lösung (Lösungekämen abhanden ) noch aus oc.2 Lösungen (Lösungen kämen dazu ) .

1

6. Zeige : Kommt eine Unbekannte Xj , 1 < i < n , in einem homogenen System
_ nicht vor , dann gibt es unendlich viele Lösungen ._

Annahme : xi kommt nicht vor (weil sein Koeffizient gleich null ist ) .
Dann erfüllt fO \0
jedes der unend¬ x i = X 1
lich vielen Tupel U„ )

0
Ko J

das Gleichungssystem ,
weil O -Xj = 0 -A, keinen Einfluß
aufs Gleichungssystem hat .

Dieser Satz ist falsch für inhomogene Systeme !
Zeige dies durch ein Gegenbeispiel .
xx + x3 = 0 (Obwohl x2 nicht vorkommt , hat das System keine
X! + x3 = 1 Lösungen . )

7. Zeige: Ein homogenes System mit weniger Gleichungen als Unbekannten
_ hat unendlich viele Lösungen .

L

Unser Lösungs verfahr en führt zu höchstens m (eingerahmten ) Gleichun¬
gen der Form X; = . . . Mindestens n—m der Unbekannten kommen also rlinks nicht mehr vor und sind demnach freie Parameter (—> unendlich vieleLösungen ) . Ein Widerspruch kann nicht auftreten , weil ein homogenesSystem zumindest die triviale Lösung hat .

Dieser Satz ist falsch für inhomogene Systeme !
Zeige dies durch ein Gegenbeispiel .
Xi + x2 +x3 = 0
Xj + x2 +x3 = 1 (2 Gleichungen , 3 Unbekannte , keine Lösung )
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1 . a ) lOxj + x2 - 2x3 = 2
xx + 2x2 + 2x3 = 3

4x x + 4x2 + 3x 3 = 5

b ) - xx - x2 + x3 = 0
3xj + x2 + 2x3 = 11

- xx - x2 + 4x3 = 9

2

c ) 4x x + 5x2 + 2x3 = 3
— 19x x — x2 — 3x3 = 2

7x x + 4x2 + 2x 3 = 1
r- lNi- i

d) - Xi + x2 + x3 = 0
- Xj + 4x2 + 2x3 - 0
2x x + 2x2 + 3x3 = 0

— -

0
0

e) 2xx - 3x2 - x3 = 4
3xx — x2 + 2x3 = 5
3x x — 8x2 — 5x3 = 5

f ) — Xj + x2 + 2x 3 - 0
xx - 3x2 + 4x3 = 0

2xx - 4x2 + 2x3 - 0

keine Lösung X 3

g) 4xx + X2 + x3 = 1
Xi + 4x2 + 4x3 = 1
Xj + X2 + x3 = 1

g) keine Lösung

h ) - | xx + fx 2 + 1
5

X 3 = 0
3x x - 6x 2 - 3x3 = 0

h - 4
3 X2“ ! * - 0

h ) a
fl )0 + ß 1 oder y

( 2 )1 + 8 0 oder e r
2 ^
1 + ?

r ° A
1

UJ l-2j l ° J l 1 ; V2J

i) xx + 5x2 — 2x3 = 0
- 2x x - x2 - 3x3 = 0

_ 4x x + 3x2 - x3 = 0

j) xx + 2x2 - 3x3 = 0
2xx - x2 + 4x3 = 0
4xx + 3x2 - 2x3 = 0

f0 \
0 X

- 1, \
2

2. Löse die Gleichungssysteme mit dem Gauß-Verfahren :

fl ) f - 2 )
0 + x - 5

l 1 Jkeine Lösung
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c ) Xj + 2x2 + 2x3 = 2

3x : - 2x2 - x3 = 5
2xx — 5x2 + 3x3 = — 4

Xj + 4x2 + 6x3 = 0
72

1̂
- 1

d) Xj - 2x2 + 5x3 - 0
2x x + x2 - 5x3 = 0
3xa + 4x2 - 15x3 = 0
3xj — llx 2 + 30x3 = 0

3. Löse die Gleichungssysteme mit dem Gauß-Verfahren :
a ) x4 + 2x2 - 2x3 + 3x4 = 2

2xj + 4x2 - 3xa + 4x4 = 5
5xx + 10x2 - 8x3 + 11x4 = 12

M \ f ~2 \ fl \
0

+ X 1 0
1 0 + h 2

\ 0j U ) ki ;

b) Xj - 3x2 + 4x3 - 2x4 = 1
2x2 + 5x3 + 11x4 = - 11
x2 — 3x3 = 11

7197 f- 3\
2

+ x - 3
- 3 -1

70 ; uJ

4. Löse die Gleichungssysteme mit dem Gauß-Verfahren :
a) 2xj - 3x2 + 6x3 + 2x4 - 5xs = 3

x2 - 4x3 + x4 = 1
x4 — 3x5 = 2

b) Xi + X2 + x3 + x4 + xs = 15
Xl - X2 + x 3 - x4 + x5 = 3
Xi + 2x2 + 3x 3 + 4x 4 + 5x 5 = 35
Xl - 2x 2 + 3x 3 - 4x 4 + 5X5 — 3

/ - 2 \ 73 \ ( - 57- 1 4 - 3
0 + X 1 + g 02 0 3ko ; ko ; k 1 7

f 4 \4
5
2

W
+ x 0

-2
0

vi ;

5. Seltsame Gleichungssysteme fürs Gauß-Verfahren

n \ m fd \0
0

+ X 1 00
0 0 + n 1W koj koj ki ;c) Xl + X3 = 0 d) Xj - 2x 2 = - 3X2 + X4 = 1 x4 = 1

7 ° ; r - i \ ( - 3X1 - 1 0 0 1 00 + X 0 + h 1 0 + % 0 + g 1ko ; ki ; ko ) k 1 ) ko J ko )
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e) Xj - x2 + x3 - x4 = 1
Xi - x 2 + x 3 - x 4 = 1

f 1 ') ( 1 \ f 1 }
0

+ x 1 0 0
0 0 + ß 1 + V 0

VU \ 0 J Ki )

f) - x2 + x3 = 1
xa

= 1
_ - x4 = 1
( ( 0 ^

- 1 1
0 + X 1

6. Seltsame Gleichungssysteme fürs Gauß -Verfahren
(jedes System hat die vier Unbekannten x4 bis x4) :
a ) x4 + x2 = x2 + x3 = x3 + x4 - 1_ b ) x4 - x2 = x2 - x3 = x3 - x4 - 1

i \ a \
0

+ X i 2
+ X i

1 - i 1 i
W ^ i 7 u >7 U7

a = 2b ; oo 1 Lösungen
a ^ 2b : keine Lösung

<xd Lösungen

keine Lösungc + 2a * 0 :

oo1 Lösungen

keine Lösung

7. Entscheide mit dem Gauß -Verfahren , für welche Werte von a , b und c
es keine , genau eine oder unendlich viele Lösungen gibt ._

a ^ 2 und a ^ 1 genau eine Lösung

d) Xj + ax3 = 2
x2 - x3 = 0

ax : + x2 = 3 — a

f- 1 \
a = 1 : o«1 Lösungen 0 + X 1loj i 1 J
a = - 1 : keine Lösung
a * ± 1 : genau eine Lösung
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1 . Berechne

1 2
3 4 b)

- 1 2
- 3 4 c)

0 2
1 4 d) 0,5 - 5

2 18 e)
18 - 9

- 6 3

= - 2 = 2 = - 2 = 19 = 0

2. Berechne
, k 0a ) 0 k ^ 4r 2r

a+b a- b
a - b a+b

sin a cos a
cos a —sin a

= k2 = - 2r2 - 4ab = - (sin a )2 - (cos a )2 = - 1

3. Für welche Werte von a wird die Determinante null ?
a)

a a
b) a - a

c)
a+ 1 a - 1

d)
sin a cos a1 a 4 - 2 a - 1 a + 1 - cos a sin a

a ) D = a2 - a = a (a - l ) ; D = 0 <=> a = 0 oder a = 1
b ) D = - 2a + 4a = 2a ; D = 0 <=> a = 0 c) D= 4a ; D = 0 <=> a = 0
d) D = (sin a)2 + (cos a)2 = 1 es gibt keine a-Werte

4. Löse mit der Cramer -Regel (falls möglich ! )
a ) xx + x2 = 1

2x1 - x2 = 8
D = - 3 ;

Di = - 9 , D2 = 6 ; Pi D,

b) - 4xx + 2x2 = - 6
6x x — 3x2 = 9

xi - d - 3 , x2 - '
q

D = 0 ; m1 Lösungen : [_
°
3 ] + X f \

= - 2

c ) xx - x2 = 0
xi + x2 = 0

triviale Lösung : Xj = x2 = 0 ;oder mit Cramer : D = 2, Dj = D2 = 0, also Xj = x2 = 0

d) 4xj - 5x2 = 12
- 5X] 4x2 = 12

D = - 9
Dx = 108 = D2 ; x! = x2 = - 12

1 _ . 1 .
6 '

2 X1 - x 2 =

e ) "
3

X1 + i X2 = 1

f ) 6xx - 3x2 = - 9
2Xl - x2 = - 3

D = 0 ; oo1 Lösungen

D = 0 ; oo1 Lösungen
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5. Löse mit der Cramer -Regel (Fallunterscheidungen !)

a ) ax x + x 2 = 1
2ax x — x2 = 8

D = - 3a , Dx = - 9 , D2 = 6a
a * 0 : genau eine Lösung ( | 1 - 2 )
a = 0 : Widerspruch : keine Lösung

a & - 2 : genau , eine uuouug V 2 +a 1 2 (2 + a )

Widerspruch : keine Lösung

wegen D > 1 genau eine Lösung ( 0 I 0 )

genau eine Lösung ( ~ I ~ )
d ) 4ax x - 5ax 2 = - 9

a = 0 : Widerspruch : keine Lösung

D = a - b,Dj = b - a , D2 = a2 ~ b2
a ^ b : genau eine Lösung (- 11 a +b)

a = b : °°x Lösungen (X I a ( l - X) ) = + X j

D = - 2 (a2 + b2)
D x = 3(a+b ) , D 2 - - 6 ( a- b)
a * 0 oder b 0 : genau eine Lösung (- 3 (

2
+b

2 |
6 (

2
~b

2
- )6 2 (a 2+b 2

) 2(a Z+b2 )

a = b = 0 : Widerspruch : keine Lösung

6. Berechne
12 3 2 5 - 4 - 3 5 - 4 - lll

a ) 4 5 6
7 8 9

b ) 1 - 3 2
4 1 - 1

c ) 1 - 3 2
- 1 1 - 1

d ) I - ll
II - 1

= 0 - 5 = 0 = 4

2 0 1 1 0 0 1 0 0 0 1 1
e ) 0 3 - 2 f > - 3 2 0 g ) 0 - 3 0 h ) 1 0 1

0 0 5 4 1 3 0 0 - 5 1 1 0

= 6 = 2= 30 = 15



22 II . Lineare Gleichungssysteme
7. Berechne und vereinfache

1 1 0 1 a - b 1 1 1
a) 1 1+a 0 b) - a 1 c c) a b c1 1 1+b b - c 1 a2 b2 c2

a) a(l + b) b) l + a2 + b2 + c2 c) bc2 - b2c - ac2 + a2c + ab2- a2!)

a b a+b sin a cos a tan ß cos a
d) b a+b a e) - cos a sin a tan ß sin aa+b a b 0 - 1 tan ß
d) - 2 (a3 + b3) e) (cos a )2 + (sin a )2 + (cos a )2 (tan ß)2 +(sin a )2 (tan ß)2 =

= 1 + (tan ß)2 = ^ ßj2

8. Für welche Werte von a ist die Determinante null ?

det = 10a + 40, a = - 4 det = 60 + 3a + 9b , a = - 20 - 3b

det = - a2 - 6a - 9 = - (a + 312 det =3a2 + a3 = a2^ + a)a = — 3 a = 0 oder a = - 3

9. Löse die Gleichungssysteme mit der Cramer-Regel:
a) Zxj + x2 öx3 = 1

x3 = 1
b + x2 — 2x3 = 1

2xj + 4x

b) 3x ä + 5x2
2xi -

c) 2xt + 3x2 - x3 = 1
3xx + 9x2 + 2x3 = 4

—x x + 2x2 + 3xä = 1

D = 1 . D , = - 9, Da = 4 , D3 = 3
T _ 5l _ Qx i - D - ~ y »

Dj
x , — u = 4 , . B * _ o

D ~ ö

3x3 = 1
- x3 = - 2

+ 3x, + 2x3 — — 1

d) xj — 3x2 - x3 = 4
X! - x2 = — 2

4Xl + 3x3 = 0

D = - 1, Dj = 5 , D2 zr - 20 , D3 = 28
(- 5 ! 20 1 - 28 )

D — —2 , Dj — — 6 , D2 — 2 , D3 — —4
(3 1 - 11 2 )

D = 2 , Dj = - 30 , D2 = - 26 , D3 = 40
(- 15 I - 13 I 20 )
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10 . Löse mit der Cramer -Regel (Fallunterscheidungen !)

a2!

a = 0 : Lösungen 1 1 + \i°
ia 0 : genau eine Lösung (a 11

a *■b : genau eine Lösung (0 I 0

a = 1 : keine Lösung
j a * 1 : genau eine Lösung (

+ x2 + ( l +a )x<
+ x3 = 2a

axx + ax2 + x3 = 0

a = b und a = ±1 : °°2 Lösungen

a = b und a * ±1 ; oo1 Lösungen

- 1
0

/ 1 \
- 1
0

+ b
r +l \

0

d) cx2 + bx3 = a
CX! + ax3 = b
bX ] + ax2 = c

D = 2abc , Dj = a (c2 + b2 - a2 )
D2 = b(c2 + a2 - b2 ) , D 3 = c(a2 + b2 - c2)
alle Parameter ^ 0 : genau eine Lösung
(i (c2+ b2- a2 j ^ (c2+ a2- b2 ) I ^ (a2+ b2- c2 ))

alle Parameter = 0 : oo3 Lösungen XJ 0 + ij 1 j+ v|\ oJ
genau 1 Parameter = 0 : keine Lösung
genau 2 Parameter = 0 : keine Lösung

11 . Nimm x3 als freien Parameter /. und löse mit der Cramer -Regel

a) 2xjt X2 - 2x3 = 2
5x 1 -i II$1-OC 3

t 3 • r 7 1- 4 + X - 12
1 ° , 1 1 J

je) 7Xl - 5x2 + 21x3 = 0
1 5xj - 3x2 + llx 3 = 0

b) —2xj + 3x2 + 21x3 = 3
3X2 -- 21x 3 = 3

■\ f 6 '
+ 1 - 3

) Uv

d ) 2xx
Xl

+ x2 + x3 = 1
+ x2 + x3 = l
r° ) ( 0 )

X 7
UJ

i
loj

+ x - i
l 1 J
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12 . Löse mit der Cramer-Regel xx + x2 + x3 = 7

3x t + 2x2 + 2x3 = 3
und nimm a) x3 als freien Parameter X

b) x2 als freien Parameter jj.
c) X! als freien Parameter v

fO '] r - ll \ aOa
a) 18

l 0 J+ X - 1 b) 0
l “ J+ (i 1 c) geht nicht wegen D = 0

13 . Löse mit der Cramer-Regel

( X \ f- 1 } f0 '') r - l,5 '10 + H- 1 z .B. 0 + |l 1
V 0 J ^ o J

r-u r °^ f 0 1
O
CO + X \ 0

l 1 J z .B . i
l ° J+ x - 1,5

l 1 J

2.

z .B.
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1 . Berechne ohne zu rechnen
2 1 - 2 2 0 - 2 2 5 - 2 !1—(1<X>

a) 4 a 3
0 0 0

b) 4 0 3
5 0 9

c) 4 13
2 5 - 2

d) - 3 12
12 5 - 8

a) det = 0 , denn die letzte Zeile ist eine Nullzeile (Satz [3] )

b) det = 0, denn die 2 . Spalte ist eine Nullspalte (Satz [3] )

c ) det = 0 , denn 1 . und 3 . Zeile sind gleich (Satz [ö ])

d) det = 0 , denn die 3 . Spalte ist das - 1 fache der 1 . Spalte (Satz [öj )

2. Berechne ohne zu rechnen

0 0a x2 x 0 b +c c + a b+ a
a) 2 11

0 0b
b) 2 11

x 1 0
c) a b c

1 1 1

a ) det = 0 , denn die 1 . Spalte ist das Doppelte der 2 . Spalte (Satz [ö ] )

b ) det = 0 , denn die 1 . Zeile ist das x-fache der 3 . Zeile (Satz [ö ] )
a+b+c a+b +c a+b+ c

c) det = (2 . Zeile zur 1 . Zeile addiem ) ; a
1

b
1

= 0 , denn die 1 . Zeile ist das (a+b+c)-fache der 3 . Zeile (Satz [5] )

3. Begründe mit den Determinantensätzen

a b a+b + c a b C a+b a—b c a b C

a) u V U + V + w = u V w b) u + v u - v w = - 2 u V w
X y x+y+ z X y z x+y x- y z X y z

a) Subtrahiere die 1 . und 2 . Spalte von der 3 . Spalte (Satz [7] )

a+b a- b c 2a a- b c
b) U + V U —V w

x+ y x- y z
= (2 .Spalte zur 1 . addiem ) = 2u u - v w

2x x- y z

= (Faktor 2 raus !) = 2
a a- b c
u u- v w
x x- y z

( 1 .Spalte von der 2 . subtrahiem ) =

a - b c
u — v w = (Faktor (- 1 ) raus ) = - 2

a b c
U V w

x - y z x y z

c)
a+ tb ta +b c
u + tv< tu + v w = ( 1- t 2)

a b c
U V w

x+ ty tx +y z X y z
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a+ tb ta +b c
u+ tv tu + v w
x+ ty tx +y z

II . Lineare Gleichungssysteme

= (das t-fache der 2 .Spalte von der 1 . subtrahiern ) =

a- t2a ta +b c
u—t2u tu +v w
x—t 2x tx +y z

= (ausklammern ) =

= [ ( 1- t 2 ) raus ] = ( 1—t 2)
a ta +b c
u tu +v w
x tx +y z

( l - t2)a ta +b c
( l - t 2)u tu +v w
( 1—t2)x tx +y z

= (das t -fache der 1 .Spalte von der 2 . subtrahiern ) = ( 1- t 2 )
a
u
x

b
v
y

c
w
z

4 Schreibe als Summe von Determinanten , die keine Summen enthalten
0 0 1+a b+c c + a b+ a a+b b+ c 1a ) 2 11
0 0b

b) a b c
111

c) a+b 1 1
111

a ) det =
0 0 1
2 11 +

0 0a
2 11 = 0 + 0 = 0

b) det =

0 0b

beb
a b c +

0 0b

c a a
a b c

111 111

c) det
a b 0 bei

a+b 1 1 + a+b 1 1
111 111

0 b 0 a b 0 b c 1b 1 1 + all + a+b 1 10 11 1 1 1 111
0 b 0 a b 0 0 c 1 beib 1 1
0 1 1

+ all
1 1 1

+ all
0 11

+ b 1 1
1 1 1

5. Addiere ein Vielfaches einer Reihe zu einer andern parallelen Reiheund zeige (rechtzeitig ausklammern !) :

a )
1 x x2
i y y2
1 z z2 (x - yXy - z)(z - x)

1 X X2
i y y 2 = ( 1 . Zeile minus 2 . Zeile) =

0 x- y x2- y2
i y y2

1 z z2
1 z z2 ( (x- y) raus ) =

0 1 x+y 0 1 x+y(x - y) 1 y y2 = (2 . Zeile minus 3 . Zeile ) = (x - y) 0 y- z y2- z2
1 z z2

1 z z2
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= ( (y- z ) raus ) = (x - y)(y - z)
0 1 x+y
0 1 y+z
1 z z2

= (2 . Zeile minus 1 . Zeile)

= (x - yXy - z)
0 1 x+y
0 0 z - x
1 z z2

= (x - yXy - z)
1
0

x+ y
z- x (x - yXy - z)(z - x)

b )

1111
a b c d
a2 b2 c2 d2
a3 b3 c3 d3

= (a - b )(b - c)(c - d )(d - a )

[Vandermonde -Determinante , nach Alexandre
Theophile VANDERMONDE( 1735 BIS 1796)]

1111 0 0 0 1
a b c d a —b b - c c - d d
a2 b2 c2 d2 — a 2- b2 b 2- c2 c2- d2 d2 —

a3 b3 c3 d3 a 3- b3 b 3- c 3 c 3- d3 d3

= (a - b )(b - c )(c - d)

0 0 Ol
1 1 1 d

a +b b +c c + d d2
a 2+ab +b2 b2+bc+c2 c2+cd+ d2 d3

= - ( a - b )(b - c ) ( c - d)
111

a +b b+ c c + d
a 2+ab +b2 b2+bc+ c2 c2+ cd+d2

= - (a - b )(b - c )(c d)
1 1 0

a+b b + c d- b
a2+ab +b2 b2+bc+c2 cd+d2- b2- bc

= - (a - b )(b - c )(c - d)
10 0

a +b c- a d- b
a2+ab +b2 bc + c2- a2- ab cd+d2—b2- bc

= - (a - b )(b - c )(c - d)
c - a d- b

bc +c2- a 2- ab cd+d2—b2—bc

c - a
= - (a - b )(b - c )(c - d)

= - (a - b )(b - c )( c - d)

= - (a - b )(b - c )(c - d )( c - a ) (d - b)

d- b
c 2- a 2+ b ( c - a ) d 2- b 2+ c ( d- b )

c - a d- b
( c- a ) ( c + a +b ) ( d- b ) ( d+b + c )

1 1
c+a +b d+b+ c

= - ( a - b )(b - c )( c - d )(c - a )(d - b )(d - a )

= (a - b )(a - cXa - d )(b - c )(b - d )( c - d )
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6. Ade

unc

a )

iere ein
zeige (r
x a a
a x a
a a x

Vielfaches einer Reihe zu einer
ächtzeitig ausklammern !):

= (x + 2a )(x - a )2 b )

andern par

x a a a
a x a a
a a x a
a a a x

allelen Reihe

= (x + 3a )(x - a )3

a) a x a
a a x

= (x + 2a )

= (x + 2a )

= (2 . und 3 . Spalte zur 1 . addiem ) :
x+2a a a
x+2a x a
x+ 2a a x

1 a a
1 x a
lax

= (das a-fache der 1 . Spalte von den andern abziehn )

10 0
1 x- a 0
1 0 x- a

= (Produkt der Hauptdiagonale der Dreieckform )

= (x + 2a )(x - a )2

b )
X a a a x+3a a a a 1 a a aa X a a x+3a X a a = (x + 3a ) 1 X a aa a X a — x+3a a X a l a X aa a a X x+3a a a X 1 a a X

= (x + 3a )
10 0 0
1 x- a 0 0
1 0 x- a 0
10 0 x—a

= (x + 3a )(x - a )3

x2- w2 xy xz
7. Zeige: xy y2—w2 yz = w4 (x2 + y2 + z2 - w2 )XZ yz z 2—w2

x2- w2 xy xz
xy y2- w2 yz =
XZ yz z 2- w2

X2 xy xz - w2 xy xz
xy y2- w2 yz + 0 y2—w2 yzxz yz z 2- w2 0 yz Not1 3 ot

X2 xy xz X2 xy xz X2 0 xzA = xy y2—w2 yz = xy y2 yz + xy - w 2 yzxz yz z 2- w2 xz yz z2—w2
XZ 0 z2- w2

x x
= xy y y

z z

xz
o X 2 xz X 2 xz X2 0— w

xz z 2—w 2
- p— xy -0 - w2

xz z 2 —
xz - w2

■W 2
I xz

X z
X z - X2W 2 = x 2^
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- w 2 xy xz 9 9

B - 0
0

y 2- w 2

yz
yz

z 2- w2
<NfII y —w yz

yz z 2- w 2

= - w '

= — w

■w

y yz
yz z 2- w 2

y yz
yz z 2—w2

y2 yz

-w * yz
0 z 2- w 2

w 2 ( z 2- w 2 )

yz Z“
y2 0

+ w4( z2- w 2)

= - w* yz
y z
y z

- w4(y2 + z2- w 2 )

yz —w

- y 2w 2 l + w4 ( z2- w2 ) = w4y2 + w4( z2

A + B = x2w4 + w4 (y2 + z 2- w2 ) = w4(x2 + y2 + z2- w2)



30 III . Punkte und Vektoren im Raum
»Bestimme diePunkte . . .«, »Lies die Punkte . . . ab« steht kurz und bündig für :»Bestimme die Koordinaten der Punkte . . .«, » Lies die Koordinaten der Punkte . . . ab«.
1 . Zeichne ein Koordinatensystem a) im Schrägbild b) im Normalbild

und trage die Punkte ein:
A( 0 I - 2 I 0 ) B (0 I 2 | 3 ) C (- 5 I 0 I 3 ) D(2 | 4 I 4 )
E (- 4 | 2 | 3 ) F (—2 I - 4 I 5 ) G(5 | - 2 I 1 ) H(4 | - 6 I - 5 )I(- 4l - 6 1 - 1 ) J( 3 1 6 I - 3 ) K(- 3 I 4 I - 6 )
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lild

2. Auf welcher Koordinatenachse , in welcher Koordinatenebene oder in
welchem Oktanten liegen die Punkte :

A(11 - 2 I 2 ) B (0 I 0 | 3 ) C (- a/2 | - V2 1 - 2 ) D ( 1989 I 4711 | - tc)

E (- 3 I 33 I 33 ) F (0 I 0 | 0 ) G(sin 21 sin 41 sin 6 ) H a( a I a2 I a 3 )

A liegt im IV . Oktanten

B liegt auf der x3-Achse , in der x1x3-Ebene und in der x2x3-Ebene

C liegt im VII . Oktanten , D liegt im V. Oktanten , E liegt im II . Oktanten

F liegt auf allen Koordinatenachsen und -Ebenen

sin 2 > 0 , sin 4 < 0 , sin 6 < 0 , also liegt G im VIII . Oktanten ,

a = 0 : H0 liegt auf allen Koordinatenachsen und -ebenen
a > 0 : Ha liegt im I . Oktanten
a < 0 : Ha liegt im VI . Oktanten

3. Von welchem Oktanten schaut man auf den Ursprung ?

X
2

a ) fl b) >

e) &
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Lies die Punkte A bis O aus dem Bild ab . Die Punkte liegen auf Gitterlinien

ÄL4I0I5)
BIO 1015)
CI0I- 5I4 ) —
DI0I4I5 )
EI- 4I-3I0 )
FI-3I0I0 )
GI0I- 5I0)
H (-51710)
1 (01010)
3 (01510)
K(0| 0 |-2)
U7I- 4I0 )

M101 -21- 4)
NI0I2I- 4)
0 (8101- 4)

5. Bestimme in jedem der gezeichneten Koordinatensysteme einen Punkt , derden Ursprung verdeckt und möglichst kleine ganzzahlige Koordinaten hat.
ä) (2 1111 ) b) (8 I 41 5) c) ( 11 11 1)

""
d) (—11 2 I 1 ) e) (81 4 I - 5) f > ( 11 - 111 )

X
a)

3
b) c )

Isometrie

Isometrie
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—6. Bestimme in jedem Koordinatensystem von Aufgabe 5. einen Punkt mit
ganzzahligen Koordinaten , der möglichst nah am Ursprung liegt und vom
Ursprung verdeckt wird.

Man spiegle jeden Verdeckungspunkt von Aufgabe 5 . am Ursprung !
Die Richtung Ursprung - Verdeckungspunkt ist ja die Blickrichtung ,
und in ihr liegen die Spiegelpunkte:
a ) (- 21 - 1 1 - 1 ) b) (- 81 - 41 - 5 )
c) (- 11 - 1 | - 1) d) ( l | - 2 1- 1 )
e) (- 8 I - 4 I 5 ) f) (- 1 1 11 - 1 )

( 0 | - 2 | 3 )

X 3

7. Bestimme im Schrägbild von Aufgabe
5 . a ) einen Punkt mit möglichst klei¬
nen ganzzahligen Koordinaten , der den
Punkt A(- 2 | — 3 I 2 ) verdeckt .

8. Beschreibe die Menge aller Punkte X(xx I x2 1 x3 ) , für die gilt
a ) x2 = 0 b ) xx = - 2 c) x2 = x3 = 0 d ) x3 = 0 A x2 = 1

der e ) x 2 = x 3 f ) x x = - x 3 g ) Xj = x 2 = x 3 h ) x 2 = - 2 A x 3 = 1

—1 i) x2 < 0 j ) x x > - 2 k ) x2 > 0 A x3 > 0 1) x2 < 0 A x 3 = 3

m ) Xj = — x2 A x3 < 0 n ) Xj > 0 A x2 > 0 A x3 < 0

o) xx > 0 A x2 > 0 A x3 = 0
a ) x1x3 -Ebene c) xr Achse
b ) Ebene , die parallel ist zur x2x3-Ebene und die xr Achse bei - 2 schneidet
d ) Parallele zur xr Achse in der x1x2-Ebene , schneidet die x2-Achse bei 1

Ebene ,

Gerade
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e) Ebene durch die xr Achse

halbiert den Winkel von positiver x2- und x3 -Achse
f ) Ebene durch die x2-Achse

halbiert den Winkel von negativer xr und positiver x3-Achse
g) Gerade durch den Ursprung , die mit jeder der drei positiven

Koordinatenachsen denselben Winkel einschließt
h ) Parallele zur x, -Achse durch ( 0 | —2 I 1)

Ebene

Gerade

Gerade
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i) Die X]X3-Ebene halbiert den Raum; die Punkte liegen in dem Halb¬
raum , der die negative x2-Achse enthält .

j) Die Ebene , die parallel ist zur x2x3-Ebene und die Xj -Achse bei —2
schneidet , halbiert den Raum ; die Punkte liegen in dieser Ebene oder
in dem Halbraum , der den Ursprung enthält . (Siehe Bild zu b>. )

k ) Die Punkte liegen im I . oder II . Oktanten , in der Halb-x1x2-Ebene,
die die positive x2-Achse enthält , oder in der Halb-XjXg-Ebene , die die
positive x3-Achse enthält , oder auf der xr Achse .

l) Halbebene im III . und IV. Oktanten , die parallel ist zur x1x2-Ebene und
die x3-Achse bei 1 schneidet , mit Rand in der XjX 3-Ebene.

m ) Halbebene im I . und II . Oktanten , die den Winkel der x^ g- und XjX2-
Ebene halbiert und die positive xr Achse enthält .

n) V. Oktant
o) Ursprung , Punkte auf der positiven xrAchse oder pos . x2-Achse und

Punkte in dem Teil der x-pcg -Ebene , der den I . und V . Oktanten trennt .

Halbebene mit Rand

Viertelebene mit Rand (Achsen ) Halbebene
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9. Beschreibe die Menge aller Punkte X(xj | x2 1x3) für die gilt
a) 0 < xx < 1 a0 < x2 < 1a0 < x3 < 1
b ) - 1 < Xj < L A - 1 < X2 < 1 A —1 < X3 < 1
c) 0 < xj < 1 A - 1 < x2 < 1 A - 2 < x3 < 2
d) 0 < xa < 1 A 0 < x2 < 1 A x3 = 0 e ) 0 < Xj< 1 A 0 < x2 < 1
f ) 0 < xa < 1
a ) Die Punkte liegen in der Oberfläche oder im Innern eines Würfels mitden Ecken ( 0 I 01 0 ) und ( 11 11 1 ) , von dem drei Kanten in den Koordi¬natenachsen liegen.
b ) Die Punkte liegen in der Oberfläche oder im Innern eines Würfels der

Kantenlänge 2 , der symmetrisch bezüglich aller Koordinatenebenen ist.
c) Die Punkte liegen in der Oberfläche oder im Innern eines Quaders .A( 11 - 11 - 2 ) , B ( 11 1 i - 2 ) , C ( 0 I 11 - 2 ) und D( 0 I - 11 - 2 ) sind die Grund-flächen-Ecken . Der Quader ist symmetrisch bezüglich der der x^ -undx1x2 -Ebene .
d ) Die Punkte liegen auf den Seiten oder im Innern eines Quadrats mit denEcken A ( 0 1 0 1 0 ) , B ( 11 0 1 0) , C( 11 11 0 ) und D ( 01 1 1 0 ) .
e ) Die Punkte liegen in der Oberfläche oder im Innern eines unendlich

ausgedehnten Körpers: die Kanten sind parallel zur x3- Achse und gehendurch A ( 0 I 0 I 0 ) , B ( 11 01 0 ) , C ( 1111 0 ) und D( 0 I 11 0 ) .
f) Die Punkte liegen in der x2x3-Ebene, in der Ebene , die parallel ist zurx2x3-Ebene und die xr Achse bei 1 schneidet , oder zwischen diesen beidesEbenen.
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Aouy \ o (Aaaa^ Ô ScUjtC -U
11/

10. Beschreibe die Punktmenge im Bild oder Text mit
Koordinaten (un )gleichungen
a) Ebene b) Halbebene mit Rand c) Halbebene mit Rand

d) Gerade e) Ebene f ) Quaderinneres

g ) Die Halbebene , die den III . vom IV. Oktanten und den VII . vom VIII .
Oktanten trennt .

h ) Die Gerade, die das Spiegelbild der Gerade in d ) bezüglich der
x1x2-Ebene ist .

i) Die Gerade, die das Spiegelbild der Gerade in d) bezüglich des
Ursprungs ist .

j ) Die Ebene im Abstand 3 von der x1x2-Ebene , die die positive x3-Achse
schneidet.

k ) Der Halbraum , der von der Ebene in j ) erzeugt wird und den
Ursprung enthält .

l) Die Ebene, die die x1-Achse enthält und den VII . Oktanten halbiert .

g ) Xj = 0 A x2 < 0 h ) xx = - 2 A x2 = 2 i) xx - 2 A x2 = - 2

j ) Xo — 3 k ) x, < 3 I) x2 = x3
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a)

d s ,
Ebene

X: = - 3

Halbebene
mit Rand

Ebene
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Quaderinneres

- 4 < Xj < 0 A -- 6 < x 2 < 8 A 0 < x 3 < 2
11 . Zeichne den Punkt A(21 41 6 ) und seine Spiegelbilder bezüglich der Koordi¬

natenachsen , der Koordinatenebenen und des Ursprungs . Verbinde alle
Punkte so , daß ein Quaderbild entsteht . Markiere und bestimme die Punkte ,
in denen die Koordinatenachsen die Quaderflächen durchstoßen ._

X3

<

(- 21010)(01- 410 )
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12 . A(3 | 2 | 3 ) , B (- 3 | 6 I 1 )

a ) Zeichne die Strecke [AB ] und ihre Spiegelbilder bezüglich der
Koordinatenebenen .

b) Zeichne die Geraden, in denen die vier Strecken aus a ) liegen .
Warum schneidet die Gerade AB jedes ihrer Spiegelbilder ?
Gib die drei Schnittpunkte an . (Aus der Zeichnung ablesen !)

b) Die Geraden und ihre Spiegelbilder sind nicht parallel zu den Koordina
tenebenen . Deshalb schneidet eine Gerade ihr Spiegelbild in einem
Punkt , der zu sich selber symmetrisch ist bezüglich einer Koordinaten¬
ebene , also in dieser Ebene liegt .

M (41012 )(61014 )

13. A(61 3 | 0 ) , B(3 I 61 0 ) , C(01 61 3 ) , D(0 | 31 6) , E (3 I 01 6) , F (61 01 3 )sind die Ecken eines ebenen regelmäßigen Sechsecks .Zeichne das Sechseck und seine senkrechte Projektion in diea ) x^ -Ebene_ b) x1x3-Ebene_ c) x2x3 -Ebene ._
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14 . A(61 01 0) , B (01 61 0) , C (01 01 6 ) sind die Ecken eines gleichseitigen Dreiecks .
Zeichne es und seine Spiegelbilder bezüglich der drei Koordinatenebenen ,
der drei Koordinatenachsen und des Ursprungs .
Was für einen Körper begrenzen die acht Dreiecke ?_
Die acht gleichseitigen Dreiecke begrenzen ein regelmäßiges Oktaeder .
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15 . A(61 31 0 ) , B(31 61 0 ) , C(0161 3 ) , D(01 31 6) , E (31 01 6 ) , F (61 01 3 )

sind die Ecken eines ebenen regelmäßigen Sechsecks . Zeichne es und seine
Spiegelbilder bezüglich der drei Koordinatenebenen , der drei Koordinaten¬
achsen und des Ursprungs . Die Seiten der acht Sechsecke sind die Kanten
eines Archimedischen Körpers : Er ist ein Oktaederstumpf , er entsteht , weit
man von einem regelmäßigen Oktaeder passende Pyramiden abschneidet .

16 . A(81 21 0 ) , B(91 51 0) , C(3 I 7 | 0) , D(21 41 0 )
ABCD ist die Grundfläche eines Quaders der Höhe 1 .a ) Zeichne den Quader.
b) Zeichne das Spiegelbild des Quaders bezüglich der x1x2-Ebene .c) Zeichne das Spiegelbild des Quaders bezüglich der x1xg-Ebene .d) Zeichne das Spiegelbild des Quaders bezüglich der x2x3-Ebene .
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X,
rsteme_

X,4

.(sT̂ l^
öTTBcsTsTorrcxFrThoTTDcäT̂

T̂ yT̂
iBCD ist die Grundfläche eines Quaders der
lohe 1 .

'

.i) Zeichne den Quader .
Zeichne sein Spiegelbild
b) bezüglich der xs-Achse.
c) bezüglich der x2-Achse .
1) bezüglich der xr Achse .
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ABCD ist die Grundfläche , EFGH die Deckfläche eines Würfels ,
a ) Zeichne den Würfel.
Zeichne sein Spiegelbild bezüglich der

c) X!X3-Ebene d) x2x3 -Ebene .

19 . A(- 4 | 21 0 ) , B (21 51 0) , C ( 01 61 5 ) , D(- 21 81 5 )
a ) Zeichne ABCD und alle Verbindungsstrecken .

Welcher Körper entsteht ? Hebe die sichtbaren Kanten hervor .Es entsteht ein Tetraeder (dreiseitige Pyramide ).b ) Zeichne das Spiegelbild des Körpers bezüglich der x1x3 -Ebene .c) Zeichne das Spiegelbild des Körpers bezüglich der x3-Achse.d) Zeichne das Spiegelbild des Körpersbezüglich des Ursprungs .
6
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21 . A(6 I 4 I 1 ) , B ( 2 I 81 1 ) , C ( 01 - 2 | 1 ) , D (6 I 4 I - 3)
[AB] , [AC ] und [AD] sind die Kanten eines Quaders,
a) Zeichne den Quader und bestimme die restlichen Eckpunkte .

Bestimme die Punkte , in denen die Quaderkanten die x1x2-Ebene
durchstoßen .
Bestimme die Punkte , in denen die Koordinatenachsen die Quader
ebenen durchstoßen .
Zeichne den Quader , wie man ihn aus dem 5 . Oktanten sieht .

a ) b ) c ) " I - 1

(- 41211 )

8i8 ®§i

-21- 3)

10101-3)
V

(21810 )
“̂

2

28 -3)

W&4
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22. Welche Koordinatensysteme sind Rechtssysteme ?

R

isfiia

23. Ersetze a und b so durch jq , daß ein Rechtssystem entsteht .



h )
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b)

f )
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»Bestimme diePunkte . . .« steht kurz und bündig für .
»Bestimme die Koordinaten der Punkte . . .«

Z(- 1I5 )/ yA
a ) v = QA

1 . Zeichne in ein Koordinatensystem die
Punkte A(- l [ - 2 ) , B(3 I 0 ) , C(2 | 2 ) ,D( 011 ) und E(- 2 I 3) . Bestimme die
Punkte V, W, X , Y und Z so , daß gilt :
v “= AV = WB =

~
CX = DY =

'
ZE

a )
“v = OA b ) V = AO

c) CD

Z(014 )

W(5 11)
X(011 ) = D

Y(—210 )

v = CD
V(—31 - 3)

C. W(412 ).

X(11 0)
Y(- l 1- 1)

V(—21 —4)

X(3 14)
Y(113 )

Z(- 3 11 ) D b ) v =AC
V0I0 )

W (2 1- 2 )

* - x

2. Zeichne in ein Koor¬
dinatensystem
A(2 1 0) , B(8 1 4) und
C(4 I 8 ) . Zeichne den
Summenvektor .
a ) AB + AC
b) Aß

'
+ CB

c) CB + BA
d) BC + BA + CA
e) ab

'
+ BC + CA

6
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»4

7

3. Zeichne in ein Koordinatensystem A( 11 1) , B(41 1) , C(6 | 3 ) und D(3 I 4 ) .

Die Vektoren ”a , b und c sind definiert durch a = AB , b = BC ,
c - CD . Drücke folgende Vektoren mit ~ä*

, b und c aus :
- '

d )
'

a ) AC b ) CA c) DA BD

a ) AC = ”a + b

-+» c ) DA = - ( a + b + c )

b ) CA = - Ca + b )

d ) BD = lT +

4 Zeichne das Fünfeck ABCDE mit A(01 0 ) , B(3 ] 0) , C(411 ), D(41 4) und

E ( 11 3 ) .
"a , b ,

~
c und d sind festgelegt durch ~a = AB , b = BC , c = CD

und d = DE . Drücke folgende Vektoren mit A, B , C , D und E aus :

a ) if + b b ) - b - ~
c c)

"a + b +lf + d

d ) - ( b +
~
c

~
+ d )_ e) - b - Ca +

~
c

~
)_

a ) ! f + b = AC b ) - b - ~
c = - ( b + c ) = - BD = DB

c )
~a + b + "

c
"
+ d = AE d ) - ( b +

~cf + d ) = - BE = EB

e) - b - (lf +
"
(f ) = - Ca

'
+ b +

~
c ) = - AD = DA

X

5. Vereinfache
a ) UV + VW b) AB + CA

'
c) RS - RT

d) ÄBTTA + BT e) XY - ZY - X Z

a ) UV + VW = UW
'

b ) AB + CA = CA + AB = CB

c) RS - RT = RS + UR = TR + RS = TS

d) AB + TA + BT = AB + BT + TA = AA = o
'

e) XY - ZY - XZ
'

= XY + YZ +YX = XX = o

6. Bestimme "x '

a ) AB +
-x = -

o b ) ÄB + ^ = AC c) AB - ^ = AC - AD

a ) AB + 1? = ~o,lt = ~
o — AB = BA

b ) ÄB +
"x = AC ,

~x = AC - ÄB = - CA - AB = - ( CA + AB ) = BC

c ) ÄB - x* = AC - ÄD , AB - x” = - CA - ÄD ,

t AB - 1? = - ( CA + AD ) , AB + CD = x
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7. ABCDEF ist ein regelmäßiges Sechseck mit ’a ’= AB , b = BC , c = CD . 1
Drücke mit ~a , b und "

c
^ aus :

a ) ED b) DE c) FD d) FC
e) FB _ f) FA _ g) AD_
a ) ED = ^ b ) DE = - a L c) FD =

’
b + ' a d ) FC = lT +^ - t

e) FB = - ~
c +

"a
" f ) FA = - ~

c g ) AD = ~a + b + ~
c 1

a , b und c spannen ein Tetraeder
SABC auf . Drücke BC , AB und AC

8. Durch Anträgen von a , b und c in
einem Punkt O entsteht ein räum¬
liches Dreibein . Ergänze die Figur zu
einem Spat . Welche Vektoren , ausge¬
drückt mit ~a , b und "

c\ werden
repräsentiert
a ) durch die Flächendiagonalen ,

die von O ausgehen
b ) durch die Raumdiagonale , die

_ von O ausgeht .

a + b + (T

10 . a , b und c setzen im Ursprung an und bestimmen das Dreieck ABC mit- ^ v - >. —v _ ^OA = a , OB = b und OC = c . D , E und F sind die Mittelpunkte der
Seiten [BC] , [CA] und [AB] , Drücke DE , EF und FD mit ft , b und ~

c aus .
DE = FA = | BA = fCa - lT ) , EF = DB = I CB = | (

"b - ^ ),
FD = ÄE = | AC = IC ? - -? )
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11 . AB = b und AD = d spannen das Parallelogramm ABCD auf .

Nimm die Punkte E und F so an , daß gilt : DE = | DC und AF = | AB .

Drücke EF mit d und b aus ._

EF = ED + DA + AF = - | b
‘

-
"
d + | b

‘
= | b

‘
-

’
d

12 . AB = ”a , AD = b und AE = ~
c spannen das Spat ABCDEFGH auf .

Drücke EG , HF , EC , DF und HB mit ~a , b und ~
c aus .

,- c + a + b

13 . AE = u , AB = v und AD = w
spannen das Spat ABCDEFGH
auf . R, S und T sind die Mittel¬
punkte der Seitenflächen , X
und Y sind Kantenmitten .
Drücke folgende Vektoren mit
u , v und -w aus .

a) AT,HT,ÄX,HX,YD
b) rs,yx,yt,Tt,st

* A

F

a ) AT = V + iCu + v“
) HT = | HC = | (- u ‘ + "v )

"
AX = + X + HX = v - | w YD = - | v ‘ - u‘

b) RS = RX + Xs = fX - fl ? YX = | v - iw
“

YT = - flf XT = f | X - | X - | X ST = - YX = fX - fV
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14 . AB = "a “
, AD = b

und AE = ~
c span¬

nen das Spat
ABCDEFGH auf .

a ) S und T sind festgelegt
durch AS = | AB und
AT = | AD . Drücke
SG , TF und
ST mit ~a , b und ~c

aus .
b ) M ist Mittelpunkt von

[EC] . L liegt auf [EG]
mit LE = | GE .
Drücke M L mit ~a ,
b und ~

cf aus .

a ) SG = fa + b +
‘c TF = - f b + "a + T ST = - | ^ + fb

b ) MX = MG + GL = | Ca +
~
h + ~c ) + f

~
GE

= | fa + b + "c ) + i (- "a - b ) = | 'a + | b + | "c

15 . Zeige:
In jedem Dreieck ist die Sum¬
me der drei Vektoren von den
Ecken zum Schwerpunkt
gleich dem Nullvektor .

AS = | AD , BS = | BE , CS = f CF
der Schwerpunkt teilt jede Seitenhalbierende im Verhältnis 2 : 1
AS = | [-a BC ] = ff + § (- a + lT ) = | Ca + b )
BS = - ~a + AS = | lo - 1

"a , CS = - b + ÄS = - | b
AS + BS + CS = i^ + |

rb + | t - | ^ + ^ - |
‘
b = -d‘
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16. Eine Pyramide mit der Spitze S hat als Grundfläche das Rechteck ABCD.

Die Pyramide ist festgelegt durch die Vektoren AB = ~a , AD = b und

AS = ~
c . M ist der Mittelpunkt der Grundfläche , K ist der Schwerpunkt

des Dreiecks BCS . Drücke MK mit a , b und c aus .

/

MK = MA + a + BK

MA = - | Ca + b )

BK

MK = - |
"a

| ( BC + BS ) = f ( b - a “ + "
c )

- 1 b + "a + | b - |
"a ' + |

"
c

'
= | la - | b + |

'c

\
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17 . DA = ~a , DB = b und DC = "cf

spannen das Tetraeder ABCD auf .
U , V, W und X sind Kantenmitten
des Tetraeders .

a) Drücke VX und UW mit ~a , b
und ~

c aus .
b) L ist Mittelpunkt von [VX] , M ist

Mittelpunkt von [UW] . Berechne
_ i _ ^
DL und D M in Abhängigkeit

von ”a , b und ~
c .

Was folgt aus dem Ergebnis ?
c) Berechne UV und X W in

_ v
Abhängigkeit von a , b und "cf .
Was folgt aus dem Ergebnis ?_
a ) VX = - \ ~a +

~
c + 1 (- "cf + b ) =

UW = - §
"cf + Lf + § (- "a + b ) =

1—»- i —*■ lu i , —»• u .■ 2 3 . + 2 C + 2 D — 2 ( — 3 . + D + C )

” 2 C + 2 a + 2 b = 2 ( a + b - C )

b) DL = flf + 1 VX = !”a + ! (
”
cf - "a + b ) = 5 (

"a + b + "
<f )

DM = | c + | UW = If + j (
"a - ~

c + b ) = f Ca + b + "cf )
DL = DM , also ist L = M, das heißt , [VX] und [UW] halbiem sich in M

c) UV = - | ~
cf + flf = | (

"a - ~
c )

X W = | CB + 1 BA = f (- c + b + (- b ) + lf ) = § Ca - ~
c )

UV = X W , also ist UVWX ein Parallelogramm .
(Beim regelmäßigen Tetraeder wärs sogar ein Quadrat .)
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Berechne

a ) u + 1? , U + V + w

b) 2 u - 31?

a ) tf + 1? =
7 10 - 3 7

0 + 5 = 5 U — V =
7 10 + 3 7

0 - 5
/ 13 \
- 5

1 - 2 - lj 1- 3J 1- 2 + lj

__ _ rll >
U + V + W = | - 1

1

b) 2 u - 3 v
r 20 ! r 9) f29 \

0 - 15 = - 15
l- 4J v~ 3j

; u + ( v - 2 w ) =

[( u + | w ) - 31 ?] - f =

( 5 ( - 3\ ( 8 N 7 - 67
0

l~ lj
+ 5

v
- lj

— - 12
V 8 J

= 17
,- ioJ

_ i
3 ~ 3

7 IO + 27
- 3

- 2 + 2

7 4 7 f - 3 \

vOj l - ! y

r 7 7

v 1 y

( 2 ', ( 6 > f ly
2.

~x = - 3 , y = - i , t = 2 . Berechne den Vektor r , der x + y + ~
z zur

l 5 J 1- 3J Isj
geschlossenen Vektorkette ergänzt .

- Cx + y +
~z ) = -

( 9 f - 9 \
- 2 II 2

UJ l - 5j

3. Berechne den Vektor x aus den Vektorgleichungen :

c ) 7"

- 3 -) f - i -N ( f 1 ') \ ( 4 \

1 - 4x = 7 b ) 2 hx - 2 = - 1
2 J l- ioj l w J loj

+ 5 x

7 117

V
- 3y

= 2 x +
7177

18
, 19 ,

a ) 3

b) 2^ - 2

f —3 ~\ 7 - I 7 7 —8 7 7 - 2 i
1 — 7 = 41 ?

1
«111 - 1 s

l 2 J k- ioj l 18 J l 4 J

fU 7 4 7 / - 2 \ f 4 A 7 - 67 r - 2 \

2
\ 3 JK

-
o
‘ + 5 x : i )

- - 1
toj

= 31? - 3
1- eJ

= 31? , 1? = - 1
1 - 2 )

yl7 > 7 ll^ 75O 7
c) 51? = 18

y i9 J
+ 3 - 1

l~ 3J
51? = 15

, 10 j
x =

710
3
2

4. Vereinfache durch Abspalten
geeigneter Faktoren :

7 - 12 >, 7 300 7 7 - 9/47 727 f 4 1 3 r 31

a ) - 18 b ) 75 c ) 3/4 a ) - 6 3 b ) 75 c )

L _ ^ - 42 7- 225J 1 CO 7 7 J 1- 3 J I 4 ;
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5. Gegeben : a ) A(21 211 ) , B(31 21 - 1 ) , C(11 21 3)

b ) A(01 21 4) , B(11 81 0 ) , C(2111 4)
c ) A(01 24 ) , B (181 0 ) , C(211 4)

Berechne AB , ÄC , BC , AB + AC , 2 BC + AC - BA

a ) AB =

2 BC + AC - BA =
y- 4 \

0
8

( 1 \ _ ^ r - i \ _ ^ r - 2 \ , V f0 AC = 0 BC = 0 AB + AC =l- 2j 2 J l 4 J V

_ v r 1 1 _ ^ ( 2 _ ^ ( i Nb ) AB = 6
l- 4J

AC = - 1
1 ° ; BC - - 7

l 4 J
2 BC + AC - BA =

( 5 \
- 9

V 4 .

c ) AB = J
18
-24 ÄC = f- 20

2 BC + AC - BA = 45
- 36

BC

AB + AC = 5

39AB + AC = (_ 44

6. A(31 01 0 ) , B (- l I 41 0) , C( 01 - 21 0 ) und D ( 01 01 3,5 ) sind die Ecken einesTetraeders .
a ) Berechne die Mittelpunkte U von [AC] , V von [BC ] , W von [BD ] undX von [AD ] ,
b ) Zeige , daß UVWX ein Parallelogramm ist und berechne den Mittel¬

punkt M des Parallelogramms .
ioc ) Fertige eine saubere Zeichnung an . 5 o io
4

a ) U — 2 ( A + C ) = 2
U ( l,5 | - 1 | 0 )
~
w = ! ( bVd ) = §

W (- 0,5 I 2 11,75 )

r - 1
4

1,3,5

V = | ( B + C )

V (- 0,5111 0)

( -
2
Oy

3 -s
X = | ( A + D ) = | 0

X(l,5 I 0 11,75 )
3,5

b ) f - 2 \ y - 2 \U = 2
l 0 y

xw = w - x = 2
lo J wegen UV = X W ist

UVWX ein Parallelogramm : M = f ( U + W ) = f
M ( 0,51 0,51 0,875 )

( 1 \
1

.1 .75J
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Ein Repräsentant AB eines Vektors wird senkrecht in zwei Koordinaten¬

ebenen projiziert . Rekonstruiere AB aus den Projektionen A,B , und gib die

Projektion in die dritte Koordinatenebene an .

c) AB
v- 7 ;

Oa
A,B 9 = I0

. 0

& Die Strecke [AB ] mit A( 11 21 3 ) , B (3121 1) wird über B hinaus

rl >
c = B + AB = 2B - A = 4 — 2 = 2

l 2 J V3 J
0 (5 I 2I - 1 )
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9. R(41 5 I 6 ) und S( 71 81 9 ) teilen die Strecke [AB ] in drei gleiche Teile .
Berechne A und B.

B = S + RS = 2 S - R =

X = ET + l5R = 2Bt - ! 3 =

rl4 \ 14 ^ 110 y
16 - 5 = 11

v 18j 1ej l12 ,

( 8 n
10 _ 8 = 2

U2 , Ui UJ

B ( 10 I 11 I 12 )

A(11 21 3)

10 . Ä(01 41 5) , Ö(3 | 01 5 ) und Ü(31 41 0) sind die Ecken eines Parallelogramms .
Bestimme die vierte Ecke E (drei Lösungen ! ).

E 1 = U + A0 = U + 0 - A =

E9 = U + 0A = U + A - 0 =

Eo = A + U0 = A + 0 - U =

y3 \

vOy
y3 \

vOy
r 0 \

v5y

( 3 \ ' OA ' 6 \
0 _ 4 —0UJ , 5J

f Ol 3 \ ' 0 \
4 - 0 = 8UJ „ 5J , oJ

f8 '\ [ 3 \ f 0
0 _ 4 = 0u U U

E x(61 01 0)

E2 (0 | 8 | 0)

Es(0 | 0110 )

11 . Vom Parallelogramm ABCD kennt man B(2 I 41 3 ) und C(3 I 01 - 5 ) und
den Schnittpunkt der Diagonalen M(- 2 I 4115 ) . Berechne A und D.
A = C + 2 CM

- 7^
8

35
r - 6 \

, A(- 71 81 35) D = B + 2 BM = 4 , X> (- 61 41 27)
V 27y

12 . Vom Spat ABCDEFGH mit A(9 I 7 I 5 ) , B(- l I - 11 - 1 ) , F(0 I 21 3 )
und G( 11 3 | 5 ) berechne man die restlichen Ecken .

C = B + FG = B + G - F
/ - 1 > rl >
- 1

l - ! y
+ 3Uv 2

Uy
= 0UJ

D = A + FG = A + G - F = | 7 | +

E = F + BA = F + A - B =

/ 1 > fOl f 10 l
3 _ 2 = 8

Uy Uy U J
r - i \ ylO \

2 + 7 - - 1 U 10UJ U l-U UJ
_ !. _ .. _ i v / 1 \ riiiH = G + BA = G + A - B = 3 + 7 __ - i = nUJUJ uu uu

C ( Ololl )

D ( 101 81 7)

E ( 10 110 I 9)

H ( ll I 11 I 11 )

' • 1 ~ ' ? - ' - ' ~ - - ' > V l i j - • /
M 1; M2 und M3 sind die Mitten der Seiten a , b und c des Dreiecks ABC.A _ V vBerechne AM X , BM 2 und CM 3 .
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„ ( 3 ^ _ v _ _ V ( 3 >, ( 1 i ( 2 i

- | ( B + C ) = - 3 , AM X = M , - A = - 3
l 3 y

— - 3
l5y

0
1- 2J

61

M ,

Mo

x x ( 7 t ( 1 \ ' - 7 \ 14 \
= £ ( C + A ) = - 9 , BM 2 = M 2 - B = - 9 — 9 - 18

XlJ r n J 22 J

y - 3 '\ _ _ s. _ a- ( - 3 '\ r 13 \
= | ( A + B ) = 3 , CM 3 = M s - C = 3 — - 15 = 18

1 - 3 ./ 1 - 3 ./ U 7 . 1 - 20 J

14 . Berechne X in Abhängigkeit von A , B und C so,

daß gilt :
~
AX + Bit + CT = "

o .

xVa + x* - lT + x" - “c = ~o , 3x ~
= X + b

‘
+

"c xXi ( A + B + C )

15 . A(2 I 01 0 ) , Zx( l I 21 1) , Z2( l I 3 I 3 )
A' ist das Bild von A bei Spiegelung an Z 1 ,
A" ist das Bild von A ' bei Spiegelung an Z2 .
a ) Bestimme A" und ein Zentrum Z , so daß A an Z gespiegelt A ergibt .

b) Zeige : ZXZ2 = f AA"
_

a)

b)

A = 2 Z x - A

A^ = 2 % -
"
A = 2% - 2Z X

i rO ' , f 2 \
ZiZ2 = l

l 2 y
A" = 2 1

l2 j
0

Z - , ( A + A"
) - 2

V4 7

[ A'(01 41 2) ]

A = 2{ % - % ) + A

A"(21 21 4)

Z(2 111 2)

aus A" = 2 ZXZ2 + A (von a ) ) folgt ZXZ2 = f( A" - A )

^0 \
oder : Z{Z 2 - 1

l 2J AA" = 2UJ

2 ZXZ2 + A

I AA"

16 . A(21 01 0 ) , B (4 I 2 I 0 ) , C (2 I 31 0 ) , D (3 I 2 I 2 ) , A ’
(01 61 2)

Das Tetraeder AB 'C 'D ' entsteht beim Spiegeln von ABCD am Zentrum Z .

a) Bestimme Z und die restlichen Ecken des Spiegelbilds .
5

b) Fertige eine saubere Zeichnung an . 3 ® 13

a ) Z = £ ( A + A '
) = |

"
Cf

"
= 2Z -

~
C

2

(3 \
6

v 2 y

v 2 y

, Z( 11 311 )

, C '(01 31 2)

B ' = 2 Z - B =

D ’ = 2 Z - D =

( ~ 2 \
4 B '(- 2 | 4 I 2)

r
4
1

| jZ^ - l | 4 [ 0)
°

3 'V
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B ’(-2 |4 | 2 )

ZI113I1)

A(2 |0I0) D ’
(-1I4 |0)

C (2 |3 |0)

BI4I2I0 )

17 . Alle sechs Bilder zeigen
verschiedene Spate mit
jeweils demselben Umriß .
Jedes Spat steht mit einer
Seitenfläche auf der x1x2-
Ehene . Benachbarte Git¬
terlinien der XjXa-Ebene
haben den Abstand 1 . Die
punktierte Strecke kenn¬
zeichnet die dritte Koordi¬
nate . Bestimme die Spat¬
ecken und die von A aus -
gehenden Kantenvektoren .

a)

E H

a) A(- l | 0 | 0 )
E ( 01 3 i 3,75)

AB =
f5 \

v0 ,

B (4 I 5 | 0)
F (5 I 81 3,75)

AD =
y - l \

v 0 y

C (3 I 7 I 0 )
G(41101 3,75)
_ „ /■ l \
AE = 3

l3,75j

D(- 2 I 2 | 0 )
H (- l | 5 j 3,75 )



-w i - 4 l ’O)
B(7 I3 10)
F(3 I 0 I0)
E(2 | -7 I 0)
D(6111 2,5)
C(7 I812,5)
G(3 15 I2,5)
H(2 | -2 I2,5)

9

\ \ .
\ \ r

XAiUU

v-/ \ \ \ V
_ V-

V \ \ /yvry
\

/ \ V
^ / > r \\ \

^

!y
"l iS !̂

>^ (4 j

$ (- 61 »
°)

/ S/ 0)

aZWx

SS »

’s"
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e) B ( 4 I 5 I 0)
C(3 i 7 I 0)
G(—2 | 7 I 0 )
F (- l 1 5 1 0 )
A( 3 I 2 I 2,5 )
D (2 I 4 | 2,5 )
H (- 3 I 4 I 2,5 )
E (- 2 I 2 I 2,5 )

AB =

AD =

ÄE =

1
3

■2,5 y

2
v " ,
f - 5 \

0
V 0

f ) A( 6 I - 4 I 0)
B ( 7 I 3 I 0)
C(5I4 I 0)
D (4 I - 3 I 0)
E (5 I —11 3,75 )
F (6 I 61 3,75 )
G(4 I 7 I 3,75 )
H (3 | 0 I 3,75 )

AB =

AD =

^ i \
7

f - 2 \
1

- -
AE = 3

l3,75j
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18 . Wo liegen die Punkte X mit X = k A + p B ( 0 $ AB )
a) X + [i = 1 b ) A, + p = 1 , X,ju > 0
c ) X + p > 1_ d ) X + p < 1 , X ,p > 0 e ) X + p > 1 , X ,p > 0

a ) A + p = l , p = l - A einsetzenin
= X

~
A + iiB :

1t = X
~
A + ( 1 - X ) B = li + XA - X

~
B =

B
^
+ k( X - eT ) = B

^
+ kBA ;

die Punkte X liegen auf der Gerade AB .

b) X + p. = 1 und |_i > 0 , also X < 1 , alles in allem 0 < X < 1

X = B + X BA (von a ) ) ; X - 0 , dann X = B ; X = 1 , dann X = A ;
die Punkte X liegen auf der Strecke [AB ] ,

>. + g = 1

K + |i . > 1

c) Halbebene , die den Ursprung
O nicht enthält und begrenzt
ist von AB .
Tip : Betrachte O , A und B als
ebenes KOSY mit X und u als
Koordinaten .

d) Dreieckfläche OAB mit Rand.
Tip : Betrachte O , A und B als
ebenes KOSY mit X und u als
Koordinaten .

e) Teil der Ebene OAB , begrenzt von
[AB ] und den Halbgeraden von B

und A aus in Richtung B

beziehungsweise A .
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19 . Wo liegen die Punkte X mit X - XA + g B + vC

a ) k + g + v = 1_ b) A. + g + v - l , X ,g,v > 0

a) X = 1- jo. - v einsetzenin X - XA + g B + vC ergibt
xf =

~
A + g AB + vÄC

die Punkte liegen in der Ebene ABC oder , falls C auf AB liegt ,auf der Gerade AB .

b) Die Punkte liegen im Dreieck ABC mit Rand.
Wegen X = 1- g - v und X > 0 muß gelten : g < 1 , v < 1 . Damit ergibt sich
dieselbe Situation wie bei 18. d ) mit A statt 0 und C statt A.
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1 . A(2 I 0 I - 1 ) , B (8 I - 3 | 11 )
S und T teilen [AB ] in drei gleiche Teile . Berechne S und T.

A B

AS = a SB (die Strecke [AS ] ist halb so lang wie [SB ] ) , a = \

rsx - 2 > f 8 - Si ^ 2s x — 4 = 8 — sx 3Si = 12 si = 4
s2 - 0 1

— 2 - 3 - s 2s2 = — 3 — s2 3s2 = - 3 s2 = 1

vS3 + 1 , , 11 _ s3 , 2s 3 + 2 = 11 - s3 3sx = 9 S! = 3 S (4 I - 11 3)

AT = x TB (die Strecke [AT ] ist doppelt so lang wie [TB ] ) , x = 2

f ^ - 2 ^ ( 8 - ti 1 ■ti - 2 = 16 - 2t! 3ti = 18 tj = 6

ts - 0 = 2 — 3 — t 2 t 2 = — 6 — 2t 2 31* = - 6 12 — —2

^ 8 + 1 , Ul - tsJ t 3 + 1 = 22 - 2t s 3tj = 21 ti = 7 T (6 I - 2 | 7)

2. In welchem Verhältnis teilt T die Strecke [AB ] ?

a ) T ( 10 I 5 I 7 ) , A(3 I - 2 I 0 ) , B ( 141 9111 )

b ) T(4 I 21 3 ) , A( 16 | 17 112 ) , B ( 11 - 3 I 2)

c ) T (6 112 113 ) , A( 13 110 I 4 ) , B(31 01 - 6 ) ; berechne t 2 und t 3

d) T(8l - 12 | - 8 ) , A(- l I 3 I 4) , B(2 1 - 2 I 0 )_
rlO - 3 \ yl4 - 10v

a) 5 + 2 = X 9 - 5
V 7 —0 J v H - 7 J

f4 - 16 \ f 1 - 4 \
b) 2 - 17 = X

(M1OC1
13 - 12J , 2 - 3 )

f6 - 13 > ( 3 ~ 6 "i
c) tjj - 10 = X 0 - t ,

l 031

f 8 + 1 ( 2 - 8 \
d) - 12 - 3 = X - 2 + 12

1 00! l 0 + 8 )

n \
7

v 7 y

f- 12 \
- 15
- 9

/ 4 \

v4y

' - 3
= x ] - 5

- 1

^ = 4

kein Wert für x
erfüllt die Gleichung :
T liegt nicht auf AB

1 . Gleichung : - 7 = - 3x , x = 3
3t 2 — 30 = — 7t 2 , t 2 = 3
3t 3 — 12 = — 42 — 7t 3 , t 3 = — 3

( 9
- 15 | = x
- 12

f - 6 î
10
8

x - i

3- A( 01 5 I 3 ) , B (2 I — 5 I 8 ) . Berechne die Teilpunkte T, ,
die [AB] im Verhältnis x; teilen : xa = f ; x2 = l ; = —2 ; Xi = — ä -
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_ _ =. A + ^ B
ATj = Ti Tß , Ti = j

-
+

—

Ti =
A + f B

_^
+L

A + B

2A + B
_ 1“ 3

7 0 1 r 2 7 /
10 + - 5 1

— 3
U j 8 ! V

T2 - 1 + 1 - 2
f2 \

0
vUy

T s =
A - 2B

1 - 2

A - f B
t 4 = -

i i
J- a

= - A + 2 B =

3
"
A - lT

f 0 \
- 5

V" 3y

f 4
- 10
16

_ l
- 2

rvOA f 2 i f - 2 \
15 _ - 5 1 20
9 8 1L\ ) \ / V J

TAl 5/j i
14/3 )

T2(l I 01 5,5 ) =

T3 ( 4 1- 15 113 )

T4 (- l 1101 0,5 )

4. T(31 - 11 - 6) , B(- 61 21 0) . T teilt [BA] im Verhältnis 1 = 4 . Berechne A.
BT = f TA , f BT = TA , | BT = A - T

~
A =

~
T + | BT = Iöt

“
+ 4 (

"
T - lf ) ) = f (7

"
T - 4B

“
)

A = s
[f 21 ( - 24 V ( 45 ^- 7 _ 8 1 - 15

- 42 0 - 42V /
A(15 I - 5 | - 14 )

5. Zwischen welchen Grenzen muß das Teilverhältnis |ip liegen , damit
a ) P zwischen A und B liegt ? b ) A zwischen B und P liegt ?
c) B zwischen A und P liegt ?
d ) P zwischen A und dem Mittelpunkt von [AB] liegt ?

a)
0 < (I < +00

H b) h
P
d

B B - 1 < fl < 0

P P Me) I- 1- 1 d) I- 1- 1- 1A B - oo < ji < _ 1 A 0 < |1 < 1 B

6. A( 11 2 | 9 ) , B(— 51 5 | 3 ) , C(— 31 41 5 ) In welchem Verhältnis teilt
a ) C die Strecke [AB ] ? b ) B die Strecke [AC ] ?
c) A die Strecke [BC] ?

f- 4\ ' - 2 \
a ) AC = |i CB : 2

l- 4J
( - 6 -

1
- 2 J
f 2a

g = 2

b ) AB = n BC : 3
1 - 6 ,
f 6 \

= M. - 1
l 2 ,

' - 4 '

M- = -

c ) BA = jli AC : - 3
l 6 J 2

- 4 ,
g = -
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7. T teilt [AB ] im Verhältnis x . In welchem Verhältnis g (abhängig von t ) teilt
a) T die Strecke [BA] ? b ) B die Strecke [AT] ? c ) A die Strecke [BT] ?

I- 1- 1 AT = xTB (v )
A B

a ) BT = gTA , TA = - AT = [aus ( v )] = - x TB = tBT

BT = gx BT , also gx = 1 , g = 1/x

b) AB = g BT , AB = ÄT + TB = [aus ( * )] = x TB + TB = (x+ 1 ) TB

( x+ 1 ) TB = g BT , (x+ 1 ) TB = - g TB , also g = - (x+1)

c) BA = g AT

BA = BT + TA = - TB - AT = [aus ( v ) ] = - 1ÄT - AT = - ( ^ + 1 )ÄT

- ( j: + l )ÄT = gÄT , also g = - ( ^ + l )
T T

8. A( 13 I 91 - 3 ) , B (4 | 0 I - 6 ) , P ( 7 I p2 1p3)
P teilt die Strecke [AB] im Verhältnis g . Berechne g , p2 und p3 .

( - 6 1 ( - 3 1 .Gleichung : - 6 = - 3g,g = 2

P2 - 9 = g - Pa 3p2 — 9 = 0 , P2 = 3
P3 + 3 , t- ß - PsJ 3p 3 + 3 = —12 , p 3 = — 5

9. P(011,5 14) , Q(3 I 01 4 ) . Berechne die Punkte S und T,
die [PQ ] harmonisch im Verhältnis I o I = 2 teilen .

( s x > f3 - s x
'

PS = g SQ , a = 2: s2 - l,5 = 2 - s2
Is 3 - 4 j U - s3 J

sx + 2s x = 6
s2 + 2s2 = 1
s3 + 2s 3 — 12 S (2 I 0,5 I 4)

PT = x TQ , wegen der harmonischen Teilung ist x = — o = - 2
t x - 2t x = - 6
t 2 - 2t 2 = 1,5
t 3 — 2tq = — 8 + 4

r tj >
PT = —2 SQ : ta - 1,5 = - 2 — 1-2

, 1-3 , ,4 - t3y T (6 I - 1,5 I 4)

10 . A(2 I 101 5 ) , B (23 I - 4 I 33 ) , S( ll I 4117 )
a ) S und T teilen [AB] harmonisch . Berechne T .
b ) A und B teilen [ST] im Verhältnis cc und ß . Berechne a und ß.
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_ ^ ^ r 9 i ^ 12 N

a ) AS = g SB : - 9 = G - 8
1 ^2 J l 16 J

3
0 = 4

AT = x TB , wegen der harmonischen Teilung ist x = — o = ■

AT = - 7 TB :
r ti - 2 7

t 2 - 10
^ 3 — 5

4ti - 8 = - 69 + 3t x
4ta - 40 = 12 + 3t2
4t 3 - 20 = - 99 + 3t 3

( 23 - tji
- 4 - t 2
33 - t 3 ,

t 1 = - 69 + 8 = - 61
t 2 = 12 + 40 = 52
t 3 = 20 - 99 = - 61 T (- 61 I 52 I - 79 )

b ) SA = oc AT :

SB = ß BT :

6 | = a
v - 12

- 63
42

- 84

r 12 ! ( - 84 7- 8 = ß 56
U 6 ; 1- 112J

la = 7

ß = - 7

ß = - a muß ja rauskommen , denn A und B teilen [ST ] harmonisch !

11 . A(— 41 12 | - 9 ) , B( 141 31 6 ) . C ( Cy I 6 [ c3 ) liegt auf der Gerade AB .
Bestimme das Teilverhältnis 7, in dem C die Strecke [AB ] teilt .
Berechne den vierten harmonischen Punkt D von A , B und C.

(Cy + 4 > ( 1A - Cy \
AC = 7 CB : 6 - 12 = Y 3 - 6

, c 3 + 9 v „ 6 - c 3 ,
2 .Koordinatengleichung : 7 = 2

Ci + 4 = 28 - 2cj , 3cx = 24 , cx = 8
c3 + 9 = 12 - 2c3 , 3c3 = 3 , c3 = 1 C (81 611 )

AD = - 2 DB , AD = - 2( B - D )

TT- X = 2lT- 2ir , d
'
= 2B

^- X =
i' 28 7 / - 4 \

6 - 12
V 12 J l ~ 9 J

D (32 | - 6 I 21)

12 . Zeige : A(11 21 1) , B (6 1 2 I — 4 ) , C (4 | 21 - 2 ) und D ( 16 I 21 - 14 ) sind
harmonische Punkte .

— - - ( 3 ^ / 2 7 r 15 7 7 - 1° 7AC = 7 CB : 0 = y 0
, Y = 2 AD = 8 DB : 0 = 8 0l - 3 ; l" 2> 1 - 15 J l io J35 = - ä = - 7 , also stimmt die Behauptung .
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13 . Satz von MENELAOS
Teilt R die Strecke [AB] im Verhältnis p und S die Strecke [BC] im
Verhältnis g und T die Strecke [CA] im Verhältnis x , dann gilt p -o -x = - 1

Überprüfe den Satz am Beispiel
A(01 0 ) , B( 12 I 0 ) , C(91 9 ) , R( 201 0 ) , S( ll I 3 ) , T(5 I 5 )

AR = pRB : p ) = p ( 0
8

) p = - |

CT = xTA : fZ ^ xflg ) x = |

BS = g^ : ( 3
1

) = g ( 6
2

) . g = 5

p -G-x = - 1 • I ' I = —1 (stimmt !)

CEVA

P ist irgendein Punkt

irgendeine Gerade

MENELAOS

13 . Satz von CEVA
Teilt R die Strecke [AB] im Verhältnis p und S die Strecke [BC] im

Verhältnis o und T die Strecke [CA] im Verhältnis x , dann gilt p -o -x

Überprüfe den Satz am Beispiel
A( 01 0 ) , B (201 4 ) , C(5 I 10 ) , R( 511 ) , S ( 101 8 ) , T (21 4 ) [P(514)]

1

AR = pRB : (
5
1 ) = p (

1
| ) p = t

CT,xTA : (=
8

) = x ( : 4
2

) x - I

BS = oSC : ( = 2
5

) ,o =: 2

p -G -x = | -2 - 1 = 1 (recht hat er !)
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1 . Berechne den Mittelpunkt der Strecken
a ) A( 11 71 2 ) , B (31 51 0 ) b ) R(2 1 1 ) , S( 11 - 5 )

a ) M
*

= f (X +
'
B ) M(21 6 1 1 ) b ) m

"
= | ( R

V
+

’
S ) M ( l,5l -2)

2. a ) Ein Kreis um (- 2 | 5 ) geht durch A(- 5 I 2 ) .
Berechne den Endpunkt E des Kreisdurchmessers [AE ] ,

b ) Eine Kugel um (11 21 3 ) geht durch den Ursprung .
_ Berechne den Endpunkt E des Kugeldurchmessers [OE ] .

a ) | ( A +¥ ) ,
■
£ = 2 kT - A EOLl ^ g ,

b ) ]M = f ( 0VE ) , E^ lf E (2 14 1 6)

3. Berechne den Schwerpunkt des Dreiecks
a ) A(2111 3 ) , B (3 I 51 0 ) , C (41 - 41 9 )
b ) R( 2 11) , S(3 I - 2 ) , T(- 2 I 4 )

a ) S = | ( A + B + C ) S (31 % 14) b ) S = f ( R + S + T ) S ( 111 )

4 Berechne den Schwerpunkt des Tetraeders
a ) 0 ( 01 01 0 ) , A( 2 1111 ) , B (- 12 111 3) , C(21 61 - 8)
b ) R(2 1111 ) , S(- 9 1 3 I 2 ) , T( 11 01 8 ) , U(0 | — 41 1)

a ) S = ^ ( O + A + B + C ) S (- 2 | 2 | - 1 )
b ) S = i ( R + S + T + U ) S (—1,5 I 01 3)

5. a ) Im Dreieck ABC mit Schwerpunkt S ist A( 11 11 2 ) , B (3 | 2 I 4)und S( 01 11 3 ) . Berechne C .
b ) Im Tetrader ABCD mit Schwerpunkt S ist A(21 11 1 ) , B (3 I 01 1 ) ,C(21 —11 0) und S(21 211 ) . Berechne D.

a ) S = f ( A + B + C ) C = 3S - X - l3 , C (- 41 0 | 3 )
b ) S = f ( A + B + C + D ) D = 4S - A - l3 - cf D ( 11812 )
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6. Die Schwerpunkte der Dreiecke , die ein Tetraeder begrenzen ,
sind : SD( 3 1 3 I 0 ) , SA(3 I 3 1 6 ) , SB(- l | 3 1 6 ) und Sc(4 1 0 I 6 ) .
Berechne die Ecken A , B , C und D.

s d = ! ( a + b + o s a = | ( b + c + d )

K = 5 (X + cVd ) S^= f (
’
A +

'
B +

"
D )

I A + B + c = 3 SD A =3S ^ - B - C

II
~
B +

"
c + eT — 3^ a

III A +
"
c + eT — 3 SB

IV
~
A + eT +

"
d = 3

"
C

II ' +
"
c +

"
d = 3ST

III ’ - 1s + Id — 004 1 3 ^ B
^
= d

‘
- 3 S^

"
+ 3 SD

rv -
"
c + Id —3 Sc - 3S ^

ii " "
c + 2 Id — CO?

1
+ Sb - SD )

IV' -
"
c + Id = 3 Sc - 3 SD C = D - 3 Sc + 3 SD

II" + IV" 3 D = 3( SA + SB + Sc - 2 SD )

D = sT + SB

'
+

'
S^ - 2S ^ D (01 0118 )

S^ + Sr + S^ - 2ST B (12 1 0 1 0)

cT= S^ + sT + S^ - 2S ^
"

C (- 3 I 91 0 )

A = S^ + S^ + ^ - 2sT A (0 | 0 | 0)

Das Mittendreieck eines Dreiecks ABC ist das Dreieck der Seitenmitten .

Zeige : Ein Dreieck ABC und sein Mittendreieck haben denselben

—_ Schwerpunkt ._

§ ( M a + M^ + M^T ) = f [f ( ]3 +
~
C ) + f (X +

~
C ) + f (X + l3 )]

= | [ a + bVc ] =
"s

^ ^ 1 , A2 , . , . , An sind n Punkte im Raum , S ist der Eckenschwerpunkt .

Zeige : Die Summe SA! + SA2 + . . . SAn ist gleich dem Nullvektor .
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S = n ( + A2 + . . . + An ) , A1 + A2 + . . . + A„ - nS
sXT+ sa ^+ . . . säT = äT - "

s + X - "
s + . . . + ÄT- '

s
= Ai + A2 + . . . + An — ( S + S + . . . + S )
= nS - nS = o (stimmt !)

a ) Zeige : Der Schwerpunkt eines Tetraeders ABCD stimmt überein mit
dem Schwerpunkt des Schwerpunkt -Tetraeders SDSASBSC .

b ) Zeige : Die Kanten eines Tetraeders sind parallel zu den Kanten
seines Schwerpunkt -Tetraeders und jeweils dreimal so lang .

a ) Schwerpunkt des Schwerpunkt -Tetraeders : ST
4 ST = SA + SB + Sc + SD

= | ( lT +
~
cT +

"d ”
) + 1 (X +

"
cT +1)

"
) + 1 (

"a +
"b

"
+ TT ) + 1 (

"a +
~
IT +

~
c )

= A + B + C + D (stimmt !)
b) Kanten des Schwerpunkt -Tetraeders :

SASB

'
= K ~ Sa

'
= 1 ( A^+

~
C + rT ) - | ( B

‘
+

'
c + rT ) = £ ÜA -

"
B ) = | BA

SASC = SC - SA = | ( A + B + D ) - | ( B + C + D ) = § ( A - C ) = § CA
s as „ = ¥d - s A = | (

'
a + b

‘
+

"
c ) - § ( eT+ c

l
+

'
d ) = i ( X - rf ) = f da

S^
"
= S^ - S^ =: | (X +

'
b +

‘
d ) - | (X + c

‘
+

‘
D ) = | ( B

k
-

"
C ) = I CB

SBSD = SD - SB = | ( A + B + C ) - | ( A + C + D ) = § ( B - D ) = § DB
ScSd = SD - Sc = | ( A + B + C ) - | ( A + B + D ) = | ( C - D ) = | dc

10. Zeige: Die Verbindungsstrecken der Mitten von je zwei Gegenkanten
_ treffen sich im Schwerpunkt des Tetraeders .

Kantenmittelpunkte M AB = | ( A + B ) , M CD = \ ( C + D )
mit Kennerblick : Mittelpunkt von [MabMcd ] : Mabcd

MABCd = | ß ( A + B ) + | (
'
c +

'
D )] = j (

"
A + IT +

~
C +

'
D ) =

'
S

ohne Kennerblick :
MABS - h SM cd

A + Bj ^ C + D ) - | (
‘
a +

'
b + d

‘
) - | (

'
a +1b +

"
C +

"
D )] | | -4

A + B + C + D - 2 A - 2 B = p[2 0
^
+ 2 0

"
-

~
C - eT ]~

C + I ) -
~
A - B = pfc +

"
D - X - lT ]

|4 = 1 , das heißt , S halbiert [MajMqJ
Für die beiden andern Kanten klappts nach Umbenennung genau so
( aus AB mach AD , aus CD mach CB ) .
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)

11 . Flächenschwerpunkt im ebenen konvexen Viereck
a ) A( l,5 I - 3 ) , B ( 61 0 ) , C(3 I 6 ) , D (- 4,5 I 0)
b) A(~l I - 2,5 ) , B(6,5 I - 1) , C(- l | 3,5) , D(- 5,5 I - 1)
c) A(31 - 4,5 ) , B (91 - 6) , C( 121 4,5 ) , D( 01 7,5)
Die Diagonale AC zerlegt das Viereck in die Teildreiecke ABC mit Schwer¬

punkt S : und ACD mit Schwerpunkt S2 .
Die Diagonale BD zerlegt das Viereck in die Teildreiecke BCD mit Schwer¬

punkt T , und ABD mit Schwerpunkt T2 .
I Zeichne das Viereck ABCD, berechne die Schwerpunkte Sx , T x , S2 und T2

und zeige : Das Schwerpunktviereck S^ S2 T2 ist dem Viereck ABCD
ähnlich . (Tip : Seitenvektoren vergleichen !)

Wie verhalten sich die Längen entsprechender Seiten ?
Das Ganze läßt sich auch räumlich deuten : Zeichne A(3 I 31 0) , B(3 I 6 10) , C(- 613 I 0) und

D(0 I 0 I 3,75) in unser räumliches Standard -KOSY in Normalprojektion :

xj -Achse mit Steigung 1, x2 -Achse mit Steigung - 174 .

Welcher Zusammenhang besteht mit Aufgabe 9 .b ?

II Zeige: Der Satz von I gilt für jedes konvexe Viereck .
III Der Flächenschwerpunkt von ABCD teilt eine Diagonale des Schwer¬

punktvierecks im umgekehrten Verhältnis der Inhalte der Teildrei¬
ecke , deren Schwerpunkte sie verbindet (Hebelgesetz !) .
Berechne den Flächenschwerpunkt S und zum Vergleich dazu auch den

Eckenschwerpunkt U.
I

n

in

Wenn man zuerst II macht , muß man nicht so viel rechnen .

sT = | (
‘a + b

^
+

"
c ) tT = | ( b

1
+ c

l
+ d

^
)

f (X +
"
C +1} ) T^= § (X +

~
B +

~
D )

S^ = T\ - sT = i ( B
‘
+

"
C +

~
B - '

A - Ib - ’
C ) = | (

‘
D - 'A ) = | ad

tä = s^ - tT= | ca +
"c + eT - b

' - 'c - ‘d ) = | (X - b ) = | ba

SXT = tT - X = | ( X + lT + rf - X - cT - lT ^ | ( b
"
- C ) = f CB

| (XXb +
"c - X - X - eT ) = | (

"c - "d ) = | dc

Die Vierecke ABCD und SjTj S2 T2 sind sich ähnlich , die Seiten von ABCD

sind dreimal so lang wie die entsprechenden von SjTj S2 T2 . Das (zweidi¬
mensionale ) Viereck von c) ist die senkrechte Normalprojektion eines (dreidi¬
mensionalen ) Tetraeders . Beim Parallelprojiziern bleibt die Parallelität erhalten .

a) Dreieck BCD hat die doppelte Höhe vom Dreieck ABD und deshalb

den doppelten Flächeninhalt

t xs = | stT,
"
s =

Ti + 2 T2

1 + 1
S( fll ) u( llf )

(2tT + tT ) = i ( l )
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b ) Dreieck BCD hat die dreifache Höhe vom Dreieck ABD und deshall

den dreifachen Flächeninhalt
_ „ , _ v ^ ,
TiS = | ST2 , S = - i = j (3T 1 + T2 ) =

1 + 5
S (0 | 0) ut -VJ -VJ

c) Viereck ABCD ist ein Trapez : DC = 2 AB , deshalb haben alle Teil¬
dreiecke jeweils eine gemeinsame Höhe .
Das Flächenverhältnis (groß : klein ) ist gleich dem Verhältnis
(lange Basis ) : (kurze Basis ) = 2

TjS =

S(611 )

Ist 2 > S =
t 1 + | t 2

l + l
U ( 6 I % )

= 1 (2T 1 + T S ) = |

U (1.510,75 )

msm

5,13.511 )
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1, (010,5)
S2(-2.5 |0)

1,101-2,5)

Ul 610,375)

,(512.5)
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12 . Raumschwerpunkt im Doppeltetraeder

A( 0 | - 3 I 0 ) , B ( 0 I 4 1 0 ) , C ( 0 1 0 1 4 ) , D (4 I - 1 1 0 ) , E (- 8 I - 1 1 0)
Zeichne das Doppeltetraeder, die Teiltetraeder sind ABCD und ABCE .
Berechne den Schwerpunkt S von ABCD und T von ABCE .
Der Raumschwerpunkt R von ABCDE teilt die Strecke [ST] im
umgekehrten Verhältnis der Inhalte der entsprechenden Teiltetraeder .
Berechne R und zum Vergleich dazu auch den Eckenschwerpunkt U .

S ( llOll )

T(- 2 | 0 11 )

S = i ( A + B + C + D ) = \

= ! ö \ + eT + cT +
"
e ) = z

/ 4 \

V4 J
r - 8 \

0
4
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Die Strecke [ED ] , die die Spitzen E und D verbindet , hat die Länge 12 und ist
senkrecht zur x2x3-Ebene , in der auch das Dreieck ABC liegt . Der Abstand (4 )
von D und der x2x3-Ebene ist halb so groß wie der von E und der x2x3-Ebene .
Die Pyramide ABCD ist also halb so »hoch« und damit halb so voluminös wie
ihr liebes Gegenstück ABCE . Folglich gilt fürn Raumschwerpunkt R

SR = 2 RT , R =
S + 2T r~ 3 \

1 + 2 “ 3 R (- l I 0 I 1 )

U = f ( A + B + C + D + E ) = I
f - 4 \

u (- V5 |
-V5 I

4/5)

13 . A(31 01 0 ) , B ( 0 I 6 | 0 ) , C (— 3 I 61 0 ) und G(- 4,5 I 61 2,25 ) sind Ecken
eines Spats , ABCD ist eine Seitenfläche .
a ) Bestimme die restlichen Ecken D , E , F und H . Zeichne das Spat , das

Dreieck AFH mit Schwerpunkt S und die Raumdiagonale [CE ] .

b) Zeige: CE schneidet das Dreieck AFH im Schwerpunkt S des Dreiecks .

(Tip : entweder mit Ansatz CS = a SE oder ES = X EC )

a ) D( 0 ! 0 I 0 )
E ( l,5 I 01 2,25 )
F (- l,5 | 6 I 2,25 )
H (- l,510 ] 2,25 )
"
S = f ( A + F + H ) S( 01 2 11,5 )
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b ) Wenn S auf [CE] liegt , dann muß es ein Teilverhältnis o geben .
Lösungsweg mit Ansatz : CS = o SE , S = f ( A + F + H )
’
S -

"
C = g( e

‘
- ^ )

5 ( X +
'
f +

'
H ) -

'
C = o(

'
E - | (

'
A +

'
F +

'
H ) ) | | -3

’
A h-

'
f + EI - 3

~
C = o(3If -

~
A - f

"
- Ta )

A -
'
C + ^ - .

-
C -CH -

'
C = o( E

t
-

'
A + E

‘
- F

i
+ E

k
- II )

CA +
"
CF +

"
CH = g(ÄE + FE + HE )

ÄE + FE + HE = CE , denn ÄE = CG , FE =
'
GH

CA + CF + CH = 2CE ,
denn CA = CD + CB , CF = CG + CB und CH = CD + GG
CA +

"
CF + GH = CD + CB +

"
CG + CB + CD + CG = 2 ( CD + CB + CG )I

also o = 2 , das heißt , S teilt [CE] im Verhältnis 2 :1.

Wenn S auf [CE] liegt , dann müssen ES und EC parallel sein ,
dann muß gelten :
ES = X,EC , S = § (ÄÄ

~
F + ll )

ES =
’
S -

"
E = f ( Ä + FVH - 3Ef )

= | (
"
A -

"
e

"
+

"F - Is + 11 - 12 )
= f ( EA + EF + EEf )
= I EC , also liegt S auf [CE ] ,
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1 . Stelle c als Linearkombination von a und b dar :

a )
~a

( 3 \ Z- l \ r- llN
1

l~2J
b = 2 ~

c = 1
l 8 J

Ansatz :
~
c = xa + yb ; im3,2 -System - 11 = 3x - y

1 = x + 2y
8 = - 2x + y , ist x = - 3 , y = 2

Ergebnis :
r 3 ^ f1

l 8 J
= - 3 1

I- 2J
+ 2

V
2 , kurz c = - 3 ~a + 2 b

Widerspruch im Gleichungssystem :
~c ist nicht als Linearkombination

von
~a und b möglich

~
c = Olt + 4 b

d)
~
a =

( 3 \ r - § \
, b - , c

Widerspruch !
"a und b sind kollinear :

b = - 2~a ,
~a und if aber nicht ,

deshalb gibts keine Linearkombination .

e)
“
a =

f >
r 2 \

a =
r ~ 3 \

, b = , c

! i , b und c sind kollinear . Deshalb gibts unenendlich viele Lösungen

zum Beispiel = f
"a + 0b oder ~c = Olt - y b oder c = 2 a - 3 b

allgemein : 2x - 3y = 13 , x = 5 (13 + 3y)
~
c = | ( 13 + 3y )

~a + yb

2- Stelle d als Linearkombination von ~a und b und c dar :

a ) it =
f2 \ ( - 1> ( 0 \
- 1

l 3 J
b = 3

0
c = 2 d = - 1

, 13j

/ - 4 >
2 =

( 3 >
- 3 ,

~
c =

f- 8 ^
5

_ V 3— 27^c = ja - 3 b 1
i

|l1(’t:
1 0 J l- 9j l 6 J j .J ;

! 1 !

J J-

ti 'M
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Ansatz : d = xa + yb + zc
Das 3,3 -System 0 = 2x + y - z

- 1 = - x + 3y + 2z
13 = 3x + z ergibt : x = 3 , y = - 2 , z = 4

Ergebnis d = 3 "ät - 2 b + 4"?

- 5a - 3 b + 4 "c

d = 4 a + 3b + 0~c

Widerspruch ! keine Lösung
"a , b und "? sind komplanar.

~
c = - 3

"
? + 2 b

unendlich viele Lösungen , denn a , b , c und d sind komplanar
zum Beispiel d = 5 "a + b = 5 "? - 9b
allgemein d - (5 - z)

~a + ( l - 2z ) b + z
"cf

3. Untersuche auf Komplanarität :
f 1 A ( 2 \ f 3

a) t = - 2
, b = 3 ;

~? = 8
l 5 J U -3 b) a =

c)
"a = - 7 =: - 14 d.) a =

e) a =

Komplanaritäts -Knterium : Drei Vektoren sind genau dann komplanar ,wenn ihre Determinante gleich null ist .

a)
12 3

- 2 3 8
5 1 - 3

0 ; Komplanarität b)
4 - 7 3

- 2 0 5
3 2 - 6

= - 73 ; keine Komplanarität
4 - 12 8

- 7 21 - 14
3 - 9 6

= 0 ; Komplanarität d)
10 2
4 12
1 0 3

c) = 1 ; keine Komplanarität
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e)
3 0 2
13 1
0 2 2

16 ; keine Komplanarität

4 Untersuche , ob die Punkte A , B und C auf einer Gerade liegen :
a) A(2 1 0 1 1 ) , B( 31 2 1 0 ) , C ( 1 J —212 ) b ) A(4141 - 1 ) , B ( 11 2 I - 1 ) , C ( 11 01 0)
c) A(3 ] 1 1 1 ) , B ( 7 | 3 I 3 ) , C ( 1 1 0 1 0 ) d ) Ad I - 2 I 2 ) , B (- l | 2 I - 2 ) ,C ( 0 I 0 I 0 )

Drei Punkte liegen auf einer Gerade , wenn zwei Verbindungs Vektoren (alle
drei Punkte müssen Vorkommen ) parallel sind .

_ i. r 1 \ 2, - - ( 2 \
a ) AB = Jtf und CB = 4

l- 2j
sind nicht kollinear ,

also liegen A, B und C nicht auf einer Gerade .

sind nicht kollinear ,
_ ^ ( 3 \ _ ^ ( 3 \

b) BA = 2 und CA = 4
1- lJ

_ ^ „
c) AB = 2 und CB = 3

t 2 J
sind kollinear : 2 CB = 3 AB

also liegen A , B und C auf einer Gerade .

sind kollinear : 2 CB = ABV f —2 > r - l \
a ) AB = 4

l - 4 >
und CB = 2

1 - 2 j
also liegen Ä , B und C auf einer Gerade .

Untersuche , ob die Punkte A, B , C und D in einer Ebene liegen :
(Tip : Verbindungsvektoren !)
a) A(0 I 0 | 2 ) B ( ll - Lll ) C(2 | - 2 I 0) D (3 I 3 I 1)
b) A(0 | 0 I 0) B( 11 11 1 ) C (- 3 I 0 I - 1 ) D (3 I 0 11 )
c) A( 1 S0 11 ) B (2 i 3 i 4 ) C (- l I 11 0 ) D (2 111 2)

Vier Punkte liegen in einer Ebene , wenn drei Verbindungsvektoren (alle vier
Punkte müssen Vorkommen ) komplanar sind , wenn also die Determinante
dieser Verbindungsvektoren gleich null ist (Komplanaritäts -Kriterium ) .

( 1 > _ , ( 2 -s, f3 \
a) AB = -1

e 1;, AC = - 2
l-2J, AD = 3 ; weil AB und AC kollinear sind ,

sind AB , AC und AD komplanar : A, B , C und D liegen in einer Ebene .
1 - 3 3
10 0
1 - 1 1

sind komplanar : A, B , C und D liegen in einer Ebene .

b) AB = B , AC = C , AD = D ; = 0 , die Verbindungsvektoren

c) AB =
t 1 ) _ ^ /
3 II

r - 2

■A - " - i
\ \ 1 - 2 1

3 11
3 - 11

= - 4 , die Verbindungsvekto -
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6. a = 3 u - 2 v b = u + v c = 2u - v

Zeige:
”a , b und c sind komplanar .

Überlegung :
Sind 1? und kf nicht kollinear , so spannen sie eine Ebene E auf . a , b und c
sind Linearkombinationen von kf und ~

v , sind also jeweils parallel zu E , also
auch untereinander komplanar .
Sind kt und kf kollinear , so sind es auch a , b und c .
Rechnung :
Annahme : Linearkombination ist möglich

~a = r b + skf
3kf - 2kf = rlkt +kf ) + s(2kf - kf ) => 3kf - 2kf = (r + 2s )kf + ( r — s )

"v
Koeffizientenvergleich ergibt 3 = r + 2s

- 2 = r - s
weil darin kein Widerspruch steckt , ist die An nahme richtig .
Herstellen einer Linearkombination :
Aus cf = 2kf —

"v folgt kf = 2 kf - kf ; kf einsetzen in b und kt
in b : b = kf + (2kf - ’

c
'
) = 3k? - kf

in a : a = 3ki - 2(2ki - kf ) = - kt + 2kf , kf = 2kf - kt einsetzen in b
b = 3(2kf — kf ) - kf = 5kf - 3kt

7. Bestimme t bis z so , daß die Vektoren kollinear sind :
( 2 \ r6 \ nt \ r 4 j2
[~ b

y -A VUJ W ( !)
U J j l 2 v

k(U
1

=

r 2

rG \
=> 2k = 6, k = 3 y = 2k = 6 , z = - k = - 3

- 1 ; x = - 2 , t = 1
r 2 \

K~ b V° /
=> k = 0 ; u = v = 0

ir 2
keine Parallelität möglich :

kein k -Wert erfüllt die 1 . und 2 . Koordinatengleichung .

8. Bestimme a bis f so , daß die Vektoren komplanar sind :
f 2 ^ r i \ f 1 ) r~ 3 \ f ° ) vl \ f C "\ f 4 l /4 a - 3 b) 1 2 , 8 c) 2

, 1 2 d) 0 e[~b l- ej U l 2 v [~b Uv l 2 J UJ UJ l 2 J l 1 VV
Nach dem Determinanten -Kriterium muß die Determinante gleich 0 sein .
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a)

b)

c)

d)

2 1 1
4 a 3

- 1 - 6 5

- 3 0 b
1 2 8
2 - 1 1

1 c 1
2 12
2 d 4

4 - 3 f
0 e 0
2 1 - -1

11a - 11 = 0 , => a = 1

= - 5b - 30 = 0 , =* b = - 6

= 2 — 4c = 0 , => c = 2 ? d ist beliebig

= 4e + 2ef = 2e (2 + f) = 0, => e = 0 , f = - 2

9. Bestimme a so , daß die Vektoren komplanar sind :
( 0 j ra - l > ( 1 > ( 1 ^

a) i , 1 ,
-ll b) 1 a + 1 , 1

UJuj l 1 J l 1 J ll - aj
c)

- 1 \ r 1 i ( 1 'i
1 , a + 1 i
1 J 1 1 y^a - ij

fa + 5 > ( 8 i ( 7 1 r0 > ( a —1% f 1 > r

d) - 2 a - 5 - 7 e ) 1 I 1 ] , 0 f) 1 > a + 1 >
1 2 J l 1 J V,a + 3 , 1 2 J t a J V 1 J i

a > r 1 ! f 0 \
1 i 1aJ UJ

j )
f a - 1> fa + 1 \ r 1 !
a - 2 a + 2 1 1

l a 3 J ^ a + 3 J

h)
v 1 /

r l >
a + 2

1

\ fl ^ r - ii (
f

)
1

l a J
i) 1 t 0 ’

1 a ) \

Nach dem Determinanten -Kriterium muß die Determinante gleich 0 sein .

a) Det = a = 0 b ) Det = a2 - a3 = a2( l - a ) = 0 =» a = 0 oder a = l

c) Det = a3 - a 2 - 4a + 4 = a2(a - 1) - 4 (a - 1 ) ; = ( a2 - 4 )(a - 1 ) = 0
=> a = ± 2 oder a = 1

d) Det = a3 + 3a2 — 16a — 48 = a2(a+3) — 16(a+3 ) ; = (a2 —16)(a+3 ) = 0
=> a = ± 4 oder a = - 3

e) Det = 0 , die Vektoren sind für jeden a -Wert komplanar .

f) Det = - a3 + a = a( l - a2) = 0 ;=> a = ±lodera = 0

g) Det = —2 , die Vektoren sind für keinen a -Wert komplanar.

h) Det = a3 + 2a2 - 3a = a(a2 + 2a - 3 ) ;= a (a + 3)(a - 1) = 0
=> a = 0 oder a = - 3 oder a = 1

i) Det = a2 + 2 , weil Det > 2 ist , erzeugt kein a-Wert Komplanarität .

j ) wegen Det = 0 Komplanarität für jeden a -Wert
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10 . a =
f 2 \ f- 3 \ (- 4 \ ( 3 A- 1Uj

"
b = 0

1 1 )
~
(f = - 1 v =

l 6 J - 3
l * J

a) Zeige: Lt , b ,
~c und ~

eT, b ,
~v sind komplanar.

b) Zeige: Mit ~
a und b läßt sich nur die triviale Nullsumme bilden .

Gib je eine nichttriviale Nullsumme der Vektoren ’a '
, b ,

~c
beziehungsweise

~
a , b , V an.

c ) Schreibe ~v auf zwei Arten als Linearkombination von ~a\ b und c ,
a ) Det( ! f , b ,

~
c ) = Det(

~a , b ,
"v ) - 0

b)
~a und b sind nicht kollinear, also gehts nur so: 0 a + 0 b = 0

c) Der Ansatz: x ~a + y b + zc = 0 fuhrt zum homogenen System
2x - 3y - 4z = 0
- x — z = 0
4x + y + 6z = 0

( X \ fl
= tdie Lösung

Ansatz: x~a + y b + zV = 0
f 3 '

2 liefert für t= l : a + 2 b - c- 1

( X
y = tJ

die Lösung

d) Wegen a ) sind , b ,
~
c und V komplanar

1 liefert für t= l : 3a + b - v ' = 0riJ

Ansatz: ^v = x a + yb + z ~
c , Lösung

fx . ^
y
z

r 3 - t
1 — 2t

Beispiel t = 1:

Beispiel t = - 1:

fx \
y

f 2

f4 \

K- b

~v - 2”a - b + ~c

"v = 4~a + 3 b - "c

11 . Zeige: a ) Eine Vektormenge , die den Nullvektor enthält ,ist linear abhängig.
b) Eine Vektormenge, die zwei kollineare Vektoren enthält ,

_ ist linear abhängig.
a ) Sei { ax , . . . , a n } linear unabhängig . Dann ist nur die triviale Nullsumme

möglich : Väi + . . . + VC =
’
o

'

, ^ = . . . = ^ = 0. Für {ä ^ , . . .
~
0 )

lautet die Nullsumme ax + . . . + an + 1 - 0 = 0 . Sie ist nicht trivial ,wenn mindestens ein Faktor , nämlich der vor dem Nullvektor , ungleich
null ist . Dann sind die Vektoren a^ . ^ au , 0 linear abhängig .
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b ) Sei ( a^ , . . . ,
"a ^ } linear unabhängig . Dann ist nur die triviale Null -

summe möglich : ^
"a^ + . . . + = 0 , ^ = . . . = = 0 . k und c k sind

zwei kollineare Vektoren (c & 1 ) . Für {
”ä^ , . . . , 1T^ , k , c k } lautet die

Nullsumme ^
"a^ + . . . + K & n + Ih k + Ü2C k = 0

oder + . . . + 7in
~a^ + (gi + ja.2c ) k = 0 . Sie ist nicht trivial , wenn

hi + h2c * 0 - Dann sind die Vektoren a^
'

, . . . ,
~ä^ , k , c k linear abhängig .

12 . Was kann man vom Vektor ix sagen , wenn

a) {f } linear unabhängig ist ? b ) {
~x } linear abhängig ist ?

a) x * 0 b)
~x = 0

13 . a und b seien linear unabhängig .
Untersuche u und v auf lineare Abhängigkeit :

a) u = a + b,
”v = lf - b b) u = 2~a - b,V = b - 2a

c)
"u = 2 ~a + 6 b , V = - ~a " - 3b d)

~u
‘ = aa + ßb , V = y

”a "
+ 8b

Annahme :
~u und ~v sind linear abhängig , Ansatz : r u + s v = 0

a) r (
~a + b ) + s(

~a - b ) = 0 (r + s )
~a + (r - s ) b = 0

weil a und b linear unabhängig sind , gilt :
r + s = 0
r - s = 0 => r = s = 0 , das heißt ,

~u und V sind linear unabhängig .

b) Blick :
’u ' und ~v sind Gegenvektoren , also linear abhängig . Rechnung :

r ( 2"a - b ) + s(
~a - b ) = 0 , (2r - 2s )li + (s - r ) b = 0

weil "a und b linear unabhängig sind , gilt :
2r - 2s = 0
s - r = 0 =i> r = s , das heißt , u und v sind linear abhängig .

c) Blick : hf = - 2~v , Ir und V sind linear abhängig .

d) r (a ~a + ßb ) + s(yla + 8b ) = 0 , (ra + ys ) a + (ßr + 8s ) b = 0

weil ”a und b linear unabhängig sind , gilt : rot + ys = 0
ßr + 8s = 0

Wenn a8 ^ ßy ist , dann gibts nur die Triviallösung r = s = 0 , dann sind u
(X

und ~v linear unabhängig . Wenn a8 = ßy ist , dann gilt y = - ~ x, y ^ O

oder (falls y = 0 ) y = — jr x , 8 ^ 0 , dann sind u und v linear abhängig .
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14 . a , b und ~
c seien linear unabhängig .

Untersuche "ii ,
~v und "w " auf lineare Abhängigkeit :

a ) Tf = lf + b,V = b +
’
c\ “

w
* = "a +

"cf
b ) li = ~

cT - ~a ,
"v " = b - "

c
'
,

~w " = b - ~a
c)

' u ’ = ~a + b + ’
cT ,

"v ’ = ~a + b ,
"w' = ~

& —
~c

Annahme :
'u , V und ~w sind linear abhängig , Ansatz : rli + s ~v + t ~

w = 0
a ) rCa + b ) + s( b +

“
c

"
) + t (

~a + if ) = 0
( r + t )! f + (r + s ) b + (s + t )

~
c = 0

weil ~
& , b und ~

c linear unabhängig sind , gilt : r + 1 = 0
r + s = 0

s + t = 0 =» r = s = t = 0 , das heißt , Tf , V und "w sind linear unabhängig .

b ) r ( c - a ) + s( b - c ) + t( b - ' a‘
) = 0

(- r - tha + (s + 1) b + (r - sYc = 0
weil a , b und ~

c linear unabhängig sind , gilt : — r — t = 0
s + t = 0

r - s = 0 => r = s = - t , das heißt , if ,
~v und “w " sind linear abhängig .

c) r ( a + b + c ) + sCliT + b ) + tdT - ~
c ) = 0

( r + s + t )
"a + (r + s ) b + (r - t )T = 0

weil a , b und c linear unabhängig sind , gilt : r + s + 1 = 0
r + s = 0

r — t = 0 => r = — s = t = 0 , das heißt ,
"
u,

"^ und w " sind linear unabhängig

15 . x - AB , y = AD und z = AE spannen das
Spat ABCDEFGH auf mit A( 1111 0 ) , B(5 I 31 0 ) ,D (- l I 3 | 0 ) und E(- 3 111 2 ) .
P , Q , R, S , T und U sind Kantenmitten . Berechne
diese Kantenmitten und den Spatmittelpunkt M.
Zeige , daß die folgenden Punkte in einer Ebene
liegen , und untersuche , ob der Spatmittelpunkt M
in dieser Ebene liegt .
a ) G, T , A, Q b ) A, C , S , T
c) P , C , S, E d ) P,Q,R,S,T,U
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_ ^ ^ _ ^ ^ ( —4 \
Mitten :

~x = B - A = 2 ,
~
y = D - A = 2 , z = E - A = 0

loj o J ^ 2 J
P = A + §

"x ‘
, P (31 21 0) Q = B + \ y , Q(4J 41 0)

ll =
~
B +

~
y + \ ~t , R( 11 511 ) 13 = 13 +

~i , S(- 31 4 I 2)
"
T = A

'
+ t + l '

y , T(— 41 21 2 ) tf = U(—11111 )

M = A + fCx +~
y +

~
z ) , M(0 I 3 | 1)

Verbindungsvektoren berechnen und auf Komplanarität untersuchen
"
G = B

‘
+ V + f , G(- l I 5 I 2 ) ;

~
C =

~
B +

~
y , C (3 I 5 | 0) ;

a) GT = T - G = AQ — Q ~ A —

wegen GT = - AQ sind die Verbindungsvektoren von G , T , A und Q
komplanar . G, T , A und Q liegen also in einer Ebene .

. . . ^ - 5 ^

3 - 1 - 5
0 3 6
0 12

= 0 , also hegt M drin .det ( AQ , AM , AT ) =

b) AC = it +
-
y = ST = T

wegen AC = - 2 ST sind die Verbindungsvektoren von A, C , S und T

komplanar . A , C , S und T liegen also in einer Ebene .

= 2 -V?f, also liegt M nicht drin .det ( AC , AM , AT ) = 0 4 +11
0 12

c) PC = ä x + y = SE = E

wegen PC = — SE sind die Verbindungsvektoren von P , C , S und E

komplanar . P , C , S und E liegen also in einer Ebene .
' - 3

1
1

0 - 3 - 6
= 0 , also hegt M drin

PM = M - P = PE = E - P =

det ( PC , P M , PE ) =

^- 3 >
d) PQ = Q - P =

, TU = U - T =
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wegen PQ = - ST , QR = - TU und RS = - UP geht es nur noch um
die Komplanarität von PQ , QR und RS :

det ( PQ , QR , RS ) =
1 - 3 - 4 1 - 3 - 4
2 1 - 1 - 0 7 7
0 1 1 0 11

= 0 , also liegen P , Q , R, S , T

und U in einer Ebene . Wegen P M = QR liegt auch M drin .

16 .
"x ,

'
y

' und z spannen das Spat ABCDEFGH auf . P , Q , R , S , T und U sind
Kantenmitten . Zeige, daß die folgenden Punkte in einer Ebene liegen , und
untersuche , ob der Spatmittelpunkt M in dieser Ebene liegt . (Bild wie in 15 .)
a ) G, T , A, Q b ) A, C, S , T c) P,C,S,E d ) P,Q,R,S,T,U
Punkte liegen in einer Ebene , wenn die Verbindungsvektoren kompl . sind.
AM + "

y
’ + ~

z )
a ) TG = AQ + f “

y
Wegen AQ = TG sind AQ , AT und TG komplanar ,
das heißt , G , T , A und Q liegen in einer Ebene .
AM = r AT + s AQ

+ y
"

+
~
z ) = r (

~
z + | "

y ) + s(l ? + | "
y ) ]j -2

x + "
y + "z = 2r ”z + ry + 2slf + s~

y
= 2s ~k + (r + s )

"
jf + 2r ~z

Koeffizientenvergleich : 2s = 1 , r + s = 1 , 2r = 1 => r = s = | ,das heißt , M liegt in der Ebene von G, T , A und Q .

b) AC = x + y,TS = AS — AT = +
~
y

"
+

~
z - f ’

y
’

—
~
z = | df +

~
y )

Wegen TS = § AC sind AC , AT und TS komplanar , das heißt ,A , C , S und T liegen in einer Ebene .
AM = r AT + sÄC
| ( x + y + ~

z ) = rCz + f ~
y ) + s(l t +^ ~

) | | -2
x + y + z = 2r "

z + ry + 2s + 2s3^
= 2slf + (r + 2s )

~
y + 2r "z

Koeffizientenvergleich : 2s = 1 , r + 2s = 1 , 2r = 1 , Widerspruch ,das heißt , M liegt nicht in der Ebene von A, C , S und T.

e) PC = ES = +
~
y

Wegen PC = ES sind PC , ES und PE komplanar ,das heißt , P , C, S und E liegen in einer Ebene .
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PM = r PC + s PE , P M = AM - AP = f(
~
y + “

z )

2 ( 7 +
"
z ) = r (fb ? +

~
y ) + s (

"
z ~ l

~
x ) | | -2

"
y

" + ~z = rlt + 2r ~
jT + 2s "z - sie "

= (r - s ) l ? + 2r^ + 2s ~z

Koeffizientenvergleich : r — s = 0 , 2r = 1 , 2s =1 r = s = § ,
das heißt , M liegt in der Ebene von P , C , S und E.

d) QR = f y
"

+ §
“z , RS = \

~z - \
~x , ST = - fl ? ~ W

QR = r RS + sST

2y + 2 z = r( jZ — gX ) + s (— 2 x — 2 y ) | | -2

y + z = rt - rx — sx - sy
y + ~

z = (- r - sEx - - s~
y + r~z

Koeffizientenvergleich : —r — s = 0 , —s = 1 , r= l => r = —s = 1 das heißt ,

QR , RS und ST sind komplanar : P , Q , R , S und T liegen in einer

Ebene . Wegen PU = RS liegt auch U liegt in dieser Ebene .

PM = rPQ + sQR,lMvf = AM - ÄP = | Cy +
"
z )

| Cy + '
z ) = r( |

'x + 2
’
y ) + s( 2

"
y + 2^ ) | | 2

y + ~
z ■ r~x + r'

y
'

+ s "
y

" + s ”z
= rx + (r + s ) y + sz

Koeffizientenvergleich : r - 0 , s = 1 ■M liegt in der Ebene .

17 . u = AB , V
* = AD und w = AE

spannen d . Pyramide ABCDE auf mit
A(2 I - 3 | 0 ) , B (2 I 5 [ 0 ) , D (—2 I - 11 0)
und E ( 01 21 7 ) . ABCD ist ein Parallelo¬
gramm . Die Kanten , die durch E
gehen , sind jeweils durch drei Punkte
gleichmäßig unterteilt . Untersuche ,
ob das Viereck PQRS eben ist .

PS =4 AE + zED = i
t - 2 \

V 7 y

1+ 4
y - 2
- 3

v - 7 ^

PR = f AE + § EC = | AC = | nr + ^ ) = i ( B - A + D - A ) =
|J

PQ = | AE + | EB = j( 2e
'

- 2X + 3
~
B - 3E ) = ; ( 3B - E - 2A ) = |

y2
19
- 7
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det (4 PS , PR ,4 PQ ) =
- 6 - 2 2 - 6 - 2 - 4
7 5 19 - 7 5 26
7 0 - 7 7 0 0

also ist Viereck nicht eben .

7 -(- 32)

18 . u , v und w spannen die Pyramide ABCDE auf . ABCD ist ein Parallelo¬
gramm . Die Kanten , die durch die Spitze E gehen , sind jeweils durch drei
Punkte gleichmäßig unterteilt .Untersuche , ob das Viereck PQRS eben ist.

PQ = - + Lf + 4 BE = - +
"u '

+ jCw
' - Tf ) = \ ( 3lf - ~w )

PR = ]pw + | EC = § w "
+ \ (- "w + "u " + ~v ) = | ( lf +

’v ")
PS = + | ED = | w

*
+ | (~ vt + v“

) = -f Cv + ~vt )
Linearkombination : PR = r PQ + s PS
| ( u + v ) = r - \ (31r - ~vt ) + s - ; ( V +

"w '
) | | -4

2 u + 2V = 3rli - r~w"
+ st + s 'w'

2lf + 2f = 3r ”u + s ^v + (s - r )
"w "

Koeffizientenvergleich : 3r =2 , s = 2 , s - r = 0 , Widerspruch , also ist die
Linearkombination nicht möglich : das Viereck PQRS ist nicht eben .
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1 . Im Dreieck ABC ist AD = f AC und BE = f BC .
In welchen Verhältnissen teilen sich [AE ] und [BD] ?

df = AB V = AC

AE? + BS + 1§A = ~o

BS = b BD = b (- u + 3 v )

SA = aEA = a( f CB - df )
— a( f (- v

" +d? ) ~ ~a )
3— 2— .- a (- 5 V - 5 u )

_ ^ ^ 2_ 5k. 3 _
u + b(- u + 3 v ) + a (- 5 v ■■5U ) =: 0

( 15 - 15b - 6a ) +d? ( 10b - 9a ) = ~o

10b - 9a = 0 a = fb
Q

15 - 15b - 6a = 0 , a einsetzen , b = ^
'
äS

'
-.ITe = 10 : 3 IFS :lhB = 9 : 4

2. Im Dreieck ABC ist BD = f BC und AS = \ AD . BS schneidet AC in T.
In welchem Verhältnis teilt T die Strecke [AC ] bzw . S die Strecke [EBT ?

IT = AB , V = AC

AB + BT + TA = 'o

TA = - aV
"
FT = bBS = b (- di + | AD )

= b(- df + f ( d? + f BC ) )

= b(- § df + § (- ~u +
~v ) )

= b( — sdi + f ^v )

df + b (- | "u + | f ) - a v
" =

8di + b(- 7df + 3~v ) - 8a v
* = "o

di ( 8 - 7b ) + dT (3b - 8a ) = "o

8 - 7b = 0 b = f
3b - 8a = 0

AT = i AC

3 v 3
a = 8 ^ - 7

TC = I AC

AB : AB = 3 : 4

BT = f BS , BS = I BT , ST = f BT

B S : S T = 7 : 1

B
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3. Im Dreieck ABC ist M die Mitte von

[AC] . T teilt [BC] im Verhältnis 1 : 2
von B aus . AT schneidet BM in S.

a ) In welchem Verhältnis teilt S
die Strecke [AT] von A aus ?

b) Nun sei A(0 I 0 | 0) , B(2 I 2 | - 4 )
und C (8 I - 4 I - 16 ) . Berechne S .

= ÄB V = ÄC

a ) ÄB + BS - AS = ^ BS = bBM = b(- "u + fv
‘ )

AS = a AT = a ( li + § BC ) = adf + § (- 'u '
+

~v ) ) = a ( flT + fV )
dT (6 - 6b - 4a ) + T ( 3b - 2a ) = ^ a = f Ä43 :lrr = 3 : l

b) S = A + AS = § ( flr + l ’v ’
) = f 'u '

+ 4V = 2 B + j C S ( 3 | 0 I — 6)

4. Im Dreieck OAB ist
a ‘= OA , 7 =

'
OB , OE = k^

und OF = mb . EBundAF
schneiden sich in T . Berechne

a ) AT , BT

b ) ^ T : TB,AT : TF

c) Berechne T für A( 141 0 ) ,
k = § undB ( 12 | 12) ,

4m = 3 .
d) Zeige : Sind AB und EF

parallel , so liegt T auf der
Seitenhalbierenden von
[AB] oder ihrer Verlänge¬
rung .
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Koeffizienten = 0 ergibt : x = x _

AT = rf ^ (mb - ~a )

1 - k
km y “ 1 - km

1 - m
km * 1

b) km * l : ET : TB y

AT : TF = =

BT = rfiS (ka - b )

m ^ 1

m * 1

l - k
1 - m

c ) k = ö , m

ÄF = 3 ( 12

T = A + AT = o ) + ^ AF

T( 15 I 8 )

d) wenn AB ! | EF , dann muß sein k = m ; T = 777 ( a + b )

T liegt auf der Seitenhalbierenden , weil diese die Richtung a + b hat .

5. Im Parallelogramm ABCD ist L der
Mittelpunkt von [CD] und M der
Mittelpunkt von [DA] ,
In welchem Verhältnis teilen sich
a) [AC] und [BM] ?
b) [AC] und [BL] ?

u = BA ~v = BC

a ) BA + ÄS - BS = "^ ; ÄS = aÄC = a(- Ä + V ) ; BS = bÄM = b(lT + fÄ )

u + a(- ir + "v ) - b(Ä + | V ) = "
0
"

u ( 1 - a - b ) + Ä (a - f b) = Ä a - | b = 0, b = 2a

l - a - b = 0 , a = 1 - b b eingesetzt : a = 3 , b = 5

AS = | ÄC , BS = fßM ^ : S1m =
'
CS :

'
SÄ = 2 : 1

b) BC +
"
CT - BT = Ä ; CT = aCA = al- v + u ) ; BT = bBL = b( v + iu )

entsprechend a ) ergibt sich : a = | , b = | ; AT : TC = BT : TL = 2 : 1

ßTlm Parallelogramm ABCD^effiT dkSmtelBC ] im Verhältnis x : y von B

aus . DT schneidet AC in S . , . Tr _ 0 . o
Mach eine Zeichnung für A(5 I 0 ) , B( 141 3) , C(91 8) , ( vm x .

_ Zeige : S teilt die Diagonale [AC] im Verhältn is r . s - - —
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AD + DS - AS = “o
DS = d DT = d( li - ^ rv ) AS = a AC = a(Tf + v"

) a = ^
~v + d( lT - ) - a( lf +

'v'
) = lo ’v '

Cl - d- a ) + di (d - a ) = o
Koeffizienten = 0 : d = a ; l - a = ^ a ^ ^ = -^ = ^ +1
i « -i _JL . a r r +s r •, . , r x ^1 & - 1 r+s — r+s i_a _ r+a ' s — s alSO ist s —y +1

7. Im Parallelogramm ABCD gilt :
ÄE : EB = k ,

"
CF : FD = m.

Mach ein Skizze :
A( 0 | 0 ) , B ( 7,5 I 0 ) , C ( 10 | 5 ) ,
D(2,51 5 ) , k = 1 : 4 , m = 7 : 8 .
a ) In welchem Verhältnis

teilt S die Diagonale [BD] ?
b ) In welchem Verhältnis

teilt T die Diagonale [AC] ?
c ) Welche Beziehung muß

zwischen m und k beste¬
hen , damit der Mittel
punkt M von ABCD auf
[EF ] liegt ?

A E

a ) BC + CF + FS - BS = "o
CF = m FD = m( CD - CF ) = m(- ~u ) - m

~
CF ;

~
CF = - ^ u
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FS = f FE = K FD - V + AE )

FD = ^ CF = £ (- = - rblt

AE = k EB = kOi - AE ) ; AE =

fs = f(- i ^
"u - V + i7k^ ) = F "u ( i7k - rb ) - v1

)

BS = bBD = bCv - "u )
m —^ cv—^ ✓ k 1 \

■üiU + ^ u ( s - ^ ) .

v ( 1 — f — b ) + "u (iTkf

I7kf - I^ - TWf + b = 0

n 1 +m* “ 2+k +m
1+k

1 +m

v ) - b (
~v

" - Tf ) = ~o
1--

I f + h) = ~o

ui^ ~ 17k ) einsetzen in 1- f = b
i

1+m

b = tts + fC
1+m “ f ( l +m 1+k )

b = 1 _ f = 2+S+m

BS = 27^ BD , SD = ( 1 - 2+E+in ) BD = BD BS : SD

TC + CF + FT = "o

TC = t ( u + v )
von a ) :

(f hat jetzt einen andern
Wert als in a ) )

t ( u + v ) - i^ u + flu ( ^ - T^ ) - v ) = ~o

uXt - TTS + Äl !k - T7^ ) ) + ‘v (t - ß = "o . f = t
1 kl r> 1 1 1 i- pl ( l +k )

t - + 1( - 17^ ) = 0 aufgelöst nach t : t = 2km+k+m _"TT^“ , + . .. . A i + + m ( l +k ) _ k ( l + m ) _ AT • TC = k(
.
1+TTAT = ( 1 — t ) AC , 1 — t = 1 — 2km+k +m “ 2km+k+m Al . 1 O m ( l +k)

®) Überlegung : Soll M auf [EF ] liegen , so muß [EF ] symmetrisch zu M
sein . Wegen der Punktsymmetrie des Parallelogramms
muß dann AE = FC sein , also k = m sein .

Rechnung : irgendein !!) f-Wert muß gleich f sein , zum Beispiel der von

a ) : 2 +k+m = 2 > 2 + 2m = 2 + k +m , also m = k.

»• Im Trapez ABCD mit AD = v \ DC = ht und AB = ku schneiden sich in S

die Strecken , die durch D und C gehen und zu den Schenkeln parallel sind .

Zeichne das Trapez für u = fp
'
) > v - 1 ,5 ^4^ undk = 4 .

_ _ __
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a ) In welchem Verhältnis (in Abhängigkeit von k ) teilt S die Strecken von
den Ecken ans ?

b) Bei welchem Wert von k liegt S auf AB ?_
a ) DS + SC - DC = "o
DS = d DE = d CB = d(- lf - “v + k~

u )

b ) Soll S auf AB liegen, so muß

DS = dfu (k- l ) - "v ) |
= c FC = c AD = c v̂ !

d(
~u (k- 1 ) - "v ) + c

~v - Tf = ~
o -

"u "
(d(k- l ) - 1 ) +

~v { c - d) = ~o
c = d : S teilt beide Strecken im selben
Verh .
, 1 i j k- 2d = Vä , 1 - d = jit
S teilt beide Strecken von den Ecken aus
im Verhältnis 1 : (k- 2 ) . i

d = 1 sein , also k = 2 sein .

SC

9. Im Trapez ABCD mit AB = üt , AD = "v" und DC = küf schneiden sich die
Diagonale n in S . Zeichne das Trapez für A(11 0) , B(61 0 ) , D(01 6 ) und k = 2 . j
Berechne AS : SC und BS : SD (in Abhängigkeit von k ) . !

AS + SB - AB = "o
AS = a AC = a ( v^ + kl ? )
SB = dDB = d(lT - V )

a (
"v + kli ) + dCu" - V ) - "u

"
= o

1? (ak + d - 1 ) + V^ ( a — d ) = o
a - d = 0 , d = a
ak + d = 1 , a = k+I
^ = ^ ÄC

_ _
SC = ( 1 - i^ r) AC = kTlAC
C S : S A = DS : SB = k : l

10 . Im Trapez ABCD mit DC = u , AD = v und AB = 3 u ist M die Mitte von
[BC ] und S die Mitte von [AM] , DS und AB schneiden sich in T . Zeichne das
Trapez für A( 2 j 0 ) , B( l l ] 0 ) , D( 0 | 6 ) .
Berechne DS : ST und AT : TB .
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AS + ST - AT = ~o
ÄS = | ÄM = | Cv +ra + 1

'
CB )

CB = —1? - Ä + 31? = 21? -

v
AS = | ( v" + 41? )

ST = s DS = aC- 'v + ÄT )

ÄT = tÄB = 3tl ?

ST = s DS = s (—1? + 3t1? )

\ Cv + 41? ) + s(- Ä + 3tl ? ) +
- 3tl ? -

~o
1? ( 1+ 3st - 3s ) + (i - 1) =Ä

t = l DS : ST = 3 : 1 1+ f s - 3s = 0 , s = f AT : T B = 4 : 5

11 . Zeige: Im Tetraeder
halbieren sich die Strecken,
die die Mitten windschiefer
Kanten verbinden.

DS + ST + TP + PD = o

DS = jw

. . . ■ c

I w + x( | u + fV - | w ) + y( | u - 1 w ) - 2 U = 0
u (x + y — 1 ) +

"vXx — y) +
~w ’

( 1 — x — y) = o => x - y = 2
Für die beiden andern Kanten ergibt sich (nach Umbenennung ) dasselbe .
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C,

12 . Im Tetraeder ABCD
halbiert M die Kante [BC],
P teilt [AD ] im Verhältnis
2 : 1 . R liegt auf [AB] mit
AR = r AB , S hegt auf

[DC] mit DS = s DC .
Gib eine Beziehung für r
und s so an , daß sich MT
und RS schneiden .
In welchen Verhältnissen
teilen sich [MP ] und [RS] ?

DS + ST + TP + PD = o
DS = sTV , PD = - ;K
ST = + u"

+ r (- nT + v
*

))
= x( u “

( 1 - r ) + rh ^ - sw )
TP = y( \ BC - ~w + §Lf ) = y( \ (- V + V^ ) - "w "

+ | ’u ‘
) = y( | lT - irv - f '

w
' )

s w + x( Ti ( 1 - r ) + r "v - sTv^
) + y( | "u" - f^v — §Tv ) — flT = ~o

"u (x( l - r ) + | y - | ) + ^v (rx - | y) + ^w ( s - sx - | y) = "o
rx - § y = 0 , y = 2rx einsetzenin s - sx - fy = 0 ergibt x =
x und y einsetzen in x( l - r ) + §sy -

s 2rs
s + r > y ~ s + r

| = 0 und nach r auflösen : r = 777
ST = 777 SR
PT = 2rs

TR = ( l - x) SR = 777 SR
’

PM,
'
TM = ( 1- yllMVU ^ TT^ PM 7

,

S T : T R = s : 1
P T : T M = 2rs : ( s+r- 2rs)

13 . Im Quader ABCDEFGH ist
K Mitte vonBCGF ,
L Mitte von EFGH ,
M Mitte von ADHE .
In welchem Verhältnis
teilen sich

a) [HK] und [CL] ?

b) [BL] und [FM] ?
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H a ) Mit Kennerblick :
HLKG ist ein Trapez mit
[HC] = 2[LK] . Wer Aufgabe 9.
gelöst hat , weiß , daß 2 das Teil-
verhältnis der Diagonalen ist ,
und hat die Lösung :
HT : TL = CT : CM = 2 : 1

Ohne Kennerblick :
HG + GC + CT - HT = o

“

HT = hHL = h ( w + | ( u + v ) ) = h ( | u + | “v + w )

CT = c C M = cC- 'v - w
*

+ 1 fu +
'w

*
) ) = c( § u - § w - v )

"w ’
+

"v ’ + c( | "u ’
— —

"v "
) — h ( fff + 2^ + w ) = o

~u (c - h ) + "v (2 - 2c - h ) +
"
WX2 - c - 2h ) = ~o

2
c = h einsetzen in 2 - 2c - h = 0 liefert h = c = 3 _
beide Werte erfüllen 2 - c - 2h = 0 , also ist HT : TL = CT : C M = 2 : 1

b) Beim Auflösen des Gleichungssystems ergibt sich ein Widerspruch :
[BL] und [FM ] sind windschief .

14. u , v und w spannen die Pyramide
ABCDE auf . ABCD ist ein Parallelogramm
mit Mitte M , S ist Schwerpunkt im Dreieck
BCE , K und L sind Kantenmitten .
a ) Skizziere die Pyramide und trage alle

oben genannten Stücke ein . (Vorschlag
A( 11 — 310 ) , B ( 3 1310) , C (- l 1310 )
und E (—1,5 I —2 I 5 ) )

b) Zeige , daß sich ME und LS schneiden ,
und berechne die Verhältnisse , in denen
der Schnittpunkt T die Strecken [ME]
und [LS] teilt .

c) Berechne T.
Die Gerade CT schneidet die Kante [AE ]
in X . In welchen Verhältnissen teilt X
die Strecken [AE] und ßPS] ?_

LCG

B
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b) EL + LT + TE = o
EL = u + fBC =

LT = x LS =
= x( LK + KS ) =

u - jv + jw + r \ \
+ x (- u + jV - eW ) -

M ',- y(| ru + | w"
) = "o

~u (6 - 6x — 3y ) + V (- 3 + 5x ) +^ (3 - x - 3y ) = "o
x = | einsetzen in 3 - x - 3y = 0 liefert y = f ^
Kontrolle : x und y einsetzen in 6 - 6x - 3y = 0 , alles geht glatt ,also LT : TS = 3 : 2

e) T =

T(p<ff | - 0,21 1 )(2 A + 2 C + E )

d) EC + CX - EX = “o
CX = r CT r(- w + ET ) = r (- w + l - f ( u + w ) ) = r (- | w + § u )

_ ^ 3_ ^ 2_ s
W + r ( - 5 W + 5 u ) ■ s u o ; u (f r - s ) + w (1 - 5 r ) = o

EX : XA = 2 : 1 CX : XT = + 5 : 2

15 . u , v und w spannen den Pyramidenstumpf
ABCDEFGH auf . L und M sind Mitten der
Parallelogramme ABCD und EFGH .
a) Zeige, daß sich [LM] und [AG] schneiden,und berechne die Teilverhältnisse .
b) Berechne den Schnittpunkt T von [LM]

und [AG] , falls , wie im Bild , A = 0 ,
r 1 ! ( -

u = Hvz 2 und ~vt = - 3 ist.
l ° J ^ 2,5 ;
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a) Mit Kennerblick:
EALM ist ein Trapez mit [EM] = 4 [AL] .
Nach Aufgabe 9 . ist 4 das Teilverhältnis
der Diagonalen .

Ohne Kennerblick :
AE + EM + MT + TA = o

EM = § (4u + 4v ) = 2u + Zv '

MT = m M L = m( LA + w + E M )
= m (— | (

~u ’+V '
) +

”
w^ + 21i + 2V )

= m( | li + | V +
"w )

TA = a GA = a(- 4 v - 4 u - w )
~
w + 21i + 2V + mCfl ? + fv +

~
w ) +

+ a(- 4 "-v — 4 "u - ~
w "

) = ~o
u (2 + 1 m - 4a ) + ~v~

(2 + § m - 4a ) +
"wXl + m - a ) = o

m : 3 1
a - 1 einsetzenin 2 + 9 m - 4a = 0 liefert: a = 5 , m :

b)

MT : T L = 4 : 1 = C T : TA

T = AT = - aGA = \ (4^v + 4'u +
"w '

) = \
/ 0 \

9
v 2,5 /

T( 0 I 1,8 I 0,5)

16 . u = GH ~
n ’ V

V 0 J
f 2 A

2
- 1,5

GF =
rZ \

und

spannen das Spatw = GC =
xr^ j

ABCDEFGH auf:
M ist Mitte von EFGH, K halbiert [GF] .

a) Zeichne das Spat mit K und M.

b) Zeige, daß sich AK und BM schnei
den, und berechne die Verhältnisse ,
in denen der Schnittpunkt T die
Strecken [AK] und [BM] teilt .

c) Berechne T und zeige , daß T auf der
Raumdiagonale [DF] liegt .
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b) Mit Kennerblick:
ABKM ist ein Trapez
mit [AB] = 2 [KM]
Nach Aufgabe 9 . ist 2 das
Teilverhältnis von [AK] und [BM].

Ohne Kennerblick:
BA + AT + TB = ~o
AT = kAK = k(—

"u - - | V )
TB = mMB = m(- f"u + jv + "w )

Ti + k(- li - VT - §V ) + m(- f~u + | "v + w ) = o
“uU - k - lml + ^v (| m - | k) +

"
w^

Cm - k) = o , m = k = |
AT : TlC = 2 : 1 = IFt : TM

c)
"
T = GK + KT = | V + | KA = | ^ + | Of + V + | T )

= | li + | ^v + | lv = | (
~u + 2 ^v + ŵ ) T ( — ! I — 3 t 2 )

DF = v̂ - "u “ - "w
DT =

"
T -

"
D = | Cu + 2^ + \ T ) - ( u ‘ + 'w ) = 5 (- 2ir + 2~v - 2^ ) wegen

DT = f DF liegt T auf [DF] .

17 . u , v und w spannen das Oktaeder
ABCDEF auf. ABCD ist ein Parallelo¬
gramm , sein Mittelpunkt M halbiert
[EF] . S ist der Schwerpunkt des
Dreiecks ABE .
a ) Zeichne die Figur für

A( l,5 I - 2 | 0 ) , B(2,5 I 01 0 ) ,C(- l,5 I 21 0 ) und E(- 0,51 01 3,5).
b) Inweichem Verhältnis muß K die

Kante [CF] teilen , damit SK die
Diagonale [BD] schneidet ?



>~‘vs \ "■
■*• * -> * j/ ' . ■ ■

V. 2 . Anwendungen

:en

b) ES + ST - ET = ~o
ES = | ( ^u + ^v" )
ST = s SK = s(- f (1? + "v ) + ’w ’ + kli )
ET = V + 1 BD = "v '

+ 1(- "v + ~vt + CD )
= ~v + t(~ ~v + ~w + (- "v +"u )) = V " + tC

“u -21^ + ~w )

| (T? + V ) + s(— §~u - s
'v +

"w ’ + kTi "
) - V ~ t(~u - 2~v + w ) = ~o

'u ( | - | s + ks - t) + V ( | - | s - l + 2t) + 'wr(s - t) = ’o
'

s = t einsetzenin 3 ~ 3S - l + 2t = 0 liefert s = t = 5
s = t = f einsetzen in § - fs + ks - t = 0 liefert k = \
^CKVkf

'
= 1 : 1
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Modelle

1 . Zeige : Für alle ge IR und aeV gilt
a) (- g ) -a = - (g -a) b) g -(- a) = - (g -a) c) (- g ) -(- a) = g -a

g -a +
~

gm = 0 , wegen [TI (- g ) -a = g -a = - g -a wegen der Ein-
deutigkeit des inversen Elements( g + (—g ) ) -a = g -a + (- g ) -a = 0

•0 = 0
g - a = g -( - a ) = g -a = - g -a wegen der
Eindeutigkeit des inversen Elements

g -a + g -a = 0 , wegen j
g -a + g - a = g -(a + a ) = g

c) ( - g ) -(- a ) = - (g -(- a ) ) wegen a )
= - (- (g -a )) wegen b )

g -a wegen [T]

2. Zeige : Für alle ge IR und a,beV gilt g -(a - b ) = g -a - g -b

g -(a - b ) = g -(a + b )
= g -a + g - b wegen D v
= g -a + g -(- b )
= g -a -i (- g -b ) wegen l .b )
= g -a - g -b

3. Warum ist die Menge aller Polynome von genau zweitem Grad
(Koeffizient a2 ^ 0 ) kein Vektorraum mit den Verknüpfungen von V3 ?
0 ist nicht Element der Menge der Polynome von genau zweitem Grad .

4. Zeige : M = {a4x4 + a2x2 + a0 1as e 2 , i = 0 , 2,4 } ist ein Vektorraum über K
mit den Verknüpfungen von V3 . _ __

a = a4x4 -!- a2x2 + a0 eM , b = b4x4 + b 2x2 + b 0 e M ,=> a + b = (a4 + b4 )x4 + (a 2 + b2)x2 + (a 0 + b 0) e M ,=» ga = (ga 4)x4 + (ga 2)x2 + ga 0 e M ,=> M ist Untervektorraum des Polynomvektorraums .

5. Im arithmetischen Vektorraum IR 4 sind gegeben a — (—11 3 I 21 — 4 ) undb = (21 71 - 11 - 3 ) . Berechne a + b , 5 -a , - b , 2 -a - 3 -b .

a + b = (1110 I 11 - 7)
- b = (- 2 I - 7 | 11 3 )

5a = (- 5 I 15 110 I - 20 ) ,2 -a — 3 -b = (— 8 I —15 I 7 I 1 )
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6. Sind folgende Tripelmengen Vektorräume mit den Verknüpfungen von V2 ?
a ) M = { ( a I b I c ) | a = 2b a a , b , c e IR }
b) M = { (a I b I c ) | a < b < c a a , b, c e IR}
c) M = {(a I b I c) | ab = 0 a a , b , c e IR}
d ) M = {( a I b I c ) I a = b = c a a , b , c e IR}

e) M = {(a I b I c) | a = b2 a a , b , c e IR}
f ) M = {( a I b I c ) | k xa + k 2b + k 3c = 0 a a , b , c e IR}

_ k; seien feste reelle Zahlen _
a ) (aj bj Ci ) + (aj bj c2 ) = (a 1 + aj bj + b2| c x + c2 ) e M

aj = 2bj => a1 + a2 = 2ba + 2b2 = 2(Ja1 + b2)
p(a I b | c) = (pa I pb I pc) e M , a = 2b => pa = 2(pb)
M ist Untervektorraum von (von IR 3 ) .

b) (- 1)(0 | 0 I 1) = (0 I 0 I - 1) $ M, kein Vektorraum .

c) ( 11 0 I 0 ) + ( 0 I 11 0 ) = ( 1111 0 ) $ M , kein Vektorraum .

d ) (a I a I a ) + (b I b I b ) = (a +b I a +b I a +b ) e M ,

p(a | a | a ) = ( pa I pa I pa ) e M , M ist Untervektorraum von (von IR 3 ) .

e) ( 11 11 0 ) + ( 11 11 0 ) = (2 I 21 0 ) $ M , kein Vektorraum

f ) ( a x | bi | cx ) + (a 2 | b2 j c2 ) = ( a3 + a2 1b ^ + b2 1 + c2) e M

kja 2 + k 2b 2
I kjc 2 = 0 } ^ ki(a i + a2} + k2(bi + b2} + k3(ci + c2) = 0

p(a I b | c ) = ( pa I pb I pc) e M,
kja + k2b + k3c = 0 => kx(pa ) + k2(pb ) + k3(pc) = 0 ,
M ist UVR von (von IR3 ) .

^ M sei die Menge aller Paare reeller Zahlen .
Zeige : M ist kein Vektorraum über IR ,

wenn die Verknüpfungen » +« und » • « so definiert werden :
a ) (a I b ) + ( c I d ) = (a + c | b + d) , p -(a I b) = (p -a I b)
b ) ( a I b ) + ( c I d ) = (a I b ) , p -(a I b ) = (p -a I p -b )

_ _ c) (a I b ) + (c I d ) = (a + c | b + d ) , p -(a I b ) = (p2 -a i p2 -b )

a ) ( 2—2M1 I 1 ) = 0 -( l I 1 ) = ( 0 I 1 )
(2- 2M1 | 1) = 2 -( l I 1 ) - 2 -( l I 1) = (2 [ 1) - (2 11 ) = ( 0 I 0) , Widerspruch

b) ( 11 1 ) + ( 0 I 0 ) = ( 11 1 ) , ( 01 0 ) + ( 11 1 ) = ( 0 I 0 ) , Widerpruch

c) ( 1+ lMlll ) = ( 1 1 1) + ( 1 1 1 ) = (21 2 )
( 1+ 1M11 1 ) = 2 -( l I 1 ) = (4 I 4 ) , Widerspruch
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8. Zeige : Die folgenden Mengen von Tripeln reeller Zahlen sind keine

Vektorräume über IR mit den Verknüpfungen von V3 :
a ) M = {(a I b | c ) I a > 0}
b ) M = {(a I b I c ) I a2 + b2 + c2 < l }

_ c) M - {(a I b | c) 1 a , b , c e (& }
_

a ) (- l ) -( l I 0 I 0 ) = ( 11 01 0) $ M
b ) (11 01 0 ) + (01 11 0 ) = ( 1111 0 ) $ M
c) •v/2 ( 11 01 0) = (-\[2 1 01 0) $ M

9. M sei die Menge aller Paare reeller Zahlen .
Eine Verknüpfung »+« sei durch (a I b ) + (c I d) = (a + c I b + d ) ,eine Verknüpfung » • « sei durch p -(a I b )= ( p -a I 0 ) definiert .
Zeige: In M sind bis auf N s alle Axiome eines Vektorraums erfüllt .Man kann daraus schließen , daß das Axiom N nicht aus den anderen
Axiomen folgt . (Siehe auch nächste Aufgabe . )_

ist erfüllt , weil die Addition die eines Vektorraums ist .s
Ov

nT

(a + ß ) -( a I b ) = ( (a + ß )a I 0 )
a -(a I b ) + ß -(a | b ) = (aa | 0 ) + (ßa I 0 ) = ( ( oc+ß )a I 0 )
a -[ (a | b ) + (c I d)] = (a (a + c ) | 0)
a -(a I b ) + a -(c | d ) = (aa I 0 ) + (ac I 0 ) =(a ( a + c ) I 0 )
( aß ) -( a I b ) = (aß -a I 0 )
a -(ß -( a I b ) ) = a -(ßa 1 0 ) = (aßa I 0 )
l -(a I b ) = ( a I 0 ) * ( a ] b)

10 . In der Menge V *= (0) sei eine Verknüpfung »+« so definiert ,daß V eine kommutative Gruppe ist .
Als Verknüpfung » • « sei definiert (i -a = 0 für alle aeV und pelR.

_ Zeige : Bis auf Ns sind alle Axiome des Vektorraums erfüllt .

D
Kj [A N ^ ist erfüllt, weil die Additiondie eines Vektorraums ist .

(a + ß) -a= 0 , aa + ßa = 0 + 0 = 0
a -(a + b ) = 0 , aa + ßa = 0 + 0 = 0
(aß ) -a = 0 , a -(ßa ) = a -0 = 0
l -a= 0 ? a für a ^ 0

D
A,
N
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Basis und Dimension

1 . a) Schreibe a - — 3x2 - 8x + 1 als Linearkombination der Vektoren
u = - 4x2 + x - 2 und v = x2 - 2x -t 1
aus dem Vektorraum der Polynome bis zum Grad 2 .

Ansatz : - 3x2 - 8x + 1 = p(- 4x2 + x - 2 ) + q(x2 - 2x + 1)
Zusammenfassen : - 3x2 - 8x + 1 = x2 (- 4p + q ) x(p - 2q ) - 2p + q
Koeffizientenvergleich : - 3 = - 4p + q

- 8 = p - 2q
l = - 2p + q => p = 2 , q = 5

Ergebnis : a = 2u + 5v

b) Schreibe a = — 3x2 +x + 4 als Linearkombination der Vektoren
u = —2x2 + 5x + 1 , v = — 3x2 2 und w = x2 + 3x
aus dem Vektorraum der Polynome bis zum Grad 2 ._

Ansatz : - 3x2 + x + 4 = p(- 2x2 + 5x + 1 ) + q(- 3x2 -:-2 ) + r (x2 + 3x)
16 34 31

Zusammenfassen und Koeffizientenvergleich : p = - i 3 , q = i3 , r = i3
Tr. i . 16 34 31
Ergebnis : a ^ - ^ u + ijv + ^ w

2. Untersuche die folgenden Mengen von Vektoren aus dem Vektorraum der

Polynome bis zum Grad 3 auf lineare Unabhängigkeit
a ) { l - 4x 2x2 + 3x3

, - x3 + 4x2 + 2x + l,2 - x - 3x2 + 5x3}_

Ansatz für Nullsumme :
p( l — 4x + 2x2 + 3x3 ) + q(—x3 + 4x2 + 2x + 1 ) + r (2 - x - 3x2 + 5x3 ) = 0
Zusammenfassen :
x3(3p - q + 5r ) + x2(2p + 4q - 3r ) + x(- 4p + 2q - r ) + (p + q + 2r ) = 0
Koeffizientenvergleich (alle vier Klammern ( . . . ) = 0):
3p - q + 5r = 0 , 2p + 4q - 3r = 0 , - 4p + 2q - r = 0 , p + q + 2r = 0
das Gleichungssystem hat nur die triviale Lösung : p = q = r = 0 ,
also ist die Menge unabhängig .

b) {3x3 - 2x2 - 5x + 1 , 1 - 4x - 3x2 + 4x3
, 9x3 - 7x2 - 7x + 2}

p ( 3x3 - 2x2 - 5x + 1 ) + q( l - 4x - 3x2 + 4x3) + r ( 9x3 - 7x2 - 7x + 2 ) = 0 ,
x3( 3p + 4q + 9r ) + x2(- 2p - 3q - 7r ) + x(- 5p - 4q - 7r ) + (p + q + 2r ) = 0 ,
das Gleichungssystem
3p + 4q + 9r = 0 , - 2p - 3q - 7r = 0 , - 5p - 4q - 7r = 0 , p + q + 2r = 0
hat oo 1 Lösungen (p | q I r ) = p( 11 311 ), eine nichttriviale Lösung ist zum

Beispiel ( 11 3 | 1 ) ; deshalb ist die Menge abhängig .
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3. Zeige für den Vektorraum der n -Tupel :

a ) Die Menge {( 11 01 . . . I 0) , (0111 . . . I 0 ) , . . . , (01 01 . . . I 1)} ist linear
_ unabhängig ._ _

Pl ( l I 0 j . . . I 0 ) + pVO 111 . . . | 0 ) + . . . + pn(0101 . . . i 1) = ( 0101 . . . | 0)
(Pl I 0 1 . . . I 0) + (0lp 2 i . . . I 0) + . . . + (Olol . . . Spn) = ( Ol 0 1 . . . | 0)
=> Pl = P2 = = Pn = 0

b ) Nimmt man zur Menge von a ) einen beliebigen Vektor hinzu ,
so wird sie linear abhängig . Gib ein Beispiel an .
Nach Satz [2 ] ist die Menge linear abhängig .
Beispiel : {( 1 1 0 | . . . 1 0) , (0 1 l | . . . I 0) , . . . , (0 1 0 | . . . 1 1) , ( 1 1 1 1 . . . 1 1)}

4 Zeige : Die Vektoren a = ( 1 1 3 15 ) , b = (0 1- 1 12) und c = (0 1 0 1 1)
bilden eine Basis des Vektorraums der reellen Tripel .

a , b und c sind eine Basis , wenn sie linear unabhängig sind , wenn
p ( 11 3 I 5 ) + q( 01 - 11 2 ) + r ( 01 0 I 1 ) = ( 01 01 0 ) nur die triviale Lösung hat .Das Gleichungssystem : p = 0 , rp - q = 0 , 5p + 2q + r = 0 hat nur dietriviale Lösung p = q = r = 0 , also sind a , b und c eine Basis .

5. a = ( 11 2 I 0 ) , b = (- 11 3 11 ) und c = (11 - 13 I - 3)
gehören dem Vektorraum V der reellen Tripel an .
a ) Ist {a , b , c} eine Basis von V ?

{a , b, c) ist eine Basis von V, wenn
p ( 11 2 I 0 ) + q(—11 3 I 1 )+ r ( l | - 13 I - 3 ) = ( 0 | 0 | 0 )nur die Triviallösung p = q = r = 0 hat . Das Gleichungssystemp - q + r = 0
2p + 3q - 13r = 0

q - 3r = 0 hat so1 Lösungen (p | q | r ) = p (21 3 I 1 ) .a , b und c sind linear abhängig , zum Beispiel 2a + 3b + c = 0 ,also ist {a , b, c} keine Basis von V.
b ) Welche Bedingung müssen u , v und w erfüllen , damit der Vektor

(u I v I w) als Linearkombination von a , b und c darstellbar ist ?
Ansatz : p ( 11 2 | 0) + q(—11 3 I 1 )+ r ( l | - 13 | - 3 ) = (u I v I w)Das Gleichungssystem p - q + r = u I

2p + 3q - 13r = v II
q - 3r = w III

aus I : r = u - p + q eingesetzt in II ergibt II '
: 15p - lOq = 13u + vr = u - p + q eingesetzt in III ergibt III '

: 3p - 2q = 3u + w5 -III = II '
: 15u + 5w = 13u + v => Bedingung ist 2u — v + 5w = 0
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6. Gib a = (- 2 I 5 I 3 ) und b = (a I b I c ) aus dem Vektorraum der
reellen Tripel in Koordinatenschreibweise an bezüglich der Basis
a) {( 11 0 I 0 ) , ( 01 11 0 ) , ( 0 ] 0 11 )} b ) {( 11111 ) , ( 1111 0 ) , ( 1 ] 01 0 )}

a) Ansatz für a : p( l | 0 I 0 ) + q(0 I 11 0 )+ r ( 01 01 1) = (- 21 5 | 3 )
ergibt p = - 2 , q = 5 und r = 3 , also a = (- 21 51 3 ).
Entsprechend ergibt sich b = (a I b I c) .

b) Ansatz für a : p ( l 1111 ) + q( l 111 0)+ r( l I 01 0) = (- 21 51 3)
ergibt p + q + r = - 2 , p + q = 5 und p = 3 => p = 3 , q = 2 , r = - 7
(- 2 I 513 ) in Koordinatenschreibweise ( 3 I 2 T - 7 )

Ansatz für b : p( l | 11 1 ) + q( l 111 0)+ r( l I 01 0 ) = ( a I b I c )
ergibt p + q + r = a , p + q = b und p = c => p = c , q = b - c, r = a - b

( a I b I c ) in Koordinatenschreibweise ( c I b - c I a - b )

7. {a , b , c} sei eine Basis eines Vektorraums . Zirm Vektor u = 7 -a - 2 -b - c
wird der Vektor p -v mit v = - 3 -a + 5 -b + c addiert (pelR ) .
Für welchen p-Wert ist die a -Komponente von u + p -v gleich null ?

u + p -v = 7 -a - 2 -b - c - 3p -a + 5p -b + p -c = ( 7 - 3p ) -a + (5p - 2 ) -b + (p - l ) -c
a-Komponente = 0 : (7 - 3p ) = 0 , => p = |

8. {a , b , c} sei eine Basis eines Vektorraums . Welcher vom Vektor
a = 3 -a + 4 -b — 2 -c linear abhängige Vektor hat die Komponente —2a ?

2
x = pa = 3p -a + 4p -b - 2p -c ; Bedingung 3p -a = - 2a , => p = - 3
Ergebnis x = - § a

9- Berechne aus der Gleichung 3 -a + 5 -b - 4 -c = 0 die Koordinaten der
Vektoren : a bezüglich der Basis {b , c}, b bezüglich der Basis {a , c},

. _ c bezüglich der Basis (a , b) ._ _ _ _

Basis {b , c} : a = - fb + | c , a = (- § I f )

Basis [a , c} : b = - fa + fc , b = (- § I f )

Basis {a, b}: c = f b + f c , a = (— f I f )

Zeige : a = (1121 1 ) , b = (3 15 1 0) und c = (2 1 0 j 0) sind eine Basis

des Vektorraums V der reellen Tripel .
Berechne bezüglich der Basis {a , b , c} die Koordinaten des Vektors
d = ( 0 | —1 j 2 ) . Gib auch seine Komponenten an ._

a ) a , b und c müssen linear unabhängig sein , das Gleichungssystem in

p( l I 2 11 ) + q(3 | 5 I 0 ) + r (21 01 0) = (01 01 0 ) darf nur die Triviallösung
haben : p + 3q + 2r = 0 , 2p + 5q = 0, p = 0 . Und die hat es auch !

10 . a)

b)
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b) Ansatz: p( l I 211 ) + q(3 I 5 I 0 ) + r(2 I 01 0 ) = (01 - 1S 2 )

Das Gleichungssystem p + 3q + 2r = 0 , 2p + 5q = - 1 , p = 2
hat die Lösungen p = 2, q = - 1 , r = \ ; sie sind die Koordinaten von d
bezüglich {a, b , c} . Die Komponentenvon d sind
2 -a = (21 41 2) , - 1 -b = (- 31 - 5 11) und f c = (11 01 0)

11 . Bestimme die Taylorentwicklung der Funktion f mit dem Term
fix) = x3 - 9x2 + 25x - 24 an der Stelle x = 2 sowie die Näherungen der
Ordnungen 2,1 und 0 von fix) dort. Was bedeutet die Näherung 2 .Ordnung '
Ansatz : fix) = a(x~2 )3 + b(x- 2 )2 + c(x- 2) + e

= ax3 - 6ax2 + 12ax - 8a + bx2 - 4bx + 4b + cx - 2c + e
= ax3 + x2(- 6a + b ) + x( 12a - 4b + c ) + (~8a + 4b - 2c + e)

Koeffizientenvergleich : a = 1
- 6a + b = - 9 => b = - 3
12a - 4b + c = 25 => c = 1
- 8a + 4b - 2c + e = —24 => e = —2

Taylor-Entwicklung für x = 2 : fix ) = l -(x- 2)3 - 3 -(x- 2 )2 + l -(x- 2) - 2
Näherung 2 .0rdnung : q2(x) = - 3 -(x- 2)2 + l -(x- 2) - 2 = - 3x2 + 13x - 16;je näher man bei x=2 ist , desto besser gleicht das Verhalten von f demVerhalten der Parabel q2 , q2 ist Schmiegparabel.
Näherung 1 . Ordnung: q^x) = (x- 2 ) - 2 = x - 4,Näherung 0 .Ordnung: q0(x) = - 2

12. Ist M = {(a I a I b ) I a , b e IR } mit den Verknüpfungen von V2 ein Vektorraum ?
Nenne gegebenenfalls eine Basis und die Dimension von M._ _
v = (av I av I bv) , w = (aw I aw | bw ) :
v + w = (av + aw| av + aw| bv + bw ) e M , r -v = ( rav I rav I rbv ) e M ,also ist M Vektorraum, seine Dimension ist 2 .

13 . Es sind 3 Vektoren aus dem Vektorraum V der reellen Tripel gegeben . Prüfenach , ob der von ihnen gebildete Vektorraum U der gesamte VektorraumVist . Welche Dimension hat U ?
a) ( 11 41 - 1) , (3 I - 11 2 ) , ( 2 ] 01 1 ) b) ( 1111 0 ) , ( 01 11 1 ) , (31 lM l
a) Überprüfung der Vektoren auf lineare Abhängigkeit :

( 11 4 [ —1 ) = p (3 I - 11 2) + q(2 I 0 I 1)
1 = 3p + 2q (I) , 4 = - p ( II ) , - 1 = 2p + q (III )
p = - 4 und q = 8 erfüllen (II) und (III ) , aber nicht (I), also sind die Vek-
toren linear unabhg. , d .h . U = V, U hat die Dimension von V, nämlich 3 .

b) Überprüfung der Vektoren auf lineare Abhängigkeit :
( 11 11 0 ) = p( 0 I 111 ) + q(3 111 —2 )
1 = 3q (I) , 1 = p + q (II ), 0 = p - 2q (III )
q = | und p = | erfüllen die drei Gleichungen, also sind die Vektoren
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linear abhängig , das heißt , U * V. Weil die Vektoren nicht Vielfache ein
und desselben Vektors sind , hat U die Dimension 2 .

14, Ist jedes Element des Vektorraums V der reellen Tripel darstellbar als
Linearkombination der Elemente ( 11 4 1 2 ) , (6 1 111 ) und ( 3 1 5 1 2 ) ?

Überprüfung der Vektoren auf lineare Abhängigkeit :
p (l I 41 2 ) -4- q( 6111 1) = (31 51 2 )
p + 6q - 3 (I ) , 4p + q = 5 (II ) , 2p + q = 2 (III )
die Lösung von (II ) und (III ) p = 1,5 und q = - 1 erfüllt (I ) nicht ,
also sind die Vektoren linear unabhängig und deshalb eine Basis ;
jedes Element dieses Vektorraums ist darstellbar als Linearkombination der
drei Basisvektoren ( 1141 2 ) , (61111 ) und (31 51 2) .

15 . Zeige : Die Vektormenge {( 11 11111 ), (011111 1), (01 01111 ), ( 01 01 011 )}

_ des Vektorraums V der reellen Quadrupel ist eine Basis von V.
( 1111111 ) , ( 01 11 111 ) , (01 01 111 ) und (01 01 011 )
müssen linear unabhängig sein :
( 11 11 11 1 ) = p ( 0 111111 ) + q( 0 I 0 111 1 ) + r (0 | 01 0 | 1 )
1 = p -0 + q -0 + r -0 , Widerspruch , also sind die Vektoren linear unabhängig .

16 - U sei der Vektorraum , der von den Vektoren a = 2x2 - 2x + 1 , I
b = 3x2 - x + 4 und c = x2 - 7x - 7 des Vektorraums V der Polynome bis
zum Grad 2 gebildet wird . Gib eine Basis und die Dimension von U an . [

Überprüfung der Koeffiziententripel ( 2 I - 2 I 1 ) , ( 3 I —11 4 ) und ( 11 - 7 I - 7 )
auf lineare Abhängigkeit : ( 2 I - 2 I 1 ) = p( 3 I - 11 4 ) + q( l I - 7 I - 7 )
2 = 3p + q (I) , - 2= - p —7q ( II ) , 1 = 4p - 7q (III )
die Lösung von (II ) und (III ) p =| und q = f erfüllt auch (I), also sind die
Tripel linear abhängig ; weil sie nicht Vielfache ein und desselben Tripels sind ,
hat V die Dimension 2 . {(2 I —21 1 ) , (3 | —11 4)} ist eine Basis .

17. U sei der Vektorraum , der von den Vektoren a - ( 11 5 I 3 ) , b ( 21 11 4 )
und c = (31 - 31 - 5) des Vektorraums V der reellen Tripel aufgespannt
wird. Gib eine Basis und die Dimension von U an . - - —
Überprüfung der Tripel auf lineare Abhängigkeit .

_ 9
p( l I 5 | - 3 ) + q(2111 — 4 ) = (31 — 31 — 5 ) wird erfüllt von p = - 1 und q - »
also sind a , b und c linear abhängig ; weil a , b und c nicht Vie ac e ein u
desselben Tripels sind , hat u die Dimension 2 . Eine Basis is , c .

18 . Untersuche , ob die folgendenVektormengen eine Basis des Vektorraums V
der reellen Tripel sind

, . , . - . . i
a> {(21 - 11 - 3) , <41 711 )} b) UllOlS ) , (2l ll - T ) , (- 4 l - 2 1 > . <S 0 3 )1

_ c ) (nlnl - n ralsln f_ i I - 41 - 7 ) 1 d> (q 1 2 11 ) , (2j5llM3l « l5 )l
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Die Vektormengen von a ) und b ) sind keine Basen , weil eine Basis im
dreidimensionalen Vektorraum aus drei Tripeln bestehen muß .
c) Überprüfung der Tripel auf lineare Abhängigkeit :

p( l I 0 I - 1 ) + q(3 I 211 ) = (- 11 - 41 - 7 ) wird erfüllt von q = - 2 und
p = 5 , die Vektoren sind linear abhängig , bilden also keine Basis .

d) Überprüfung der Tripel auf lineare Abhängigkeit :
p ( l I 21 1 ) + q(2 | 5 I 1) = (3 I 41 5) wird von keinem Wertepaar p , q erfüllt,die Vektoren sind linear unabhängig , bilden also eine Basis .

19 . Welche Dimension hat der Vektorraum , der aufgespannt wird von :
a ) {(- 3 I 2 I 3 ) , ( 11 - 2/3 1 —1 )} b ) { ( 11 11 1 ) , (2 I 3 I —2 )}
e) {x2 + 2x - 1,2x 2 + 4x - 2)_ d ) {x2 - 4x + 3 , - 2x2 + 5x + l }
a ) Weil das erste Tripel das - 3fache vom zweiten ist , ist die Dimension 1.
b ) {(11111 ) , (2 | 3 I - 2)}

Weil kein Tripel Vielfaches des andern ist , ist die Dimension 2 .
c) {x2 + 2x - 1,2x 2 + 4x — 2}

Weil das Koeffiziententripel ( 1 i 21 - 1 ) die Hälfte von (21 41 - 2 ) ist ,ist die Dimension 1 .
d) {x2 - 4x + 3 , - 2x2 + 5x + l }

Weil kein Koeffiziententripel Vielfaches des andern ist ,ist die Dimension 2 .

20. Untersuche , ob die angegebenen Mengen einen Vektorraum bilden .Nenne gegebenenfalls seine Dimension .
a ) Die Menge der Lösungen des Gleichungssystemsxx + 2x2 - x3 = 0

2xx + 5x2 + 2 x3 = 0 als Teilmenge von IR 3

b ) Die Menge der Lösungen des Gleichungssystemsxx + 2x2 - x3 = 2
2xj + 5x2 + 2 x3 = 9 als Teilmenge von IR 3

a ) Die Lösungstripel p(91 —411 ) bilden einen eindimensionalenVektorraum .
b ) Die Lösungstripel (- 81 51 0 ) + g( 91 — 41 1 ) bilden einen zwei¬

dimensionalen Vektorraum , eine Basis ist {(- 81 5 I 0 ) , ( 91 - 41 1 )} .

21 . a ) Welche Dimension hat der Vektorraum V = {( a I b I 0) I a , b e IR } ?b) Zeige: {u,v} mit u = (21 51 0) und v = (0111 0) ist eine Basis von V.
a) Einfachste Basis {( 11 01 0) , (0111 0)} , die Dimension ist 2 .b) Zeige: {u,v} mit u = (21 51 0) und v = (0111 0 ) ist eine Basis von V.Kein Vektor ist Vielfaches des andern , also ist {u,v} eine Basis .
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22. Untersuche auf lineare Abhängigkeit :
a ) Vektorraum der reellen Tripel

{( 2 I - 5 I 0 ) , (- 11 3 I 7 ) , (- 6 111 1 ) , (- 3 I 4 | 9 )}
b) Vektorraum der Polynome bis zum Grad 2

{2x , 2 - x2
, - 3x2 + x + 4 , V2 - V2 x}

Die Tripel und die Polynome bis zum Grad 2 gehören einem dreidimensiona¬
len Vektorraum an . Eine dreidimensionale Basis besteht aus drei linear un¬
abhängigen Vektoren . Vier Vektoren sind dann linear abhängig ( Satz J2I ) .

23 . Im Vektorraum V = IR 4 sind die Vektoren u = ( 11 2a I 011 ) , v = (a I 01 2a 11 )
und w = (a I 11 a I 0) gegeben .
a) Für welche Werte von a ist {u , v , w} linear abhängig ?
b) Wähle für a einen Wert so , daß die Menge {u , v , w} linear unabhängig

__ ist und ergänze diese Vektormenge zu einer Basis des IR 4
._

a ) Ansatz für lineare Abhängigkeit :
p ( 11 2a I 0 11 ) + q(a I 01 2a 11 ) = (a 111 a I 0)
p + aq = a (I) , 2ap = 1 (II ) , 2aq = a (III ) , p + q = 0 (IV)
aus (III ) und (IV) folgt q = \ und p = - f ,
(I ) und ( II ) sind erfüllt , wenn a = - 1 ist .

b) Wahl a = 0 . dann gute Überschaubarkeit ,
u = ( 11 01 0 [ 1 ) , v = ( 01 01 0 11 ) , w = (0111 01 0 ) werden ergänzt durch
einen Vektor , der an der 3 .Stelle keine 0 hat , ( 01 0111 0).

24. Zeige : Ist {a , b} eine Basis eines zweidimensionalen Vektorraums , so ist

(u , v} mit u = X-a + p -b und v = a -a + x-b genau dann eine Basis ,
__ wenn kp ^ ox ist ._ _ _ _

Wenn {a, b} Basis , dann {u,v } Basis :
(u , v) muß linear unabhängig sein . Ansatz : ru + sv = 0
es muß gezeigt werden , daß (r I s ) = ( 01 0 ) ist :
r(ka + pb ) + s(aa + xb) = 0 =* (rX + so )a + (rp + sx)b = 0
weil {a,b} linear unabhängig ist , gilt : vX + so = 0 und rp + sx = 0 .
Die eindeutige Lösung ( r I s ) = ( 01 0 ) gibt es genau dann ,

wenn
X a
p x = Xr - fJ.G ^ 0 , q.e .d .

Wenn {u, v} Basis , dann {a,b} Basis :
Das System u = Xa + pb

v = oa + xb ist für D
X o
p x = Xx - po * 0 eindeutig auflösbar

a = D D v b = 0 X- D u + D vnach a und b :
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T g
ÜC - [IOaus a ) folgt die Behauptung wegen

25. Die Menge M aller Linearkombinationen der Vektoren a = (x+1)2 und
b = (x- 1)2 aus dem Vektorraum der Polynome bis zum Grad 2 ist auch
ein Vektorraum . Den Termen (x+ 1 )2 und (x- 1 )2 sind durch x h > (x+ 1 )2
und x t—> (x- 1)2 Funktionen mit den Gleichungen y = (x+ 1 )2 und y = (x- 1)

2
zugeordnet , deren Graphen Parabeln sind .
a ) Beschreibe die Graphen der Funktionen , die den Elementen von M

zugeordnet werden können . Zeige, daß gilt : Es gibt
genau eine

keine
unendlich viele .

x„ * + 1
± 1 a ys * 0
± 1 A y .

Parabel (n ) mit dem
Scheitel (xs I ys) , wenn

b ) Zeige : Durch Übergang zur neuen Basis {a + b , a — b} vereinfacht
sich Aufgabe a ) .

c) Zu den Elementen des Vektorraums M gehören die Vektoren
u = x2 + 1 und v = 2x2 + 2 . Warum ist (u,v ) keine Basis von M ?_

a ) Die Linearkombination p(x+ l )2 + q(x- l )2 ist wieder ein Parabelterm
p (x+ l )2 + q(x—l )2 = (p +q)x2 + 2(p- q)x + p + q, solang p ^ - q ist .Im Fall p = - q ist 2px der Term einer Gerade durch den Ursprung .

eingesetztergibt ys = ^
xs = + l =+ p = 0 , q + 0 => unendlich viele Parabeln mit ys = 0xs = —1 => q = 0 , p * 0 => unendlich viele Parabeln mit ys = 0Der 2 .Fall xs = ±1 a ys + 0 ist also nicht möglich.
Umkehrung : unendlich viele Parabeln mit ys = 0 , wenn xs = ±1 (3 .Fall)
xs + + 1 : xs = auflösen nach p oder q: p = q, für jedes xs + ±1 gibt
es eine eindeutige Beziehung zwischen p und q, also genau eine Parabel.

b ) Neue Basis {a + b , a - b} = {2x2 + 2,4x ) , noch etwas einfacher {x2 + 1,2x1Die Linearkombination p(x2 + 1) + 2qx ist wieder ein Parabelterm
p(x2 + 1 ) + 2qx = px2 + 2qx + p , solang p * 0 ist .Im Fall p = 0 ist 2qx der Term einer Gerade durch den Ursprung .
x s = — ~ eingesetzt ergibt ys = ^ (p2 - q2 )
xs - + l => p =: - q, q + 0 => unendlich viele Parabeln mit ys = 0xs - _l => P = q , q ^ 0 => unendlich viele Parabeln mit ys = 0Der 2 .Fall xs = ±1 a ys + 0 ist also nicht möglich .
Umkehrung : unendlich viele Parabeln mit ys = 0 , wenn xs = ±1 (3 .Fall)xs * ±1 : p + + q liefert genau eine Parabel .

c) u und v sind linear abhängig : v = 2u.
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26 . Zeige : Die Vektormenge {(x- 1 )2
, x2

, (x+ 1 )
2

} ist eine Basis des Vektorraums
der Polynome bis zum Grad 2 . Das heißt :
Aus den Termen (x- 1)2

, x2 und (x+ 1)2 der zugehörigigen Parabeln
läßt sich jeder Term ax2 + bx + c der zugehörigen , beliebigen Parabel
p durch Linearkombination erzeugen .

Stelle mit der Basis {(x- 1)2
, x2

, (x+ 1 )
2

} den Term der Parabel dar ,
die die Gleichung y = x2 + 2x + 2 hat .

Linearkombination : p(x- l )2 + qx2 + r (x+ l )2 = (p + q + r )x2 + 2(r - p )x + p + r
Koeffizientenvergleich : a = p + q + r , b = 2(r - p ) , c = p + r
l = p + q + r , 2 = 2(r - p ) , 2 = p + r => r = f,p = | ,q = - l

Ergebnis : x2 + 2x + 2 = \ (x- 1 )
2 - x2 + 1 (x+ 1)2

27. Jedem Vektor u = ax + b des Vektorraums der Polynome bis zum Grad 1
wird durch y = ax + b die Gleichung einer Gerade zugeordnet .
Man spricht von »Geradentermen « ax + b.
a) Gib 2 Geraden an , deren Terme so beschaffen sind ,

daß sie eine Basis des Vektorraums bilden .
b) Nenne 2 Geradenterme , bei denen diese Forderung nicht erfüllt ist .

a) y = x + 1 und y = x - 1 , Basis {x+ 1 , x- l }
b) y = x + 1 und y = 2x +2 , Basis {x+ l }

28 . Welche Dimension (in Abhängigkeit von pelR ) hat der Vektorraum aller
Linearkombinationen der Vektoren a , b , c und d aus IR 4:
a) a = ( 11 11 01 0 ) , b = ( 01 01 111 ) , c = ( 111111 p

2) , d = ( 11 |i 2 1 11 p)

_ b) a = ( 01 21 41 1 ) , b = (- 21 p | 4p 1 1 ) , c = ( 01 - p I - 3 I 0 ) , d = ( 11 01 11 1)

a) p( l | 11 0 I 0 ) + q( 01 0 | 11 1 ) + r( l 111 11 p2) = ( 11 p2 111 p)
p + r = 1 (I ) , p + r = p2 (ID, q+ r = 1 (III ) , q + rp2 = p (IV)
aus (I ) und (II ) folgt p2 = 1 , p = ±1 ,
aus (III ) und (IV) folgt p = 1 .
p 1 : Es ist keine Linearkombination von a , b , c und d möglich,

a , b , c und d eine Basis . Die Dimension ist 4.
p = 1 : c = d , die restlichen Vektoren a , b und c sind auch abhängig a+b = c ;

jetzt sinds nur noch zwei: a und b sind unabh . , die Dimension ist 2 .

b) p(0 I 2 | 4 | 1) + q(0 I - p I - 3 I 0 ) + r ( l I 0 1111 ) = (- 21 p I 4p I 1)
r = - 2 (I ) , 2p — pq = p (II ) , 4p - 3q + r = 4p (III ) , p + r = l (IV)
aus (I ) und (IV) folgt r = —2 , p =3 , eingesetzt in (II ) und (III ) ergibt
6 - pq = p (II ') , 10 - 3q = 4p (III ’) aufgelöst nach p ergibt
4p2 — 13p + 18 = 0 , hat wegen der neg . Diskriminante keine Lösung ,
für kein reelles p ist eine Linearkombination von a , b , c und d möglich,
also ist a , b , c und d Basis für jeden Wert von p . Die Dimension ist 4.
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29. a = ( 11 - 11 2 ) , b = ( 01 21 1 ) , c = ( 11 3 I 4 ) , d = ( 11 11 0 )
Bestimme die Dimension des Vektorraums aller Linearkombinationen von
a ) a , b , c (Va ) b ) d (Vb ) c) Va nV b_
a ) Sind a , b und c linear abhängig ? p( l I - 1 1 2 ) + q(0 | 2 I 1) = ( 1 1 3 I 4)

p = 1 (I) , - p + 2q = 3 (II ) , 2p + q = 4 (III )
die Lösung p = 1 , q = 2 von (I) und (II ) erfüllt (III ) ; weil a , b und c linear
abhängig sind , a und b aber nicht , ist die Dimension 2 .

b) Die Dimension ist 1 .
c ) Ist d auch als Linearkombination von a und b möglich ?

p( l I - 11 2 ) + q( 0 I 21 1 ) = ( 1111 0 ) , wird von keinem Wert p , q erfüllt ,
Va n Vb = { }, die Dimension ist 0 .

30. a = ( 11 - 111 ) , b = ( 11 p I p) , p e IR
Ergänze {a , b} zu einer Basis von IR3

. z .B . : {( 11 - 111 ) , ( 11 p I p ) , ( 01 011 )}
Für welche Werte von p ist die Ergänzung nicht lösbar ?_ _ _
Die Ergänzung ist nicht möglich , wenn ( 11 p | p) eine Linearkombination von
( 11 - 11 1 ) und ( 01 011 ) ist , wenn es einen Wert für p , q und p gibt in :
p( l I - 111 ) + q( 01 0 11 ) = ( 11 p | p) , wird erfüllt von p = 1 , p = - 1 und q = - 2.
Nur für p = - 1 ist die neue Basis dreidimensional .
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Sätze

1 . a= (21 —1 ! — 4 ) und b = (— 31 01 2 ) spannen den Untervektorraum U
des Vektorraums V der reellen Tripel auf .
a ) Welche Dimension hat U ?
b ) Welche der folgenden Vektoren gehören U an :

u = (01 - 3 I - 8 ) , v = (- 11 - 11 3 ) , w = ( 11 01 0) ?_
a ) Weil a und b linear unabhängig sind , hat U die Dimension 2 .

b ) Überprüfung mit dem Komplanaritäts -Kriterium :

det (a , b , u ) =
2 - l - 4

- 3 0 2
0 - 3 - 8

- 0 det (a , b , v ) =
2 - 1 - 4

- 3 0 2
- 1 - 1 3

* 0

det (a , b , w ) =
2 - 1 - 4

- 3 0 2
10 0

£ 0 u gehört zu U , v und w nicht .

xa + yb + zc = p
Lösungen : 3

U
zum Beispiel

2x - 3y - 4z = 1

2. Zeige (siehe Satz [l ] ) :

p = ( 11 - % | 3 ) ist auf mehrere Arten darstellbar als Linearkombination von

3- Zeige : a ) Jede Obermenge einer linear abhängigen Vektormenge ist

ist linear abhängig .
b ) Jede Teilmenge einer linear unabhängigen Vektormenge

ist linear unabhängig .

a ) Wenn {aj , a 2 , . . . , aj linear abhängig ist , dann gibt es ein m -Tupel

(pÜPal . . . fp,,,) * (0101 . . . 10 ) , so daß gilt pxa 1 + H2a 2 + . . . + PnA^ 0

Dann gilt auch in der Obermenge {a x , a2 , . . . , am} u {am +1 , . . . , an}

(Piai + g2a 2 + . . . + pTnam) + (0am+1 + . . . + 0a n) = 0 ,
es gibt also ein n -Tupel (px IP2 1 . . . Ip™ 101 . . . 10 ) * ( 0101 . . . I0 ) ,
so daß gilt g^ + g.2a2 + . . . + p„an = 0 .

b ) Kontraposition von 3 . a )
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4 Zeige : Sind a und b Vektoren des Vektorraums V,
dann ist U := {ka + pb I k,p e IR } ein Untervektorraum von V.

Welche Dimension kann U haben ?_
U ist ein Untervektorraum , weil mit u = k:a + Pxb und v = k2a + p^b auch
jede Linearkombination ru +sv = (rk x + sk^ la + (spi ■!■ rp 2 )b wieder in U ist.
Die Dimension kann sein
0 , falls a = b = 0
1 , falls {a,b} linear abhängig , a oder b ungleich null
2 , falls {a,b } linear unabhängig

5. Untersuche , ob mit den Verknüpfungen von von V2 die folgenden Tripel¬
mengen Untervektorräume des Vektorraums V der reellen Tripel sind :
a ) M = {(a I b I 0 ) I a,b e IR}
b) M - {(a I b I c) I a + b + c = 0 a a,b,c e IR}
c) M = {(a I b I 1 ) I a,b e IR } d) M = {(2a I 0 I 3a ) I a e IR }
e ) M = { ( a- b 1 a+b 1 a ) 1 a,b e IR }_ f) M = { (4a | 3a I a 2 ) I a e IR }_
a) u = (ax I bj I 0) und v = (a2 1b2 1 0) e M

=+ ku + pv = (ka:+ pa 2 | kbj -H pb2 | 0 ) e M => M ist Untervektorraum .
b) u = (ax I bj I Cj) und v = (a2 1b2 1 Co ) e M und a^ + bj + q = 0

= > ku + pv = (kaj + pa 2 l kbx + pb 2 | kcx + pc 2) e M , denn
( kai + pa2 )+ ( kbi +pb2 ) + (kci+pc2) =k( ai +bi +Ci ) +p(a2 +b2 H- c 2 )= k -0 + p -0 = 0
=> M ist Untervektorraum .

c) M ist kein Untervektorraum wegen (0 I 0 I 1 ) + (0 I 0 11) = (0 I 0 I 2 ) $ M
d) u = (2a1 1 01 3aa ) und v = (2a2 1 0 I 3a2 ) e M

= > ku + pv = (2 ( kaj + pa 2 ) l 0 | 3 ( kax + pa 2 ) ) e M = > M ist
Untervektorraum .

e) u = ( ax- bj I ax+bx I ax ) und v = (a2- b, I a2+b2 1 a2 ) e M
=> ku + pv = ( (kaj + pa 2 ) - (kbj+ pb2 ) l (kax+ pa 2 ) + ( kbi -i- pb 2 ) l kax+ pa2) e
M => M ist Untervektorraum .

f) M ist kein Untervektorraum wegen
(4 I 311 ) + (41 3 | 1) = (8 I 61 2) = (4 -21 3 -2 I 2) $ M

6. Zeige : Die Schnittmenge von Untervektorräumen eines Vektorraums V
ist wieder ein Untervektorraum von V.

Gib ein Beispiel dafür an , daß dieser Satz für die Vereinigung von Unter -
vektorräumen nicht gilt ._
Schnittmenge S = Uj n U2 ; a,b e S
= > a,b e Ui a a,b e U 2 = > ka + pb e U x a ka + pb e U 2 ka + pb e S , q .e .d .
Uj = {ka 1 kElR , a * 0} U2 = {pb I pelR , b * 0) , (a,b ) linear unabhängiga e Ui u U2 , b e Ui u U2 , a + b $ Uj u U2 , sonst wäre a+b = k0a oder a+b = M+t)
beides im Widerspruch zur linearen Unabhängigkeit von {a,b } , q.e .d.
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7. Sei V der Vektorraum der Polynome bis zum Grad 2 .
Zeige , daß die folgenden Mengen Untervektorräume bilden , und gib jeweils
eine Basis und die Dimension an .
a) Menge aller Polynome bis zum Grad 2 mit der Nullstelle 0.
b) Menge aller Polynome bis zum Grad 2 mit den Nullstellen 0 und 1 .
c) Menge aller Polynome bis zum Grad 2 mit den Nullstellen 0 , 1 und - 1 .

a) p/O ) = p2(0) = 0 , =* (kp x + pp2)(0) = kp^ O) + |ip 2(0) = 0 , also ist die Menge
ein Untervektorraum ; allgemeines Polynom : x( ax+b ) = ax2 + bx
Basis : bx = x , b2 = x2

, Dimension : 2

b) p^O) = 0 , pjd ) = 0 , ie { l,2 )
=> (kp x + (j.p2 X0 ) = kp^ O ) + pp2(0 ) = 0 ,

(kp x + pp 2 )( l ) = kpid ) + jLtpad ) = 0 , also ist die Menge ein
Untervektorraum ; allgemeines Polynom : ax(x — 1 ) = a(x2 - x)
Basis : bx = x2 - x , Dimension : 1

c) p(x) = 0 , nur das Nullpolynom erfüllt die Bedingung .
{0} ist ein Untervektor raum der Dimension 0 .

& Beweise den Satz oder gib ein Gegenbeispiel an :
Wenn die Menge von Vektoren {a , b , c I a , b , c * 0} linear abhängig ist ,
dann ist c darstellbar als Linearkombination von a und b ._

Gegenbeispiel: c * 0, a = b = 0 .

[

I

9- Es sei {a x , a2 , . . . , am) linear unabhängig , aber {a x , a2 , . . . , am , b} linear

abhängig . Zeige : b läßt sich darstellen als Linearkombination der a, .

m

i + |xb = 0 , mindestens ein Koeffizient ist ungleich null
i=l

m

H-* 0 , weil sonst {ax , a2 , . . . am} linear abhängig wäre => b =
i= l

10 . Zeige : Ist {bx , b2 , b3} eine Basis eines dreidimensionalen Vektorraums V,
dann ist auch {bx + kb2 + pb3 , b2 + öb3 , b3} eine Basis von V mit

_ _ beliebigen reellen Konstanten ._
Annahme : x(bx + kb2 + pb3 ) + y(b2 + öb3) + zb3 = 0

=> xbx + (xk + y)b2 + (xp + yo + z )b3 = 0
{bx , b2 , b3} linear unabhängig => x = 0

xk + y = 0 => y = 0
xp + ya + z = 0 => z = 0

=> {b ! + kb2 + pb3 , b2 + ab 3 , b3} linear unabhängig , => Basis , q.e .d.
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11 . a ) Zeige : Im Vektorraum der Funktionen über IR sind die

Funktionen mit den Termen
flx ) = 1
g(x) = sin x
h(x) = cos x linear unabhängig .

b) Sind im Vektorraum der Funktionen über IR die folgenden
Funktionen linear unabhängig ?

ftx) = 1
g(x ) = (sin x )2
h (x) = (cos x)2

a ) Annahme : a - 1 + b sinx + c cos x = 0
x = 0 => a + c = 0
x = % => a + b = 0
x = Jt => a - c = 0

=> a = b = c = 0 , q .e .d

b) Die Funktionen sind linear abhängig wegen
(- l )-l + l -(sin x)2 + l -(cos x)2 = 0 .
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Gruppeund Körper

123

1 . Zeige: Legt man in der Menge IR der reellen Zahlen beziehungsweise in
der Menge © der rationalen Zahlen die gewöhnliche Addition und

Multiplikation als Verknüpfungen »+« und » . « zugrunde ,
so kann als Vektorraum aufgefaßt werden :
a) IR über IR b) IR über © c ) © über ©

Warum ist © kein Vektorraum über IR ?

a) IR ist eine Gruppe bezüglich der Addition .
gelten wegen des Distributivgesetzes in IR .D und D

As gilt wegen des Assoziativgesetzes in IR . 1 -a = a gilt für alle aelR .
Dim IR / IR = 1 , weil 1 eine Basis ist 1 -a = a für alle aelR .

b)

c)

d)

IR ist eine Gruppe bezüglich der Addition .
D s und | D V| gelten wegen des Distributivgesetzes in IR .

As gilt wegen des Assoziativgesetzes in IR . 1 -a = a gilt für alle aelR.
Dim IR / © = oo , weil © abzahlbar , IR aber überabzählbar ist .

© ist eine Gruppe bezüglich der Addition .
D s und ID J gelten wegen des Distributivgesetzes in © .

As gilt wegen des Assoziativgesetzes in © . 1 -a = a gilt für alle ae © .
Dim © / © = °° , weil 1 eine Basis ist 1 -a = a für alle ae © .

© ist kein Vektorraum über IR , weil z . B . a^ 2 t © für ae © \ {0} gilt .

2. Gib für die Vektorräume , wenn möglich , die Dimension und eine Basis an :

a) © über © b ) IR über IR c) IR über ©

a) Basis 1 , Dimension 1 b) Basis 1 , Dimension 1

c) Basis {l , a/ 2 , . . . (?)} , Dimension °°

{l , V2 , . . . ( ? )} kann nicht explizit angegeben werden .

3- Zeige : Im Vektorraum IR über © sind linear unabhängig

____ a ) die Vektoren 1 und ^ 2 b ) die Vektoren 1 , ^ 2 und ^ 2

a) Annahme : a -1 + b"\f2 = 0, b * 0 , a,be© => ^ 2 = - § l (Widerspruch)

b) Annahme : a -1 + b~\[2 + c\J
~
3 = 0 , c = 0 liefert Widerspruch , siehe a)

c * 0 => "\/3 = a + ßV2 , a,ße © => 3 = a 2 + 2aß [̂2 + 2ß2
, => V^e © ^

4* G sei die Gruppe der Kongruenzabbildungen , die ein Quadrat auf dieses

Quadrat abbilden mit der Nacheinanderausführung als Verknüpfung .

Wieviel Elemente hat G ?
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1_ 2 oben stehen die Urbild -Ecken , unten die zugehörigen Bildecken

4 Drehungen
fl 2 3 41 fl 2 3 41 ( 1 2 3 41 ( 12 3 4
[ 1 234 ) [ 2 341 ) [ 3412 ) [ 4123
4 Spiegelungen
( 1 2 3 4 ) ( 1 2 3 41 ( 1 2 3 41 ( 12 3 4
[ 3 2 1 4 ) [ l 4 3 2 ) [ 2143 ) [ 4 3 2 1

Die Gruppe hat 8 Elemente .

5. V sei der Vektorraum der Tripel über dem Körper {0 ; 1}
(siehe Gruppe und Körper )
a) Gib alle seine Vektoren an.
b) Welcher Vektor x ist Lösung der Gleichung ?

_ q ) x + x = 0_ ß ) x + ( 11 011 ) = (0111 0)
a ) 8 Vektoren (01 01 0) , (01 011 ) , (0111 0) , ( 11 01 0)

( 11111 ) , (0 1111) , (1111 0) , (11 011 )
b) a ) x + x = 0 gilt fürjeden Vektor aus V.

ß ) x + ( 11 01 1 ) = (Ol 11 0) || + ( l | 0 | l ) => x = (11111 )

6. Restklassenkörper modulo 3
Zeige: Die Menge {0 ; 1 ; 2} bildet einen Körper ,

wenn man die Verknüpfungen so definiert :
a + b = Rest von (a+b) bei Division durch 3
ab = (a -b)

Addi
+

ions
0

tafe
1 2

0 0 1 2
1 1 2 0
2 2 0 1

Multiplil cationsta
• 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

K ist bezüglich + eine K\ {0} ist bezüglich • einekommutative Gruppe mit n+ = 0 kommutative Gruppe mit n . = 1
Das Distributivgesetz gilt in (Q (sogar in kl ),also sind die Reste bei der Division durch 3 auch gleich .
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1 . Gib eine Gleichung der Gerade g an , die durch A in Richtung
~v läuft :

a ) A(0 I 3 I 1) v 1 =
( 2 X

2 b) A(2141 6) , V =
( 2 \

4
1-lJ UJ

c) A(0 | 0 | 0)
r - 1 \

- 2 d ) A(- l I - 2 I - 7) v =
/ In

2

_^ / 0 N ( 2 ■) _^ / 2n / In
a ) g : X = 3UJ+ X 2

l- v
b) g : X = 4 + X 2

l 3J
_^ / In _^ / - lN rl / In

c) g : X = X 2
l 3 J d ) g : X = - 2

1 -7 V+ X 2UJ= B 2UJ

_^ f 2 > ( 4 \
2. g : X = 0 + x - 2UJ

Berechne die Punkte P, , die zu den Parameterwerten X gehören
^i = l ; h = 0 ; Xs = - 1,5 ; k4 = 100 ._

Pi (6 I - 2 I 0 ) , P 2 (2 I 0 | - 1 ) , P 3(- 4 | 3 I - 2,5 ) , P 4(402 I - 200 I 99 )

3. Stelle die Gleichung der Gerade g auf , die durch A( 11 2 ( 3 ) geht und
parallel ist zur

/ 2 \

a ) x 1-Achse b ) x 3-Achse c ) Gerade h : X = 2 + k
-2J

/ 3 N

/ l > fi / In fOy _ ^ / lN fS \
a) g : X = 2 + x 0 b) g : X = 2 + x 0 c) g : X = 2 + X 5

UJ UJ 'v 3 J UJ V3 ,

U Gib
~
Gleichungen der drei Koordinatenachsen anT

xx : X = X
( lA —- r ° ^ _ / 0 N

0 x2 : X = g i x3 : X = v 0
UJ V° 7 ,

Gib Gleichungen der Geraden an ,
___ die den Winkel zwischen x4-Achse und x3-Achse halbieren .

_ _ fl _ x /
X = \ 0 und X = g

\
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6. Beschreibe die besondere Lage der Geraden im Koordinatensystem
_ ^ r 1 '' f 5 j —- fO \

a : X = 0 + x o b ) b : X = 1 + p 0
Uv w Uv l- lj

c ) c : X = v | 1 d) d : X = p
( 0 \

v ° v
e) e : X = cw

_ ^ v r 0 > - - f 1 ' ( 1 N
f) f : X = F + x 1 g ) g : X = 0 + M- 0

1 ° , Uv UJ
a ) a ist die xx-Achse.
b ) b ist eine Parallele zur x3-Achse durch (0111 0 ) .
c) c geht durch den Ursprung , die Schni ttwinkel von c und den

Koordinatenachsen sind gleich groß (Würfeldiagonale !) .
d) d ist die x2-Achse.
e) e ist eine Gerade durch den Ursprung .
f ) f geht durch F und ist parallel zur x2-Achse.
g) g halbiert den Winkel von positiver xr Achse und positiver xs-Achse.

7. Gib eine Gleichung der Gerade an , die durch den 4 . und 6 . Oktanten
geht und mit jeder Koordinatenachse denselben Winkel einschließt .
X = X

rl \
- 1

( 2 \ V- 3n _ ^ v - 3n ( 2 \
4

Uv
+ G - 5

U 7 V
, h : X = - 5

U 7 V
+ T 4

UJ.. v ✓ \ ✓ \ y \ yÜberlege dir an einer Skizze den Schnittpunkt von g und h.
g = i = 1 , Schnittpunkt (- 11 - 11 - 1)

9. A( 11 21 3 ) , B ( 5 I 6 | 7)
a ) Bestimme eine Gleichung der Gerade AB .
b) Bestimme eine Gleichung der Halbgerade [AB.
c) Bestimme eine Gleichung der Halbgerade AB],
b) Bestimme eine Gleichung der Strecke [AB] ,

_ ^ / 1 \ f In _ „ VIn / Ina ) AB : X = 2 + JU 1
, XeIR b ) [AB : X = 2 + x 1

\. 3 J lK l 3 J V. U_ x ( 1 ( \ \ _ fl \ fi \c) AB] : X = 2 + x , A, < 1 d) [AB] : X = 2 + x t
. 3 / K. ■■) u / UJ

<<■ 4
H
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10 . Gib Gleichungen der Geraden an , auf denen die Seiten des
Dreiecks A( 0,25 I - 1,5 I 3 ) , B (4 ! 61 - 7 ) , C ( 11 0 1 2 ) liegen .

f 4 \ ( 3 > fl > ( 3 )
AB : X = 6 + X 6

l-sj II 0
l 2 v+ h 6

l" 4J BC : X =
f 1 ) ( 1 ■

)0 + V 2
l- 3J

11 . Gib Gleichungen der Geraden an , auf denen die Seitenhalbierenden sa ,
sb und sc des Dreiecks A(— 5,5 14 1- 3 ) , B (7,5 1 0 1 9 ) , C( ll,5 1 2 [ 9 ) liegen .

Aufpunkte sind die Seitenmitten Ma( 9,5 I 11 9 ) , Mb(3 I 31 3 ) und Mc( l I 2 I 3 ) .
_ ^ / 9,5 \ ( 5 a

s„ : X = + X - 1 sb : X =
( 3 \ f 3 ') _ ^ ( 7 \

= 3
l 3 J+ h - 2

l 4 J sc : X = 2
l 3 ;+ V 0

l 4 J

Dreieck ABC hat den Schwerpunkt S (41 81 0) . DS : X

A(4 I - 8 I 0 )

D(- 2 | — 6 I 0 )

H(- 2 | - 6 I 6 )

M ( 1 | - 7 I 3 )

12 . A(21101 1,5 ) , B (41 81 0,5) , C (61 61 —2 ) , D (— 81 41 0 ) ist ein Tetraeder . Stelle
dne Gleichung der Gerade auf , in der die Schwerlinie liegt , die durch D geht .

13 . ABCDEFGH ist
ein Quader ; K
und L sind Kan -
tenmitten , M ist
Flächenmitte .
Gib Gleichungen
der Geraden an :
a) EF und FG
b) BE und BG
c) DF und AG
d) CM und BM
e) KL und LM

1
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a ) EF : X =

b ) BE : 7L =

c) DF :
~
X =

( 7 \ rl \ _ ^
1 + x 3 FG : X = 1 + g - l

l 6 J ^ oj
, 7 > ( 1 _ ^ r 7 ^ 3 A

l + V 3 BG : X = i 1
1- 2 , lo , , 3 /

( 7 ' / i > ( - 3 >
1 + P 7 AG : X

*
= 3 :- G 11

l 6 , l 6 , l 6 , l 6 J
_ ^ r 0 > _ ^ , 7 \

d) CM : X = 3
l 9 ,

+ T 10
1- 3,

BM : X = 1
loj

+ X
6 N

- 3

e ) KL: X =
fl r 9 i _ ^ ( 1 > , 9 \

3
l 3 V

+ Y - 13
l 6 J

LM : X = - 7
l 3 ,

+ CO 7
l 6 J

_ ^ ( 1 ) r - t ) _ v r 2 b r 3 i14. g : X = 2
l- 1!+ G 0

l 2 ) h : X = o + T
l sj 2

l 2 J
Welcher der Punkte A(3 I 21 — 5 ) , B(- l ) 2 ] 3 ) , C ( 21 01 5 ) ,D(11111 ) und E (—11 - 2 I 3 ) liegt auf welcher Gerade ?
A und B liegen auf g, C und E liegen auf h .

15 . P (—7 112 | 18 ) , Q(3 | - 81 8 ) . Welcher der Punkte A(4 I - 10 I 7 ) , B ( 11 - 4110)
C(- l I 0 I - 12) , D(- 9 | 16 I 20 ) und E (- 6 | 10 I 17 ) liegt
a ) auf der Gerade PQ ? b ) auf der Strecke [PQ] ?

_ ( 3 1 r-1)
PQ : X = - 8

l 3 ,
+ X 2UJ oIIO" P (k = 10)

mx = - l ) , Ba - 2 ) , Da - 12) , Ea = 9)
a ) alle auf PQ b ) keiner auf [PQ]

16 . a : X = G + gv b : X = 2G H- g
'v '

c : X = G + g -2 v
d : lT = 2

~
G + g -2X"

e : X
*

=
~
G - gV f : X

*
= -

"
G + g

"v
g : X = — G - g v Welche Geraden sind identisch im Fall
a ) G ?tO , G, "v nicht parallel b ) G * 0 , G parallel V

a ) a , c, und e — b und d — f und g b ) alle : X = o v
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_ ^ ( 2 ) ( 3 _ v /
17 . X = 1 + x - 3 und X =

1 ° ; L 2 J l
- 4 > / - 6n
7 + p 6 beschreiben dieselbe Gerade.

- 4 ] t - 4j

a) Welchen p-Wert hat der Punkt für X = 1 ?

b) Welchen k-Wert hat der Punkt für p = - 2 ?

c) Welche Beziehung besteht zwischen X und p eines Geradenpunkts ?

a)

c)

X = 1 =* A(51 - 21 2 ) hat | ;

für jeden Geradenpunkt X gilt :

b) p = - 2 =* B (8 I - 5 I 4) hat X = 2
r2 f 3 f —4 \ ( - 6ni1 + X - 3 = 7 + p 6

l 2 V 1 - 4 J l - 4 J
( 6 > ( 3 > r 6 ^- 6 + x - 3 + p - 6
^

4 ) ^ 2 J ,
4 ;

o ; k + 2p + 2 = 0 erfüllt alle drei Gleichungen.

18 . Wie bewegt sich der Punkt X mit dem Ortsvektor X = ^ +
wenn p alle erlaubten reellen Zahlen durchläuft ?_
ß ist das Verhältnis , in dem X die Strecke [AB] teilt : A X = |iXB
X läuft auf der Gerade AB , trifft aber nicht auf B ,
weil ß nicht den Wert - 1 haben kann.

19 . Zeige: Ein Punkt P mit dem Ortsvektor P = X A + p B liegt

._ genau dann auf der Gerade AB , wenn gilt : X + p = 1 .

Aus X + p = 1 folgt X - 1 - |i , eingesetzt in den Ausdruck für P ergibt:

P = ( 1 - p) A + p B = A - pA + pB = A + p( B - A ) = A + p AB ,

P = A + p AB ist die Gleichung einer Gerade durch A mit Richtung AB .

20. Welche Punktmenge wird von der Gleichung X = A + ku + pv
( u , v o ) beschrieben , wenn
a) X konstant ist , während p die reellen Zahlen durchläuft
b) p konstant ist , während X die reellen Zahlen durchläuft
c) u und "v ’ linear abhängig sind und beide Parameter die reellen

Zahlen durchlaufen
_ d) X konstant ist , während p die nicht negativen reellen Werte annimmt.

a) Gerade mit Richtung
~v durch den Punkt (a1 + Xu1 1 a2 + Xu2 1 a3 + Zu3)

b) Gerade mit Richtung rf durch den Punkt (ax + pvj I a2 + pv2 1 a3 + pv3)

c) Für Xli + pv schreibt man einfacher v u (oder ov ).

Die Punkte X liegen auf einer Gerade durch A mit Richtung u .
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d) Halbgerade mit Richtung , Startpunkt (a: + I a2 + au2 I a3 + Ä,u3)

_ x r 1 ^ r- i \
21 . g : X = 2

{-v+ G - 2
1 ° J

a ) Welcher Punkt von g liegt 2 Einheiten vor der x2x3-Ebene ?
b) Welche Punkte von g haben von der XjXg-Ebene den Abstand 8 ?
c) Welche Punkte von g liegen 1 Einheit unter der x^ -Ebene ?
a ) x1 = 2,2 = 1 - o =» g = - 1 , A(2 14 1- 1) c ) alle
b) x2 = ± 8 , ±8 = 2 - 2g => g1 = 5,o 2 = - 3 ; B^- 41 - 81 - 1) , B2(41 81 - 1)

22. Auf der Gerade durch A( 12 I 24 | 36 ) und B ( 12 I 42 I 63 ) liegendie Mittelpunkte von Kugeln mit Radius 12 .
a ) Zwei Kugeln berühren die x1x3-Ebene .

Berechne die Mittelpunkte M und die Berührpunkte B .
b) Wo berühren die Kugeln die x2x3-Ebene ?

_ ^ fl2 \ r ° Aa ) AB : X = 24
l36j

+ 1 2
L 3 J, die Mittelpunkte haben von der x^ -Ebene den

Abstand 12 ( =Kugelradius ) , ihre x2-Werte sind also ±12 : ±12 = 24 + 2t .
Kugel 1 : t = - 6, Mj ( 12 | 12 | 18 ) , 6 ^ 12 | 01 18 )
Kugel 2: t = - 18, M2( 12 | - 12 | - 18) , B2 ( 12 | 0 I - 18)

b) Weil alle Punkte auf AB von der x2x3-Ebene den Abstand 12 haben,
liegen die Berührpunkte liegen auf : X = s

/ 0 \

V3 j

23. Kugeln mit Radius 23 rollen auf der Gerade r der x2x3-Ebene ; r gehtdurch P (01 5 i 6 ) und Q( 01 61 5 ) . Wo liegen die Kugelmittelpunkte ?
Die Mittelpunkte liegen auf zwei Parallelen , dazwischen ist die x2x3-Ebene

. f23 -) . f- 23 n
& : X = 5 + s - i g2 : X = 5 + s - i

V 6 ) l 6 ; 1 1 J
_ x ( ~7 -\ ( 5 \

24. g : X = 5
1 - 4J

+ G - 2
IsJ

A(& 1 1 a2 1 8) , B (- 12 I k | - k ) , C (cj I 11 1 ) , D ( 2k I - 3k | k ) , E (4k- 3 I 11 2k)Berechne die fehlenden Koordinaten in A bis E so , daß diese Punkte auf gliegen .
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A: 8 = - 4 + 3c , => a = 4 ; a^ 13,a 2 - - 3 A( 13 i — 3 I 8 )
B : - 12 = - 7 + 5a , => a = - 1 ; k = 7 B(—12 I 7 I —7 )
C : 1 = - 4 + 3a , => c = f ; l = 5 - 2a , => c = 2 C liegt nicht auf g
D : k = - 4 + 3a , => a = f (k + 4 ) ; - 3k = 5 - 2 - § (k + 4 ) => k = - 1 , a = 1

k = —1 und a = 1 erfüllen auch 2k = - 7 + 5a D (—2 | 3 I - 1 )
E: 1 = 5 - 2a , => a = 2 ; 2k = - 4 + 3a , => k = 1

a = 2 und k = 1 erfüllen 4k - 3= - 7 + 5a nicht , E liegt nicht auf g

25 . Liegen die Punkte Pa auf einer Gerade ?

Stelle gegebenenfalls eine Gleichung der Gerade auf .
a ) Pa( l +2a I 2- 7a I - l - 2a ) b ) P a( 3a- 2 | 4 I — 6a )

c) P a( a I 11 0 ) d) Pa( l + a I 1 - a I a + 1 )
e) Pa(a 2

1 a I a+1 ) f) P.dloli )

_ ^ f l + 2a \ ( 1 > ( 2 1
a ) X = 2 - 7a

l- l - 2aj
2 + a - 7

l-2 J
_ ^ ( Q. \ ri \

c) X = 1 = i
1 ° )+ a 0

Loj
e) geht nicht

_ f3a - 2 's ( - 2 -s ( 3 1
b ) X = 4

l - 6a J= 4
l o J+ a 0

l- 6j

_ ^ fl + a 's ri >i r 1 ^
X = 1 - a l 4 a - 1

l a + 1 J UJ UJ

f ) X =
( 21a.

0
1/a

( 2 \
; die Punkte liegen auf einer Ursprungsgerade ;

sie enthalten den Ursprung nicht .
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1 . Gib eine Gleichung der Gerade g durch P ( 11 - 21 3 ) an , für die gilt :
a ) g ist parallel zur x2-Achse b ) g ist parallel zur x^ -Ebene
c) g ist parallel zur x2x3-Ebene _ d ) g geht durch den Ursprung .

_ ^ ( 1 > _ v ( 1 1 aIa
a ) X = - 2 + k 1 b ) X = - 2 + x 1U ; l °J Ua loj

_ ^ f 1 > ( 0 \
c ) X = - 2 + x 1

CO
d) X = \ ~t

2 . Bestimme die Spurpunkte und den Oktantenverlauf der Geraden a bis m :
( 4

a : X =
'( 4 A f- l \ —- r 9 ^ f 3 a ( 8 A /- 1 + a i b : X = - 2 + ß - 2 c : X = 1 CO+ :±1- 4 UJ 18 UJ l 2 J {

viri V I n

A S2(31

IV

01 - 2) S3(21

I

11 0) Si (01

V

3 1 4 )

VI

B S2( 61

IV

01 4 ) S3(3 1

I

21 0 ) Si (0 1

n

11 — 4 )

1
S2(41 01 2 ) SjCO I 3 I 2 )

_ .. f - 4 \
d : X = - 5 + 6 0

1 -7 J UJ
. a - 2a

e : X = 3
l 9

/ - 2a _ * /-- 8a a4a
+ e 1 f : X = - 3 + q> 3

l 3 J l 9 J UJ
III vn

S3(- 4 |
vm

n- 51 o ) r
i n

^2,3^

m
lolo ) Sjiol

n
21 6 ) E

I V

F S2(- 41 01 6 ) SifO I 3 ] 3 ) Ss(41 6 I 0)

_ ^ r 5 a f - 2A f 6 > f 0 A _ * —4 A r iAX = - 3 + Y 3 h : X = - 6 + V - 3 i : X = 8 + 1 - ll 2 J l ^ J V 8 J UJ l - 4 > Ua .
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VIII VI I n

S3(4 I 6
V

[ r
10) G S2(S

I
O £ GO o 4,5 I 7)

S3(61 61 0 ) S2(61
VI | I

Ol 4 ) H
IV

1
,I S13( 01410 ) S2(41 0 I 4 )

_ v r 3 ) r ° ) ( - 7 \ ( 1 ) ( 1 >
j : X = - 2

V 4 ,
+ K i

<-v k : X = - 21
L 14 J+ x 3

l-v 1 : X = 0 + p 0
t 1

2

J
IV

S2>3(3 I 01 0 )

m v
K S123 (0 | 0 | 0)

Si j2(01 01 - 2) S2.3(- 2 ! 0 I 0)

3. Welche besondere Lage im Koordinatensystem kann eine Gerade haben
a ) mit genau zwei Spurpunkten ? b) mit genau einem Spurpunkt ?
c) mit keinem Spurpunkt ? _ _ _
a) , b) , c) Gerade liegt in keiner Koordinaten-Ebene
a ) 1 ) ist parallel zu einer K-Ebene , aber nicht parallel zu einer K-Achse,

2 ) schneidet eine K-Achse und die dazu senkrechte K-Ebene
b) 1 ) geht durch O 2 ) ist parallel zu einer K-Achse
c) so was gibts nicht !

4- Welche besondere Lage im KOSY kann eine Gerade haben, wenn sie genau
a) 3 b) 2 c) 1 d) 0 Oktanten besucht ?

a) geht nicht durch den Ursprung und ist weder parallel zu einer K-Achse
noch zu einer K-Ebene (allgemeiner Fall)

b) 1) ist echt parallel zu einer K-Ebene und schneidet eine K-Achse
2 ) ist echt parallel zu einer K-Achse und liegt nicht in einer K-Ebene
3 ) geht durch O und ist nicht parallel zu einer K-Ebene

c) so was gibts nicht! d) Gerade in Koordinaten-Ebene (oder K-Achse)
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f 3 N / 3n
- 4 + P 0

16 / 12J
Gib die senkrechten Projektionen von r in die drei Koordinatenebenen an.

_ / 0 n / 0n _ /3n
rt : X = - 1 + p 0 , r2 : X = 0

v 6 J v ®,+ P
/ 3n
0

lV
_ ^ / 3 n / 3 \

, r3 : X = - 4 + p 0
l o J l ° J

6. Gib Grund - und Aufriß an von s : X =
/ In

2
l-2J+ a

/ 2 N1
l-lj

_ ^ r 1 ! / 2n _ ^ ( 0 1 ( Q N
s3: X = 2

1 ° /+ G 1
loj CO II 2

l - 2j
+ G 1

l- ! j

7. Regentropfen , die in Richtung
/ In

v 3y
ans x1x3-Fenster klopfen , hinterlassen

auf der Scheibe Wasserspuren ; welche Richtung haben diese ?

Richtung der Wasserspuren
/ In

v- 3 /

8. Eine Leiter lehnt an der x2x3-Zimmerwand , A(2 I 101 0 ) und B(0 | 10110)
sind die Endpunkte der Leiter . Welche Richtung haben die Sprossen ?
Die Leiter kommt ins Rutschen und klatscht so auf den x1x2-Fußboden ,daß sich die Richtung der Sprossen nicht ändert .
Auf welcher Gerade liegen die Endpunkte der Leiter jetzt ? _

Sprossenrichtung
/0n — /0n / In1 ; Gerade : X = 10 + X 0
1 ° /

10 . Spiegle die Gerade u : X =

a ) an der x1x3 -Ebene
c ) an der x3-Achse

b ) an der x1x2-Ebene
d) an der xr Achse e) am Ursprung .

9. t 3 ist Grundriß , t 2 ist Aufriß der der Gerade t .Gib eine Gleichung von t an :
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r - 3 % _ f- 3 'l / - i 'i
2

l 3 J+ a - 2
l 3 y b ) X = - 2

l- 3 J+ ß 2
l - 3j

\ r 1 ') —x / - 3 > / l '' _ f 3 y- n
+ Y - 2 d ) X = 2 + S 2 e ) X = 2 + e 2

J l 3 J 1- 3 J l 3 , l- 3y l 3 J
_ ( 3 \

11 . Spiegle die Gerade v : X = 4
l 3 J+ 1 2

a) an der XjX3 -Ebene b) an der x1x2-Ebene
c) an der x3-Achse _ d ) an der xr Achse e) am Ursprung .

_ x ( 0 > f3 _ ^ ( 0 > ( 3 \
a ) X = - 4

y 3 J+ cc - 2 b) X = 4
l-3j+ ß 2

_ ( 0 > ( 3 -y _ ^ ( 0 \ ( 3 f 0 ^
c) X = - 4

V 3 J
+ Y 2 d ) X = - 4 + 8 - 2

" 3J (,0j
e ) X = - 4

1- 3J
+ e 2

l °J

12 . Welche Richtung !en ) kann eine Gerade haben ,
wenn sie bei Spiegelung an der x1x2-Ebene in sich übergeht ?

Die Gerade ist senkrecht zur x1x2-Ebene : Richtung

Die Gerade liegt in der x1x2-Ebene : Richtung

0

13 . Welche Richtung hat eine Gerade , die parallel ist
zu ihrem Spiegelbild bezüglich der x2-Achse ?

Die Gerade ist parallel zur x2-Achse : Richtung

Die Gerade schneidet die x2-Achse senkrecht , ist also

Richtung
f 'h 'i0
l vsJ

parallel zur x^ -Ebene :

14. Die XjX ^-Ebene und die x2x3-Ebene seien Spiegelebenen , die x1x2-Ebene sei

durchsichtig , also keine Spiegelebene .
Auf welcher Gerade verläßt ein Lichtstrahl diesen Winkelspiegel , wenn er

r - 3 \
von Q( 9 | 4 | 3 ) in Richtung v = - 2

v - 3 y
einfallt ?



136 VII . Geraden im Raum

Der einfallende Strahl liegt in a : X =
_ v f 9 ) f - 3A
X = 4

l 3 ;
+ 0C - 2

1 - 3 J
. Spurpunkte von g:

Sj (01 - 21 - 6 ) für a = 3 , S2(3 I 01 - 3 ) für a = 2 und S3(61 21 0) für cc = 1 .a = 1 ist der kleinste positive Parameterwert : der Strahl trifft zuerst die
x ^ g-Ebene in (61 21 0) ; der dort reflektierte Strahl liegt in

r6 > /
2 + ß

V1 ° ;
2 . Spurpunkte von b:b: X =

Tx(01 - 21 6 ) für ß = 2 , T2(31 01 3 ) für ß = 1 und T3(61 21 0 ) für ß = 0 .
ß = 1 ist der kleinste positive Parameterwert : der Strahl trifft dann auf die
x1x3-Ebene in (31 01 3 ) ; der dort reflektierte Strahl liegt in

c: X =
f3 } r - 3 ^0
l 3 J

+ y 2
l 3 J Spurpunkte von c:

U x( 0 I 21 6 ) für y = 1 , U2 (3 I 01 3 ) für y = 0 und U3 (6 1- 210 ) für y = - 1 .
y = 1 ist der kleinste positive Parameterwert : der Strahl trifft schließlich aufdie x2x3-Ebene in (01 216 ) ; der dort reflektierte Strahl ist der ausfallende
Strahl , er liegt in c : X =

( 0 ^ f 3 )
2

l 6 J
+ 8 2UJ

15 . Das Koordinatensystem sei ein Tripelspiegel .

Von Q(41 51 2 ) fällt ein Lichtstrahl in

Berechne eine Gleichung der Gerade ,

Richtung v =

auf der er den

/ - i \
- l ein .

Spiegel verläßt .
Langer Rede kurzes Bild aufm hintern Umschlagdeckel der 2 . Auflage :Der einfallende Strahl ist der linke der drei einfallenden Strahlen .
Der ausfallende Strahl liegt auf der Gerade : X

\ r 1 )
+ y i

lij
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_ x rl \ 7l >
1 . g : X = 3 + X 2

- 1 9\ J vy
( 1 ^ r 1 \

a : X = - 5 + a - 2
<
~ b 7
1 7- 1 \

c : X = 1- 5 + Y - 2
1 0 - 2k

Welche Lage hat g zu

_ ^ ( 1 > ( 1 i
b : X = - 5

vb
+ ß - 2

l 2 )
7 - 1 '\ (b

d : X = + 8w

137

g und a schneiden sich
in (- 11 - 11 - 5 ) ,

g und b sind windschief
g und c sind echt parallel
g und d sind identisch .

2. Untersuche die Lage von g und h und bestimme
gegebenenfalls den Schnittpunkt :

_ ^ 7 —7 \ 7 1 / 1 > f 2 '
a) g : X = 2 3 h : X = - 8 + (1 2

l 1 ) Vb l _ 1 7 V- 6,

_ ^ 7 1 \ / 2a 7 - 2 \ ' 1a
b) g : X = 1 + x 1 h : X = 0 + p 0

l 3 J \ b l 1 /

_ ^ ( 2 \ 72a f ° ) ( 1\
c) g : X = 1 + X 1 h : X = 0 Hg 0

l 3 J Vb l ° J 1 ° J

_ ^ f 2 a ( - 3 ' f - 3 \ 6
d) g : X = - 2 + x c h : X = 5 + g - 10

A 1 7 A 1 / - 2 )

_ x 7- 2 \ 7 3 > 7 7 ' - 6a
e ) g : X = 1 + x 0 h : X = 1 + g 0

, 2 / V 5J ,- 13 , l 10 )

windschief

S(- l I 0 I 2 )

windschief

echt parallel

identisch

3- A(- 5 I 4 | - 2 ) , B(61 - 3 I 4 ) , C(10 | - 6118 ) , D(0 1 0 I 22 ) ; zeige durch Berech¬

nung des Diagonalschnittpunkts , daß ABCD ein ebenes Viereck ist .

7 - 5 A 7 3 \ — - 7 6 a 7 - 2 a
Die Diagonalen AC : X = 4 + x - 2 und BD : X = - 3 + g 1

, - 2 a * J l 4 ) l 6 J
schneiden sich in (41 - 21 10 ) (X= 3 , g = l ).

L Zeichne g und h ins linke Muster -KOSY, untersuche ihre Lage zueinander
und ihre Lage zur x3-Achse . Zwei ungewohnte Ansichten von Geraden ent¬

stehen ; mach dir klar , woran das liegt . Zeichne dann zur Verdeutlichung g
und h ins rechte KOSY. (Das rechte KOSY entsteht , wenn man das linke

KOSY 37 ° um die x3-Achse weiterdreht , die Blickrichtung ist in beiden

KOSYs 30 ° gegen die xxx2 -Ebene geneigt , geneigter Leser !)
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rechtes KOSYlinkes KOSY

h : X =

h : X =

a ) g und h sind windschief
(g zeigt sich als Punkt ,weil man in Richtung
von g aufs KOSY peilt )
g und die x3-Achse sind windschief ,h und die x3-Achse sind windschief
( auch wenns zu sehn schwerfällt :h liegt waagrecht , parallel zur
x^ -Ebene !)

b) g und h schneiden sich
in S(— 6 I 0 | - 3 ),
g und die x3-Achse sind windschief ,h und die x3 -Achse sind echt parallel .

a ) linkes KOSY

b ) linkes KOSY



g

>h

KOsy
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5. Beschreibe die möglichen Lagen der Geraden v und w im Raum ,die bei bestimmter Blickrichtung so ausschauen :

a ) v und w sind entweder echt parallel oder windschief (Aufgabe 4 . ) .
b ) v und w sind entweder identisch oder echt parallel (Blickrichtung

parallel zu der Ebene , in der v und w liegen ) .
c) v und w sind entweder windschief oder schneiden sich .
d) v und w sind windschief .
e ) v und w sind echt parallel .
f) v und w sind identisch.
(Eindeutigkeit dann , wenn man mindestens eine Gerade als Punkt sieht .)

G F
6. Die Ortsvektoren von A(61 01 3 ) ,

T von [AM] und [OS],
b ) Berechne den Schnittpunkt

B (6 I 12 I 0 ) und C (- 3 I 0 I 6 ) span¬
nen ein Spat auf .
M ist Kantenmittelpunkt ,S ist Mittelpunkt der Deckfläche ,
a ) Berechne den Schnittpunkt

U von [CT] und [OD] , Skizze
o A

a ) S = C + | B + | A OS : X

ÄMz 6
3

r - 6 \ _ / - 2 \
AM : X = 0 + n 2

Q l\ / \ -*■ /
OS und AM schneiden sich in T(2 I 4 | 5 ) .

b) OD : X CT : X o l + a 4

OD und CT schneiden sich in U = D ( 121121 3 ) .
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7. K, L, M, N , P und Q seien Kantenmitten
im Quader (rechts ) .Untersuche die La¬
ge folgender Geradenpaare und berech¬
ne gegebenenfalls die Schnittpunkte ,
a) PL und KM b) PL und NQ
c ) KM und NP d) HQ und NL
e) HQ und KP

K(41 4 | 0 ) , L(4 | 0 I 2 ) , M(2 I 0 I 4 ) , N( 0 I 41 4 ) ,
P(01 81 2 ) , Q(4 [ 8 ! 2 ) , H(0 I 01 4 )

_ * / 0 \ f- l \
a) PL : X = 8 + a

- - f4 '
KM : X = 4

0
PL und KM schneiden sich in S(3 I 21 2 ).

; PL und NQ sind windschief .

G(4181 41

D (OIOIO)

Ä (41010 )

_ ^ / 0 > / 2a
b) NQ : X = 4 + Y 2

l 4 , 1-lJ
_ ^ f0 \

c) NP : X = 4 + 5 2
l 4J {- y

f - 2 \
d) NL : X

*
= 4 + 8 2

_ ^ r 2 )
X = 0 + C 4

l 4J 1- lJ
NL und HQ schneiden sich in U(4/3 1

8/3 1
10/ 3 ) .

—* f4 ''
e) KP : X = 4

0

- 2 \

; HQ und KP sind windschief .

& K und L sind Kantenmitten der vierseitigen Pyramide ABCDE.
a ) Zeige, daß sich CK und DL schneiden , und berechne den Schnittpunkt S .
b) Untersuche die Lage von AC und ES . Schnittpunkt T ?

__ c) Untersuche die Lage von DK und CL. Schnittpunkt U ? _

ECO 1016 )

D (—31 —1210 )

C (- 3 1010 )
A (61 —1210 )

B(61010 )
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_ v r 3Ni r 2i
0 + 1) - 2

, DL: X = 0 + d 4
l 0 , UJ l 3 J

a) K(31 - 61 3 ) , L(31 01 3 ) , CK : X =

CK und DL schneiden sich , weil sie die Diagonalen im ebenen Trapez
DKLC sind; S(11 — 41 2).

b ) ES halbiert [AC] , T( l,51 - 61 0)
- 3 > _ ^ f2 \
0 + K o , DK X = - 12 + X 2
0 J l 0 ; UJ

, Schnittpunkt U(91 016)

_ ^ ( 2 \ f - 2 \ _ x f2 \ r 2 ^ _ v /
9. e : X = 0

l 5 , ( ? ) f : X =
[ ; ) g : X = y

\
a ) Welche besondere Lage im KOSY haben e und g ?
b) e und f sind windschief. Stelle eine Gleichung der Gerade t auf,die parallel zu g ist und e und f schneidet. Berechne die Schnittpunkte.Bei welcher besonderen Lage von g gibt es keine Lösung ? _
a ) e ist parallel zur x1x2-Ebene , g geht durch den Ursprung .
b ) Der allgemeine Geradenpunktvon e sei Aufpunkt von t , t ist parallel zu

t sf = r 2- 28 ! rio % _ x
5e + T 5 geschnitten mit f : X = 0

l 3 J l 1 J l 3 J

r2 \
+ cp

Gleichungssystem 2 - 2e + 10x = 2 + 2cp
5e + 5x = 5<p

5 + x = 3 + (p
_ * e - 2 \ r 10 \

5 führt zum
1 )

es hat die Lösungen
t = 1 , cp = 3 , e = 2

t : X = 10
v 5 y

+ T
vly

t schneidet f in (81151 6).

Geht nicht , wenn die Richtungen von e , f und g komplanar sind.

r - 2 \ ( 2 \ _ v ( 3 ) f - 2 \
6

l 1 ;
+ X

V._
_h : X = 0

l- 4 J
+ |1 4

l 3 J

10 . A(2 1 - 11 0) g : X =

a) Zeige , daß g und h windschiefsind.
b ) Stelle eine Gleichung der Geradek auf, die durch A geht und gund h schneidet . Berechne die Schnittpunkte . Bei welcher

_ besonderen Lage von A gibt es keine Lösung ?
r 5 ) 5 2 - 2 5 0 - 2- 6 , det( GH, -g,h ) = - 6 - 1 4 — - 6 3 4

- 5 3 5 - 5 8 5

a ) GH =

= 5( 15 - 32 ) + (—2 ) (— 48 + 15 ) * 0 , also windschief
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b) Die Richtung von k ist der Vektor, der A mit dem allgemeinen Geraden
punkt H(3 — 2ji 14ji I — 4 + 5p) von h verbindet.

, geschnitten mit g führt zuml + 4 |i
- 4 + 5 }i ,

Gleichungssystem
2 + k - 2Kp = - 2 + 2~k
- 1+K + 4kp = 6 - X,

4k + 5ku = 1 + 3X, mit den Lösungen A = 1 , k = 5 , p = 2

schneidet h in S(- l I 8 1 6 ) und g in T( 0 1 51 4 ) .

Die Sache ist aussichtslos , wenn der Verbindungsvektor A , g-Punkt

oder A , h-Punkt komplanar ist zu den Richtungen von g und h.

11 . a) Begründe , daß sich die folgenden Geradenpaare
schneiden , und berechne die Schnittpunkte S, :
AC und UW, Sx - BC und VW, S2 - AB und UV, S3

b) Untersuche die Lage von
SjSo und S,S 3 — S0S3 und S3Si - S3S: und S^

_ (PESARGUES läßt grüßen ! )_
’

a) Jeweils zwei Geraden schnei¬
den sich , weil sie in einer Sei¬
tenfläche der Pyramide liegen
und nicht parallel sind . Weil
das Grundflächen -Dreieck in
der x1x2-Ebene liegt , müssen
dort auch die Schnittpunkte
sein . Die dritten Koordinaten
der Schnittpunkte sind also
gleich null , die Schnittpunkte
sind also die Spurpunkte der
Geraden UW , VW und UV:
Sj (- 2 I 0 I 0 ) , S2 ( — 4] - 2 I 0 )
und S3(41 6 1 0 ) .

b) S1; S2 und S3 hegen
auf einer Gerade
(Satz von DESARGUES ) .

D ( 010110 )

U (41017,5 )

V (2I4I5 )

W (0I0I2,5 )\

C(OIOIO )

B (41810 ) ;

A ( 161010 )
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12 . A( 11 - 3 I 3 ) , B(3 I 11 - 3 ) , C( 11 - 11 3 ) und D( 11 3 I 3 ) bilden ein Tetraeder.
Zeige durch Rechnung : Die Strecken , die die Mitten zweier windschiefer
Kanten verbinden, schneiden sich alle in einem Punkt S.
In welchem Verhältnis teilt S diese Verbindungsstrecken ?
(Diese Eigenschaften hat jedes Tetraeder !)_
Zwei Geradengleichungen aufstellen , Schnittpunkt S berechnen und zeigen ,
daß S( l,51 011,5 ) auf der dritten Gerade liegt . S ist Mittelpunkt der Verbin¬
dungsstrecken, das Teilverhältnis ist 1 .

L

_ 5. / Ha / - 7 a _ ^ / 31a / 7 A13 . a : X = 17
1- 9/

+ a - 4 b : X = 7
1- 9 /

+ e U )
a ) Untersuche die Lage von a und b .
b) Bestimme eine Gleichung der Mittelparallele m von a und b .
c) a ' entsteht , wenn a eine Halbdrehung um b macht.

Bestimme eine Gleichung von a '.
d) b ' entsteht , wenn man b an a spiegelt .

Bestimme eine Gleichung von b '
. _ _

a ) a und b sind parallel, sie sind sogar echt parallel weil sie nicht parallel
sind zum Verbindungsvektor AB .

b) m geht durch den Mittelpunkt M der Verbindungsstrecke [AB] .
_ a. _ a. _ a. / 21a _ ^ / 21a ( 7 > / 7 AM = § ( A + B ) = 12

L 9J
m : X = 12

v 9J
+ D

' 4
l- 3j

= h 4
l- 3j

c) B ist Mittelpunkt der Verbindungsstrecke [AA'] : B = f ( A + A' )
— /51a _ „ / 51a / 7 aA' = 2 B - A = - 3 ä : X = - 3 + o 4

[- 9) l- 3j
d) A ist Mittelpunkt der Verbindungsstrecke [BB '] : A = f ( B + B ' )

_ v _ a. _ a. / - 9> _ ^ / - 9a ( 7 ^B ' = 2 A - B = 27
1 - 9;

b'
: X = 27

1" 9J
+ a 4

l" 3j
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14 . a) Zeige : Die Punkte A( 6 | - 11 6 ) , B(7 111 8 ) und C (41 - 5 I 2)
liegen auf einer Gerade g.

Gib eine Gleichung von g an .
. r 2 \

b) h : X = P + g - 1
v 1 y

, P(71 - 4 ! 5 ) . Zeige , daß sich g und h schneiden .

c) Bestimme Q und R auf h so , daß CQ parallel ist zu AP und CR
parallel ist zu BP . Zeige , daß AR und BQ parallel sind .

(Diese Behauptung bei beliebiger Wahl der Punkte A, B und C auf g und P auf h.
Das hat der griech . Mathematiker PAPPOS um 300 in Alexandria bewiesen .)

f 7 ^ r 1 a ( 7 ^ ( 2 \ s.
a) ,b ) g : X = 1

l 8 J
+ 7 2 h : X =

i 2 J
- 4

^ )
+ [L - 1 HG = 5

IsJ

det ( HG , g , h ) :
012 0 10
5 2 - 1 = 5 2 - 5
3 2 1 3 2 - 3

= 0

Weil g und h nicht parallel sind , schneiden sie sich .
( 1 + 2g '.

c) Q und R als allgemeine Geradenpunkte von h: - 4 - g
5 + g

CQ und CR als allgemeine Verbindungsvektoren :
^ 3 -p 2 jj. a

1 - H
3+ g ,

CQ = k PA :

CR = k PB

f3 + 2 |i \
1 - P
3 + g J

= k

( 3 + 2 \i
1 - P | = k

v 3 + g

( - 1
3
1

r0 \

v 3 y

=> k = 1 , |t = —2

l 1 3=> k = 2 , (A = — 2

Q (3 I - 2 I 3 )

R(4 I - 2,5 I 3,5 )

_ ^ / - 4 -\ . f - 2 \
BQ = - 3 , AR = - 1,5

1 -5 J L 2,5J; BQ und AR sind parallel wegen BQ = 2 AR

a) X = — z— - — beschreibt bis auf einen Punkt (welcher ? ) alle Punkte
1 + p

der Gerade AB . Welche geometrische Bedeutung hat der Parameter p ?

Ebenso lassen sich die Geraden BC und AC darstellen :

BC : X
B + 0 C

CA X =
C + x A

1 + g ’ ^ ' v 1 + x
b) R liegt auf AB mit p = 2 , S liegt auf BC mit 0 = 2 -

Bestimme den Schnittpunkt P der Geraden CR und AS .

®) BP schneidet AC in T . Berechne T und den zugehörigen Wert x.

Der italienische Mathematiker Giovanni CEVA ( 1647 bis 1734 ) hat bewiesen ,

daß in einer solchen Situation gilt : pax = 1 . Stimmts auch in diesem Beispiel
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A + pB A + pA - pA + pB A ( 1+ p)+ p ( B - A )a ) X = 1 + p 1 + p 1 + p
= A +_e_ -

1+ P
AB = A + n AB , mit p = ^ , p * - 1

b)

Weil ji nicht den Wert 1 annehmen kann , erfaßt diese Darstellung nicht
den Punkt B . p ist hier das Teilverhältnis.
1t = | ( ^A + 2

'
B ) ,R (6 | 2 | 6 ) ;

~
S = | ÜB + 1

"
C ) , S(- 6/5 | 2/5 I 0 ) ;

CR: X
( 3 \

Kb
und AS : X = p

r- l
. 0 /

schneiden sich in P(01 01 0).

_ ^ r6i _ v ( 12 }c) BP: X = V 4
l 9 ;und CA: X = - 2

l - 6 J+ K 0
L 6 J schneiden sich in

T(— 3 I - 2 I - 4,5 ) , v = - | ,k = j = , => x = | ; pax = 2 - 1 = 1 , stimmt!

. /- 14
16 . ga : X = 2

V 2
a ) parallel ist
c) durch W(v

+ h

zur
hl "

( 7 \
a . Bestimme a so, daß die Schargerade

x1x3-Ebene b) durch den Ursprung geht
- 4 I 5) geht , berechne W.

a ) g0 ist para
/•—14 + 7 (j.v

C) 2 + a |i U
l 2 - H J
g2 geht du

lei ist zur XjXg-Ebene b) g_ 4 geht durch den Ursprung
( WA

1
; g = — 3 , a = 2 , Wj = - 35 ;

rch W(- 35 I - 41 5 ) .

( 16 }17 . h, : X = 4
W )

a ) parallel is'
c) durch den
d ) die x 3-Ach .

/

V
; ZUI
Urs

3e sc

4a \
4 . Bestimme a so , daß die Schargerade13 —6a j

x1x2-Ebene b) die x2x3-Ebene nicht schneidet
Sprung geht
ihneidet, berechne den Schnittpunkt .

a)

b )

c)

3 .Richtungskoordinate = 0 , => a = y
l .Richtungskoordinate = 0 , => a = 0
r

\

16 + 4ag
4 + 4p

ll + 13p - 6ag

f0 \
0 Gleichungssystem enthält Widerspruch ,

' 16 + 4ag ' f
d ) 4 + 4g -

ll + 13g - 6ag j V

keine Schargerade geht durch O .
=> p = - 1 , a = 4 , z = 22 ; h4 geht durch (01 01 - 22)-
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18. A(a I - 21 3 ) und B (a + 4 | 0 I 5 ) legen die Schar ka fest . Welche Schargeraden
schneiden die Koordinatenachsen ? Berechne die Schnittpunkte .

ra \ ( 2 \
X = - 2

k 3 J
+ p 1 keine Schargerade schneidet die xr Achse

k6 schneidet die x2-Achse bei - 5 , k_ 4 schneidet die x3-Achse bei 5 .

N r 2 ^ ( 2 'S /
19. g : X = - 1

l 2 J
+ X 2

l- 1)
ha : X = 0

V
a) Beschreibe die Schar ha .
b) Für welche Werte von a sind g und ha parallel (identisch ) ?
c) Für welche Werte von a schneiden sich g und ha ?
d) Für welche Werte von a sind g und ha windschief ?_
a)

b)

ha ist ein Geradenbüschel mit dem Trägerpunkt (2 I 011 ) .

Parallelität : 2 = 2 GH = 1 # 1 , keine Identität möglich( 2 ( 2 1
1 1

[- V
2 = 4a

- 1 = - 2 a => falls a = \ , dann echt parallel
221 0 0 l- 2a

0 det ( GH ,
~
g , h ) = 1 2 2a — 1 2 2a = ( 1 - 2a )(- l + 2 ) = 1 - 2a

- 1 - 1 - a - 1 - 1 - a

Bedingung für Schnitt : det = 0 , => a = \ leider schon vergeben !
keine Schargerade trifft g.

d) Für a / 1 sind g und jede Schargerade windschief .

20. A( 11 21 2 ) , B ( 2 I - 11 1) gk : X =
f3 > /̂ 2k \
4

l 2 >
+ X - 9

l- 3j
a) Beschreibe die Schar gk .
b) Bestimme k so , daß gk parallel zu AB ist .
e) Für welche Werte von k sind AB und gk windschief ?

a)

b)

gk ist ein Geradenbüschel mit
( 1 1 _ r2 i

AB = - 3
L-iJ AG = 2

l ° J
Parallelität : 3

( 1 )
- 3 —- 9

{- b l- 3j

dem Trägerpunkt (3 I 41 2 ) .

AB # AG

AB und g1>5
sind echt parallel

c) det ( AG , AB , giT ) =
1 2k 2 1 2k

- 3 - 9 _ 0 _ 4 - 9- 2k
- 1 - 3 0 - 1 - 3

2 ( 12- 9 - 2k ) = 2 (3 - 2k )

g
Bedingung für Windschiefe : det * 0 , => k 5 ,
außer g15 sind jede Schargerade und AB windschief .
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21 . & : X f 2+t2 > ( 2 > _ ^ f—2 \
X - 2 + k | l ht : X = t + g t

v o J l- 2j l2J l 2 J
a ) Beschreibe die Schar gt .
b ) Für welche Werte von t sind gt und ht parallel (identisch ) ?
c ) Für welche Werte von a schneiden sich gt und ht ?

Gib den Schnittpunkt S an .
d) Für welche Werte von t sind gt und ht windschief ?

a ) Die Parallelenschar gt bildet eine Halbebene , weil die 1 .Koordinaten der
Aufpunkte mindestens den Wert 2 haben .

( 2 + t 2 \
b ) HG = ; für t - - 1 sind die Richtungen beider Scharen parallel ,

/ 2 \
für t = —1 ist HG =

c ) det ( gt , h t , HG ) =

, das ist die Richtung von gt ; =$> g_i = h_j .

2(t + l )(t 2 - 1)
2 - 2 1+ t2 2 0 t2- l
1 t 2- t 1 t + 1 2

- 2 2 - 2 - 2 0 0
Bedingung für Schnitt : det = 0,=> t = ±1
t = - 1 ist schon vergeben (Parallelität )
Schnitt : t = 1 , gj und h x schneiden sich in (1111 2) .

d) Für t ^ ±1 sind beide Schargeraden gt und ht windschief .

r22 . A(3 1 - 2 | 2) , B ( 11 2 1- 1 ) , g : X =: - 2 + x i , h. : X
l 2 )

( ! ) ( 2 'i
2 + P - 2 - a

. 1+ a ,a ) — - — —- 0 —— —a.b ) Für welche Werte von a liegen die Schnittpunkte Ta im IV .Oktanten ?
Für welche Werte von a schneiden sich g und ha in A ?

c) Bestimme den geometr . Ort der Schwerpunkte Sa der Dreiecke ABTa

a ) det ( GH , g , h a
- 2 0 2 - 2 0 0

— 4 1 - 2 - a - 4 1 2 - a
- 3 - 1 1 + a - 3 - 1 a - 2

= - 2(a - 2 + 2 - a ) = 0

Die Determinante ist für jeden Wert von a gleich null , keine
Schargerade ist parallel zu g ; deshalb schneiden sich jede Schargeradeund g.

b ) Die 1 . Koordinatengleichung im System » g = ha « liefert p = 1 und damit
die Schnittpunkte Ta(31 - a Fa) ; für a > 0 liegen diese im IV .Oktanten .
Für a = 2 schneiden sich g und ha in A.

o sT = U _ ^ ^ ( 7 ^ niz \ ( 0 "i+ 3B + | T a = | - a
la + 1;

— 0
1 1/3 ) + a - 1

llj
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_ x ( 0 N fl - a \
X = 5 - 5a + p a - 1

l 0 J l 1 J
a) Welche Schargerade geht durch P (- 451015 )

b) Welche Schargeraden sind parallel zu V =
rl \

vl ,
w =

v 1 i
c) Bestimme den geometrischen Ort der Punkte ,

die zum Parameterwert p = 2 gehören .
d) Bestimme den geometrischen Ort der Spurpunkte in der XjXg-Ebene .
e) Zeige, daß je zwei Schargeraden sind windschief sind ._

r - 45A f \x - a î \
a ) 0 = 5 - 5a + ajx - ju,

l 5 J
b)

1- aA
= | a - 1

1
f - k f 1—a \

k = a - 1
V k J l 1 J

, p = 5 , a = - 10

, Widerspruch , keine Schargerade ist parallel zu v

, k = 1 , a = 2 , j2 ist parallel zu “w
“

( p - ap f 2-2a \ ( 2 \ f - 2 \
X = 5 - 5a + ap - p - 3 - 3a - 3 + a - 3

l J l 2 J l 2 V l o J
alle Punkte mit p = 2 bilden die Gerade : X = 0

2

0 1 f 1_ a
ja : X = 5 - 5a + g a - 1

hyperbolisches Paraboloid

+ X 3
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d)
f xl ) f

0 —

V x 3 ; V

|i = 5 x
*

5 - 5a + a |i - |i

/' 5 - 5a \ r5

, 0 = 5( l - a ) - ji( l - a ) = (5- p.)( l - a )

0 | + a
5

f —5
0
0

die Punkte mit g, = 5 bilden die Gerade : X =

, das ist die x3-Achse.

,0y rl \
0 + V 0UJ l °J

_ ^ f ° N r ° x
li beliebig, a = 1 : X = 0 = h 0

UJ
e) zwei verschiedene Schargeraden (a * b ) :

_ v ( 0 i f 1—ä A _ v ( 0 > fl - b \
Ja : X = 5 - 5a

l o )+ M- a - 1
l 1 J Jb = X = 5 - 5b

l o ,+ V b - 1
l 1 J

Verbindungsvektor
_ x f 0 N r 0 > ( 0 'iAB = 5 - 5b _ 5 —5a = 5 a - b

l o J l o ) l 0 J

det ( | AB , j a , j b ) =
0 1- a 1- b

a - b a - 1 b - 1
0 11

= - (a - b )( l - a - 1 + b ) = (a - b )
2

für a * b ist die Determinante ungleich null , ja und jb sind windschief.
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_ v ( 0 \ ( 1+ a 'n
24. k, : X = 0 + x 2 - 3a . Stelle eine Gleichung für die Schar der Geraden

l5aJ l o J
auf, auf denen die Punkte mit jeweils gleichem Parameterwert x liegen .

_ ' x+ax ' fxl ' ax ' _ * f xl ' T '

X - 2x- 3ax
, 5a ,

— 2xloj
+ - 3ax

, 5a ,
\ : X = 2xLoJ

+ a - 3x
Ifi J

hyperbolisches Paraboloid
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_ ^ riß riß _ ^ rOß ( lß
25 . g : X = 0loj+ k i

l 2J h : X = 1loj+ P - 2UJ
Stelle eine Gleichung für die Schar der Geraden auf ,
die g und h treffen und zur XjXg-Ebene parallel sind .

f ß ) fl +A ( g- l - X
'i

Im allgemeinen Verbindungsvektor GH = 1—2g - X = l - 2g- A.
l P J V 2^ J v J

muß die 2 .Koordinate gleich null sein , => X = 1 — 2p , GH =
( 3 (i ^

0
5g—2

allgemeiner Aufpunkt der Schar k sei der allgemeine Geradenpunkt von h:
- - ( p > f 3p ß
X = l - 2g + K 0

l P / l 5g - 2j

26 . a : X a
rOß V /• lß r 0ß _ ^ ( 0 'l / iß

0Ia b : X = 0 + ß 1loj c : X = 1 + T 0
l ° J

Stelle eine Gleichung für die Schar der Geraden auf ,
die a , b und c schneiden ._

AB sei der Vektor , der den allgemeinen Punkt von a mit dem allgemeinen
Punkt von b verbindet

f (A f 1 ^AB = ß - 0 = ß
\ a J \ a J

sa,p sei die Schar der Geraden , die a und b schneiden sa ß : X =

Verbindungsvektor CS =
( (A

0
W

fo \
1UJ

GA fl )
X = 0 + G ß

l °A l- <v
( 0 ^

Va + 1 y

sa,ß soll c schneiden , also muß sein : det ( sa ß , c , CS ) = 0
1 1 0
ß 0 - 1

- a 0 a + 1
= - l (ß(a + 1 ) - a ) = 0 , => ß : a

a + 1

f (A f 1
'i

sa : X = 0 + G
a

a+ 1
v °v l - ctj

( 0 ^
0

v a y
+ \

r a+ 1 ^
a

-̂ afa + l ) ,

, a -t - - 1

a * - 1
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1 . Gib eine Parametergleichung der Ebene E an , die den Punkt P (- 2 I 11 7 )
r2 \ r - 3 \

enthält und von den Vektoren u und v = aufgespannt wird .

_ k f —2 ( 2 a 3 A
E : X = 1

Ui
+ X 1

UJ
+ p 5

l 1 J

2. Gib die Punkte A , B , C und D an , die in der Ebene E : X =
^ lj

+ k

liegen und die Parameterwerte haben
ao , = o i p = o ) , Bq = o i p = i ) , ca = 11 p = o ) , do , = 11 p = i ) .

1MT
A(2 111 3 ) B ( 0 ! 118 ) C(3 I 81 5 ) D ( 118 ! 10)

[& Untersuche , ob die Punkte A( 114 I 6 ) , B(5 I - 71 0) und C ( 141 21 7) in der

liegen , und nenne gegebenenfalls die zu¬f2 \ i 1 A f - 2 A
Ebene E : X = 0

UJ
+ x 1 + p 3

l 2 J

gehörigen Parameterwerte .

AO , = 11 p = 1 ) B liegt nicht drin C ( k = 8 I p = - 2 )

Stelle eine Parametergleichung der Ebene E (ABC ) auf mit den Punkten

a ) A(2 | 11 3 ) , B (- l I 0 I 5 ) , C (2 | - 7 I 3 )

_ b)_ A(2 I 11 - 3 ) , B (7 1 - 11 5 ) , C(- 3 1 3 1- 11 ) ( !)_

_ ^ f 2 a ru ZÖA
a ) E : X = 1 + X o Up 1

Ui [- 2 UJ
b ) Geht nicht : AB und BC sind parallel : A, B und C liegen auf einer Gerade .

&• Gib eine Parametergleichung der Ebene an ,
die festgelegt ist durch

a ) U ( l | 0 | - 1 ) , V(0 I 0 i 0 ) , W (- 2 | - 4 | l )

b ) P ( 11 2 I - 1 ) , g : X =

( 2 1_ ^ rl \ f
: X - 0 + x

A° J V

_ ^ rlA f
: X = 0 + x

Ui V

- 2
1

A2 \

fl ( 2 \
0 + x - 2

Ui UJ

_ ^ /' ! A
, h : X =

v ° i

( 3 \

+ p
n

2
- 1

k : X
i - 2A

+ p

E: X = X

E : X - | 0
0

( 1 A ( 2 ~
)

X 0 + U ^
{- b v

—1 J

2a
+ X \ ~2

E : X =

E : xU

+ X
i 1 A

0
v ° y
n

o | + x
o

t 2 A

V 1 /
i 2 a
- 2

+ p

+ p

+ h

aOa

V b
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6. g : X
V
=

fl \
- 2

UJ
+ X

V

- 8 \
- 4
- 12J

, f : X =
( 7 \ ( 6 \
- 2 + p 3

11 J l"9j
Bestimme eine Parameterglei¬
chung der Ebene E , die g enthält
und parallel ist zu f.

E : xT =
r 1

2
V

- 7 ,
+ x

( 2 \
1

UJ
+ p

2 i
1

- 3 )

7. A(71 - 11 5 ) , a : X =

metergleichung der !

( 2
1

l 7
Uber

( 3 \ _ f- 9 \ f 1 n
+ X. 5 , b : X = 8 + p 1 Gib eine Para -

j [ o ) ll3 J [ 5 )
le E an , die A enthält und parallel ist zu a und b .

E : X
*
=

f 7
- 1

l 5

\

+ x
/

/ 3 \
5UJ+ p

' 1 >
1

, 5j

8. Welche Punktmenge
beschreibt die
Gleichung
_ ^ z2 > ( 2 '\ ( 0 \
X = 5 + x 1 + h 5

UJ
wenn gilt :
- °° < X < + °° und
- 1 < P < 1 ?

Halboffcner ,
Parallelstreifon

(21511 )

geschlossen

9. Welche Punktmengen beschreiben die Parametergleichungen ( u vVo ):
a) X = 1?

p * 0 b)
~
X = ^ u

"
, p * l

c) X = Xu + pv,X + p = l d) X = X
~u + p

~v , X + p < 1
a ) Wegen - * 0 : Bis auf P alle Punkte der Gerade durch P in Richtung u

Bis auf U ( U = u ) alle Punkte der Ursprungsgerade in Richtung u
c) X + p = l , X. = l - p ; X = X. u + pv = ( l - p) u + pfv = u + p( v - u )

Gerade g durch U ( U = Ti ) in Richtung V - "u
d) X + p < l , A, < l - p,

X, = 1 - p - p , p > 0
X = X

~u + pV^
= ( 1 - p - ppu + pT
= ( l - p )Tt + p( T - Vf )
Offene Halbebene durch
O mit Grenzgerade g
von Aufgabe e)

ik

u - v
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10 . A(31 01 2)_^ ( 4 \
g : X = 1

UJ
+ x 0

UJ
Bestimme eine
Parametergleichung der
Halbebene H ,
die den Punkt A enthält
und von der Gerade g
begrenzt ist .
_ v ( 3 ^ fl ( 1a
X = 0Uj+ g 1UJ+ V 0

uJUJ UJ Ui
|1 < 1 (Bild !)

oder
Ul

o+ + G 1
J Uj UJ

a < 0

G(41113 )

11 . Führe die Parametergleichungen über in Koordinatengleichungen :
_ ^ f0 ) f0 \ f-

a) X = 1UJ+ x 6UJ V
(- 2\

3
0

c) X =
Oa

+ X \ 1
4

+ |X

\ _ ( 1 1
b) X = 4 - 1

UJ UJ
\ _ v Ul Ul

d) X = 2 \ + X i
) l-sj l-2J

+ |i | 0

+ h

_v ( 10 > ( 8 > ( 1 1 _v
e) X = 5 + X - 5 + g 15 f ) X =

u j r 2j l 6 J
n f * 1

2 \ + X
3

Ui
- 2
U /
6 \

a ) 3xj + 2x2 - 12x3 - 2 = 0
c) 2xj + 4x2 — x3 + 12 = 0
e) 2x2 - 5x3 = 0

b) 6xj - 9x2 - 5x3 + 52 = 0

d) Xj + x2 + x3 = 0

f ) x2 - 2 = 0

12 . Welche der Punkte A( 11 21 —2 ) , B (01 01 0) und C(2 I 011 ) liegen in der Ebene

_ a ) E : X ; + 2x2 - 2x3 = 0 b ) F : 3xj - x3 = 5_ c) G : x2 = 0_

B und C Aund B B und C

13. Bestimme den Paramter so , daß P ( 11 21 — 5 ) in der Ebene liegt
q \ I? . __ r » s\ 1- \ TT' . — fl / »I fl * 9 y , —a ) E : x1 - 2x2 + x3 — a = 0 b ) F : axt + x2 = 0 c ) G : 2x1 - 3x2 + ax3 = 2a

■6 - 5a = 2a
4

a = ~ 7
1 - 4 - 5 = a

- 8 = a

a + 2 = 0

a = - 2
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14 . Gib Koordinatengleichungen der Koordinatenebenen an .
xxx2 -Ebene : x3 = 0 x1x2 -Ebene : x2 = 0 x2x3-Ebene : xx = 0

15. Gib eine Koordinatengleichung der Ebene an ,
die festgelegt ist durch

( 2 'i ( - 5
a ) X = 2 + k - i + h 1

l-2 ; l 3 J
\ f \ \

)
2b ) P (- ll 3 I 3 ) , g : X

c) A( 1111 - 4) , B(0 I 2 I 1) , C(- 3 I - 11 - 2)

d) g: X
*

=

e ) g: X
*

=

( 0 \ rii ^ 0 \ f2
l 6 J
( 0 \

+ x 2
l 3 ;
( i >

, h : X =

- X.

2
V ® J

+ ]I
\
(2

1 6 J
+ x 2

l 3 ,
, k : X = 0 + G

\

a) x1 - 4x2 + 3x3 — 11 = 0

b ) 3xx - x3 + 6 = 0

c) 2xx - 3x2 + x3 + 5 = 0

d) 2xx + 5x2 — 4x3 + 14 = 0

e) 4x x — 5x2 + 2x3 - 2 = 0

( 2 "i ( 5 A _ ^ ( 14 > 2 ^x = i
l - 3 J

+ k ^
OC_'

, h : X = - 8
L i7 J+ g - 5

Zeige, daß sich g und h schneiden , und gib eine
Koordinatengleichung der Ebene an , in der g und h liegen .

rl6x
GH = , det( GH , g , h ) =

16 5 2
- 9 - 2 - 5
20 8 4

= 0; 32x x - 4x 2 - 21x 3 - 123 = 0

17. Die Würfelecken A , C , F und H sind
die Ecken eines regelmäßigen Tet¬
raeders . Bestimme Koordinatenglei¬
chungen der Ebenen , in denen die
Seitenflächen des Tetraeders liegen .

FAC: xx - x2 - x3 = 0
FCH : xx + x2 + x3 = 0
ACH: xx — x2 + x3 = 0
HAF: xx + x2 - x3 + 8 = 0
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18 . In einem Würfel liegt eine regelmäßige
sechsseitige Pyramide . Die .Ecken ihrer
Grundseite P , Q , R , S , T und U sind
Kantenmitten des Würfels . Bestimme
Koordinatengleichungen der Ebenen ,
in denen die Grundfläche und die
Seitenflächen der Pyramide liegen .

Grundfläche : xx - x2 + x3 = 0

Seitenflächen : AQR: x3 = 0

AST : x2 = 4 AUP : xl = - 2

ARS: X! + 2x2 — 2x3 - 6 = 0

AUT : 2xx — 2x2 — x3 + 12 = 0

APQ: 2xx + x2 + 2x3 = 0

19 . Die oberen vier Ecken des Sechsflachs liegen gleich weit über der xxx2-Ebene .

a) Begründe , daß das Sechsflach ein Pyramidenstumpf ist ,
und berechne die Pyramidenspitze S.

b) Bestimme Koordinatengleichungen der Ebenen ,
in denen die Seitenflächen des Sechsflachs liegen . _

a ) Das Sechsflach ist ein Pyrami¬
denstumpf , weil sich die Gera¬
den AE , BF , CG und DH im
Punkt S(- 3 I — 3 I 8 ) treffen ;
S ist die Pyramidenspitze . Das
kann man sich elementargeo¬
metrisch ( Strahlensatz ! ) an
den Trapezen ADHE , BFHD
und CGHD klarmachen .

b) Grundfläche ABCD: x3 =
Deckfläche EFGH : x3 =
Seitenflächen :
ADHE : x2 = — 3
ABFE : 4xx + 3x3 - 12 = 0
BCGF : 4xx + 16x2 + 15x3 - 60 = 0
CGHD : 4x , + x2 + 15 = 0
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20 . Die Ebenen E und F haben eine besondere Lage im Koordinatensystem .
Beschreibe diese und stelle Koordinatengleichungen der Ebenen auf .

r 3 ) ri \ _ v r0 \ r ° )E : X = 2 + x 0 + g 0 F : X = 3 + X i + g i
- 1 o 1 - 2 i - iv -v yv J ■LJ V ) yj \ J

E ist parallel zur x^ -Ebene , die 2 .Koord . aller Punkte in E ist 2 : x2 - 2 = 0
Die l .Koordinate aller Punkte in F ist 0 , F ist die x2x3-Ebene : xx = 0

21 . Gib eine Koordinatengleichung der Ebene an , die
a ) durch P ( 11 21 - 2 ) geht und parallel ist zur x1x3-Ebene

b ) die Gerade g : X =
( 4 ( 2 '

1 + *.- 3
3

J
enthält und parallel ist zur x3-Achse

c) durch den II . Oktanten geht und den (rechten )
Schnittwinkel der x 1x3-Ebene und x2x3-Ebene halbiert .

a ) x2 = 2

b)
Xi- 4 2 0
x 2 - l 3 0
x 3 — 3 - 1 1

c ) Xj + x2 = 0

= (Xi - 4 ) -3 - (x2 — l ) -2 + (x3 — 3 ) 0 = 3x x - 2x 2 - 10 = 0

22 . Gib Parametergleichungen an von :
a ) E : 2x x - x2 + 3x 3 - 6 = 0 b ) F : xx = x2 c ) F : x3 = 5

sM ?) _ „ fl \ / Oa _ ^ / 0 \ (X = X 1 + g o x = o + X 0 + gloj UJ UJ [ o ) l

23 . fa:
~
X =

a ) Zeige , da
b) Gib eine

( \ + & N
3 + 3a + X

v 3 _ a j
ß die Gerat
Parameter

1
l - u
lenschar eine Ebene E bildet .
- und Koordinatengleichung dieser Ebene E an .

a)

b)

fa (bloß anders geschrieben ) : X =
f 1 ) r 1 ) f - 2 \

3
l 3 ;

+ a 3
l- !j

+ x 1
1- iJ

Koordinatengleichung von E : 2x x - 3x 2 - 7x3 + 28 = 0
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fa ! X 5 3 +3a + X. 1

Parallelenschar

_ ( 2 > p - l 'l
Sa- X = 0

l 2 l
+ g. 2a + 2

l - a )
a) Zeige, daß alle Geraden der Schar in einer Ebene F liegen .
b) Gib eine Parameter - und Koordinatengleichung dieser Ebene F an .
c ) Welche Ebenenpunkte kommen in der Geradenschar nicht vor ?

_ x ( 2 \ ( 1 ) f - \ \

a) ga (bloß anders geschrieben ) : X = 0
l 2 J+ ga 2

V ij+ \i 2
l 0 J

das ist die Parametergleichung der Ebene F,
jia kann man als eigenen Parameter X deuten

b) Koordinatengleichung von F : 2xx + x2 + 4x3 - 12 = 0

c) In der Schar gibts keine Gerade mit Richtung

aber zur Schar gehören die Punkte von h : X :

mit Ausnahme von (2 I 01 2) .

2
-1

Zur Ebene , nicht

( 2 \ ( 1 1
0 + o 2

l 2 J {-y
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1. Welche besondere Lage im Koordinatensystem hat die Ebene
A : x2 + 2x2 + 3x3 = 0 B : Xj + 2x2 = 0 C : Xj = 0
D : x2 - 2 = 0 E : x2 + 2x3 - 4= 0 F : x1 = x2

A geht durch den Ursprung .
B geht durch den Ursprung und ist parallel zu x3-Achse ,

enthält also die x3-Achse .
C ist die x2x3-Ebene .
D ist parallel zur x1x3-Ebene und schneidet die x2-Achse bei 2 .
E ist parallel zur xr Achse .
F enthält x3-Achse und halbiert die Oktanten I , III , V und VII.

Bestimme eine Koordinatengleichung der Ebene :
a) A ist parallel zur XjX2-Ebene und geht durch den Punkt P ( 11 21 — 3 )

B ist parallel zur x2-Achse und geht durch P ( 11 01 0 ) und Q(01 011)
f ! i «f apnlrrpr-bl . 7nr Y„Y„-Ehene und geht durch 0 und P(0 [ 111)

b )

c)

d)
_ ^ vi \

: X = 0 + h 0Uv UJ
e) E ist senkrecht zur x3-Achse und geht und P (x 1V17 I 4 )

A: x3 + 3 = 0 B : + x3 - 1 = 0 C : x2 - x3 = 0
D : Xj - x3 + 1 = 0 E : x3 - 4 = 0

Welche besondere Lage im Koordinatensystem hat die Ebene

B : lT =_v ( 3 f b
A X = 2 + x 0 + p 0

l-l, U , UJ
_ v fl \ 1 1

C : X = 0 + x 1 + g - 2
3 0 0

v ° /
v3 \ f0 \

E : X = 0 + x 1 + p 1UJ , ° J

f0 f0 ' r ° v3
l-2J+ x 1UJ+ p - iUJ

— ( 4 \
D : X = X - 1 + p 1u UJ

A ist parallel zur XjX3-Ebene und schneidet die x2-Achse bei 2 .
B ist die x2x3-Ebene .
C ist parallel zur x1x2-Ebene und schneidet die x3-Achse bei 3.
L geht durch O .
E ist parallel zur x1x2-Ebene und schneidet die x3-Achse bei 3 , E = C

^ Bestimme die Achsenpunkte und gib Gleichungen der Spurgeraden an

A : 7x, - 14x2 - 6x3 - 42 = 0 B : Xl + 3x2 - 5x3 + 15 = 0
C : 2x 1 + x2 — x3 = 0 D : 2Xi - x2 + 4 = 0

-—^ L2xi = x2 _ F: x2 + 2 = 0_
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A (6 I 0 I 0 ) , ( 01 - 3 I 0 ) , (0 I 01 - 7 )
_ ^ f 6 . y2 . _ ^ y 6 . y 6 \

S3 : X = 0 + a 1 X = 0 + p 0
l ° J lo ; l 7 J

B: (- 15 I 01 0) , (01 - 51 0) , ( 01 01 3)
1.5 's r 3 ^ _ x y - 15 . y5 .
0 + 0 - 1 82 : x = 0 + p 0
0 J l ° y l 0 y UJ

_ S. y0 . ( Ol
X = 0 + X\ 3

l- 7y [-V

_ x yO n f0 \
X = 0 + X 5

l 3 J w
C:

D:

E:

F :

(0 I 0 I 0 )

X
*

=

(- 2 | 0 | 0) , ( 01 4 I 0)

—* ( 1 . ' yl . — -
X = 0 - 2 0Q.IIX£ s, : X = x 1

l ° y 12 y UJ

(0 I 01 0 )

(0 I - 2 | 0)

_ y ° . yl . _ ^ y - 2 > yO \
Ss : X = 4loj+ O 2 IIXgi1

'S

O
Oy

+ P 0UJ
Sg : X — o

Sl : X =
y 0 . r ° i

4 + T 0
lo > l 1)

yl > _ ^ y ° .
2 Q.IIX$ 0

l ° y UJ
_ x yo > yt \ —- y 0 .x = - 2 + 0 0 s, : X = - 2

1 ° J l ° J + P

5. Bestimme die Achsenpunkte und gib Gleichungen der Spurgeraden an
_ y 9 . y - 3 ^ y 3 . s yl . y - 2 > ( ° iA ; X = - 2

l- 7j
+ x - 2 + p B : X = 4

lOy
+ X - 2

( 3 J
+ p 1

l ° J
A: 14xj + 21x2 + 6x3 - 42 = 0 ,

Ss : lT = r 3 ^ y 3 \ _ ^ y3 > y 3 \
0 + 0

loj
- 2
loj

IIX& 0
loj

+ P 0
l- 7j

B: 3xi + 2x3 - 3 = 0,
S3 : X = 0 + P

(3 I 01 0 ) , ( 01 2 I 0 ) , ( 01 0 I 7 )

Si :
"
IC -

X =

\ y 0 \
+ T - 2

) l 7 J
(1 1 01 0) , (0 1 01 1,5 )

yO . _ i. y 1 . y - 2.1 % : X = 0 + 0 0
l ° J loj l 3 J

y 0 . y(h
0 + X 1

U,5y l ° J

6. Bestimme die Achsenabschnittsform und die Achsenpunkte
A : 3xx - 7x2 + 6x3 - 42 = 0 B : Xj - 7x2 - 3x3 + 21 = 0
C : 2xx + 3x2 + 1 = 0 1 1 1 1 r\D : 2 X1 + 3 x2 + 4 x3 + 5 — 0
E : Xj + x2 + x3 = 0 F : 17x2 + 10,2 = 0

Xa_ XjÄ- 14 + - 6 + 7 ~ 1 ( 14 I 01 0) , (01 - 6 0) , ( 0 I 01 7 )
^ Xi x2 x3B:

—21 + 3 * 7 = 1 (- 211 0 I 0 ) , ( 01 3 I 0 ) , ( 0 1 0 I 7 )
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- %
+ - 1 = 1

2 Xq- + - t = l
5 ~ ' 5

(- V2 1 o I o) , (o I - V3 1 o)

(- % I 0 1 0) , (0 1- % I 0 ) , (0 1 01 - 4/5 )D .
*

U 2 , + 3 /_ ' 5 “ ' I
E : bei Ursprungsebenen gibts keine Achsenabschnittsform , (0 I 0 1 0)

~ ' 5
(01 - % 10)

7. Bestimme eine Koordinatengleichung der Ebene mit den Achsenpunkten:
a ) ( 1 1 0 1 0 ) , (01 2 I 0 ) , (0 1 0 1 3 ) b ) (- 2 1 0 1 0 ) , (0 1 2 1 0) , (0 1 0 1 - 2)
c) nur (0 I - 3 I 0 ) und (0 I 0 1 5 ) d ) nur (0 | o | 7)

. Xi Xo Xqa) i + 2 + 3 = 1 6xj + 3x2 + 2x3 — 6 = 0

i . Xi Xo Xo .b) Z2 + 2 + 2 = 1 x1 - x2 + x3 + 2 = 0

, Xo Xo
o 4 + -§ = i 5x2 - 3x3 + 15 = 0 d) x3 - 7 = 0

8. Die Ebenen E , F und G sind festgelegt von zwei Spurgeraden :
__ ^ r - 1 > fi _ v F- l ^ f 1 \

S3: X =
's

0
0

^

+ a 2
K

%: X =
's00

^

+ ß 0
1 2 J
fl \

s3: V =
N

O
O

+ y 2
, 0j

x
*
= O

O
+ 8 0

, 2 J
_ Z' 1 ', r 1 ^ _ v fl \ r 1 ''!

%' X = 0 + e 2 S* X = 0 0
I2J

a) Beschreibe die Lage von E und F aufgrund der Spurgeraden .
b) Beschreibe die Lage von E und G aufgrund der Spurgeraden .
c) Stelle von E , F und G eine Koordinatengleichung auf .
d) Veranschauliche E , F und G als Spurdreiecke in unserm üblichen

Koordinatensystem ._ _ _ _ _
a) Weil s3E und s3F parallel sind und ebenso s2E und s2F, ist auch E parallel F.

b) Weil s3E und s3G symmetrisch sind zu 0 und ebenso s2E und S2F> sind auch

E und G symmetrisch zum Ursprung .

O E: ^ + f + f = l 2x1 - x2 - x3 + 2 = 0

F : ! | + f + t = 1 2xj - x2 - x3 + 4 = 0

G: T + ä + ä = 1 2Xl - x2 - x3 - 2 = 0
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Bild zu Aufgabe 8.

9. S3: X = X
fa \

b und S2: X = u
0

( c \
0

Yd ,
mit a , b , c , d =£ 0

seien Spurgeraden einer Ebene U . Bestimme eine Gleichung
der Spurgerade sx in Abhängigkeit von a , b , c und d.

si : X = v
, 0

u , für die Koordinaten u und v muß gelten
a c 0
b 0 u
0 d v

= 0

also ad u + bc -v = 0 , einfache Lösung von ad -u + bc -v = 0 :
. 0 \

u = - bc , v = ad , Sj : X = v - bc
ad

10 . Eine Ebene sei so festgelegt , daß ihre drei Achsenpunkte vom
Ursprung die Entfernung e (>0 ) haben .
a ) Wieviel solcher Ebenen sind möglich ?

Beschreibe sie mit Koordinatengleichungen .
b) Welchen Körper begrenzen diese Ebenen ?

_ Berechne sein Volumen V und seine Oberfläche F ._
a ) Es gibt 8 Ebenen : Jede macht sich in einem Oktanten bemerkbar als

Punktmenge , die begrenzt ist von einem gleichseitigen Spurdreieck der
Seitenlänge s = e [̂2 :
_ X, X2 Xo
Ef „ + ~ + J = 11 e e e Xj + x2 + x3 - e = 0 (I . Oktant )
_ Xi Xo Xo

xi + x2 + x3 + e = 0 (VII . Oktant )
E x und E 7 sind symmetrisch bezüglich 0
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■n Xi Xo Xo
K : — + — + — = 11 — e e e x1 - x2 - x3 + e = 0 (II .Oktant )

■n Xi Xo Xo
e 8 ; + zt + rt = 1 Xi - x 2 - x 3 - e = 0 (VIII . Oktant )

E2 und E8 sind symmetrisch bezüglich 0

Xl Ä ^
d — e — e e xi + x2 - x3 + e = 0 (III . Oktant )

^ X, Xo Xo
E5 : — + — + — = 15 e e - e xx + x2 - x3 — e = 0 (V. Oktant )

E 3 und E 5 sind symmetrisch bezüglich 0

■n Xi Xo Xo
E4 : -r + — + — = 14 e - e e xx - x2 + x3 - e = 0 (IV .Oktant )

„ Xi Xo XoR : — + — 4. —— = 1^ - e e - e L Xi - x2 + x3 + e = 0 (VI .Oktant )

E4 und E6 sind symmetrisch bezüglich 0

b) Die acht gleichseitigen Dreiecke begrenzen ein regelmäßiges Oktaeder.
V = 2 -PyramidenVol . = 2 - f -Grundfl . -Höhe = § -2e2 - e = f e3

F = 8 -Seitenfläche = 8 - 1 s ■\ a/3 s = 2^ 3 s2 = 2^ 3 -2e2 = 4^ 3 e2
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_ ^ r 4 \ fl \ ( i n
1 . E : X = 2 + L 0 + P -i

, 2 j u U ,' 1 \ /' h f i i _ ^ f 2 1 r 3 i
g : X = 2 + o 0 h : X = 0 + T 1 j : X - -1 + P - 1

, lj , 3J l-2J l-2J U J
Bestimme die Lage von Ebene und Gerade .
Berechne gegebenenfalls den Schnittpunkt .

Koordinatengleichung von E : x , - 2x2 - x3 + 2 = 0 ,
g und E schneiden sich in S(01 2] - 2 ) , h und E sind echt parallel , j liegt in E .

2. Gegeben sind die Ebenen und Geraden :
E : x1 - 2x2 + x3 - 1 = 0 F : 2x1 - x2 - x3 - 8 = 0

_ ^ r -n _ ^ f 2 A _ ^ fl \
a : X = 4

l 6J+ a 3
l 4 J b : X = 2

1 ° ; c : X = y l
UJ

_ v ( 4 \ _ ^ ( 5 \ ( 1 \ _ v ( 4 \ r 1 !d : X = 2
U >+ 5 l e : X = 2

Uv+ e l f : X = 0 + «p 0
UJ

Bestimme von jeder Gerade ihre Lage zu E und F .
Berechne gegebenenfalls den Schnittpunkt ._
a schneidet E in ( 1111 2 ) und F in (2 I —21 - 2 ) ,
b schneidet E in (3111 0) und ist echt parallel zu F,
c ist echt parallel zu E und F ,
d liegt in E und ist echt parallel zu F,
e liegt in E und F (ist also Schnittgerade von E und F ) ,
f liegt in F und schneidet E in (31 01 - 2 ) .

3. Paraflelprojektion
Gegeben sind die Ebene E : x1 + 2x3 - 6 = 0 und das Tetraeder ABCD mit
A(21 0 I 5 ) , B (- l I 2 | 0 ) , C (- l I 41 8 ) und D(2 I 0 I 8 ) . Das Tetraeder wird in

Richtung p =
^

2
^j in E projiziert , dabei entsteht das Bild A'B 'C 'D ' .

Berechne A'
, B '

, C ' und D ' und zeichne die Anordnung in ein KOSY.
In C ' schneiden sich E : x2 + 2x3 - 6 = 0 und die Projektionsgerade durch C

mit Richtung "
p = ( 1 > _ x ( lA

2 : X = 4 + h 2
U2v L 8 J U2J

Nach Einsetzen ergibt sich : p = 3 , C '(21 101 2).
Entsprechend gehts mit den andern Ecken .
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.CC- 1I4I8 ) Bild zu Aufgabe 3 .D(21018 )

A(2I0I5 )

BX0I4I3 )
\ E : xi + 2x3 = 6

io

D '(61810)

B '(01610)
A '(31010)

'£ (81612) :

A(91610)

Z(ll1810 )

^ Zentralprojektion
Gegeben sind die Ebene E : 2xx + x2 - 6 = 0 , das Projektionszentrum
Zdl I 81 0 ) und das Tetraeder ABCD mit A(91 61 0) , B (5,5 I 7 I 3 ) ,
C(61 611 ) und D(81 61 2 ) . Das Tetraeder wird zentral in die Ebene E

projiziert , dabei entsteht das Bild A'B 'C 'D' .
Berechne A'

, B '
, C ' und D' und zeichne die Anordnung in ein KOSY.

In D’ schneiden sich E : 2x , + x2 - 6 = 0 und die Projektionsgerade DZ :

— rliA / 3 \ _ | |
X = 8 + n 2 . Nach Einsetzen ergibt sich : g = - 3 , D (21 21 6).

^ 0 J 1̂- 2
Entsprechend gehts mit den andern Ecken.
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5. Die Würfelecken A , C , F und H sind die Ecken eines regelmäßigen Tetra¬
eders . ( Siehe Aufgabe 17 . im Abschnitt 1 . Ebenengleichungen )
a ) In welchem Punkt schneidet die Raumdiagonale HB die Ebene ACF ?
b ) In welchen Punkten schneidet die Gerade durch die Kantenmitten von

[GC ] und [AE ] das Tetraeder ?
a ) ACF : xx - x2 - x3 = 0 und

_ ^ ( 0 )
BH : X - - 4 + p i

1 1 J
schneiden sich in
(- 4/3 l - 8/3 l

4/3)
b) Gerade k durch die Kanten-

_ ^ r ° ) ( 1 \
mitten : X = 0

l 2 ;
+ ß 1

FCH : xx + x2 + x3 = 0 und k
schneiden sich in (- 11 —11 2 ) ,
HAF : x1 + x2 - x3 + 8 = 0 und k
schneiden sich in (—3 I - 3 I 2 )

6. A( 2 I - 11 0) X =
- 2 \ ( 2 ^ _ x r 3 ) ( - 2 -,
6
1 )

+ X - 1 h : X = 0
l - 4 J

+ p 4
l 5 J

Stelle eine Gleichung der Gerade k auf , die durch A geht und g und h schnei¬
det . Berechne die Schnittpunkte . Ein möglicher Lösungsweg führt über eine
Hilfsebene H zum Ergebnis . (Tip : H geht durch A und durch g oder h ) .
H gehe durch A und g:
_ v r-2 ) r 2 ^ f - 4 \
X = 6

l 1 J+ x - i
l 3 ;

+ g 7
l 1 J

llx x + 7x2 - 5x 3 = 15

k muß durch den
Schnittpunkt S von H und h :
S(- l I 81 6 ) , p = 2

_ v ( 2 \ f - 1 >
IIXI%II - 1

1 ° J
+ V 3

l 2 J
geschnitten mit g liefert T(0 I 5 4 ) , a = i , v = 2)

_ r 3 ] r 1 ) rl \ _ fl + a^7. E : X = 2
l- b

+ x i + ß - 1
l 3 ; Sa '■ X = o 1 - a

l 1 J
Welche Schargerade ist parallel zu E ? Ist sie echt parallel zu E ?

Die Schargerade a = § liegt nicht in E , sie ist echt parallel zu E .
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_ ^ ( 2 - a ) fa - 2 'v
8. Eb : 2xx - x2 + b = 0 : X = 4 - 2a

2
+ p S

a) Für welche Werte von a und b gibt es genau einen Schnittpunkt ?

b) Für welche Werte von a und b sind Eb und ha echt parallel ?

c) Für welche Werte von a und b liegt ha in Eb ?

^ in Eb eingesetzt : 2(2 - a + |i .( a- 2 ) ) - (4 - 2a ) + b = 0
2 |i ( 2 - a ) = b

a) eindeutige Lösung fiir p , also Schnittpunkt, falls a * 2 , b beliebig

b) a = 2 , dann ist p-0 = b ein Widerspruch , falls b ^ 0 ist,
echt parallel , falls a = 2 und b ^ 0

c) a = 2 , dann ist p -0 = b eine Identität , falls b = 0 ist ,
Drinliegen , falls a = 2 und b = 0
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1 . Beschreibe die Lage von E und F und stelle gegebenenfalls
eine Gleichung der Schnittgerade s auf .
a ) E : 2xx + x2 — 2x3 — 3 = 0 b) E: 2xx — x2 = 0

F: Xj - x2 + 3x3 - 3 = 0 F : 2xx - x2 + 2x3 - 12 = 0

c) E: 2xx - x2 - x3 + 6 = 0 d) E : 2xx - x2 + 2x3 - 12 = 0
F : 2xx - x2 + 2x3 - 12 = 0 F : 2xx - x2 + 2x3 + 8 = 0

e) E: 2xj - x2 + 2x3 = 0 f) E : 2xx — x2 — x3 = 0
F: 2xj - x2 - x3 + 6 = 0 F: 2x1 - x2 = 0

g) E: 2xj - x2 - x3 + 6 = 0
F: xi + x2 - 3 = 0

d) E und F sind echt parallel . - E und F schneiden sich in zum Beispiel in:
—- ( 2 > r- 1 ! _ ^ _ v r 0 ^a) X = - l + p 8 b ) X = 0 + p 2 c) X = 0 + p 2loj l 3 > l 6 J 1 ° , 16 , 1 °

r0 > _ ^ _ v r 1 !4
l 2 J

+ p 2 0X = (1 2 g ) X = 3
*v 3 J

+ p - l
l 3 J

2. Bestimme eine Gleichung der Schnittgerade von E und F
a ) E : xx + x2 = 0 b ) E : xx = 0 c ) E : xx + x2 + x3 = 1

F : x2 + x3 = 0 F : 2x2 + x3 = 1 F : xx + x2 = 1
d ) E : xx = x2 e) E : xx = x2 f ) E : xx = 1

F : x2 = x3 ocXIIxf F : x2 = 2

f 1 > _ i. r0 \ _ ^ zl ' fl \
- 1 b ) X = 0 + P - l c) X = 0 + p - 1

l 1 . l 2 ) 1 ° ,

f 1 > ' In
l e )

"
x

*"
= LI 1 f )

~
X = 1 2 + p 0

3. E : x1 + x2 + x3 = 0 , F : 2xx + x2 + x3 + 4 = 0
Wähle der Reihe nach xx , x2 und x3 als Parameter und versuche ,
jeweils eine Gleichung der Schnittgerade zu bestimmen .

_^ f - 4 \ r 0 ^ _^ f - 4 f 0 nx3 = X: X = 4 + X \ - l ii T= X ii 0 + b - 1
l 0 J UJ { 4 J UJ

x i als Parameter geht nicht : die Schnittgerade ist parallel zur x 2x 3-Ebene ,
Xj hat konstant den Wert - 4.
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4 Beschreibe die Lage von E und F und stelle gegebenenfalls eine Gleichung

der Schnittgerade s auf .
a) E : 2xj — x2 + 2x 3 — 4 = 0 b ) E : Xi + x2 + 3x3 - 6 = 0

2 i
F : X =_ ^ fl \ 7 1 ^ 72 >,

F : X = 2 + X 0 + h 1
V 2 J k ° J

a) E und F : xx - 2x 2 - x3 + 5 = 0 schneiden sich in s : X =

b) E und F : 3x x + 4x 2 + 9x3 = 7 schneiden sich in s : X

/ 3 > (
1

1 <U
+ X 0

K- y
+ 14

V

v 2 /

V 0 , v- L

[zu b) In der ersten Auflage sind die Koeffizienten der Ebene E 1, - 1, 3 und - 6 ;
dann ändert sich nur der Aufpunkt der Schnittgerade , zum Beispiel (31/71 - 11/710).]

5. Bestimme eine Gleichung der Schnittgerade von E und F

b ) E: X =a) E: X = 0 + \i 1

F : X =

F : X = a 2c) E: X =

s: X =

s : X =

c) E : x1 + x2 = 0, F : 2x : = x2 ; s: X = g
7 0 \

v * y

6. Beschreibe die Lage von E ündF ^ dsteh ^ gS ^ nfalls eine Gleichung

der Schnittgerade s auf .

b ) E: X =

F : X
"

=

_ ^ ( 1 'i ( ~ 2 \ f 4 \
a) E: X = - 3

l 2 )
+ X 3

l 3 J
+ h 4

1- iJ

r 2 ) ( - 1) ( 2 )
0 + X 1 :- g - 4

Ißy l U U J

_ ^ 7 ° ^ f 2 ') 7 6
F : X = 3

l ? /+ a l
1-lJ+ x 1

l~ 4J
r 3 i ( 1 1 ( 1 N
- 3 + 0 l + % - 3
LJ l~ 4J l 2 J

c) E : X = 3
2

+ X
7 - 3 >>

1
1

+ b - 1
viz

72
F: X = 2 1+ 0

2

7 - 1 \
1
1

+ T
7- 2

1
3
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a ) E : 3xx - 2x2 + 4x3 = 17 und F : 3xx - 2x2 + 4x3 = 22 sind echt parallel . 9
b ) E , F : 5xj + 3x2 + 2x3 = 22 , E und F sind identisch .

_ ^ f2 \ f 1 ^c) E : xx + 2x2 + x3 = 10 , F : 2xx + x2 + x3 = 8 ; s: X = 4 + p 1
l- 3j

7. In einem Aufgabenbuch zur Höheren Mathematik aus dem Jahr 1960 :
» Man ermittle die Ebene , in der die Geraden

xx + 3x2 - x3 - 1 = 0 1 xx + 5x2 + 4x 3 - 3 = 0
Xj + x2 - 3x3 = 0 unt*

{ xx + 2x2 + 2x3 - 1 = 0 lieSen <<

_ r - i \ ( 8 N - ^ ( - 1 \ r 2 ^s X = 1 \ + x - 5 und h : X = 0 + p 2
l o J U J l 1 J liegen in : x1 + 2x2 + 2x3 - 1 = 0,

•& F : 2xx + x2 - 2x3 = 0 , G : 2xx + x2 - 2x3 = 10
a ) Bestimme die Symmetrieebene A von F und G .
b ) Gib eine Gleichung der Ebene B an ,

die entsteht , wenn man F an G spiegelt .
c) Gib eine Gleichung der Ebene C an,

die entsteht , wenn man G an F spiegelt .
d ) Gib eine Gleichung der Ebene D an , die entsteht ,

wenn man F an der X] X2-Ebene spiegelt .
e ) Gib eine Gleichung der Ebene E an , die entsteht ,wenn man G an der x2-Achse spiegelt .

Am besten findet man die
neuen Achsenpunkte mit
Symmetrieüberlegungen ,
zum Beispiel mit Skizze:

a ) A : 2xj + x2 - 2x3 = 5
b ) B : 2x x + x2 - 2x 3 = 20
c) C : 2xx + x2 - 2x3 = - 10
d ) D : 2x x + x2 + 2x3 = 0

2,5 / 5

Ein Punkt (a I b I c ) in F hat seinen Spiegelpunkt ( a ] b I - c ) in D
F : 2x3 = 2xx + x2 , also muß für D gelten 2x3 = - ( 2xx + x2 )

e ) E : - 2xx + x2 + 2x3 = 10
Achsenpunkte ( 5 I 01 0 ) , ( 0 I 10 | 0 ) , ( 01 01 - 5 ) von G an x2-Achse spiegeln:
(— 5 I 01 0 ) , ( 01 101 0 ) , ( 01 0 I 5 ) in Achsenabschnittform verpflanzen .
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9. E : 3x : + 2x 2 - x3 + 18 = 0 . Bestimme Gleichungen der Spurgeraden von E,
indem du E zum Schnitt mit den Koordinatenebenen bringst .

_Vr ° ^ _S. ( - 5 _ ( - 4 > ( ~ 2 \
sx: X = - 7 + P 1 82= X = 0 + G 0 Pc >4 ii - 3 + T 3

l 4 J l 2 J { 3 , IsJ l 0 J l 0 J

10 . E : 2xj - x2 + 2x3 = 6
a) Bestimme die Höhenlinien von E in den Höhen - 1 , 0 und 5 über der

x^ -Ebene .
b) Bestimme die Schnittgeraden von E und Ebene Fc : xa + 2x2 + c = 0 mit

c = —1 , 0 und 5 .
c) Zeige : Die Spurgeraden von Fc in der x1x2-Ebene stehen senkrecht

auf den Höhenlinien der Ebene E .

_ (Betrachte die Spurgeraden im ebenen x1x2-Koordinatensystem . )

/ 4 > / i -s ( 3 's / ( ~ 2 \ ' h
0 + p 2 h0: X = 0 + o 2 h5: X = 0 + r | 2

l ° J , oJ l 5 , c ° Ja) h_i : X

b) Schnittgeraden -Schar : tc : X =

Lp X =
v 2 /

+ p

_^ / - c \
X = 0 + G 2

3 + cj l 5 J
f - 4 _ ^ f - 4 > f - 4N

2 to: X - 0 + a 2 t5: X - 0 + T 2

{ s ; IsJ l 5 ) l 8j ^ 5 ,

c) Spurgeraden-Schar von Fc in der XiX2-Ebene : Xj + 2x2 + c = 0 ,
Spurgerade von E in der x1x2-Ebene: 2x1 - x2 = 6 ,
im ebenen X] X2-Koordinatensystem schneidet die Gerade 2x1 - x2 = 6

die Parallelenschar x1 + 2x2 + c = 0 rechtwinklig.

ln:

U . A(2T_ 11 2 ) , B ( 0 I - 2 I - 1 ) , C (6 I 111 )
R(- 3 111 - 3 ) , S(- 2 | 2 I - 1) , T(- 4 I 2 I - 2) . Die Abhänge eines Bergs seien

angenähert die Ebenen ABC und RST . Wegen der langen Verwitterung ist

der Grat g nicht mehr vorhanden . Dank analytischer Geometrie läßt sich

sein Verkauf rekonstruieren : Bestimme eine Gleichung von g . Berechne die

Gratpunkte in den Höhen 0 und 9 über der x1x2-Ebene ._

ABC : xx — 2x2 = 4 , RST : Xl + 3x2 - 2x3 = 6 ; g : X = ( * ■) fl )0 + p 2
V- 1J UJ

die Höhe 0 hat (4,81 0,4 ! 0) , die Höhe 9 hat ( 121 41 9) .

• Beute das Gleichungssystem 3xj + 2x2 - x3 = 0
2xj + x2 + 4x3 = 0

Xi - x2 + 2x3 = 0

geometrisch ( zwei Möglichkeiten !) . Zeige, daß es nur

- —Was bedeutet das in den beiden Interpretationen ?
die Lösung (01 01 0) hat .
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Das System läßt sich deuten als Schnitt dreier Ebenen
( 2 ^ r - u

oder als Linearkombination : 2 xx + 1 x2 + 4
l 1 / l- 1/ l 2 J

( 01 01 0) erfüllt das System , (Be )Deutung :
die drei Ebenen schneiden sich im Ursprung ,
die drei Spaltenvektoren sind linear unabhängig .

13 . Deute das Gleichungssystem Sx 1 + 2x2 - x3 = 13
2xx + x2 + 4x3 = - 2

Xl - x2 + 2x 3 = - 7
geometrisch (zwei Möglichkeiten ! ) .
Welche geometrische Bedeutung hat die Lösung ?

Das System läßt sich deuten als Schnitt dreier Ebenen in ( 11 41 - 2 ) oder als

die Lösung ( 1141 - 2)f 3 ) ( ~ i fl3 \
2UJXi + 1

l-u to+ 4
{ 2 /

1!OCX - 2
1-7JLinearkombination :

bedeutet die Koeffizientenwerte der Linearkombination .
[In der ersten Auflage sind die rechten Koeffizienten 13 , 3 und - 7 ;
der Schnittpunkt der Ebenen hat dann ekelhafte Koordinaten (2/7117/31- 17/21) [

14. A: 2xj - x2 + 2x3 - 12 = 0 Bestimme eine Gleichung der Ebene F ,
B: Xj + X2 3 = 0 die durch die Schnittgerade von D und E
C: 2xx - x2 - x3 + 6 = 0 geht und den Schnittpunkt von A, B und C
D: 2xj - x2 = 0 enthält .
E: 2x1 - x2 + x3 - 6 = 0 _

Keine eindeutige Lösung: Der Schnittpunkt S( 11 21 6 ) liegt auf der

Schnittgerade s von D und E : X = f0 \ fl \
0 + P 2

16 /

15 . A 2x1 - 3x2 + x3 - 3 = 0 Zeige, daß sich die vier Ebenen in einem
B: 5xx - x2 - 5 = 0 Punkt schneiden , und berechne diesen
C : 3x2 — 2x3 + 2 = 0 Punkt .
D: X 1 + x 2 - x 3 = 0 _

A , B und C schneiden sich in S( 11 011 ) , die Koordinaten von S erfüllen auch
die Gleichungvon D . Also trifft sich alles in S.
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1. Bestimme eine Gleichung der Trägergerade t der Schar Ea . Gib eine Glei¬

chung der Ebene des zugehörigen Büschels an , die nicht in der Schar ist .

a) E a: ax x + ( l + a )x2 - 2x 3 = 6 b ) E a: ( l - a )xx + (1 -f a )x2 = a

c) Ea : x x + (2- 3a )x2 - (3 - 2a )x3 = 0

a) E a: x2 - 2x 3 - 6 + a (xx + x2) = 0

nicht dabei ist F : x2 + x2 = 0

b) Ea : Xj + x2 + a (- x 2 + x2 - 1) = 0

nicht dabei ist F : - x2 + x2 - 1 = 0

c) Ea : Xj + 2x2 - 3x3 + a (- 3x2 + 2x3)

nicht dabei ist F : - 3x2 + 2x 3 = 0

a ) E a: xx + x2 + x3 - 2 + a(x2 + x2 - 2 ) = 0
P einsetzen ergibt a = - 0,5 .

b ) E a: 2x x + x2 — x3 —2 + a(x2 + 2x 2 + x3) = 0
P einsetzen ergibt 0 + a -0 = 0

jeder a -Wert ist Lösung , das heißt ,
jede Ebene enthält P .
P liegt also auf der Trägergerade .

c ) Ea : 2x x - 2 + a(x2 - 1) = 0 ,
P einsetzen ergibt a = 0 .

d ) E a : 3x 2 + 4x2 + 2x 3 - 2 +
+ a (x2 - 3x 2 - 2x 3 - 2 ) = 0
P einsetzen ergibt - 1 + a -0 = 0 ^
es gibt keine Lösung für a .
Keine Ebene enthält P ,
denn P liegt in F : x2 - 3x 2 - 2x3 - 2 = 0

i Die Schar Ea werde aufgespannt
von den Ebenen E 0 und F .
Bestimme in der Schar E a die
Ebene , die den Punkt P ( 11 - 111 )
enthält .
a ) E0: xx + x2 + x3 = 2

F : Xj + x2 = 2

b) E0: 2x x + x2 - x3 = 0
F : xx + 2x2 + x3 = 0

c) E0: 2xj = 2
F : x2 = 1

d) E0: 3xj + 4x 2 + 2x 3 = 2
F : x 1 - 3x 2 - 2 x3 = 2

Trägergerade t : X =
7 - 6

6 | + n
0

7 - 2
2
1

Trägergerade t : X =
7 - 0,5 > f

0,5
l 0 ;

+ \i
\

= 0 Trägergerade t : X = p

Stelle eine Gleichung des Ebenenbüschels E ^ auf

a ) mit der Trägergerade t : X = f 21 + o
7 1 1

Vb
ll

b) mit der Trägergerade t : X = t |
o

c) das alle Ebenen enthält , die parallel sind zur Ebene x2 + 3x2 +
^

2x3 = 1992

d) das alle Ebenen enthält , die parallel sind zur xx-Achse und zu
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a ) Jede Ebene muß durch ( 11 2 | 1 ) und (2 I 2 I 0 ) (c = 1)
E 10 soll durch ( 11 01 0 ) : 2x1 - x2 + 2x3 - 2 = 0
E01 soll durch (01 01 0 ) : x1 - x2 + x3 = 0
E^ : ^( 2x3 - x2 + 2x3 - 2 ) + (J.(xj - x2 + x3 ) = 0

b ) Die Trägergerade t ist die xrAchse . In ihr schneiden sich die x1x3-Ebene
x2 = 0 und die XjX^ Ebene x3 = 0 . Diese beiden Koordinatenebenen sollen
das Büschel aufspannen , E>^ : Xx2 + px3 = 0

c) Ej^ : ^(xj + 3x2 + 2x3 ) + ji(xj + 3x2 + 2x3 + 1 ) = 0

d) Eine Ebene der Schar: X = o - 2u
E^ : X(3x2 + 2x3 ) + p( 3x2 + 2x3 + 1 ) = 0

\

+ T
)

0
loj

, also 3x2 + 2x3 = 0

4 Von Ebenen , die in Parameterform vorliegen , findet man die Schnittgerade,
wenn auch mühsam , durch Gleichsetzen . Jemand will dieses Verfahren auf
die Koordinatengleichungen anwenden und setzt die beiden Gleichungen
gleich :

E: x3 - x2 + 2x3 — 4 = 0
F : 2x3 - x3 + 4 = 0

Gleichsetzen : x3 — x2 + 2x3 - 4 = 2xx — x3 + 4
a ) Was hat er wirklich bekommen ?
b) Stelle eine Gleichung der Schnittgerade von E und F auf.
c ) Bestimme eine Gleichung des Ebenenbüschels , das von E und F

aufgespannt wird . Für welchen Parameterwert ergibt sich die Ebene
H : x3 + x2 - 3x3 + 8 = 0 . Welcher Zusammenhang besteht zu a ) ?

d) Zeige durch Rechnung, daß die Schnittgerade von b) in jeder Ebene des
_ Büschels hegt ._ _

a ) Zusammengefaßt ergibt sich Xi + x2 - 3x3 + 8 = 0 . Was er kriegt , ist die
Gleichung einer Ebene .

_ ^ f 0 ^ (b) t : X = 4
l 4 V

+ x
V

c) Ea : xj - x2 + 2x3 - 4 + a (2x3 - x3 + 4 ) = 0
( l +ßajxj - x2 + (2- a )x3 - 4 + 4a = 0

H : - x3 - x2 + 3x3 - 8 = 0
Koeffizientenvergleich : 1 + 2a = - 1 , a = - 1

2 - a = 3 , a = - 1
- 4 + 4a = - 8 , a = - 1

also ist H die Scharebene E_x.
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_ ^ ( 0 ^
d) t: X - 4Uv+ X 5

l 2 Jj in Ea eingesetzt muß die Ebenengleichung erfüllen :

k - 4 - 5X + 8 + 4k - 4 + a(2k - 4 - 2k + 4) = 0 + a -0, also Erfüllung !

5. Ea:
a)

b)
c)
d)

e)

xx + ax2 + (2- a )x3 = 2a + 4

Welche Scharebene geht durch den Ursprung ,
welche durch ( 11111 ) ?

Welche Scharebene ist parallel zur x3-Achse ?

Welche Scharebene hat ein gleichseitiges Spurdreieck ?

Welche Scharebene steht senkrecht auf der XjXg-Ebene ?

Welche Scharebene ist parallel zur Gerade X =
_ ^ r
X = 0 + p - i

l 2 J UJ
a) durch O : 2a + 4 = 0 , a = - 2

durch (11111 ): 1 + a + 2 - a = 2a + 4, a = - 0,5

b) n3 = 2 - a = 0 , a = 2

c) Achsenabschnittsform von Ea : 2a +
~
4 + + ääTI = 1-

a 2 - a

Das Spurdreieck ist gleichseitig , wenn die Achsenabschnitte gleich lang

sind : 12a + 41 = | = | | . Die Nenner müssen gleich sein :

I a I = 12 - a I , also a = ± (2 - a ) , a = 1 .

d) Die Ebene ist parallel zur x2-Achse, also muß sein : n2 = a = 0.

e) Die Schnittpunktsuche muß scheitern . Einsetzen :
1 + 2p + a(- p) + (2- a )(2+g) = 2a + 4
2p(2 - a ) = 4a - 1 ; weil sich für a = 2 ein Widerspruch ergibt , ist die

Gerade parallel zu E2.

**■ E a : xa + (l - 2a )x2 + ax 3 = 1 Fb: xx + bx2 + (1 2b)x3 1

a ) Begründe , daß keine Scharebene Ea durch den Ursprung geht .

b) Bestimme die Trägergerade von Ea. Welche Ebene fehlt m der Schar ?

c) Die Schnittgeraden sa von Ea und Fa bilden eine Schar mit dem Para

meter a . Bestimme eine Gleichung von sa . Was ist los bei a - 3

d) Für welche Werte von a und b ist die Schnittgerade von Ea und Fa pa

rallel zur x2-Achse ?

_ e) Kann die xr Achse Schnittgerad e von Ea und Fa sein_
?_ - -- —
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a )

b)

c )

d)

e )

( 01 0 I 0 ) erfüllt nicht die Gleichung von E a.

E a : Xj + x2 - 1 + a (- 2x 2 + x3) = 0 , t X =
_ 5. fly

t X - 0 + p 1
l 2 J

nicht dabei ist F : - 2x 2 + x3 = 0.
Schnitt von E a und Fa :
E a : xx + ( l - 2a )x2 + ax 3 = 1
F a : x1 + ax 2 + ( l - 2a )x3 - 1

( l - 3a )x2 + (3a - l )x3 = 0 ; x2 = x3 , falls l - 3a 0 . Wahl x3 = p
_ fa - 1 \
X = 0

[ Oj
+ h 1

l 2 J
E a und Fb müssen parallel zur x2-Achse sein
E a : n2 = 1 - 2a = 0 , a = 0,5 F b : n 2 = b = 0

Weil der erste Koeffizient von Ea und Fb gleich 1 ist , liegt weder eine
Scharebene von E a noch eine von F b parallel zur xr Achse .

7. E : xx + x2 = 0
F : x2 + x3 = 0
G: 2x x - x2 - x3 = 4

a ) Stelle eine Gleichung des Ebenenbündels H xj(1 v auf , das von
E , F und G aufgespannt wird . Gib den Trägerpunkt T an .

b ) Stelle eine Gleichung des Ebenenbüschels K„>T auf ,
das im Bündel H^ >v

steckt und den Ursprung enthält .
c ) Bestimme eine Gleichung der Trägergerade t des Büschels H ^0jV .
d ) Bestimme eine möglichst einfache Darstellung La ß T von H^ v .
e ) Welche Scharebene von

>v
ist parallel zur xxx2-Ebene ?

_ Welche Scharebenen sind parallel zur x1-Achse ?

a ) H >,n,v : k (xj + x2 ) + p(x2 + x3 ) + v( 2xj - x2 - x3 - 4 ) = 0
E , F und G schneiden sich in T(21 - 21 2 ) .

b)

c )

d)

v = 0 , K^p a (x1 + x2 ) + t (x2 + x3 ) = 0

Hm>v : k (x x + x2 ) + v ( 2x 1 - x2 - x3 - 4 ) = 0

H^o,o UQd H 0 0 v schneiden sich in t : X =
_ ( 0 > ( 1 "lX = 0 + p - 1

l- 4> l 3 J
La,ß,Y : ctfxj - 2 ) + ß(x2 + 2 ) + -

y(x3 - 2 ) = 0

e ) H^ >v : (X + 2v )xj + ( X + p - v )x2 + (p - v )x3 = 4v
parallel zur x^ -Ebene : X + 2v = 0 , X = - 2v

k + g - V = 0 , g = V - k = 3v ; H_2Vj3v,v : x3 = 2
parallel zur x x-Achse : X = - 2v ; H _2v a v : ( p - 3v )x2 + (p - v

’
)x3 = 4v

1

.2
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1. Berechne die Beträge von

a) fJ ] b )
( 4 >
- 12

1 - 3 J
c )

( 12 1
- 15

k 16j
d)

( 1 1
0

l- 7 J
e )

/ - 14 a
- 2

1- 23 J
f)

/ 56 \
- 17

l 56 j

a) 13 b ) 13 c) 25 d ) 5V2 e) 27 f) 81

2. Zeige , daß für rationales a der Vektor a + 1
a(a+l )

eine rationale Länge hat .

/ a a
a+1

a(a+ l )y
= a2 + (a + l )2 + a2(a + l )2 = a4 + 2a3 + 3a2 + 2a + 1 = (a2 + a + l )2

3. Berechne die Einheitsvektoren in Richtung
/ lA ( 1 \ f 0,5 a / 0 A / —1 A

f )
/ 8 a

a )
( i )

b > 14 C)
[u )

1
l 1 7

d ) - 2
l ° J

e ) - 1
l —! J

- 1
l 4 J

g) 13
/ 8 a ( 1 1 (
- 1 h ) 1 i )
l 4 J bOCO V»

f - l A / 7/5a / - ia
- 1 j ) 9 1/2 k ) | - 1

11/12J [ V5 ) 17/4J
1)

/- 3a
2,4a
3,2a

a)

d)

g)

1a «
2
V

f0 \ 0

b )
■

- 3
v 2 /
ro \

- l
o

13
( 8 Y\ °
- 1
4

/ 8 A°
- 1

u .

b )

e )

/ 8a
- 1
4

/ - 1 a0 / —12 A0 1 / - 1.2 a
- 1 = - 12 X= 17 - 12

I1/12J l 1 J l 1 J
k ) |

- lA °
- 1

7/4

- 4a °
- 4

- 4 a

/ 7a 0 / 1. A0 1 / Ia
14 — 2 “ 3 2

l 14 / A2 J

/ - 1a o
- 1
- 1 ;J

r- i \
- l
- l

h )
/ 1 1 °

1
12,3 J

/ 10a
10
23

c )

f )

- 27

/ 0,5a°
1
1 /

/ 8a °
- 1
4

/ 10 a
10

v 23

/ 1 \ 0 , /1a
2 | = 3
2 . 2 /

l
- 9

( 8 1
- 1

l 4 .

j ) 9
/ 7/5a 0 / 14 a 0 1

1/2 = 5 - 15 5

V1/5 J l 2 / l 2 J

1)
/ - 3a a °

2,4a
3,2a y

/ - 30a °
24
32

/ - 15a °
12
16

_ _i _- 25

/ - 15 a
12

V 16 /

Berechne a

a) f 3ä \
- 6a = 14 b )

/ a \
2a = 7 c)

/11/5a
a = 2 d) fVI

v 2a J la - lj l 2 J ^a- ij
= 3

e)
/ a + 9A / 2a a / a ^ = 31 h )

/ a2- 5 ''
|

a
Va- 3 J

= 15 0 a
a- 3y

= 9 g) a+ 1
4a+10y

a
ka

2 + 3J
= 13

a) 49a2 = 142
, a = ±2 c ) keine Lösung , weil schon der kürzest mögliche

Vektor (a=0) länger als 11/5 ist .
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b ) 6a2 - 2a + 1 = 49
6a 2 - 2a - 48 = 0
3a2 - a - 24 = 0
a = 3 oder a = - f

f ) 6a2 - 6a + 9 = 81
6a 2 - 2a - 72= 0
a2 - a - 12 = 0
( a - 4)(a + 3 ) = 0
a = 4 oder a = - 3

d) 3a2 - 2a + 1 = 9
3a2 - 2a - 8 = 0
a = 2 oder a = - f

g) 18a 2 + 82a - 860 = 0
9a 2 + 41a - 430 = 0
a = 5 oder a = — | r

e) 6a2 + 12a + 90 = 225
a2 + 4a - 45 = 0
( a + 9 ) (a - 5 ) = 0
a = - 9 oder a = 5

h ) 2a4 - 3a2 + 135 = 0
a2 = 9 , a = ±3

_ r 2 > r- l > _ ^ f 7 > ( 3 "l5. g: X = 4
l- 1;

+ X l
l 3 j, h : X = 16 + |4 - 4

Iß J
Berechne die Entfernung der Punkte A auf g und B auf h ,
die zu den Parameterwerten X = p = 2 gehören .

A(—12 I 6 I 5 ) B( 13 I 8 I 15 ) AB = 27

6. Berechne den Umfang des Dreiecks ABC :
a ) A(61 3 I - 4 ) , B ( 81 61 2 ) , C(2 I 91 8)
b ) A( 11 - 6 I - 6 ) , B (2 | 2 I - 2 ) , C(0 I - 2 | 2 )
c) A( 9 I 91 0 ) , B (- 6 I 3 1 9 ) , C (0 I - 61 - 6 ) , Umkreisradius ?

a)

b )

c)

u = AB + BC + CA =

u = AB + BC + CA =

u = AB + BC + CA =

( 2 \ ( - 6 A f 4 \
3 + 3 + - 6

l 6 J l 6 ; I- 12J

( ~ 2 \ f 1 \
8 + - 4 + - 4UJ l 4 J l- 8 J

( - 15 ( 6 A ( % \
- 6 + - 9 + 15

l 9 J l- 15j l 6 J

= 7 + 9 + 14 = 30

= 9 + 6 + 9 = 24

3 -3^ 38 = 9-V38
"

Dreieck ABC ist gleichseitig , Seitenlänge s = 3a/ 38
Höhe h = | a/3 s = f a/114 , Umkreisradius R = f h = a/114

7. Zeige , daß die Punkte auf einer Kugel um den Ursprung liegen , und
berechne den Kugelradius r .
a ) A(26 I - 7 I 2 ) , B (25 | 10 I - 2 ) , C (2 | 14 I 23 ) , D (- 7 I - 14 I - 22 )
b ) A( 12 1 41 39 ) , B (33 I 4 1 24 ) , C(32 | 91 24 ) , D (311 24 | 12 ) , E (23 1 24 I 24 )

a ) ÖÄ = 27 = OB = ÖC = ÖD = r
b ) OA = 41 = OB = OC = OD = OE = r
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8. Zeige , daß die Punkte auf einer Kugel um M(- 201 - 201 - 4) liegen ,
und berechne den Kugelradius r . A(12 I - 12 I - 3 ) , B( 121 - 13 I 0) ,
C(8 I - 3 I 0) , D(8 I - 41 3 ) , E (5 I 014 ) und F (01 01 13 ) .

MA =

MD =

( 32 \ ( 28 \
= 33 MB = 7

l 4 J
( 25 \

= 33 MC = 17
l 4 J
( 20 \

= 33

= 33 ME = 20
l 8 J= 33 MF = 20

U7 J
J

II COCOII I-S

9. Zeige , daß die Punkte auf einer Kugel um M(301 201 10) liegen ,
und berechne den Kugelradius r .
A(- 18 1111 6) , B(— 6 I - 13 I 6) , C(- 6 I - 12 11) , D(- ll I - 41 - 2) ,
E(- 6 I - 11 | - 2 ) , F (- 10 1 - 4 1- 5) und G(- 6 1 - 41 - 13) ._

r48 \ ( 3ß \
9 = 49 BM = 33

l 4 J l 4 J
/ 36 \ ( 40 \

31 = 49 FM = 24
V 12 J [ mj

= 49 CM =

( 36 \
= 49 GM = 24

\ 23 J

=49 DM :

= 49 = r

= 49

10. Durch A(4 I - 5 I 3 ) und B(6 I - 3 I 2 ) geht die Gerade g.
Bestimme die Punkte auf g,
a) die von A die Entfernung 9 haben
b) die von B die Entfernung 9 haben.

Richtung von AB :
"r " =

a ) P = A ± 91? ° =

b) q
‘
= b

'
±91 ^ 0 =

( 4 r2 \
- 5 ±3 2
l 8 J
( 6 ( 2 \
- 3 ±3 2

V 2 ; 1-lJ

~r I = 3 Streckenabtragen :

PidOlllO ) P2(- 2 I - 11 I 6 )

Qi( 12 1 3 I - 1 ) Q 2( 0 I - 9 1 5 )

U - Durch P (—2 | 5 I 1 ) und Q(- l I 13 I - 3 ) geht die Gerade h , F (0 I f2 1 f3)

liegt auch auf h und ist Mittelpunkt einer Kugel mit Radius 18.

__ Berechne die Schnittpunkte von Gerade und Kugel . _ ._
_ ^ r - 2A ( 1 \
X = 5 + p 8

l lj d 4J
, för g = 2 liegt FCO 121 f - 7) auf h ; Richtung : 1 r “

I = 9

; St(21 371 - 15) , S2(- 21 5 11)
/

( 0 ) ( 1 N
S =

~
F ±18t ° = 21 ±2 8

r 4>
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12 . Berechne alle Achsenpunkte , die von A(4 I 11 7 ) und B (- 8 I —7 11 )
gleich weit entfernt sind ._ _

P (p I 0 I 0 ) auf Xi -Achse ; Bedingung : AP = BP , AP 2 = BP 2

p2 - 8p + 16 + 1 + 49 = p2 + 16p + 64 + 49 1 => p = - 2 _
Q(0 I q I 0 ) auf x2-Achse ; Bedingung : AQ = BQ , AQ 2 = BQ 2

16 + q2 - 2q + 1 + 49 = 64 + q2 + 14q + 49 + 1 => q = - 3 _
R ( 01 0 I r ) auf x3-Achse ; Bedingung : AR = BR , AR 2 = BR 2

16 + 1 + r 2 - 14r + 49 = 64 + 49 + r 2 - 2r + 1 =* r = - 4

13 . Berechne Mittelpunkt und Radius des Umkreises
vom Dreieck A(0| 01 0 ) , B (7 111 0 ) , C (3 I 91 0 ) .

Umkreismittelpunkt U (Ui I u 2 1 0 ) , Umkreisradius r
ÄÜ 2 = Ui

2 + u 2
2 = r 2 I

1ÜJ 2 = u a
2 - 14% + 49 + u 2

2 — 2u 2 + 1 = r 2 II
CU 2 = u / - 6u x + 9 + u 2

2 - 18u 2 + 81 = r 2 III
I - II 7% + u 2 = 25
I - III uj + 3u 2 = 15 Ui = 3 , u 2 = 4 , U (3 141 0 ) , r = 5

14 . Berechne Mittelpunkt und Radius einer Kugel durch
A( 13 I 13 I 14 ) , B (- l 111 2 ) , C( 121 161 10 ) und D (0 1- 21 6 ) .
Keine eindeutige Lösung : A , B , C und D liegen auf einem Kreis um
(61 7 I 8 ) mit Radiuis 11.
Mit A(2 | 01 0 ) , B (- l I 11 4 ) , C( 1111 0 ) und D (- 3 I 7 I 6 ) klappts :

Kuge lmittelpunkt M (x I y I z ) , Kugelradius r
AM 2 = x2 + y2 + z2 - 4x + 4 = r 2 I
B M 2 = x2 + y2 + z2 + 2x - 2y - 8z + 18 = r 2 II
CM 2 = x2 -t- y2 + z2 — 2x - 2y + 2 = r 2 III
DM 2 = x2 + y2 + z2 + 6x - 14y - 12z + 94 = r 2 IV

I — II 3x - y - 4z + 7 = 0
I — III x - y - l = 0
I - IV 5x - 7y - 6z +45 = 0 x = 8 , y = 7 , z= 6 , M (81 71 6 ) , r = 11

P (- 2 I 010)

Q ( 0 I - 310)

R (0 I 01 - 4)

15 . Berechne die Koordinaten eines Punkts S , der vom Ursprung
die Entfernung V50 , von A( 7 111 0 ) die Entfernung V38 und
von B(3 I 91 0 ) die Entfernung ^ 62 hat .
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OS 2 = sx
2 + s2

2 + S3
2 = 50 I

AS 2 = Sj
2 - 14s! + 49 + s2

2 - 2s2 + 1 + s3
2 = 38 II

BS 2 = Sj
2 - 6s ! + 9 + s2

2 - 18s2 + 81 + s3
2 = 62 III

I - II 7si + s2 = 31
I - III Sj + 3s2 = 13 Sj = 4 , S2 = 3 , s3

2 = 50 - 16 - 9 = 25 , s3 = ±5
Sx(41 31 5) , S2(41 31 - 5)

) 16 . Welche Punkte der Gerade g durch A(8 I 3 110 ) und B (5 112 I - 2)

haben vom Ursprung die Entfernung 11 ?_
_ x r 8 ^ r 1 ) f 8 + g 'i
X = 3 + g - 3 = 3 - 3g

lioj l 4 J ,10 + 4g ,

X 2 = 64 + 16(i + g2 + 9 - 18g + 9g2 + 100 + 80g + 16jx
2 = 26g2 + 78g +173

Bedingung : X 2 = 121 : 26g2 + 78g + 173 = 121

26g2 + 78g + 52 = 0
g2 + 3g + 2 = 0
(g + 2 )(g + 1) = 0 => g = - 2 , G_2(6 I 9 I 2 )

g = - l , G_x(71 6 I 6 )

_ x r 1 ) f0 \
X = 2

loj
+ g 2

i- ij
17 . P(2 I 8 | 7 )

a) P ist Mittelp CXJ-XXVf^111^1 ~ - ~ 1 ~

Berechne die Schnittpunkte von K und g.
b) Eine Kugel um P berührt g . Berechne Radius und Berührpunkt.

f —1 ^ ( 0 > r - i >
— 6 + g 2 — - 6 + 2g

1 - 7J HJ l - 7 - g J
PX =

P X 2 = 1 + 36 - 24g + 4g2 + 49 + 14g + g2 = 5g2 - 10g + 86

a)

b)

Bedingung : P X 2 = 9 -14 = 126

5g2 - 10g + 86 = 126
5g2 - 10g - 40 = 0
g2 - 2g - 8 = 0
(g - 4 )(g + 2 ) = 0 => g = 4

g = - 2
S4(- l I 2 1 - 11)
s _2(- l 1 - 10 1 - 5 )

Berührpunkt g = 0,5 -(4 + (- 2 )) = 1 ,
12

= PSj 2 =
f - 3 \ 2 r 1 )
- 12 = 32 4

1- 15J IsJ
= 9 -42;

Si (- 11 - 41 - 8 )

r = 3y[42
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C (Olhll )halbe Kantenlänge des
Ikosaeders : h

= 2 + 2h2 - 2h

2 + 2h2 - 2h = 4h:

( Goldener Schnitt !) A( llOlh )

18 . Ein Würfel hat die Ecke ( 11 111 ) , seine Kanten haben die Länge 2 und sind
parallel zu den Koordinatenachsen. Ihm ist ein regelmäßiges Ikosaeder so
einbeschrieben , daß in der Mitte jeder Würfelfläche eine Ikosaederkante
parallel zu einer Würfelkante liegt .
Berechne die Koordinaten der 6 -2 Ecken des Ikosaeders .

Ecken Ax( l | 01 h ), A2( l I 0 I - h ) ,
BjChlllO ) , B 2(- h I 1 1 0 ) ,
CjfOlhll ) , C 2(0 I - h | 1 ) ,

A3 (- l I 0 I h ) , A4(- l I 0 I - h ) ,
B 3(h | - 11 0 ) , B 4(- h I - 11 0 ) ,
C 3( 0 | h | - 1 ) , C 4 ( 0 I —h I 1 )

19 . Bestimme die Winkelhalbierenden wx und w2 von e und f und
zeichne diese vier Geraden in ein ebenes x1x2-Koordinatensystem .

( 3 x r 3 x_ * f3 ' f 4 >
a) e : X = - 1

lo ,
y2 x

+ x 3
1 ° ,fl \

f : X =

b) e : X = 3loj+ 1 2
, oJ f : X =

v « ;
y2x

+ p

+ \l

- 4
v0 ,
yll \
- 2
0

a ) die Richtungsvektoren von e und f haben die Länge 5
f4c \ f 3 \

Richtungsvektoren von wx und w2 : 3 ± - 4

wx : X =

b ) re = Vß , rf = 5^ 5 = 5re

Richtungsvektoren von wx und w2 : 5T)T ±

wx : X =

f 3 X ( 7 \
, oJ
( 3

lo y
fix

- 1
Lo J+ p - 1

l ° J w 2 : X = - 1
1 ° ,

+ c 7loj

f 5 ^ yiix
10 ± - 2

1 ° y l ° J
( 2 \ _ V y2x y- lx

3 + P l IIX!eT 3 + a 2
0 0 lo o
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V ä 2
l

V2

a)
l

\ f 1
1 e s

r

1
l

\ )
. i /

/
* 1

/ /
. . i.

1
l

l

x 2>< \
\

/ e

b )
\
\
\

£
'

r - \
\

^ /•
s J \

\
\
\ w 2... 1

f ^ /
\
\

\ ) t \
\ * 1

\
\

20 . Bestimme die Winkelhalbierenden w x und w2 von e und f.
_ A, ( 2 \ —v r 1 ! r16Ni

e : X = 2 + x 3 f : X = 2 + g u
l 3 J W l 3 J l 3 J

Längen der Richtungsvektoren von e und f : r 6 = 7 , r f = 21 = 3r e

Richtungsvektoren von w x und w2 : 3 r e ± r f
r 6 ^ ri6 \

9 + 11
, 18j k » J

—- ( 1 > ( 11 \ —- ( 1 >
X = 2 + p 10 w2 : X = 2 + G - 1

Uj l 13 J l 5 )

21 . A(6 I 3 | 6 ) , B (- 4 I - 8 I 8 ) und der Ursprung
sind die Ecken eines Dreiecks . Bestimme

Gleichungen der Winkelhalbierenden des

^Dreiecks OAB und den Inkreismittelpunkt I .

w0 halbiere < AOB , r 0A = 9 , r 0B = 12
/ 24 > ( - 12 / 12

w0 — 4 r OA + 3 r OB — 12 + - 24 = - 12

\ 24j l » J l « J
( 1 a
- 1

v 4 /
w0 : X = p

wA halbiere < OAB , r A0 = 9 r ar =
( - 1Q
- 11

2

W,
r- 30N
- 15 + 1

1
Co
Co

CO
©

_ r - 60 i
- 48

L- 30 J l 6 J 1 - 24 J

r iR = 15

wA : X =
( 6 /

3 + a
l 6 J V
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^ 10 \

11
r -2,

wB halbiere <JOBA , rB0 = 12 , rBA =

= 5 "
Tbo + 4r ^ =

w0 und wA schneiden sich im Inkreismittelpunkt I

r „A = 15

( 20 > ( 60 ^— 40 + 44 = 84
[- 40, L-sJ 1-48J

_ f - 4 \ ( 5 )
X = - 8 + T 7

l 8 ; l- 4J

6 — 5o — p = 0
3 - 4o + p = 0
6 - 2o - 4p = 0 => c = l , p = l , I( l | - l | 4)

22. Durch U( 16 I - 16 I 8 ) und den Ursprung geht die Gerade u.
a ) M( 101 ? I ? ) auf u ist der Mittelpunkt einer Kugel mit Radius 9 .

Berechne die Schnittpunkte von Kugel und Gerade u .
b ) Eine Kugel mit Radius 6 hat ihren Mittelpunkt auf u und

schneidet u im Ursprung .
Berechne den Kugelmittelpunkt und den zweiten Schnittpunkt .

( A. \
7c) Durch C(? I ? I - 3 ) auf u geht die Gerade f mit Richtung

Bestimme Gleichungen der Winkelhalbierenden von u und f.
v 4 /

u : X = p.
( 2 ''!
- 2

vl ,
r u I = 3 (Länge des Richtungsvektors )

a ) 2p = 10 , p = 5 , M ( 10 I - 101 5 )

S = M
*

±9 rT ° = ( io ^ ( 2 \
- 10 ±3 - 2
l 5 , UJ

b) zwei Kugeln sind möglich:
~
M = ±2YT °

T\ = Mi + 2rT 0

• 2rT °T2 = M

c) C (- 6 I 6 I — 3 ) 17 ^ 1= 3

Richtungsvektoren von w1 und w2 : 3~r^ ± 7 ^ =

wx : =

Streckenabtragen :

SiClö I - 16 | 8 ) S2 (4 I - 4 I 2 )

Mi (4 I - 4 i 2 ) M 2 ( — 4 | 4 I - 2 )

T x(8 I — 8 I 4)
T 2(- 8 I 8 I - 4 )

( 6 r4 \
= - 6 ± 7

l 3 J a 4 ,- 6 > _ ^ f - 6 ( 2 ■)6
- 3 ;

+ P 1 w2 : X = 6
[ - 3 ,

+ a - 13



IX. 2 . Winkelberechnungen 187

1 . Berechne den Winkel (p zwischen ~a und b

a) a =

d) lt =

7 4 ^ v 7 - 2 \
5 b = 9

V 3 J l 6 J

r li a
55

V
- 88,

b =
r 63 a

-70
V 56 y

b) a =

e) a =

fl \
4
9

f 17 A
17

- 17

= 4 II
7 - 3 a

- 5 c )
~ t -
7 - a15 II
1-

0

) l 8 J I - 01 J V

b =
f23 \

-23
v 23 ,

f)
~a -

7 21
V3 b =

7lA
2
3

7 - 1 A
2^3

1 1 7

a) b) = ^ = 6tr

c) cos cp =
^

=_L 1(
^ j 0 = - 1 ; cp = 120 ° f) cos cp = 0

d)

e)
~a

7 1 A

V- 8 ,
7 1 A

, b

v- l ;
, b

7 9 \
- 10

V 8 ,

7 1 A
- 1

v 1 y

cos cp = 9 - 50 - 64

V9Ö ■V245
= ~ 2 V2

cos cp = 1 - 1 - 1
V3 ■V3

~ _ 3

cp = 90°

cp = 135 °

cp = 109,5 °

2. Welche Winkel schließen die Gerade g und die Koordinatenachsen ein ?

7 4 A _ ^ 70a
a) g: X = n

1
1

\-
b) g: X = g

a ) cas < ( a7eT ) = f ; 3 (
~a ,

"e^ ) = 63,6”

cos <£ (
~a,l £ ) = TH < Ca,^ ) = 141,1 *

cos <£ (
~
a,

~e^ ) = - § ; «$Cfa , e^ ) = 116,4°

b) cos < Ca,eT ) = 0 ; 4CCa
,
,
~
e,

*
) = 90°

cos -iCa, ^ ) = q= ; < fa , e^ ) = 108,4°

cos # Ca, !% ) = j = ; -̂ Ca
“
, e^ ) = 18,4 °

3. Zeige , daß die Ortsvektoren A , B und C einen Würfel aufspannen
- llA 7 2 a

7 1a 7 2 A 72 \ _ ^ ( 10 \
a) A = 2 B z= 1 C = - 2 b ) A = - 5

l 2 J u ) A10 J
_ x f Cl N _ v 7 a + 1 \ _ V 7a(a+ l ) A

c) A = a+ 1 B = - a(a+l ) c = a
._ ^a(a+ l )y l a ) l - a - 1 J

B = I - 2
10

C = 14
v5y

Bedingung : | A | = | B j = | C | und A ° B = A ° C - B ° C - 0

a) | X | = | B
‘

| = |
'
C | = 3 b) | A | = |

'
b

“
| = l

'
C | = 15

c) | X | = | ET | = fc | = a2 + a + l
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4. Für welche Werte von uist alb , alc , blc
( 1 ^ / —UA / 2u ^ ru + l > / U > a2 - 3ua

a) 7? = U b = 14 ~
c = - 4 ii 2- u b = u +2

~
c = u

l2uJ l~u J l 1 J l - 1 J [u+4j v 2+2uJ

a )
"a 1b : - u + 14u - 2u2 = 0 , u(2u - 13 ) = 0 ; u = 0 oder u = y
~a lt : 2u - 4u + 2u = 0 ; jeder Wert von u tuts
Tlb : —2u2 — u - 56 = 0 , 2u2 + u + 56 = 0 , D < 0 ; kein Wert von u tuts

b ) alb : u(u+l ) - (u+2)(u- 2 ) - (u+4) = 0 ; jeder Wert von u tuts
”a l ~

cT : - (u+ l )(3u- 2 ) + u( 2- u) - 2 - 2u = 0 , u(4u + 1 ) = 0 ; u = 0 od . u = j
~
c 1 b : - u (3u - 2) + u2 + 2u + ( u+4 )(2u +2) = 0 ; u = - f

5. Für welche Werte von u bildet jedes Vektorpaar einen Winkel von 45 ° ?
/ i \ ( 1 ^ / II \ ( u r - ll ( 1 ) U 9 )a) 2 u b) U 0 c) 1 - 4 d) U , 2U
l 2 J l 1 , UJ U J v2uv l 8 v 8 i
Bedingung : cos cp = ab = 5 ^ 2 , 2 ( a ° b )2 = a2b2

a ) 2 (
"a o b )2 = 8u2 + 24u + 18 a%2 = 9u2 + 18

Bedingung : u(u - 24 ) = 0 u = 0 oder u = 24

b) 2 ( "a ° b )2 = 98u2 + 28u + 2 a2b2 = 100u2 + 50
Bedingung : u2 - 14 u + 24 = 0 , (u- 12 )(u- 2 ) = 0 u = 12 oder u = 2

c ) 2 ( "a ° b )2 = 8u4 - 40u2 + 50 a2b2 = 4u4 + 25u2 + 34
Bedingung : 4u4 - 65u2 + 16 = 0 , D = 632 [u = ±f ] u = + 4
[Für u = ±0,5 ist der Winkel 135°

.]

d) 2 ( "a ° b )2 = 8u4 + 440u2 + 6050 a2b2 = 4u4 + 405u 2 + 9425
Bedingung : 4u4 + 35u2 - 3375 = 0, D = 2352 u = ± 5

( ! \ - r“ r0 \6. a = 2 U X = 0 + p 1
1 2 J

K sei ein gerader Kreiskegel mit dem Öff¬

nungswinkel 90°
, seine Spitze liegt im Ursprung , seine Achse verläuft in

Richtung a . In welchen Punkten schneiden sich g und K ?
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Der Schnittpunkt S liegt auf g: S =

Gesucht ist m für den Fall , daß f 2 ^ fl )2 und iiUJ UJ
geometrische Einkleidung von 5 . a )
Lösung : p = 0 oder p = 24 S0( 11 0 ] 1)

und OS und ~a bilden 45°.

45° bilden . Diese Aufgabe ist die

S24( l I 2411 )

7. Für welche Werte von u bildet jedes Vektorpaar einen Winkel von 60°

( XL\ ( 7 /
a) XL > 10 b )

l 2 > V
fl ) f

d) 5 J - 2 e)UJ UJ V

\
i
f-1lu

n )
c ) 4 >

/■- 8 \
3

) UJ U ; U J
\ f— 3 |̂ ( 4 \ ( 1 "l

>
J

u
U J D 9

uJ
t XL

[2u+ lJ

go | ) ^
^

Lösungsschema wie in 5 . : cos cp = ^
_ = 2 4 ( a ° b )2 = a2b2

a ) 4 ( ~a ° b )2 = 900u 2 a2b2 = 2u4 + 302u2 + 596

Bedg . : u4 - 299u 2 + 298 = 0 , (u2 - l )(u2 - 298) = 0 ; u = ± 1 oder u = ± V298

b) 4 ( a ‘
» b )2 = (4u - 2 )

2 a2b2 = (u2 + 2 )
2

Bedingung : |u 2 + 2 | = |4u - 2 | , u2 + 2 = ± (4u - 2 )
V : u2 — 4u + 4 = 0 , (u - 2 )

2 = 0
u2 + 4u = 0 , u (u + 4 ) = 0

c) 4 ( ~a ° lT )2 = 36u + 16 a2b2 = 98 (u2 + 73 )

Bedingung : 113u2 + 144u - 3545 = 0
[Für u = —709/113 ist der Winekl 120°

.]

d) 4 (T )2 = 4(u + 25 )
2 a2b2 = 254(u2 + 50)

Bedingung : u2 — 4u + 4 = 0 , (u - 2)2 = 0 ; u = 2

e) 4( aob )2 = 4( 13u )
2 a2b2 = ( lOu + 16 )(u2 + 25)

Bedingung : u4 — 41u 2 + 40 = 0 , (u2 — l )(u2 — 40) = 0 ; u = ± 1 oder u = + 2a/i
"
(

t ) 4 (T ° tT )2 = 4( 1 lu + 5 )2 a2b2 = 98(5u2 + 4u + 2)

Bedingung : u2 — 8u + 16 = 0 , (u — 4)2 = 0 u = 4

u = 2
u = 0 oder u = - 4

u = 5 Lu = - U3 J

a = b =
/ 3 \

\ / \ /

Bestimme "tf so , daß LT auf ~
eT und b senkrecht steht .
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u ° a = 0 : 4x + 2y + 9z = 0

li ° b = 0 : 3x + y = 0 u = fl
/ 9 n
- 27

2

( - 1 _ x fr \ / —2 N
9.

~a = 2 b = i c = s
l 4 J UJ l *■ J

Bestimme r , s und t so , dal: a , b und c paarweise orthogonal sind .

a ° b = 0
~a ° ~

c = 0
"
c ° b = 0

- r + 6 = 0
2 + 2s + 4t = 0
- 2r + s + 1 = 0

/ ÖN / - 2 n
— 1 c = 25

[- 13J

10 . Berechne die Winkel des Dreiecks ABC
a ) A( 6 I 3 I - 4 ) B (8 I 6 I 2 ) C(2 I 9 I 8 )
b) A(11 - 61 - 6) B(2 | 2 I - 2 ) C ( 0 I - 2 | 2 )
c) A(9 I 9 I 0 ) B(- 6 1 3 1 9 ) C(0 1- 61 - 6 )

a ) AB =

BA =

/ 2 \
3
6

(-2 \
- 3
- 6

AC = f- 4 \
6 II

/ — 2 N
3

) L 12 J l 8 J
\ _ * / - 6 n / 2 \

BC = 3 II 1
J i 6 ; 1 2 J

zur Kontrolle :

CAllf - sl , CB | |
l- 6j - 1

- 2 ,

b ) AB =

BA =

/ In

v 4 ;
(- 1 \
- 8

v~ 4 /

AC =

BC =

/ - In

/ - 2 \
- 4
4

zur Kontrolle :
/ In

CA | |
e 8 /

CB | |
/ In

v. 2 j

\ r - iNII- 2
l 2 J

41cos a = 55

o -ii
COS ß = ~

zy

19
COS Y = 21

cos a :

COS ß = 3

cos y =

a = 33,2“

ß = 121,6°

Y = 25,2 °

a = 38,9“

ß = 70,5°

Y = ß = 70,5°

c ) ABC ist gleichseitig , also a = ß = y = 60°

11 . Berechne den Winkel zwischen
a ) einer Raumdiagonale und Kante eines Würfels
b ) zwei Raumdiagonalen eines Würfels .
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»Einfacher Würfel « : Würfelzentrum 0 , Ecken A( 11111 ) und B( 11 11 - 1)
a ) a = "£ ( 0A , xr Achse ) ; cosa = ^ a = 54,7°

b) [0A ] und [OB] sind halbe Raumdiagonalen ; cos ß = f ß = 70,5°

12 . A(41 11 3 ) B(4 | —2 I 6 ) C(11116 ) D (5 I 2 | 7 )
a) Zeige , daß ABCD ein regelmäßiges Tetraeder ist .
b) Berechne den Schwerpunkt S .
c) Berechne a = 4 ( SA,SB ) = «£ ( SA,SC )

a) AB = 7 ° _ ^ _ _ J, r - 3 > _ S. ri > V
- 3
l 3 J AC =

CO
o AD = l

l 4 J BC =
,̂

O
CO BD = 4UJ CD = iUJ

die Kantenvektoren haben die Länge 3^ 2
also ist ABCD ein regelmäßiges Tetraeder .

b)
"
S = ] ( A + B + C + D ) = j

14 \

, 22 ,

c) SA = ~( 2 ) ( 1 > _ ^ ( 2 ) (
2

t- ioj
II 1

1- 5J
IIiM►

- - 10
l 2 JII

V

r 1
Lf
1

S(3,5 I 0,51 5,5 )

( 2 \ ( 3 > _ ^ f 3 ^ /
0 + X - 4 , h : X = - VI + p

1- iJ ^ 5 ; \
13 . g: X =

Berechne den Winkel zwischen g und h.

( 2 14 oi o
COSG = TE <5 - 11

14 . g: X = ( 1 > ( 1 >
- 3 + X 1
l 6 J ,- 2J

A(5111 0)

Verbindet man den Geradenpunkt für X = 2 mit A durch die Gerade h.
Berechne den Winkel zwischen g und h und gib eine Gleichung von h an .

_ ^ ( 2 _ ^ ( 5n
- 112 ) , G2A = 2 ; h : X - 1 + x 1 1

[- 2, 1 ° ; hJ
cos a = 'Jl8 a = 19,5°

_ ^ f 0 , _ ^ ( 4 >
15 . g: X zz 0

UJ
+ X 1

loj
h : X = - 3

U J
+ [l 0

l 2 J
Zeige , daß g und h windschief sind , und berechne 4 (g,h ) .

191
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G0H0 =
( 4 \

; g , h windschief , wenn G0H 0 , r g und r h nicht komplanar

4 1 - 1
det ( G0H 0 , r g , r h ) =

cos o = ; G = 71,6 °

- 3 jy 0
4 0 2

= - 0 , also nicht komplanar
SB

_ fl % fi ', _ ( 1 > f 1 \
16 . g: X = lUJ+ x 2

l 3 ;
h : X = 1UJ+ p - 5

Lio J
a ) Berechne den Schnittwinkel von g und h .
b ) Stelle Gleichungen der Winkelhalbierenden w x und w2 von g und h auf

und zeige , daß der Schnittwinkel der Winkelhalbierenden 90° ist .
c) Berechne <3 (wx , g) , <3 (w1 , h ) , <3 (w2 , g) und *3 (w2 , h ) .
a )

b)

c)

cos o = | ; o = 60°

| r^ l = IdTI = 3^ 14
"

;

. ( 2 '

w± = r h + 3 r g =
/ 1 A f3 \
— 5 + 6
U° J l 9 J

w+
(- 4
- 1

v~19
w_

i
11 | ; wb : X = 1 | + 0

r4
1

19
w2 : X =

fl
1 | + p

~w 1 ° w2 = 0 , also <3 (wj , w2 ) = 90°

cos <3 (wb , g) = \ a/3 ^ (Wl , g) = 30°

cos "31W! , h ) = | ^ 3 3 (wb , h ) = 30°

cos <3 (w2 , g) = | <3 (w2 , g) = 60°

cos <3 (w2 , h ) = | <3 (w2 , h ) = 60°

17 . a = ( 5 V ( l \
1 b = - lUJ

a ) Bestimme a b , die Projektion von b in Richtung
~a\

b ) Bestimme b a , die Projektion von ”a in Richtung b .
c ) Welche Besonderheit haben ~a und b , wenn gilt b a = b ?

d ) Zeige allgemein : ab =
a o b

o i
<p= <3 (

~a , b ) 1
COS (p = 3

( 5 \ _^ _^ r 1 \
1

{- b
b ) ba = a cos (p b 0 = - 1UJ

a ) ab = b cos cp a 0 =:

c ) a und b spannen ein rechtwinkliges Dreieck auf ,
b und b — a sind die Kathetenvektoren .



193IX. 2 . Winkelberechnungen

d) ergibt sich ganz zwanglos , wenn man in "ä^ = b cos cp lt 0

a‘» b
das Produkt b cos cp ersetzt durch -

T a
(zur Erinnerung : lT ° b = ab cos cp) und "a 0 durch ^

~a .

18. Deute geometrisch
a) AB 0 AC = 0 b) AB « AC = AB • AC

c) AB 0 AC = - AB • AC d) 1 AB °ÄC 1 * ÄB • AC

a) AB und AC sind zueinander senkrecht,
ABC ist ein bei A rechtwinkliges Dreieck.

b) AB und AC sind gleichsinnig parallel,
A,B und C liegen auf einer Gerade^A"nicht zwischen A und B .

c) AB und AC sind gegensinnig parallej ^
A,B und C liegen auf einer Gerade ^Azwischen A und B .

d) AB und AC sind linear unabhängig,
A,B und C liegen nicht auf einer Gerade .

19 . Welche Winkel bilden der Vektor ~a und
die Richtungen der Koordinatenachsen ?

r 1 > N 2 ^ f 0N!1w b) ~a = 0 c) a = 1

a) a °

b) lt °

0 T °

( 1/2 "i
1/2

[V2/2j
^ V2/2 ^

0
v V2/2 y
f0 \

1

cos a x = cos (X2 = | = 0C2 = 60°
; cos a3 - 2 V2

cos ax = cos oc3 = \ V2 , cti = a3 = 45°
; cos 0C2 = 0

cos dj = cos 0C3 = 0 , ax = dß = 90 °
; cos 0%= 1

ct3 = 45°

a2 = 90°

oc! = 0°

20 . Bestimme die fehlenden Richtungswinkel eines Einheitsvektors ,
von dem bekannt ist :
a) oc! = 60 ° b ) dj = 90° c ) a1 = ? d) ^ = 0(2 = 03

a2 = 120° «2 = ? «2 = ? wie groß ist « ! ?

- _ « 3 = ? « 3 = 30
°

_
« q = 180 _

(cos cti)2 + (cos a 2)2 + (cos a3)2 = 1 demjeweiligen Bedarf anpassen



194 IX, Skalarprodukt

a ) (cos a 3 )2 = 1 - ( cos d x)2 + (cos a 2 )2 = 1 - \ - \ = \ ; cos ;
a 3 = 45 ° oder a3 = 135°

b ) (cos a 2)2 = 1 - (cos d x)2 + (cos a 3)2 = l - 0 - f = f ; cos a 2 = ± \ -,
a2 = 60° oder a3 = 120°

c) (cos otj)2 + (cos a2)2 = 1 - (cos a3)2 = 1 - 1 = 0 ; cos a x = cos 0^ = 0
ccj = a2 = 90°

d ) (cos d x)2 + (cos di )2 + (cos d x)2 = 1 ; (cos di )2 = f , cos d x = ± f a/3
dj = 54,7° oder di = 125,3°

21 . Will man die Richtung eines Vektors mit den Richtungswinkeln festlegen,
so sind diese nicht beliebig wählbar.
a) Für welchen Wert von dx liegen d2 und d3 schon fest ?
b ) Welche Beziehung besteht zwischen d x und d 2 ,

wenn durch sie d3 eindeutig bestimmt ist ? Wie groß ist d3 dann ?
c) Welche Beziehung müssen dx und d2 erfüllen , damit für d3 mehr als ein

Wert existiert ? Wie liegen dann die zugehörigen Einheitsvektorren ?

a ) Die Wahl dx = 180 erzwingt = d3 = 90 °
, vergleiche 21 . c) .

b ) Die Wahl (cos d x)2 + (cos d 2)2 = 1 erzwingt d 3 = 90 ° .

c) Die Wahl dx + d2 > 90° erlaubt zwei zur xxx2-Ebene symmetrische
Einheitsvektoren .

In den folgenden Aufgaben bedeuten X und (p sphärische Koordinaten.

22. Zeige , daß der Vektor a 0
2 cos X cos <p

^
sin X cos 9 die Länge 1 hat .

sin 9

( cos X cos <p )2 + (sin X cos cp)2 + (sin (p )2 =
= (cos cp)2 [ (cos X)2 + (sin A,)2] + (sin cp)

2 = (cos cp)
2 [ l ] + (sin cp)2 = 1

23. Bestimme einen zu X und cp gehörigen Richtungsvektor
a) X = 90°

, cp = 60° b) X = 120 °
, cp = 45°

c) X - - 11,5 °
, cp = 48,1 °

_ d) cp = - 90°

( 0 )
1 b)

r - i ^
c) ( 6,544 's

- 1,331 d) 0
l 2 J l 7,443 , UJ

a)
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24 . Wie muß man X und <p wählen , damit die drei Richtungswinkel a x , a 2 und a 3
gleich groß sind ? ( kl (p) ist die Blickrichtung ( =Projektionsrichtung ) fürs
Normalbild in Isometrie (gleiches Maß auf allen Achsen ) ._
Vergleiche 21 . d)
cos X cos 9 = sin X cos cp => tan X = 1 X - 45°
sin X cos cp = sin cp => tan cp = sin X cp = 35,26°

25 . Der Vektor p = 4
8a

erscheint in einem geeigneten Koordinatensystem als

Punkt . In welcher Richtung (X I cp) schaut man aufs Koordinatensystem ?

P = V105 sin cp = , cp = 29,2° sin X cos (p _ 4 _
cos X cos <p

” 8 tan X = I X = 26,6°

26. Bei der Dimetrie (gleiches Maß auf x2- und x3-Achse) ist der Projektions -

vektor p =

p = 3

v 1 y
. In welcher Richtung ( X I cp) schaut man aufs KOSY ?

sin cp = 3 , cp = 19,5° sin X cos (g =
1 tan ?i = j = X = 20,7

°
cos X cos 9 V7 v7
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1 . Begründe : Die Axiome [A | | nJ [I | gelten für kein Skalarprodukt
außer in Vektorräumen der Dimension 1 .

[X] gilt nicht , weil schon (a * b) * c ein sinnloser Ausdruck ist.
[n ] gilt nicht , weil schon a * h eine Zahl ist , also weder gleich a noch b ist .

[i ] gilt nicht , weil N nicht gilt .

2. Welche der folgenden Terme beziehungsweise Gleichungen sind mathema¬
tisch sinnlos , welche Umformungen sind gültig ?
a , b

_
und c. seien Vektoren , a , ß und y seien Zahlen ,

außerdem sei a * b ein Skalarprodukt , a - a eine S-Multiplikation und
a -ß eine Zahlenmultiplikation .
a ) (a * b) * b = a *b b) (a * b) • b = a - b2

c ) a * b = Y, => a =:h d) a -(a * b ) == ß , => OC= —
K a * b

e) (a * b) -c + a -(b *■c ) = a ;(b * c + b * c ) = 2a -(b * c )
f ) a * h ,

g ) - A- = bs a * h _ h ) - A- = ya * h '

a) (a * b ) * b ist sinnlos und damit die Gleichung.
b) Beide Terme sind sinnvoll , aber die Umformung ist im allgemeinen

ungültig , denn (a * b ) • b ist ein Viefaches von b , während a ■b 2 ein Viel¬
faches von a ist . Die Umformung ist nur dann richtig , wenn a und b
linear abhängig sind .

c ) Die linke Gleichung sinnvoll , die Folgerung daraus sinnlos ,
weil man durch einen Vektor nicht dividieren kann .

d) Gleichung und Folgerung sind sinnvoll . QoSl& s O
e ) Der linke (Summen )Term ist sinnvoll ; die Umformung zum mittleren

(sinnvollen ) Term ist falsch . Die Umformung vom mittleren zum rech¬
ten (sinnvollen ) Term ist richtig .

f ) Ein Bruch mit einen Vektor als Nenner ist sinnlos .
g ) Der Bruch ist sinnvoll , aber Kürzen ist unmöglich.

Die Gleichung ist zwar sinnvoll , aber im allgemeinen falsch .
h ) Der Bruch ist sinnvoll , aber die Gleichung sinnlos .

3. Beweise : 0 * c = 0 (a + b)*£_= a * c+ b*£
0 * c = (a — a )*£_= a*c- a*c = 0

4 Untersuche , ob mit folgender Definition ein Skalarprodukt im IR 3 festliegt :
a) a * b = a^bj 38^ 2 — 3a2b^ — U2b2
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a ) | IVj nachprüfen : a * a = aj 2 - 3aja 2 - 3a2aj - a2
2 = a3

2 - Qaxa2 - a2
:

a * a kann negativ sein , zum Beispiel a3= 0 und ap* 0 .
Kein Skalarprodukt liegt vor.

b ) [IV] nachprüfen : a * a = 3a :
2 - 4a 1a2 - 4a2a : + 8a2

2 - a^ - a3a3 + 4a3
:

— 3a x — 8axa2 + 8a2 — 2aja 3 + 4a3
2

( zurechtkneten : ) = 2a !
2 - 8a xa2 + 8a2

2 + aa
2 - 2a !a3 + a3

2 + 3a3
2

= 2(aj - 2a 2)2 + (a 3 - a3 )2+ 3a3
2

der Ausdruck kann nicht negativ sein ,
er ist gleich null , wenn a3 = 0 ist ; dann ist auch a x = a3 = 0 und a2 = \ a3 = 0,
also ist a * a > 0 , wenn a * 0 .
m | nachprüfen :

( Ha ) * b = Spa ^ • 4pa !b2 - 4 (ia 2bj + 8pab2 - ,ua !b3 - ga 3b ] + 4a 3b3
= a * (pb ) = p(a * b ) ; III ist erfüllt .

[5 ] ist erfüllt , weil nur Produkte zweier Koordinaten addiert werden ,

jl ] ist auch erfüllt , also liegt ein Skalarprodukt vor.

c) \w \ ist erfüllt .
III1 nachprüfen : (pa ) * b = p2ax

2 + p2a2
2 + p2a3 + bj + b2 + b3

p(a * b ) = pa 5
2 + pa2

2 + pa3
2 + pb3 + pb2 + pb3

für p / 1 gilt | lll | nicht , es liegt kein Skalarprodukt vor.

5- Liegt überhaupt ein Skalarprodukt vor ? Bestimme gegebenenfalls
die Strukturkonstanten des Skalarprodukts im K 3 :

a) a * b = 2a !bj + (a^ + a2b3) + 5a2b2
b) a * b = 2a lb l - 3(a !b2 + a^ ) + 5a 2b2

_̂ c) a * b -- A a 11) | + 5(a 3b2 — a2b3) + 3a2b2

a ) [ iV] : a * a = 2a 1
2 + 2-\/5a 1a2 + 5a2

2 = a1
2 + (a1 + 2-V5a 2)

2 > 0füra * 0

III und II sind auch erfüllt , also liegt ein Skalarprodukt vor.

gi * e3 = 2 , g2 * g2 = 5 , gj * e2 =
alle andern Skalarprodukte der Basisvektoren haben den Wert null .

b)
2 ä ,

[iv | : g * a = 2a3
2 - 6a !a2 + 5a2

2 = 2(a3
2 - 3a!a2 + 4 a2

2) 5a2
‘

2 a2
a * a = 2(a 3

2 - § a2 )2+ § a2
2 > 0 für a * 0

III und II sind auch erfüllt , also liegt ein Skalarprodukt vor.

fii * £i = 2 , g2 * e2 = 5 , gi * g2 = — 3
alle andern Skalarprodukte der Basisvektoren haben den Wert null .
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c ) IV : a * a = 2a x
2 + 3a 2

2 > 0 für a 0
HI ist erfüllt ; gj * gi = 4 , g2 * £2 = 3 , fii * g2 = 5 , g2 * Si = - 5,
II ist nicht erfüllt , also liegt kein Skalarprodukt vor .

6. Bestimmen die Strukturkonstanten ein Skalarprodukt ?
a ) ej

2 = 0^ und oq > 0 , £i * £j = 0 für i 5* j
b) g;

2 = 1 , e: * = a und 1a 1< 1 , £2 * & - Ü3 * Si - 0
c ) £i

2 = 1 , g2
2 = 2 , ga

2 = 3, £i * gj = 1 für i * j
d) £i

2 = 1 , £1 * £2 = 2, £2 * g3 = g3 * g1 = 0

a ) a * h = + o^a2b2 + . . .
2IV ä * a = a 1a 1 + oc2a2 + . . > 0 für a 0 , ein Skalarprodukt liegt vor .

b)

c )

d)

a * b = ajbj + a 2b2 + a 3b3 + aajb 2
a * a = a :

2 + a 2
2 + a3

2 + aaja 2 + aa 2a .IV
• a 2a2

2 + a 3
2 ; : (aj 2 + aa 2 )

2 + a 2
2

( l - a 2 ) + i
n Skalarprodukt fü :

a * b = a 1b | + 2a 2b2 + 3a 3b 3 + a ^b2 + a2b ^ + a2b3 t_ a 3b2 + a ^b3 + a 3b^

= aj 2 + 2aa !a 2 + a 2a2
2 + a 2

2 ■
a * a > 0 für a ^ 0 , falls a 2 < 1 , also liegt ein Skalarprodukt für I ex I < 1 vor.

IV a * a — a ^ + 2a 2
2 + 3a 3 + 2a ^a2 ~4* 2a 2a 3 + 2a 3a ^

= a 1 + a 2 + a 3 + 2a ^a2 + 2a 2a 3 + 2a 3Ui + a 2 + 2a 3
= (a x + a 2 + a 3 )

2 + a 2
2 + 2a 3

2 > 0 für a *■0

a * b = a ] b ^ + a2b2 "4" a 3b3 1 2a ^b2 + 2a 2b .
IV : a * a = aj 2 + a2

2 + a 3
2 + 4a aa2 = (a x + a 2 )

2 + a 3
2 + 2aja 2 > 0 ?

Gegenbeispiel suchen : a x = - a2 * 0 , a 3 = 0 liefert a * ä < 0,
also liegt kein Skalarprodukt vor .

£ 1 * £ 2 = - 1 < Widerspruch zu , also liegt kein Skalarprodukt vor .

7. Ist in einem n -dimensionalen Vektorraum durch den Term
- Xjyj, + x2y2 - x3y3 + . . . + (- l )nxnyn
die Koordinatendarstellung eines Skalarprodukts gegeben ?

a In einem Vektorraum mit der Basis , e2 , e3) sei ein Skalarprodukt
bestimmt durch die Strukturkonstanten
£i2 = 1 , e2

2 = 2 , g3
2 = 3 , £1 * e2 = l , fi2 * £3 = £3 * ^ = 0

a ) Gib die Koordinatendarstellung eines Skalarprodukts an .
b) Zeige: a2 > 0 für a > 0 .

/ 4 N
c ) Berechne damit das Skalarprodukt der Vektoren a -

d) Berechne die »Längen« von a und b .
e ) Berechne den »Winkel « von a und b .

b =
/ 1 ^
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a ) a 1) " a , 1) ^ + 2a2b2 ■+• 3a3b3 + a 3)2 ■+■a2b j

199

b)

c)

d)

e)

a * a = a a
2 + 2a2

2 + 3a3
2 + 2axa2 = (ax + a2 )2 + a2

2 + 3a3
2 > 0 fiir a * 0

= 4 + 2 -(— 3 ) -2 + 3 -2 -(— 5) + 4 -2 + (—3)- l = - 33

I al * = V22
"

f 4 A ( 1 N,
- 3 * 2

l 2 J l- 5j
I a I *2 = (4 - 3)2 + (- 3)2 + 3(2)2 = 22

I b I *2 = ( 1 + 2 )2 + 22 + 3 (- 5 )
2 = 88

. I _ ^ *2 I 3
008 «p = U22 = *

^ 2^ 22

cp
* = 41,4 °

9. Berechne im IR 3 einen Vektor n der »Länge « 5 , für den gilt
a * n = b * n = 0 ; verwende das Skalarprodukt von 6 . c) .

| (n ist »Lotvektor « von a und hj

a =
f 1 >>

0 b =
( 3 1- 4

UJ l 4 J
6 . c ) a * b = ajbj + 2a2b2 + 3a3b3 + ajb2 + a2bx + a2b3 + a3b2 + ajbg + a3bx
f 1 \

0
l- lj

f- . l

* n — n3 + 0 — 3n3 + 2(n2 + 0 — n3) — — n3 + 2n2 3n3

* n = 3nj - 8n 2 + 12n3 + 2(3n2 - 4n 3 + 4n x) = lln x - 2n2+ 4n3

I — n ^ ■+■2n 2 — 3n3 — 0

II llnj — 2n2 + 4n 3 = 0 zum Beispiel n = fil

10 . Zeige die Gültigkeit der CAUCHY-SCHWARZ -Ungleichung für das

a ) Standard -Skalarprodukt b ) Skalarprodukt von 6 . c ) .

a ) ( a ° a ) ( b ° b ) - ( a ° b )2 =

= a^ j
2 + aj2b2

2 + aj2b3
2 + a/b ]

2 + a2
2b2

2 + a2
2b3

2 + a3
2bj2 + a3

2b2
2 + a3

2b3
2 -

— a 1
2b1

2 - a 2
2b2

2 - a3
2b3

2 - 2a 1a2b 1b2 - 2a2a 3b2b3 - 2a 1a 3b1b3 =

= ( a 1b2 - a2b1 )
2 + (a2b3 - a3b2 )

2 + (a^ - a :b3)
2 > 0 qed

b ) Zu zeigen wäre (a * a )(b * b ) — (a * b )
2 > 0 ; dazu müßte man den Term

(aj2 + 2a2
2 + 3a3

2 + 2a 3a2 + 2a1a3 + 2a2a3)(b 1
2 + 2b2

2 + 3b3
2 + 2b 1b2 + 2b^ 3 + 2b2b3)

- (a^ j + 2a2b2 + 3a3b3 + ajb2 + a^ + a2b3 + a2b3 + a3bx + a3b2 )
2

so umformen , daß er als Summe von Quadraten zeigt , daß er nicht

negativ ist . Aus naheliegenden Gründen verzichten wir darauf und

raten von dieser Aufgabe ab .
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1 . Bestimm
Koordina

a ) bt =

e dre
tene
f - 2 \

3
l 4 J

i Normalvektoren v
oene parallel ist :

b )
~a =

m

r 1
0

U1

t , von denen jeder zu

\
c ) a =

/

sine

f 0 '
0u .

r

\

/

a) f 0
4

l- 3j

( 2 \
, oUJ

( 3 -,
, 2

( 0 \
b ) 1UJfl

'
0u , c) r o >

1
fl

0u) { ä )
2. Bestimm

ganzzah
’
/

a) a =
V

ie einen I
igen Koo
6 \
- 1 , b =
3 J

'Jormalvektor vo
rdinaten :
' 3 \

1 b ) a =UJ

n "a

i \
- 2
rV

und b mit teilerfren

. f — 3 \
b = 6 c) a =U J

ider

19 \
0

- V

i ,

b =
fi3 \

0
W

a) 3
l-v

r 2 ^b ) 1UJ c) 1UJ
3. Zeige : Sind u und V linear unabhängige Normalvektoren von ”a , dann

ist auch jede Linearkombination von ’u' und "v ein Normalvektor
von ~a .

u 0 a = 0
- >• n r =* ( >. u + jTv ) ° “a ' = ^ u ° a + pw ° a = L0 + p -0 = 0

4 Bestimme alle gleichlangen Normalvektoren von a =

mit ganzzahligen Koordinaten .

s ^ O t * 0

f 2 \
-2

v 1 y

f 2 ^ fi \
S 1 t 2-2J UJ

5. Bestimme einen Vektor , der senkrecht ist zu u und V , und untersuche ,
welche der Vektoren a , b ,

~
c und d komplanar sind zu bt und v :

f3 ^ ( 2 's ( 7 > r 1 's f 1 >4
U7J

v = - 2 a = 0 b = ^
OC

c = - 1
UJ

d =
(i )J

. rl \
Normalvektor von u und v :

~n = 1

_ _ _ _ _ UJ
a ° n = d ° n = 0 => a,d sind komplanar zu bt und v
c ° n ^ 0 , b ° n ^ 0 sind nicht komplanar zu bt und ~v

£ {
i
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_ 5. ( 2Q \ ( 1 ^
6. g X = 1

1 12 J
+ p - 4

l 3 J
P (4 | 8 I - 8 )

a) Berechne den Fußpunkt F des Lots von g durch P
und den Abstand von P und g.

b ) Berechne den Abstand von g und Ursprung .

allgemeiner Geradenpunkt von g: =
r 20 + p a

l - 4p
12 + 3pJ

_ i. r 1 a f 16 + II A ( 1 A
a ) PG . o - 4 — - 7 - 4p O - 4

a 3 J , 20 + 3p , l 3 J
- ( 1 ^ ( 20 + p a ( 1 A

b) OG^ ° - 4 = 1 - 4p O - 4
l 3 , ^ 12 + 3pJ A 3 )

= 104 + 26p = 0 =i> p = - 4 , F ( 161171 0) , d = 17

= 52 + 26p = 0 => p = - 2 , F(181 91 6 ) , d = 21

7. Gib die Gleichung einer Ursprungsgerade u an ,
_ ^ / 3 a ( 2 A

dieg : X = 5UJ+ p 1
1 3 Jsenkrecht schneidet .

- ( 2 \ ( 3 + p A / 2 a _^ ( 1 j
OOP0 1 = 5 - 4p O1 = 14 + 14p = 0 => p = - 1 , F( 1 14 1- 2 ) , u : X = k 4

l 3 J 11 + 3pJ l 3 J 1-2J

_ ^ f 3 ^ yOA
5 X = 1

UJ
+ p 1

a 2 J
P (11 - 11 1 )

a ) Berechne den Fußpunkt F des Lots von g durch P .
b ) Gib eine Gleichung der Normale n von g durch P an .

c) Berechne den Abstand von P und g.
d ) P ' und P sind symmetrisch bezüglich g . Berechne P ' .

_ s. y 0 a ( 2 " f0 \
a) PG^

o l = 2 + p ° 1
l 2 y l 28 j l 2 J

= 2 + 5p = 0 => p = —5 F (3 I 0,6 I 0,2)

_ ^ f 1 ) f 5 a
b ) n = PF : X = - 1

A 1 )
+ x 4

,- 2j

d ) P ' = F + PF = 2 F - P

c) d = PF = "^ 4 + 25 + 25 - 5 ^ 5

P (5l 2,2 1 - 0,6)

^ Berechne den Abstand d(P,g ) und die senkrechte Projektion F von P auf g,
- 20 a f 0 A

a) g: X = | - 10 1+ p - 2

— f 1 ^
b ) g : X = 11

111

y
in \

+ p | ii

P ( 50 I 55 | 51)

P (1000 | 110 I 120)
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a. vO > O1 r ° \

a ) PG r 0 - 2
UJ

ZZ- 65 - 2 (i
^- 26 + 5 |1 j

O - 2
Ls J

= 29p = 0 => p = 0 , F(—20 I - 101 25 ) , d = 99

rlll > V- 999 + lllp \ rlll > vlll > f m \
b ) PG , 0 11 = - 99 + 11p 11 = (- 9 + p) 11 0 11

l 1 v l - 9 + p J l 1 v l 1 J v 1 J
F ( 1000 11101120 ) = P , d = 0

_ ^ ( i > _ v v3 ^ r 5 \
=i11Xbaf©rH 1Uj h : X - 2

Uv+ X 5
UJ P ( 11 2 | 3 )

a ) g an P gespiegelt ergibt g '
. Gib eine Gleichung von g ' an .

b ) P an g gespiegelt ergibt P '
. Berechne P '.

c ) h an g gespiegelt ergibt h '
. Gib eine Gleichung von h ' an .

a )

b )

G0( 01 0| 0 ) an P spiegeln : G'
( 21 4 I 6 ) ,

vlv (- 1 + pv f i \
1 = - 2 + p O 1

Uv r 3 + M-v ^ J
P ' = F + PF = 2 F - P

_^ ( 2 \
g

'
: X = 4 + 0 1UJ

F ( 2 I 2 I 2 )

P '
(3 I 2 I 1)

c ) H0 = P '
, also H0

’
( l | 21 3 ) = P

noch den Punkt H1(8 1 71 0 ) an g spiegeln :

HiG. o r 1 ^ v - 8 + p ^ fl \
1 = - 7 + p 0 1

Uv l V- V UJ= 0 => p = 5

Hj ' = F + H XF = 2 F - Hi
—- / l

h’ = Ho
'Hj ' ■ v ’_ ( i \ vl \

X = 2 + T 1UJ UJ

F (5 I 5 I 5 )

H 1
'
( 2 | 3 I 10 )

_ f2 ^ f 2 '' — f5 \ ( 1 >11 . g : X = 5 + x - 2 h : X = 3 + p - 1 Berechne d(g,h ) .
UJ Uv UJ \0>®v

g und h sind parallel . d(h,g ) = d(H0 ,g)
rU ( 3 + p \ f 2 \ _ „ r l/3 \
fr - 2 + p 0 ~2

j
— 12 + 9p = 0 => p = — 3 , H 0 G_4/3 = 2/3

v ^ J l 2 + P J 12/3 J
d(H0 ,g ) = 1
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12 . A(29 1 - 51 - 4 ) , B (- 3 I - 27 I 12 ) , M( 16 1111 - 8 ) , P (4 | 8 I 19) , Q( 11 - 19 I 31 )
g ist die Gerade durch A und B .
a ) Bestimme den Punkt N auf g , der P am nächsten liegt .

b) g ist Tangente einer Kugel um M.
Berechne den Berührpunkt T und den Kugelradius r b .

c ) Berechne Radius rc und Mittelpunkt M c der kleinsten aller Kugeln ,
die durch M gehn und deren Mittelpunkte auf g liegen .

d) Berechne Radius rd und Mittelpunkt Md der kleinsten aller Kugeln,
die durch M gehn und g berühren . Berechne den Berührpunkt T .

e) Berechne Radius re und Mittelpunkt Me der kleinsten aller Kugeln ,
die durch 0 gehn und g als Zentrale haben .
Berechne die Schnittpunkte von g und dieser Kugel ;
was für ein Dreieck bilden der Ursprung und die Schnittpunkte ?

f) Bestimme eine Gleichung der Normale n von g durch Q .

g) Q an g gespiegelt ergibt Q'
. Berechne Q '

._
_ ^ / - 3 a / 16 a
X = - 27 + p 11

[ l2j l- 8j

/ 16 a / - 7 + 16g a /
a ) PG ^

o 11 = - 35 + 11g 0
v
- sJ 1 1 CO V

b) MGn o
/ 16 a / - 19 + 16g ^ / 16 a

11 = - 38 + 11g O 11
20 - 8g ,- 8j

11 ] = - 441 + 441p = 0,g = l ; N( 13 I —16 I 4 )

= - 882 + 441p = 0 , p = 2 ; T(29 | — 5 J — 4 )

rb = M T = 21

c ) M c(29 1 - 5 1 - 4 ) rc = 21

d) M( 16 I 111 - 8 ) und T(29 I - 5 I - 4 ) sind die Endpunkte des Kugeldurch¬

messers , Md(22,5 | 3 I - 6 ) , r d = y
e) Me ist die senkrechte Projektion von 0 in g:

= - 441 + 441p = 0 , p = 1 Me( 13 I —16 14 )

Schnittpunkte mit Streckenabtragen :

S+(29 1- 5 1- 4 ) , S_( — 3 I - 27 112 )

OGm
°

/ 16 a / - 3 + 16g a / 16 a
11 - - 27 + Hg O 11

1- 8J ^ 12 - 8g J r «J

re = OM . = 21

S = M „ ±21
/ iß a0 / 13 1 / 16 a

li - - 16 ± 11
OO ^ J l- 8j

OS_S+ ist rechtwinklig bei O und gleichschenklig : OS_ - OS+

f) Qs ist die senkrechte Projektion von Q in g:

Q G ° 11 = - 8 + 11p ° 11 = 441g . = 0 , p = 0 Q s(- 3 1- 27 I 12 )

l- 8j 1- 19 (- 8j
^

n = QQs -' X =

g) Q^ fiQVcf ) Q^ oT - Q Q ’(- 7 1 - 35 1 - 7 )

/ - 3 a f 4 \
- 27 + V 8

v 42 J ,19j
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QUI- 19131)
Skizze

Q '
( —71 — 351 —7 )

13 . g ist die Gerade durch A( 8113 I 3 ) und B ( 141 20 I — 3 ) ,h ist die Gerade durch C ( 10 I 19 112 ) und D (- 8 I - 2 I 30 )
a ) Berechne den Abstand d (g,h ) von g und h.
b ) Bestimme eine Gleichung der Mittelparallele m von g und h.
c ) g an h gespiegelt ergibt u , und h an g gespiegelt ergibt v .

Bestimme Gleichungen von u und v .
d) Wo liegen die Mittelpunkte der Kugeln , die g und h berühren ?
e ) Wo liegen die Mittelpunkte der kleinst möglichen Kugeln ,

_ die g und h berühren ?
, 8 \ ( 6 ) _ ^ flO \ ( 6 N
13 + X 7 h : X = 19 + p 7IsJ 1- 6 ; 1 12 J l- 6j

g : X =

a ) d = d(g,h ) = d(G0 , h)

g und h sind parallel

G0H o
, 6 ^ ,2 + 6g> , 6 "i7 6 + 7 |i 0 7
1- 6 ; 9 - 6n ,- 6j

= 121p = 0 , p = 0 d = G0H 0 = 11

9 ■) , 6 i
, = 1 ( G0 + H0 ) M 0(9 I 16 I 7,5 ) m : X = 116 + V 7

7,5J l- ej
_ ^ ^ , 6 > , 6

= 1 ( H 0 + V0 ) , V0 = 2 G0 - H0 = 7 v : X = o 7
1- 6 , 1- 6 ./

_ x ^ v , 12 \ _ x , 12 ' iU 0 = 2 H 0 - G0 = 25 u : X = 25 + G
l2lj L21>

, 6
7

- 6

d) in der Symmetriebene S von g und h,S enthält m und steht senkrecht auf der Ebene , in der g und h liegen .
e ) auf m
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_^ r 7 j ( 1 >
14 . ga : X = i + p - 2 , aeZ , M(

A 0 j
M(- 5 I 5 I 5 ) , V( 6 I 18 I 6 ) , W(- 6 I 12 | 0 )

a ) Beschreibe die Schar ga , welchen Abstand haben benachbarte Schar
geraden ?
Welche besondere Lage im KOSY hat die Mittelparallele von g7 und g_7 ?

b ) Welche Schargeraden haben vom Ursprung den Abstand 7 ?

c) Welche Schargeraden berühren die Kugel um M mit Radius 9 ?

d) Bezüglich welcher Schargerade sind V und W symmetrisch ?

a ) ga ist eine Schar von Parallelen zur x1x2-Ebene . Mit jeder Änderung von
a in Einser -Schritten verschiebt sich die Gerade in x3-Richtung ; benach¬
barte Schargeraden haben den Abstand 1 ; sie sind parallel zur x1x2-Ebe-
ne und liegen in einer Ebene , die auf der x1x2-Ebene senkrecht steht .
Die Mittelparallele von g7 und g_7 hat den Aufpunkt (7111 0) , sie liegt in
der x1x2-Ebene .

b ) OG ( 1 i / 7 + p A / 1 A
- 2 = 1 — 2p O - 2

A a J
= 5 + 5p = 0 , p = - 1 Fa(6 I 3 I a )

Bedingung d( 0,g a) = OF a = 7 : F a
2 = 49,45 + a2 = 49 => a = ± 2

F „ (3 I 9 I a )c ) MG
/ 1 A / 12 + p A / 1 A
- 2 = - 4 - 2p O - 2

loj i a - 5 J aOJ
= 20+ 5p = 0 , p = - 4

Bedingung d(M,ga ) = MF a = 9 : MF a
2 = 81

64 + 16 + a2 - 10a + 25 = 81 , a2 - 10a + 24 = 0
(a - 6 )(a - 4) = 0 => a = 6 oder a = 4

d) Die Schargerade muß durch den Mittelpunkt der Strecke [VW] , also

p = - 7 a = 3/ ° A ( 1 ^ ( 1 j
15 = 1 + p - 2

l a / loj

15* Untersuche , ob g und h windschief sind , berechne gegebenenfalls den

Abstand d(g,h ) und die Endpunkte der gemeinsamen Lotstrecke .
- 4 >

a) g: X = l

b) g : X =

e) g: X =

d) g: X =

+ X
r - 3

v 4 /

- 2
v3y
/ 7 a

+ x/ 1 A

+ X
V 9 /
/ 2 a

0
3

< 0 ;
/ 4

5
6

/ 2 a

h : X =

h : X =

h : X = p

/ 4 A /
1 + H
0 J \

/ 0 A f
5

V

/ 4a
3

- 2
0 '
0
1

/ I A

V _ ^ f 5 ) / - 2 a
h : X = 6 + h - 1

) [ 0j L 2 J
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_ ^ ( 2 \ f i > _ ^ f - 5 \ ( - 3 \
e) g: X = 16 + k 8 h : X - 8 Up

19 J
4

l 4 J
f) g : X =

r5
2 | + k
0

( 3

I
1 r 6 ^ r —2 \

h : X = 15 + p 4
l - U

Die Geraden sind windschief , wenn sie nicht parallel sind und wenn sich bei
der Berechnung des Abstands windschiefer Geraden ein Wert > 0 ergibt .
a ) G_2(2 I 3 I - 1 ) H 0(4 111 0)

b ) Gs(4111 3 ) H_5( 0 I 5 I 3 )
c) G_2(- l I - 2 | - 3 ) =
d ) G a ( 0 2 | 2 ) H2 ( l | 4l 4 ) d =
e) G_2 (0 1 ol 0 ) H_3( 4 | - 4 1 7) d =
f) G3( 14 | - 1 1 21 ) = H _4 d =

f 6 >> f- 8 \
16. g: X = k - 10 h : X = 16 + p 10

^

**

3 J l 7 J l 1 J

d = 3 windschief

d = 4a/2
"
windschief

d = 0 Schnittpunkt (- 1 I - 2 I - 3 )
windschief
windschief

Schnittpunkt ! 14 I - 11 21 )

g ist die Achse eines Zylinders Z mit Radius 11.
Berechne die Schnittpunkte von Z und h ._

_ v
allgemeiner Verbindungsvektor G^HR =

( 6 \
G,H,o

f 6 >
10
3

^ —1 — 8p — 6k h
16 + 10p + 10k

^ 7 + p — 3k j

r - 1 - 8p - 6k ^
16 + 10p + 10k

^ 7 + |i — 3X j

- 10
V 3 J

= - 145 - 145p - 145k = 0 , k = - 1- P

=
f - 1 - 8p + 6 + 6p % ( 5 - 2p \

16 + 10p - 10 - 10p = 6
, 7 + p + 3 + 3p , ,10 + 4p ,

Bedingung : G^ H ^
2 = 121

(5 - 2p )2 + 62 + ( 10 + 4p )2 = 121
p2 + 3p + 2 = 0 (p + l )(p + 2) = 0 => p = - 1 oder p = - 2

Schnittpunkte : H_x( 7 I 6 I 6 ) H_2( 15 I - 4 I 5 )



IX. 4 , Anwendungen der Orthogonalität 207

_ ^ r ° ) _ ^ f- 7> r- 3A
17. g: X = 17 + x 8

l4>
h : X = 9

1 *5J+ h 4
l 4 J

a ) Die Kugel hat ihren Mittelpunkt auf h und berührt g.
Bestimme ihren Mittelpunkt M und Radius r in Abhängigkeit von p .
Für welchen Wert von p ist der Radius minimal ?

b) Bestimme Mittelpunkt M und Radius r der kleinsten Kugel,
deren Mittelpunkt auf h liegt und die g als Tangente hat .

c ) Bestimme Mittelpunkt und Radius der kleinsten Kugel ,
die hundg als Tangenten hat ._

a ) M ^( 7 - 3p I 9 + 4p I 16 + 4p )

7 1) f 7 + 1 + 3p A

M,G,o 8 = 8 + 8X - 4p
l4J -̂ 11 + 4X - 4pJ

° [ 8 = 27 + 81X — 45p = 0 , 9X = 5p - 3

X i f 60 + 32p \
= Q 48 + 4p

) [- 111 - 16pJ
72 + 40p - 24 - 36p

- 99 + 20p - 12 - 36p
2
= 1296p 2 + 7776p + 18225 = 81 ( 16p2 + 96p + 225 )f 60 + 32p -\

48 + 4p
y—Hl — 16pj

M ^Gj . = r = Vl6p 2 + 96p + 225
Radikand R ist minimal , falls R '= 0, also für p = - 3 r min = 9

s. r1) ( 7 + X + 3p C1)
b ) M,G,o 8 = 8 + 8X - 4p O 8

l4J
^
- 11 + 4X - 4p y

W= 27 + 81X - 45p = 0 , 3 + 9X - 5p = 0 (I )

= - 33 + 45X - 41p = 0 (II )

2 , M = H_3(21 - 3 I 4 ) , G_a(- 21 11 - 3 )

r = MG „ 2 = 9

c) Der Durchmesser dieser Kugel hat die Endpunkte H_3( 21 — 3 I 4 ) und

G_2(—2111 - 3 ) . Kugelmittelpunkt ist ( 01 - 11 0,5 ) , der Radius ist 4,5 .

—_ ^ r~ 3 ) f 7 + X + 3p r— 3 v.
M^GX ° 4 = 8 + 8X - 4p O 4

l 4 J -̂ 11 + 4X - 4py l 4 J
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Beweise folgende Sätze mit dem Skalarprodukt

Die Vektoren , die die Raute aufspannen , sind
V I (Vor . ) . Das Skalar¬gleich lang : I u

produkt der Diagonalvektoren ist deshalb
null : Cu - "v ) Cu ‘

+ ^v ) = "u"2 - ~v ‘2 = 0.

Also stehn die Diagonalvektoren
aufeinander senkrecht .

1 . Inj eder Raute stehen die Diagonalen aufeinander senkrecht .

2. Thales -Satz : Wenn ein Dreieck OVU rechtwinklig bei O ist ,
dann liegt 0 auf dem Kreis mit Durchmesser [UV] .

Wegen u » v = 0 (Vor. ) ist
li = (

~nf - 'r ' Mln '
+

"? ) = 0
also "irT 2- ! ^ = 0 , also m = r , q.e .d

3. Umkehrung des Thales -Satzes :
Wenn O auf dem Kreis mit Durchmesser [UV] liegt ,
dann ist das Dreieck OVU rechtwinklig bei O .

Wegen m = r (Vor . ) ist m 2= "r "2 ,
also m 2- r 2 = ( m - r ) °(

"m "
+~r "

) = ~u «V = 0 , also "u " iV q.e .d.

4. Satz über die Höhen im Dreieck :
Die drei Höhen eines Dreiecks schneiden sich in einem Punkt .

Vor. : ha »
~a = hfo ° b = 0

Beh . : h c » c = 0 , bzw h c ° Ca
"
+ b ) = 0

Beweis
h a = b + h c 11 ° a"

=> h a = b o
"a + h c °lT = 0 I

h b = h c - ~a | | ob
=* h b ° b = h c ob - “a ° b = 0 II
I+II : h c ° ( a + b ) = 0 q.e .d.

c

"c = a + b
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5. Satz über die Winkelhalbierende im Dreieck :
Jede Winkelhalbierende teilt die Gegenseite
innen im Verhältnis der anliegenden Seiten .

Vor . : I lt 0 l = I lT 0 1 = I
"
(f 0

l = 1

und ~a °° b 0 1
Beh. : v : w = b : a
Beweis
vT 0 = k (

"a °+
"
b ° ) - b

~
b 0

v “
c

" 0o (
"a °- b °) =

= 0 - b
"
b °oCa '°-

~
b ° )

= b ( l - b
‘
° o

"a 0 ) = : Z

vf
~
c ° - a ~a °- k (lf 0+ b ° )

w "
c

" °° Ca °- b °
) =

= a ’a ' 0» (
~a °— b ° ) — 0

= a ( l - lT 0° a °) = : N
ZiN= v : w = b : a q.e .d.

Außerdem muß gelten : c °« ( a °- b Vö , das heißt , c 0 darf nicht senkrecht

sein zu Ca*0- b °) , also nicht parallel sein zu ( a °+ b °) , weil ja ( a °- b ° ) auf

( a °— b ° ) senkrecht steht ; das aber bedeutet , daß die Winkelhalbierende w^
die Seite [AB] schneiden muß .

k (a + b )

6. MITQUADRATEN
[OP] und [OQ] sind gleich lang
und stehn aufeinander senkrecht .

Vor . : = 0 und
u ' =u,V 'oV = 0 und v ' =v
Das Dreieck OUV und das
Dreieck mit den Seitenvektoren
■u '

,
"v ' und "w

’ sind kongruent ,
aber um 90 ° verdreht .

Beh . : OP A. OQ und OP = OQ

Bew . : OP = - ^u ' + 'u +~w =

- - 'u ' +
'n + Tf ' - "v ' = u - v '

MITQUADRATEN
\ CP = CQ und CP J. CQ

Quadrat
Quadrat

Quadrat —
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OQ = V ' + V + W =

- ‘v ' + ^v + "u ~v ' = ’v ’
h- Tt Beweisfigur

OP o OQ = ( u - v '
) o ( v + u '

) =
= u « v + u » u ' - v '» v - uV =
= U o

"v " - u '« v '

( wegenlf '° u = 0 und"v ‘ lo
~v = 0 in Vor . )

= uv cos co - u 'v ' cos co = 0
(wegen u '=u und v '=v in Vor . )
also OP _L OQ q.e .d.
ÖP 2 = ( li - 'v ,

)2 =
Tt 2 + T '2- 21 ? °

~
v

' =

= u2 + v2 - 2uv cos (90 °+ co)
OQ = ( v + u '

) = v z + u ,2+ 2v ° u ' =
= u + v + 2uv cos( 180°- 90 °- co ) =
= u2 + v2 + 2uv cos( 90°- co) = u2 + v2 - 2uv cos(90 °+ co)
also OP = OQ q.e.d.

7. QUADRATMITTEN
X , Y und Z seien der Mitten
der Quadrate über den Sei¬
ten eines bei O rechtwink¬
ligen Dreiecks UVO.
[XY] und [OZ] sind gleich
lang und stehn aufeinander
senkrecht .

Beweisfigur

Vor . : u ’
o u = 0 und u '=u ,

v o v = 0 und v '=v
Das Dreieck OUV und
das Dreieck mit den
Seitenvektoren hf '

,
~v '

und "w ' sind kongruent ,
aber um 90 ° verdreht .

Beh . : 1Ü? ±
~
C>Z und XY = ÖZ

u 5- »- - -

\ V— u

u ’- v1 z
'

w

1
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2 OZ = 2lP + 2 w ■W + V — U = U + W + V = U + V + U

2XY °2 0Z = Cu ' + ~v '+ ~v - "u '
)o(

'u '
+

~v + Tt ' - ~v ' )
= "tfo U + ”

Ü% "v + Tl '
o u “ - if ’oV

+ "
v^ 'o U

* + V
^ 'o

'y1
+ V

^ 'odP ' - "v
'

o
'v ’'

+ V O U + ~
V °V + V » u ’ - V o

~v ’

— uNlT — lio ^ ~ "u ’
o
'u '' + ~ü%V '

= 2"u ’’oV + 2lf oy “’ = 2uv cos 0 ° + 2uv cos 180 ° = 0

v ,2+ v 2 + u 2 +
also X Y _L OZ , q.e .d.

(2XY )2 = Ca ' + -y ’+ V - u “
)2 = lT 2 +

+ 2 u 'o
“v 1 + 2u '«

"v - 2 'uk'°
“u + 2X? '° Tv - 2 ~v L,°

"u - 2"u'
°V

= li '2 + V '2+ V 2 +
~u 2 + 2Tf '°Y^ - 2Tv

‘ ,°
'u

(2 OZ )2 = (Tf + ~
v

“ + ~u ' - T ')2 = lf 2 + V 2+ lT '2 +
"v"'2 +

+ 2”uk
o

”v ' + 2”u '
° df ' - 2Tfo ~v ' + 2 ~v o

'u ’1 - 2 rv
'
°V ' - 2df 'oV

= lf 2 + ~v 2+ "u"'2 + T '2 - 2"u ’
0V ' + 2 'v'olf '

also X Y = OZ , q.e .d.

Der geometrische Ort der Punkte , deren Entfernungsverhältnis zu zwei

festen Punkten O und P gleich x (* ±1) ist , ist ein Kreis . (Apollonios -Kreis )

IX 1 : 1 PX I = t , 1x1 * 1

! T 2 = t z<X - Y ?

X 2( 1—x2 ) + 2z2lP °
~
X = x^ 2

X 2 + 2 -

1—x2

P ° X +

P 2 +

( 1—x2 ) '2 \ 2 P 2 =

( 1- x2 )2 r

2 X
2

( l - X
2) + X

4 -

1 —x2 ( 1 - X
2 )2 ^2

X +
1 - x2

Kreis um M = x2

1 - x2 1 - x2

9* In jedem Spat sind die Quadrate über den vier Raumdiagonalen zusammen

genauso groß wie die Summe der Quadrate über den zwölf Kanten .
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Quadratsumme der Raumdiagonalen :
Ca + b + "

cT )
2 + Ca + b - ~

c )2 +
+ Ca - b +

'
(T )2 + (- “a + b +

~cf =
= 4Ca 2 + b 2 +

~
cT 2 )

Die 12 doppelten Produkte fallen weg.

10 . Die Höhen eines Tetraeders treffen sich genau dann in einem Punkt ,
wenn je zwei Gegenkanten senkrecht stehn . (Eine Höhe ist das Lot
von einer Ecke auf die gegenüberliegende Seitenfläche . )
Wenn je zwei Gegenkanten senk¬
recht stehn , dann treffen sich die
Höhen in einem Punkt . Beweis :
CO’L AB , BO ’l AC und AO 'l BC
auch AA '

-L BC , weil die Ebene AOO'
senkrecht ist zur Ebene ABC , also
schneiden sich AA ' und 00 ' in H .
Dasselbe gilt bei Projektion in Rich¬
tung jeder der vier Tetraederhöhen ,
es gibt also nur einen Schnittpunkt H.
Wenn sich die Tetraederhöhen in H

treffen , dann sind je zwei Gegenkan¬
ten zueinander senkrecht . Beweis :
OHoBC = 0 => hf ° (

"
C - "

B ) = 0
=> lf °

"
C = ^ oß ( • )

AH » B = 0 =
'
ÄH °

~
C

( R -
'
A ) o

'
b = ( K -

~
k ) o

~
C

lloB ^ AoB = 1? °
"
C Ao

"
c

wegen ( • ) folgt A » B = A » C
A . ( B - C

‘
) = 0 => AI CB

der Grundriß zeigt Paare
senkrechter Kanten
OALBC ^OB1AC
OC LAB /

P = 0 ’= H

A/H
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1 . Berechne

a )
( 2 '\2 X

y - l >
2 b )

ylN
2 X

y4 \
5 c ) 8 X

yl0 \
11

- 1 2 3 6 9 12
( 5 1 f 4 n y 5

*

> f 4 \ f a > / a+ 3 A
d ) - 15

l 25 J
X 12

L- ieJ
e ) - 15

125 J
X - 12

l 23 J
f) a+ 1

la+2y
X a+ 4

V a + 5 J

( 2 y - ly ( —1 \
a ) 3 - 1

x2j
b ) 3 2

v- ij
c) 3 2

^ - 1J
d ) 60

y - lx
3 e)

r ° i
0 f ) 3

y - l \
2

l 2 J xOJ 00

2. Berechne mit dem Vektorprodukt einen Normalvektor der Ebene :
_ v y 17 x yl > y _ ^ yl > ^ 7 ^

a ) X = - 21 + X 2 + p 8 b ) X = g 0 + T 1
113 J l 3 y l 9 y 10 1 -7 y

a )
t 3 y

n =
y 1 >, y 1 x ( - 7 > y - i n
- 2

l 1 y
b ) 0

10
X 1

l - 7 ;
— 0

10

r 2 ^ _ ^ yl > y3x
= - i b = 2 ~

c = 1
l 1 y l3y OJ

a ) Berechne faxb ) x ~
c und ~a x ( b x “

c
"
).

b ) Stelle Ca x b ) x ~
c
' als Linearkombination von 1t und b dar .

a ) ( a x b )x ~c = 5
f - l >

- 1
v ly

f 3 \

v3y

y - 2y _ y2y y 3 x y - lx
= 10 3 ltx ( b xc ) = - 1 X 6 = 13

^ 1 J xO l" 5j 1 13 J
_ x y - 2 ^ y 1 ^

b ) ( itx b )x
~
c = 10 3

IO
= 8 2

l 3 y
- 14 - 1

10
= 8 b - 14 a

4- Bestätige für ~a ;
y - 6x Vf 4 \

3 , b = - 20
l 2 y l 5 Jdie Beziehung Ca ° b )2 + 1 a x b 1

2 - a2 b2.

( ^ ob )2 + |
"? xb |

2 = (- 74 )
2 +

a2 b2 = 49 - 441 = 21 609

y 55
38

V 10®y

'
= 5476 + 16133 = 21 609

5.
^

Zeige :
a ) u , v linear abhängig o Tf xV = o .

b ) u,v linear unabhängig <=>
~xt ,

~v , üTxV linear unabhängig .
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a ) Wenn u , v linear abhängig , dann u x v = o :
li - |iV , li x~v~ = gV x~v = ~o
Wenn "uxv “ = ~

o , dann li ,
’v ' linear abhängig :

* ( u\ V ) = 0 ° oder >$ (1? ,
~v ) = 180°

:
"u , V sind parallel , also lin .abhg.

b) Wenn u ,
~v linear unabhängig , dann li , v , uxv linear unabhängig :

Lt x~v ist senkrecht zu der Ebene , die von ff und "v aufgespannt wird,
ist also keine Linearkombination von u und v .
Wenn li ,

"v "
, Lt xV linear unabhängig , dann ~u ,

~v linear unabhängig :
Widerspruchbeweis : Wenn ~u und XT sind linear abhängig wären ,

dann wäre u xV = 0 ; u , v und uxv wären
dann - entgegen der Voraussetzung - linear ab¬
hängig . Also sind "u und "v linear unabhängig .

Algebra -Beweis : Wenn u ,
"v , uxv linear unabhängig , dann ist

Xli + p
~v + v~a xV = 0 nur erfüllt für X = p = v = 0:

X. u + p v + v~u xv = 0 | o ( u x v )
X-0 + p -0 + v(

”u x~v f = 0 « v = 0
<=> X

”u + p
'v ' = 0 , das aber geht nur , wenn X = p = 0 ist,

weil "u und V ja linear unabhängig sind .

6. Welche besondere Lage haben hf und V , wenn gilt :
a ) I u!Vv I = uv b ) l

'ux 'v | = | uN ^vb ) I u x v u o v

a ) I u x v I = I uv sin <p | = uv , also (p = 90 °
, die Vektoren sind orthogonal

b ) I u x v I = I u | , also | uv sin <p I = luv cos cp I , also I sin cp I — I cos (p
cos (p = ± | a/2, Lf und V bilden 45 ° oder 135 °

7. Berechne ( v + w )x ( v - w ) und deute das Ergebnis elementarj

( v + w )x ( v - w ) = v x~v — v x W + WXV + WXW = 2wxv
v + w und v — w sind die Diagonalvektoren einer Raute , die von "u nnd v
aufgespannt wird . Diese Diagonalvektoren spannen selber ein Rechteck auf,
dessen Flächeninhalt doppelt so groß ist wie der der Raute .
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& Wo liegen die Punkte X , für die gilt:
a ) X x A = "0 b) X 0 ( A x B ) = 0

c) 2| xVa l = 1 x
1

1 = 1
~
k 1 = 1 d) X x ( AxB ) = "0

215

a) Wenn A nicht im Ursprung liegt , dann sind X und A parallel;
die Punkte X liegen auf der Gerade OA.

b) Wenn A und B nicht auf einer Ursprungsgerade liegen,
wenn also AxB ^ "

o ist , dann sind X und A x B orthogonal,
die Punkte X liegen in der Ebene OAB.

c) 21 X x AI = 21 X | ■ | A | sin <p = 2 -1 -1 - 1sin <p | = 1,
=> sin cp = ±0,5 => cp = 30° oder cp = 150 °,
die Geraden OX und OA schneiden sich unter 30°

, die Punkte X liegen
auf einem Kegel mit 60° Öffnungswinkel im Abstand 1 vom Ursprung;
das sind zwei zum Ursprung symmetrische Kreise mit Radius V2 um

M mit M = ± cos 60 ° A = V2 A senkrecht zu A .

d) Wenn A und B nicht auf einer Ursprungsgerade liegen,
wenn also AxB ~

o ist , dann sind X und AxB parallel,
die Punkte X liegen auf dem Lot der Ebene OAB, das durch O geht .

9. Zeige: Die Punkte X , die der Gleichung v x A X = 0 genügen ( v * o ),
bilden eine Gerade g.

Stelle eine Parametergleichung von g auf für v =
/- 1 >

0
- 2

und A(2 I 3 I - 1)

v und AX = X - A sind parallel, also liegen die Punkte X auf der Gerade

durch A mit Richtung V : X =
_ f 2 > (
X = 3 + X 0

l- b l-2J
10 . Berechne die Fläche des Parallelogramms ABCD

a ) A(0 I 01 0) , B( 11 0 I - 3 ) , C (- 4 I 61 - 1 )
b) A( 11 01 —1) , B( 11 — 3 13 ) , C(5 I 3 I 2)

a) AB x AC =

b) AB x AC =

( 1 > /
0 X

1- 3 ; V

( 0 r
- 3 X

, 4 > V

r - 4c \
6

/ 18 >t
13

ij V ® J

r ~21Nl
= 16

J , - 12 J

F = I AB x AC

F = | ÄBxAC

23

29
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11 . Berechne die Fläche des Dreiecks ABC
a ) A(- 2 I 2 I - 3 ) , B ( 0 I 0 I 0 ) , C ( 3 I - 2 I 0 )
b ) A(3 | 2 | 1) , B(5 I - 2 | 1) , C(7 | - 2 | - 5 )

_ / - 2a / 3 f - 6 a
a ) BAxBC - 2

l 3 ,
X - 2

lo ;
— - 9

l- 2 J
_ / - 2 \ / 6 ab) CAxCB - 4

l 6 J
X 0

v6j
= 4 3

A 2 J

F = § | BAxBC

F = | | CAxCB

5,5

14

_ / - 25 a ( - 5 \
12 . g: X = 6

l 11 / 8
l 1 J P ( 11 11 1)

Bestimme den Abstand von Punkt P und Gerade g, indem du den Flächen¬
inhalt eines geeigneten Dreiecks GHP ( G und H liegen auf g) und die zuge -
hörige Höhe h berechnest ._ _
Das geht so ähnlich wie in der vorigen Aufgabe :
g: lT =

~
G + |ilf Punkt H (g = l ) :

'
H =

'
G + _ö

"
die Höhe h durch P senkrecht zu g ist gleich dem gesuchten Abstand d
Flächeninhalt : l \ GPx GH | = lh GH , | GPxfif | = d -u d ^ lGPxlf

GP x u =
/ 26 a / - 5 / 75 a
- 5 X 8 = 24

1- ioJ l 1 V
u = V90 d = ^

^ p

”
= A/44T= 21

13 . Zeige : Der Abstand d eines Punkts P und einer Gerade AB errechnet sich
1 AP x AB I

mit der Formel d = -
AB

/ 18a / 12 aBerechne damit den Abstand von Ursprung und g : X = - 2 + p 3
[32 J l 4 /

Der Zeigefinger steht in der vorigen Aufgabe : was dort G ist , ist hier A; was
dort u = GH ist , ist hier die Richtung AB .

V \ /- 18 a /12 A / 104 A f 4 aAO x AB = 2 X 3 - 312 II to 12 => d = 26
l- 32J l 4 ; 1 - 78 J l3j

14 . Zeige: Der Abstand d der Parallelen g: X = G + lu undh : X = H + pu
errechnet sich mit der Formel d = ^ I GH x~u | .

Berechne mit dieser Formel den Abstand von

g:
/ 8a / 6 A _ ^ / 10a r 6 a13 + x

^

undh : X = 19
w

+ p 7
1- 6J
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GHxu = ( 2 \
6 X

( 6 ^
7 _ r- " )66 = 11

7 - 9 \
6

l 9 J l~ 6J 1 -22J 1 -2J

_ ^ r 3 ) 7 - 3 x
15 . Bestimme die Lösung von X x 1 = 5 , falls Xi = 1.

l 4 J

r 1 ) r 3 ) 7 - 3 ZV- w 'S 7 - 3 > _ 7 1 ■
)

V
W

X 1 — 5
1 4 J

=> 3w- l
U- 3vJ

— 5 => w = 2
l 4 J

v = - 1 X = - 1

16. A(51 2 I 6 ) B(7 I 01 9) C (0 | - 2 | l )

_ Bestimme die Länge der Höhe hc im Dreieck ABC .

Fabc - 2 I AB x AC I = s h, AB

ABxAC =
7 22 ^

- 5
-18

hc = | AB xÄC I : AB = ^ 833 : = 7

17. A(61 31 6) B(4 I 8 I — 8) g: X = H

Bestimme C auf g so , daß das DreieckABC den Flächeninhalt 54 hat.

F^ c = | | AB x AC I = 54 , I AB x AC I - 108 , AB x AC 2 = 1082

_ ^ x ( - 2 7 g - 6 x ( 5 (2g — 6 ) + 14 (- 2g — 3h f —18g - 72n
AB x AC = 5 X - 2g- 3 = - 14 (g - 6) + 2 (2g - 6) = - 10g + 72

l-14J [ 2g~ 6j 2(- 2g - 3) - 5(g - 6) ) V
- g + 36 ,

AB x AC 2 = 425g 2 + 1080g + 11 664 = 11 664 => 5g(85g + 216) = 0

g = 0 oder g = - Hr C^O I 0 f 0) C2(- ! r I # I - # )

18 . Zeige: ( uxv ) xw = ux ( v' xw ) o u und w sindkollinear ,

. _ wenn kein Nullvektor darunter ist . _
Graßmann : ( if xV ) x~w" = Cw

'
»

"u )^ - ( w » v ) u

vlxCv xw ) = Cvl °
~w )

~v - ( u o v ) w

(Vo 'u ' )~
V — ( ~w °

~v ) u = ( U ° W ) V — ( U ° V ) w

Cw
’

) Lf = ( u o v ) w q.e.d.

19rA ( 0 I 0 I 0 ) , B(6 I 9 | - 6 ) , C (61 3 I 6 ) , D (- 41 - 81 8 )

a ) Zeige: Das ViereckABCD ist eben.

b) Zeige: Das Viereck ABCD ist nicht überschlagen,
das heißt , keine Seite kreuzt eine andre .

c) Berechne den Flächeninhalt des VierecksABCD .
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a) Das Viereck ist eben, wenn die Vektoren AB x BC und BC x CD

parallel sind : AB x BC = ( 6 1 ( 0 > ( 2 \9 X - 6 = 36 - 2
l - 6j [ l2j

BC x CD = ( 0 >
- 6 X

f - 10 >
- 11 = 60 ( 2 \

- 2
l 2 J 1-iJ= ä AB x BC , also Parallelität

b) Das Viereck ist nicht überschlagen , weil die Vektoren AB x BC und
BC x CD gleichsinnigparallel sind.

c) 2FABC = I AB x BC I = 36-3,
Fabcd = Fabc + Fadc = 36 -3 =

2FADC = | AD x AC I = 36 -3
108

Konvexes
Vieleck Konkaves

Vieleck
Mindestenseine

Änderung des
Drehsinns

j A j+ l A ■r j+ l lrj+2
sind gleichsinnig

parallel.

/ Die Drehungeines
/ Seitenvektors in die

/ Richtung des folgenden
/ Seitenvektorsverlangt
immer denselbenDrehsinn. sind nicht

gleichsinnig
v parallel .

20 . Begründe:
Ist PXP2P3P4P5 ein ebenes konvexes Fünfeck , dann sind die Kreuzpro -

- _ xdukte PjPj+ i x Pj+1PJ+2 aufeinander folgender Seitenvektoren gleich¬
sinnig parallel . Stimmt dieser Satz auch für konkave Fünfecke ?
I liege im Innern eines ebenen konvexen Fünfecks P 1P2P3P4P5 <=>für alle Ecken Pj mit P t = P6 gilt:
PjPj +i x Pjl ist bis auf einen positiven Faktor gleich PjP 2 x P2P3 ■

Wie merkt man , daß ein Punkt auf dem Fünfeck liegt ?_
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b ) Positiver Durchlaufsinn : Die Vektoren PjPj +i x Pjl sind gleichsinnig

parallel , denn um den PjP ] + 1 in Pjl zu drehen , ist der Drehwinkel
positiv , es wird also immer linksrum gedreht . Bei einem konkaven Viel¬
eck stimmt der Satz nicht : hier gibt es mindestens einen Knick nach
innen , dort ist der Drehwinkel negativ , PjPj + i x Pjl zeigt in die Gegen¬
richtung oder ist gleich null . Liegt der Punkt auf dem Vieleck , dann ist
ein Vektorprodukt gleich null .

21 . A(4 I 3 I 0 ) , B (61 0 11 ) , C(- 41 01 6 ) , D(- 81 61 4 ) , E ( 01 61 0 )
a ) Zeige : ABCDE ist ein ebenes konvexes Fünfeck .
b ) P (- 8 I 3 I 6 ) , Q(- 2 I 3 I 3 ) , R (- 6 I 31 5 ) , S( 01 0 I 4 ) , T (0 I 3 1 2 ) , U(- 6 I 3 I 4 )

Welche Punkte liegen innerhalb oder außerhalb des Fünfecks ABCDE ?

_ Welche liegen drauf ?_
_ V _ ( 2 'l / - 10 a / 3 a

a ) ABxBC = - 3
l 1 JX 0

l 5 J= - 5 4
l 6 J

_ x _ ^ f - 4 > / 8 a / 3a,
CDxDE = 6

l -2 JX 0
C 4J= - 8 4

A6 J

BC x CD =

DE x EA = | 0 | x

/ - 10a
0 X

4 >
6 il 1 o

l 5 y l - 2 ; V
f - 4 \

3 = — 4
/ 3 a

4
l 0 J

eben und konvex ,

b ) AB x AP
( 2 \
- 3

V 4 /

12 's / 3 a _ ^ / - 10 a / - 14 a
0
6 y

= - 6 4
Le ;

BC x BP = 0
i 5 J

X 3
l 5 J

= - 5 | 4
6

f - 4 > / - 4A / Sa
CD x CP = 6

l - 2y
X 3

l 0 y
= 2 4LeJ

_ V _ V / 2 A / - 6a ( 3 \
AB x AQ = - 3 X 0 = 6 4

l 1 y l 3 J 1 6 J

AB x AR =

CD x CR =

ABx AS =

/ 2 '1
- 3

v 1 y
/ - 4 a

6
- 2

/ - 10 a
0
5

/ - 2
3 | = 0

Gegenrichtung : P liegt draußen

BC x BQ :

Gegenrichtung : Q liegt draußen

/ - 10 a
0 X

r - 8 i
3 = - 5

/ Sa
4

l 5 y l 2 J 16 J

/ SA _ s v / - Wa / - 12 a
= - 5 4 BC x BR = 0 X 3 = - 5

LeJ l 3 J l 4 y

CD und CR sind parallel , R liegt drauf

/ 2 A ( - 4 ^ / 3a
BC xBS =- 3 X - 3 = - 3 4

l 1 J l 4 y l 6 y V

/ - 10 a
0
5

/ - 6 a
0

V 3 /
= 0

_ x _ x / 2 A f — 4 ^ / 3a
ABxAT = - 3

i 4 y
X 0

L 2 y
= - 2 4

LeJ

BC und BS sind parallel , S liegt drauf

BCxBT =
/ - 10 a

0 X
/ - 6a

3 = - 5
/ Sa

4
l 5 y l 1 J l 6 J
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r - 4 \ ( 4 \ r 3 ACD x CT = 6
1 - 2 J

X 3
U 4J

= - 6 4
l 6 J

_ ^ ( 4 \ ( 0 ) v3 \
EAxET = - 3

U )
X - 3

l 2 V
= - 2 4

UJ
( 2 \ v - 10 > v2 >ABx AU = - 3
U J

X 0
l 4 J

= - 6 3
UJ

( 8 ) ( 8 ) f3 \
DE x DT = 0

l- 4JX - 3
l-2 ;

= - 4 4UJ
T liegt drin

U liegt nicht in der Fünfeckebene !

22 . A(11 - 21 0 ) , B (- 31 - 61 6 ) , C(3 110112 ) , D (51 61 0)
a ) Zeige : ABCD ist ein ebenes konvexes Viereck .
b ) P ( 0 I 21 9 ) , Q(- 4 | - 18 I - 9 ) , R(0 | 0 | 0 ) , S ( 2 | 2 | 3)

Welche Punkte liegen innerhalb oder außerhalb des Vierecks ABCD ?
Welche liegen drauf ?

a ) ABxBC =
4 \ v6 \ r 6 > - 5- - ^ f 6 > ( 2 ) rG \- 4 X 16 = - 20 - 3 BC x CD = 16 X - 4 = - 28 - 3l 6 J UJ l 2 J r 12J Ui

( 2 ) ( 4 \ f 6 >>
- 4 X 8 = - 16 - 3 , alle Produktvektoren sind gleich

v 12J UJ l 2 J
CD x DA =

sinnig parallel , also ist das Viereck eben und konvex ,

b ) AB x AP = f - 4 \ V- lN f 6 > _ v ^ r 6 ) f3- 4 X 4 = - 10 - 3 BC x BP = 16 X 8 = 0l 6 Vl 9 J l 2 ) Uv Uj
BC und BP sind parallel , P hegt drauf !

AB x AQ

draußen

f - 4 \ v- 5 > ( 6 \
- 4 X - 16 = 22 - 3

l 6 ) U 9 v U J Gegenrichtung : Q liegt

AB x AR = f - 4 \ (- 4
l 8 V

X 2
l o J

= - 6

V

AB x AS - 4
V 6 j

r l

i

r 2 \
1
2

6 N

R liegt nicht in der Viereckebene

BC x BS =
- * - * [ 2 \ ( 6 ■)CD x CS = - 4 X - 8 = - 10 - 3U2J U 9) U J DA x DS =

S liegt drin

( 6 \ r 5 r 6 i16 X 8 = - 16 - 3UJ V 3J Ui
C~ 4 ) /-- 3 > f 6 )
- 8 X - 4 1 - 3

l o/ 8 V UJ
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1 . Berechne das Volumen V des von u ,V und w aufgespannten Spats:
( — 4^ . f - 2 a . / 2

a) u = v -
0 , w = b) u = 7 1 ) / 4 f3 \

2 , V = 5 , w = 2
l 3 J J

a) u v w
- 4 - 2 2
0 - 5 2
2 0 3

= 72 = V b) u v w
14 3
2 5 2
34 1

= - 8 , V = 8

2. Berechne das Volumen V des TetraedersABCD
a ) A( 11111 ) , Bd I 41 4 ) , C(411 [ 4 ) , D(41 411 )
b) A(- l I - 11 - 1 ) , B ( 0 I 0 I - 2 ) , C( 0 I - 2 I 0) , D (- 2 [ 0 I 0 )
c) A(01 0 | 0) , B( 11 2 1 3) , C (41 51 6) , D(71 81 9 ) _

a) AB AC AD
0 3 3
3 0 3
3 3 0

= 54 = 9

b) AB AC AD =
ll - l
l - ll

- 111

4
4 V = e

2
3

c) AB AC AD
14 7
2 5 8
3 6 9

= 0 = V

3* a) Begründe : Ein Punkt P und eine Ebene ABC haben den Abstand

1 det( AB ÄC , AP )|

lABxACl
b) Berechne mit dieser Formel den Abstand von P(— 411 33 I 25) und der

Ebene durch A(- 7 [ 4 I - 17 ) , B (- 7 [ 11 - 13 ) und C (— 3 1 7 I - 14 ) ._

a ) Die Formel d =
I det( AB , AC , AP

ist die vektorielleFassung der alt
| AB x AC I

, Spatvolumen
bekannten Formel für die Höhe h eines Spats h - s eitenfläche '

Das Spat sitzt mit einer Seitenflächeauf der Ebene ABC .
P ist eine Spatecke , die in dieser Seitenfläche nicht vorkommt und von
dieser Seitenfläche den Abstand h hat.

b) det( AB , AC , AP ) =

AB x AC =

0 4
- 3 3
4 3

- 34
29
42

( ° 1 ( 4 > /
- 3 x 3 =
U J l 3 J V

16
12

= 1682

AB x AC I = 29 j 1682 - csd — 2^
—
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4. A(11 11 5) , B(51115 ) , C(21 5 I 5 ) , D(01 3 | 5 ) , Spitze S(4111 - 1)
Berechne das Volumen der Pyramide ABCDS
a ) durch Zerlegen in zwei dreiseitige Pyramiden
b ) mit der Formel V = | Gh

a ) Tetraeder ABCS: i det( AB , AC , AS ) = |b o

4 13
04 0
0 0 - 6

= - 16

Tetraeder ABDS: | det( AD ,ÄC , AS ) = ~

Pyramide ABCDS : V = 16 + 6 = 22

- 113
2 4 0
0 0 - 6

= 6

b ) G = Fläche (ABC) + Fläche (ADC) = 8 + 3 = ll ; V = | Gh= | -11-6 = 22

5. Zeige mithilfe der Graßmann -Identität :
nfxlf ) x CuxT ) = ifdetl '

jT/cf/v
"

) - Vdet (lT,lf ,
~u )

= "
q detCp ,T ) - “

p detfcf ,
~u , v

* )

Graßmann :
~a x (

"u xy ~
) = (

"a °“v )
"u ' - Ca '

°
~u

( p x q ) x fuxv ) = ((^ x "
q ) olt - (Cp

"x “
q ) oTt ) ~v

= (
"
p

"
q ) u " - (^ "

q
"u

= detCpTlf ^v )
~u - det ( ^ "

q
" ”u ) V

Graßmann : ( p
1x "

q ) x ~a = (
"a = p )

"
q - (

"a °
"
q )

~
p

( pxq ) x ( uxv ) = ((lf x”v ) ° ^p )~
q — ( (Tf x ’v '

) °
~
q

= “
p ) "

q - ( ' u “v '
q ) ’

P
= ( p

^li ) "
q - ( "

q u
"

= detCpT
"u t 'v"

) Tf - detHflf

6. Jacobi -Identität Zeige mithilfe der Graßmann -Identität
fux 'vlx 'w + Cvx ^w

"
) xli "

+ Cw xu ) x ~v = ~o
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7. a ) Zeige : Die windschiefen Geraden g : X = G + X u und h : X = H + p v

lli v “ GH I
haben den Abstand d = —

,
—

I U X V I
b) Bestimme mit dieser Formel den Abstand von

_ V f 4 > _ s. { 8 '\ ( 4 \
g : X = 9

l o J
+ x - i

L ® Jund h : X =
( U+ g 3

t 4 J

Der Abstand d(g,h ) von g und h ist gleich
dem Abstand der parallelen Ebenen , die
von u und "V aufgespannt sind und
durch die Aufpunkte G und H gehn . In
diesen Ebenen liegen zwei Seitenflächen

eines Spats , das von li,
"v und GH auf¬

gespannt ist . Der Abstand dieser Seiten¬
flächen ist gleich einer Spathöhe h .

h = Seitenfläche
' = d(g,h ) , wobei

Spatvolumen = I
~u ~v GH I

Seitenfläche = I
"u x~v I

GH = ( 11 > 4 4 11
- 5

l 4 J
GH = - 1 3 - 5

8 4 4

( 4 \ / 4 / - 7 \
U X V = - 1

< * JX 3
, 4 ,

= 4
/-

u xV I = 36 d(g,h ) =

= - 324

324 _ 936

8. Zerlegung eines Vektors in seine Komponenten in Richtung a , b , c :

a ) Zeige: Sind "a , b ,
~
c linear unabhängig, so gilt

V b "
cf .

v = a + 3 ^ 3"ab "? a b c

ä" v c ^ abv _^- _ * ~~ b + . - x— c
a b c

(Tip : Multipliziere die Gleichung v = aa + ß b + yc mit geeigneten

Vektorprodukten oder erinnere dich an CRAMER !)
r 2 \

b) Wende diese Formel an, um v = - 3
v
- 1 /

a = ( 3 f _ ^ ( 0 A / - 4 \
- 1 , b = 2 und c = 5

l“ 4J l“2J

als Linearkombination von

zu schreiben .
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a ) lt = alt + ß b + y
~
c | ° Ca x b )

\t <> ( lt x b ) = 0 + 0 + y
~
c ° (

~a x b ) oder v"a b = y
~
c

~a b
lt "a b - ~a "v b lt b ~v

Y =
c a b - a “

c b lt b lt

v = aa + ßb + y
~c >( bx "

cT ) , =>
"v b c = aa b c , a :

v b c

lt b "cf

v = aa + ßb + y c ° ( a x c ) , => v a c = ß b a c
~v ~a ~

c - itltlf t :v ’c
b a c "ab c a b c

b ) a b c =

v c a =

v "a b =

3 0 - 4
- 12 5
- 4 - 2 1

2 - 4 3
- 3 5 - 1
- 1 1 - 4

2 3 0
- 3 - 1 2
- 1 - 4 - 2

= — 4 v b ~cf =

= 12

2 0 - 4
- 3 2 5
- 1 - 2 1

= - 8

ß = S = - 3

= - 4 Y = Z4 = 1

- 8 0a = —r = 2

( 2
- 3 = 2

( 3 >
- 1 - 3

r 0 >
2 +

4 \
5

l - 1 ; 1- 4 ; l-2J l 1 J

9. Rechtfertige die Gleichheitszeichen
Cax b ) ° Cctx d ) = ”ab "

c
' xd = b 'cxd 'a

= [ bxfcxd )] olt = [ ( b ■> d )
"c - ( b °

~
c ) d ] ° lt

= ra »
"
c )( b » d ) - ra » d )( b »

"c )

1 . Zeile : Kreuzprodukt skalar mal Vektor = Spatprodukt
a ' b 'cxd = - b a"cxd = - (- b Ixd a ' )

3 . Zeile : ausführliche Schreibweise der vorigen Zeile , danach Graßmann
5 . Zeile : Distributiv -Gesetz fürs Skalarprodukt
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10. Quatemionen
William HAMILTON hat 1844 die komplexen Zahlen durch die Definition der
Quaternionen erweitert . Eine Quaternion q ist ein Term der Form

a0 + ap + a^ + a3k mit a0 , a1; a2 , a3 e IR , i2 = j2 = k2 = - 1
und ij = -ji = k , jk = - kj = i , ki = - ik = j

Hamilton betrachtete eine Quaternion q als Summe einer Zahl a0

(Skalarteil ) und eines dreidimensionalen Vektors a =
\

a 2 , also q = a0 + a .
l a 3

Zeige : Multipliziert man zwei Quaternionen q : = a0 +T und q2 = b0 + b ,
dann entstehen alle uns bekannten Produkte :

a0b0 Zahlenprodukt
a0 b , b0lt S-Multiplikation
"a o b Skalarprodukt

a"xb Vektorprodukt

und es gilt : (a0 +lT ) * (b0 + b ) = a 0b0 + a0 b + b0 a - a ° b + axb ,
» * « bedeutet (distributive ) Multiplikation zweier Quaternionen .

(a 0 + ap + a^j + a3k ) * (b0 + bp + b2j + b3k ) =
a0b0 + agbji + agb^ + a3b3k +

+ ajb 0i - ajbi + a xb2k - ajbjj +
+ a2boj - a2bjk - a2b2 + a2b 3i +
+ a 3b 0k + a 3bp - a 3b2i - a 3b3
= a0b0 - [a^ ! + a2b2 + a3b3] + a0[bp + baj + b3k]+ b0[ap + a2j + a3kj +

+ [a2b3 - a3b2 ] i + [a3bj - ajb 3 ] j + [ajb 2 - a2b x ] k
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Normalvektoren sind sehr gefragt - das Kreuzprodukt erleichtert ihre Berechnung.

1 . Gib eine skalare Normalform an von
( 1 N ■_ ^ y - lYl y 2 \ "_ ^ f 4 \ y - 6 \ ‘ _ v y6V

a ) - 2
l-v

x -
( ; = 0 b ) 5 c

1- iJ
X - - 2

l-2J = 0 c) - 3
l “ 2 J

X - 3
l 2J-

= 0

a ) Xj - 2x 2 — 7x 3 + 12 = 0 b ) 2x a + 5x2 - x3 = 0 c ) 6x x + 3x 2 + 2x 3 — 49 = 0

2. Stelle vektorielle Normalformen der Koordinatenebenen auf .

x1x2-Ebene :
yO _ ^ yö -N_ yU

0 oX = 0 x1x3-Ebene : 1 ° X = 0 x2x3-Ebene : 0
Uy lOy

° X = 0

3. Gib eine skalare Normalform der Ebene E an , von der man weiß
( 2 \
- 2a ) E enthält A( 11 0 I — 3 ) und hat die Normalrichtung

b ) E enthält A( 11 11 - 2 ) , B (- 2 I 11 0 ) und C ( 0 I 11 2)

c ) E enthält A( 11 - 11 - 4 ) und die Gerade g : X

v 3 y

yl2 n y 1 \
4 + x 1

lOy l- 4 J

d ) E enthält A( 11 - 11 - 4 ) und steht senkrecht auf g : X = {12 ^ ( 1 ' i
4 + X 1

lo J l“ 4 J

e ) E enthält g : X =

f ) E enthält g : X =

y In

v 4 y
rl ^

0
l

+ X

+ X

( 2 \

v 3 y
r 2 \
- l
3

und h : X = g
y 2 \
- 1

v 3 y

und h : X
yl \

x 1 y
+ g

y2 ^
- l
3

( 2 \ '_ s. y 1 V
- 2 O X - 0
l 3 J l-3JJa )

b ) AB x AC =

= 0 2xj - 2x2 + 3x 3 + 7 = 0

y - 3
0 X

y - 1>
0 = 10

y ° >
1

y ° N
1 o X -

y ° V
1

l 2 y l 4 y l ° J Lo J L 2 JJ= 0 x2 = 1

c ) AG x r g =

d )

4xj - 8x2 - x3 - 16 = 0

0

( H y 1 ^ r - 4 > f- 4 \ ■_ yl2 Y
5 X 1 = 6 8 8 0 x - 4

V 4 y l- 4 y l 1 y l 1 J lo JJ
y 1 N y 1 Y1 0 X - - 1
- 4 - 4v y v yj

xi + x2 - 4x3 - 16 = 0
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fl ^ ( 2 \ 7 1 ) ( 1 A —-

0 X - 1 = Li - l oX = 0
UJ CO UJA-lJe) g und h sind echt parallel , HG x r .

x1 - x2 - x3 = 0

f) g und h sind identisch , es gibt keine eindeutige Lösung.

4 E : 3xx + x3 - 6 = 0 enthält P ( 11 71 3 ) , aber nicht Q(21 211 ).
a ) n sei das Lot von E in P . Gib eine Gleichung von n an .
b ) m sei das Lot von E durch Q . Gib eine Gleichung von m an .

— - / I
a) n: X = 7

U ,
/ 3 A

+ b 0UJ
—- 72 a

b ) m : X = 2Ui
/ 3a

+ p 0Ui
5. Stelle eine Norr

senkrecht steht
— »• 74 a

a ) g: X = iUJ

nalform
und g e

( 2 ^
+ g - 1

UJ

der Ebene F auf , die au
nthält

b) g:
~
X =

ifE : 3x

( 4 A
1 + nUJ

! - x 2 + 2x 3 - 3 = 0

7 3 A
- 1UJ

F wird aufgespannt von nE und r g , also nF II nE x r g

_ _ _ ^ / 3a / 2a / 1a / 1a
a ) nE x r g =

b ) n^ xpT" =

73A / 2 A
= - 1 X - 1

l 2 / UJ
/ 3 a / 3 a

= - 1 X - 1
UJ A 2 J

7 1 A
1 )

71a
1 0 x - f 4 V1

UJ U/ a3JJ
= 0 x1 + x2 - x3 - 2 = 0

= “cf , g ist Normale von E , keine eindeutige Lösung

Alle infrage kommenden Ebenen bilden ein Büschel mit g als Träger¬

gerade .

6. Bestimme eine Gleichung der Gerade g, die A( 11 2

parallel ist zu E : 2xi — 3x? - 4x3 + 4 = 0 und F : x1
13) enthält und

- x2 + x3 + 1 = 0.

g ist parallel zur Schnittgerade von E und F , also parallel zu nE x nP

. 7 2a / 1a 7- 7 A _ / 1 > 7- 7 a

nE x n F = — 3 x - 1 = - 6 g-. x = 2 + A - 6
l-4jUJ Ui uJ U J

_ ^ 72a / 1a _ v /3a / 2 a
7. g : X = 0 + H 1 h : X = 0 + p 1

uJ A2 / uJ
Bestimme eine Normalformen der Ebene ,
a ) die durch den Ursprung geht und parallel ist zu gund h

b ) die g enthält und senkrecht steht auf der Ebene von a ) .

a ) n „ = r „ x r h = 7 iA fl ).
/ 2 a

U : 72 a
1 X - 1 - 1

UJ UJ aU UJ
X = 0 2xj - x2 - x3 = 0
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b) nb = rg x na = f 1 ')1 X
( 2 '\
- 1 = 3 ( 0 N

1 E : f ° >
1 0 X - ( 2 \

0UJ {- h L-iJ \rb IsJJ= 0 , x2 - x3 + 3 = 0

_ X _ x
8 . g : X = X 4Uv h : X = \i 8

l 7 J
g liege in E und h in F . E und F bilden denselben Winkel wie g und h.
Bestimme Normalformen von E und F , eine Gleichung der Schnittgerade s
von E und F und den Schnittwinkel von E und F .
E , F und s enthalten wie g und h den Ursprung .
E wird aufgespannt von der Richtung von g

~r^ und der Richtung , die
senkrecht ist zu g und h : dC xT ^ :
_ ^ ^ vl \ r - 7 \ f - 4 _ ri \ r - 4 >

n r 8
^r g xr h = 4UJX

-3
CO = 9 - 7

l 4 V
; nE = 4 X - 7

{ 4 v

= 9 - 4
U J E : 8xj — 4x2 + x3 = 0

F wird aufgespannt von der Richtung von h r h und der Richtung , die
senkrecht ist zu g und h : x ~r ^ :

r g xr h
( r - 7 \ f — 4 \ _ „ ( - T \ f - 4 } fl \

4 X 8 = 9 - 7 ; n F = 8 X - 7 rH00li 0UJ l 7 J l 4 J l 7 V l 4 J UJ F : x1 + x3 = 0

Schnittgerade von E und F : X = x
( - 4 \

E und F schneiden sich unterm selben Wink el cp wie g und h :
r g ° r h = 81 9 -9a[ 2 cos cp = 81

9-9^ 2
■1 ^ cp = 45 °

9. g: X = Xf 1 N _ V f2UJ h : X = 2Uv+ M-
V

g liege in E und h in F . E und F haben denselben Abstand wie g und h .
Bestimme Normalformen von E und F .
Auch E und F müssen parallel sein . E und F werden aufgespannt von der
Geradenrichtung r und der Richtung 's '

, die senkrecht ist zu l 7 und GH :

s = r x GH

E : 4xx + x2 - 2x3 = 0 ; F:

f 1 \ v3n v - U fl \ v - l \
= 8

( - 4 \
2

l 3 JX 2Uv= 4 2
l^ v n E,r = r x s

'
= 2Uvx4 2

U 4 V
- i

l 2 J
( 4 > "_ x ( 3 V

1 0 X - 2
l - 2 V iUJ

= 0 4xj + x2 - 2x 3 —12 = 0

10 . Bestimme eine Normalform der Symmetrieebene
von A(3 I - 11 4 ) und B ( 7 I - 5 I - 2 ) .
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Die Symmetrieebene hat die Normalrichtung AB und geht durch den Mit¬

telpunkt von [AB]
/ 2 > ' _ V ( 5 V
- 2 O X - - 3

1- 3, U JJ 2x x - 2x2 - 3x 3 - 13 = 0

11 . Bestimme eine Normalform der Symmetrieebene von
_ ^ f 1 ) flK _ v f 3 ^ /

g : X = 0 + x 2 und h : X = 4 + p
l 4 J l- 1; V

Die Symmetrieebene S zweier Parallelen enthält deren Mittelparallele m
und steht senkrecht auf der Ebene E , in der die Parallelen liegen
oder enthält das Parallelenpaar oder steht darauf senkrecht .

_ i. r 2 ^ fl N r 1 ) — fl ) r 2 > /
m : X = 2 + V 2

V4 J
n E

' = 2 x GH = 2
^ 4 J

X 4 = 10
V

f 1 )
2 x n E = f 1 )

2 xlO
f —2

1 = 10
rfT
00

1
1

l 4 ; l 4 . { 0 J l 5 J

S:
( 4 >

8 0 X -
, 2 VI

2
l- 5,

4xj + 8x2 - 5x 3 - 24 = 0

12 . Bestimme eine Normalform der Symmetrieebene von

E : 2x x - x2 + 2x 3 - 3 = 0 und F : 2x x - x2 + 4x3 - 8 = 0,
die durch den Ursprung geht ._
Die Schnittgerade s von E und F steht senkrecht

( 2 \ ( 2 ) f - 1
- 1
l 2 JX - 2

( o )
S: 2

kV

auf der Symmetrieebene

Xj + 2x2 = 0

S.

_ x ( - 25 f - 5 \
13 . g : X = 6

{ 11 J+ P 8
l 1 J

Bestimme den Abstand von

P ( 1 [ 111 )

Punkt P und Gerade g.

Hilfsebene H :
5 ^

8
1

X -
( \ \

v 1 .
= 0 - 5xj + 8x2 + x3 - 4 = 0

Schnitt von H und g : — 5(—25 - 5p ) + 8(6 + 8p ) + ( 11 + p ) - 4 = 0

180 + 90p = 0 , p = - 2 in g eingesetzt : Q(- 151 - 101 9)

16 \
QP - 1 11

8
d(P , g ) = QP = 21
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( 1 A / 1 A
2 O+

13 ,
14 . Welche Punkte der Gerade g : X

a ) vom Ursprung die Entfernung 2a/ 11 ?
b ) von der x1x2-Ebene den Abstand 3 ?
c) von der xr Achse den Abstand 2,5 ?

d ) von der der Gerade h : X = | 3
1

\
+ v 1

) l oJ

haben

den Abstand 2 ĵ
~
3 ?

a ) Bedingung : ( X )2 = (2a/11 )2

( 1 + p )2 + 22 + (3 - p )
2 = 44 2p2 - 4u + 14 = 44 p2 - 2p - 15 = 0

(p + 3 )(p - 5 ) = 0 p = - 3 , G_3(- 2 I 2 [ 6 ) p = 5 , G5(61 2 I - 2)
b ) Bedingung : x3 = ± 3 (dritte Koordinate der Geradengleichung )

3 - p = ± 3 ; p = 6 , G6( 71 21 - 3 ) ; p = 0 , G0( l I 21 3 )
c ) Ebene durch Xa(a I 0 I 0 ) mit Normalrichtung der x1 -Achse : x4 = a

schneidetginS a : l + p = a , p = a - l Sa = G^ .^ a j 2 | 4 — a )
Bedingung : XaG a . x = 2,5 beziehungsweise X aG a_ !

2 = 6,25
0Z + 22 + (4 - a )2 = 6,25 =* 4 - a = + 1,5 p4 = 4,5 ps = 1,5
G4i5(5,5 I 2 | - 1,5 ) G15 (2,5 I 2 | 1,5 )

Andre Möglichkeit : Der Vektor 'v '
, der den allgemeinen Punkt G^ von g

verbindet mit dem allgemeinen Punkt Xa(a I 01 0) der x4-Achse , muß die
Länge 2,5 haben und auf der xr Achse senkrecht stehn

v = X aG, = f 1 + p - a
2

3 - p
; Senkrechtstehn :

r 1 + p - a a flA
2 0 0

l 3 - M. y
( 0

V = 2
13 - P

G4,5(5,5 I 21 - 1,5)

Länge : T 2 = 6,25 => 3 - p = ± 1,5 :

G1>b(2,5 I 211,5 ) .

: 0 => a = 1+ P

Pi = 4,5 p^ = 1,5

d) Der Vektor v , der den allgemeinen Punkt G^ von g verbindet mit dem
allgemeinen Punkt Hv von h , muß die Länge 2a/3 haben und auf h senk¬
recht stehn

- i (- 1 + p - vA f-1 + p - vA ( 3. A
V = H VG ^ = - 1 - v

l 2 - p ;
; Senkrechtstehn : - 1 - v

l 2 - p ,

•
( i )

l + v '
l

= 0 , => p = 2v + 2

v - 1 - v ; Länge : v = 12 => 6v2 + 4v - 10 = 0 , 3v2 + 2v - 5 = 0 ,
V - 2v )

Vl = l , Mi = 4 G4(5 I 2 | - 1 ) v2 = - | p2 = - | G^ sCVs I 2 1
13/3 )
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15 . In welchen Punkten schneidet die Gerade s : X =
_ / 2 > f
X = 2 + X

\

den Zylinder um die Achse a : X = - 2
- l

+ |i - 2
vl , mit dem Radius 6 ?

Hilfsebene H senkrecht zu a : 2x x - 2x2 + x3 + c = 0 schneidet s

2( 2+ 4M - 2 ( 2 + 2M + (3 + 5M + c = 0 => Ä, = — | (3 + c) inS,l3 = i f 6 - 4c
12 - 2c
12 - 5c

H schneidet a : 2(2p ) - 2(- 2- 2p ) + (- 1+p ) + c = 0 => p = - ^ (3 + c) inT

/ - 6 - 2ca _ V / 12 - 2c> / i \
- 12 + 2c TS = 1 24 - 4c - 1 ( 12 - 2c ) 2

v 12 ~ c J v24 - 4cj
y

V2 J
Bedingung TS = 6 : TS = 1112 - 2c I • 3 = 6 ^ 2c = 12±18

=> cx = 15 S a (- 6 | - 2 | - 7 ) c2 = - 3 S_3(2 I 2 I 3)

16 . g : X = P ( 14 I 6 I 3 )

a ) g ist Tangente einer Kugel um P .
Berechne Berührpunkt A und Kugelradius r a .

b ) Auf g liegt der Mittelpunkt B der kleinsten Kugel durch P .

Berechne B und den Kugelradius rb und die Schnittpunkte S

von Kugel und Gerade .
c ) Berechne Radius r c und Mittelpunkt C der kleinsten Kugel ,

die durch P geht und g berührt . _

a ) A ist die senkrechte Projektion von P in g ; [PA] steht senkrecht auf g , ist

( 8 '
der Kugelradius . Hilfsebene H : 1

4

h "_ v / 14 V
0

)
X - 6

l 3 JJ= 0 , 8Xi + x2 + 4x3 = 130

schneidet g in A:
8(2 + 8p ) + (9 +p ) + 4(6 + 4p ) = 130 => p = 1 A( 10 1101 10)

- x ^ — 4 ^
PA =

b ) B = A , rb = ra

ra = PA = 9

Strecken der Länge 9 von A aus abtragen :

S+( 18 | 1114 ) S_(21 91 6)

c ) [PA ] ist Kugeldurchmesser C( 12 I 8 16,5 ) r c = 4,5

_ v 0 / 10 > / 8 \
OS = A ± 9 1 = 10 ± 1

l 4 J lioj ^ 4 J

17 . Spiegle den Punkt P an der Ebene E :

a ) P ( 141 21 1) , E : 3Xl - x2 = 0 b ) P ( ll 1111 3 ) , E :
/ 3 \ r ( 2 j

3 ° x - - 2 = 0
UJ v 3 J
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a ) Projektionsgerade p : X =
_ 5. f 14 % ( 3 \
X = 2

l 1 ;
+ b - 1

loj
schneidet E in P ' :

b )

3( 14 + 3p ) - (2 - p) = 0 , =» p = - 4 , P ’( 21 6 11 )
Spiegelpunkt S : S = P ' + PP ' = 2 P ' — P ,

- 11 > / 3 \
S(- 10 I 10 I 1 )

+ "UProjektionsgerade p : X = 11

in P ’
: 3( 11 + 3p ) + 3( 11 + 3p ) + 2(3 + 2p ) = 6 ,

Spiegelpunkt S : S = P ' + PP ' = 2 P ' - P

schneidet E : 3x! + 3x2 + 2x3 = 6

4>p = - 3 , P '
(21 21 — 3 )

S(—7 1 - 71 - 9)

18 . E : Xj + 2x2 + 2x3 + 30 = 0 P (0 I 2 | 1 )
a) E ist Tangentialebene einer Kugel ka um P.

Berechne Berührpunkt A und Kugelradius ra.
b) In E liegt der Mittelpunkt B der kleinsten Kugel durch P.

Berechne B und den Kugelradius rb .
c) Berechne Radius rc und Mittelpunkt C der kleinsten Kugel ,die durch P geht und E berührt .
d) E ist Symmetrieebene der Kugeln ka (von a» und k'.

Berechne den Mittelpunkt M' von k ' .
e ) Wo liegen die Mittelpunkte aller Kugeln , die ka und k ' berühren ?
f ) Die Kugeln ka und k ' lassen sich durch eine Halbdrehung ineinander

überführen . Beschreibe in Worten die möglichen Drehachsen .
g ) E und die Kugel um P mit Radius 13 schneiden sich .

_ Berechne Mittelpunkt M und Radius p des Schnittkreises ._

a )

b)
d)

Projektionsgerade p : X = f0 \ r l \
2UJ+ p 2 schneidet E in A:

p + 2(2 + 2p) + 2( 1 + 2p ) + 30 = 0 => p = - 4 A(- 4 I - 6 I - 7 )
_ ^ / 4 \ _AP = 8

V 8 /
AP = 12

B = A, rb = ra c) [PA] ist Kugeldurchmesser , C(—2 I - 2 | - 3) , rc = 6
M ' und P liegen symmetrisch bezüglich E
M

"
= X + PA = 2

~
A - ^P M ( — 8 I —14 | — 15 )

e) inE

f ) Die Drehachsen gehen durch A(- 41 - 61 - 7 ) und liegen in E , bilden also
ein ebenes Geradenbüschel mit A(— 4 j — 61 - 7 ) als Trägerpunkt .

g ) A(- 4 I - 6 I - 7 ) ist Schnittkreis -Mittelpunkt .
Pyt . : p

2 + 122 = 132 => p = 5
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19 . E : 4xj + 4x2 + 7x 3 — 81 = 0 , k ist die Kugel um den Ursprung mit Radius 41 .

a ) Berechne Mittelpunkt A und Radius p des Kreises ,
in dem sich E und k schneiden .

b) Verkleinert man den Schnittkreisradius von a ) um 16,
so ergibt sich ein Kreis , in dem sich E und Kugeln mit Radius 30
schneiden . Berechne die Mittelpunkte M dieser Kugeln .

c ) Bestimme Gleichungen der Tangentialebenen von k ,
_ die zu E parallel sind .

a ) Projektionsgerade p : X = p

p2 + OA 2 = 41 2
, => p = 40

4 \
4
V

schneidet E in A(4 [ 41 7 )

b) (40 - 16 )
2 + AM 2 = 302 => AM = 18

Strecken der Länge 18 abtragen von A aus in Normalrichtung von E :

M 12
'

=
~
k + 18 n^ ° =

~
k ±2 n^ M x( 12 ! 12 I 21 ) M 2 ( - 4 I - 4 I - 7 )

c ) Auch die Berührpunkte der Tangentialebenen findet man mit Strek -

kenabtragen : B x 2 = O ± 41 nE
41r4 r 4

4 | , T1>2
: 4 | o X (±f ) = 0

Tp 4xj + 4x 2 + 7x3 - 41 = 0 T2 : 4x x + 4x2 + 7x3 + 41 = 0

_ ^ fl \ ( 2y
20 . g : X = 1 + p 3 P (9 | - 8 111 )

y * )
a ) Berechne Mittelpunkt M und Radius r der kleinsten Kugel ,

die durch P geht und ihren Mittelpunkt auf g hat .

b ) P sei die Ecke eines Quadrats, von dem eine Diagonale in g liege.
Berechne die restlichen Quadratecken und eine Gleichung ihrer Ebene .

c ) Wo (Punktmenge , Gleichung !) liegen die Mittelpunkte der Kugeln ,
die das Quadrat in b ) berühren ?_ _ _ __

a ) M ist die senkrechte Projektion von P in g:

Hilfsebene H :
( 2y ' _ v ( 9 V

3 O X - - 8
l 6 J ln JJ

— 0 , 2x 1 + 3x 2 + 6x2 = 60 schneidet g in M:

2( 1 + 2p) + 3(1 + 3p) + 6( 1 + 6p ) = 60 => p = l ; M(3 | 4 | 7 ) ,r = MP - 14

b ) P an M spiegeln ergibt P'
: P ' = M + PM = 2M - P P (— 3 i 16 I 3 )

die andern beiden Ecken Qi ;2 liegen in g , also Streckenabtragen .

/ 2 \ 0 , 3 \
’ "

Q = M ±14
v 6 y yij

±2
/ 2

Qx( 7 I 10 I 19 ) Q2 (- l 1 —2 1 - 5 )
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Ebene mit Normalrichtung M P x r g =

0 6xx + 2x2 - 3x3 - 5 = 0

( 6 > ( —84
- 12 X 3 = - 28

l 4 2 16 ; l 42 Jdurch M

( 6 \ ‘_ ; 3 V
2 0 X - 4

l" 3J
_ ( 6 ic ) Gerade MP : X = 4 + G 2

l~ 3J

21 . Spiegle die Ebene E : 2x x - 3x 2 + 5x3 - 7 = 0
a ) am Ursprung b ) an der x3-Achse c ) an der x xx2-Ebene
X(x x I x2 1x3 ) in E <=> 2x 3 - 3x 2 + 5x 3 - 7 = 0
gespiegelte Ebene E ’

: njXj + n2x2 + n3x3 + n0 =: 0
a ) X(- Xl 1- x2 1 - x3) in E ' o - njXj — nr,x2 - n 3x3 + n 0 = 0

=> ih = - 2 , n 2 = 3 , n 3 := - 5 , n0 = —7
"

E '
: - 2xj + 3x2 - 5x3- 7 = 0

b ) X(- Xl 1- x2 1 x3 ) in E ’
<=> - njXj - n 2x2 + n 3x3 + n 0 = 0

=> n i = —2 , n2 - 3 , n 3 == 5 , n0 = - 7 E '
: —2xj + 3x2+ 5x3- 7 = 0

c) X(xj | x2 1- x3) in E '
<=> n xX! + n 2x2 - n 3x3 + n0 = 0

=> ^ 1 = 2 , n 2 — — 3 , n 3 = - 5 , n0 = - 7 E ’
: 2x , - • 3x2 - - 5x3 - 7 = 0

22 . Spiegle die Ebene E : 3x 1 + 2x3 - l = 0

( ä )
a ) am Punkt P ( 11 2 I 3 ) b ) an der Gerade g : X = p

c ) an der Ebene F : Xj + 2x 2 + 3x 3 = 0
a ) Bei einer Punktspiegelung macht die Ebene eine Halbdrehung , ändert

also ihre Normalrichtung nicht ; man spiegelt bloß einen Punkt der
riA

4Ebene , zum Beispiel A( 11 01 - 1 ) : A ' = P + AP = 2 P - A =

= 0 E '
: 3x 1 + 2x 3 - 17 = 0

( 3 \
0 0 X -

; 1Y1
4

l 2 J
b ) A( 11 0 I - 1 ) von E an g spiegeln ergibt A '(- | I - 11 | )

B ( 11 - 11 - 1) von E an g spiegeln ergibt B ' (- l | - 11 1 )
1 i 2 i SE und g schneiden sich in S ( <j I gl g )

E ’ geht duch A ’
, B ’ und T : 12xj - 18 x2 - 13x3 + 7 = 0

c ) A( 11 0 I - 1 ) von E an F spiegeln ergibt A '
( | I | I - | )

r 1 nE und F schneiden sich in s : X =

E ' geht durch die Punkte von s : P ( 11 11 - 1 ) und Q( 5 I 81 - 7 )

_ ^ ( 1 > / - 4 \
X = 1 + G - 7

Ir,
1; 16 J

E ' geht duch A '
, P und Q : 12x , - 18 x2 - 13x3 - 7 = 0
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23 . Berechne die Schnittwinkel cp von E und F :
a) E : Xj + 10x2 + 9x3 — 4 = 0 F : llx x + 19 x2 + 8x3 - 4 = 0
b) E : 2xj + 4x2 + 5x3 - 4 = 0 F : 8x2 + x2 + 5x3 - 4 = 0
c) E : 3xj - 4x2 + 5x3 = 0 F : - Xi + 3x2 + 3x3 - 9 = 0
d) E : Xj + 4x2 + 9x3 - 1 = 0 F : 3xj + 5x2 - 8x3 + 1= 0

a) nE 0 nF = 273, iiE ’iip = 182^ 3 273 V3
cos cp = — = = “5

-
182^ 2 OOCII9-

b ) ng 0 xip = 45, nE -np = 45a/2 45 V2
C0S <P = ^ = T cp = 45 '

c) = 0 , => cp = 90°

d)
"
njT °^ F - - 49, nE -nF = 98 1

COS (p = 2 cp = 60 '

24. Berechne die Schnittwinkel (p von E und g:

a ) E : 5x , + 5x 2 + 2x 3 — 6 = 0 g: X = M- 12

_ s. / 13n ( 3 A
b ) E : Xi + x2 - 3x3 + 13 = 0 g: X = V- - 7 + - 7

l 2 , L 1 J
_ r 1 ') / 3 'i

c ) E : —X, + 5x 2 — 10xo = 0 g: X 2 + - 7J \ 1 J
_ r 1 \ f 3 \

d) E: Xj + x2 + 4x3 + 111 = 0 g: X = g 4 + 7
- 8 / - 1\ //

a ) nE g
= 81 > nE ‘rg = 54^ 3 sin cp

81
"

54^3
rs
2 9 = 60 °

b ) öe oYe = 0 ’ => 0119-
c ) nE 0 r g

= - 21 , nE -rg -- 42 , sin cp 1.“ 2 ’ 9 IICO0

d) cY; = - 27 , nE -rg = VÜT -9 sin cp =_ 27 _ V2
”

27^ 2
_ 2 9 II OT

25. Berechne die Schnittwinkel vonE : 12xj - 12x2 + 17x3 - 0 und den

a ) den Koordinatenachsen _ a ) den Koordinatenebenen

a ) Xi-Achse : ef = 12 ng -ej = ^ 5tT sm <pi = ;J = 9i = 29,97 °

x2-Achse :
~h^ °

"
ej = - 12 nE -e2 = V577 sin (p2 =

q== 92 - 29,97

xs-Achse : = 17 nE -e3 = sinq >2 = ^L <p2 = 45,05 °
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b ) x1x2-Ebene :

44,95 °
nE o e3 = 17 , nE -e3 = a/577 17

COS (p , = - ==V577 <pi =

x1x3-Ebene : nE ° e2 = - 12 , nE -e2 = A/577 12
COS (pi =

V^ q>! = 60,03 '

x2x3-Ebene:

60,03 °
nE o ex = 12 , nE -e! = V577 C0S (pl = vfc <Pi =

26 . H : 2x 1 - x2 + x3 - 4 = 0 A(—1 I 2 I 2 ) B(3 I — 3 I 1 )
a ) Bestimme eine Normalform der Ebene E ,die auf H senkrecht steht und durch A und B geht .
b ) Bestimme eine Normalform der Ebene G,die AB in A senkrecht schneidet .
c ) Bestimme den Schnittwinkel (p von G und H .
d ) Bestimme eine Gleichung der Gerade g,

die durch B geht und parallel zu G und H ist .
e) Bestimme den Schnittwinkel i|/ von g und F : x x + 3x 2 — x3 = 0.
a ) E wird aufgespannt von n H und AB , hat die Normalrichtung n H

'
x AB

_ ^ * ( 2 \ / 4 \ fl \ fl \ T— ». r - lV]n H xAB = - 1 x - 5 = 6 1 ; E : 1 ° X - 2 = 0 , x1 + x2 - x3 + l = 0UJ l-1 J {-v HJ i l 2 JJ
r 4 > r — - A- i \ib) G: ( 4 "i- 5 0 X -

r - iA1
2

l 2 JJ
= 0 4xx - 5x2 - x3 + 16 = 0

c ) n G o n H — 12 nQ 'iijj — COS (p II cp = 40,9 °

( 2 \ ( 4 \ ( 1 \ 3 \ rd) g hat die Richtung «1 X4 it - l ] x - 5 = 6 1 g : X = - 3 + p
1- iJ l- ij v 1 J l-

e ) 5 nF -r g = 3^/2 sin \p =_ 5"
3V2 V = 60,5 °

27 . A(3 111 3 ) , B (61 41 5) , C(7,5 I 11 6 ) und Spitze S(41 11 8 ) bilden ein Tetraeder .
a ) Berechne das Volumen .
b ) Berechne den Fußpunkt F der Höhe durch S und die Länge dieser Höhe.
c ) Berechne den Winkel oc zwischen der Grundfläche und der Kante [AS ] .
d ) Berechne den Winkel ß zwischen der Grundfläche und der Fläche [ACS]

a ) V = | t det ( AB,AC,AS ) I = \
3 4,5 1
3 0 0
2 3 5

= 9,75
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b ) n ABC = AB x AC =

Höhengerade X =

h =: SF = Vl3
"

( 3 ( 4,5 ^ f 2 N
3 X 0 = 4,5 0

l 2 J l 3 , l- 3j
( 4 f

1
V

f2 \
0

- 3
schneidet EABC

®abc : 2xj — 3X3 + 3 - 0

im Fußpunkt F ( 6 111 5 )

c )

d)

n ABC 0 AS = 13 , n ^ c • AS 26 - 13 sina = | V2 ct = 45 °

_ x _ ^ ( 3 \ fl f 0 1
n Acs = AC x AS = 0

l 2 J
X 0

UJ
= - 13

^
_; n ABC 0 n ACS - 0 (1 - 90 “

28 . A(2 I - 3 I 2 ) , B (- l | 3 I 6 ) , C (5 I - 5 I 0 )
a ) Berechne den Flächeninhalt des Dreiecks ABC.
b ) A '

, B ' und C ' sind die senkrechten Projektionen von A , B und C in die
x1x2-Ebene . Berechne den Flächeninhalt des Dreiecks A 'B 'C ' .

c ) Berechne den Winkel cp zwischen E^ g und der x^ -Ebene ._
„ „ s r - 3 n ( 3 > f - 2 \

a ) FAßQ - | ! AB x AC 1 , AB x AC = 6 x - 2 = 2 3
2 7 1 - eJ

b ) A '(21 — 3 1 0) , B '
(- l I 3 I 0 ) und C '

(5 1- 5 | 0)
_ ^ _ S. - i. ( ' 3 > ( 3 \

Fvbt ' = H A 'B ' x A ’C I , A’B ' x A 'C ' = € X - 2 = 12
l 0 J l ° J

( 2 \
C1 n ABC - 3 n ABC “ 63 - 0 nABC ’ e3 = 7 cos

Zusammenhang zwischen a ) , b ) und c ) : FAB C' = F^ c • cos cp

Fabc - 7

F Ab ’c = 6

f 9 = 31'

29 . E : 2x 1 + 3x 2 + 4x 3 + 5 = 0 , A(11 214 ) , B(- 21 21 - 9) , C(- 2 171 9)

A '
, B ' und C ' sind die senkrechten Projektionen von A , B und C in E .

a ) Bestimme die Bildpunkte A'
, B ' und C '.

b) Bestimme die Flächeninhalte der Dreiecke ABC und A'B C .

c ) Bestimme den Winkel cp zwischen F und Eabc und bestätige die

_ Beziehung F A.gc = F^ g • cos cp._ ._

a ) Die Projektionsgeraden a , b und c gehn durch A , B und C in Richtung
( 2 \

3

und schneiden E in A '
, B ' und C ' :

in E eingesetzt
_ S. f2 \

a : X = 2
Uj

+ p 3 p = - 1 => A '
(- l I - 11 0 )



238 XI . Normalformen

b)

b: X =

c :
"
X

*
=

Fabc =

/ - 2 \

v - 9y
+ o

- 2 a ( 2 \
7 + G 3
9 , l 4 J

r 2 a . ,
3 in E eingesetzt => o - 1 => B '

( 0 151 - 5 )
4 J

in E eingesetzt => a = —2 => C '(— 6 I 11 1)

AB x AC I , AB x AC = f - 3 f - 3
0 X 5 = 54

1 - 13 y { 5 y 1- 15J
5 ^ 7366

_ S. _ V _ i ^ f 1 A f —5 A ( 2 A
A'B ' x A'C '

I , A'B ' x A'C = 6 X 2 = 8 3
l - 5j l 1 J l 4 J

ABC ~ 2

> Fab 'c = 4a/29

yffiA r2 \
C ) 11ABC - 54

l- 15y
n A'B ' C’ - 3

l 4 J
n ABC • = a/7366 • a/29

"
cos cp

= 4a /T
\ 127

n ABC ° n A'B 'C ' - 232

232
V7366 • a/29

= 4- Ji
Fa 'B 'C1

COS (p = -
ABC a/7366 cp = 59,87°

30. Die sechs Punkte auf den Koordi¬
natenachsen , die vom Ursprung
die Entfernung k haben , bilden
ein regelmäßiges Oktaeder .
Berechne alle Winkel zwischen
den Kanten , zwischen den Flä¬
chen und zwischen den Kanten
und Flächen .
Kantenwinkel
Der kleinste Kantenwinkel ist
60 °

, weil die Seitenflächen
gleichseitige Dreiecke sind .
Der größte Kantenwinkel ist
90°

, weil die Flächen ABA'B '
und AC'A'C Quadrate sind .
Flächenwinkel
Seitenflächen mit gemeinsamer Kante , zum Beispiel ABC und ABC ' :
Für k = 2 ist M( 11 11 0 ) die senkrechte Projektion von C ( 0 I 01 2 ) und
C '(01 01 - 2 ) auf die Gerade AB . Die Vektoren M C

bilden denselben Winkel 8 wie die Seitenflächen :

/ - lA *
- 1

l 2 J
und MC ’ = - 1

I - 2J

M C ° M D = - 2 MC - MD = a/6 - a/6 = 6 cos 8 :
Seitenflächen mit bloß gemeinsamer Ecke bilden den Winkel 180°- 8 = 70,5 °.

8 = 109,5 °
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Kanten -Flächen -Winkel
zum Beispiel bilden die Kante [AC '] und die Fläche ACB ' denselben Winkel

_ 3k _ 1
wie AC ' und die senkrechte Projektion AC" von AC ' in die Ebene ACB ' .

£ - 1 ^ ' ÖA 1 \
E Acb ’ : n = AC x B 'C = 2 0

l 1 Jx 2 1jJ = 4 1
- 1 )

/ 0 ( i \
schneidet Projektionsgerade X = 0

1- 2
+ p - 1UJ

x x - x2 + x3 = 2

inC ”( | I - ! | - I )

k. £ - 2/3 A £ - 2n
AC ” c AC ' = - 4/3 0 0

L 2/3 J l -2 J AC " • AC ' = § V6V8 = | ^ 3

COS (0 - VI (0 = 54,74 °

31 . Bei dem Quader¬
stumpf ABCDEFGH
sind Grundfläche
ABCD und Deckflä¬
che EFGH quadra¬
tisch . Berechne den
Winkel zwischen

a ) den Seitenflä¬
chen HGF und HGD

b ) den Seitenflä¬
chen AHD und AHE

c) der Kante HD
und der Deckfläche .

Die Dreiecke , die mit
der Deckfläche eine
Kante gemeinsam ha¬
ben , sind gleichseitig .
Deshalb ist zum Bei¬
spiel die Kantenmitte
M senkrechte Projek¬
tion von D in GH und
die Kante nm itte L
senkrechte Projektion
von E in AH .

F (- 51015 )
G(01 —515)

E (01515)

C
O |

4x
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a)

b)

XI. Normalformen
( 2,5
- 2,5

1 - 5 J

/ 1 \ / — 5 r - l 1M( 2,5 1- 2,5 I 5 ) , MD = = 2,5 -1
l-2v, MV = HE = 5

l 0 ,
= 5 1

l o J
MD o MV = 2,5 -5 -(- 2) , MD • MV = 2,5 -̂ 6 -5 -^ 2 = 2,5 -5 -2 --'/3

cos a = a = 125,26 °

L(51 2,51 2,5) , LE f- b '
2,5 = 2,5

f - 2
1 , HD = f U \

- 5 = 5 ( V \- 1
12.5, { 1 > L-bJ l-lj

LE » HD = 2 ,5 -5 -(- 2) , LE • HD = 2 ,5 -y/6 -5 --\/2 = 2 ,5 -5 -2 -V3
ß = 125,26 ° = et

c) An einer Skizze macht man sich klar , daß die Gerade HD Grund - und
Deckflächeunter 45 ° schneidet , die Kante [HD ] mit der Deckfläche
180°- 45 ° = 135° einschließt .

32. ABCDS ist eine viersei¬
tige gerade Pyramide
mit quadratischer
Grundfläche .
Berechne den Winkel
zwischen
a) Grund - und Seiten¬

fläche
b) zwei Seitenflächen

mit gemeinsamer
Kante

c) zwei Seitenflächen
ohne gemeinsame
Kante.

a ) , c) Der Winkel a zwi¬
schen Grund - und
Seitenfläche ist 45 °,
weil das gestrichelte
Dreieck rechtwink¬
lig (bei S) gleich¬
schenklig ist . Der
rechte Winkel ß ist
der Winkel zwischen
den Seitenflächen,
die keine gemein¬
same Kante haben .
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b) Die Seitenflächen sind kongruente gleichschenklige Dreiecke, deshalb
haben zum Beispiel B und D dieselbe senkrechte Projektion L auf AS :

geschnitten mit der Hilfsebene H durch D

= 0 Xj + x2 - x3 = 0

_ ( 1 \
AS : X = 0 + h 1

senkrecht zu AH:

ergibt = | , IX | I | 1 ^ )

( 1 N “_ f 5 Y
1 0 x - - 5

{-v . L 0 JJ

LD = f
/ 1 ^ _ f- 2\
- 2 , LB = £ 1

hJ
’ 3

V lj
LDoLB = ™

(- 3 ) LD • LB = ^ -6

Seitenflächenwinkel : cos Y = - 5 Y = 120°

33 . Der Körper ABCDEFGH
entsteht so : man verdreht 2
kongruente Quadrate 45 ° ge¬
geneinander und verschiebt
eines so weit nach oben , bis die
Seitenkanten so lang sind wie
die Quadratseiten .
a) Bestätige die

Koordinaten von

H (5a/2 I 0 I 5V 2V2 )
b ) Berechne den Winkel

zwischen Grundfläche
und einer Seitenfläche
mit gemeinsamer
Kante

c) Berechne den Winkel
zwischen zwei Dreieckflä¬
chen mi t gemeinsamer
Kante .

a) H(hx I h2 I h3) , h2 ist 0 , weil nach
der 45 "-Drehung die oberen
Ecken genau senkrecht über
den waagrechten Koordina-
tenchsen liegen , ht = 5^ 2 , weil
das die Länge ZH der halben
Quadratdiagonale ist ,
H( öV2 I 0 I h3 ) , die Strecke
[AH] ist so lang wie eine

X,
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_ V ( 5^ 2 - 5) _ X f5^ 2 - 5fAH = - 5

l *3 ,
Bedingung: AH 2 = - 5

l h3 J
= 102

50 - 50a/2 + 25 + 25 + h3
2 = 100 => h3

2 = 25 -2^2 ^ > h3 = ±5y2r {2
b) L(51 01 0) ist die senkrechte Projektion von H und O auf AD,

LHoLO = - 25(V2 - 1 ) , LH - LÖ = 25 -̂ 3

V2 - 1

f 5-̂ 2 - 5) y - 5\LH = 0
, LO = 0

y 5V2V2 y
l 0 J

Seiten-Grundflächen-Winkel: cos ß = — ß = 103,84 °

c) Weil die Seitenflächen gleichseitigeDreiecke sind , ist M senkrechte
Projektion von H und B auf AE .
A(51 51 0) , E (01 5 -̂ 21 öVWir , M( § I § (V2 + 1) I

f 1 - 2-J2 ) ( 3 'i
^ ^

, MH . MB = 25 ( 1 - 2^2 )MH = V2 + 1 , MB = | V2 - 1

MH - MB = 5^ Z -5 [̂3 = 75
Seitenflächen-Winkel: cos o = — | (2a/2 - 1) g = 127,55°

34. X =
f 2 a
a+ 1
1

+ M- E : A( 15 I 11 3 )
a)
b)
c)
d)

e)

f)

3xj - 6x2 + 2x3 + 4 = 0
V -1 J V 3 J

Untersuche die Lage von ga und E .
Welcher Punkt B in E liegt A am nächsten ?
Welche Schargerade liegt A am nächsten ?
E sei Tangentialebene einer Kugel k um A.
Berechne Radius und Berührpunkt .
Bestimme eine Gleichung der Ebene H , die die Kugel k von d ) halbiert
und auf den Schargeraden senkrecht steht .
Bestimme eine Gleichungder Schnittgerade s von H und E .

a)

b)

c)

Gemeinsame Punkte suchen , ga in E einsetzen :
3(2a) - 6(a + 1 + p) + 2( 1 + 3p) + 4 = 0 => 0 = 0ist erfüllt für jedes a und p,die Parallelenschar liegt in E .
B ist die senkrechte Projektion von A in E :
Projektionsgerade p : X = flö )1 + b f 3 )- 6

l 3 J l 2 J
schneidetE in B :

3( 15 + 3b) - 6(1 - 6b ) + 2(3 + 2b) + 4 = 0 , => b = - linp : B(121 7 11)Die Schargerade muß durch B ; klappt für p = 0 und a = 6
_ x r 12 ) f ° \

g6 ; X = 7 + p 1
13J
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d) Berührpunkt ist B ( 121 7 I 1 ) von b ) , r = AB = 7

e ) H:
'_ x r 15Y1 0 X - i

t 3 J , 3jJ
= 0 H : x? + 3xo - 10 = 0

f) s geht durch B mit Richtung
fQ \ ( 3 ) / 20 > _ v fi2 \ f

1UJX - 6
l 2 J 9

1- 3J
: X = 7

l 1 J+ a
V

( 20
9

- 3

_ ^ ( 1 >
35 . ga : X = - 2 + p - 1 M (- l 1 0 1 - 1 )UJ )

a ) Beschreibe in Worten die Geradenscharund bestimme
eine Gleichung der Ebene E , in der die Schargeraden liegen.

b) Welche Schargerade geht durch M ?
c ) Welche Schargeraden berühren eine Kugel um M mit Radius 2 ?

Welche Schargeraden sind Sekanten der Kugel ?

d) Welche Schargeraden halbieren die Winkel der beiden
Kugeltangenten g0 und g4 ?

e) Welche Schargerade hat vom Ursprung den kleinsten ,
welche den größten Abstand ?_

ga ist ein ebenes Geradenbüschel durch ( 11 - 21 1 ) parallel zur Axse ,
weil sich nur die dritte Koordinate im Richtungsvektor ändert .

f 1 >
0 , x , + x2 + 1r 0 xri =

p = - 2 , a = 1 ; M liegt auf gj : X =- 2 | + H

Die Berührpunkte Ba sind die senkrechten Projektionen von M m g
Bedingung : der Vektor , der M mit dem allgemeinen Geradenpunkt

f 2 + p ^ - >■„MG - 2 = 4verbindet , hat die Länge 2 : MG a =

(2 + p )2 + (- 2 - p)
2 + (2 + ap )

2 = 4 diese quadratische Gleichung soll für p
genau eine Lösung (Berührung ) haben , also auflösen nach p:

4(a + 2)p + 8 = 0 (# ) , Diskriminante D muß gleich 0 sein(a + 2 )p
4 ) = 16a(4 - a)D = 16 (a + 2 )2 - 32(a2 + 2 ) = 16(a2 + 4a + 4 - 2a

D = 0 => a = 0 oder a = 4
(# ) aufgelöst : p = - 2 a

2
+ \ p = - 2 oder |i = - §

a + 2

B 0(- l I 0 I 1 )a = 0 , p = - 2 : B 0 =
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a = 4 , ji = - ö : B4 = r ii
- 2
1

/ 1 \
-1

v 4 .
B4( ^ | - i | - | )

Sekanten liegen vor , wenn D > 0 ist , also a(4 - a ) > 0 ==> 0 < a < 4
d ) Weil M auch in E liegt , E also mitten durch die Kugel geht , ist eine Win¬

kelhalbierende diejenige Schargerade , die durch M geht , und das ist gx .Die andre muß drauf senkrecht stehn (und freilich in E liegen ! ) , ihre
Richtung r ist also senkrecht zu g4 und nE :

( 1 a /• 1a r - 1 ) ( 1 1 _ S. rM= - 1 X 1 = i = — - 1 g -2 : X = - 2 + p - i10 10 l 2 J l-2J 10 1-2J
e) Senkrechte Projektion 0 ' von O in E liefert den Geradenpunkt , der dem

Ursprung am nächsten ist : Die Schargerade durch 0 ' hat den kleinsten
Abstand vom Ursprung . 0 ' ergibt sich als Schnitt von E und u : X = o 1

0

1 \

0 + 0 + l = 0,o = 0 '
(— i I — | I 0) ;

Gerade g^ mit kleinstem Abstand vom Ursprung : X =

[ - 1 / 2a / 1a / 1a
- 1/2

l 0 ;
— - 2

0 ;
+ p - 1

10

3 „ 2
(l - 2 ’ a _ 3

_ ^ / 1a ( 1 1X = - 2 + p - 1
0 / (2/3,Die Schargerade mit dem größten Abstand vom Ursprung steht auf g2/3

r l >
- l

v2/3,

/ I \senkrecht , hat also die Richtung

Gerade g_3 mit größtem Abstand vom Ursprung : X =

(- 3 'i f 1 \ r - 2\
1

v2 , v ° / v 6 ,

t 1 >
- 1

r 3 ,
( 1 >1 f 1 ■

)X = - 2
lo

+ p - 1
l- sj

36. Bestimme von Ea : x2 + ax2 + (a + l )x3 — 6 = 0 die Büschelebenen ,a ) die mit der xr Achse 45 ° einschließen
b) die mit der x1xz-Ebene 60 ° einschließen
c) die mit der x2x3-Ebene 30 ° einschließen
d) die 30 ° mit der Ursprungsgerade durch (- 61 7 11 ) einschließen
e) die senkrecht sind zur Gerade durch (21 41 2 ) und (41 0 ] 0)f ) die parallel sind zur Ursprungsgerade durch (1 110 I - 7)
g) die parallel sind zur Ursprungsgerade durch (1 lll - l )h) die senkrecht auf E 0 stehen
i) die mit E x 45 ° bilden

n „ =

a) n „ o e , =
/ 1 > /

a 0
| a + l ; V

{ 1 A
a

a + i ,

0
0

= 1

na = a/ 2 (a 2 + a + 1)

n^ = a/ 2 (a2 + a + 1 )

n a ° e4
n a o ei I = | a/2 na -eiBedingung : na -ei

= sin 45°
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1 = \ V2 V2 ( a2 + a + 1 ) => 1 = Va2 + a + 1 => 1 = a2 + a + l
a(a+ l ) = 0 ; E0 : xx + x3 - 6 = 0 E_x : xx - x2 - 6 = 0

= a + 1 na -e3 = ^ 2( a2 + a + 1 )
_ v _ ^ ( 1 1 f0 \
n a 0 e 3 = a O 0

la + 1J UJ
I na o e3 | _ ^ ^

Bedingung : = cos 60"
I na . ex i = f na -e3

I a + 11 = | V 2 ( a2 + a + 1 ) => 2(a + l )2 = a2 + a + 1

2a2 + 4a + 2 = a2 + a + l => a2 + 3a + l = 0 => a = | (— 3 + ^[E)

c) na o ex = ( 1 "1
:= a O 0

la + 1J
= 1

I na ° ex
Bedingung : —-—;- = cos 30°

na -ex
1 = 5 V 2 ( a2 + a + 1 )

na -ex = V 2 ( a2 + a + 1 )

I nT ° e^ I = \ V3 na

4 = 3 -2( a2 + a + 1 )
3a2 + 3a + 1 = 0 hat keine Lösung, das heißt,
in der Schar ist keine Ebene, die mit der x2x3-Ebene 30° einschließt.

d ) n „ o 7 = a U 7 I = 8a - 5 , n a -r s = V2 ( a 2 + a + 1 ) V 86

s -C
D1 ( 1 w

7 = a 0l 1 J
V a + 1 J l

I na o rg I
Bedingung : —

;
- = sin 30°

I 8a - 5 I - | V2 (a2 + a + 1 ) ^ 86
"

=> (8a - 5 )
2 = 43(a2 + a + 1)

21a 2 - 81a - 18 = 0 , 7a2 - 27a - 6 = 0 , => a = 6 odera = -
E6 : xx + 6x2 + 7x3 - 6 = 0 E_x/7 : 7xx - x2 + 6x3 - 42 = 0

n a ° r g I =
2

n a ' r g

e) rg =

f ) nT °

g )
"iC °

7 - 2 >

V 2 ,
ist parallel zu

r 1 >

v- ly
= n:_2 E_2 : xx - 2x2 - x3 - 6 = 0

10
H
f 1 >

= 0 => 1 + 10a - 7a - 7 = 0 => a = 2 E2 : xx + 2x2 + 3xs - 6 = 0

v- iy
0 => l + a - a — 1 = 0 ist für jeden a-Wert erfüllt, das heißt,

die Gerade ist parallel zur TrägergeradedesEbenenbüschels.

= 0, => a = —2 E_2 : xx — 2x2 — x3 — 6 = 0

i) a o 1 = 3 +3a I X 11 X I = V2 (a2 + a + 1 ) 'fi

( 1
h ) n a c n 0 = 0 , a O 0

la + 1J
f 1 1= a O 1
Va + 1J

Bedingung : , . M > 7 = cos 45° I na » nx I - 9
I na 11 nx

n,
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I 3 + 3a I = | ^ 2 V 2(a2 + a + 1) ^ 6, => 311 + a I = V3 V 2(a2 + a + 1)
3 ( 1 + a )2 = 2(a2 + a + l ) => a2 + 4a + l = 0 => a = - 2± ^ 3

37. Ea : (a + l )xj + (a - l )x2 = a
a ) Bestimme eine Gleichung der Ursprungsebene ,

die alle Scharebenen senkrecht schneidet .
b) Welche Scharebene steht auf Ea senkrecht ?
a) Die Normalrichtung u der Ursprungsebene U muß senkrecht sein zu

jedem Normalvektor na : na » u = 0,
fa + 1 \ ( U \

a - 1 0 V
l 0 J L w J= 0 ist erfüllt zum

Beispielfür u = v = 0, w = 1 , U:
vl ,<j X = 0, x3 = 0

b) fa + 1 \ fa
' + 1 \

a - 1 o a ' — 1
l 0 J l 0 J= aa ' + a + a ' + 1 + aa ' - a - a ' + 1 = 2aa ' + 2 = 0 , a ' = - 1/a

auf Ea steht senkrecht E_1/a : + l )xj + (- - - l )x2 = a

( a2 j r r 2 \i38. Ea : a2- a O X - - 1 ) = 0
la " 4J L l 3 J-

a) Bestimme die Achsenpunkte A1 , und A3 von Ea .Welche Scharebene hat nur einen Achsenpunkt , wie liegt sie ?
Welche Scharebenen haben nur zwei Achsenpunkte , wie liegen sie ?

b) Welche Scharebenen gehen durch den Ursprung ?
c) Welche Scharebenen enthalten den Punkt P ( 1 [ 11 6) ?
d) Bestimme a so , daß die Scharebene parallel ist zu einer

Koordinatenebene .
e) Bestimme a so , daß die Scharebene parallel ist zu einer

Koordinatenachse .
f) Welche Scharebene ist parallel zu F : x3 + 3x2 - 18x3 + 10 = 0 ?
g) Welche Scharebene ist senkrecht zu G : 3x3 - 2x2 + x3 = 2 ?

h ) Welche Scharebenen sind parallel zu g : X =

i)

j)

( 1 \
X = 2 + h - 2

Ui
Welche Scharebenen sind senkrecht zu S : X =

Bestimme eine Gleichungder Schnittgerade s von E2 und E4 .

r 3 ^ r 2 j f - 5 \
2 + X i + p 2UJ W t 1 J
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E a : a 2xx + a (a - l )x2 + (a - 4)x3 = a2 + 4a - 12

a ) Al ( g-
2
-t 4

J
- 12 lo I 0 ) , A 2( 01 a* +

.
4
_
a - 12

1 0 ) , A 3(010 3 ^ + 4 3 - 12

a" ' ’ a(a - 1 ) 1 'J / ’ * '*'3VV' 1 " ' a - 4
E 0 hat nur den Achsenpunkt A3(01 01 3) , ist also parallel zur xxx2-Ebene.
E x hat nur die Achsenpunkte Ax(- 71 01 0) und A3( 01 011 ),

ist also parallel zur x2-Achse.
E4 hat nur die Achsenpunkte Ax( | I 01 0) und A2( | I 01 0 ) ,

ist also parallel zur x3-Achse.

)

b ) a2 + 4a - 12 = 0 (a + 6 )(a - 2 ) = 0 a = - 6 oder a = 2

c ) P in Ea einsetzen : a2 -l + (a2- l ) - l + (a-4 ) -6 = a2 + 4a - 12
a + a - 12 = 0 ( a + 4 )(a - 3 ) = 0 a = - 4 oder a = 3

d ) In n a müssen zwei Koordinaten = 0 sein , nur möglich für a = 0

e ) [ | xr Achse : 1 . Koord . von ~n^ muß 0 sein , a2 = 0 a = 0

11 x2-Achse : 2 . Koord . von "n^ muß 0 sein , a(a - 1 ) = 0 a = 0 oder a = 1

11 x3-Achse : 3 . Koord . von muß 0 sein , a - 4 = 0 a = 4

f)
( Bl ( 1 \
a 2- a

U - 4 J
= k 3

r 18j
, k = a2 ( l .Koord. Gleichung ) einsetzen in die 2 . Koord .-

Gleichung : a2 - a = 3a2 a(2a + 1 ) = 0 a = 0 oder a = - 1

die Probe in der 3 . Koord .Gleichung klappt nur für a = - 1 , also F| I E_o 5

- 0 , a2 - 14a + 48 = 0 , (a - 6)(a - 8 ) = 0 a = 6 oder a = 8

= 0,a 2 + 3a - 4 = 0 , (a + 4 )( a - l ) = 0

( &
2

f 1 N
g) a2- a O- 2

la ~ 4 >W

( a2 > f 3 >
h ) a2- a O- 2

- 4 J
. = - 4 oder a = 1

i) Normalrichtung von S: 1 X
f - 5 \

2 = 3 fl \
1

1-lJ l 1 J k 3 J
( a 1
a 2- a O i

la - 4 J , 3 y
= 0 , a2 + a - 6 = 0 , (a + 3 )(a - 2 ) = 0 . = - 3 oder a = 2

j ) E2 : 2xx + x2 - x3 = 0

E4 : 4xx + 3x2 = 5 s : X = ( 2 \ r 3 1
- 1 - 4

l 3 J
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E : 3x, - 6x9 + 2xo = 42

XI . Normalformen

ga : X =
C 4 \ f - 3 ^

_+ g 2- 2a
l a )

a ) In welchem Punkt schneiden sich die Ebene E und die Schar ga ?
b ) Bestimme eine Gleichung der Ebene F , in der die Schar ga liegt .
c) Bestimme den Schnittwinkel cp und eine Gleichung der

Schnittgerade s von E und F.
d) Bestimme Gleichungen der senkrechten Projektionen von g_2 und g2

inE .
e) Welche Schargerade ist identisch mit ihrem Spiegelbild bezüglich E ?
f) E ist Symmetrieebene der Schargeraden ga und ga. .

Drücke a’ mit a aus ._
a ) Die Geradenschar ist ein Büschel mit dem Trägerpunkt B(4 | - 3 I 6 ).

Sollen sich Ebene und Büschel in einem Punkt schneiden , so kommt nur
B dafür infrage : 3 -4 - 6 -(— 3 ) + 2 -6 = 12 + 18 + 12 = 42 , na also !

b ) Das Büschel ist eben , zwei Geradenrichtungen gekreuzt ergeben die

Normalrichtung der Ebene F : T^ xl ^ =

F : X — - 3 = 0 2xj + 3x2 + 6x3 = 35
V 6 JJ

f 3 \ f2 \
c) nE o nF - 6 o 3 = 0 cp = 90°

( - 3 f - 3 ( 2 \
2 X 0 = 3

{ 0 ) l 1 J l 6 J

Projektionsgerade p : X = schneidet E in G„- l- 2a

3( 1 + 3g ) - 6(- l - 2a - 6g ) + 2(6 + a + 2c ) = 0 o = | (3 - 2a )
' 16 — 6a '

Ga sei Spiegelbild von Ga bezüglich E25 - 2a
48 + 3a

' 25 - 12a \
-43 + 10a

54 - a

Schnittgerade ist die Schargerade, die senkrecht ist zu nE :
/ - 3 \ / 3 \
2- 2a o _ 6 = 0 - 21 + 14a = 0 a = | s = g1;s

ist senkrecht zu E , B (4 | - 3 I 6 ) ist die senkrechte Projektion

r2 ist nicht senkrecht zu E , also ist g15 die senkrechte Projektion
e) g_2 ist Normale von E , also zu sich selber symmetrisch bezüglich E
f) allgemeinen Scharpunkt , zum Beispiel p = 1 , Ga( l I - 1 - 2a ) | 6 + a ) an E

spiegeln . Ga
' sei die senkrechte Projektion von Ga in E
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gespiegelte Gerade BGa
" :

_ V / 4 ) / - 3 - 12a \
X = - 3 + X - 22 + 10a

l 6 J l 12 - a J

soll Schargerade g£
f 25 - 12a 's ( ~ 3 )

sein : k - 43 + 10a = 2- 2a ’

l 54 " a J i a J => a = 12 - a
1 + 4a

40.

a)
b)
c)

d)
e)
f )
g)

h )

i)

Q( 16 I 16 I 8) , M( 14 | 5 I - 2 )
— » f

g a : X = a 2loj UJ
Welche Schargerade geht durch Q ?
Bestimme eine Gleichung der Ebene E , in der die Schar ga liegt .
Bestimme eine Gleichung der Ebene F,
bezüglich deren Q und der Ursprung symmetrisch sind .
Bestimme eine Gleichung der Schnittgerade s von E und F.
Bestimme Schnittpunkt S und Schnittwinkel <p von s und g0 .
Berechne die Punkte von g0 , die von M die Entfernung 15 haben .

Bestimme Gleichungen der Tangentialebenen T ,
die eine Kugel um M mit Radius 15 in Q und 0 berühren .
Bestimme eine Gleichung der Gerade t ,
die in beiden Tangentialebenen liegt .
Berechne den Abstand d von t und g0.

a)
riß 's / 2a ^ ( 2 \

16 — a + ii 2
{ * ) 1 ° J UJ ==> (i = 8 a = 0

_ x ( 2 \ ( 2 -\ / 2 > ( 2 ^ /
b) ga : X = a 1 + P 2 ist auch Parameterform von E 1 X 2 = -

UJ u V

E : xx — 2x2 + 2x3 = 0

c) F geht durch die Mitte (81814 ) von [OQ] , die Normalrichtungvon F ist

gleich der Richtung von OQ . F : 2xx + 2x2 + x3 - 36 = 0

d) E und F schneiden sich in s: X =

/ 2 \

( 12 ( - 2 \6 + a 1
l 2 J

e) gb : X = (i

f)

v 1 ;
und s schneiden sich in S(81814 ) unter 90°

( 2 ^ f 14 \
2UJ 5

[ - 2 )
= 15 => 9(i(ji - 8 ) = 0 G0 = O Gs( 1611618 ) = Q

g) T0 : 14xx + 5x2 - 2x3 = 0

_ ^ ( 0 > ( 1 \
h ) t : X = 8

^ 20 J+ X

Tg : 2xx + llx 2 + 10x3 - 288 = 0

i) d = 16
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Bild zu Au%abe 40.



XI . 2 . Hesse -Form der Ebenengleichung

1 . Gib die Hesse -Form an
a) 7xj - 2x2 + 26x3 + 54 = 0 b) 6xj + 8x3 = - 50
c) 15xi + 6x2 - 10x3 = 0 d) 3x3 = 3
e) 3 X1 “

3 x2 + 1 x3 = 1 f) xx = 0

a) - ^ (7x1 - 2x2 + 26x3 ) - 2 = 0 b) - | (3xj + 4x3) - 5 =

c) ± ~ ( 15Xi + 6x2 - 10x3 ) = 0 d) x3 - 1 = 0

e) 3 X! —
3 X2 + 3 X3 = 1 f) >< II o

2. Gib die Hesse -Form der Ebene E an ,
die durch A( 11 11 5) , B(9111 1) und C( ll 1 41 - 1) geht .

_ X _ ( 8 > f 10 > r 3 ) '
_ ^ rlV

ABxAC = 0 X 3 = 4 2 E: 2 O X - 1
l- 4j 1- 6 ; ^ 8 J ^

5

6

*

J UJJ
E : 3xx + 2x2 + 6x3 - 35 = 0 EH : | (3xj + 2x2 + 6x3) - 5 = 0

3. Welchen Abstand haben der Ursprung , A( 12 I 21 - 2) , B ( 11 01 - 2 )
und C(- 91 11 2) von der Ebene E : xt + 8x2 - 4x3 = 9 ?_

Eh : | (xx + 8x2 - 4x3 ) - 1 = 0 d (0 , E ) = I E (O ) I = 1

d(A, E ) = I E (A) | = 3 d(B , E ) = I E(B ) I = 0 d(C , E ) = | E (C ) | = 2

4. Welchen Abstand haben der Ursprung , A(11 —2 I 2 ) und B(- l 111 - 1 )
_ ( 0 \ / 0 >

von der Ebene E : X = 0 + % 1 +p 1 ?

( 1 1 '_ V f0 y- 2 O X - 0
l 2 J UJJl

d(0 , E ) = | E(0 ) | = |

0, Xj - 2x2 + 2x3 - 2 = 0 ,

d(A, E ) = I E(A) I = |

EH: | (xj - 2x2 + 2x3 - 2 ) = 0

d(B,E ) = | E(B ) | = 1

5. E : x1 + 2x2 + 2x3 + 3 = 0 Zeichne den Ursprung , die Ebenen E bis H

F : Xj + 2x2 + 2x3 - 6 = 0 (als Strecken ) mit den richtigen Abständen ,

G : Xj + 2x2 + 2x3 - 9 = 0 die Normal - und Hesse -Vektoren von E bis H

H : X] + 2x2 + 2x3 + 12 = 0 mit den richtigen Längen , Maßstab : 14 0,5cm.

Eh : - 1 (xi + 2x2 + 2x3) - 1 = 0 FH: + 1 (Xl + 2x2 + 2x3) - 2 = 0

Gh ; + 1 (xj + 2x2 + 2x3) - 3 = 0 Hh -' — | (xx + 2x2 + 2x3) - 4 = 0
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Skizze zu Aufgabe 5.

6. A( 11 0 | - 2 ) , B (- l | 41 - 2 ) , C (0 I 6 | 0 ) ,
D (? I ? I ? ) , S(3 I 3 I —3 ) Die Pyramide
ABCDS hat als Grundfläche das Par¬
allelogramm ABCD.
a) Berechne die Länge der Höhe h.
b) Berechne das Volumen der

_ Pyramide .
_ S. _ V

X 4 r 2NiAB x AC = 6 = - 4 i
l 2 ; l o J l-2J

a ) Grundflächenebene G : ( 2 \
1 X - f0 \

6
l-2J _ , oJJ

2x x + x2 - 2x3

Gh : | (2xj + x2 - 2x3 ) - 2 = 0 h = I GH( S ) I = 3

- 6 = 0

b) Grundflächeninhalt F = | AB x AC I = 4 -3 = 12
Rauminhalt V = | Fh = ^ -12 -3 = 12

O O

_ ^ ( 0 > ( 2 >7. E : llXi - 10x2 + 2x3 + 75 = 0 g: X = - 5
^ 5 j

+ g 5
1 14 V

Zeige, daß E und g parallel sind , und berechne den Abstand d(g , E ) .

n E ° r g =
rll ( 2 1= - 10 0 5
l 2 J 114 J : 0 , also gl nE und damit g 11 Hg

Eh : - £ (Hxj - 10x2 + 2x3) - 5 = 0 ; d(g , E ) = | EH(G) I = 9

8. Berechne den Abstand der windschiefen Geraden so:
Bestimme eine Normalgleichung der Ebene E , die die Gerade g enthält und
parallel ist zur andern Gerade h ; berechne dann den Abstand , den irgend ein
Punkt von h und die Ebene E haben.
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_ ^ ( 1 1 fl —- r0 > / 0 \
a ) g; X = - 2

l 8 ;
+ X 1 h : X = 5

l 8 ,
+

Ti )
_ V rO -N fl \ _ ( - 7 \ r - 3 \

b ) g; X = 17
l 5 ;

+ X 8
l 4 J

h : X = 9
[ 16 ,

+ g 4
l 4 J

a ) nE = r xlr^ =
rl \

V ° 7

f0 \ ( 1 >
‘_ f 1 v

0 —- 1 E :
( « )

• x - - 2
IsJJ

= 0 , x1 - x2 - 3 = 0

E h : j = (x x - x2 - 3 ) - 0 ; d (g , h ) = I Eh(H ) | = -8 = 4^ 2

fi \
8 X

f - 3
4 = 4

( 4 )
- 4 E :

( 4 >
- 4 O X - r ov

17
l 4 J l 4 J i 7 J l 7 J , 5jJ

b) nE = rg xr h =

E : 4x x - 4x2 + 7x 3 + 33 = 0 EH : - 1 (4xi - 4x 2 + 7x3 + 33 ) = 0

d (g , h ) = I E h (H ) I = | -81 = 9

= 0

9. Stelle Gleichungen der Ebenen auf , die von E : 6xj - 7x2 + 6x3 + 55 - 0

den Abstand 33 haben . _

Eh: - (6x x - 7x 2 + 6x 3) - 5 = 0

F + : - (6xj - 7x2 + 6x 3) + 28 = 0
F + : 6x3 - 7x 2 + 6x 3 - 308 = 0

F± : - ^ (6xj - 7x2 + 6x 3) - 5 ± 33 = 0

F _ : - (6xj - 7x2 + 6x a) - 38 = 0

F _: 6x x - 7x2 + 6x3 + 418 = 0

10 . Bestimme den geometrischen Ort der Punkte , die von der Ebene

E : 7x 3 - 6x 2 + 6x 3 = 7 den Abstand 1 haben ._ __

Der geometrische Ort besteht aus den Ebenen ,
die von E den Abstand 1 haben
E h : (6x a - 7x2 + 6x 3 - 7 ) = 0

F± : ^ - (6x1 - 7x2 + 6x3 — 7 ) + l = 0 F± : 6x3 - 7x2 + 6x3 - 7 + 11 = 0

F+ : 6x] - 7x2 + 6x3 + 4= 0 F_ : 6x x - 7x2 + 6x3 - 18 = 0

11 . Bestimme den geometrischen Ort der Punkte ,
die in der Ebene E : x1 — x2 + 3x3 = 0 liegen
und von der Ebene F : 2x3 + x2 - 2x 3 = 12 den Abstand 3 haben .

F h : | ( 2xi + x2 — 2x 3 ) - 4 = 0 F+: | (2xj + x2 - 2x3 ) - 4 ± 3 = 0

F + und F enthalten die Punkte im Abstand 3 von F :
F +: 2xj + x2 — 2x 3 - 3 = 0 F_ : 2x x + x2 - 2x 3 - 21 = 0

die Punkte solln auch noch in E liegen , also Schnitt von F + und F _ mit E



254 XI . Normalformen
_ x .' 1 \ /' - 1 s\Schnittgerade von F + und E : X = 1 + x 8

.
° J . 3 J

_ ^ ( 1 \ f -l \
Schnittgerade von F_ und E : X = 7 + p 8

0 3V V J

12 . E : 15x: + 12x2 - 16x3 = 15 F : - 9xj + 12x2 - 20x3 = 35
Welche Punkte der x3-Achse haben von E und F denselben Abstand ?
Die Punkte mit gleichem Abstand von E und F liegen in den
Winkelhalbierenden Ebenen W± von E und F :
Eh : i ( löxj + 12x2 - 16x3 - 15 ) = 0 FH : — (— 9x! + 12x2 - 20x3 - 35 ) = 0
W+ = EH + Fh : ^ (6xj + 24x2 - 36x3 - 50 ) = 0 , W+ : 3xx + 12x2 — 18x3 - 25 = 0
W_ = EH - Fh : ^ (24Xl + 4x3 + 20 ) - 0 W_ : 6x1 + x3 + 5 = 0
W± geschnitten mit der x3-Achse ergibt die gesuchten Punkte P+ :
P +( 0 I 0 I - 25/18 ) P_( 0 I 0 I - 5 )

_ f 39 > rl3 \13 . E : 6xj + 9x2 + 2x3 = 11 g; X = 61 + p 20
1- 23 ; 1- 3 J

Eine Kugel K mit Radius 22 bewegt sich so, daß ihr Mittelpunkt auf g läuft .
a ) In welchen Punkten berührt die Kugel die Ebene ?

Wo ist dann jeweils der Kugelmittelpunkt ?
b) Wo ist der Mittelpunkt M des größten Schnittkreises von K und E ?

Schnittkreis

a) Die Kugelmittelpunkte ergeben sich als Schnitte von g und zwei Ebenen
F±, die von E den Abstand des Radius 22 haben .
Eh : -jj- (6xj + 9x2 + 2x3) - 1 = 0 F±: (6xx + 9x2 + 2x3 ) - 1 ± 22 = 0;
F + : 6x: + 9x2 + 2x3 + 23 1 = 0 schneidet g ( p = - 4 ) in MjC- 13 I - 19 I 9 )
F_ schneidetgin M 2 = Mj + 2MjM

B x = Mj + 22Tä^ ° = M x + 2K^ ° =

B2 = M 2 - 22He 0 = M 2 - 2R ^ ° =

f- 13 '
- 19 +
l 3
{ 13 \ /

21 —

l-7J \

2 M - Mj , M2(13 I 211 - 7 )
f 12 '

18 BiC- l | - 1 | 13 )

B 2( l | 3 t - 11 )
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Andrer Lösungsweg
Die Kugelmittelpunkte ergeben sich als diejenigen Geradenpunkte ,
die von der Ebene den Abstand des Radius 22 haben .
Bedingung : d(G, E ) = I EH(G) I = 22 , EH(G) = ± 22

^ [6(39 + 13p ) + 9(61 + 20p ) + 2 (- 23 - 8p )] - 1 = ± 22

[737 + 242p ] - 11 = ± 22 -11 => 242p = + 242 - 726 => p = ± 1 - 3
dann gehts weiter wie gehabt .

b ) M ist der Schnittpunkt von g und E , p = - 3 M( 0 I 11 1 )

_ v f - 6 r7 >
14 . g± sei die senkrechte Projektion von g: X = 2 + p 2

1 - 8 , [l0 ,
in die Ebene E : 2xx - x2 + 3x3 - 4 = 0 .
Bestimme den Schnittpunkt von g und g± und eine Gleichung von g .

g eingesetzt in E ergibt p = 1 , Schnittpunkt S( 11 41 2 ).
d(G , E ) = I Eh(G) 1 = 1 - 42A/T4] , G und O liegen auf derselben Seite von E :

G± = G + f = - ±=
iu vm

- 1 _
DC

+ 3 ( 2 ^
- 1 —( 0 \

- 1

1 - 8 ; CO UJ §L : x fl
4 + x

( 1 ^
5

l 2 J UJ
15 . Die Punkte P ( 15 I - 6 | 10 ) und P ' seien symmetrisch bezüglich

der Ebene E : 7xx - 4x2 + 4x3 - 7 = 0 . Berechne P '
._

d(P , E ) = I Eh(P ) | = | + 181 = 18 , E liegt zwischen P und O

P ' = P - 2 -d(P,E ) -üjr = f-
15

6 ] - 2 -18 - i ( 7 > riß > (
- 4 ~ - 6 - 4 -

lio J 9
^ J , 10 , V

P ' (—13 I 10 1 - 6 )

16 . T : 3x , — 4x2 - 12x3 = 0 sei Tangentialebene einer Kugel K
um M(7 1 - 1 1 - 12 ) .
a ) Berechne Radius r und Berührpunkt B von K.
b ) Bestimme eine Gleichung der andern Tangentialebene T ' von K,

_ die zu T parallel ist ._ _

a ) r = d(M , T ) = I TH(M ) I = 13 B = M + 13 -
13

f 3
B (4 | 3 I 0 )

b ) Ansatz T'
: ^ ( 3xx - 4x2 - 12x3 ) ± 2 -13 = 0

weil B in T liegt , müssen M und B auf derselben Seite von T ' liegen ,
also Vorzeichen von n0 so wählen , daß T '

(B ) und T '
(M ) dasselbe

Vorzeichen haben : T '
: 3xx - 4x2 - 12x3 - 338 = 0

17 . H : lOxj - llx 2 + 2x3 = 1 halbiere die kleinste aller Kugeln , die durch
P ( 211 —211 5 ) gehn . Berechne ihren Radius r und Mittelpunkt M.
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r = d(P , T ) = | Hh(P ) ! = I — 30 I M = P - 30 -
ĴO

( 10 N,
-11
2

M( 1 | l | 1 )

18 . Bestimme Gleichungen der Winkelhalbierenden Ebenen von
E : xa + 2x2 - 2x3 + 5 = 0 und F : 5xj - 14x2 + 2x3 - 4 = 0 ._
Eh : - 1 (xi + 2x2 - 2x3 + 5 ) = 0 FH : ^ (5xa - 14x2 + 2x3 - 4) = 0
Wj = Ejj + Fh : — ^ (xj + 2x2 — 2x3 + 5 ) + ^ (5xj — 14x2 + 2x3 — 4 ) = 0

24x2 - 12xs + 29 = 0
W2 = EH - FH : - | (x1 + 2x2 - 2x3 + 5 ) - i (5xx - 14x2 + 2x3 - 4 ) = 0

lOxj — 4x2 - 8x3 + 21 = 0

19 . E : 2xj + x2 — 2x3 + 3 = 0 , F : 6xj - 2x2 - 3x3 + 21 = 0
a ) Bestimme den geometrischen Ort der Punkte ,

die von E und F denselben Abstand haben .
b ) Bestimme den geometrischen Ort der Punkte ,

deren Abstand von E halb so groß ist wie der von F .

Eh : - 1 (2xj + x2 - 2x3 + 3 ) = 0 , FH : - \ (6xj - 2x2 - 3x3 + 21 ) = 0
a ) Wj = Ejj + Fjj : — ^ (2xj + x2 — 2x3 + 3 ) — (6xj — 2x2 — 3x3 + 21 ) = 0

32xj + x2 - 23x3 + 84 = 0
w2 = Ejj — Fjj i — — (2xj + x2 — 2x3 + 3 ) + (6xj — 2x2 — 3x3 + 21 ) = 0

4xj - 13x2 + 5x3 + 42 = 0
b ) | E h (X ) I = | If h (X ) I , 2 -Ejj (X) = ± Fjj( X )

2 -Ejj (X ) - Fjj (X) : - H ( 2xj + x2 - 2x3 + 3 ) + Jj (6xj - 2x2 - 3x3 + 21 ) = 0
10xj + 20x2 - 19x3 - 21 = 0

2 -Eh (X) + Fjj (X ) : - ^ (2xj + x2 - 2x3 + 3 ) - | j
- (6xj - 2x2 - 3x3 + 21 ) = 0

46xj + 8x2 - 37x3 + 105 = 0

20 . E : 4xj - x2 + 8x3 + 18= 0 , F : 4xx - x2 + 8x3 - 36 = 0
a ) Gib eine Gleichung der Ebene S an,

die von E und F denselben Abstand hat .
b ) Gib Gleichungen der Ebenen G und H an,

deren Abstand von F doppelt so groß ist wie der von E.
c) Zeichne den Ursprung und die Ebenen E , F , S , G und H

_ (als Strecken ) mit den richtigen Abständen im Maßstab : 1A 1cm.
Eh : - l (4xj - x2 + 8xs + 18 ) = 0 , Fjj : | (4xj - x2 + 8x3 - 36 ) = 0

a ) S = Ejj - Fjj : 4xj - x2 + 8x3 - 9 = 0
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b) 1 Fh(X ) 1 = 2 | E h (X ) 1 Fh (X) = ± 2Eh ( X )
H = Fh(X) - 2Eh(X) : 9 (4x - x2 + 8x3 - 36 ) - 1 (4x2 - x2 + 8x3 + 18 ) = 0

H : 4xj — x2 + 8x3 + 72 = 0
G = F h(X) + 2E h(X) : i (4x, - x2 + 8x3 -- 36 ) + | (4x1 - x2 + 8x3+ 18 )= 0

G : 4xt — x2 + 8x3 = 0

c) ; h111
e iG1

IS
i

F

1111111
0

i
i
i

1 1 1 1 |
8 5

1 1
1 0

1 1 1
12 3 'i

21 . E : 3x1 - 4x3 = 0 F : 2x1 - x2 + 2x3 = 0
Eine Kugel vom Radius 4 rollt in der von E und F gebildeten Rinne hinunter .
(Die Schwerkraft wirkt entgegen der x3-Richtung ) . Bestimme eine Glei¬

chung der Gerade , auf der sich der Kugelmittelpunkt bewegt .

Die Rollgerade ist parallel zur Schnittgerade von E und F : X = p
{ 4 \
14
3

E+ und E_ seien Ebenen im Abstand 4 ( =Kugelradius ) von Ebene E
E+ : 3xj — 4x3 + 4 -5 = 0
F + und F_ seien Ebenen im Abstand 4 ( =Kugelradius ) von Ebene F
F+ : 2xx - x2 + 2x3 ± 4 -3 = 0
mathematisch bieten sich vier Rollgeraden an :

Schnittgerade a von E+ und F+ :

Schnittgerade b von E_ und F + :

f - 4 >
X = 8 + a 14

1 2 , l 3 J
_ ^ ( 0 ■> r4 \
X = 2 + ß 14

l 3 J
- * /' 0 ' / 4 \
X = - 2 + 7 14

l 3 J
_ ^ ( 8a 74 \
X = 6 + 5 14

UJ OC

Schnittgerade c von E + und F_ :

Schnittgerade d von E_ und F_

physikalisch kommt nur die oberste Rollgerade infrage :
man bringt jede der vier Rollgeraden zum Schnitt mit einer senkrechten
Ebene , zum Beispiel mit der x2x3-Ebene : xx = 0 ; der Schnittpunkt mit dem

größten x3-Wert ist ein Punkt der gesuchten Rollgerade
Schnitt von a und der x2x3-Ebene : A( 01 221 5)
Schnitt von b und der x2x3-Ebene : B(0 I - 22 I - 5 )
Schnitt von c und der x2x3-Ebene : C ( 0 I —2 I 5 )
Schnitt von d und der x2x3-Ebene : D ( 01 21 - 5 ) .
Weil A und C gleich hoch liegen , kann die Kugel in a oder c rollen .
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22 . E : 2x 1 - x2 - 2x3 = 5 F : 2x1 + 2x2 - x3 = 5 G : x3 + 2x2 - 2x3 + 4 = 0
Eine Kugel vom Radius 3 liegt in dem von E , F und G gebildeten Pyramiden -
Trichter (der Trichter enthält die positive x3-Achse ) .
Wo liegt ihr Mittelpunkt M ?

In M schneiden sich die drei E '
, F ' und G ' mit den Eigenschaften :

E ' ist parallel zu E und liegt über E ,
F ' ist parallel zu F und hegt über F ,
G ' ist parallel zu G und hegt über G,
die x3-Achsenpunkte von E '

, F ' und G ' haben x3-Werte , die größer sind als die
entsprechenden x3-Werte von E , F und G.
Eh : | (2x x - x2 - 2x 3 - 5 ) = 0

E '
: | (2x x - x2 - 2x3 - 5 ) + 3 = 0 2x x - x2 - 2x 3 + 4 = 0

F h : | (2xj + 2x 2 - x3 - 5 ) = 0

F '
: | ( 2x x + 2x 2 - x3 - 5 ) + 3 = 0 2x x + 2x 2 - x3 + 4 = 0

Gh : - 1 (xj + 2x2 - 2x3 + 4 ) = 0
G '

: - 1 (xj + 2x2 - 2x 3 + 4 ) - 3 = 0 x x + 2x2 - 2x 3 + 13 = 0

F ' - E '
: 3x 2 + x3 = 0 , - x3 = 3x 2 in F : = - 5x 2 - 4 in 2G '

=> x2 = - 2 , Xj = 3 M (3 I - 2 I 6 )

23 . E : | x a + x2 + x3 - 1 = 0
Eine Kugel vom Radius 4 rollt auf der Ebene E hinunter . (Die Schwerkraft
wirkt entgegen der x3-Richtung ) . Bestimme eine Gleichung der Gerade ,
auf der der Kugelmittelpunkt läuft , wenn er in S (01 01 m ) startet .
Die Gerade , auf der die Kugel rollt , hegt in E und in der Ebene F ,die durch S geht , parallel ist zur x3-Achse und auf E senkrecht steht .
E : x3 + 2x2 + 2x 3 - 2 = 0

Normalrichtung von F : = ( 1 > ( ~ 2 \
0 X 2 = 1UJ l 2 J l o J

f - 2 f 1 % ( 2 \
1 X 2 — 4

l 0 J l 2 J l-sj
Rollrichtung der Kugel : r = nF x n E =

der Startpunkt S (0 I 0 I m ) muß von E den Abstand 4 haben
und über E liegen : E H: | (x L + 2x 2 + 2x 3 - 2) = 0 , Bedingung : E H(S) = + 4 :

| (2m — 2 ) = ± 4 , => m = ± 6 + 1 , wenn m = 7 , dann hegt S über E

der Kugelmittelpunkt läuft auf X =
/ Ch

0 + ß
f 2 \

4
,- 5j
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1 . Gib die Hesse -Form der Geraden a bis f an
a ) a : - 3x + 4y + 15 = 0 b ) b : x + y = l c ) c : - 2y = 0

d ) d : x + 0,75y = 0,25 e) e : y = mx + 1 f) f: X

a ) | (3x - 4y ) - 3 = 0 b ) — (x + y - 1 ) = 0 c) y = 0

d ) ^ (4x + 3y - l ) = 0 e) ,
si

f
n 1

(mx - y + t )= 0 f) ^ ( 12x- 5y - 7 ) = 0
0 ym + 1 ^

2. g: X 5 + ^ 5 A(0,5 I - 3,5 )

a ) Berechne den Abstand von A und g.
b ) Berechne die Gleichung der Lotgerade von g durch A. _
c) Berechne den Lotfußpunkt F von b ) und die Länge des Lots AF .

c) F (—212,5 ) , AF = 6,5a ) d(A , g) = 6,5 b)

3. a ) Berechne den Abstand von Ursprung und Gerade g : 3x + 4y = 12 .
b ) Berechne den Abstand von b : 3x + 4y = 24 , c : 3x + 4y + 24 = 0

und d : 6x + 8y = 24 ._
a ) d(0 , g) = 2,4 b ) d(b,c ) = 9,6 d(b,d ) = 2,4 d( c,d ) = 7,2

4 Bestimme eine Gleichung der Gerade h durch H ( 3 I - 4 )
parallel zur Gerade g : 3x = 5(y + 1 ) .

h : 3x - 5y = 29

5. Bestimme eine Gleichung der Gerade g , die durch G(—12 I 5) geht
und vom Ursprung den Abstand 13 hat ._
g : 12x - 5y + 169 = 0

6. Bestimme Gleichungen der Geraden p und q,
die von der Gerade g : 3x + 4y + 12 = 0 den Abstand 0,5 haben .

p : 3x + 4y + 14,5 = 0 q : 3x + 4y + 9,5 = 0

7. Gib die Punkte auf h : y = x + 2 an ,
die von g : — 3x + 4y = 3 den Abstand 1 haben .

( 012 ) und (- 8,51 - 6,5 )
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8. Gib die Punkte an , die von g: x + 7y = 0 und der Winkelhalbierenden w
des 1 . Quadranten jeweils den Abstand a/50 haben .

325 75375 125

9. In einem Dreieck ABC ist A(211) , hc : 5x — 4y = 7 und hb : 3x + 4y = 11.
a) Bestimme Gleichungen der Geraden, in denen die Seiten liegen .
b ) Berechne die Koordinaten der Ecken B und C .

BC : 4x + y = - 7a ) AB : 4x + 5y = 13 AC : 4x - 3y = 5
b) B ( — 3 I 5 ) C (— 11 — 3 )

10 . g: x + y = 2 , h : 7x + y + 7 = 0
a ) Bestimme Gleichungen der Winkelhalbierenden von g und h.
b ) Bestimme Gleichungen der Geraden , deren Punkte jeweils

_ von h einen dreimal so großen Abstand haben wie von g ._
a ) 4x + 2y = 1 2x - 4y + 9 = 0
b ) 22x + 16y = 23 8x + 14y = 37

11 . Im ersten Oktanten liegt eine ebene , dreieckige , spiegelnde Glasscheibe ABC .
ii r - 5 \Von Q( 161 01 16 ) aus trifft auf sie ein Laserstrahl 1 in Richtung 1 .

I -7 J
a ) Bestimme eine Gleichung der Ebene E , in der die Spiegelfläche liegt .
b ) Bestimme Gleichungen der Spurgeraden von E .
c ) Berechne den Winkel (p zwischen Strahl und E.

Berechne den Einfallswinkel a .
d) In welchem Punkt S trifft der Strahl aufs Glas ?
e) Bestimme eine Gleichung des Einfallslots e .
f ) L sei die Ebene , in der der ein- und ausfallende Strahl liegen .

Bestimme eine Gleichungvon L.
g) Bestimme eine Gleichung der Schnittgerade s von E und L .
h ) Bestimme eine Gleichung der senkrechten Projektion lx von Strahl 1 in

die Ebene E .
i) Q und Q ' seien Spiegelpunkte bezüglich E . Bestimme Q ’.
j ) Bestimme eine Gleichung der Gerade r,

in der der reflektierte Strahl liegt.
k ) Bestimme eine Gleichung der Symmetrieebene K von Strahl 1 und

reflektiertem Strahl r.
l) Die Symmetrieebene K von k ) schneide E in s.

Gib eine Gleichungvon s an.
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m ) Welchen Winkel schließen 1± von h ) und s ein ?
n ) Bestimme eine Gleichung der Schnittgerade n von L und F (von 1) ) .
o) Welchen Winkel schließen n und 1± , n und s ein ?
p) Q und Q" seien Spiegelpunkte bezüglich K. Bestimme Q ".
q ) Welchen Abstand haben E und die Gerade QQ" ?
r ) Welchen Abstand haben K und die Gerade QQ ' ?
s) U liege in E , K und in der x1x2-Ebene . Berechne U .
t) Die Ebene H enthalte 1 und habe vom Ursprung denselben Abstand wie 1.

Bestimme eine Gleichung von H.
u ) Die Gerade g liege in E und habe vom Ursprung denselben Abstand

wie E . Bestimme eine Gleichung von g.
v ) Der Schnittpunkt von 1 und r sei Mittelpunkt einer Kugel mit Radius

10a/R Berechne die Schnittpunkte von Kugel und Geradenkreuzung .
w ) Eine Kugel um den Ursprung mit Radius y schneidet E .

Berechne Radius p und Mittelpunkt M des Schnittkreises ._

a ) AB x AC =

b ) in x1x2-Ebene : X

in x2x3 -Ebene : X =

/ - 15 % ( - 15 ( 2 \
10 X 0 = - 25 3

l 0 , { 5 J l 6 J E : 2x , + 3x2 + 6x3 - 30 = 0

_ ^ f 15 ^ ( 3 ! —^ ( 15
X = 0

l 0 J+ a - 2 in XjX 3-Ebene : X = 0
1 ° J+ ß

_ V ( 0 \ f0 \

f 3
0

- 1

10
v ° y

+ Y
i 1 ;

c ) sin cp = ~ = ; cp = 54” a = 90° - cp = 36° d) S(6 I 2 | 2 )

_ ( 2 \
e) iiXIö 2

l 2 v
+ 8 3

f 16 > ( 5 ( ( 2 \
f) L: X = 0 + G - 1 + T 3UeJ 17 J l 6 J in Normalform : 27 + 16x2 - 17x3 = 160

g ) 1 L ist senkrechte Projektion von Strahl in E
h ) die senkrechte Projektion von Q in E sei Q*(—12 I 61 4 )

1± = Q*S :
~
X = ( 6 ( 3

2 + e - 4
l 2 J 10

i) Q' = Q* + QQ* Q'(8 1 - 12 1 - 8 )

x6 x ( - 1 \
x = s + c Q ’S = 2

l 2 ;
+ c 7

L 5 J
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k ) E ist Symmetrieebene ,

Symmetrieebene K steht senkrecht auf L und enthält e
r 6 ) ( 2 \ ( ZI \

2 + 11 3 4- Ü 16
l 2 J l 6 2 v 17J

in Normalform : 3xj — 4x2 + x3 = 12R X =

l) s ist Normale von L in S : X =
|

m ) , o) s , e und L stehn paarweise aufeinander senkrecht

( 6 -} ( 27 i2 + K 16
l 2 2 1- 17J

_ * f 6 ) (2 \
n ) n = e : X = 2 + V 3

l 2 J 1 6 J

p ) SQ = SQ' = SQ" Q" = S + Q’S Q "
(4 | 16 I 12 )

q ) d(QQ"
, E ) = d(Q, E ) = QQ* = 14

r ) d(QQ'
, K ) = d(Q , K ) - SQ* = 2 -̂ 26

s) U liegt auf s , U ist der Schnittpunkt s und der x1x2-Ebene : U ( y ~ l y I 0 )

t ) 0 ' sei die senkrechte Projektion von O in 1:
( 16 — 5a i ( - 5 i _ ( 5 1

p
^ 16 - 7p J

■
U )

= 0 = > u = — 0 ' = —P 25 ’ 25 4
l- 3j

( 5 \ ’_ ^ r 16Y
H : 4 0 X - 0

QO_
L l 16 JJ: 0 in Normalform 5xj + 4x2 - 3x3 = 32

u ) keine eindeutige Lösung : es handelt sich um ein ebenes Geradenbüschel ,
das in E liegt und 0 E als Trägerpunkt hat ; 0 E( 1 | ^ ) ist die senkrech¬

( 60/49 i
90/49 + Y 0
180/49 yaj

te Projektion von O in E . ga: X =

v ) Abtragen von Strecken der Länge 10^/3 in Richtung 1 und r von S aus :
■r5i > s6 \ 1 5 \U = S ± 10a/3

V = S± 10^ 3

- 1 ±2 - 1
l 7 J 2 J l 7 J

( - l 0̂ ( 6 ^ / - 11
7 = 2 ±2 7

l 5 , l 2 , l 5 J

U+( 16 I 0 I 16 ) U_(— 4 I 4 I —12 )

V+(4 116112 ) V_(8 I —12 1 — 8 )

w ) 0 E ist die senkrechte Projektionvon O in E : 0 E( y 1 |
™ )

d(0 , E ) = y Pyt : p
2 = ( f )2 - ( f )2 => p = 40
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1 und V = f - l \
0

l 2 ; l 2 J
12 . a) Bestimme Gleichungen der Ebenen , die zu u =

parallel sind und vom Punkt Q(0 I 01 7 ) den Abstand 3 haben .
b ) gc sind Ursprungsgeraden durch ( 1 j —11 c).

Welche Gerade schneidet die Ebene E : 2xx - 2x2 x3 - 16 = 0 nicht ?
Welcher Zusammenhang besteht dann zwischen der Richtung von gc
und den Vektoren u und "v ?

c) Die Ebene F enthalte die x3-Achse und die Geradenschar gc von b) .
Bestimme eine Gleichung von F.

d) E und die Koordinatenebenen begrenzen eine Pyramide P.
a ) Berechne das Volumenvon P.
ß ) Berechne die Oberfläche von P.
y ) Zeige , daß F Symmetrieebene von P ist .
8 ) Prüfe , ob S(3 I — 3 I 3 ) und T(3 I — 3 I 5 ) in der Pyramide liegen,
e ) Es gibt eine Kugel in P , die alle vier Seitenflächen berührt .

Berechne Radius und Mittelpunkt dieser Kugel.
e) Welche Schargeraden von gc berühren eine Kugel um M(2 I - 2 | 2 ) mit

Radius 2 ? Berechne die Berührpunkte .
a ) u xV - ( ( 2 \

1 X 0 = - 2
l 2 J V 2 J UJ= n ist Normalrichtung der Ebenen ,

Ebenenpunkte ergeben sich durch Abtragen von Strecken der Länge 3
in Richtung n : P = Q±3n ° = f0 \ ( 2 \0 ± - 2UJ, Pi (21 - 2 I 8) , P 2(- 2 | 2 I 6)

' _ ( 2 \
E,: - 2

l 1 ;
( 2 ^

O X - - 2UJJ
x—2v

E2: - 2
l 1 .

0 xf - 2
16 jj

= 0 2xj - 2x2 + x3 - 16 = 0

= 0 2xx - 2x2 + x3 + 2 = 0

b) gc : X = p
( l >
- 1
c

geschnitten mit E liefert (4 + c )p = 16 , diese Gleichung
hat für c = - 4 einen Widerspruch : g_̂ schneidet E nicht , die Richtung
von g4 ist eine Linearkombination von kt und U :( 1 \ ( 0 \ (- 1 = - 1 rl- 4J l 2 J l

c) F : X = n
f i \ r0 \
- i + v 0
l c J UJ übergeführt in Normalform : x: + x2 = 0

da ) Der Ursprung und die Achsenpunkte von E sind die Ecken der
Pyramide . Grundfläche OA^ß I 01 0 )A2( 01 - 81 0 ) , Spitze A3(0 1 0116)
OAjA2 ist ein halbes Quadrat von | -8 -8 = 32 Flächeninhalt ,
die Pyramidenhöhe ist 16 . Volumen V= | -32 -16 =
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M( -4 1410)

dß ) Seitenfläche in x1x3-Ebene : | -8 -16 = 64

Seitenfläche in x2x3-Ebene : | -8 -16 = 64

Grundfläche in x1x2-Ebene : | -8 -8 = 32

Restfläche : F r = | • 8y/2 ■ MA 3
MA 3

2 = 162 + OM 2 = 256 + 32 = 288

Fr = 4^ 2 • 12V2 = 96
Oberflächeninhalt = 256

dy) F enthält die x3-Achse und damit eine
Kante der Pyramide , die Spur von F in
der x1x2-Ebene halbiert den Winkel von
positiver x3 und negativer x2-Achse .
Deswegen ist F Symmetrieebene der
Pyramide .

d8) S und T liegen senkrecht über der Spur
von F in der x1x2-Ebene , auch senkrecht
über der Grundfläche .
Drin liegt der Punkt , der auf derselben
Seite von E liegt wie der Ursprung .
Hesseform von E:
Eh (X) = | (2xj - 2x2 + x3 - 16 ) = 0

Eh(S) = | (2 -3 + 2 -3 + 3 - 16) < 0 , also liegt S in der Pyramide .

Eh(T ) = | (2 -3 + 2 -3 + 5 - 16 ) > 0 , also liegt T nicht in der Pyramide .

de) Der Kugelmittelpunkt M muß von allen Seitenflächen denselben
Abstand haben .
M(r I - r | r ) , r > 0 , M ist Mittelpunkt einer Kugel mit Radius r , die alle
Koordinatenebenen berührt .
Der Abstand d(M , E ) muß gleich dem Kugelradius sein : d(M , E ) = r

d(M , E ) = Eh(M) = I (2r + 2r + r - 16 ) = | (5r - 16)

Bedingung für beide Kugeln : | (5r - 16) = ±r , 5r = 16 ± 3r ; r , = 8 , r_ = 2 .

An der Grundfläche macht man sich klar , daß die kleinere Kugel um
M(2 I - 2 I 2) mit Radius 2 die Inkugel der Pyramide ist .

e) Der Abstand d(M,gc) ist gleich dem Kugelradius : d(M,gc) = 2 .

Verbindungsvektor MG c = - g + 2 muß die Länge 2 haben : - p + 2
vM-c — 2j lpc - 2j

2
= 4

(2 + c2 )g2 ~ 4(c + 2)p + 8 = 0 , weil es nur einen geben darf (Senkrecht¬
stehn , Berührung ) muß die Diskriminante gleich 0 sein :
D = 16(c + 2 )2 - 4 -8(2 + c2 ) = 16(c2 + 4c + 4 - 4 - 2c2 ) - 16c (4 - c )

g0 und g4 sind die Tangenten .
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