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Vorwort

Die Algebra ist das unbedingt nötige Handwerkszeug für nahezu den gesam¬
ten Bereich der Mathematik . Aus diesem Grund ist eine sorgfältige und inten¬
sive Beschäftigung mit der Algebra für jeden unerläßlich , der sich in der Ma¬
thematik betätigen will . Im vorliegenden Buch wird versucht , den Algebra -
stoff der 7 . Jahrgangsstufe sowohl schülergerecht als auch sachgerecht darzu¬
stellen . Wir wollen die Mathematik nicht zu einer Rezeptsammlung verkom¬
men lassen . Also muß das Buch vielfach recht ausführlich und manchmal auch
anspruchsvoll sein . Vorgeführte Beispiele sollen die Sätze und Definitionen
bekömmlicher machen . Die vielfältigen geschichtlichen Exkursionen zeigen
die Entwicklung der Ideen und Begriffe in einem weiteren Rahmen und inter¬
essieren vielleicht auch Schüler , die der reinen Mathematik nicht so wohl¬
gesonnen sind .
Nach einer kurzen ersten Einführung der fundamentalen Begriffe Variable
und Term erweitern wir zuerst den aus der 6 . Klasse bekannten Zahlenbereich
der positiven Brüche zur Menge der rationalen Zahlen , damit die dann folgen¬
den Termumformungen ohne Einschränkung behandelt werden können . Wir
legen Wert darauf , daß auch Bruchzahlen in den Beispielen und Aufgaben
auftreten , damit die Schüler das Arbeiten mit ihnen nicht wieder verlernen .
Der Umgang mit absoluten Beträgen und Potenzen wird geübt , weil er für
später große Bedeutung hat . Das Lösen von Gleichungen und Ungleichungen
auch im Zusammenhang mit Textaufgaben soll dann zeigen , daß die Algebra
recht nützlich sein kann , wenn es gilt , verwickeltere Probleme zu untersuchen .
Die in Kleindruck gesetzten Abschnitte sind als Ergänzung und Vertiefung
gedacht und können bei Zeitnot weggelassen werden .
Die ungewöhnlich große Anzahl der Übungsaufgaben bietet dem Lehrer Aus¬
wahlmöglichkeiten und dem Schüler zusätzliche Übungsmöglichkeiten . Al¬
gebra lernt man nur durch viel eigenes Üben !
Wir haben uns bemüht , nicht nur triviale , sondern auch schwierigere Aufga¬
ben anzubieten , die zum Teil auch mehr Mühe machen werden . Nur so schärft
sich der Geist mit der Zeit , und nur so erreicht der Schüler die Sicherheit , die er
später braucht . Die Aufgaben sind dem Schwierigkeitsgrad nach gekennzeich¬
net , außerdem wird eine kleine Auswahl als Pflichtstoff herausgestellt .
Grundlage des vorliegenden Buchs ist die Algebra 1 von Seebach -Federle ,
die von der Konzeption her Pate gestanden hat und aus der viele bewährte
Aufgaben übernommen wurden .

München , im September 1985 Die Verfasser



Kennzeichnung der in Bayern nicht allgemein verbindlichen Stoffgebiete

Fakultative Abschnitte sind durch zwei vorangestellte Sterne (* *) gekennzeichnet .

Kennzeichnung der Aufgaben

Rote Zahlen bezeichnen Aufgaben , die auf alle Fälle bearbeitet werden sollen . • bzw.
• usw. bezeichnen Aufgaben , die etwas mehr Ausdauer erfordern , weil sie entweder
schwieriger oder zeitraubender oder beides sind . Je mehr Punkte , desto mehr Mühe !
Zitiert werden die Aufgaben unter Angabe der Seite und der Nummer . So bedeutet
18/10 die Aufgabe 10 auf Seite 18 .

Numerierung von Definitionen , Sätzen , Abbildungen und Tabellen

Die Zahl vor dem Punkt gibt die Seite an , die Zahl nach dem Punkt numeriert auf jeder
Seite. Abb . 14 .3 bedeutet beispielsweise die 3 . Abbildung auf Seite 14 .
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Titelblatt der ältesten erhaltenen arabi¬
schen Handschrift von al-Kitab al-much-
tasar fi hisab al-dschabr wa- ’l-muqabala
des Abu Abdallah Muhammad ibn
Musa al -Charizmi (um 780 - nach 847)
von 743 anno Hegirae = 1342 anno Do¬
mini , aufbewahrt in Oxford

Liber maumeti filii moysi alchoarismi de
algebra et almuchabala . Übersetzung des
arabischen Textes ins Lateinische durch
Gerhard von Cremona (1114- 1187 ),
um 1360 in Frankreich geschrieben , auf¬
bewahrt in der Universitätsbibliothek
von Cambridge (Mm . 2 . 18 , folium 65r)



1 Grundbegriffe der Algebra

* * 1 . 1 Woher kommt und was ist Algebra ?

Abu Abdallah Muhammad ibn Musa al - Chärizmi *
, zu deutsch » Muhammad , Va¬

ter des Abdallah , Sohn des Moses , aus Choresmien stammend « , war Astronom und
Mathematiker . Unter dem Kalifen * * al -Ma ’mun , der von 813 bis 833 in Bagdad
regierte , wurde al -Charizmi - so wollen wir diesen Mann immer nennen - Mitglied
des »Hauses der Weisheit« , an dem viele Gelehrte
arbeiteten . Man nimmt daher an , daß al -Charizmi
um 780 geboren wurde . Und wenn die Geschichte
wahr ist, daß al -Charizmi einer der Astronomen
war , die , 847 ans Krankenbett des Kalifen al -Wa-
tiq gerufen , diesem auf Grund seines Horoskops
noch weitere 50 Lebensjahre voraussagten - der
Kalif starb nichtsdestotrotz 10 Tage später - , dann
wissen wir , daß al -Charizmi erst nach 847 gestor¬
ben ist .
Mehr aber wissen wir nicht über das Leben dieses
Mannes , der uns mehrere Bücher hinterlassen hat ,
darunter eines, das von vielen Menschen immer
wieder studiert wurde . Wie heißt dieses Buch? Und
was steht in diesem Buch geschrieben? al -Chariz¬
mi selbst gibt uns im Vorwort seines Buches die Ant¬
wort :

»Jene Liebe zur Wissenschaft , mit der Gott den
Imam al -Ma ’mun , Beherrscher der Gläubigen ,
ausgezeichnet hat , [ . . . ] jene Güte und gönner¬
hafte Herablassung , die er den Lernenden er¬
weist, jene Bereitwilligkeit, mit der er sie be¬
schützt und unterstützt , wenn sie Licht in die
dunklen Dinge bringen und Schwieriges bewältigen - all dies hat mich ermutigt, * * *

AL -KlTAB AL -MUCHTASAR FI HISAB AL -DSCHABR WA- ’L-MUQABALA

ein kurzgefaßtes Buch über das Rechnen durch Wiederherstellen und Ausgleichen
zu schreiben , dabei mich aber zu beschränken auf das Anmutige und Hochgeschätz¬te des Rechenverfahrens für das , was die Leute fortwährend notwendig brauchen bei
ihren Erbschaften und ihren Vermächtnissen , bei ihren Teilungen , ihren Prozeßbe¬
scheiden , ihren Handelsgeschäften und bei allem , womit sie sich gegenseitig befas¬
sen , aber auch handelnd von der Ausmessung der Ländereien , der Herstellung von
* Sprich das z wie ein stimmhaftes s, das a betont und dunkel fast wie ein o . - Abdallah bedeutet Knecht

Gottes .
** Kalif (von chalifa = Stellvertreter ) ist die arabische Bezeichnung für den Nachfolger des Propheten Mo¬

hammed als weltlichem Oberhaupt der muslimischen Gemeinschaft ; das geistliche Oberhaupt trägt den
Titel Imam , zu deutsch Vorbild . Den Kalifentitel führten zuletzt die türkischen Sultane . Seit dem 3 . März
1924 gibt es keinen Kalifen mehr .

*** Betone kitäb , muchtäsar , hisäb , muqäbala . - Das q ist ein tief in der Kehle gesprochenes k . - Mit dieser
Beschreibung wurde das Buch von späteren Gelehrten zitiert , da ihm al -Charizmi selbst keinen Titel
gegeben hat .

Boom

MyxaMwen
.anb-X0P83Mll

Abb . 10 . 1 4-Kopeken -Marke
der Post der UdSSR (1983) zum
1200 . Jahrestag der Geburt al -
Charizmis



1 . 1 Woher kommt und was ist Algebra? 11

Kanälen , der Geometrie und dergleichen anderm nach seinen Gesichtspunkten und
Arten .
Im Vertrauen auf die gute Absicht , die diesem Buch zugrunde liegt, hoffe ich, daß
diejenigen , die nun bewandert in dieser Rechenkunst geworden sind , mich belohnen
werden , indem sie durch ihre Gebete mich der göttlichen Gnade teilhaftig werden
lassen .«

Wir wissen nicht , ob al -Charizmi der erste war , der den Wörtern al-dschabr und al-
muqabala einen mathematischen Sinn gab . Was bedeuten sie überhaupt ? Darüber strei¬
ten bis heute die Gelehrten ! Einig ist man sich wenigstens darüber , daß das Substantiv
al-muqabala vom Verbum qabala kommt , das »einander gegenüberstellen « bedeutet .
Bei al-dschabr gehen die Meinungen aber weit auseinander . Viele Gelehrte vertreten
die Ansicht , daß ihm das Verbum dschabr zugrunde liege in seiner Bedeutung von »ein
ausgerenktes oder gebrochenes Glied wieder einrichten « . Wir werden später sehen,
welchen mathematischen Sinn diese beiden Ausdrücke bei al -Chae .izmi haben (Seite
138) . Andere Gelehrte weisen darauf hin , daß dschabr auch die allgemeinere Bedeu¬
tung von »zwingen« hat . Deswegen erklärt der Mathematiker al -Karadschi
(t 1019/29) *

, al-dschabr sei die Kunst , eine unbekannte Zahl immer näher in das Reich
des Bekannten zu zwingen.
Einige Gelehrte vertreten eine ganz andere Ansicht . Sie sagen , bei den alten Assyrern
(um 1600 v . Chr .) habe es in der Mathematik bereits ein Wort gabru gegeben , das die
Bedeutung von »gleich sein, einander gegenüberstellen « gehabt habe . Auf verschlunge¬
nen Wegen sei die Kenntnis von dieser Rechenkunst schließlich zu den Arabern gekom¬
men und diese hätten gabru wie dschabr ausgesprochen und mit muqabala übersetzt .
Dann sei die ursprüngliche Bedeutung von al-dschabr vergessen worden und man habe
die oben angegebene Erklärung vom »Einrichten gebrochener Knochen « erfunden .
Wenn das alles stimmt , dann war es die Absicht des al -Charizmi ,

ein kurzgefaßtes Buch über das Rechnen mittels Gleichungen

zu verfassen .

Gremona

Abb . 11 . 1 Die Welt der Algebra bis zur Neuzeit

Sein eigentlicherName ist Abu Bakr Muhammad ibn al -Hasan al -Hasib al -Karadschi . Auch er lebteund
wirkte in Bagdad.



12 1 Grundbegriffe der Algebra

Natürlich ist uns das Original nicht erhalten geblieben . Die älteste arabische Abschrift
davon , die wir kennen , stammt aus dem Jahre 743 der Hedschra , d . h . aus dem Jahre
1342 unserer Zeitrechnung . Und wie ist dieses Buch zu uns nach Europa gekommen ?
Du weißt vielleicht schon , daß im Jahre 711 die Araber fast ganz Spanien eroberten
und in Cordoba ein prächtiges Kalifat gründeten . Muslime , Christen und Juden lebten
dort in Eintracht zusammen und widmeten sich auch den Wissenschaften . So soll die
Bibliothek des Kalifen von Cordoba an die 600 000 Handschriften besessen haben ! Die
Kunde von der Gelehrsamkeit der Araber drang , von den Teilnehmern an den Kreuz¬
zügen bestätigt , ins christliche Europa , in dem um die Mitte des ll . Jh .s ein Auf¬
schwung wissenschaftlichen Denkens einsetzte . Man interessierte sich wieder für die
Werke der alten griechischen Philosophen und Wissenschaftler und mußte feststellen,daß sie vielfach nur mehr in arabischer Übersetzung erhalten waren . Deshalb richtete
der Erzbischof Raimund (zwischen 1130 und 1150) in Toledo , das König Alfons VI .von Kastilien und Leon den Arabern 1085 entrissen hatte , eine große Übersetzerschule
ein, um die arabischen Texte ins vertraute Latein übertragen zu lassen . In dieses Toledo
zog es auch den 1114 in Cremona geborenen Gerhard . Und die Stadt des Wissens und
der Bücher ließ ihn nicht mehr los ; 1187 verstarb er dort . Über 90 Werke aus der
Philosophie , der Astronomie , der Mathematik , der Alchimie und der Medizin hat er
aus dem Arabischen ins Lateinische übersetzt . Darunter auch das in der arabischenWelt berühmt gewordene Rechenbuch des al -Charizmi . Gerhard von Cremona
nannte es

liber maumeti filii moysi alchoarismi de algebra et almuchabala .
Natürlich besitzen wir auch von der Übersetzung nicht das Original , sondern nur eine
Abschrift aus dem 14 . Jh . Gerhard von Cremona schrieb für das arabische al-dschabreinfach algebra , weil man damals ein so geschriebenes Wort wie »aldschebra « aus¬
sprach * . Algebra et almuchabala wurden durch Gerhard in Europa zum Namen einer
mathematischen Wissenschaft , die man in Italien später auch Ars magna - Die großeKunst - nannte .
Im 14 . Jh . verschwand das et almuchabala immer mehr , und 1577 erschien es zumletzten Mal im Titel eines Buchs. Von da an hieß diese Kunst nur mehr Algebra . Zueiner wahrlich großen Kunst wurde sie aber erst durch Franfois Viete (1540- 1603) , der
1591 die Algebra nova , die neue Algebra begründete , nämlich das Rechnen mit Buch¬staben . Und wenn du in den nächsten vier Jahren dieses Rechnen mit Buchstaben , alsodie Algebra , erlernt haben wirst , dann wirst du dem Ziel näher gekommen sein , das
Viete mit seiner Algebra bereits erreicht zu haben glaubte , nämlich

jedes Problem lösen zu können
Nullum non problema solvere .

1 .2 Variablen

Im bisherigen Mathematikunterricht wurden schon oft sogenannte Platzhal¬
ter verwendet . Wozu sie notwendig oder nützlich sind , sollen die folgenden
Beispiele noch einmal zeigen .

* Ins Spanische und Portugiesischeging dieses algebra in der alten Bedeutung des Einrichtens von Knochenein ; denn der Wundarzt heißt in diesen Sprachen algebrista.



1 .2 Variablen 13

Beispiel 1 :
Auf die Frage des Lehrers »Wie berechnet man den Rauminhalt eines
Quaders ?« antwortet Hans : »Wenn die Kantenlängen z . B . 5 cm , 6 cm
und 7 cm sind , muß man 5 cm ■ 6 cm • 7 cm = 210 cm 3 rechnen .«
Uli beantwortet dieselbe Frage so : »Man muß das Produkt aus Länge ,
Breite und Höhe des Quaders bilden , um das Volumen zu erhalten .«
Hans hat nichts Falsches gesagt , aber Ulis Antwort ist sicher besser !
Denn während Hans nur an einem Beispiel die Volumenberechnung vor¬
führt , gibt Uli die allgemeine Regel an , nach welcher diese Aufgabe für
jeden Quader gelöst werden kann .
Um diese allgemeine Regel über¬
sichtlich anschreiben zu können ,
benützt man für die verschiede¬
nen Größen abkürzende Be¬
zeichnungen , z . B . / für die Län¬
ge, b für die Breite , h für die Hö¬
he und V für das Volumen .
Dann lautet die Regel :
V = l ■ b ■h .

Abb . 13 . 1 Quader

Beispiel 2:
Die Zahlen 2 , 4 , 6 , 8, . . . , also die Vielfachen von 2 , nennt man bekannt¬
lich gerade Zahlen * . Außerdem wird wegen 0 = 0 - 2 auch null als gerade
Zahl aufgefaßt . Das läßt sich kurz so zusammenfassen :
Für jedes « eN 0 istz = 2 - n eine gerade Zahl .
Man nennt die Angabe »z — 2 ■n , n e N 0« das Bildungsgesetz für die
geraden Zahlen .
Da man alle ungeraden Zahlen erhält , wenn man zu jeder geraden Zahl 1
addiert (Abb . 13 .2) , gilt :
z = 2 ■n + 1 , n e N 0 , ist das Bildungsgesetz der ungeraden Zahlen .

0 1 2 3 4 5 6

Abb . 13 .2 Gerade und ungerade Zahlen

* Die Griechen - belegt zum ersten Mal bei dem um 500 v . Chr . in Syrakus lebenden Komödiendichter
Epicharmos - nannten eine gerade Zahl dßziog (ärtios ) = passend , angemessen , eine ungerade Zahl ncQiaaÖQ
(perissös ) — über das Gewöhnliche hinausgehend , übrigbleibend , was man vielleicht so verstehen kann , wie es
Euklid im Buch vn seiner Elemente ausdrückt , nämlich , daß die ungerade Zahl sich um 1 von der geraden
Zahl unterscheidet . Diese griechischen Ausdrücke finden ihre Entsprechung im Englischen durch even
= ausgeglichen , gerecht , und odd — sonderbar , überzählig . Die Römer sagten seit Cicero (106- 43 v. Chr .)par
und impar , was im Französischen als pair und impair weiterlebt und 1461 in einer Münchener Handschrift mit

gleich und ungleich wörtlich übersetzt wurde . Vielleicht rührt diese Bezeichnung davon her , daß sich eine

gerade Zahl in zwei gleiche Teile zerlegen läßt . Diese Ausdrücke hielten sich bis ins 18 . Jh . Unsere Bezeichnun¬

gen gerade und ungerade tauchen im 15 . Jh . auf und finden sich 1489 im Rechenbuch des Johannes Widmann
von Eger (um 1460- nach 1500) .
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Beispiel 3:
Der Wert einer Summe ändert sich bekanntlich nicht , wenn man die
beiden Summanden vertauscht . So gilt z . B . 3 + 5 = 5 + 3 . Aber einzel¬
ne Zahlenbeispiele , und seien es noch so viele, können diesen Sachver¬
halt nicht allgemeingültig zum Ausdruck bringen . Bezeichnet man aber
den einen Summanden mit a , den anderen mit b , so gilt in jedem Fall
a + b = b + a . Das heißt : Setzt man für a und für b beliebig je eine Zahl
ein , so ist die erhaltene Gleichung immer richtig .

Die vorausgehenden Beispiele zeigen , wie man einen mathematischen Sach¬
verhalt durch Verwendung von sog . Platzhaltern klar und einfach beschreiben
kann . Statt des umgangssprachlichen Wortes »Platzhalter « verwendet man in
der mathematischen Fachsprache den Begriff »Variable« *

. Die Festlegung
von Fachwörtern geschieht in der Mathematik durch Definitionen * * . Wir
merken uns

Definition 14.1 : Ein Zeichen, dasman als Platzhalterfür Zahlen verwen¬
det , nennt man Variable.

Als Variablen werden in der Regel Buchstaben benützt . Diese Buchstaben
selbst sind natürlich keine Zahlen . Wenn wir trotzdem von einer »Zahl x«
sprechen , so ist das ein kurzer Ausdruck für »die Zahl , die wir uns für die
Variable x eingesetzt denken « . Ebenso ist die »Summe aus den Zahlen a und
b« eine Kurzform für »die Summe aus den für a und b eingesetzten Zahlen « .
Auf Grund dieser Vereinbarung kann man also mit Buchstaben wie mit Zah¬
len rechnen .
Rechenausdrücke , in denen Variablen Vorkommen , erhalten erst dann die
Bedeutung von Zahlen , wenn man alle Variablen durch Zahlen ersetzt . Dabei
ist es wichtig zu wissen, welche Zahlen für eine bestimmte Variable eingesetzt
werden dürfen . Man nennt die Gesamtheit dieser Zahlen die Grundmenge für
diese Variable .
Im Beispiel 3 kann man sowohl für a als auch für b jede beliebige Zahl erset¬
zen , also jeweils B als Grundmenge benützen . * * * Dagegen ist für die Variable
n des Beispiels 2 nur die Grundmenge N 0 sinnvoll .
In vielen Fällen können wir uns die Angabe der Grundmenge ersparen durch
die

Vereinbarung 14 . 1 : Wenn nichts anderes angegeben ist , soll immer die
Menge aller uns bekannten Zahlen als Grundmenge
verwendet werden , zunächst also die Menge B .

* variabilis (lat .) = veränderlich
** definire (lat .) = abgrenzen , näher bestimmen , festsetzen

*** B ist die Menge aller Zahlen , die als Bruch — mit msN . und n e N darstellbar sind .n
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Kommt in einem Rechenausdruck oder einer Gleichung bzw . Ungleichung
dieselbe Variable mehrmals vor , so muß man beim Einsetzen diese Variable an
jeder Stelle durch die gleiche Zahl ersetzen . So hat man etwa bei der im Beispiel
3 angegebenen Gleichung für die Variable a auf beiden Seiten dieselbe Zahl
einzusetzen ; das Entsprechende gilt auch für b . Selbstverständlich kann man
aber für verschiedene Variablen auch die gleiche Zahl einsetzen .

Regel 15 . 1 : Innerhalb desselben Rechenausdrucks bzw. derselben Glei¬
chung oder Ungleichung muß man beim Einsetzen gleiche
Variablen durch gleiche Zahlen ersetzen .

Man könnte als Variablen an Stelle von Buchstaben noch sinnfälliger ver¬
schiedene geometrische Figuren verwenden . Eine bestimmte geometrische Fi¬
gur würde dann die Stellen bezeichnen , welche mit derselben Zahl besetzt
werden müssen ; man spricht deshalb auch von Leerstellen . Zum Beispiel ließe
sich die Gleichung a + b = b + a auch durch Abbildung 15 . 1 zum Ausdruck
bringen :

O + O = A + O
Abb . 15 . 1 Kommutativgesetz der Addition

Man kann in die Kreise irgendeine Zahl einsetzen und ebenso in die Quadrate ;
es ergibt sich stets eine richtige Gleichung . Ein Beispiel dazu zeigt Abbildung
15 .2 :

O + ^ = O + 0
Abb . 15 .2 Beispiel zum Kommutativgesetz der Addition

Das Zeichnen solcher geometrischer Figuren erfordert einige Sorgfalt . Daher
benützt man als Variablen im allgemeinen doch lieber Buchstaben . Welche
Buchstaben man jeweils wählt , ist an sich völlig gleichgültig . Es ist jedoch
üblich , für »unbekannte Zahlen « , d . h . solche , die erst aus Gleichungen oder
Ungleichungen bestimmt werden sollen , die Endbuchstaben x , y , z des Alpha¬
bets zu verwenden .

* * Zur Geschichte der Variablen
Wir haben gesehen , daß es nützlich und bequem ist , an Stelle von Zahlen Buchstaben
zu verwenden , wenn man allgemeingültige Zusammenhänge , also Gesetze ausdrücken
will oder wenn man einen Rechenvorgang allgemein beschreiben will . Es ist aber gar
nicht so lange her , daß die Mathematiker das so machen . Früher hat man ein Beispiel
mit bekannten Zahlen vorgerechnet und dann gesagt , daß man es genauso machen
könne , wenn andere Zahlen gegeben sind . Ein solches Vorgehen kann natürlich gefähr¬
lich sein . Denn woher soll man wissen , ob die einmal vorgeführte Rechnung immer so

geht ?
So findet z . B . jemand , daß man gf kürzen kann , indem man im Zähler und im Nenner
die gleiche Ziffer 6 wegläßt : gf = 5 . Auch bei ^ stimmt die Regel : Weglassen der 0

ergibt Aber leider stimmt diese schöne Regel schon nicht bei gf .
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Noch ein Beispiel: Jemand findet , daß 2 4 = 4 2 ist . Das Austauschen der Zahlen funk¬
tioniert aber schon nicht mehr bei 23

; denn 23 ist 8 und damit von 3 2 = 9 verschieden .
Einer der ersten , der einen allgemeinen Zusammenhang durch Buchstaben ausdrückte ,war Euklid (um 300 v. Chr .), der in seinem berühmten Geometriebuch Elemente
Punkte und Strecken mit Buchstaben bezeichnete .
Im 9 . Jahrhundert n . Chr . schrieb in Byzanz der Philosoph und Mathematiker Leon
einen Kommentar zu diesem Geometriebuch , und da wimmelt es schon von Buchsta¬
ben ; siehe Aufgabe 20/28, in der er ein allgemeines Rechengesetz der Algebra aus-
drücken will .
Durchgesetzt hat sich diese Idee aber nicht . Einige hundert Jahre später lernt der aus
Pisa stammende Kaufmann Leonardo , genannt auch Fibonacci * (um 1170- nach
1240 ) auf seinen Reisen die arabische Mathematik kennen , die ihn so fasziniert , daß er
selbst Bücher über Mathematik schreibt . Und dabei verwendet er gelegentlich Buch¬
staben , um Rechengesetze zu beschreiben (Aufgabe 20/29) .

Abb . 16 . 1 Francois Viete , latinisiert zu
Franciscus Vieta ( 1540 Fontenay -le-
Comte/Vendee - 13 . [?] 2 . [?] 1603 Paris)

**. A %

FrANCISCI VlET/E
IN ARTEM ANALYTICEM

I S A G O G E

Seorfimcxcuffaab Openreßttuu Mathematic*
Andjjeos, Seu, Algcbianouä.

T V R O N I S,
ApudIametivm Mettaver TypographumRegitim,

tMnnoi / ; i.

Abb . 16 .2 Titelblatt von Franciscus
Vietas Einführung IN DIE ANALYTI¬
SCHE KUNST , eigens herausgenommen
aus dem Gesamtwerk der wiederherge¬
stellten Mathematischen Analysis, näm¬
lich , der neuen Algebra . TOURS , bei Ia -
metius Mettayer Königlichem Drucker ,im Jahre 1591 .

* Leonardo nennt sich in seinen Schriften filius Bonacci (Sohn des Bonatius ) , woraus Fibonacci wurde . Manch¬mal nennt er sich auch Leonardo bigollo , Leonard der Tölpel . - Leonardo verkehrte auch am Hofe Kaiser
Friedrichs II .
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Von da an tauchen immer häufiger Buchstaben als Zeichen für Zahlen auf . Eine mathe¬
matische Sprache , d . h . eine Rechenkunst mit Buchstaben , schuf aber erst Francois
Viete (1540- 1603 ) , dessen Name in latinisierter Form mit Vieta wiedergegeben wird .
Er verwendete erstmals systematisch sowohl Buchstaben an Stelle von Zahlen als auch
Zeichen für die verschiedenen Rechenoperationen wie Addition , Multiplikation usw.
Damit konnte er für die Summe aus A und B kurz A + B schreiben .
Viete war Jurist und mußte ab 1564 als Sekretär des Hauses Soubise auch die damals
11jährige Tochter Catherine de Parthenay unterrichten . Diese interessierte sich so
sehr für Astronomie und Mathematik , daß auch Viete sich mit diesen Wissenschaften
beschäftigen mußte . Und die Mathematik ließ ihn nicht mehr los ! Als Ergebnis dieser
Beschäftigung veröffentlichte er 1591 , als er längst Rat am Hofe des französischen
Königs war , ein Buch unter dem Titel In artem analyticem Isagoge , zu deutsch Einfüh¬
rung in die analytische Kunst. In diesem Buch zeigt Viete , wie man mit Buchstaben an
Stelle von Zahlen und unter Benützung von Rechenzeichen rechnen muß , um allgemei¬
ne Erkenntnisse in der Mathematik zu finden . Die moderne Algebra war geboren ! Zu
Recht nannte Viete seine Rechenkunst Algebra nova, die neue Algebra .
Franpois Viete verwendete nur große Buchstaben , was sicherlich nicht sehr bequem
ist . Thomas Harriot (1560 - 1621 ) lernte in der um 1594 verfaßten und erst 1839
gedruckten Ars logistica John Napiers * (1550 - 1617) die Verwendung von kleinen
Buchstaben kennen . Im Druck erschienen sie dann in seiner erst 1631 postum * * her¬
ausgegebenen Artis analyticaepraxis ad aequationes algebraicas resolvendas; dort führ¬
te man auch ein , Formelbuchstaben vom gewöhnlichen Text durch Kursivschrift zu
unterscheiden , wie auch wir es machen .

Aufgaben
1 . Wie lautet die Berechnungsregel für den Flächeninhalt A eines Rechtecks ?

Schreibe sie mit Variablen an .
* * *

2 . Wie heißt die Formel ( = Berechnungsregel) für den Rauminhalt V eines
Würfels mit der Kantenlänge dl

3 . a) Wie kann man allgemein aus der Kantenlänge a eines Würfels seine
Oberfläche S berechnen ? Fertige eine Skizze an . * * * *

b) Was ergibt sich , wenn man für a die Werte 1 cm bzw. 2 cm bzw . 4 cm
bzw . 8 cm in diese Oberflächenformel einsetzt ? Wie ändert sich dem¬
nach S beim Verdoppeln der Kantenlänge ?

4 . a) Nach welcher Formel wird die Oberfläche S eines Quaders mit den
Kantenlängen a , b , c berechnet ? Zeichne einen Quader ,

b) Berechnen S für die Quader mit den Kanten
1 ) 2 cm , 3 cm und 5 cm ; 2) 4 dm , 6 dm und 10 dm ;
3) 2,5 dm , 1,25 cm und 4 m.

* gesprochen 'naipio
** Betont auf dem u , seit dem 18 . Jh . im Deutschen verwendet . Das lateinische postumus bedeutet zunächst

der letzte , dann das nach dem Tode des Vaters geborene Kind . Im übertragenen Sinne wird postum z . B . bei
Büchern verwendet , wenn sie erst nach dem Tode des Autors erschienen sind . - Für postum findet man
auch die fälschliche Schreibung posthum , die aus post —nachher und humare = beerdigen entstanden sein
dürfte .

*** Der Flächeninhalt einer Figur wird häufig mit A bezeichnet ; area (lat . und engl .) = Fläche
**** Die Oberfläche eines Körpers wird häufig mit S bezeichnet ; superficies (lat .) = surface (engl ., franz .)

= Oberfläche
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• 5 . Wie verhalten sich
a) die Oberflächen , b) die Rauminhalte
zweier Quader Q und Q '

, wenn entsprechende Kantenlängen sich wie 1 zu
2 verhalten , also a ' = 2 ■a , V = 2 • b , c ' = 2 • c gilt?

6 . a) Wie lang muß ein Holzstab mindestens sein , damit man von ihm die für
das Kantenmodell eines Würfels notwendigen Stücke abschneiden
kann , wenn a die Kantenlänge ist?

• b) Berechne die Gesamtlänge der Kanten für jeden der in Aufgabe 4 .b)
angegebenen Quader . Stelle dafür zunächst eine Formel auf .

7 . Welches Rechengesetz wird durch
»Für alle □ e B und alle A e B gilt : □ • A = A • □ « ausgedrückt ?

8 . Schreibe mit geometrischen Figuren als Variablen
a) das Assoziativgesetz der Addition,
b) das Distributivgesetz.

9 . a) Hans behauptet, daß es gleichgültig ist , ob man a • 2 oder a 2 schreibt.
Dazu rechnet er Uli vor , daß sowohl für a = 0 als auch für a = 2
jeweils a ■ 2 und a 2 denselben Wert haben . Stimmt seine Rechnung ?

b) Uli beweist Hans, daß die Gleichung a • 2 = a 2 trotzdem nicht all¬
gemein gültig ist . Wie macht er das wohl?

10 . a) Übertrage die folgende Tabelle in dein Heft und ergänze sie , indem du
für die angegebenen Werte von a und b sowohl (a + b ) ■ (a — b) als
auch a 2 — b 2 berechnest .

a b (a + b) ■ (a — b) a 2 — b 2

5 2
14,5 5,7

3 1
4 6

1000 900

b) Ist es nach den Ergebnissenvon a) möglich, daß für alle a e B und be B
die Gleichung (a + b) ■ (a — b) = a 2 - b 2 gilt? Folgt aus a) bereits , daß
diese Gleichung allgemein gelten muß ?

11 . Drücke folgende Sätze durch eine Gleichung aus :
a) Die Zahl x ist 9mal (fmal ; 4,5mal) so groß wie die Zahl a .
b) Die Zahl y ist um 15 größer als die Zahl u .
c) Die Zahl z ist um 12,3 kleiner als die Zahl v .
d) Die Zahl s ist ebenso groß wie die Summe der Zahlen u und v .
e) Die Zahl d ist gleich der Differenz der Zahlen u und v .
f) Man erhält die Zahl v , indem man vom Produkt der Zahlen p und q die

kleinste zweistellige Zahl abzieht .
g) Das Fünffache der Summe aus a und b ergibt die Zahl c .
h) Die Hälfte der Zahl u ist um 3 größer als f der Zahl v .
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12 . Drücke folgende Gleichungen durch einen Satz aus :
a) x + 12 = 2 • p b) 5 • a = h : 3
c) z — u ' v 1 d) (p + q) ■ (p - q) = 1

13 . Ein Kilogramm einer Ware kostet 5 DM . Welchen Preis y DM muß man
für x kg dieser Ware zahlen ?

14 . Ein Dutzend Eier kostet 3 DM . Welchen Betrag z DM muß man dann für
n Eier entrichten ?

15 . Ein Auto , das mit gleichbleibender Geschwindigkeit fährt , legt in der
Stunde a km zurück . Der in b Std . zurückgelegte Weg sei c km . Drücke c
durch a und b aus .

16 . In der Prozentrechnung hast du folgende Zinsformel kennengelernt:

z = Kp - t~
36000

a) Welche Bedeutung haben hier die einzelnen Variablen?
b) Berechne den Zins , den ein Kapital von 24 500 DM bei einem Zinssatz

von 6 % in 8 Monaten einbringt .

17 . a) Welche Werte nimmt z = 2 • n — 1 an , wenn man für n nacheinander
die natürlichen Zahlen einsetzt ?

b) Welche Grundmenge muß man für die Variable n wählen, damit man
aus z = 2 • n — 7 alle ungeraden Zahlen erhält ?

18 . Schreibe die durch 3 teilbarennatürlichenZahlen in allgemeinerForm an .
19 . Wie kann man mit Hilfe einer Variablen alle

a) durch 4 , b) durch 7 , c) durch 12
teilbaren natürlichen Zahlen darstellen ? Welche Grundmenge muß man
für die Variable wählen ?

20 . Setze in x = 5 • n der Reihe nach die geraden Zahlen 2 , 4 , 6, . . . ein . Wel¬
che gemeinsamen Teiler haben alle so erhaltenen Zahlen ?

21 . Warum sind , wenn m , neM 0 gilt, alle Zahlen der Form
a) 10 • m + 2 • n , b) n ■ (n + 1 )
durch 2 teilbar ?

22 . Wie kann man diejenigen Zahlen allgemein beschreiben, die
a) bei Division durch 4 den Rest 1 lassen;
b) bei Division durch 7 den Rest 5 lassen;

• c) bei Division durch 2 den Rest 1 und zugleich bei Division durch 5 den
Rest 2 lassen?

23 . n sei eine Ziffer . Welchen Wert hat die zweistellige Zahl , deren erste Ziffer ,
von links her , n ist , während die zweite 3 (0 ; 8) heißt ?
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24 . Gib den Wert derjenigen dreistelligen Zahl y an , deren erste Stelle n ist ,
während an zweiter Stelle 5 und an dritter Stelle m steht .
Welche Zahlen kommen für n bzw . für m in Frage ?

25 . Wenn man in n ■ {n — 1 ) + 5 für n die natürlichen Zahlen 1 bis 4 einsetzt,
erhält man stets eine Primzahl * . Prüfe diese Behauptung nach .
Kann man daraus folgern , daß sich für jede natürliche Zahl n eine Prim¬
zahl ergibt?

26 . Weise nach, daß sich aus n ■ (n + 1 ) + 11 für w e { 0,1,2, . . . , 9 } stets eine
Primzahl ergibt . Erhält man vielleicht für jedes n e N 0 eine Primzahl ?

27 . Fasse die folgenden Angaben in Worte und entscheide jeweils , ob etwas
Wahres oder etwas Falsches gesagt ist :
a) | e B b) 0,5 B c) 1 e B
d) M c B e) N 0 nB = N 0 f ) NuB = M

28 . Leon von Byzanz (9 . Jh . n . Chr .) hat folgendes Gesetz gefunden:
Gegeben seien die Zahlen a , b , c . Das Produkt aus a , b sei d, das Produkt
aus b , c sei e , das Produkt aus a , c sei/ , das Produkt aus a , e sei g , das aus b ,
f sei h , das aus c , d sei i . Ich behaupte , daß die Zahlen g , h , i gleich sind . * *
Schreibe die Behauptung Feons nur mit den Buchstaben a , b und c unter
Verwendung von Klammern und Malpunkten , die Leon ja noch nicht
kannte .

29 . Leonardo von Pisa (um 1170- nach 1240 ) schreibt :
Die Zahl a sei in zwei Teile [ = Summanden ] b , g geteilt . Man teile a durch
b , das Ergebnis sei e ; und man teile a durch g , das Ergebnis sei d . Ich
behaupte , daß das Produkt von d und e gleich der Summe von d und e ist .
a) Schreibe die Behauptung Leonardos mit modernen Rechenzeichen

nur unter Verwendung der Buchstaben b und g.
b) Zerlege die Zahl a = 5 in zwei natürliche Summanden und überprüfe

für alle möglichen Zerlegungen die in a) gefundene Formel . Berechne
dazu jeweils die linke Seite und die rechte Seite getrennt .

c) Stimmt die Formel noch , wenn man 5 als lf + 3 ^ schreibt?

* Speusippos (um 350 v . Chr .) , der Nachfolger Platons (428 - 348 v . Chr .) in der Leitung der Akademie
bezeichnet eine Zahl , die nur durch 1 und sich selbst teilbar ist , als dgiSpÖQ kqcqtoq Ktxidavv^erog (arithmös
protos kai asynthetos ) = erste oder auch unzusammengesetzte Zahl , eine Zahl , die mehr als 2 Teiler hat , als
dQi&fid q öevtsqoq kcc'i ctvvQetoq (arithmös deüteros kai synthetos ) = zweite oder auch zusammengesetzte Zahl .
(Wir würden statt erste Zahl heute Zahl erster Art sagen .) Euklid (um 300 v . Chr .) verkürzte im Buch VII
seiner Elemente zu uq& toq dQi&ßöq bzw . ouvSexogdgi^pidq, was ins Lateinische wörtlich als numerus primus
bzw . numerus compositus übersetzt wurde - so belegt bei Boethius (um 480 - 524/525 ) . Johann Scheybl
(1494- 1570) versuchte in seiner Euklid -Übersetzung die Eindeutschung erste Zahl und ungeteilte Zahl , was
sich aber nicht einbürgerte . Es entstand schließlichh das Lehnwort Primzahl und die Übersetzung zusam¬
mengesetzte Zahl .

** Natürlich hat Leon griechische Buchstaben verwendet .
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1 .3 Terme

Wie der vorausgehende Abschnitt gezeigt hat , arbeitet man in der Algebra
nicht nur mit Zahlen , sondern auch mit Variablen . Meistens sind Zahlen und
Variablen mit Hilfe der verschiedenen Rechenarten zu Rechenausdrücken zu¬
sammengesetzt .

Beispiele: 2 + x , 3 • (y - z : 5) , - .4 ■ c

Gleichungen und Ungleichungen sind ihrerseits wieder aus solchen Rechen¬
ausdrücken aufgebaut . Man kann somit sagen , daß Zahlen , Variablen und
daraus gebildete Rechenausdrücke das Grundmaterial für die Algebra dar¬
stellen . Daher ist es sinnvoll , für diese verschiedenen »Bausteine « eine einheit¬
liche Bezeichnung zu verwenden ; man nennt sie Terme* .

Beispiele:
1 ) Die Gleichung 5 = 2 + 3 enthält den Term 5 und den Term 2 + 3 .
2) Die Gleichung x = y : 0,7 enthält die Terme x und y : 0,7 .
3) Die Ungleichung 2 ■« + 1 < 2 • (n + 1 ) enthält die Terme 2 • n + 1

und 2 • (n + 1 ) .

Die Verwendung der Bezeichnung »Term« regeln wir durch folgende

Definition 21 . 1 : 1 . Jede Zahl ist ein Term.
2 . Jede Variable ist ein Term.
3 . Summe , Differenz , Produkt und Quotient zweier

Terme sind ebenfalls wieder Terme.

Teil 3 der Definition besagt (zusammen mit 1 und 2) , daß jeder mit Hilfe der
vier Grundrechenarten aus Zahlen und Variablen gebildete Rechenausdruck
ein Term ist .
Nach unserer Definition sind die in den obigen Beispielen für Gleichungen
und Ungleichungen auftretenden Ausdrücke tatsächlich Terme : 5 ist eine
Zahl , also ein Term (Regel 1 ) ; da 2 und 3 Zahlen , also Terme sind , ist nach
Regel 3 auch 2 + 3 ein Term , x ist eine Variable , also ein Term (Regel 2) ; da
sowohl die Variable y als auch die Zahl 0,7 Terme sind , ist nach Regel 3 auch
y : 0,7 ein Term . Usw .
Durch wiederholte Anwendung der 3 . Termbildungsregel lassen sich aus gege¬
benen Termen neue Terme aufbauen .

Näheres zum Wort Term findest du auf Seite 180.
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Beispiel :
Gegeben seien die Terme 7j = 17 , T2 = <2 , 7 3 = /?, T4 = 25 .
Daraus lassen sich z . B . folgende neue Terme bilden :

T5 = Ti • T2 = 17 • a
r 5 17 • a

T7 = T2
- T3 = a - b T8 — T̂ T2 — 25 + fl

m m 17 ■ a 25 + a
7io = T6

— T9 = - — — usw.
b a ■ b

Für die Schreibweise mehrfach zusammengesetzter Terme gelten natürlich die
bekannten Vereinbarungen , an die wir erinnern in

Vereinbarung 22 . 1 : »Klammern haben absoluten Vorrang .«
»Punkt geht vor Strich .«
»Bruchstrich ersetzt Klammern um Zähler und
Nenner .«

Beispiele :
1) (42 - 2) • 3 = 40 • 3 = 120,
2) 42 - 2 • 3 = 42 - 6 = 36 ,

3) J T | = (« - 3) ; (^ + 5) .
o + 5

Beachte : Bei gemischten Zahlen werden ein Pluszeichen und Klammern weg-
gelassen . So bedeutet 5| • 3 ausführlich (5 + j ) • 3 .

Im obigen Beispiel 2 gibt uns die »Punkt vor Strich « -Regel die richtige Rei¬
henfolge der beiden Rechenschritte an . Wie muß man aber Vorgehen, wenn
zwei »Punktrechnungen « aufeinanderfolgen , also z . B . 42 : 2 • 3 oder 42 - 2 : 3
usw .? Hängt bei solchen Termen das Ergebnis von der Reihenfolge ab , in der
man die beiden Rechenschritte ausführt , oder ist diese ohne Bedeutung ? Letz¬
teres trifft sicher im Fall a - b ■ c zu ; denn nach dem Assoziativgesetz der
Multiplikation gilt ja (a • b) ■ c = a ■ (b ■ c) , so daß es also gleichgültig ist , ob
man die erste oder die zweite Multiplikation zuerst ausführt . Um auch die
anderen Fälle zu prüfen , nehmen wir wie oben a = 42 , b = 2 und c = 3 :

Beispiele :
1 ) (42 • 2) : 3 = 84 : 3 = 28

42 • (2 : 3) = 42 • f = ^ = 28
2)

42 : (2 • 3 ) = 42 : 6 = 7
3) (42 : 2) : 3 = 21 : 3 = 7

42 : (2 : 3 ) = 42 : § = 42 • f = ^ = 63
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Die Reihenfolge der beiden Rechenschritte kann also für das Ergebnis von
wesentlicher Bedeutung sein ! Das gilt natürlich erst recht , wenn mehr als zwei
Punktrechnungen aufeinanderfolgen . Damit solche Terme eindeutig definiert
sind , treffen wir die folgende

Vereinbarung 23 . 1 : Sind aufeinanderfolgende Punktrechnungen nicht
nur Multiplikationen , dann muß der Reihe nach ge¬
rechnet werden , es sei denn , daß durch Klammern
die Reihenfolge der Rechenschritte anders festgelegt
ist .

Beachte , daß also Schreibweisen wie 42 : 2 - 3 oder 42 - 2 : 3 oder auch
(a + b) : c : d usw . zulässig sind und die Berechnung von links nach rechts
ausgeführt werden muß . Bei 42 : (2 ■ 3 ) ist hingegen zuerst das Produkt 2 ■ 3
zu berechnen , und dann erst 42 durch 6 zu teilen .

Für Produkte verwenden die Mathematiker oft eine vereinfachte Schreibwei¬
se , bei welcher der Malpunkt weggelassen wird . Das ist jedoch nicht immer
möglich . Es gilt folgende

Vereinbarung 23 .2 : Bei einem Produkt darf vor einer Variablen oder vor
einer Klammer der Malpunkt weggelassen werden .

Beispiele:
2 - a = 2a , a - b = ab , 3 • (a + b) — 3 (a + b) ,
(a + b) ■ c ■ d = (a + b) cd , a : (b ■ c) = a : (bc) .

Beachte : 1) Vor einem Zahlzeichen darf der Malpunkt nicht entfallen ; vgl .
etwa 3 - 5 im Gegensatz zu 35 , oder 2 ■k im Gegensatz zu 2\ .

2) = (5 + *) ■*.

In der Algebra ist es wichtig , einen umfangreicheren Term richtig »lesen« zu
können , d . h . , seinen Aufbau aus einfacheren Termen im Sinne der 3 . Termbil¬
dungsregel rasch zu überblicken .

Beispiel 1 :
(17 + t ) - 3 - t : 11
Dieser Term ist eine Differenz mit dem Minuenden (17 + x) ■ 3 und dem
Subtrahenden y : 11 . Der Minuend ist ein Produkt aus einer Summe als
erstem und 3 als zweitem Faktor . Die Summe besteht aus den Summan¬
den 17 und x . Der Subtrahend ist ein Quotient mit y als Dividend und 11
als Divisor .
Eine übersichtliche Darstellung des Termaufbaus , den Termgliederungs¬
baum , zeigt Abbildung 24 . 1 .
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2 . Faktor Divisor1 . Faktor
SUMME

Dividend

1 . Summand 2 . Summand

Minuend
PRODUKT

Term
DIFFERENZ

Subtrahend
QUOTIENT

Abb . 24 . 1 Termgliederungsbaum zu Beispiel 1

Beispiel 2:
[a : 9 - 3 (6 : 7)] - 5
Der Term ist ein Produkt mit der in eckigen Klammern stehenden Diffe¬
renz als erstem und 5 als zweitem Faktor . Der Minuend ist der Quotient
aus a als Dividend und 9 als Divisor . Der Subtrahend ist das Produkt aus
3 und dem in runden Klammern stehenden Quotienten aus b und 7 .

Bei solchen Beschreibungen kommt es darauf an , den Aufbau des Terms aus
den einzelnen Bausteinen , also den Zahlen und Variablen , genau und lücken¬
los anzugeben . Es muß möglich sein , aus der Beschreibung den Term zu re¬
konstruieren . Diese umgekehrte Aufgabe , nämlich einen gegebenen Text in
einen Term umzusetzen , tritt ebenfalls sehr häufig auf und muß ebenso gut
beherrscht werden .

Beispiel 3:
In einer Summe ist der erste Summand ein Bruch , dessen Zähler die
Summe der Variablen u und v darstellt ; sein Nenner ist die Differenz mit
u als Minuend und v als Subtrahend . Der zweite Summand ist die Diffe¬
renz aus 9 und dem Fünffachen von c .
Auch hier ist es nützlich , sich zunächst einen Termgliederungsbaum auf¬
zuzeichnen . Der Term lautet :

u + v
u v

+ (9 - 5c)

Beispiel 4:
Der Dividend eines Quotienten ist das Produkt aus der Zahl f und der
Variablen x ; der Divisor ist der Quotient aus f und x . Der Term lautet :
(f - x) : (f : x)
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Aufgaben

1 . Begründe anhand der drei Termbildungsregeln , daß es sich bei den folgen¬
den Beispielen um Terme handelt :
a) 3 • 5 - 10 • 10 b) 24 : (6 : 2) c) (24 : 6) : 2

e) (s + t ) - (s - t ) f) - • - • (2a - 3c)
3 - 12 + 6 - 6

2 . Welche der folgenden »Schreibfiguren « sind kei ; Terme?
Begründe jeweils deine Antwort .

a) 5 - 3 b) 3 — 5 c) d) (5 + ( - : | e) (2 - 7) : (n - n)x — 1

f ) z (x + y) g) z - (x + ) y
4 w s

h) -— + — - i) 24 : 6 : 27 3 : t ~ t : 3

x — 1

k) [u : (5 : vfi + 1 1) u : [(5 : v) + 1 ]

4x - 75x + 1
U V

2x - 10

6 . Berechne und vergleiche :
a) 100 : 50 • 10 • 5 b) 100 : (50 - 10) • 5 c) 100 : (50 - 10 - 5)

3 . Gegeben sind die Terme 7j = x + 2 und T2 = 3 — y.
Schreibe die folgenden Terme an und überlege bei Produkten , ob der Mal¬
punkt geschrieben werden muß :

a) 7j + T2 b) T2
- 7j c) I \ • T2 d) ^ e) 2 • 7j

f) 1 : T2 g) 2 - Ti • T2 h) T, : ( T2 : TJ i) 7j : T2 : T,

j) T2 : ( 7j : T2) k) 7j - (T2
- 7j ) 1) 1 : 7j + 1 : T2

4 . Vereinfache die Schreibweise der folgenden Terme , indem du unnötige
Klammern und Malpunkte vermeidest ,
a) 2 + (a ■ b) b) 2 : (a • b) c) 2 • (a ■ b)
d) 7 • 5 • (x + 3) e) 7 • x ■ (x + 3) f) (x - 2) • (x + 3 ) • 7

10 - x - 5

i) (a ■ c) : b + ya :

5 . Ändere die Schreibweise der folgenden Terme so ab , daß kein Bruchstrich
mehr vorkommt .
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7 . Berechne und vergleiche :
a) 12 : 6 : (4 ■ 3) b) 12 : (6 : 4) • 3 c) 12 : (6 : 4 • 3)

8 . Berechne und vergleiche:
a) 16 : 8 : 4 : 2 b) 16 : 8 : (4 : 2) c) 16 : (8 : 4) : 2 d) 16 : (8 : 4 : 2)

9 . Zeichnejeweils den Termgliederungsbaumund beschreibeden Aufbau des
Terms in Worten :

b) (x + y) ■ (5 - 3)
e) (x + y ■ 5) — 3
h) 1 : [a ■ (b : c)]

a) (x + y) ■ 5 — 3
d) v + y ■(5 - 3)
g) u (v w)

c) X + (y ■ 5 - 3)
f) (m — v) — w
i) ( 1 : ä) ■ (b : c)

j) [ 1 : (fl - Ä)] : c i x 3
k ) - + -

3 v
i) if + -

, 3 x
• 1

10 . Schreibe die folgenden Terme an:
a) die Summe aus der Variablen z und dem Produkt von 7 und der Varia¬

blen y;
b) die Differenz mit dem Produkt der Variablen u und v als Minuenden

und der Summe dieser Variablen als Subtrahenden ;
c) den Bruch mit dem Zähler f und der Summe aus dem Fünffachenvon p

und dem dritten Teil von q als Nenner ;
d) das Produkt aus der Differenz von 15 und t als erstem Faktor und dem

Quotienten aus z und 5 als zweitem Faktor ;
e) den Quotienten, dessen Divisor die Summe der Variablen x und y ist,

während der Dividend das Produkt derselben Variablen ist;
f) den Quotienten mit der Variablen b als Dividenden und folgender

Summe als Divisor : der erste Summand ist das Produkt aus 7 und der
Differenz von 12 und dem Dreifachen der Variablen a ; der zweite Sum¬
mand heißt 1 .

11 . Welcher Term wird durch folgenden »Baum « dargestellt?
a)

Zähler Nenner

Term
PRODUKT

Minuend Subtrahend
BRUCH

2 . Summand1 . Summand

1 . Faktor
DIFFERENZ

2 . Faktor
SUMME
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Term
QUOTIENT

Dividend
10

Divisor
DIFFERENZ

Minuend
2

Subtrahend
PRODUKTz

1 . Faktor
3

2 . Faktor
SUMME

1 . Summand
x

2 . Summand
5

1 .4 Definitionsmenge eines Terms

Die einfachsten Terme sind solche , die keine Variablen enthalten . Bei einem
derartigen Term wird es oft möglich sein , alle verlangten Rechenschritte aus¬
zuführen ; in diesem Fall ist der Term selbst eine Schreibweise für eine be¬
stimmte Zahl aus B .
Wir führen folgende Bezeichnung ein :

Definition 27 . 1 : Jeder Term , der eine Zahl aus B darstellt , heißt Zahlen¬
term .

Beispiele:

ist eine Schreibweise für die Zahl also ein Zahlenterm .

2) (§ : 2 — • 32 — 4 stellt die Zahl 0 dar , ist also ein Zahlenterm.

3) (3,75 — : (3,25 — 2 • lf ) ist kein Zahlenterm, da Division durch 0
nicht möglich ist .

4) [(51 • 49 + 1 ) — 50 • 10 ] : 10 ist eine Schreibweise für die Zahl 200 ,
also ein Zahlenterm .

5) (15 — 25) + 8 ist kein Zahlenterm; die verlangte Subtraktion ist nicht
ausführbar .

6) 0 ■ (1 — 2 ) ist kein Zahlenterm , da die verlangte Subtraktion nicht
ausführbar ist .

Ein Term , der eine Variable enthält , kann zu einem Zahlenterm werden , wenn
man für die Variable eine Zahl einsetzt .
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Beispiele:
1 ) Aus dem Term (2x — 7) ■x entsteht bei Ersetzung von x durch die

Zahl 5 der Zahlenterm (2 • 5 — 7) • 5 ; er hat den Wert 15 . Dagegen
ergibt die Einsetzung x = 3 den Term (2 • 3 — 7) • 3 , der kein Zahlen¬
term ist .

2) Aus - - entsteht bei der Einsetzung x — 7 ein Zahlenterm ; dage -x — 6
gen liefert z . B . x = 6 oder x = 4 keinen Zahlenterm . Begründung ?

Für einen Term T, der die Variable x enthält , verwendet man häufig die Be¬
zeichnung T (x) , gesprochen » T von x« . Der Term , der aus T (x) z . B . beim
Einsetzen von 3 für x , kurz : für x = 3 , entsteht , heißt 7X3 ) , gesprochen
» T von 3« .

Beispiele :

1) T (x)

Dann gilt : T ( 1 )

2) T (z) = (2z — 15) - + 3

Dann gilt : T (2) = (2 ■ 2 - 15) (f + 3) ;
7X5) = (2 - 5 - 15) (f + 3) ;
7W ) = (2 ' ¥ - 15) (¥ : 2 + 3 ) .

Welche der in den letzten beiden Beispielen angegebenen Terme sind Zahlen¬
terme? Welche Zahlen aus ES darf man in T (x) bzw . in T (z) einsetzen , wenn
man einen Zahlenterm erhalten will?
Die Einsetzungen in die Variable eines Terms werden stets aus einer Grund¬
menge G genommen, welche eine echte oder unechte Teilmenge von B ist.
Dabei interessiert man sich besonders für diejenigen Einsetzungen , die auf
einen Zahlenterm führen .

Definition 28 . 1 : Gegeben sei ein Term T {x) und eine Grundmenge G .
Die Menge D aller Zahlen a aus G , für die T (a) ein
Zahlenterm ist , heißt Definitionsmenge von T {x) bezüg¬
lich der Grundmenge G . Kürzer :
D = {a \ a e G und T (a) ist Zahlenterm }

Beispiele :
Begründe jeweils die Angabe über D.
1 ) T {x) = (5 - x) (x + 5) , G = N ; dann ist D = { 1 , 2 , 3 , 4 , 5 } .
2) T (y ) = (j — 3) (4 — jr) , G = B ;

dann ist D = {y | y e IB und 3 rg y :g 4} .
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2 u
3) T (u) = - t , G = B ; dann ist D = G = B .

W + 1

s — 2
4) TAT) = - , G = B ; dann ist £> = { } .

1 — s
5) T (n) = (n - 20) (20 - n) , G = N 0 ; dann ist D = { 20} .

1
6) T (k) = k - j — , G = { 1 , 2 , 3 , 4 , 5 , 6} ; dann ist £> = { 4,5,6 } .

K 3

Enthält ein Term mehrere Variablen , z . B . x und y , so schreibt man dafür
T (pc ; y ) . Um daraus einen Term ohne Variablen zu machen , muß man eine
Zahl für x und eine Zahl für y einsetzen .

Beispiele:
1) T (x \ y ) = x + (2y — 3) , x e B , y e B ;

x = 2 und y = 5 ergibt T (2 ; 5) = 9 ;
x = 0,6 und y = 3,05 ergibt T (0,6; 3,05 ) = 3,7 ;
x = 0 und y = 1 ergibt keinen Zahlenterm .

2) T (a ; b ; c) = [a(b + c) + b (a + c)] — c (a + b) , a e B , b e B , c e B;
a = 0 , b = 10 und c = 5 ergibt T {0 ; 10 ; 5) = 0 ;
a = 1 , b = 2,5 und c = 3,14 ergibt T { 1 ; 2,5 ; 3,14 ) = 5 .

Aufgaben

1 . Entscheide , welche der folgenden Terme Zahlenterme sind , und ermittle
gegebenenfalls eine möglichst einfache Schreibweise für diese Zahlen ,
a) 2 • 17 + (26 + 5) • 13 b) (7 ■18 - 8 • 17) : 5
c) (5 • 25) : ( 17 : 5 - 3,4) d) (7 ■19 - 399 : 3 ) : (^ - 3,14)

2 5 — 5 2 3 3 + 2 3 + l 3 „ (2 - 5) - 7
e)

5 - 2 3 - 4
f )

(2 - 5) • 3

2 . Gegeben ist der Term T(x) = (2x — 5) : (16 — 2x) . Setze für die Variable x
die angegebenen Zahlen ein und entscheide jeweils, ob ein Zahlenterm
entsteht . Gib dann die Zahl in möglichst einfacher Form an .
a) 5 b) f c) 1,5 d) 64 e) 8 f) 7,99 g) 100

3 . Bearbeite wie bei Aufgabe 2 die folgenden Beispiele:
a) T (y ) = 10 • y — 10 : y ; Einsetzungen für y : 0 ; j , 1 ; 2 ; 10
b) T (z) = (3z - 2) • (5z - 3) ; Einsetzungen für z : 1 ; 2 ; 3 ; 4 ; 5

c) T (n) = H
—— — ; Einsetzungen für n : 0 ; 1 ; 2 ; 3 ; 4

n — (n — 2)
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4 . Bestimme bezüglich der Grundmenge
genden Terme:

a) T{x) = x

d) T {x) = x - 3

g) T(x) = 2x + 5

b) T {X) = l

e) T (x) — 3 — x

h) T(x) — 2x — i

J 0 die Definitionsmengen der fol-

c) T(x) = x + 3

1
n m ~ i _ x
i) T(x) = 5 - 2x

5 . Wie lauten die Definitionsmengen der Terme von Aufgabe 4 , wenn man B
als Grundmenge wählt ?

6. Grundmenge sei (B . Ermittle auf dieser Grundmenge die Definitionsmen¬
gen folgender Terme:
a) T{y ) = iy + \ ) - {y + 2>) b) T(y ) = (y - 1 ) • (y + 3)
c) T (y ) = (y + l ) - (y - 3) d) T (y ) = (y - 1 ) • (y - 3 )
e) T (y ) = ( l - y) - (y + 3) f) T (y ) = ( 1 - y ) ■ (y - 3 )
g) T (y ) = { \ - y) - 0 - y ) h) T (y ) = (y - 1 ) • (3 - y)

7 . Welche Definitionsmenge haben bezüglich der Grundmenge B die folgen¬
den Terme?

x 1 1
a) - + -

x x —
1 1

b) - + - -
x x + 2

c)
1

+x — 2 2 — x
d)

1
+x — 1 4 — x

8 . Gegeben ist der Term T(x ; y) = (2x + 5) — 3y.
Welche der folgenden Terme sind Zahlenterme ? Gib die entsprechenden
Zahlen in möglichst einfacher Form an .
a) T (3 ; 2) b) T& i ) c) T (6 ; 6) d) T (5 ; 5) e) T (2,3 ; 3,2)

9 . T (a ; b) = (a + b) ■ (4a — b) — 3 ab . Berechne , falls möglich ,
a) 7X3 ; 1 ) b) T( l ; 3) c) d) T({f ; 2) e) Tfä ; 2) .

. 10. T (x ; y) = (2x + 3y) - S .
a) Welche Definitionsmenge Dx hat T(x ; 2)?
b) Welche Definitionsmenge Dy hat T (3 ; y )

‘!

* * Zur Geschichte unserer Fachausdrücke

Fast alle mathematischen Fachwörter stammen aus dem Lateinischen , einige auch aus
dem Griechischen . Natürlich können wir oft nicht sagen , wer als erster ein Fachwort
wirklich erfunden und benutzt hat ; denn viele Handschriften sind durch Kriege und
durch Verfolgungen vernichtet worden , andere wurden einfach nicht mehr abgeschrie¬
ben , weil es inzwischen modernere Abhandlungen über dasselbe Thema gab . Wir kön¬
nen daher oft nur angeben , in welchen uns zufällig erhalten gebliebenen Schriften wir
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welche Fachwörter zum erstenmal linden . Wir können damit also nur feststellen , ab
welchem Zeitpunkt ein solches Fachwort vorhanden ist , wir können aber nicht be¬
haupten , daß es dieses Wort nicht schon früher gegeben hat . Anders ist es dann mit der
Neuzeit , d . h . mit den letzten 500 Jahren . Da wissen wir fast immer , wer als erster einen
neuen Begriff und ein neues Zeichen erfunden hat . Für dich ist es eine Selbstverständ¬
lichkeit , daß es Rechenzeichen gibt wie das Plus- und das Minuszeichen oder das
Gleichheitszeichen . Wenn du aber aufmerksam die Geschichte der Mathematik be¬
trachtest , dann wirst du verwundert feststellen , daß all diese Zeichen und die Kunst des
Buchstabenrechnens , die du jetzt erlernen sollst, erst knapp 500 Jahre alt sind.
Welch kurze Zeitspanne ist dies im Vergleichzu der langen Zeit , die der Mensch schon
auf Erden existiert !
Im Folgenden stellen wir die Fachwörter zusammen und berichten dir dann noch
von den Männern , von denen diese Fachwörter stammen .
Addition
Addition und addieren gehen auf das lateinische addere = hinzugebenzurück . Als Fach¬
wörter kommen sowohl additio wie auch addere bei Boethius (um 480- 524) vor .
Das Wort Summe hat eine interessante Geschichte . Das lateinische Substantiv summa
bedeutet das Oberste , das Höchste . Da es schon bei den Griechen und dann bei den
Römern Brauch war , das Ergebnis einer Rechnung in die oberste Zeile zu schreiben,
hieß jedes Ergebnis summa , gleichgültig, ob es beim Addieren oder Multiplizieren
entstanden war . In diesem Sinne verwendet bereits Marcus Tullius Cicero (106- 43
v . Chr .) das Wort summa . Die Einengung auf Summe als Ergebnis einer Addition
beginnt im 15 . Jh . Umgangssprachlich bedeutet Summe einen Geldbetrag . In diesem
Sinne verwendet bereits Leonardo von Pisa (um 1170 - nach 1240) das Wort summa .
Summieren findet man 1489 bei Johannes Widmann von Eger (um 1460 - nach 1500),
Summand erst 1713 bei Christian von Wolff (1679 - 1754 ) in seinen Elementa mathe-
seos universae.
Seit dem Mittelalter nennt man , abgeleitet vom lateinischen resultare = zurück¬
springen, das Ergebnis einer beliebigen Rechenaufgabe Resultat , d . h . das , was einer
Aufgabe entspringt .
Subtraktion
Das zugrundeliegende subtrahere = heimlich fortziehen erhält bereits bei Sextus Iulius
Frontinus (um 30- nach 100) die mathematische Bedeutung des Abziehens . Es findet
sich genauso wie das zugehörige Substantiv subtractio auch bei Boethius . In der Mitte
des 15 . Jh .s wird subtrahieren so wie auch addieren ein deutsches Fremdwort .
Unser Wort Minuend geht zurück auf den numerus minuendus = die zu verkleinernde
Zahl des Johannes Hispalensis (wirkte um 1135- 1153) , unser Subtrahend auf den
numerus subtrahendus = die abzuziehende Zahl des Johannes de Sacro Bosco
(1200 (?)- 1256 (?)) . Das lateinischedifferentia = Unterschied nimmterst bei Leonardo
von Pisa die Bedeutung an , die wir heute mit dem Fremdwort Differenz verbinden .

Multiplikation
Das lateinische multiplicare bedeutet eigentlich viele Falten machen, mehrmals zusam¬
menfalten und geht in seiner mathematischen Bedeutung vielleicht auf die ägyptische
Art der Berechnung eines Produkts zurück :
26 - 75

/ 13 • 150
6 - 300

/ 3 • 600
/ I • 1200 , also 26 • 75 = 1200 + 600 + 150 = 1950 .
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Nachzuweisen sind multiplicare und multiplicatio bei Vitruvius ( 1 . Jh . v . Chr .) und bei
Columella ( 1 . Jh . n . Chr .) , der das Ergebnis der Multiplikation summa ex multiplica -
tione nennt . Erst bei Johannes de Sacro Bosco findet man dafür productum
= Hervorgebrachtes , woraus 1489 bei JohannesWidmann von Eger unser Wort Pro¬
dukt wurde . Bei Johannes de Sacro Bosco findet man auch numerus multiplicandus
= zu vervielfachende Zahl, was Michael Stifel (14877 - 1567 ) in seiner Deutschen
Arithmetica 1545 als Multiplikand eindeutscht , wogegen multiplicator = Vervielfacher
auf Boethius zurückgeht . Im 16 . Jh . bürgerte sich ein , beide Zahlen durch den Aus¬
druck Faktor zu bezeichnen , hergeleitet vom lateinischen facere = machen, das bei den
römischen Feldmessern im Sinne von multiplizieren verwendet worden war .
Division
Allen Begriffenliegt das lateinische dividere = teilen , einteilen zugrunde . Erst bei Ger -
bert von Aurillac (um 945 - 1003), Lehrer Kaiser Ottos III . , als Papst Sylvester II .,
finden wir es als Fachwort ebenso wie divisio = Teilung , divisor = Teiler und dividen -
dus = zu Teilendes . Bei Gernardus (1 . H . 13 . Jh .) heißt das Ergebnis der Teilung nume¬
rus denotans quotiens = Zahl , die angibt wie oft; im 15 . Jh . deklinierte man numerus
quotientis, obwohl quotiens ein Adverb ist . Im Bamberger Rechenbuch von 1483 er¬
scheint das deutsche Wort Quotient .
Unsere Rechenzeichen
Im 15 . Jh . wurde das lateinische et = und durch ein kopfstehendes t , also durch "V
abgekürzt . Das lateinische Wort minus = weniger kürzte man oft durch wluj ab . Durch
Weglassen der Buchstaben entstand vielleicht unser Minuszeichen , und aus dem X-
wohl das + . Zum ersten Mal erschienen jedenfalls + und — gedruckt im Rechenbuch
des Johannes Widmann von Eger (um 1460 - nach 1500) im Jahre 1489 . (Abbildung
32 . 1 )
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Abb . 32 . 1 Titelblatt der Behende und hübsche Rechenung auff allen kauffmanschajft
(1489) des Johannes Widmann von Eger und daraus folium 88r mit den ältesten
gedruckten Plus- und Minuszeichen , die folgendermaßen erklärt werden :
nrns - ift bas ift minus [Zeile 7fi] unnb bas + bas ift mer [Zeile 14] .
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Der heute übliche Malpunkt wurde von
dem großen Philosophen und Mathema¬
tiker Gottfried Wilhelm Leibniz (1646-
1716 ) erfunden , und zwar im Brief vom
29 . Juli 1698 an den Schweizer Mathema¬
tiker Johann Bernoulli (1667- 1748) * .
Auf Leibniz geht übrigens auch der Dop¬
pelpunkt als Divisionszeichen zurück , er¬
funden um 1678/79 . Der Brauch , ein
Multiplikationszeichen zwischen Buch¬
staben wegzulassen , stammt von Thomas
Harriot (1560 (?) 1621 ) . Rene Des -
Cartes (1596 - 1650 ) (Abbildung 121 . 1 )
ließ dieses dann auch zwischen Zahlen
und Buchstaben weg.
Das älteste unserer Rechenzeichen ist der
waagrechte Bruchstrich . Bereits bei den
Indern steht der Zähler über dem Nenner .
Westarabische Mathematiker trennen
beide durch einen waagrechten Strich .
Leonardo von Pisa bürgert diese Sitte
dann im Abendland ein . Verbreitung fin¬
det der Bruchstrich hauptsächlich durch
die Werke von Viete .
Der schrägstehende Bruchstrich / scheint
neueren Datums und aus drucktechni¬
schen Gründen erfunden worden zu sein.

Biographische Notizen

Boethius * *
, Anicius Manlius Severinus

(um 480- 524 (7)) , stammt aus einer vor¬
nehmen römischen Familie . Er stellt sich
dem Ostgotenkönig Theoderich d . Gr .
(regierte 474 bis 526) zur Verfügung und
wird dessen Ratgeber und auch hoher
Verwaltungsbeamter . Als er sich für einen
des Hochverrats angeklagten Freund ein¬
setzt , wird er selbst angeklagt , nach lan¬
ger Kerkerhaft ungehört verurteilt und in
Pavia vermutlich 524 , und zwar am
23 . 10 . , enthauptet . Im Kerker schrieb er
sein berühmtes Buch De consolationephi-

* Zwar hat der fränkische Mathematiker Johannes
Müller (1436- 1476) , der sich Regiomontanus
nannte , den Malpunkt einmal in einem Brief ver¬
wendet ; ebenso taucht er in einer Prager Hand¬
schrift um 1500 auf . Bekannt wurde er aber erst ,
als Leibniz ihn erfunden hatte .

** Auch Boetius , gesprochen bo -ezius .

1703

Dls&iölf1§ g$
y-Lälj 'fSS|

-.»H;

^ jenfin \ _ j
Abb . 33 . 1 Gottfried Wilhelm Leibniz
( 1 .7 . 1646 Leipzig- 14 . 11 . 1716 Hannover )
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Abb . 33 .2 Die Philosophie tröstet Boe¬
thius im Kerker . Buchmalerei Anfang
des 13 . Jh .s - Cod . lat . mon . 2599
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losophiae - Vom Trost der Philosophie. Für uns ist interessant , daß Boethius als Wis¬
senschaftler die »mathematischen « Disziplinen der Arithmetik , Geometrie , Astrono¬
mie und Musik zu einer Einheit , dem Quadrivium , zusammenfaßte und dafür Lehrbü¬
cher schrieb . Seine beiden Bücher institutio arithmetica sind das einzige erhaltene Werk
der römischen Zeit über dieses Fach .
COLUMELLA , Lucius Iunius Moderatus , lebte im 1 . Jh . n . Chr . und stammt aus Gades ,
dem heutigen Cadiz/Spanien . In Italien hat er später seine Güter bewirtschaftet und
ein die gesamte Landwirtschaft umfassendes 12bändiges Handbuch mit dem Titel De
re rustica geschrieben .
Frontinus , Sextus Iulius (um 30- nach 100) , von 74 bis 78 Statthalter der Römer in
Britannien , nahm vermutlich 83 am Krieg gegen die Germanen teil , ab 97 für die
Wasserversorgung Roms verantwortlich . Er verfaßte mehrere Lehrbücher , u . a . über
die Wasserversorgung Roms , über Kriegslisten und über das Kriegswesen ; das uns am
meisten interessierende Buch handelt von der römischen Feldmeßkunst .
Johannes Hispalensis , auch Johannes von Sevilla genannt , ein in Spanien gebore¬
ner Jude , wirkte um 1135 bis 1153 in Toledo . Er übersetzte aus dem Arabischen ins
Lateinische , u . a . ein arithmetisches Werk von Al -Charizmi .
Johannes de Sacro Bosco (1200- 1256) , stammt vermutlich aus Halifax/England .
In Paris lehrte er Mathematik und Astronomie und schrieb für den Unterricht im
Quadrivium bedeutende Lehrbücher über Arithmetik , Kalenderrechnung und Astro¬
nomie .
Vitruvius POLLIO, Marcus , lebte im 1 . Jh . v . Chr . Militärtechniker unter Cäsar und
Augustus , dem er seine 10 Bücher De architectura (geschrieben vor 31 v . Chr .) widmete .
Sie behandeln Städteplanung , Baustoflkunde , Tempelordnungen , Wasserleitungsbau ,
vielerei Maschinen und sind geprägt von umfassenden Kenntnissen in Philosophie ,
Mathematik , Physik , Musik , Klimatologie und Astronomie .

Zu Seite 35:

Typus Arithmeticae - Die Dame Arithmetica

Unter ihrer Aufsicht treten Pythagoras und Boethius , die im Mittelalter fälschlicher¬
weise für die Erfinder des Abakus -Rechnens bzw . der arabischen Ziffern gehalten
wurden , zu einem Wettstreit an . Pythagoras hat die Zahlen 1241 und 82 gelegt; der
Sinn der Ziffernrechnung des Boethius ist leider unklar . Die besorgte Miene des Py¬
thagoras und das Lächeln des Boethius sagen uns aber , daß letzterer der Sieger ist . -
Auf dem Gewand der Arithmetica , die eine der Sieben Freien Künste ist , erkennt man
die Vierzahlgruppen 1 , 3 , 9 , 27 und 1 , 2 , 4 , 8 , die in der Zahlenmystik der Pythagoreer
eine große Rolle spielten . - Holzschnitt aus der Margarita philosophica - »Philoso¬
phische Perle« - des Kartäuserpriors Gregor Reisch (um 1470 - 1525 ) von 1503 , in
der u . a . die Rechenregeln für beide Rechenverfahren ausführlich behandelt werden .
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2 Die rationalen Zahlen und ihre Rechengesetze

2 . 1 Die Zahlenmenge B reicht nicht aus!

Die Menge B der Bruchzahlen hat , abgesehen von der grundsätzlich unmögli¬
chen Division durch null , für das Rechnen einen wesentlichen Mangel : die
Subtraktion zweier Zahlen aus B ist nicht immer ausführbar . Dieser Mangel
ist nicht nur ein Schönheitsfehler innerhalb der mathematischen Theorie , er
macht sich auch in der Praxis störend bemerkbar .

Beispiele :
1) An einem Dezembertag zeigt mittags

das Thermometer die Temperatur 4 °C
( = 4 Grad Celsius) an . Bis zum Abend
nimmt sie um 3 Grad ab . Daraus kön¬
nen wir den neuen Thermometerstand
berechnen : 4 Grad — 3 Grad = 1 Grad ;
die Abendtemperatur beträgt also 1 °C .
Bis Mitternacht sinkt nun die Tempera¬
tur noch einmal um 4 Grad . Wie kann
man jetzt die neue Temperaturanzeige
ermitteln ? Die Rechnung » 1 Grad mi¬
nus 4 Grad « ist ja nicht ausführbar ! Be¬
kanntlich hilft man sich hier so , daß
man z . B . sagt , die Temperatur sei auf
» 3 Grad unter 0« gesunken oder die
Temperatur sei »minus 3 Grad « , wofür
man kurz » — 3 °C« schreibt (Abbil¬
dung 36 . 1 ) .

°c

50 - - 50

40— - 40

30 — - 30

20- - 20

10- - 10

0— - o

10- - 10

20- - 20

30 -

(w »

- 30

Abb . 36 . 1 Thermometer

2) Herr Knapp hat auf seinem Bankkonto 530,60 DM . Für dringende
Anschaffungen benötigt er 700 DM , die er von seinem Konto
abhebt . Auf seinem nächsten Kontoauszug dürfte Herr Knapp als
Kontostand » — 169,40 DM « oder auch » 169,40 DM Soll « lesen . Das
bedeutet , daß er der Bank 169,40 DM schuldet (Abbildung 37 . 1 ) .

3) In Ägypten liegt westlich von Kairo die Kattara -Senke , für die man im
Atlas die Höhenangabe » — 134« findet . Damit wird bekanntlich aus¬
gedrückt , daß der so gekennzeichnete Ort » 134 m unter dem Meeres¬
spiegel« , genauer : 134 m tiefer als der Nullpunkt der für solche Hö¬
henangaben verwendeten Skala liegt . * (Abbildung 37 .2)

Dieser Nullpunkt , genannt Normalnull (NN ) , ist nach dem Amsterdamer Pegel festgelegt und gibt ungefähr
die mittlere Meereshöhe an .
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KONTONUMMER
1234567890

ALTER K
VOM 14 . 01 . 85

ONTOSTAND
DM 530,60 HA

ABHEBUNG AM 17 . 01 . 85 DM 700,00 SO

BUCHUNGSDATUM
NEUER KONTOSTAND

18 . 01 . 85
|

DM 169,40 SO

Abb . 37 . 1 Kontoauszug

Wie diese Beispiele zeigen , kommt es vor , daß man beim Rückwärtszählen den
Nullpunkt einer Skala , also eines Zahlenstrahls , überschreiten muß . Man ge¬
langt zu Ergebnissen »unter Null « , zu deren Beschreibung man Zahlen be¬
nützt , vor die ein Minuszeichen gesetzt wird .
Sicher wäre es auch aus mathematischer Sicht günstig , wenn es Zahlen »unter
Null « gäbe , mit denen man z . B . Rechnungen wie » 1 — 4« ausführen könnte .
Das Rechnen würde sich sehr vereinfachen , wenn auch die Subtraktion immer
ausführbar wäre . Man müßte dann beim Auftreten von Differenzen nicht
jedesmal überlegen , ob sie definiert sind bzw . , falls Variablen Vorkommen , für
welche Werte der Variablen das der Fall ist .
Eine ähnliche Situation gab es schon früher beim Rechnen mit den natürlichen
Zahlen * . Dort war die Division nicht unbeschränkt ausführbar ; man konnte
z . B . 12 nicht in 5 gleiche Teile zerlegen . Diese Schwierigkeit ließ sich dadurch

CQ \

Abb . 37 .2 Die Kattara -Senke in Ägypten

Die Zahlen der Folge 1,2 , 3, . . . nannte bereits Nikomachos von Gerasa (um 100 n . Chr .) (puoiKÖi ; &Qi9 |iö <;
(physikos arithmös ) , was Boethius (um 480- 524/525 ) mit numerus naturalis ins Lateinische übersetzte und
das im Deutschen zu natürliche Zahl wurde .
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beseitigen , daß man die Menge N 0 durch Einführung der Brüche erweiterte . In
dem größeren Zahlenbereich B ist die Division immer ausführbar , falls der
Divisor von 0 verschieden ist ; z . B . gilt 12 : 5 = 2f .
Dieses Beispiel legt den Versuch nahe , die Menge B noch einmal durch neue
Zahlen so zu erweitern , daß auch die Subtraktion immer ausführbar wird .
Natürlich ist eine solche Erweiterung nur dann sinnvoll , wenn man im vergrö¬
ßerten Zahlenbereich wieder »vernünftig « rechnen kann ! Das soll heißen : In
der erweiterten Zahlenmenge sollen die gleichen Rechengesetze wie bisher
gelten . Diesen Grundsatz , von dem man sich in solchen Fällen stets leiten läßt ,
bezeichnet man als Permanenzprinzip , genauer »Prinzip der Permanenz der
Rechengesetze * « . Ob sich dieses Anliegen verwirklichen läßt , ist natürlich
nicht von vornherein sicher .

Aufgaben

1 . Was zeigt ein Thermometer an , wenn die Temperatur von — 3 °C aus
a) um 4 Grad sinkt, b) um 2,5 Grad steigt, c) um 11 Grad steigt?

2 . Nachdem der Kontostand des Herrn Knapp auf — 169,40 DM gesunken
war , erhielt er vom Finanzamt eine Steuerrückzahlung von 340,00 DM .
Welches Guthaben stand dann auf seinem nächsten Kontoauszug ?

3 . Westlich der Kattara -Senke mit der Höhenangabe - 134 liegt die Oase
Siwa, für deren tiefsten Punkt im Atlas die Angabe — 25 zu finden ist .
a) Welche der beiden Senken liegt tiefer und wie groß ist der Unterschied?
b) Zwischen den beiden Senken liegt ein Höhenzug , für dessen höchsten

Punkt die Höhenangabe 70 gilt . Welche Höhenunterschiede müßte
man auf dem Weg von der Oase Siwa über den Höhenzug in die Katta¬
ra -Senke überwinden ?

2 .2 Einführung der negativen Zahlen

Auf dem Zahlenstrahl ist jeder Zahl x e B eindeutig ein Punkt zugeordnet .
Außerdem kann die Zahl x durch den vom Nullpunkt zum Punkt x zeigenden
Pfeil dargestellt werden (Abbildung 38 . 1 ) .

o 1 k
Abb . 38 . 1 Die Zahl x als Punkt und als Pfeil auf dem Zahlenstrahl

Ähnlich wie beim Thermometer setzen wir nun die Skala nach links über 0
hinaus fort . Indem wir eine , zwei, drei, . . . Längeneinheiten nach links abtra -

permanere (lat .) = fortdauern , erhalten bleiben . Der Ausdruck Permanenzprinzip wurde von dem englischen
Mathematiker und Professor der Astronomie George Peacock ( 1791 - 1858) in seinem 1830 erschienenen
Werk A treatise of algebra geprägt . - Siehe Abbildung 86 . 1.
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gen , erhalten wir Punkte , die wir mit — 1 , - 2 , - 3, . . . bezeichnen . Allgemein
erhalten wir zu jeder Zahl x > 0 , also xeB , den links von 0 liegenden Punkt
— x , indem wir den zu x gehörigen Pfeil um den Nullpunkt nach links umklap¬
pen . Das heißt , wir zeichnen von 0 aus einen nach links gerichteten Pfeil der
Länge x . Seine Spitze liefert einen Punkt , den wir mit — x beschriften . Den
Pfeil selbst bezeichnen wir ebenfalls mit — x (Abbildung 39 . 1 ) .

- x - 2

Abb . 39 . 1 Erweiterung des Zahlenstrahls

Natürlich wollen wir nun diese Punkte bzw . Pfeile — 1 ,
— 2 , — 3, . . . , allge¬

mein — x , als Veranschaulichungen neuer Zahlen deuten ! Diese ebenfalls mit
— 1 , — 2 , — 3, . . . , — x, . . . bezeichneten Zahlen nennen wir negative Zahlen .
In dieser Bezeichnung kommt zum Ausdruck , daß es sich bei ihnen um die
»Gegenstücke « zu den schon bekannten positiven Zahlen , also den Zahlen der
Menge B \ { 0 } ( = B ohne die Zahl 0) , handelt . Der erweiterte Zahlenstrahl
heißt Zahlengerade (Abbildung 39 .2) .

- 3 - 2 - 1 0 1 2 3

negative Zahlen Null positive Zahlen

Abb . 39 .2 Die Zahlengerade

Unser erweiterter Zahlenvorrat besteht nunmehr also aus den schon bisher
bekannten positiven rationalen Zahlen und der Null sowie den neu eingeführ¬
ten negativen rationalen Zahlen . Alle diese Zahlen zusammen bilden die Men¬
ge der rationalen Zahlen*

, die man mit Q bezeichnet. Für die Teilmenge der
positiven bzw . der negativen rationalen Zahlen verwendet man die Bezeich¬
nung 0 + bzw . Q ~

. Die bisher häufig benützte Zahlenmenge B (Brüche !) läßt
sich nun in der Form B = <Q + u { 0 } darstellen ; man schreibt dafür auch kurz
Oo+ -
Es gilt also :

Definition 39. 1 : <Q> = Menge der rationalen Zahlen
<Q + = Menge der positiven rationalen Zahlen
(Q “ = Menge der negativen rationalen Zahlen
(Qq = Menge der nicht -negativen rationalen Zahlen

rationalis bedeutet seit dem 2 . Jh . zu den Rechnungen gehörend und hängt mit ratio = Rechnung , Verhältnis ,
Vernunft zusammen . Die mathematische Bedeutung können wir dir aber erst im Band Algebra 3 erklären .
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* * Zur Geschichte der Fachwörter positiv und negativ

An der Entstehung des heutigen Gegensatzpaares positiv- negativ kann man sehr gut
verfolgen , wie bei der Herausbildung einer Fachsprache die ursprüngliche Bedeutung
der Wörter meist verlorengeht .
Das seit dem 4 . Jh . belegte lateinische Wort positivus = gesetzt , gegeben hatte als Ge¬
gensatz das Wort privativus = abgesondert , hinweggenommen, das in späterer Zeit auch
noch den Sinn von verneinendannahm . Das alte Wort für verneinendwar aber negativus
(2 . Jh .) , zu dem das Gegensatzwort affirmativus = bejahend gehörte (nachgewiesen
5 ./6 . Jh .) . In der vor 1486 geschriebenen kleinen Lateinischen Algebra des Dresdener
Codex C80 , eines Sammelbands verschiedener mathematischer Handschriften , finden
wir säuberlich getrennt die beiden Gegensatzpaare positiv- privativ und affirmativ- ne¬
gativ . Bald jedoch werden diese Paare vermischt , und das Wort privativ verschwindet
immer mehr und wird durch negativ ersetzt . So verwendet Franijois Viete (1540 - 1603 )
den Gegensatz affirmativus- negatus (1591) . Der deutsche Philosoph und Mathema¬
tiker Christian von Wolff (1679 - 1754) verfaßt 1716 ein Mathematisches Lexicon , in
dem das Gegensatzpaar positiv- negativ zu Fachwörtern wird . Und dabei ist es dann
geblieben!

t>k in allen Steilen bev $?atf)eiit«<
tictiiMicpenSfimfCSottet

LEXICON,

5Uatl)entatifcf)en 3ßiiTenfd)affteti
OiftilidR ütactmc&f« erteilet,

2iuc&hieSdjrifftcn,
twiete 35?«tetie au^ efii^retp nnten ,

angefuljttttmben:

Staff Segetjren ßerauä gegeben

gfjttilian SBolffen

SföatI ) emötifcf ) C6

Ä . 9>. £>. unt>p. p. o.

3ut £ i (totie

Sarinnen

erftöret ,

Ä Soipsig,
StieOtid ) © lei>itfd)m$ feel,@otm.
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Abb . 40 . 1 Christian , Freiherr von Abb . 40 .2 Titelblatt der 1 . Auflage
(seit 1745) Wolff , auch Wolf , (24 . 1 . 1679
Breslau - 9 .4 . 1754 Halle/Saale )
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Aufgaben

1 . Trage auf einer Zahlengeraden mit der Längeneinheit 1 cm die zu folgen¬
den Zahlen gehörenden Punkte ein:
a) 4,6 b) - 4 c) 0 d) - 1,5 e) 2,2 f) -

2 . Gib auf einer Zahlengeraden mit der Längeneinheit 2 cm die den folgen¬
den Zahlen entsprechenden Punkte an :
u = 2,1 ; v = — 2,1 ; w = — 1,25 ; x = f ; y = — lf ; z = —

3 . Zeichne von einer Zahlengeraden mit der Längeneinheit 6 cm den Ab¬
schnitt von — 1 bis 0,5 und markiere darauf die Punkte für folgende Zah¬
len :
a) x i = 3 b) x2 = - f c) x 3 = - -§ d) x6r = Y2 e) x 5 = — Y2
f ) Li = 0,2 g) y2 = - 0,3 h) y 3 = - 0,90 i) = - 0,05

4 . Zeichne für eine Zahlengerade mit der Längeneinheit 1 cm den Abschnitt
von — 5 bis 5 . Trage darauf folgende Punkte ein und gib die zugehörigen
rationalen Zahlen an :
a) A liegt 3,5 cm links vom Punkt 2 .
b) B liegt 2,8 cm rechts vom Punkt - 5 .
c) C liegt 2f cm links vom Punkt 0 .
d) D liegt 3 cm links vom Punkt
e) E liegt 1,4 cm rechts vom Punkt - lf .
f) F liegt 4,5 cm rechts vom Punkt - 4j .

5 . Bestimme folgende Zahlenmengen . (Beschreibe die sich ergebenden Men¬
gen zuerst in Worten und dann mit Mengensymbolen .)
a) Q + nQ " b) Q + uG ~ c) Q n N d) Ö + nN 0
e) O + uN 0 f) Q \ CT g) Q \ G + h) Q \ (Q + uQ “ )

2 .3 Zahl und Gegenzahl, absoluter Betrag

Jede Zahl a e Q läßt sich auf der Zahlengeraden durch den von 0 zum Punkt a
zeigenden Pfeil darsteilen . Zu dem gleich langen , aber entgegengesetzt gerich¬
teten Pfeil gehört wieder eine rationale Zahl , die wir die Gegenzahl von a
nennen und mit — a bezeichnen .

Definition 41 . 1 : Zwei Zahlen, zu denen auf der Zahlengeraden gleich
lange , aber entgegengesetzt gerichtete Pfeile gehören ,
heißen (ein Paar von ) Gegenzahlen.
Die Gegenzahl von a wird mit - a bezeichnet .
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Die schon auf Seite 39 eingeführte Schreibweise für die negativen Zahlen steht
im Einklang mit der in dieser Definition vereinbarten Bedeutung von - a:
negative Zahlen wie - 1 ; - 3,7 ; - §; . . . sind ja gerade die Gegenzahlen der
entsprechenden positiven Zahlen 1 ; 3,7 ; f ; . . . Beachte aber , daß Definition
41 . 1 für beliebige , also auch für negative Zahlen gilt ! (Abbildung 42 . 1 )

A - « 3 -fc

- a o a
4 b 4

Abb . 42 . 1 Zahl und Gegenzahl

Beispiele:
Die Gegenzahl von 5,2 ist — 5,2 .
Die Gegenzahl von 0 ist — 0 = 0 .
Die Gegenzahl von — 3 heißt - ( — 3) ; ihr Pfeil ergibt sich aus dem Pfeil
für — 3 durch Umklappen und somit aus dem Pfeil 3 durch zweimaliges
Umklappen . Also gilt : — ( — 3) = 3 .

Die im letzten Beispiel durchgeführte Überlegung läßt sich auf jede Zahl an¬
wenden . Daher gilt:

Satz 42 . 1 : Für a e <0 gilt : — ( — a) = a .

Die Gegenzahlen der natürlichen Zahlen , also — 1 , - 2 , — 3 , . . . werden als
negative ganze Zahlen bezeichnet. Sie bilden zusammen mit 0 und den natürli¬
chen Zahlen die Menge der ganzen Zahlen , für welche das Zeichen Z verwen¬
det wird :

Definition 42 . 1 : Z = { . . . , - 3 , — 2 , - 1 , 0,1 , 2 , 3, . . . } heißt Menge der
ganzen Zahlen . *

- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- «-
- 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6

Abb . 42 .2 Die ganzen Zahlen

In Beispielen wie - 3 , - f , — a , - (x + 5) , . . . ist das Minuszeichen kein Re¬
chenzeichen , es wird ja keine Subtraktion verlangt . Das vorangestellte Minus¬
zeichen bedeutet hier jeweils die Aufforderung »Bilde die Gegenzahl von « .

* Der Ausdruck ganze Zahl ist die deutsche Übersetzung des lateinischen numerus integer , mit dem Leonardo
von Pisa (um 1170- nach 1240) den dgiOfioq 6X.ökA,t ]qo <; (arithmos holokleros ) des Diophant (um 250
n . Chr .) ins Lateinische übertragen hatte . Sowohl das lateinische wie auch das griechische Adjektiv bedeuten
unversehrt , vollständig , noch ganz .
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Derartige Minuszeichen nennt man Vorzeichen. In entsprechender Weise wird
oft auch das Pluszeichen als Vorzeichen verwendet , wofür man festsetzt :
+ a = a , (fl e 0 ) . Obwohl man demnach auf das Vorzeichen » + « verzichten
könnte , erweist sich, wie sich noch zeigen wird , seine Verwendung gelegentlich
doch als nützlich und sinnvoll .
Besonders wichtig ist es , sich klarzumachen , daß das Vorzeichen » — « keines¬
wegs immer auf eine negative Zahl hinweist ! Es gilt ja :

positiv negativ .Satz 43. 1 : - a ist . genau dann, wenn a . . ist .
negativ positiv

Eine Zahl und ihre Gegenzahl werden durch Pfeile gleicher Länge dargestellt ;
die entsprechenden Punkte auf der Zahlengeraden haben vom Nullpunkt glei¬
che Entfernung .

Definition 43. 1 : Die Entfernung des Punktes a vom Nullpunkt , also die
Länge des Pfeiles a , heißt absoluter Betrag der Zahl a ; er
wird mit | a | bezeichnet .
Die beiden senkrechten Striche nennt man »Betrags¬
striche « .

Der Fachausdruck absoluter Betrag und
die beiden senkrechten Striche dafür
wurden von Karl Theodor Wilhelm
Weierstrass (1815- 1897 ) eingeführt . Im
Druck erschien absoluter Betrag 1856 , die
Absolutstriche aber erst 1876 . Weier¬
strass war von 1842 bis 1855 Lehrer an
einem Gymnasium , wurde dann als Pro¬
fessor ans Gewerbeinstitut nach Berlin
und 1864 an die Universität berufen . Er
ist einer der bedeutendsten Mathemati¬
ker des 19 . Jh .s .

Abb . 43 . 1 Karl Theodor Wilhelm
Weierstrass (31 . 10 . 1815 Ostenfelde /
Landkreis Warendorf - 19 .2 . 1897 Berlin)
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Eine Zahl und ihre Gegenzahl haben denselben Absolutbetrag ; denn die ent¬
sprechenden Pfeile sind gleich lang .

Beispiele :
1 ) 131 = | — 31 = 3 ;
2) | - 1,7 | = | 1,7 | = 1,7 ;
3) ItI = I “ fl = i

Da der Nullpfeil die Länge 0 hat , gilt 101 = 0 . Jede von 0 verschiedene Zahl hat
einen positiven Absolutbetrag .
Wir fassen zusammen :

Satz 44. 1 : 1 ) Der Betrag einer Zahl ist nicht negativ.
Es gilt also : | a | ä ; 0 für jedes « eQ .

2) Nur die Zahl 0 hat den Betrag 0 .
Kurz * : \ a \ = 0 <=> a = 0 .

3 ) Zahl und Gegenzahl haben gleichen Betrag .
Also : | — a \ = \ a \ .

Bei positiven Zahlen und bei 0 stimmt der absolute Betrag mit der Zahl selbst
überein . Bei negativen Zahlen unterscheidet sich jedoch der Betrag von der
Zahl selbst :

Beispiele :
1 ) | - 2 | = 2 , 2) | - 5,17 | = 5,17 , 3) | - f | = f .

Die Beispiele lassen erkennen , daß der Betrag einer negativen Zahl a mit der
positiven ( !) Gegenzahl — a übereinst immt . Es gilt ja :
| - 2 | = 2 = - ( - 2) , | - 5,17 1 = 5,17 = - ( - 5,17 ) usw.
Diese Überlegungen führen zu

a , wenn a positiv ist ;
Satz 44.2 : \ a \ = 0 , wenn a = 0 ;

- a , wenn a negativ ist .

Dieser Satz zeigt , wie man den Betrag einer Zahl auch ohne Verwendung von
Betragsstrichen angeben kann : Bei 0 und den positiven Zahlen darf man die
Betragsstriche einfach weglassen ; bei negativen Zahlen muß man als Betrag
die Gegenzahl nehmen .

* Das Zeichen « > hat die Bedeutung »genau dann , wenn « .
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Aufgaben

1 . Wie heißt die Gegenzahl von
a) 167 b) - 3,14 c) 2{f d) - 0,001 ?

2 . Vereinfache die Schreibweise der folgenden Zahlen:
a) - ( - 2) b) - ( - 0,34) c) - ( - ( - 1 )) d) - ( - ( - ( - 0,6)))
e) + 49 f) - ( + 7,3) g) - ( + ( - 4)) h) + ( - ( + 5))

3 . Welche der folgenden Aussagen sind wahr ? Berichtige die falschen Aussa¬
gen.
a) Die Gegenzahl einer positiven Zahl ist nicht positiv.
b) Die Gegenzahl einer rationalen Zahl ist negativ.
c) Die Gegenzahl einer nichtnegativen Zahl ist negativ .
d) Die Gegenzahl einer natürlichen Zahl ist eine ganze Zahl.
e) Wenn man zu den Elementen von N alle ihre Gegenzahlen hinzufügt,

erhält man die Menge Z .
4 . Bestimme | x | für x e { — 1000 ; — 111 ; - 0,1 ; 0 ; 0,12; 63 ; 10 6

} .
5 . Bestimme alle Zahlen mit folgender Eigenschaft:

a) Der absolute Betrag ist 7,5 .
b) Die Zahl ist negativ und hat den Betrag 2,8 .
c) Die Zahl ist positiv und hat denselben Betrag wie - 99 .
d) Weder die Zahl selbst noch ihr absoluter Betrag sind positiv .
e) Die Zahl ist von ihrem Betrag verschieden, und dieser hat den Wert 7 .

6. Berechne :
a) 17,91 + | - 51 b) j 7,91 | 51
c) | — 81 j + | — 191 d) | — 811 — 1191
e) I - Ml - | - 0,85 | f ) | - l | - | i | - | - i | .

7 . Bestimme die Lösungsmengen :
a) \ x \ = 0,5 b) | x | = 7 c) | x | = 0
d) | xj = - 1 e) | x | ^ 0 f) [x | > 0 .

8 . Welche Zahlen z e Z erfüllen folgende Bedingung?
a) | z | ^ 0 b) | z | < l c) | z | ^ 3
d) | z | > 0 e) | z | ^ 2 f) 1 < | z | < 4 .

2 .4 Addition und Subtraktion von rationalen Zahlen

2 .4 . 1 Definition der Addition

Ob die neu eingeführten negativen Zahlen zu Recht als Zahlen bezeichnet
werden , entscheidet sich an der Frage , ob man mit ihnen in gewohnter Weise
rechnen kann . Wir wollen dies zunächst für die Addition untersuchen . Dazu
betrachten wir einige Beispiele von Summen aus rationalen Zahlen :
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Beispiele :
1) 2 + 3,7 2) 5 + 0 3) 5,2 + ( - 3)
4) ( — 4) + lj 5) ( - 2,4) + ( - 3,7) 6) 0 + ( - l )

Beachte : Beim Anschreiben solcher Summen ist es wichtig , zwischen Rechen¬
zeichen und Vorzeichen genau zu unterscheiden . Das Vorzeichen ist ein Be¬
standteil der betreffenden Zahl ! Dies wird , wie die Beispiele 3 bis 6 zeigen,
durch Klammern zum Ausdruck gebracht .

Die Summen in den Beispielen 1 und 2 sind von bekannter Art . Dagegen
stellen uns die übrigen Beispiele vor neue Situationen : Wir wissen ja noch
nicht , wie Summen mit negativen Summanden zu berechnen sind ! Man muß
erst einmal definieren , welche Bedeutung solche Summen haben sollen . Na¬
türlich soll diese Definition der Addition rationaler Zahlen so beschaffen sein,
daß sie für nicht -negative Summanden (Beispiele 1 und 2) mit der altbekann¬
ten Addition übereinstimmt .
Bei der Suche nach einer geeigneten Definition erinnern wir uns an die graphi¬
sche Darstellung der Addition bei positiven Zahlen (Abbildung 46 . 1 ) :

Abb . 46 . 1 Veranschaulichung der Addition in Q +

Man erhält , wie Abbildung 46 . 1 zeigt , den Pfeil für die Summe a + b , indem
man an die Spitze des Pfeils a den Pfeil b ansetzt . Der Summenpfeil läuft dann
vom Anfangspunkt des ersten zur Spitze des zweiten Summandenpfeils . Wir
wollen dieses geometrische Verfahren im folgenden kurz als Pfeiladdition be¬
zeichnen .
Es liegt nun nahe , diese Pfeiladdition versuchsweise auch auf Summen mit
negativen Summanden zu übertragen . Für die obigen Beispiele 3 , 4 und 5
ergeben sich dabei folgende Abbildungen :

1 5,2
15 , 2 + (- 3 )

Abb . 46 .2 5,2 + ( - 3 )
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Abb . 47 . 1 ( — 4 ) + I 4

- 3,7

i - 24

4 - 3 ’7 i - 2 ’4 0 1

1 ( - 2,4 ) + ( - 3,7 )

Abb . 47 .2 ( - 2,4 ) + ( - 3,7)

Aus der jeweils leicht errechenbaren Länge und der Richtung des Summen¬
pfeils erkennt man , daß dieses Additionsverfahren folgende Ergebnisse liefert :
5,2 + ( - 3) = 2,2 ; ( - 4) + l| = - 2i ; ( - 2,4) + ( - 3,7 ) = - 6,1 .
Deutet man z . B . positive Zahlen als Guthaben , negative als Schulden , so
erkennt man , daß diese Ergebnisse durchaus sinnvoll sind . Wir wollen daher
das in diesen Beispielen angewandte Verfahren zur Definition der Addition
beliebiger rationaler Zahlen verwenden .

Definition 47 . 1 : hinter der Summe a + b zweier rationalerZahlen a und
b verstehen wir diejenige Zahl , deren Pfeil sich durch
Anwendung der Pfeiladdition auf die Pfeile a und b er¬
gibt .

Mit dieser Definition ist es uns tatsächlich möglich , zwei beliebige Zahlen aus
<Q> zu addieren . Wie man an den vorausgehenden Beispielen erkennt , sind
dabei jeweils zwei Überlegungen notwendig , nämlich :
1 . Welche Richtung hat der Summenpfeil (falls seine Länge nicht 0 ist)?
2 . Wie lang ist der Summenpfeil ?
Die Antwort auf die erste Frage liefert das Vorzeichen der zu bestimmenden
Summe , die Antwort auf die zweite ihren Absolutbetrag . Wie man Vorgehen
muß , um jeweils die richtigen Antworten zu finden , hängt von Betrag und
Vorzeichen der beiden Summanden ab .
Wir untersuchen dazu verschiedene typische Fälle :

Fall 1 : Die beiden Summanden a und b sind positiv .
Für diesen längst bekannten Fall gilt (vgl . Abbildung 46 . 1 ) :
a + b ist positiv und \ a + b \ = \ a \ + \ b \,
also a + b = \ a \ + \ b \ .
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Fall 2 : Die beiden Summanden a und b sind negativ .

<—

H— =—
\i b 0 *

1 a + b

Abb . 48 . 1

Aus Abbildung 48 . 1 erkennt man leicht , daß nunmehr gilt :
a + b ist negativ und \ a + b \ = \ a \ + \ b \ ,
also a + b = — (\ a \ + \ b \) .

Fall 3 : a ist positiv , b negativ und \ a \ > \ b \.

A ... b L . a k

0 o

Abb . 48 .2

Nach Abbildung 48 .2 gilt :
a + b ist positiv und \ a + b \ = | <a | — | 6 | ,
also a + b = \ a \ — \ b \.

Fall 4 : a ist positiv , b negativ und \ a \ < \ b \.

a k

—

’ a + b

Abb . 48 .3

Abbildung 48 .3 zeigt :
a + b ist negativ und \ a + b \ = \ b \ - \ a \ ,
also a + b = — ( \ b \ — \ a \) .

Ganz entsprechend wie die Fälle 3 und 4 lassen sich die Fälle »a negativ , b
positiv und \ a \ > | 6 |« bzw . »a negativ , b positiv und \ a \ < | 6 |« behandeln .
Zeige dies z . B . anhand der Aufgaben l .b) und l .e) auf Seite 53 .
Die Ergebnisse dieser Untersuchungen lassen sich so beschreiben :
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Satz 49 . 1 : Zwei Zahlen mit gleichen Vorzeichen werden addiert , indem
man ihre Beträge addiert und dieser Summe das Vorzeichen
der beiden Summanden gibt .
Zwei Zahlen mit verschiedenen Vorzeichen werden addiert ,
indem man vom größeren Betrag den kleineren subtrahiert
und dieser Differenz das Vorzeichen des Summanden mit
dem größeren Betrag gibt .

Beispiele :
1) ( - 3) + ( - 7,5 ) = ?

Beide Summanden sind negativ , also auch die Summe . Die Beträge
der Summanden werden addiert . Somit gilt :
( — 3) + ( — 7,5) = — ( | — 31 + | — 7,51 ) = — (3 + 7,5) = — 10,5 .

2) 5,8 + ( - 8,3) = ?
Die Summanden haben verschiedene Vorzeichen . Der Summand mit
dem größeren Betrag , also - 8,3 , ist negativ ; daher wird auch die
Summe negativ . Die Beträge der Summanden werden voneinander
subtrahiert . Somit gilt :
5,8 + ( - 8,3) = - ( | - 8,31 - 15,81) = - (8,3 - 5,8 ) = - 2,5 .

3) ( - 3| ) + 4i = ?
Die Summanden haben verschiedene Vorzeichen . Der Summand mit
dem größeren Betrag ist positiv , also auch die Summe . Die Beträge
der Summanden werden voneinander subtrahiert . Somit gilt :

( - 3i ) + 4i = + ( | 4i | - | - 3i |) = + (4£ - 3i ) = + f = f .

Von besonderem Interesse sind noch die zwei folgenden Fälle :

Fall 5 : \ a \ = \ b \ und a und b haben verschiedene Vorzeichen . In diesem Fall
ist b die Gegenzahl von a , also b = — a .

j b = - a 3 1
0 a .

f~ 3
■ .

b= - a

Abb . 49 . 1

Aus Abbildung 49 . 1 erkennt man : a + ( — a) = 0 .

Satz 49 .2 : Die Summe aus einer Zahl und ihrer Gegenzahl ist 0 .
a + ( — a) = 0 für jedes a e O
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Fall 6: Ein Summand ist 0 .
Da der Pfeil für die Zahl 0 die Länge 0 hat , ergibt sich unmittelbar aus
Definition 47 . 1 :

Satz 50. 1 : Für jede rationale Zahl a gilt
a + 0 = 0 + a = a .

Dieser Satz besagt , daß die Zahl 0 auch in der Zahlenmenge O das neutrale
Element der Addition ist .

2 .4 .2 Eigenschaften der Addition in Q>

Von der im Abschnitt 2 .4 . 1 eingeführten Addition rationaler Zahlen wissen
wir noch nicht , ob sie wirklich alle erwünschten Eigenschaften besitzt . Es geht
hier vor allem um die Frage , ob für sie die Rechengesetze gültig bleiben , die
uns von der Addition in Qq her schon bekannt sind . Zur Wiederholung wol¬
len wir diese Rechengesetze hier zusammenstellen :

Rechengesetze der Addition in Qq
Für alle Zahlen a , b , c aus Q c| gilt :
(E) a + b ist wieder eine Zahl aus Qq eindeutige Existenz der Sum-

me
(K) u + b — b + u Kommutativgesetz * der Addi¬

tion
(A) (a + b) + c = a + (b + c) Assoziativgesetz* * der Addi¬

tion
(N) a + 0 = a 0 ist neutrales Element der Ad¬

dition

Wir müssen nun prüfen , ob die in der größeren Zahlenmenge Q eingeführte
Addition ebenfalls diesen Rechengesetzen genügt .
1) Existenz der Summe : Nach dem in Definition 47 . 1 festgelegten Verfahren

kann man zwei rationale Zahlen stets addieren ; die Summe ist wieder eine
Zahl aus <Q>. Damit bleibt (E) in Q gültig .

* commutare (lat .) = verändern , vertauschen . - Der Ausdruck kommutativ wurde 1814 von Franfois Joseph
Servois (1767- 1847) in seinem Essai sur un nouveau mode d 'exposition des principes du calcul dijferentiel
in die Mathematik eingeführt .

* associare (lat .) = vereinigen , anschließen , verbinden . - Der Ausdruck assoziativ wurde 1843 von dem be¬
rühmten irischen Mathematiker und Astronomen William Rowan Hamilton (1805- 1865) bei der Erfin¬
dung ganz besonderer »Zahlen « , der sog . Quaternionen , in die Mathematik eingeführt . - Abb . 90 .1
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2) Kommutativgesetz der Addition : Wir konstruieren und vergleichen die
Pfeilsummen a + b und b + a für die verschiedenen Vorzeichenzusammen¬
stellungen :

o
b a

h

b
a

0a

b

b

$ 0b

Abb. 51 . 1 Zum Nachweis des Kommutativgesetzes

Abbildung 51 . 1 zeigt , daß in allen diesen Fällen a + b = b + a gilt . Wenn
ein Summand 0 ist , gilt nach Satz 50 . 1 ebenfalls a + 0 = 0 + a . Also bleibt
(K) in O gültig .

3) Assoziativgesetz der Addition : Anstatt hier für alle typischen Fälle Pfeil¬
summen zu konstruieren , überlegen wir : Wenn man aus drei Pfeilen a , b , c
die Summen {a + b) + c und a + (b + c) bildet , läuft das in beiden Fällen
darauf hinaus , daß man die Pfeile einfach der Reihe nach aneinandersetzt .
Das Ergebnis ist unabhängig davon , ob a und b oder b und c zu einer
Zwischensumme zusammengefaßt werden . Damit gilt wieder (a + b) +
+ c = a + (b + c) , d . h . , (A) bleibt auch für die Addition in <Q gültig .

Ein Beispiel zeigt Abbildung 52 . 1 . In den ersten beiden Zeichnungen wird
jeweils oberhalb der Zahlengeraden die Zwischensumme a + b bzw . b + c
konstruiert , die dann darunter zur Ermittlung der ganzen Summe
(a + b) + c bzw . a + (b + c) verwendet wird . Der letzte Teil der Abbildung
zeigt zum Vergleich die drei der Reihe nach aneinandergesetzten Pfeile.
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b a + b

b

] a + b

o
> a (a+l3)+ C C

ja + b
C - b

c

\ .
b . .. b + c Kl

- k j a + i D+CJ C

0 0 a

0 a a + b + c c

Abb. 52 . 1 Zum Assoziativgesetz der Addition

4) NeutralesElement der Addition : Der schon bewiesene Satz 50 . 1 besagt, daß
0 auch für die Addition in 0 neutrales Element ist , so daß auch (N ) gültig
bleibt .

Damit gilt

Satz 52 . 1 : Für die Addition in der Menge Q der rationalen Zahlen
gelten wieder die auf Seite 50 zusammengestellten Rechen¬
gesetze (E) , (K) , (A) , (N ) .

Für die Rechenpraxis sind insbesondere die Gesetze (A) und (K) von großer
Bedeutung . Aus (A) folgt bekanntlich , daß man bei dreigliedrigen Summen
darauf verzichten kann , die Reihenfolge der beiden Additionen durch Klam¬
mern festzulegen . Da es nach dem Assoziativgesetz gleichgültig ist , ob man
(a + b) + c oder a + (b + c) berechnet , genügt es auch , einfach a + b + c zu
schreiben . Nimmt man noch das Kommutativgesetz hinzu , so zeigt sich, daß
auch die Reihenfolge der Summanden beliebig verändert werden kann . Das¬
selbe gilt, wie man zeigen kann , auch für Summen mit mehr als drei Summan¬
den .

Beispiel 1 :
Behauptung : a + b + c = c + b + a
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Beweis: Der Einfachheit halber schreiben wir im folgenden das bei einer
Umformung angewandte Rechengesetz über das Gleichheitszeichen .
Zum Beispiel hat = die Bedeutung »ist wegen Rechengesetz (A) gleich« .
a + b + c = {a + b) + c = c + (a + b) = c + (b + a) = c + b + a .

Beispiel 2:
12,5 + ( - 23,91 ) + 7,5 = (12,5 + ( - 23,91 )) + 7,5 =

= 7,5 + (12,5 + ( - 23,91 )) =
= (7,5 + 12,5) + ( - 23,91 ) =
= 20 + ( - 23,91 ) = - 3,91 .

Beispiel 2 zeigt , wie man durch die Wahl einer günstigen Reihenfolge der
Summanden und der Rechenschritte die Durchführung einer Rechnung oft
vereinfachen kann . Achte stets auf solche Rechenvorteile!

Aufgaben

1 . Bestimme die folgenden Summen durch eine Pfeilkonstruktion . Verwende
dazu eine Zahlengerade mit der jeweils angegebenen Längeneinheit (LE) ,
a) ( - 3,2 ) + ( - 1,5) , LE 1 cm ; b) ( — 2,6) + 8 , LE 1 cm ;
c) 64 + ( - 97) , LE 1 mm ; d) 0,75 + ( - 0,48 ) , LE 1 dm ;
e) ( - 1,1 ) + 0,8 , LE 5 cm ; f) ( - f ) + ( - ^ ) , LE 6 cm .

2 . Berechne die folgenden Summen . Überlege jeweils zuerst , welches Vorzei¬
chen das Ergebnis erhält und wie man seinen Betrag berechnet .
a) ( - 10) + 12 b) 10 + ( - 12) c) ( - 9,1 ) + ( - 1,9)
d) 1,5 + 4i e) ( — 7,45 ) + f) 0,865 + ( - 1,39)
g) ( - £) + ( - & ) h) ^ + ( - 2£ ) i) ( - 0,196) + ^

3 . Konstruiere für die folgenden Zahlenbeispiele zur Überprüfung des Asso¬
ziativgesetzes der Addition die Pfeilsummen (a + b) + c und a + (b + c) .
Kennzeichne dabei die zuerst gebildeten Zwischensummen durch zweifar¬
bige Pfeile (vgl . Abbildung 52 . 1 ) .
a) a = 4 ; b = — 3 ; c = - 3,5 ; LE 1 cm
b) a = - 2,4 ; b = 7,3 ; c = - 3,2 ; LE 1 cm
c) a = — 0,6 ; b = — f ; c = LE 4 cm

4 . Berechne die folgenden Summen . Achte dabei auf eventuelle Rechenvor¬
teile.
a) 15 + 27 + ( - 32) b) ( - 243 ) + ( - 102) + 45
c) 1010 + ( - 2000) + 990 d) ( — 123) + ( — 68) + ( — 132)
e) ( - 0,93 ) + 1,13 + ( - 0,63 ) f) ( - 2,25 ) + ( - 4,75) + 7,25
g) 2f + ( — 1 | ) + ( l £ ) h) 15,8 + ( - 20i ) + 4j
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5 . Berechne :
a) (27 + ( - 15 )) + ( - 8) + ( - 9) b) ( - 109) + (85 + 13 + ( - 45))
c) (( - 3,14 ) + 2,38 ) + ( - 0,167) + 1,427
d) (4-y + ( — 10,5 )) + (8f + ( — 2f ))

6 . Berechne :
a) ( — 7) + | — 71 b) | - 2,5 | + | 2,5 | c)
d) 13 + ( — 4) | e) 131 + | — 41 f)
g) | ( - 1,16 ) + ( - 2,39 ) | h) | - 1,16 | + | - 2,39 | i)

• 7 . Ist x positiv , null oder negativ , wenn folgende Gleichung gilt? (Hinweis :
Beachte Satz 49 . 1 .)
a) | 7 + x | = 7 + | x | b) | ( - 7) + x | = 7 + | x |
c) | x + 21 = 2 — | x | d) | x + 21 = | x | — 2
e) Welche Angabe über | x | läßt sich im Fall c) bzw . im Fall d) machen?

8 8 . Was kann man über die Vorzeichen von x + 0 und y 4= 0 sagen , wenn gilt
a) \ x + y \ = | x | + \y \ b) | x + y \ = | x | - \y \
c) l * + ( - k ) l = M + | j>| d) j ( x) + ( _y) | = [x | \y \ ?

2 .4 .3 Die Subtraktion in Q>

Beim Addieren besteht die Aufgabe darin , aus den gegebenen Summanden die
Summe zu berechnen . Oft kommt es aber auch vor , daß von einer Summe der
Wert schon bekannt ist und einer der Summanden gesucht wird . Um diesen zu
berechnen , muß man bekanntlich eine Subtraktion ausführen . Man bezeich¬
net wegen dieses Zusammenhangs die Subtraktion als Umkehrung der Addi¬
tion .

Beispiel :
Auf einer Straßenkarte ist die Entfernung München - Nürnberg mit
162 km und die Teilstrecke München - Ingolstadt mit 73 km angegeben .
Wie lang ist dann die Strecke von Ingolstadt nach Nürnberg ?
Bezeichnet man sie mit xkm , so ist x die Lösung der Gleichung
73 + x = 162 , also x = 162 — 73 = 89 .
Die Strecke Ingolstadt - Nürnberg ist somit 89 km lang .

Das Beispiel zeigt deutlich den Zusammenhang zwischen der Differenz
162 — 73 und der Gleichung 73 + x = 162 : die Differenz ist die Lösung der
Gleichung. Ganz allgemein legt man fest :

3,2 + | - 3,2 |
I ( 3) + 41
| ( - 5£) + | - 2£

Definition 54 . 1 : Unter der Differenz b — a versteht man die Lösung der
Gleichung a + x = b .

b — a ist also diejenige Zahl , die man zu a addieren muß , um b zu erhalten .
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Nach dieser Definition hat eine Differenz b — a nur dann einen Sinn , wenn die
entsprechende Gleichung a + x = b genau eine Lösung besitzt . In der Zahlen¬
menge Q>o war dies nur unter der Voraussetzung a ^ b der Fall . Für a > b war
die Gleichung unlösbar , somit die Subtraktion b — a nicht ausführbar . Hat
sich daran durch die Einführung der negativen Zahlen etwas geändert ? Ist in
der Zahlenmenge <Q die Subtraktion immer durchführbar ?
Um diese wichtige Frage zu klären , betrachten wir als Beispiel zunächst eine
Gleichung , die in Qq keine Lösung hat :

Beispiel :
7 k

7 + x = 3 o ^ 3 f
7 X

Abb. 55 . 1 Zur Gleichung 7 + x = 3

Die Pfeildarstellung zeigt , daß es genau eine Zahl x gibt , die man zu 7
addieren muß , um 3 zu erhalten . Sie wird durch den von 7 nach 3 zeigen¬
den Pfeil dargestellt . Man erkennt leicht , daß es die Zahl — 4 ist .
Es gilt also : 1 + x = 3 hat die Lösung x — 3 — 7 = — 4 .

Das in diesem Beispiel angewandte Verfahren läßt sich auf jede Gleichung der
Form a + x = b übertragen : Man stellt a und b durch vom Nullpunkt der
Zahlengeraden ausgehende Pfeile dar . Dann gibt es genau einen Pfeil x , der
von der Spitze des Pfeils a zur Spitze des Pfeils b führt ; er stellt die einzige
Lösung der Gleichung dar . Die Abbildung 55 .2 zeigt einige typische Fälle .

X

' o

- ■- ►
X

4-^—
i- r- 0 X

Abb . 55 .2 Zur Gleichung a + x = b
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Damit gilt folgender

Satz 56 . 1 : Die Gleichung a + x = b hat in der Menge G der rationalen
Zahlen stets genau eine Lösung .

Da man die Lösung der Gleichung a + x = b durch die Differenz b — a aus¬
drückt (siehe Definition 54 . 1 ) und diese also für beliebige a , beQ definiert ist,
gilt weiter der wichtige

Satz 56.2 : In der Menge Q der rationalen Zahlen ist die Subtraktion
unbeschränkt ausführbar .

Durch die Einführung der negativen Zahlen ist es uns also gelungen , die früher
bei der Subtraktion notwendigen Beschränkungen aufzuheben !

Ein wichtiger Sonderfall der Gleichung a + x = b ergibt sich für b = 0 . In
diesem Fall , also für die Gleichung a + x = 0 , lautet die Lösung : x = 0 — a.
Bei dieser Differenz handelt es sich aber , wie Abbildung 56 . 1 zeigt , um die uns
schon bekannte Gegenzahl von a , also x = — a .

Abb . 56 . 1 Die Gleichung a + x = 0

Damit gilt

Satz 56.3 : Die Differenz 0 - a ist die Gegenzahl von a .
0 — a = — a

Man kann nun also — a auch als Kurzschreibweise für die Differenz 0 — a
auffassen . Analog dazu kann man + a als Kurzform für die Summe 0 + a
verstehen .
Die schon in Satz 49 .2 aufgetretene Gleichung a + ( — a) = 0 kann nun auch
folgendermaßen gedeutet werden : Zu jeder Zahl a e Q gibt es eine zweite Zahl
(nämlich — a) , so daß die Summe dieser Zahlen das neutrale Element der
Addition , also 0 , ist . Man sagt dazu auch : »Die beiden Zahlen heben sich beim
Addieren gegenseitig auf .« In der Mathematik bezeichnet man solche Zahlen
als zueinander invers * bezüglich der Addition.

inversus (lat .) = umgekehrt
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Satz 57 . 1 : Zu jeder rationalen Zahl a gibt es genau eine Inverse bezüg¬
lich der Addition , nämlich die Gegenzahl - a .

Dieser Satz stellt ein weiteres Rechengesetz der Addition dar , das als »Exi¬
stenz des Inversen « bezeichnet wird . Wir verwenden dafür die Abkürzung (I) .
Damit haben wir für die Addition in G> fünf Rechengesetze :

(E) , (K ) , (A) , (N ) , (I) .

Wir betrachten noch einmal die Pfeildarstellung der Differenz b — a (Abbil¬
dung 57. 1 ) .

- a
— ►

!a
— ►b

o | b

— - 414 —

Abb. 57 . 1 Pfeildarstellung der Differenz

Offensichtlich erhält man den Pfeil b — a auch dadurch , daß man an den
Pfeil b den Pfeil — a ansetzt , also die Pfeilsumme b + ( ~ a) bildet ! Ob das
allgemeingültig ist , können wir durch Rechnen überprüfen . Da b — a die
Lösung der Gleichung a + x = b ist , rechnen wir nach , ob auch b + ( — ä)
diese Gleichung erfüllt :
a + (b + ( - a)) = a + (( - a) + b) = (a + ( - a)) + b = 0 + b = b ,
also a + (b + ( — a)) = b .
Damit ist gezeigt , daß die Lösung der Gleichung a + x = b , für die wir in
Definition 54 . 1 die Differenzschreibweise x = b — a vereinbart haben , auch
in der Form x = b + { — a) geschrieben werden kann . Da die Gleichung nur
eine einzige Lösung besitzt , kann es sich bei b — a und b + ( — d) nur um
verschiedene Darstellungen derselben Zahl handeln ! Es gilt also :

Satz 57 .2 : b — a = b + ( — a)
Das heißt : Das Subtrahieren einer Zahl ist gleichbedeutend
mit dem Addieren ihrer Gegenzahl .

Mit diesem Satz kann man jede Differenz in eine Summe , jede Subtraktion in
eine Addition umwandeln ! Das ist deshalb von großer praktischer Bedeutung ,
weil wir das Addieren in der Zahlenmenge Q bereits gut beherrschen - und
damit nun auch schon das Subtrahieren .
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Beispiele:
1) 5 - 11 = 5 + ( — 11) = — (11 — 5) = — 6 .
2) ( - 2,17) - 8,05 = ( - 2,17) + ( - 8,05 ) = - (2,17 + 8,05 ) = - 10,22 .
3) ( - 6£ ) - ( - 9^ ) = ( - 6& ) + ( - ( - 9^ )) = ( - 6&) + 9J _ =

= + (^ 20 — 6yif) = = 3 Y2 -

Aufgaben

1 . Berechne folgende Differenzen :
a) 99 - 1000 b) ( — 99) — 1000 c) ( - 99) - ( - 1000)
d) 5,2 - 7,9 e) ( - 16,45 ) - ( - 17,5 ) f ) ( - 0,625) - 0,625
g) U ~ i h) 2f - ( - 5 | ) i) ( - 10*?) - ( - 7,2)

2 . a) Beschreibe für die im folgenden angegebenen Fälle , wie man das Vor¬
zeichen und den Betrag der Differenz a — b aus den Vorzeichen und
Beträgen von Minuend a und Subtrahend b erhält . (Vergleiche dazu die
entsprechende Untersuchung auf Seite 48 für die Summe a + b . ) Ferti¬
ge jeweils eine Pfeilskizze an .
1 . Fall : a positiv und b negativ
2 . Fall : a negativ und b positiv
3 . Fall : a und b positiv und \ a \ > \ b \
4 . Fall : a und b positiv und \ a \ < 1* 1
5 . Fall : a und b negativ und \ a \ > \ b \
6 . Fall : a und b negativ und \ a \ < \ b \

b) Formuliere nun einen dem Satz 49 . 1 entsprechenden Satz für die Sub¬
traktion .

3 . Schreibe nach Definition 54 . 1 die Lösung der Gleichung als Differenz und
berechne sie .
a) 3 + x = 1 b) — 3 + x = 1 c) 3 + x = — 1
d) — 3 + x = — 1 e) x + 2,7 = 1,5 f) x + ( - 2,7 ) = 1,5
g) x + 2,7 = — 1,5 h) x + ( - 2,7) = - 1,5 i) 5* = x + 8*
k) 2* - 4^ = 9* + x 1) 231,77 + 378,29 = - 167,71 + x

4 . Berechne :
a) 21 - ( 17 + 14) b) ( - 123) - (213 - 321)
c) ( - 76) - ( 18 + 58) d) ( - 51,6 ) + (34,9 - ( - 17,7 ))
e) (( — 15*f ) + 81f) — 100 f) 13,25 - (2| - ( - lf ))

5 . Berechne :
a) (365 - 640 ) + (575 - 700)
b) (62,8 - 20,25) - (32,08 + 10,47 )
c) (( - 0,216) + 0,173 ) - (17,3 - 21,6)
d) (16 - 12£ ) - (8,75 + ( - 3£))
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• 6 . Bestimme die Lösung einer Gleichung vom Typ x — a = b , indem du x — a
als Summe schreibst und Definition 54 . 1 anwendest ,
a) x — 5 = — 3 b) x — 22 = 29,3
c) x - 2i = 3^ - 6i d) 5£ - 14i = x - 8|
e) 33 - (17 + 48) = x - 25 f) x - (3^ + 8& ) = 4^ -

• 7 . Bestimme die Lösung einer Gleichung vom Typ a — x = b , indem du a — x
als Summe schreibst und nach Definition 54 . 1 zuerst — x berechnest ,
a) 10 — x = 20 b) 3^ — x = 5|
c) 6,92 - x = 2,17 - (0,25 - 4,5) d) 4£ + 3£ = 7| - x

8 . Während eines Wintertages wurde im Abstand von je 3 Stunden die Tem¬
peratur abgelesen und notiert :
Uhrzeit 0 h 3 h 6h 9h 12 h 15 h 18 h 21 h 24h

Temperatur
in °C

- 9,5 - 10,7 - 11,8 - 5,6 2,7 2,1 - 2,1 - 5,8 - 7,3

a) Berechne die Temperaturänderungzwischen je zwei aufeinanderfol¬
genden Ablesungen .

b) In welchem dieser Zeitabschnitte war die Temperaturabnahme, in wel¬
chem die Temperaturzunahme am größten ?

9 . Gase werden bei sehr tiefen Temperaturen flüssig , z . B . Sauerstoff bei
— 183 °C und Helium bei — 269 ° C . Um wieviel Grad muß man Helium ,
das mit flüssigem Sauerstoff vorgekühlt wurde , noch weiter abkühlen , um
es zu verflüssigen?

10 . Wenn man Quecksilber abkühlt, erstarrt es bei einer Temperatur von
— 59 °C . Um wieviel Grad muß sich Quecksilber , das die Temperatur von
flüssigem Sauerstoff ( — 183 °C) hat , erwärmen , damit es wieder flüssig
wird?

11 . Auf das Bankkonto des Herrn Knapp wurde am Monatsersten sein Ge¬
halt in Höhe von 3275 DM überwiesen . Am gleichen Tag wurden 840 DM
als Monatsmiete abgebucht . Danach betrug sein Guthaben 2361,42 DM .
Wie hoch war der Kontostand vor den beiden Buchungen ?

12 . Auf einer Reise durch den Westen der USA übernachtetFamilie Brown im
berühmten Death Valley (California ) . Am nächsten Tag fahren sie weiter
nach NW in die Sierra Nevada und erreichen dabei am Tioga -Paß (Mee¬
reshöhe 3031 ) den höchsten Punkt . Herr Brown stellt fest , daß sie damit an
diesem Tag einen Höhenunterschied von 3116 m überwunden haben . Auf
welcher Meereshöhe liegt demnach der tiefste Punkt des Death Valley
( = tiefster Punkt in den USA !)?
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2 .5 Anordnung der rationalen Zahlen

2 .5 . 1 Definition der Anordnung in <Q>
Für je zwei Zahlen p und q aus der Menge Q rj ist die folgende Aussage richtig :
Entweder gilt p = q , gelesen »p ist gleich q« ,
oder es gilt p < q , gelesen »p ist kleiner als q« ,
oder es gilt p > q , gelesen »p ist größer als q« .
Man sagt deshalb : »Die Zahlenmenge (Qq ist angeordnet . « Die Aussagen
p < q oder p > q nannte 1838 der Gymnasialdirektor Johann Heinrich Trau¬
gott Müller (1797- 1862 ) in seinem Lehrbuch der Mathematik für Gymnasien
und Realschulen Ungleichungen.
Das Zeichen = wurde von dem Engländer Robert Record (e) (1510 (?)—1558 ) erfun¬
den . In seinem The whetstone of witte (Der Schleifstein des Denkens ) schreibt er 1557 :
»And to avoid the tedious repetition of these words >is equal to <I will set [ . . . ] a pair of
parallels , or twin lines of one length , thus : = , because no 2 things can be more
equal .« - Zeichen der Gleichheit nannte es 1791 Johann Heinrich Voigt (1751 - 1823 ) .
Die Zeichen < und > erscheinen zum ersten Mal in der postum 1631 gedruckten Artis
analyticae praxis ad aequationes algebraicas resolvendas des Engländers Thomas Har -
riot (1560 - 1621) . Der Herausgeber , Walter Warner , gab Harriots handschriftlichen
Zeichen < bzw. > diese einfache Form .
Wir wollen nun versuchen , die Anordnung in Qq auf die größere Menge Ü der
rationalen Zahlen auszudehnen . Dazu müssen wir auch für die neu hinzuge¬
kommenen negativen Zahlen die Verwendung der Zeichen < und > sinnvoll
festlegen . Da in Qq die Ungleichung p < q bedeutet , daß auf dem Zahlen¬
strahl der Punkt p links vom Punkt q liegt , bietet es sich an , zu vereinbaren ,
daß auch für zwei Zahlen a und b aus Q die Beziehung a < b genau dann
gelten soll , wenn auf der Zahlengeraden der Punkt a links vom Punkt b liegt
(Abbildung 60 . 1 ) . Damit müßte z . B . - 20 < — 1 oder — 500 < 0 oder
— 2 < 0,2 gelten ! Deutet man die Zahlen etwa als Angaben über Temperatu¬
ren oder Kontostände , so erkennt man , daß solche Ungleichungen durchaus
sinnvoll sind .

Definition 60 . 1 : Für zwei rationale Zahlen a und b gilt a < b genau
dann , wenn auf der Zahlengeraden der Punkt a links
vom Punkt b liegt.
Statt a < b schreibt man auch b > a.

4L + 4L
a bO ä Ob Oa

Abb . 60 . 1 Veranschaulichung von a < b
Aus Deünition 60 . 1 folgt , daß nun auch in der Menge Q für je zwei Zahlen a , b
die Aussage zutrifft :

Es gilt entweder a = b oder a < b oder a > b .
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Auf Grund der Anordnung auf der Zahlengeraden bestehen zwischen den
negativen Zahlen , der Zahl null und den positiven Zahlen die folgenden Bezie¬
hungen :

Satz 61 . 1 : 1 . Jede positive Zahl ist größer als 0 .
2 . Jede negative Zahl ist kleiner als 0 .
3 . Jede negative Zahl ist kleiner als jede positive .

Wegen Teil 1 und 2 dieses Satzes können wir die Aussagen »a ist positiv « bzw.
»a ist negativ « kürzer durch die Ungleichungen a > 0 bzw . a < 0 beschreiben .

Wie die Abbildung 60 . 1 zeigt , ist im Fall a < b der Pfeil von a nach b stets
rechtsgerichtet ; er stellt also eine positive Zahl p dar . p ist diejenige Zahl , die
man zu a addieren muß , um b zu erhalten , also die Differenz b — a . Da umge¬
kehrt für eine Zahl p > 0 zur Summe a + /; immer ein rechts von a liegender
Punkt der Zahlengeraden gehört , gilt

Satz 61 .2 : a < b gilt genau dann, wenn es eine positive Zahl p gibt, so
daß a + p = b .

Beispiele:

1) - 20 < - 1 ; denn - 20 + 19 = - l .
2) — 500 < 0 ; denn - 500 + 500 = 0 .
3) - 2 < 0,2; denn - 2 + 2,2 = 0,2 .
4) f < f ; denn f + M = t -

2 .5 .2 Monotoniegesetz der Addition

Wir wissen : Wenn man zwei gleiche Zahlen a und b hat und zu jeder dieselbe
Zahl c addiert , erhält man auch gleiche Summen . Das heißt , aus a = b folgt
stets a + c = b + c .

Beispiel * : 2 + 3 = 5 => (2 + 3) + 8 = 5 + 8

Welche Beziehung besteht aber zwischen a + c und b + c , wenn a und b ver¬
schiedene Zahlen sind , wenn z . B . a < b gilt?

C C C c

_ I
— ju -ü — *= !-

a a +c b b +c a + c a btc b

Abb . 61 . 1 Zum Monotoniegesetz der Addition

Den Folgepfeil => liest man daraus folgt .
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Wie Abbildung 61 . 1 zeigt , gilt mit a < b stets auch a + c < b + c , und zwar
unabhängig davon , ob c > 0 oder c < 0 oder c = 0 gewählt wird . Die Addi¬
tion von c verschiebt jeden der Punkte a und b auf der Zahlengeraden um
den Pfeil c . Dabei bleibt ihre Reihenfolge und sogar ihre Entfernung erhalten .
Daß umgekehrt aus a + c < b + c auch wieder die Ungleichung a < b folgt ,
erkennt man , indem man auf beiden Seiten — c addiert . Damit gilt

Satz 62 . 1 : Monotoniegesetz der Addition
Addiert man auf beiden Seiten einer Ungleichung dieselbe
Zahl , so bleibt das Ungleichheitszeichen erhalten ; kurz :

a < b o a + c < b + c

Ein entsprechendes Monotoniegesetz gilt auch für die Subtraktion , denn man
kann ja nach Satz 57 .2 jede Differenz auch als Summe schreiben . Durchfüh¬
rung in Aufgabe 63/3.
Das Monotoniegesetz der Addition wendet man gerne an , um festzustellen , ob
eine Ungleichung zutrifft oder nicht .

Beispiele:
1 ) — 36 < — 6 <f> — 36 + 6 < — 6 + 6 o — 30 < 0
2) — 36 < — 6 o — 36 + 36 < — 6 + 36 o - 0 < 30
3) - 36 < - 6o - 36 + 21 < - 6 + 21 o - 15 < 15
4) 2,25 > <=> 2,25 —

2^ > fo ~ 20 ^ 2,25 - 0,35 > fg 1,9 > 2 ( !)
5) 2,25 > o 2,25 - 2,25 > - 2,25 o 0 > 2,35 - 2,25 0 > 0,1 ( !)

Die Beispiele 1 , 2 und 5 zeigen, wie man durch Anwendung des Monotoniege¬
setzes der Addition bzw . Subtraktion eine Ungleichung auf »Nullform « brin¬
gen , d . h . auf einer Seite der Ungleichung die Zahl 0 herstellen kann . An einer
solchen Nullform erkennt man besonders leicht , ob die Ungleichung wahr
oder falsch ist .

Aufgaben

1 . Stelle aus den Zahlen der folgenden Paare mit einem der Zeichen = , < , >
eine richtige Gleichung bzw . Ungleichung her .
a) 0 ; 0,1 b) 3 ; — 1 c) — 5,6 ; — 6,5 d) - & - 0,35
e) - 25 ; 0 f) - 0,99; 0,01 g) - & & h) - g ;
i) — 3 ; — 1 k) — 1,4 ; j 1) 10 ; - 100 m) - 57 ; - 75

2 . Unter den folgenden Ungleichungen sind einige falsch ! Welche?
a) 1,65 < 2 b) - 1,65 < - 2
c) 2^ > 0,56 d) — ü < — 0,56
e) 1 - 2,75 > - 2,25 f) - 1,3 - 2,45 < - 4 + 0,75
g) 3,5 - (2i + 0,625) + ( lf - | ) - 0,875
h) 0,5 - (f + i ) + l,2
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3 . Zum Monotoniegesetz der Subtraktion
a) Fasse folgenden Satz in Worte und begründe ihn :

Für alle a , b , c e 0 gilt : a < b => a — c < b — c .
b) Begründe: Für alle a,b,deO gilt: a — d < b - d => a < b .

4 . Stelle bei den folgenden Ungleichungen ihre beiden Nullformen her und
entscheide , ob die Ungleichungen wahr oder falsch sind .
a) 9,99 < 9,999 b) - 1,001 < - 1,01
c) 1,85 > ^ d) - % > - £
e) 1,5 — ^ < lii f) 16,l - ü > 18| - 3^

5 . Auch für Ungleichungen der Form a =f= b gilt das Monotoniegesetz der
Addition : a ^ b o a + c 4= b + c .
a) Gib zu diesem Monotoniegesetz drei Beispiele an .
b) Begründe dieses Monotoniegesetz .

6 . Wenn man bei zwei Ungleichungen a < b und c < d die Zahlen links vom
Ungleichheitszeichen sowie die Zahlen rechts davon addiert und das Un -
gleichheitszeichen beibehält , so entsteht wieder eine richtige Ungleichung .
Kurz :
aus a < b
und c < d folgt a + c < b + d .

a) Prüfe diese Behauptung an drei Zahlenbeispielen.
• b) Beweise die obige Behauptung, indem du bei a < b auf beiden Seiten c

und bei c < d auf beiden Seiten b addierst und die erhaltenen Unglei¬
chungen miteinander vergleichst . Mache dir die Zusammenhänge auch
an der Zahlengeraden klar .

• c) An der Ungleichung 3 + 97 < 1 + 100 erkennt man, daß der in b) be¬
wiesene Satz nicht umkehrbar ist . Begründe dies und gib ein weiteres
Gegenbeispiel an .

2 .6 Multiplikation und Division von rationalen Zahlen

2 .6 . 1 Definition der Multiplikation in Q

In der Menge der rationalen Zahlen beherrschen wir bis jetzt erst das Addieren
und das Subtrahieren . Zwar wissen wir auch , wie Zahlen aus der Menge Qd
miteinander multipliziert werden , aber wir kennen noch keine Produkte mit
negativen Faktoren . Was soll z . B . 3 - ( — 4) oder ( — 2,4) - f oder gar
( — 3,4) • ( — 5,1 ) bedeuten ?
Zunächst eine Bemerkung zur Schreibweise : Auch bei Produkten ist es sehr
wichtig , zwischen Vorzeichen und Rechenzeichen genau zu unterscheiden . Ein
Faktor mit Vorzeichen muß , wie die Beispiele zeigen, in Klammern gesetzt
werden .
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Produkte mit negativen Faktoren müssen wir also erst noch definieren . Natür¬
lich versuchen wir wieder , es so einzurichten , daß für die Multiplikation in Q
die Rechengesetze erhalten bleiben , die uns für die Multiplikation in 0>o ge¬
läufig sind (Permanenzprinzip , vgl . Seite 38) . Zur Wiederholung stellen wir
diese Rechengesetze hier zusammen :

Rechengesetze der Multiplikation in Qq
Für alle Zahlen a , b , c aus Q>o gilt :
(E) a • b ist wieder eine Zahl aus <Q>(} eindeutige Existenz des

Produkts

(K) a • b = b • a Kommutativgesetz der
Multiplikation

(A) II Assoziativgesetz der Multipli¬
kation

(N) a • 1 = a 1 ist neutrales Element der
Multiplikation

Produkte traten erstmals beim Rechnen mit natürlichen Zahlen auf . Sie wur¬
den dort als Kurzschreibweise für Summen mit gleichen Summanden einge¬
führt ; z . B . gilt : 3 - 4 = 4 + 4 + 4 . Deshalb liegt es nahe , ein Produkt wie
3 • ( — 4) ebenfalls als abgekürzte Schreibweise für eine Summe aufzufassen ,
nämlich als 3 • ( — 4) = ( — 4) + ( — 4) + ( — 4) . Die rechts vom Gleichheitszei¬
chen stehende Summe können wir berechnen ! Wir erhalten so 3 • ( - 4) =
= — 12 , wofür man wegen 12 = 3 - 4 auch schreiben kann :

3 - ( - 4) = - (3 * 4)
Das sieht nach einer sehr einfachen Regel aus ! Man kann sie offenbar immer
dann anwenden , wenn der erste Faktor eine natürliche Zahl und größer als 1
ist .

Beispiele :
1 ) 5 • ( - 0,7) = ( - 0,7) + ( - 0,7) + ( - 0,7) + ( - 0,7) + ( - 0,7) =

= - 3,5 = - (5 • 0,7)
2) 2 - ( — 3f) = ( — 3i ) + ( - 3f) = — 6f = — (2 - 3 §)

Ein Produkt wie 3,4 • ( — 5,1 ) , bei dem der erste Faktor zwar wieder positiv ,
jedoch nicht ganzzahlig ist , kann nicht mehr als Summe gedeutet werden .
Wohl aber ist es auch hier möglich , den Term - (3,4 ■ 5,1 ) zu berechnen . Der
Vergleich mit den obigen Beispielen legt nahe , zu vereinbaren , daß
3,4 • ( — 5,1 ) = — (3,4 • 5,1 ) gelten soll . Dieses Verfahren läßt sich auf alle Pro¬
dukte mit positivem ersten und negativem zweiten Faktor anwenden . Wir
erhalten so
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Definition 65 . 1 : Für das Produkt aus einer positiven Zahl p und einer
negativen Zahl — q soll gelten :

p - ( - q ) = ~ ( p - q )

Beachte , daß in dieser Definition (und auch im folgenden ) die Variablen p und
q positive Zahlen vertreten !
Vertauscht man im Beispiel 3,4 • ( — 5,1 ) die Reihenfolge der Faktoren , so
erhält man ein Produkt , bei dem der erste Faktor negativ , der zweite po¬
sitiv ist . Natürlich soll , da wir ja das Kommutativgesetz retten wollen , die¬
ses Produkt denselben Wert wie 3,4 - ( — 5,1 ) erhalten ! Es soll also gelten :
( — 5,1 ) • 3,4 = 3,4 • ( — 5,1 ) = — (3,4 • 5,1 ) bzw . , da man die positiven Fakto¬
ren in der letzten Klammer vertauschen darf :

( - 5,1) - 3,4 = - (5,1 - 3,4)
Die Verallgemeinerung dieser Überlegung führt zu

Definition 65 .2 : Für das Produkt aus einer negativen Zahl - p und einer
positiven Zahl q soll gelten :

( ~ p) - q = - (p - q)

Die beiden in den Definitionen 65 . 1 und 65 .2 enthaltenen Regeln lassen sich so
zusammenfassen : Man erhält das Produkt aus einer positiven und einer nega¬
tiven Zahl , indem man das Minuszeichen des negativen Faktors vor das Pro¬
dukt der beiden Beträge setzt .
Wenn wir nun weiter überlegen , wie man ein Produkt aus zwei negativen
Faktoren , z . B . ( - 3,4) • ( — 5,1 ) , definieren soll , so liegt es nahe , die Regeln in
den Definitionen 65 . 1 und 65 .2 versuchsweise auch jetzt zu benützen , also das
»Herausziehen des Minuszeichens « auch in diesem Fall anzuwenden (Per¬
manenzprinzip !) . Damit erhält man :

( — 3,4) ■ ( — 5,1 ) = — (( — 3,4) • 5,1 ) = (Anwendung von Def . 65 . 1 auch bei
negativem 1 . Faktor !)

= - ( - (3,4 • 5,1 )) = (nach Def . 65 .2)
= 3,4 • 5,1 (nach Satz 42 . 1 )

Die Verallgemeinerung dieses Vorgehens würde also folgende Regel ergeben :
( - P) ' ( — q) = P ' q für p > 0 und q > 0 .
Demnach müßte das Produkt zweier negativer Zahlen positiv sein ! Das mag
auf den ersten Blick überraschen . Sinnvoll erscheint aber jedenfalls , daß , wie
in den vorausgehenden Fällen , der Betrag des Produktes wieder den Wert p ■ q
haben soll . Dann kann das Produkt selbst aber nur p ■ q oder — (p ■ q) sein.
Der Produktwert — (p ■ q) ergab sich aber bereits in den Fällen p • ( — q) und
( - /?) • q , von denen sich ( ~ p ) • ( - q) doch sicherlich unterscheiden sollte .
Das spricht wieder für das Ergebnis p ■ q , also für
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Definition 66 . 1 : Für das Produkt zweier negativer Zahlen - p und - q
soll gelten :

( — p) • ( — «) = p - q

Der jetzt noch verbleibende Fall , daß eine negative Zahl mit 0 multipliziert
werden soll , bereitet uns wenig Mühe . Natürlich soll ein solches Produkt wie¬
der den Wert 0 haben :

Definition 66 .2 : Für das Produkt einer negativen Zahl — p mit der Zahl
0 soll gelten :

( - p) - 0 = 0 - ( - p) = 0

Nunmehr sind wir in der Lage , das Produkt zweier beliebiger rationaler Zah¬
len zu berechnen . Die dafür geltenden Regeln kann man so zusammenfassen :

Satz 66.1 : Zwei rationale Zahlen mit gleichen Vorzeichenwerden multi¬
pliziert , indem man ihre Beträge multipliziert .
Zwei rationale Zahlen mit verschiedenen Vorzeichen werden
multipliziert , indem man das Produkt ihrer Beträge bildet
und ihm das negative Vorzeichen gibt .
Ein Produkt mit dem Faktor 0 hat den Wert 0 .

Beispiele:
1 ) 4 - ( - 5) = - (4 - 5) = - 20
2) ( - 3) - 17 = - (3 - 17) = - 51
3) ( — 1 ) ( — 1 ) = 11 = 1
4) ( - 8) - ( - 7,5 ) = 8 - 7,5 = 60
5) 2,5 - ( - 3,7 ) = - (2,5 - 3,7) = - 9,25
6) ( - ! ) - li = - (| - li ) = - (| - ^ ) = - f
7) ( — 100000) - 0 = 0

Wichtige Sonderfälle von Produkten sind solche aus zwei gleichen Faktoren ,
also die Quadrate * rationaler Zahlen : a - a = a2 .

Beispiele:
1) 4 2 = 16; 2) ( — 4) 2 = ( — 4) - ( — 4) = 4 - 4 = 16
3) 0 2 = 0 ; 4) ( — 1,2) 2 = ( — 1,2) • ( — 1,2) = 1,2 • 1,2 = 1,44

* Das Produkt einer Zahl mit sich selbst nannten die Griechen - so belegt bei Euklid , 8 . Buch der Elemente -
TSTpäymvoi; [dpt3göi ;] (teträgonos [arithmös ] ) = viereckig [e Zahl ] , da sie den Inhalt des TETpaycovov
[a '/fjpa ] (teträgonon [ s-chema ] ) = viereckig [e Figur ] angab , falls diese Figur gleichseitig rechtwinklig ist .
Uber das lateinische quadratus — viereckig entstand das deutsche Quadrat .
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Auf Grund dieser Beispiele vermuten wir die Gültigkeit von

Satz 67 . 1 : Das Quadrat einer von 0 verschiedenen rationalen Zahl ist
positiv . Das Quadrat von 0 ist 0 . Kurz :

fl + 0 => a 2 > 0 und 0 2 = 0

Der Beweis ergibt sich unmittelbar aus Satz 66 . 1 (vgl . Aufgabe 69/2 ) .

2 .6 .2 Eigenschaften der Multiplikation in <Q
Es war unser Ziel , die Multiplikation in Q so zu definieren , daß die auf Seite 64
zusammengestellten Rechengesetze gültig bleiben . Ob uns das gelungen ist ,
muß nun geprüft werden .

1) Existenz des Produkts : Mit Hilfe der Definitionen in 2 .6 . 1 bzw . nach Satz
66 . 1 kann man zwei rationale Zahlen stets miteinander multiplizieren . Das
Ergebnis ist wieder eine Zahl aus Q . Damit bleibt (E) in <Q gültig .

2) Kommutativgesetz der Multiplikation : Hier muß untersucht werden , ob die
Gleichung a ■b = b ■ a für beliebige rationale Zahlen gilt . Bei den hierzu
notwendigen Fallunterscheidungen verwenden wir wieder p und q als Zei¬
chen für positive Zahlen .
1 . Fall : a > 0 und b > 0

Dann gilt , wie schon bekannt , a - b = b ■ a ((K) in Qq ) •
2 . Fall : a > 0 und b < 0

Wir setzen a = p , b = — q \ dann gilt
a - b = p • ( — q) = — (p ■ q) = (Definition 65 . 1 )

= - {q - p ) = ((K) in G>o )
= ( — q) ■p = (Definition 65 .2)
= b ■ a .

3 . Fall : a < 0 und b > 0
Wir setzen a = — p und b = q ; dann gilt
a ■ b = { - p ) ■ q = ~ (p ■ q ) = (Definition 65 .2)

= - {q - p ) = ((K) in Qq )
= q ■ ( — p ) = (Definition 65 . 1 )
= b ■ a .

4 . Fall : a < 0 und b < 0
Wir setzen a = — p und b = — q ; dann gilt
a - b = ( ~ p ) - ( - q) = p - q = (Definition 66 . 1 )

= q - p = ((K) in Qq )
= ( — q ) ■ { - p ) = (Definition 66 . 1 )
= b ■ a .
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5 . Fall : a = 0 oder b = 0
Dann gilt a ■ b = 0 = b ■ a (Satz 66 . 1 )

Damit ist nachgewiesen , daß in jedem Fall a - b = b ■ a gilt . Also bleibt (K)
für die Multiplikation in <0 gültig .

3) Assoziativgesetz der Multiplikation: Gilt (a ■ b) ■ c = a ■ (b ■ c) für
beliebige rationale Zahlen a , b , c ?
1 ) Wenn mindestens einer der drei Faktoren 0 ist , gilt nach Satz 66 . 1 :

(a ■ b) ■ c = 0 = a ■ (b ■ c) .
2) Wenn keiner der drei Faktoren 0 ist , bestehen folgende acht Möglichkei¬

ten :

1 . Fall 2 . Fall 3 . Fall 4 . Fall 5 . Fall 6 . Fall 7 . Fall 8 . Fall

a pos . pos . pos . pos . neg. neg. neg. neg.

b pos . pos . neg. neg. pos . pos . neg. neg.

c pos . neg. pos . neg. pos . neg. pos . neg.

Im 1 . Fall gehören alle drei Faktoren zur Menge <Q +
, in welcher (A) gilt .

Als Muster für die Überprüfung der übrigen Fälle soll hier nur der
6 . Fall untersucht werden :
6 . Fall : a < 0 , b > 0 und c < 0

Wir setzen a = — p , b = q und c = — r , mit p , q , r aus G>+ .
Dann gilt :
(a - b) - c = (( ~ p ) ■ q ) ■ ( - r) = ( - (pq )) ■ ( - r) = (Definition 65 .2)

= (pq ) r . (Definition 66 . 1 )
a - (b ■ c) = ( - p ) ■ (q ■ ( - r)) = ( — p ) ■ ( - (qr)) = (Definition 65 . 1 )

= p {qr) . (Definition 66 . 1 )
Wegen der Gültigkeit von (A) in Q + ist aber (pq ) r = p (qr ) , also gilt
(a ■ b ) ■ c = a ■ (b ■ c) .

Nach derselben Methode kann man auch die übrigen Fälle untersuchen
(vgl . Aufgabe 70/4) . Dabei zeigt sich , daß (A) für die Multiplikation in <0
gültig bleibt .

4) Neutrales Element der Multiplikation: Für a < 0 , also a = — p , gilt:
a ■ 1 = ( ~ p ) - 1 = - (p ■ 1 ) = (Definition 65 .2)

= - p = ((N ) in G>+ )
= a .

Daraus folgt , daß 1 auch für die negativen und damit für alle rationalen
Zahlen neutrales Element der Multiplikation ist .
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Damit ist gezeigt :

Satz 69 . 1 : Für die Multiplikation in der Menge G>der rationalenZahlen
gelten wieder die auf Seite 64 zusammengestellten Rechenge¬
setze (E) , (K ) , (A) , (N ) .

Ebenso wie bei dreigliedrigen Summen kann man nun auch bei Produkten mit
drei Faktoren wegen (A) auf Klammern verzichten :

(a ■b) ■ c = a ■ (b ■ c) = a ■ b ■ c .
Mit Hilfe von (K ) erkennt man , daß auch die Reihenfolge der Faktoren belie¬
big verändert werden darf :

Beispiel 1 :
Behauptung : abc = cba
Beweis: abc = (ab ) c = c (ab ) = c (ba) = cba .

Ganz entsprechend läßt sich auch bei Produkten mit mehr als drei Faktoren
zeigen , daß man auf Klammern verzichten kann und daß auch die Reihenfolge
der Faktoren beliebig geändert werden darf .

Beispiel 2:
12,5 • ( - 23,91 ) • 8 = 12,5 ■ (( - 23,91 ) • 8) =

= (( — 23,91 ) ■ 8) - 12,5 =
= ( — 23,91 ) - (8 - 12,5) =
= ( - 23,91 ) - 100 = - 2391 .

Beispiel 2 zeigt , wie man durch die Wahl einer günstigen Reihenfolge der
Faktoren und der Rechenschritte die Berechnung eines Produktes oft verein¬
fachen kann . Achte also stets auf solche Rechenvorteile.

Aufgaben

1 . a) ( - 5) - 24
d) ( - 2,5 ) - 0,28
g) 3^ ‘ ( - 2i )

b) 16 - ( - 30)
e) ( - 17,25 ) - ( - 3,04 )
h) ( - Ä ) ' ( - Ä )

c) ( - 125) - ( - 81 )
f) 0,064 - ( - 6,25 )
i) ( — 8,45 ) • lyg

2 . Beweise Satz 67 . 1 . Unterscheide dabei die Fälle a > 0 , a = 0 und a < 0 .
3 . a) 1,1 2 b) ( - 0,U ) 2 c) ( - 32) 2 d) ( ~ ü ) 2

e) (0,375 - | ) 2 f) (| - 4) 2 g) (f - I ) 2 h) (( - f ) - | ) 2
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4 . Überprüfe das Assoziativgesetz (ab) c = a (bc) nach dem Muster des auf
Seite 68 durchgeführten 6 . Falles
a) für a > 0 , b > 0 , c < 0 (2 . Fall ) ,
b) für a > 0 , b < 0 , c < 0 (4 . Fall) ,
c) für a < 0 , b < 0 , c < 0 (8 . Fall) .

5 . Berechne die folgenden Produkte . Achte dabei auf Rechen vorteile ,
a) 4 • ( — 37) ■| b) ( - 107) - 8 - ( - 25)
c) ( - 0,2) - ( - 6,28 ) - ( - 50) d) ( - 300 ) - lf ■ ( - 0,132)
e) ( - ^ ) - O - ( - M ) f) ( - 2f ) 2 - ( - ü ) - f

6 . Begründe den Satz : Ein Produkt , in dem kein Faktor 0 ist , hat genau dann
einen positiven Wert , wenn die Anzahl der negativen Faktoren gerade ist .

7 . Setze zwischen die folgenden Zahlenterme eines der Zeichen < , = , > so,
daß eine wahre Aussage entsteht . In welchen Beispielen ist dies ohne Rech¬
nung möglich?
a) 7 - ( - 0,02) und 1
c) - 6 und ( — 1 ) • ( — 2) • ( — 3)
e) ( - 0,64) 2 und — 0,64

8 . a) ( 1 ) ■ ( 2) - ( 3 ) • ( 4)
c) ( - 2,5) - ( - 1,6) - 3,25 - ( - 0,5)

b) ( - 12) - ( - 13 ) und 150
d) ( - f ) - ( - M) ’ ( - 9{f ) undO
f) ( —it ) - 4,5 und 5,4 - ( - 0,6)

b) 1 • ( - 2) - 3 - ( - 4)
d) li - lü ( - li ) - l |

9 . Achte bei der Berechnung der folgenden Summen und Differenzen auf die
richtige Reihenfolge der Rechenschritte .
a) ( — 1 ) + ( — 2) • ( — 3) b) ( - 1 ) • ( - 2) - ( - 3 ) - ( - 4)
c) 250 - ( - 0,25 ) - 25 - ( - 0,250) d) ( - 4,56) • ( - 10,5 ) + 6,3 • ( - 7,6 )
e) ( - 8,1) - ff - ( - 0,98 ) - ( - 4) f) ( — i ) - | - ( — f ) + 2 - ( — f ) - f

10 . a) (263 — 298 ) (298 — 263 ) b) (41,5 + ( — 67,75)) - (( — 2,1 ) — 1,9)
c) ( lf - 2j ) ■ 3,5 • (( - lf ) - i ) d) (1 - f ) (2 - f ) (3 - l )

11 . Berechne folgende Absolutbeträge:
a) 15 ( 2) | b) | ( — 8 ) • 91 c) | ( - 17) ( - 3) | d) 124 - 251
e) 10,75 ( — 4) ( — f ) | 0 I ( — 0,75) • 4 • f |
g) | ( — 0,75 ) ( — 4) ( — f ) | h) 19,81 ' ( — tV) • 0 • ( — 3f ) |

12 . Beweise den Satz : Der Betrag des Produktes zweier rationaler Zahlen a
und b ist gleich dem Produkt der Beträge dieser Zahlen , d . h.
\ a - b \ = \ a \ - \ b \ .

13 . Berechne den Wert der folgenden Terme für die angegebenen Einsetzun¬
gen:
a) T {pc) = x 2 + Ax + \ für x = — 5 ( - 2,3 ; 0 ; 2)
b) T(a ; b) = (a + 2b) (a — 2b) für a = 3 ; b = — 1,5 und

für a = — 8,3 ; b = - 3,8
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c) T(x ; y ; z) = xyz - (x - y ) (y ~ z) für x = - 12; y = 4 ; z = 18
und für x = 0,8 ; y = — 1,25 ; z = - 9,65

d) T (a -,b ’
, c) = \ (a - b) - c \ - (\ a \ — \ b - c \) für a = - 22 ; b = - 18 ;

c = 33 und für a = — 14,3 ; b = - 5,8 ; c = — 6,7

2 .6 .3 Division in <Q>

Es kommt häufig vor , daß von einem Produkt der Wert bekannt ist und einer
der Faktoren bestimmt werden muß . Dessen Berechnung führt auf eine Divi¬
sion . Man bezeichnet wegen dieses Zusammenhangs die Division als Umkeh¬
rung der Multiplikation.

Beispiel:
Die Klasse 7a mietet füf einen Ausflug einen Bus . Sie muß dafür
350 DM bezahlen . Welchen Fahrpreis hat jeder der 28 Schüler zu ent¬
richten ?
Wenn wir den Fahrpreis pro Schüler mit x DM bezeichnen , muß gelten :

28 ■ x = 350 ; also x = 350 : 28 = 12,5 .

Jeder Schüler muß also 12,50 DM bezahlen .

Man erkennt an diesem mit Zahlen aus <Q>+ gebildeten Beispiel, daß der Quo¬
tient 350 : 28 die Lösung der Gleichung 28 • x = 350 darstellt . Genau diese
Bedeutung wollen wir nun auch für Quotienten aus beliebigen rationalen Zah¬
len vereinbaren :

Definition 71 . 1 : Unter dem Quotienten b : a der rationalenZahlen b und
a #= 0 versteht man die Lösung der Gleichung a - x = b .

Statt b : a schreibt man auch — .a

b : a ist also diejenige Zahl , mit der man a multiplizieren muß , um b zu
erhalten .
Nach dieser Definition hat ein Quotient b : a nur dann einen Sinn , wenn die
entsprechende Gleichung a - x = b für a 4= 0 genau eine Lösung hat . Wir wis¬
sen schon , daß dies für a e <Q>+ und b e Qq zutrifft . Gilt das aber auch , wenn
a oder b negativ ist? Das läßt sich mit Hilfe einer Fallunterscheidung über¬
prüfen :
1 . Fall : a > 0 und b < 0

Wir setzen a = p und b = — q (p > 0 , q > 0) ; dann gilt:
a - x = 6 <s> p ■ x = — q .
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Falls diese Gleichung eine Lösung x besitzt , muß sie negativ sein . Für sie
gilt also : x = — \ x \ . Damit erhält man :
p . x = - q <s> p ■ ( ~ \ x \) = - q o ~ {p - \ x \) = - q o p - \ x \ = q .
Dies ist nun eine Gleichung mit positiven Zahlen . Sie hat die Lösung

\ x \ = Damit gilt : x = — — .p p

Ergebnis : Die Gleichung p ■x = — q hat die Lösung x = 1
P '

Auf ganz entsprechende Weise kann man auch den 2 . und 3 . Fall untersuchen .
Man findet dabei folgende Ergebnisse :
2 . Fall : a < 0 und b > 0

Die Gleichung ( — p ) - x = q hat die Lösung x = — — .

3 . Fall : a < 0 und b < 0

Die Gleichung ( — p) ■ x = — q hat die Lösung x =

4 . Fall : a < 0 und b = 0
Nach Satz 66 . 1 ist x = 0 eine Lösung der Gleichung a ■ x = 0 . Dies muß
auch die einzige Lösung sein; denn für x > 0 wäre a ■ x < 0 , für x < 0 wäre
a ■ x > 0 .

Damit ist nachgewiesen :

Satz 72 . 1 : Die Gleichung a ■ x = b hat für a =t= 0 in der Menge Q der
rationalen Zahlen stets genau eine Lösung .

Für den Fall a = 0 , d . h . für die Gleichung 0 • x = b , gelten in O dieselben
Feststellungen wie in Qq :
Wenn b =|= 0 , hat die Gleichung 0 ■x = b keine Lösung,
wenn b = 0 , ist jede Zahl eine Lösung.
Daher sind Quotienten mit dem Nenner 0 auch in <0 sinnlos . Damit gilt

Satz 72.2 : In der Menge Q der rationalen Zahlen kann man jede Zahl
durch jede von 0 verschiedene Zahl dividieren .
Aber : Durch 0 kann man nicht dividieren.

Aus den in den ersten drei Fällen berechneten Lösungen der Gleichung
a - x = b und der Quotientendefinition 71 . 1 können wir weitere wichtige Fol¬
gerungen ableiten :

Die Gleichung p ■ x = — q { 1 . Fall ) hat die Lösung x = —1
P

Für diese Lö-
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sung haben wir aber in Definition 71 . 1 die Schreibweise —- vereinbart . Daher

Ganz entsprechend erhalten wir im 2 . und 3 . Fall :
q q — q q- = - und - = — . Damit haben wir Vorzeichenregeln für Quotienten

— pp —pp ®

gewonnen ! Diese entsprechen ganz den Regeln für Produkte , die wir in den
Definitionen 65 . 1 , 65 .2 und 66 . 1 aufgestellt haben .

Satz 73. 1 : Für Quotienten rationaler Zahlen gelten mit p > 0 und q > 0
folgende Vorzeichenregeln :

Z± = 4 <1 - q _ q
P P ’ ~ P P ’ - P P ’

bzw . ( — q ) : p = — (q : p) , q : ( - p ) = - (q : p ) ,
( - q) : ( - p) = q - p

Beispiele:
n - 24 24 _ - 121 121 11 c g .
D 8 — — 8 — ~~ A - 22 — 22 ~ 2 ~ AA

2) 6,25 : ( - 1,25) = - (6,25 : 1,25) = - 5 ;
r 2LW Z_ ■_3_ A . 11 — 1 _
V 1 ll • t lll — 11 • 11 — 11 3 3 ^ 3 ■

Einen wichtigen Sonderfall stellt die Gleichung a ■x = 1 dar . Für a 0 hat
1

sie nach Satz 72 . 1 genau eine Lösung , nämlich x = also den Kehrwert von

1 1
a . Es gilt somit a - - = 1 , d . h . , das Produkt der Zahlen a und - ist gleich

a a
dem neutralen Element der Multiplikation . Daher bezeichnet man diese Zah¬
len als zueinander invers bezüglich der Multiplikation . Es gilt

Satz 73 .2 : Zu jeder von 0 verschiedenen rationalen Zahl a gibt es ge¬
nau eine Inverse bezüglich der Multiplikation , nämlich ihren

1
Kehrwert — .a

Dieser Satz stellt ein weiteres Rechengesetz der Multiplikation dar , das man
als »Existenz des Inversen « bezeichnet und mit (I) abkürzt . Damit kennen wir
für die Multiplikation in <Q die fünf Rechengesetze (E) , (K) , (A) , (N ) , (I) .

Für a 4= 0 hat also der Term a ■ - stets
a

einem Faktor b , so erhält man daher

den Wert 1 . Multipliziert man ihn mit

a - i
a

■ b = 1 • b , also a ■ ■ b = b .
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Eine einfache Umformung der linken Seite liefert die Gleichung

Diese läßt sich nun so deuten :
1

b ■ - ist Lösung der Gleichung a - x = b .a
Da aber diese Gleichung nur eine einzige Lösung hat und wir für diese in

Definition 71 . 1 die Schreibweise - eingeführt haben , müssen - und b ■ -
a a a

lediglich verschiedene Schreibweisen für dieselbe Zahl sein . Daher gilt

Satz 74. 1 : Die Division durch eine Zahl a 4= 0 kann man durch die Mul-
1

tiplikation mit ihrem Kehrwert — ersetzen und umgekehrt ,a
, , b 1d . h . , — = b - — bzw . b : a = b - (l : a) für a =|= 0 .a a

Beispiele:
1 ) ^ = 45 - ^ = 150 ;
3) 126 • = 126 : 21 = 6 ;

2) ( - £ ) : * = ( - £ ) ■! = - * ;
4) ( - 6,6 ) ■£ = ( - 6,6) : 2,2 = - 3 .

Aufgaben

1 . Berechne die folgenden Quotienten :
a) 105 : ( - 15) b) ( - 7) : ( - l )
d) ( - 3,24) : ( - 1,8) e) 1024 : 32
g) 2,7 : ( — 81 ) h) ( - 2,5 ) : ( - 0,35 )

2 . Gib den Wert der folgenden Brüche in möglichst einfacher Lorm an :
5

( ~ i )
2

- l

c) ( - 65) : 125
f) ( - 10,24 ) : 0,064
i) ( - 18 ) : 21,6

a)

e)

b)

f)

- 16
c)

- 35 84
12 - 49 « I44

( - 1 ) 3
/ A\ S g)

- 1
/ A\ -JC\ 1.) < -

?
>

( — 2 )
2 k)

(

( — 2 )
3

16

57

1)
( ~ 3) 2

( — 3) 3 m)
( - 1 ) '
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3 . Berechne :
a) (3 - 5 2

3

) : (20 - 9) b) (| + 0,625) : (| - 0,625)
c) (2| - 5) : 4f d) ( - 104) : (Ü - H)
e) (11 • 25) : (31 - 75) f) (8,5 : ( - f )) : (( - 3,4) • 2,5 )

4 . Berechne den Wert folgender Bruchterme :
16 - 1,2 - 20 3,6 - 2,5 - ( - 1,6)
16 - 1,2 - 20

b)
3,6 + (2,5 - 1,6)

4,3 - 0,72 - ( - 31 ) ^ (10* + 6f ) : (2{f - 6*)

5 . Gib , wenn möglich , zu den folgenden Zahlen die Inversen bezüglich der
Addition und bezüglich der Multiplikation an .
a) 1 b) - 1 c) 0 d) - 0,125
e) * f) - 4,5 g) 0,75 h) - 2£

6 . Begründe den Satz : Es gibt keine rationale Zahl , für welche die Inverse
bezüglich der Addition gleich der Inversen bezüglich der Multiplikation
ist .

7 . Schreibe nach Definition 71 . 1 die Lösung der Gleichung als Quotienten
und berechne sie .

c) x ■( — 38) = — 7,6a) ( - ! ) • * = 17 b) 3x = — 12
d) f - jt = - ^ e) (2 — §) x = 2-f f) x - ( - 2*) = 0,125 - 1,25

8 . Welche Lösungsmengen haben die folgenden Gleichungen ?
a) x - (*1 — 0,8 ) = 1 b) (0,625 : 5 - *) • * = 0

d) (^ — 0,15 ) - x = (^ — 0,15 ) - 7c) * ' (I ~ t) = 4 3
3 4

2 .6 .4 Allgemeine Vorzeichenregeln für Produkte und Quotienten

Die Multiplikation einer Zahl cieQ mit 1 , dem neutralen Element der Multi¬
plikation , bewirkt keine Änderung : a • 1 = a . Was aber erhält man , wenn man
a mit der Gegenzahl von 1 , also mit — 1 , multipliziert ?

Beispiele:
1 ) 7 - ( — 1 ) = — (7 - 1 ) = — 7 ; 2) ( - 1 ) • 0 = - (1 • 0) = - 0 = 0

3) ( - 1 ) - 3,14 = - (1 - 3,14) = - 3,14; 4) ( - 4) ■ ( - 1 ) = 4 ■ 1 = 4

Wie man leicht beweisen kann (vgl . Aufgabe 78/2) gilt

Satz 75.1 : Multipliziert man eine Zahl mit — 1 , so erhält man ihre Ge¬
genzahl .

a - ( - l ) = ( - l ) - a = — a
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Das Interessante an diesem Satz ist , daß man das Bilden der Gegenzahl nun
auch als Multiplikation mit — 1 beschreiben kann . Das ist oft nützlich , z . B .
bei den folgenden Überlegungen :
In der Algebra treten häufig Produkte der Form a ■ ( — b ) , ( — ä) ■ ( — b) usw.
auf , bei denen die Variablen a , b beliebige rationale Zahlen vertreten . Zum
Vereinfachen solcher Produkte darf man daher nicht ohne weiteres die in den
Definitionen 65 . 1 , 65 .2 und 66 . 1 aufgestellten Regeln anwenden , denn die dort
benützten Variablen p , q bedeuten positive Zahlen . Immerhin wäre es denkbar
und wünschenswert (Permanenzprinzip !) , daß diese Regeln auch für beliebige
rationale Zahlen gültig bleiben . Das soll nun untersucht werden :

Beispiel 1 :
a - ( — b) kann man folgendermaßen umformen :
a ■ ( — b ) = a ■ (( — 1 ) • b) = (Satz 75 . 1 )

^ fl - (M - l )) =
= {a - b) { - 1 ) =
= — (a - b) . (Satz 75 . 1 )

Natürlich ist wegen (K) damit auch die Regel ( — a) ■ b = — (a • b) bewie¬
sen.

Beispiel 2:
( — a) - { — b ) kann man so umformen :
( - a) • ( - b ) = ( - a) • (( - 1 ) • b) = (Satz 75 . 1 )

^ (( - «) • ( - ! )) • £ =
= ( — ( — a)) - b = (Satz 75 . 1 )
= a - b . (Satz 42 . 1 )

Nimmt man der Vollständigkeit halber noch die Vereinbarung a - b = ab
hinzu und schreibt , um die Vorzeichen zu betonen , für a , b und ab noch + a,+ b , + ab , so erhält man folgende allgemeingültigen Vorzeichenregeln für
Produkte :

Satz 76. 1 : Für beliebige rationale Zahlen a , b gilt:
( + a) • ( + b) = + ab ( — a) ■ ( — b) = + ab
( + a) • ( — b) = — ab ( — a) • ( + b) = — ab

Diese Vorzeichenregeln prägt man sich am besten in folgender Form ein:

Regel 76 . 1 : ( + ) • ( + ) = + ( - ) • ( - ) = +
( + ) • ( - ) = - ( - ) • ( + ) = -

Man kann nun also auch Produkte mit Variablen , die beliebige Zahlen vertre¬
ten , in gewohnter Weise vereinfachen . Dazu einige
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Beispiele:
1) 5 ( - a) = - 5a ; 2) ( — 2) ( — 3 b) = 66;
3) = xyz ; 4) ( — 2) ( — 0,5) ( — | z) = - | z .

Auch von den in Satz 73 . 1 enthaltenen Vorzeichenregeln für Quotienten , die
dort nur für positive Zahlen p , q bewiesen wurden , kann man zeigen, daß sie
für beliebige rationale Zahlen gelten :

Beispiel:

- = ( - *) • - =
a a

= (( - 1 ) 6) -

= ( - l ) U

= ( - ! ) ' - =
a

_ _ ,6
a

(Satz 74 . 1 )

(Satz 75 . 1 )

(Satz 74 . 1 )

(Satz 75 . 1 )

Auf dieselbe Weise kann man zeigen , daß auch - = - und - = — für
— a a — a a

beliebige Zahlen gilt . Zusammen mit = H— erhält man so
~\ ~ d CI

Satz 77. 1 : Für rationale Zahlen a 4= 0 und b gilt :

+ b b - b _ b +
_
/» _ b

_
~ b b

+ a a ’ — a a ’ — a a ’ + a a

Die entsprechende Merkregel lautet :

Regel 77 . 1 : — = +

Beachte , daß man in diesen Regeln den Bruchstrich auch durch den Doppel¬
punkt als Divisionszeichen ersetzen kann .

Beispiele:

1)
— a a= ~ r

3) 15 : ( — «) =

2)
( ~ x)y C*y) _ xy .

2z '
( - 2z) - (2z)

- (15 : ü) ; 4) ( - 2vw) : ( - xy) = (2vw) : (xy) .
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Aufgaben

1 . Vereinfache durch Anwendung der Vorzeichenregeln für Produkte :
a) ( - 2) - x b) ( - 5) ( - j ) c) ( - z) ( + 2,3)
d) a { - b ) ( + c) e) ( — a) ( — b ) c f) ( + a) ( + b) ( — c)

2 . Beweise die Gleichung a • ( — 1 ) = — a (Satz 75 . 1 ) mit Hilfe der Fallunter¬
scheidung a > 0 , a = 0 , a < 0 . Gib jeweils an , welche Definitionen oder
Sätze benützt werden .

3 . a) Stelle entsprechend der Regel 76 . 1 die Vorzeichenregeln für Produkte
mit drei Faktoren symbolisch dar .

b) Ergänze zu richtigen Vorzeichenregeln:
( - ) • ( + ) • ( - ) • ( + ) = ? und ( + ) • ( - ) ■( - ) • ( + ) • ( - ) = ?

4 . Vereinfache durch Anwenden der Vorzeichenregeln für Quotienten:

a)
2 ( — m)

- 3
b)

( - 1 ) ( + m)
( + ! ) ( - «)

c)
( 21 ) ( — 51) Z
<? ( + r) ( - 5)

5 . Verwandle in den folgenden Produkten den Zahlenfaktor in einen Divisor ,
a) m - j b) n ■0,2 c) p ■ ( — 0,25)
d) ( - £) ■ ? e) r - ( lf ) f) ( - {§) • 5

6 . Schreibe die folgenden Quotienten als Produkte :
a) x : 0,5 b) y : \ c) z : ( - | )
d) ( — m) : ( — 0,125) e) v : (3| ) f ) w : ( - 0,001 )

2.7 Die Rechengesetze für die rationalen Zahlen

2 .7 . 1 Das Distributivgesetz
Im bisherigen Rechenunterricht hast du schon das Verteilungs- oder Distribu¬
tivgesetz* kennengelernt. Es besagt, daß man beim Multiplizieren einer Sum¬
me auf zwei verschiedenen Wegen zum richtigen Ergebnis kommen kann .
Dazu ein

Beispiel:
Die Klasse 7b besteht aus 16 Knaben und 10 Mädchen . Für den Besuch
einer Ausstellung sammelt der Klassensprecher pro Schüler 2,50 DM
ein . Wieviel Geld muß er dann haben ?
1 . Weg : Man rechnet »2,50 DM ■ Gesamtzahl der Schüler « , also

2,50 DM ■ (16 + 10) = 2,50 DM ■ 26 = 65,00 DM .
distribuere (lat .) = verteilen . - Der Ausdruck distributiv wurde ebenso wie das Wort kommutativ 1814 von
dem französischen Professor der Mathematik Francois Joseph Servois (1767- 1847) geprägt . Siehe auch
die Fußnote * auf Seite 50.
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2 . Weg: Man rechnet »2,50 DM • Zahl der Knaben « + »2,50 DM ■ Zahl
der Mädchen « , also
2,50 DM • 16 + 2,50 DM • 10 = 40,00 DM + 25,00 DM =
65,00 DM .

Man erkennt : 2,50 DM • (16 + 10 ) = 2,50 DM • 16 + 2,50 DM • 10 .

Allgemein gilt für a,b,ce 0 die Beziehung a (b + c) = ab + ac . Dies ist das
Distributivgesetz , für das wir die Abkürzung (D) verwenden .
Nachdem wir nun wissen , wie in der größeren Zahlenmenge G> die Addition
und die Multiplikation auszuführen sind , stellt sich die Frage , ob das Rechen¬
gesetz (D) auch in G>gültig bleibt . Wir prüfen dies zunächst an einigen Beispie¬
len.
Beispiel 1 : a = — 2 , b = 5 , c = — 8

dann gilt : a (b + c) = ( — 2) • (5 + ( — 8)) = ( — 2) • ( — 3) = 6
und : ab + ac = ( — 2) • 5 + ( — 2) ■ ( — 8) = — 10 + 16 = 6 .

Beispiel 2 : a = 4,1 ; b = — 4,8 ; c = 3,5
dann gilt : a (b + c) = 4,1 • (( - 4,8) + 3,5) = 4,1 • ( - 1,3) = - 5,33

und : ab + ac = 4,1 • ( - 4,8) + 4,1 ■ 3,5 = — 19,68 + 14,35 = - 5,33 .

Beispiel 3 : a — — f , b = — f , c = — jy
dann gilt : a (b + c) = ( - ■£) ■ (( - | ) + ( - tt )) = ( - ?) ' ( - $ + u )) =

— 2/1 , _2_\ ___ 2 . 41 _ 41“ 7U + llj - 7 44 — 154

und : ^ + ac = ( - f ) - ( - J) + ( - f ) - ( - l ) = f - f + M =
_ 3_ _i_ — 33 + 8 _ 41— 14 "T 77 — 154 — 154 -

Diese Beispiele lassen also vermuten , daß (D) für alle rationalen Zahlen gilt.
Der genaue Nachweis dafür erfordert eine ziemlich umfangreiche Fallunter¬
scheidung und ist schwierig . Für Interessenten soll hier als Beispiel einer der
einfacheren Fälle untersucht werden :

Fall : a > 0 , b < 0 , c < 0
Wir setzen a = p,b = — q,c = — r mit p , q , r e 0 + .
Dann gilt : a {b + c) = p (( - q ) + ( ~ r)) = p { - (q + r)) =

= ~ (p (q + r)) = - (pq + pr) -
Hier wurde beim letzten Schritt (D) in Q + angewandt .

Weiter gilt : ab + ac = / >( — q) + p ( — r) = ( '—pq ) + { —pr ) =
= ~ (pq + pr ) .

Damit ist für diesen Fall (D ) bewiesen . Man kann so tatsächlich zeigen,
daß das Distributivgesetz in jedem Fall gilt . Dies halten wir fest in

Satz 79 . 1 : Für beliebige rationale Zahlen a , b , c gilt das Distributiv¬
gesetz: a (b + c) = ab + ac
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Beispiele :
1 ) ( — 2) (a + 5) = ( — 2) a + ( — 2) - 5 = - 2a - 10 .
2) (x + 2y) - 19 = 19 (jc + 2y) = 19x + 38j .
3) 6,5 (ö — 4b) = 6,5 (a + { — Ab)) = 6,5a + 6,5 ( — Ab) = 6,5a — 26 b .
4) (( — 3z) — 7) • ( — 10) = (( — 3z) + ( — 7)) • ( — 10) =

= ( — 3z) • ( — 10) + ( — 7) - ( — 10) = 30z + 70 .

Aufgaben
1 . Berechne zur Überprüfung des Distributivgesetzes die Terme

7) = a (b + c) und T2 = ab + ac für folgende Zahlenwerte :
a) a = — 8 ; £ = — 2 ; c = 5 b) a = 1,1 ; 6 = — 0,7 ; c = — 160
c) a = — 36 ; b = c = — lf d) a = — 2,5 ; b = — 9,12 ; c = — ff

• 2 . Begründe bei dem auf Seite 79 stehenden Beweis des Distributivgesetzes
für den Fall a > 0 , b < 0 , c < 0 die einzelnen Termumformungen , z . B .
durch Angabe der dabei verwendeten Sätze oder Regeln .

• 3 . Beweise nach dem Muster des auf Seite 79 durchgeführten Falles das Dis¬
tributivgesetz auch für den Fall a < 0 , b < 0 und c < 0 .

4 . Verwandle die angegebenen Produkte in Summen oder Differenzen :
a) { \ 6x + 5y ) - 9 b) (2,8xy — 5) • ( — 12,5) c) ( - 0,5) • ( 1,6 » - fw )
d) 12 ( — Aa + 3b ) e) ( — ri) - (2n + 7) f) ( — jx — fy ) • f

5 . Berechne und vergleiche 7) = (a + b) : c und T2 = a : c + b : c für folgen¬
de Zahlenwerte :
a) a = 22 ; b = 10 ; c = 8 b) a = - 5,4 ; b = 7,8 ; c = - 6
c) A = - 2^ ; b = c = ^ d) a = b = - 1,6 ; c = - 0,4

6 . Begründe , daß auch für das Dividieren einer Summe ein Distributivgesetz
gilt , nämlich (a + b ) : c = a : c + b : c , für c + 0 .
Hinweis : Beachte Satz 74 . 1 .

7 . Verwandle die folgenden Quotienten in Summen oder Differenzen :
a) (8x + 6y ) : 4 b) (0,64z 2 — 1 ) : 0,4
c) (fw — 5u) : ( — -§■) d) ( — 5,1p — 8,5g ) : ( — 17)

2 .7 .2 Die Monotoniegesetze der Multiplikation
Wir wissen schon nach Satz 62 . 1 , daß eine Ungleichung erhalten bleibt , wenn
man auf beiden Seiten dieselbe Zahl addiert : a < b => a + c < b + c . Gilt
eine entsprechende Feststellung auch , wenn man beide Seiten einer Unglei¬
chung mit derselben Zahl multipliziert ?
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Beispiele:
1 ) Multiplikation mit 7 :

Aus 2 < 5 wird 14 < 35 , weil 14 links von 35 liegt.
Aus — 5 < 1,5 wird — 35 < 10,5 .
Aus — 3,1 < — 1,2 wird — 21,7 < — 8,4.

2) Multiplikation mit — 3 :
Aus 2 < 5 wird — 6 > — 15 , weil — 6 rechts von — 15 liegt.
Aus — 5 < 1,5 wird 15 > — 4,5.
Aus — 3,1 < — 1,2 wird 9,3 > 3,6 .

Die Beispiele unter 1) lassen vermuten , daß gilt:

Satz 81 . 1 : Monotoniegesetz der Multiplikation
Multipliziert man eine Ungleichung mit einer positiven Zahl ,
so bleibt das Ungleichheitszeichen erhalten ; also

a < b
ac < bc

c > 0

Bemerkung : Da statt a < b auch b > a und statt ac < bc auch bc > ac ge¬
schrieben werden kann , gilt Satz 81 . 1 natürlich dann auch für Ungleichungen
mit dem Größerzeichen .
Beweis : a < b bedeutet nach Satz 61 .2 , daß es eine Zahl p > 0 gibt, für welche

a + p = b gilt .
Dann ist auch (a + p ) c = bc bzw . ac + pc = bc.
Wegen c > 0 und p > 0 gilt auch pc > 0 . Man muß also zu ac die
positive Zahl pc addieren , um bc zu erhalten . Nach Satz 61 .2 bedeutet
dies aber ac < bc , was zu zeigen war .

Die Beispiele 2) lassen erkennen , daß für negative Faktoren das Monotoniege¬
setz nicht gilt . Offenbar kehrt sich in diesem Fall das Ungleichheitszeichen um ,
d . h . , aus dem Kleinerzeichen wird ein Größerzeichen bzw . aus dem Größer¬
ein Kleinerzeichen . Es gilt der folgende

Satz 81 .2 : Gesetz von der Umkehrung der Monotonie
Multipliziert man eine Ungleichung mit einer negativen Zahl ,
so kehrt sich das Ungleichheitszeichen um , d . h . ,

a < b
=> ac > bc

c < 0

Beweis : a < b bedeutet nach Satz 61 .2 , daß es eine Zahl p > 0 gibt, für welche
a + p = b gilt .
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Die Auflösung dieser Gleichung nach a liefert
a = b — p oder a = b + ( — p ) .
Dann gilt auch ac = {b + { — p )) c =

= bc + ( — p ) c .
Nach Voraussetzung sind ( —p ) und c negative Zahlen ; somit ist
( —p ) c positiv . Da man also zu bc eine positive Zahl addieren muß ,
um ac zu erhalten , gilt ac > bc , was zu zeigen war .

Einen wichtigen Sonderfall von Satz 81 . 2 stellt das Multiplizieren einer Un¬
gleichung mit — 1 dar . Es gilt (Abbildung 82 . 1 ) :

a < b => a ■ ( — 1 ) > b • ( — 1 ) , also
a < b => — a > — b .

- b - a 0 a b

- b 0 b- aa

b 0 - b - aa

Abb . 82 . 1 a < b — a > — b

Natürlich gelten die beiden Monotoniegesetze auch für das Dividieren einer
Ungleichung durch eine positive oder negative Zahl . Das ergibt sich daraus ,

1
daß man die Division durch c 4= 0 als Multiplikation mit — auffassen kann .

c
1

Da c und - gleiches Vorzeichen haben , gilt also :
c

a < b
c > 0

a < b
c < 0

und

Aufgaben

1 . Multipliziere die Ungleichung mit der angegebenen Zahl .
a) - 20 < - 2 | | - 5 b) 1,7 > - 1,81 | - ( - 0,5) c) 24 > 0 | | - ( — f )
d) f > — Hl • ( — 21 ) e) 2x > y \ \ ■0,7 f) 0,2« < - 8 « | | ■ ( - 5)

2 . Dividiere die Ungleichung durch die angegebene Zahl :

c) _ 5 ,4 < - 4,5 | | : ( - f ) d) < ff | | : 0,4
e) 0,01 > - 0,11 | : ( - 0,001 ) f ) - 0,8 > ~ i \ \ : \ - 2 |

a) — 2 < 11 | : 5
c) — 5,4 < — 4,51 | : ( — f )

b) 68 > 0 | | : ( - 0,5)
d) if < 25 II : 0,4
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3 . Multipliziere die zwischen a und b bestehende Ungleichung mit dem Fak¬
tor c :
a) a = 37 ; b = — 1 ; c = 3 b) a = f ; b = f ; c = — 10
c) a = - 1,9 ; b = - 2,1 ; c = - 0,2 d) a = - 0,985 ; b = 0 ; c = 200

4 . Was ergibt sich, wenn man eine Ungleichung mit 0 multipliziert ?
5 . Ist x positiv , null oder negativ , wenn gilt

a) a < b => ax > bx b) u > v => ux = vx
n m pc) n > m — < — d) p > 0 => — > 0 ?
xx x

2 .7 .3 Zusammenstellung der Rechengesetze

Für rationale Zahlen a , b , c gelten folgende Rechengesetze :

Gesetze der Addition Gesetze der Multiplikation Bezeichnungen

(E + ) a + beO (E . ) a • b e <Q> Existenz der
Summe/des
Produkts

(K + ) a + b = b + a (K . ) a • b = b • a Kommutativ¬
gesetz

(A + ) (a + b) + c =
= a + (b + c)

(A . ) (a ■ b) • c = a • (b • c) Assoziativ¬
gesetz

(N + ) a + 0 = a (N . ) a • 1 = a Existenz des
neutralen
Elements

(I + ) « + ( - «) = 0 (I ) a • - = 1 , falls a + 0
a

Existenz des
inversen
Elements

(D) (a + b) - c = a - c + b - c Distributiv¬
gesetz

a < b => a + c < b + c
a < b ]

> => a - c < b - c
c > 0 j

Monotonie¬

gesetz

a < b |
> =s> a - ob - c

c < 0 J
Umkehrung
der Monotonie
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Die hier zusammengestellten Rechengesetze bilden die Grundlage für das
Rechnen mit rationalen Zahlen und überhaupt für die ganze Algebra . Du
wirst sie im folgenden immer wieder benötigen , besonders häufig die mit (E) ,
(K ) , (A) , (N ) , (I) und (D ) bezeichneten Gesetze . Präge sie dir daher gut ein
(Merkwort : EKANID , vgl . auch Aufgabe 84/5 .) .
Besonders auffällig an dieser Gesetzestafel ist natürlich die weitgehende Ana¬
logie zwischen den Rechengesetzen der Addition und der Multiplikation : die
»EKANI -Gesetze « gibt es für beide Rechenarten . Zu ihrer Unterscheidung
wurde in der Tafel ein an den Kennbuchstaben angehängtes Plus - bzw . Mal¬
zeichen verwendet . Im Distributivgesetz (D) - und nur in ihm ( !) - kommen
beide Rechenarten zugleich vor . Es stellt eine Verbindung zwischen den beiden
durch die Gesetze der Addition und der Multiplikation beschriebenen Re¬
chenbereichen dar .

Aufgaben

1 . Welches der in <Q> geltenden Rechengesetze der Addition konnte in der
Zahlenmenge G / noch nicht aufgestellt werden und warum nicht ?

2 . Weshalb benötigt man keine eigenen Rechengesetze für die Subtraktion
und die Division ? (In welchen Rechengesetzen der Addition und Multipli¬
kation sind diese Umkehroperationen enthalten ?)

3 . Ist es richtig , zu sagen »Wenn man in den Rechengesetzen der Addition die
Pluszeichen durch Malzeichen ersetzt , erhält man die Rechengesetze der
Multiplikation «?

4 . Erkläre an der Zahlengeraden, warum es bei der Addition keine »Umkeh¬
rung der Monotonie « gibt .

5 . a) Wie gefällt dir der Wahlspruch »In Mathe fit mit EKANID «?
Oder folgender : »Was EKANID weiß , macht mich nicht heiß«?
Denke dir selbst beß ’re Merksätze aus !
Vielleicht wird gar ein Gedicht daraus ?

b) »Beim Rechnen in Qq eckt man oft an ,
Weil man häufig nicht subtrahieren kann .
Das liegt daran : Man hat nur EKAN !
. «
Erfinde zu diesem großartigen Gedichtanfang eine passende Fortset¬
zung , welche auf den mit O und EKANI erreichten Fortschritt hin¬
weist!
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* * Zur Geschichte der negativen Zahlen
Bereits in altbabylonischen Texten um 2000 v . Chr . kommen an einigen Stellen negati¬
ve Zahlen vor . Aber wir wissen nicht , wie die Babylonier sie aufgefaßt und ob sie mit
ihnen gerechnet haben .
Im chinesischen Rechenbuch Chiu Chang Suan Shu* = Neun Bücher arithmetischer
Technik , von dem man nicht weiß , wie alt es wirklich ist - der älteste erhaltene Text ist
die 263 n . Chr . von Liu Hui mit Kommentaren versehene Ausgabe * * kommen posi¬
tive und negative Zahlen vor . Die positiven Zahlen werden rot , die negativen schwarz
geschrieben . Die Regeln für die Addition und Subtraktion negativer Zahlen sind be¬
kannt und werden angegeben . Ergeben sich beim Lösen von Gleichungen negative
Zahlen , so werden sie als Lösungen anerkannt .
Rechenregeln für das Ausmultiplizieren von (a — b) (c — d) findet man auch bei Dio-
phant (um 250 n . Chr .) , der aber im Grunde nur mit Differenzen arbeitet , die einen

positiven Wert haben . Negative Zahlen als Lösungen von Gleichungen bezeichnet er
als »unstatthaft « .
Die Inder kennen positive und negative
Zahlen und benennen sie durch dieWÖrter
dhana = Vermögen und rna = Schulden .
Bei Brahmagupta (598- nach 665 ) werden
negative Zahlen durch einen darüberge¬
setzten Punkt gekennzeichnet ; er schreibt
also z . B . 3 für unser — 3 . In der weiteren
Entwicklung der indischen Mathematik
werden negative Zahlen auch als Lösun¬
gen von Gleichungen zugelassen .
Die Araber übernehmen zwar von den In¬
dern das Rechnen mit negativen Zahlen ,
erkennen sie aber nicht als Lösungen von
Aufgaben an .
Spätestens im 9 . Jh . kann man im Abend¬
land mit negativen Zahlen rechnen , aber
als erster läßt Leonardo von Pisa (um
1170- nach 1240) eine negative Zahl als
Lösung zu , die er als Schulden deutet ; an¬
dernfalls wäre die Aufgabe unlösbar . * * *
Ähnlich geht auch Michael Stifel
(1487 (?)—1567) vor , obgleich er zu tiefe¬
rer Einsicht in das Wesen der negativen
Zahlen gekommen ist . Er spricht 1544 in
seiner Arithmetica integra davon , daß
man sich Zahlen kleiner als null vorstellen
könne und daß null zwischen den »wah¬
ren« Zahlen und den »absurden « Zahlen
liege . Im Gegensatz zu Stifel hat sein
* gesprochen tschiu tschang suan schu
** Der erste Kaiser Chinas , Schi Huang -Ti ( = erster erhabener Kaiser , Regierungszeit 221 - 210v . Chr .) ,

ließ 213 v . Chr . alle Bücher verbrennen und viele konfuzianische Gelehrte lebendig begraben . Liu Hui
berichtet , daß das Rechenbuch von Chang Tsan (| 152 v . Chr .) aus erhalten gebliebenen Resten neu
zusammengestellt und von Ching Ch ’ou -ch ’ang (um 50 v . Chr .) erweitert wurde .

*** Um 1430 wird in einer auf provenzalisch geschriebenen Handschrift zum ersten Mal eine negative Zahl
als Lösung ohne weitere Erklärung akzeptiert .

ARITHMETI
CA ' INTEGRA .

Authort Michade Sdidio .

Cum prxfärioncPhilippi Mdandithonis .

Norimberg * apud Iohan . Petreiuni »
AnnoChndi m. d. xliui .

Cum gratia & priuilegio Cacfareo

atcp Regio ad Scxennium »

Abb . 85 . 1 Titelblatt der Arithmetica in¬
tegra - »Die ganze Arithmetik « - (1544)
von Michael Stifel ( 1487 ? Esslingen bis
19 .4 . 1567 Jena ) und dessen Unterschrift .
Ein Bildnis ist nicht überliefert .
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Zeitgenosse Geronimo Cardano ( 1501- 1576 ) keine Schwierigkeiten mit negati¬
ven Zahlen als Lösungen von Aufgaben , nennt sie aber »gedachte « Zahlen im Gegen¬
satz zu den positiven , den »wahren « Zahlen . Franfois Viete (1540 - 1603) , der
Begründer der modernen Algebra , hingegen erkennt die negativen Zahlen nicht als
Lösungen an . Rene Descartes (1596 - 1650 ) verwendet zwar positive und negative
Ordinaten bei seinen graphischen Darstellungen , die Abszissen sind für ihn aber immer
positiv . Negative Gleichungslösungen nennt er »falsche« Lösungen im Gegensatz zu
den »wahren « positiven . Auch Buchstaben stellen bei ihm immer positive Zahlen dar .
Der erste , bei dem ein Buchstabe - so wie bei uns jetzt üblich - sowohl eine positive wie
auch eine negative Zahl vertreten konnte , war der Amsterdamer Bürgermeister und
Mathematiker Jan Hudde (1628(?)—1704) , und zwar in seiner um 1655 verfaßten
Schrift De reductione aequationum.
Selbst im 18 . Jahrhundert gelang es noch nicht , eine befriedigende Erklärung der nega¬
tiven Zahlen zu finden . Dies führte dazu , daß diese Zahlen von manchen Mathemati¬
kern nicht anerkannt wurden , zum Beispiel auch nicht durch Christian von Wolff
(1679- 1754 ) . Im großen und ganzen wurden sie aber allmählich gleichberechtigt neben
die positiven Zahlen gestellt.
Die endgültige wissenschaftliche Klärung dieses Problems brachte erst das 19 . Jahr¬
hundert , insbesondere durch George Peacock (1791- 1858 ) und Hermann Hankel
(1839 - 1873) . Sie erkannten , daß man bei der Erweiterung eines Zahlenbereichs nach
Möglichkeit so zu verfahren hat , daß die für die bisherigen Zahlen gültigen Gesetze
auch im erweiterten Zahlenbereich gültig bleiben . Peacock nannte 1830 diesen Grund¬
satz das Permanenzprinzip (vgl . Seite 38) .

H (UrtiOi

Abb . 86 . 1 George Peacock (1791 Abb . 86 .2 Hermann Hankel (14 . 2 . 1839
Thornton Hall/Denton - 1858 Ely (?)) Halle/Saale - 29 . 8 . 1873 Schramberg )
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3 Einfache Termumformungen

3 . 1 Äquivalente Terme

Terme , also auch Variablen , stehen für rationale Zahlen . Beim Rechnen mit
Termen denken wir uns jede Variable durch eine geeignete Zahl ersetzt . Da¬
durch wird der Term selbst zu einer rationalen Zahl , und man kann mit ihm
wie mit einer rationalen Zahl rechnen . Also gelten die Rechengesetze für ratio¬
nale Zahlen auch für das Rechnen mit Termen . Mit Hilfe der Rechengesetze
kann man dann Terme in andere Terme umwandeln . Vor allem will man natür¬
lich komplizierte Terme vereinfachen . Wir zeigen dieses Umformen von Ter¬
men mittels der Rechengesetze an einigen Beispielen.

1) Umformungen mit Hilfe der Rechengesetze für die Addition

Kommutativgesetz : a + b = b + a
2x + 3 = 3 + 2x 1 — x = — x + 1

Assoziativgesetz : (a + b) + c = a + (b + c) = a + b + c
(3x + 1 ) + 12 = 3x + (1 + 12) = 3x + 13
( li * - 3 | ) - 2i = ( li * + ( - 3 | )) + ( - 2i ) =

= lix + ( - 3| - 2i ) = l | x - 6
0 als neutrales Element der Addition : a + 0 = 0 + a = a
3x + 0 = 3x
Inverses Element bei der Addition : a + ( — a) = a — a = 0
x — x = 0 3,7x — 3,7x = 0 (3x + 5y + 8) - (3x + 5y + 8 ) = 0

2) Umformungen mit Hilfe der Rechengesetze für die Multiplikation

Kommutativgesetz : a • b = b • a
x ■ 3 = 3 ■x = 3x x ■ ( — j ) = ( — j ) x = — jx
Assoziativgesetz : (a • b) • c = a • (b • c) = a • b • c
2 • (4 ■x) = (2 • 4) • x = 8x
( — 3) (( — 2,l ) x) = (( — 3) ( — 2,l )) x = 6,3x
1 als neutrales Element der Multiplikation : 1 • a = a • 1 = a
1 ■ X = X X = 1 • X

Inverses Element bei der Multiplikation : « • - = - = ! für a #= 0
a a

1
(2,7x ) ~ = 1

2,7x
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3) Umformungen mit Hilfe des Distributivgesetzes
Ausmultiplizieren :
a ' (b + c) = a ' b + a - c

Ausklammern :
a ' b + a ' c = a ' (b + c)

3 - (x + 2) = 3 - x + 3 - 2 = 3x + 6 2x + 2j? = 2 (x + t )
( — 2) • (3 — x) = — 6 + 2x 2x + 3x = (2 + 3) x = 5x
( — 1 ) ■ (x — 7) = — x + 7 2x + x = (2 + l ) x = 3x

Interessanter , aber auch schwieriger wird es , wenn mehrere Gesetze nachein¬
ander oder gleichzeitig angewendet werden :

( — 3 + x) + l = (x + ( — 3)) + l = x + (( — 3) + l ) = x + ( — 2) = x — 2
8x - 14 = i • (8x - 14) = \ • (8x) - i • 14 = (| • 8) x - 7 = 4x - 7

8x — 14 8x 14
4x - /

Der umgewandelte und der ursprüngliche Term sind mathematisch gleichwer¬
tig . Setzt man nämlich in beide Terme irgendeine Zahl ein, so entstehen jeweils

gleiche Zahlenwerte . So ergibt sich z . B . bei den Termen 7j (x) = - -- und

T2 (x) = 4x — 7 bei der Einsetzung x = 3 einerseits 7j (3)T2 (x) = 4x — 7 bei der Einsetzung x = 3 einerseits 7j (3) =

andererseits 7’
2 (3) = 4 • 3 — 7 = 5 , also jedesmal 5 .

Man kennzeichnet diese Gleichwertigkeit von Termen durch ein Fachwort :

Definition 89. 1 : Zwei Terme 7j (x) und T2 (x) heißen äquivalent *
, wenn

sie beijeder Einsetzung für x jeweils gleiche Zahlen wer¬
te liefern .
Kommen in Termen mehrere Variablen vor , so müssen
sie bei der Ersetzung aller Variablen durch Zahlen je¬
weils gleiche Zahlenwerte liefern .

Die Rechengesetze liefern uns Beispiele für äquivalente Terme . So sagt z . B .
das Kommutativgesetz der Addition , daß die Terme a + b und b + a äquiva¬
lent sind .

Die Grundmenge Q hat unendlich viele Elemente . Daher kann man mit der
Methode des Einsetzens die Äquivalenz von Termen niemals nachweisen , da
man mit dem Einsetzen nie fertig wird . Wie kann man aber dann feststellen , ob
zwei Terme äquivalent sind? Antwort hierauf gibt

aequus (Jat .) = gleich ; valere (lat .) = wert sein , gelten für
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Satz 90 . 1 : Zwei Terme , die durch Anwendung der Rechengesetze aus¬
einander hervorgehen , sind äquivalent .

Zur Begründung dieses Satzes überlegen wir uns : Wenn man einen Term mit
Hilfe eines Rechengesetzes durch einen anderen ersetzt , so haben der ur¬
sprüngliche und der neue Term bei jeder Einsetzung den gleichen Wert . Also
sind die beiden Terme äquivalent .

Bei umfangreichen oder kompliziert gebauten Termen ist der Nachweis der
Äquivalenz sehr langwierig . So ist insbesondere der Nachweis , daß die Re¬
chengesetze auf mehr als 2 bzw . 3 Summanden und Faktoren verallgemeinert
werden können , sehr mühsam . Für Tüftler führen wir als Beispiel vor , wie
man ein Kommutativgesetz der Addition bei 4 Summanden beweisen kann .

Wir wollen zeigen:

a -\- b -\~ c -\- d = d -\- b -\- c -\- a

Mit Hilfe des Assoziativgesetzes (A) und
des Kommutativgesetzes (K) formen wir
langsam um .
a -\- b -\- c -\- d ~ ((ü T b) T c) T d =

= d + ((ö 4 - b) + c) =
= d + ((6 + a) + c) =
= d + (b + (a + c) ) =
= d + (b + (c + a ) ) =
= d + {{b + c) + fl) =
= (d + (b + c)) + a =
= ((d + b) + c) + a =
— d b c a

Wer selber so etwas versuchen will , soll
Aufgabe 95/12 lösen!

Abb . 90 . 1 Sir (seit 1835 ) William Ro-
wan Hamilton (4 . 8 . 1805 Dublin bis
2 . 9 . 1865 Dunsink bei Dublin ) , der 1843
das Wort assoziativ prägte .

Auch andere Rechengesetze lassen sich verallgemeinern . Es gilt nämlich

Satz 90 .2 : Verallgemeinerte Rechengesetze
Verallgemeinertes

Bei Summen darf die Reihenfolge
der Summanden beliebig geändert
werden , ohne daß sich der Wert
der Summe ändert ; z . B .

a + b + c + d = d + b + c + a

Kommutativgesetz
Bei Produkten darf die Reihenfol¬
ge der Faktoren beliebig geändert
werden , ohne daß sich der Wert
des Produkts ändert ; z . B .

a - b - c - d = d - b ‘ c ‘ a
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Verallgemeinertes Assoziativgesetz
Bei Summen dürfen Klammern
beliebig gesetzt und weggelassen
werden , ohne daß sich der Wert
der Summe ändert ; z . B .

(a + ((ft + c) + d) =
= (a + b) + (c + d )

Bei Produkten dürfen Klammern
beliebig gesetzt und weggelassen
werden , ohne daß sich der Wert
des Produkts ändert ; z . B .

a • ((ft ■ c) • d) = (a - ft ) • (c • d)

Verallgemeinertes Distributivgesetz
Ausmultiplizieren : Eine Summe
wird mit einer Zahl multipliziert ,
indem man jeden Summanden mit
dieser Zahl multipliziert und die
entstandenen Produkte addiert ;
z . B .

a - (b + c + d + e) =
= ab + ac + ad + ae

Ausklammern : Enthält in einer
Summe aus Produkten jedes Pro¬
dukt denselben Faktor , so kann
man diesen Faktor »ausklam¬
mern « ; z . B .

ab + ac + ad + ae =
= a {b + c + d + e)

Da wegen a : b = - = a ■ - eine Division immer durch eine Multiplikation
b b

mit dem Kehrwert des Divisors ersetzt werden kann , erhalten wir aus dem
verallgemeinerten Distributivgesetz eine merkenswerte Folgerung ; nämlich

Satz 91 . 1 : Eine Summewird durch eine Zahl dividiert , indemmanjeden
Summanden durch diese Zahl dividiert und die entstandenen
Quotienten addiert ; z . B .

(a + b + c + d) : e = a : e + b : e + c : e + d : e oder
a + b + c + d a b c d
- = - + - + - + -

e e e e e

Eine besonders wichtige Anwendung finden die verallgemeinerten Rechenge¬
setze beim Zusammenfassen gleichartiger Terme . Dabei nennt man Terme
gleichartig , wenn sie gleiche Buchstabenfaktoren haben. So sind z . B . Ix und
— 3x gleichartig , ebenso f a 2 b und a 2 b . Nicht gleichartig sind hingegen 3a 2

und 5a . Der Zahlenfaktor eines Terms heißt Koeffizient* des Terms . Die Terme
Ix , — %a 2 b und uv haben die Koeffizienten 7 bzw . — f bzw . 1 .
Mit Hilfe des verallgemeinerten Distributivgesetzes fassen wir nun gleicharti¬
ge Terme zusammen :

3x T 5 x T 8x — (3 T 5 T 8) x = 16x
llaft — ab = (11 — l ) aft = lOaft
* coejficiens (lat .) = mitbewirkend . Eingeführt wurde das Wort als Fachausdruck in die Mathematik von

Fran £ois Viete (1540- 1603) in seinen Ad logisticen speciosam notaepriores 1591 . Im Deutschen sagt man statt
Koeffizient gelegentlich auch Beizahl .
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Mit einiger Übung erspart man sich das Ausklammern der Koeffizienten und
addiert diese gleich im Kopf :
la + 12a + a = 20 a
Wir merken uns

Satz 92 . 1 : Gleichartige Terme werden addiert, indem man ihre Koeffi¬
zienten addiert und das Variablenprodukt beibehält .

Aus einfachen Termen kann man durch Addition umfangreichere Terme auf¬
bauen , z . B .
3x + ( — 5) + l,2xy + ( — üf ) + ( — 13) .
So wie wir für a + ( — b) kurz a — b geschrieben haben , vereinbaren wir diese
einfache Schreibweise auch für komplizierte Terme aus mehr als zwei Glie¬
dern . Damit läßt sich der obige Term kurz und übersichtlich schreiben :
3x — 5 + 7,2xy — \ x — 13 .
Da ein so gebauter Term eigentlich eine Summe ist , nennt man ihn zur Unter¬
scheidung algebraische Summe . Vielfach ist dafür auch der Name Aggregat *
im Gebrauch . Wir merken uns

Definition 92. 1 : Eine Verbindungmehrerer Terme durch Plus- oder Mi¬
nuszeichen nennt man algebraische Summe oder Aggre¬
gat . Die einzelnen Summanden heißen Glieder des Ag¬
gregats.

Wegen des Kommutativgesetzes und des Assoziativgesetzes der Addition dür¬
fen die Glieder eines Aggregats mit ihren Vorzeichen beliebig umgestellt und
zusammengefaßt werden :
2x — 3 + 8x + 5 — x =
= 2x + ( — 3 ) + 8x + 5 + ( — x) =
= 2x + 8x + ( — x) -(- ( — 3) + 5 =
= 2x + 8x — x — 3 + 5 =
= 9x + 2 .
* grex (lat .) = Herde , Haufen ; aggregare (lat .) = beigesellen . Leonardo von Pisa (um 1170- nach 1240) ver¬

wendet das Wort aggregatum . Als Aggregat im Sinne von Summe erscheint es 1489 im weitverbreiteten
Werk Behende und hübsche Rechenung auff allen kauffmanschafft des Johannes Widmann von Eger (um
1460- nach 1500) , Professor an der 1409 gegründeten Universität von Leipzig . Im Sommer 1486 hielt
Widmann in seinem Haus als Zusatzveranstaltung zum Lehrprogramm die erste öffentliche Vorlesung über
Algebra im deutschen Sprachraum , wofür er von jedem Studenten 2 Gulden ( = 42 Silbergroschen [ = gr] )
verlangte , ein unerhört hoher Betrag , verglichen z . B . mit den 8gr für die 20 bis 30 Wochen dauernde
Vorlesung über die ersten Bücher Euklids . Widmann zufolge verdiente ein Maurer 5 gr am Tag , und für
2 Gulden erhielt man ca . 4,5 g reines Gold . Übrigens bekam man 1480 in Sachsen für 4gr ein Schaf und
für 2gr ein Paar Schuhe . Francois Viete (1540- 1603) benützt in seiner In artem analyticem Isagoge ( 1591 )
das Wort adgregatum . Im Mathematischen Wörterbuch von Georg Simon Klügel (1739- 1812) von 1803
wird Aggregat in unserem Sinne verwendet .
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Beim praktischen Rechnen erspart man sich das Umschreiben in eine Summe
und stellt gleich unter Mitnahme des Vorzeichens um :

2x — 3 + 8x + 5 — x =
= 2x + 8x — x — 3 + 5 =
= 9x + 2 .
Wir merken uns

Satz 93 . 1 : In einem Aggregat dürfen die Glieder unter Mitnahme ihres
Vorzeichens beliebig umgestellt und zusammengefaßt wer¬
den .

Beispiel :
— 2\ a — lb + 9 ab + \ a + 3\ b — 5a =
= — 2\ a + \ a — 5a — lb + 3\ b + 9 ab =
= ( — 2{ + j — 5) a + ( — 7 + 3}) b + 9ab = — 6fa — 3 | b + 9 ab .

Da die Gesetze der Multiplikation von der gleichen Bauart sind wie die der
Addition , gilt auch

Satz 93 .2 : In einem Produkt dürfen die Faktoren beliebig umgestellt
und zusammengefaßt werden .

Mit Hilfe dieses Satzes kannst du die Faktoren in einem Produkt ordnen .
Dadurch werden die Terme übersichtlicher und sind leichter zu vergleichen .
Für das Ordnen der Faktoren empfiehlt sich die

Vereinbarung 93. 1 : Zuerst entscheidet man auf Grund der Vorzeichen¬
regeln über das Vorzeichen des Produkts . Dann
kommen die Zahlenfaktoren und schließlich die
Buchstaben dem Alphabet nach . Für das End¬
ergebnis wird der Wert des Zahlenprodukts ausge¬
rechnet .

Beispiele:
1) 4a ■ 3b = 3 ■4 ■ ab = 12ab .
2) ( - J) - x - ( - >>) • ( - 3i ) = = - f xy .
3) r ■ ( - 2,5 1) ■ ( ~ f ) s = + f • f • rjt = ü rst .
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Aufgaben

1 . a) (x - 2,5) + 1,9 b) 3$ + (t - 2 «)
c) ( - ^ + 0) - ! d) (5 ,93p - 81z) - (5 ,937 - 81z)
e) Qg - 2,8) - ( - ^ + 1,75g)

2 . a) 12 • (4**) b) ( - 1) • r • ( - f ) c) (2,1s) • ( - 1,2)
d) ( - l ) ( - 3,75a ) e) ( — a) ( — 5) • ( — f ) f ) ( - 0,55c ) • ( - ff )

1 1
3 . a) 3a - — b) ( - 7) a - - c) la • i

3a a
4- a) ( - 5) ( - x) ( - 7) b) ( — 8a) ( — 9b) ( + 5c) c) ( - 0,5r ) - l,7s ( - 3,40
5 . a) 12 ( — m) c ( — 2w ) b) ( — 1,8) ( — je) ( — 0,25)^

c) ( — f ) ( + a* ) ( — 18c) d) ( - l ) ( + fl) ( - b ) ( - c) ( + l )
e) ( - i ) ( - ^) ( - ^ ) ( - 3 ^) 0 ( + 6,25 ) ( — mc) ( + w) ( — 4x ) ( + 2y)

6 . a) { — ab ) : (4 ( — c)) b) ( - 2) ( + x) ( + z) : (7 ( - 7 ) ( - l ))

7 ( ~ 3) ( - w 27) ( - 5) 2 ( - l,4r ) ( + 0,6s)
• '

( + 4) ( - «) ( - 16)
j

( — l ) 3 (0,125f ) ( — 4) 2

c) ( + x7 ) ( - f ) 2 ( - z) ( + 343) : [( - | ) 3 ( - m;) ( - 243H0]

8 . a) 3 (0,9x — 0,3 )
d) Hia - Ib)

g) x (3x — 57 )

j) 3 ■ ( — 2m — 5v )
9 . a) 3x — 4x

d) 0,16 - 0,01b

g) ixy + ^xy

b) 7 (r + s)
e) (0,5c + f </) - 6

h) - 5fl (| a - f )

c) Cp - q ) ' 3
f) 32 (fa + | b )
i) (8x + 2xz ) \ y

k) - fz ( - ^ r + fz ) 1) - 2x ( - | ?x - | sx )
b) 7^x — x

e) 3fs + 2| s

h) 10,5rs — ll,5rs

c) a + 2a — 3a

f) ¥ ~ täV
i) 3,luv — uv

j) 1985abc — 1648abc k) 0,003rs £ — 0,3rst 1) — 5fx 27 — 4^x 27
10 . Wende das Distributivgesetz der Division an .

a)
12x - 51

b)
- 4,9 + 5,6 a

Ö>7
c)

■1,44m - 0,72
36

11 . Leon von Byzanz (9 . Jh . n . Chr .) hat behauptet, daß a {bc) = b {ac) =
= c {ab ) sei . Beweise die Richtigkeit dieser Behauptung durch Anwen¬
dung der Rechengesetze .
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12 . Zeige durch Anwendung der Rechenregeln:
a) abcd = dbca b) a (b + c + d) = ab + ac + ad

13 . Schreibe als Summe:
a) lx - 3y
d) — 5u + 3v — 9

b) — 2a — 5b
e) — 1 — 2x — 3y

b) 8 — (a — b)

c) 3 — x + y
f) 5a — 6b + 7c — 8 <i

14 . Schreibe als Summe:
a) 12xy — 3,7uv
d) (3 u + 5v) — (2 u — 3v — 1 )

c) (3x — 5y) — (2x + 3y)
2v e) 2 (x + y ) — 3 (x — y ) — 2 (x 2 — y 2)

15 . a) 2x + ly + 3y + x
c) — 2x + 7y — 3y + x
e) — 2x + ly + 3y — x

g) la + hb + 3 \ a + ^b

0 - ja + ^b - 3^a + %b
k) - ya + ib + 3^a - %b

b) 2x — ly + 3y + x
d) 2x — ly — 3y — x
f) — 2x — 7y — 3y — x
h) ja - \ b + 3ja + jb

j) ja - jb - 3ja - jb

1) ~ ia - hb - 2>ja - jb

16 . a) 3x — 3,2 + 5 xy — 2 — x
b) S,lx 2 — 8 , Ix — 8,1 + 2,9 .x + x 2 — 7,9
c) 3ab — 0,3a — 0,3ab + 3,1a + 2,3ab

d) — 4fx + 3jy + xy — 3jx + lj %x — xy — 4jy

3 .2 Potenzen

Für Produkte mit lauter gleichen Faktoren führt man eine abkürzende
Schreibweise ein* :

a ■ a = -- a 2
, gesprochen »a hoch 2« oder »a Quadrat «

<z • fl ■ fl = = <z 3
, gesprochen »a hoch 3«

fl • fl • a ■ fl = : fl4
, gesprochen »a hoch 4«

* Um kenntlich zu machen , was das neue Symbol ist , verwendet man gern ein Gleichheitszeichen in Verbindung
mit einem Doppelpunkt , der entweder links oder rechts vom Gleichheitszeichen stehen kann . Dabei bedeutet

A •■= B, daß A das neue Zeichen , die neue Schreibweise für das schon bekannte B ist . Umgekehrt bedeutet

C = -D , daß das neue D durch das schon bekannte C erklärt wird .
Das Wort Symbol kommt vom griechischen aufißoAov (symbolon ) = Erkennungszeichen , vereinbartes Zei¬

chen . Ursprünglich bezeichnete man damit das dem Gastfreunde übergebene abgebrochene Stück einer

Sache , z . B . eines Rings , eines Täfelchens , das mit seinem Bruchrand genau in das zurückbehaltene Stück

paßte , so daß man durch Zusammenlegen ( = aofißdXletv [symbällein ] ) den rechtmäßigen Besitzer wieder

erkennen konnte .
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Macht man so weiter , so kommt man zu

Definition 96 . 1 : Für das Produkt a - a - . . . ■ a aus n gleichen Faktoren a
schreibt man kurz a n

, gesprochen »a hoch n« , und nennt
es n-te Potenz von a \ kurz :

«" := « • a a , ne { 2,3,4, . . . } .
n Faktoren

Man sagt : a wird mit n potenziert , a heißt Grundzahl
oder Basis , n heißt Hochzahl oder Exponent . *

Da n die Anzahl der Faktoren im Produkt angibt , gilt die Definition von a"
nur für natürliche Zahlen , die größer als 1 sind . Wir sind oben nämlich von
a - a = a 2 zu immer höheren Potenzen fortgeschritten . Ein Schritt zurück
brächte rein formal die Zeile a = a 1

. Das liefert eine naheliegende Ergänzungder Potenzdefinition , die sich im folgenden als zweckmäßig erweisen wird :

Definition 96.2 : a 1 ■■= a

In Termen , die aus Potenzen , Produkten und Summen bestehen , muß man
wissen , in welcher Reihenfolge die Rechnung auszuführen ist . So ist z . B . un¬
klar , wie 3 • 5 2 zu verstehen ist :
Geht die Multiplikation vor oder das Potenzieren ?
Geht die Multiplikation vor , so muß man 3 - 5 2 = 15 2 = 225 rechnen .Geht hingegen das Potenzieren vor , so ergibt sich 3 - 5 2 = 3 - 25 = 75 .Durch Setzen von Klammern kann man die Anweisung eindeutig machen ; im
ersten Fall schriebe man (3 • 5) 2

, im zweiten Fall 3 ■ (5 2) .
Um Klammern zu sparen , hält man sich an die 1873 von Ernst Schröder
(1841- 1902 ) in seinem Lehrbuch der Arithmetik und Algebra für Lehrer und
Studirende eingeführte

Vereinbarung 96 . 1 : 1 . »Potenz vor Punkt vor Strich .«
2 . »Klammern haben absoluten Vorrang . «

* Diophant (um 250 n . Chr .) verwendet für die 2 . Potenz einer Unbekannten neben terpaycovoq (siehe Seite 66)bevorzugt öovapn ; (dynamis ) = Kraft , das bereits bei Heron (wirkte um 62 n . Chr . in Alexandria ) so belegtist , wogegen Hippokrates von Chios (2 . Hälfte des 5. Jh .s v . Chr .) damit die Quadratzahl bezeichnet hatte .Raffaele Bombelli (1526- 1572) verwendet 1572 in seiner L ’Algebra dafür das italienische Wort potenza .Im 18 . Jh . setzt sich potentia , zu deutsch Potenz , als allgemeine Bezeichnung für a n gegenüber den bis dahin
gebräuchlichen Wörtern wiepotestas (Viete ) und dignitä (Tartaglia und Bombelli ) durch . Leonhard Euler
(1707- 1783) versucht in seiner Vollständigen Anleitung zur Algebra 1770 die Verdeutschung Macht , die sichaber nicht verbreitete . Basis ist das griechische Wort ßaaiq , das Grundlage , Fundament bedeutet . Das Wort
Exponent wurde 1544 von Michael Stifel (14877- 1567) in seiner Arithmetica Integra geprägt ; exponere(lat .) bedeutet heraussteilen . Auch die Schreibweise für Potenzen hat eine lange Geschichte . Das heuteübliche a 2

, a 3 usw . geht auf Rene Descartes (1596- 1650) zurück , und zwar auf die 1628 entstandenenund erst 1701 erschienenen Regulae ad directionem ingenii . Potenzen mit einem allgemeinen Exponentenn kommen jedoch erst bei Isaac Newton (1643- 1727) vor .
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Beispiele:
1) 4 + 3 • 5 2 = 4 + 3 • 25 = 4 + 75 = 79 .
2) (4 + 3) • 5 2 = 7 ■ 5 2 = 7 • 25 = 175 .
3) 4 + (3 ■ 5) 2 = 4 + 15 2 = 4 + 225 = 229 .
4) (4 + 3 • 5) 2 = (4 + 15) 2 = 19 2 = 361 .
5) ((4 + 3 ) • 5) 2 = (7 • 5) 2 = 35 2 = 1225 .

Beachte : Manche Taschenrechner halten sich nicht an diese Vereinbarung .
Studiere also jeweils genau die Gebrauchsanweisung !

Beim Umgang mit Potenzen passieren dem Anfänger manchmal folgende
zwei Fehler :
1 . Fehler : Er verwechselt a 3 mit a ■ 3 . Aber es gilt

a 3 = a ■ a ■ a und a - 3 = 3 - a = a + a + a , zum Beispiel
5 3 = 5 • 5 • 5 = 125 und 5 • 3 = 3 • 5 = 5 + 5 + 5 = 15 .

2 . Fehler : Er rechnet a 3 — a 2 = a , z . B . 7 3 — 7 2 = 7 . Dabei läßt sich a 3 — a2
nicht weiter berechnen , 7 3 — 7 2 aber zu 343 — 49 = 294 aus¬
rechnen , und das ist nicht 7 .

Wie geht man aber richtig mit Potenzen um ? Vorläufig genügen uns drei Re¬
chenregeln :
1) Multiplikation von Potenzen mit gleicher Basis

2 3 • 2 4 = (2 • 2 • 2) • (2 • 2 • 2 • 2) = 2 • 2 • 2 • 2 • 2 • 2 • 2 = 2 7

Bei der Umformung war es nicht wesentlich , daß 2 die Basis war ; also gilt für
jede Basis a
a 3 ■ a A = (a ■ a • ä) • (a ■ a ■ a ■ a) = a ■ a • a ■ a ■ a ■ a ■ a = a 1 .
Genauso können wir allgemein vorgehen :

a m ■ an = (a ■ a . . . • a) ■ (a ■ a ■ . . . • a) = a ■ a ■ . . . ■ a = am + n .

m Faktoren n Faktoren m + n Faktoren

Also gilt

Satz 97 . 1 : Potenzen gleicher Basis werden miteinander multipliziert ,
indem man die Exponenten addiert und die Basis beibehält ;
kurz a m • an = a m + n (m,neN ) .

Beispiele :

1 ) x 8 - x 19 = x 8 + 19 = x 27 .
21 z • z 2 — z ^ * z 2 = z 3 2 = z 3

3) a 2 - a 3 - a* = a 2 + 3 ■ u4 = a <2 + 3 >+ 4 = fl 2 + 3 + 4 = a 9 .
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2) Potenzieren einer Potenz

( 2 3
)

4 = 2 3 • 2 3 • 2 3 • 2 3 = 2 3 + 3 + 3 + 3 = 2 12
.

Auch hier war es nicht wesentlich , daß 2 die Basis war ; also gilt für jede Basis a

(ö 3 ) 4 = a 3 ■ a 3 ■ a 3 ■ a 3 = a 3 + 3 + 3 + 3 = a 12 .
Genauso können wir allgemein Vorgehen:

n Summanden m

(am)n = a m - am a m = a m + m + - + m = a ” m = a mn

n Faktoren a m

Somit gilt

Satz 98 . 1 : Eine Potenz wird potenziert , indem man die Exponenten
miteinander multipliziert und die Basis beibehält ; kurz

(am)n = amn (m,neN ) .

Beispiele :

1 ) (x 2) 3 = x 2 ' 3 = X 6 .
2) ((z 3) 5) 7 = (z 3 ' 5) 7 = z<3 ' 5 ) ' 7 = z 3 ' 5 ' 7 = z 105 .

Beachte : (x 2) 3 =|= x 2
. Auf der linken Seite wird nämlich die Basis x 2 mit 3

potenziert , und das ergibt x 6
. Auf der rechten Seite hingegen wird die Basis x

mit dem Exponenten 2 3 potenziert ; da x 2 die Kurzschreibweise für x (2 ’ ist,
erhält man x 8 .

3) Potenzieren eines Produkts bzw . eines Quotienten
Betrachten wir gleich den allgemeinen Fall :

(a - b )n = (a - b ) ■ (a - b ) ■ . . . ■ (a - b) = {a ■ a ■ . . . ■ a ) ■ (b ■ b ■ . . . • b ) = a n ■ bn

n Faktoren (a ■b) n Faktoren a n Faktoren b

Satz 98.2 : Ein Produkt wird potenziert , indem man jeden Faktor poten¬
ziert und die entstandenen Potenzen miteinander multi¬
pliziert ; kurz

(a - b)n = an - b n (« eN ) .

Offensichtlich gilt dieser Satz auch für Produkte aus mehr als zwei Faktoren ,
z . B . : (a ■ b ■ c ■ d )n = a " ■ b n ■ cn • dn .
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Beispiele :
1) (3x)4 = 3 4 - x 4 = 81x 4 .
2) (0,3 • x 2) 4 = 0,3 4 • (x 2) 4 = 0,0081x 8 .

Für Brüche erhalten wir analog :

n Faktoren a

a a a a ■ a • . . . ■ a an

b
’

b b
=

b ■ b • . . . • b
=

Vn '

n Faktoren ^ « Faktoren b
b

Satz 99. 1 : Ein Bruch wird potenziert, indem man Zähler und Nenner
potenziert und die Zählerpotenz durch die Nennerpotenz
dividiert ; kurz

( a \ n an

[ bj
=

V (b * ° AnsM b

Beispiele :

1)
4

2)
3ax 2V
4b * y)

( 3V 4 , 3 \ 4 3 4
4 12 81 4 12

kJ • * ( y ) = y ~
16

x y •

(3ax 2) 3 3 3 a 3 (x 2) 3 27 a 3 x 6

(4b 3 y ) 3
=

4 3 (ö 3) 3 j 3
=

Mtfy 3 '

Aufgaben

1 . Berechne die Quadrate der Zahlen von 1 bis 25 und lerne sie auswendig .
2 . Wie lauten die dritten Potenzen der Zahlen von 1 bis 10?
3 . a) 4 3 + 25 2 — 142 — 7 3 b) 9 3 - 9 2 + 5 3 - 5 2

c) 6 3 — 18 2 — 21 2 + 4 3 d) — 23 2 + 8 3 — 16 2 — 3 3

4 . Berechne die Potenzen von 2 bis zum Exponenten 10 und lerne sie
auswendig .

5 . Berechne die Potenzen von 10 bis zum Exponenten 6 .
6 . Berechne die Potenzen a 1

, a 2
, a 3

, a4 für a = 0 ; 1 ; 2 .
7 . Berechne und vergleiche :

a) 2 3 und 3 2 b) 3 5 und 5 3

c) (2 + 5) 2 und 2 2 + 5 2 d) ( 17 - 12) 2 und 17 2 - 122

e) (3 ■ 5) 2 und 3 • 5 2 f) ( 12 : 4) 2 und 12 : 4 2
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8 . a) Berechne und vergleiche: 1) (2 2) 3 und (2 3 ) 2 2) (3 2) 3 und (3 3 ) 2

b) Was kann man allgemein von (a m) n und (an) m aussagen ? Beweis!

9 . a) (| ) 3 b) ( - | ) 2 c) ( lf ) 4 d) ( - ff ) 5 e) 0,3 2

f) — 0,3 3 g) 0,34 h) 0,03 2 i) - 2,5 2 k) 0,252

• 10 . Rechenvorteil : 3 8 = (3 4) 2 = 81 2 = 6561
Berechne in entsprechender Weise :
a) 3 6 b) 4 4 c) 5 4 d) 2 12 e) 2 20

11 . Zerlege unter Verwendungder Potenzschreibweisefolgende Zahlen in ihre
Primfaktoren :
a) 512 b) 432 c) 1400 d) 1568
e) 1089 f) 1352 g) 1331 h) 3636

• 12 . Rechenvorteil:
28 • 75 = (2 2 ■ 7) • (3 • 5 2) = 3 • 7 • (2 • 5) 2 = 21 • 100 = 2100
Berechne ebenso :
a) 12 ■ 65 b) 24 • 375 c) 625 • 48
d) 25 - 24 - 15 e) 225 - 64 - 125 f) 12 - 175 - 14

13 . a) x 3 - x 5
d) | - b 5 - l - b 2

• g) 2p 3 ■ 3 {pq 2) 2

b) 2a 2 - 3 a c) u ■ 5u ■ 2u 3

e) {ab ) 2 ■ a 3 * f) 3x_y
2 • (5xp ) 2

• h) (3u 2 v 3) 2 ■ (2u 2 v 3 ) 3 8i) [2a (3a6 2 ) 3] 2 ■ (4a 2 Z>) 2

14 . a) x (x + _y) b) v {u — v) c) (2 a + b ) - a2

• d) 3b4
{5b — 2c 2) , e) xy 2

{2 - 3x 4 y) . f) {a 2 b + bc2 + l ) a 3 c
• 15 . Für welche natürlichen Zahlen a und b gilt ab = a ■ bl

16 . Zehnerpotenzschreibweise . Der besseren Lesbarkeit wegen schreibt man
oft große Zahlen als Produkt aus einer Zahl zwischen 1 und 10 und einer
Zehnerpotenz . Für 1300000 schreibt man also lieber das Produkt
1,3 - 10 6 .
a)

b)

17 . a)
18 . a)

d)

Schreibe die folgenden Zahlen mit Hilfe einer Zehnerpotenz :
1) 7840000 4) 80500000
2) 100000 5) 724
3) 3020 6) 17 Billionen
Schreibe ohne Zehnerpotenz :
1) 1,03 - 109 4) 1,35 - IO 6
2) 3 ■ 10 8 5) 5,05 • 10 5
3) 1,5 - 10“ 6) 8,07 - IO 5

( - fxV ) 2 b) (0,02ab 3 ) 5 c) ( - % 4 ä 3 )3

i - 1 ' (i ) 2 b) (i - | ) - (| ) 2 c) i - (f - i ) 2

(i - l - i ) 2 e> ((i - f ) - i ) 2 f) (i - f ) 2 - i
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19. Bestimme die Werte der folgenden Potenzen:
a) ( - 1 ) 2 b) ( - 1 ) 3 c) ( - 1 ) 4 d) ( - 1 ) 5
e) ( - 1 ) 8 f) ( - 1 ) 17 g) ( - 1 ) 103 h) ( - 1 ) 1234
i) Welche Werte können Potenzen mit der Grundzahl — 1 annehmen? Bei

welchen Hochzahlen treten die verschiedenen Potenzwerte auf ?
20 . Berechne :

a) ( — 0,1 ) 2 b) ( — 10) 2 c) ( — 0,1 ) 3 d) ( — 10) 3

e) ( — 0,01 ) 2 f ) ( - 0,01 ) 3 g) ( - 100) 2 h) ( - 100) 3

21 . a) ( — fl) 2 b) ( — fl) 5 c) ( — a) 32 d) ( — a) 1

e) ( — fl) 2”
, neN 1) ( — fl) 2n + 1

, « eN g) ( — a) 2 " - 1
, « eN

22 . a) ( - c) 4 - c4 b) ( — c) 5 + ( — c) 5 c) ( - ab) 3 d) ( - ab )4

e) - ( - ab ) 4 f ) [ - ( - flZ>)] 4 g) - ( - uv ) 1 h) - ( - uv 1)

23 . a) — ( — x) 2 b) - ( - x) 3 C) [ - ( - x)] 2 d) [ - ( - x)] 3

24 . a) ( - a) 2 ( - b ) 3 ( - c) 4 b) ( - a) 3 ( - b) 2 ( - c) 3

C) ( - i ) 3 ( _ x ) 2 ( _ J;) 4 d) ( _ 8 fl) 4 ( - | fl) 3 ( - 8fl) 2

• e) — 4a ( — ffl) 2 • (fa ) 3 Sf ) ( — 0,5x ) 3 • 2,7x • ( — 3,4x ) 2

25 . a) 1 + ( — l ) 1 b) l + ( - l ) 2 c) 1 + ( - l ) 3 d) l + ( - l ) 4

e) l - ( - l ) 1 f) l - ( - l ) 2 g) l - ( - l ) 3 h) l - ( - l )4

3 .3 . Umgang mit Klammern

Der Term (3x + 2y — 5) — (2y — 5 + 3x) läßt sich zu 0 vereinfachen , weil Mi¬
nuend und Subtrahend gleich sind , wie man durch Umordnen des Subtrahen¬
den erkennt . Schwieriger ist es , wenn man einen Term wie (3x + 2y — 5) —
— ( — 8x + 3^ — 1 ) vereinfachen will . Die Klammern lassen sich nicht ver¬
einfachen , und dennoch hat man das Gefühl , daß man diesen Term auch
einfacher schreiben kann . Tatsächlich geht es auch . Die dazu nötigen Hilfsmit¬
tel erarbeiten wir uns in diesem Kapitel .

Es hat sehr lange gedauert , bis sich Klammern als Zeichen für das Zusammenfassen
durchgesetzt haben . Zum erstenmal wurden runde Klammern von Michael Stifel
(14877- 1567 ) verwendet , als er in seinem Handexemplar seiner Arithmetica integra
eine Randbemerkung machte . Bei Niccolö Tartaglia (1499 - 1557 ) erschienen sie 1556
in seinem General trattato di numeri, et misure im Druck . Wichtig wurden Zusam¬
menfassungszeichen aber erst , als man allgemein mit Buchstaben rechnen wollte .
Francis Viete (1540 - 1603) faßte 1593 zusammengehörige Ausdrücke durch eckige
und geschweifte Klammern zusammen . Viele Mathematiker hatten das Zusammen -
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gehören durch Unterstreichen ausge¬
drückt . Rene Descartes (1596 - 1650)
führte statt dessen 1637 das Überstrei¬
chen ein, das durch seine Schüler allge¬
meine Verbreitung fand ; man schrieb also
7 + 3 : 5 an Stelle des heutigen (7 + 3) : 5 .
Da aber für die Druckereien Klammern
bequemer zu setzen waren als Überstrei¬
chungen , setzten sie sich immer mehr
durch . Leonhard Euler ( 1707- 1783) ver¬
wandte 1770 in seiner Vollständigen Anlei¬
tung zur Algebra zum erstenmal das deut¬
sche Wort Klammer.

Abb . 102 . 1 Leonhard Euler ( 15 .4 . 1707
Basel - 18 .9 . 1783 St . Petersburg ) öcUen.
3 .3 . 1 Rechenzeichen und Vorzeichen
Wir erinnern daran , daß die Subtraktion zweier Terme nichts anderes ist als
die Addition des Gegenterms :

a — b = a + ( — b ) .
Das Rechenzeichen Minus auf der linken Seite verwandelt sich dabei zum
Vorzeichen Minus auf der rechten Seite . Das Vorzeichen Plus bei a lassen wir
wie üblich weg.
Stehen vor einem Term mehrere Vorzeichen , so kann man sie immer mit der
Vorzeichenregel auf eines reduzieren ; nämlich

+ ( + fl) = + a = u — ( + a) = — a
+ ( — ä) = — a — { — a) = + a = a .

Man kann damit auch ganze Vorzeichenserien abbauen :
- ( - ( + ( - ( + ( - «))))) = - ( - ( + ( - ( - fl)))) =

= — ( — ( + ( + a))) =
= - ( - ( + «)) =
= - ( - fl) =
= a .

Wir haben die Serie dabei von innen nach außen abgebaut . Genausogut
könnte man sie auch von außen nach innen abbauen .
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Aufgaben

1 . Reduziere auf ein Vorzeichen :
a) + ( + 3a) b) - ( - fb )
c) — ( + xyz ) d) + ( — 4ab)
e) - { + { - lxy )) f) — ( — ( — ( — ( + ( — 13 m)))))

2 . Reduziere auf ein Vorzeichen :
a) + (a - b) b) - ( - (a - b)) c) - ( + ( - (a - b )))

3 . Du erinnerst dich sicher :
- Malpunkte in Produkten dürfen vor Variablen und Klammern wegge¬

lassen werden , z . B . 3 • a ■ {x — y ) = 3a (x — y ) .
- Das Pluszeichen bei gemischten Zahlen kann entfallen , also 1 + f = if .
- Das Pluszeichen als Vorzeichen am Anfang schreibt man nicht , z . B .

+ lab + 5a — b = 2ab + 5a — b .
Was versteht man nun eigentlich unter dem Term — 1 \ W.
Welche der folgenden Vorschläge hältst du für richtig :
a) ( — 1 ) - \ - b b) - (l + i ) - ü
c) - 1 + i - b d) ( — 1 - i ) - Ä
e) ( - l + i ) - b f) - (! + ! • £ ) ?

3 .3 .2 Plusklammern

Steht in einem Aggregat vor einer Klammer ein Pluszeichen , so spricht man
kurz von einer Plusklammer , z . B . 3x + ( ly — 5x + 8) . Weil es üblich ist , am
Anfang keine Pluszeichen zu schreiben - denke etwa daran , daß 3 + 5 auch
als + 3 + 5 geschrieben werden kann - so ist auch eine am Anfang stehende
Klammer eine Plusklammer : (3x + 5) + 8x .
Diese Plusklammern wollen wir nun beseitigen . Dabei hilft uns das verall¬
gemeinerte Assoziativgesetz . Weil es nur von Summen handelt , müssen wir
gegebenenfalls den Inhalt der Plusklammer als Aggregat , d . h . als algebraische
Summe , betrachten und dann das verallgemeinerte Assoziativgesetz
anwenden .

Beispiel: a + ( — b — c + d) = a + (( — b ) + ( — c) + d ) =
= ö + ( — b ) + ( — c) + t/ =
= a — b — c + d .
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Untersuchen wir das vorgeführte Beispiel auf das Wesentliche , so erkennen
wir

Satz 104 . 1 : In einem Aggregat kann eine Plusklammer mitsamt ihrem
Plusrechenzeichen weggelassen werden , ohne daß sich der
Wert des Aggregats ändert . Die Rechenzeichen in der Klam¬
mer bleiben erhalten . Falls vor dem ersten Glied in der
Klammer kein Zeichen steht , so muß ein Plusrechenzeichen
gesetzt werden ; kurz :
Plusklammern können weggelassen werden, Rechenzeichen
bleiben .

Wenn man bedenkt , daß der Inhalt der Plusklammer ein Aggregat ist , dann
läßt sich dieser Satz auch noch anders ausdrücken , nämlich :

Ein Aggregatwird addiert , indem man jedes Glied des Aggregats einzeln addiert .

Nach Satz 104 . 1 kann man also Plusklammern an beliebiger Stelle in einem
Aggregat weglassen . Umgekehrt kann man sie demnach an beliebiger Stelle
setzen ! Wir merken uns

Satz 104 .2 : Ein Aggregat ändert seinen Wert nicht, wenn man beliebig
viele Glieder in einer Plusklammer zusammenfaßt und
dabei ihre Rechenzeichen beibehält , z . B .
a + b — c + d — e — f = a + (b — c + d) + ( — e — / ) .

Nun können wir endlich das eingangs angeführte Aggregat vereinfachen :
3x + (ly — 5x + 8) = 3x + ly — 5x + 8 =

= ly + 3x — 5x + 8 =
= ly + (3x — 5x ) + 8 =
= ly — 2x + 8 .

Aufgaben
1 - a) 5 a + (3 b 1a) b) (5n + 3b ) + 7u

c) 5 a + (3 b — la ) d) — 5 (2 + ( — 3b + la )
e) ( — 5u + 3b ) — la f) — 5a + ( — 3b — la )

2 . a) (2x + 4y) + (6x + ■4y ) b) (2x — 4y ) + ( — 6x + 4y)
c) ( — 2x + 4y ) + (6x - 4y) d) ( — 2x — 4y ) + ( — 6x — 4y)
e) 2x + ( — 4y + 6x —4y) f) — 2x + (4y — 6x) — 4y
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3 . a) 3a + (9x 4- 7a) + (15a + 11 x)
b) 176 + (15a 4- 96) 4- 2a 4- (11a + 6 )
c) 14x + (20a + 76 + 4x ) + (9x + 13a + 316)
d) 11a + (136 + (12a + 196 )) + ((4a + 21b ) + 14a)

4 . (9 + 116 + 13c) + (156 + 17 + 19c) + (21c + 23 b + 25)

5 . 12x + (23x + 21y) + ( — 29 y + 3 z — 4 m) + (43z + 41 u — 59x) +
+ ( — 43 m — 7x — 2y) 4- ( — 19x + 4y — 46z)

• 6 . 2 + x + (x + (_y + 2) + (x 4- 2)) + (((x + 2) + 2) 4- 2)

• 7 . « 4- 1 4- (r 4- 1 ) 4- ((« 4- 1 ) 4- (r 4- 1 )) 4- (2 4- (2n + 1 ) 4- (2 r 4- 1 ))

• 8 . ( — 2 4- x) 4- (1 — x 4- ((1 — x) 4~ ( — 1 4“ x))) 4- ((1 — x) 4~ (x 4- 1))

9 . a) Wie lautet die Quersumme * q der Zahl 10 • x 4- y ; x e ( 1 , 2 , 3 , 4 , 5 , 6 ,
7 , 8 , 9} , y e (0 ; 1 ; 2 ; 3 ; 4; . . . ; 9} ?

b) Warum sind alle Zahlen der Form 10 - x4 - (9 — x ) mit
x e {0 ; 1 ; 2 ; . . . ; 9 ) durch 9 teilbar ?

• c) Sind auch alle Zahlen der Form 100 • x 4- (99 — x ) mit
x e (0 ; 1 ; 2 ; . . . ; 99 } durch 9 teilbar ?

8 d) Welche gemeinsamen Teiler haben alle Zahlen aus c) ?

3 .3 .3 Minusklammern

Steht in einem Aggregat vor einer Klammer ein Minuszeichen , so spricht man
kurz von einer Minusklammer , z . B . 3x — (ly — 5x 4- 8) .
Diese Minusklammer wollen wir nun beseitigen . In Satz 75 . 1 haben wir

gezeigt , daß — a = ( — 1 ) • a ist . Setzen wir an Stelle von a ein Aggregat , dann
erhalten wir z . B .
— (6 — c — d + e) = ( — 1 ) • (6 — c — d + e) = ( — 1 ) • (6 4- ( — c) 4- ( — d) + e) .

Mit Hilfe des Distributivgesetzes ergibt sich für die rechte Seite

( — l ) - b + ( — l ) ' ( — c) + ( — l ) ' ( — d) + ( — l ) ' e = — b + c + d — e .

Also gilt :
— (6 — c — d + e ) = — b + c + d — e .

Mit dieser Erkenntnis können wir nun auch Minusklammern im Innern eines

Aggregats beseitigen :

a — (6 — c — d + e) = a + \_ — (6 — c — d + e )
~
\ =

= a + ( — 1 ) • (6 — c — d + e) =
= a + ( — b + c + d — e) =
= a — b + c + d — e .

Das bequeme Fachwort Quersumme scheint erst im 19 . Jh . aufgekommen zu sein .
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Weil sich unsere Überlegungen auf jedes Aggregat übertragen lassen , gilt :

Satz 106.1 : In einem Aggregat kann man, ohne daß sich der Wert des
Aggregats ändert , eine Minusklammer mitsamt ihrem Mi¬
nuszeichen weglassen , wenn man alle Rechenzeichen in der
Klammer ändert , d . h . Pluszeichen durch Minuszeichen und
Minuszeichen durch Pluszeichen ersetzt . Falls vor dem er¬
sten Glied in der Klammer kein Zeichen steht , so muß ein
Minuszeichen gesetzt werden ;
kurz : Minusklammern dürfen weggelassen werden, wenn alle

Rechenzeichen geändert werden.

Beispiel :
3x — (ly — 5x + 8 ) = 3x — ly + 5x — 8 = 8x — ly — 8 .

Wenn man bedenkt , daß der Inhalt der Minusklammer ein Aggregat ist , dann
läßt sich dieser Satz auch noch anders ausdrücken , nämlich :

Ein Aggregat wird subtrahiert , indem man jedes Glied des Aggregats
subtrahiert .

Beispiel :

3x — (ly — 5x + 8 ) = 3x — ly — ( — 5x) — 8 =
= 3x — ly + 5v — 8 =
= 8x - ly - 8 .

Nach Satz 106 . 1 kann man also Minusklammern an beliebigen Stellen in
einem Aggregat weglassen , wenn man alle Rechenzeichen in der Klammer
ändert . Umgekehrt kann man demnach Minusklammern an beliebigen Stellen
setzen , wenn man die Rechenzeichen bei den Gliedern ändert , die in die Min¬
usklammer kommen . Wir haben damit

Satz 106 .2 : Ein Aggregat ändert seinen Wert nicht , wenn man beliebig
viele Glieder in einer Minusklammer zusammenfaßt und
dabei alle Rechenzeichen ändert , z . B .
a + b — c + d - e - f - a - ( - b + c - d ) — (e + f ) .

Wie man mit diesem Satz arbeitet , zeigen wir an folgendem

Beispiel: - ( — 2a + 3b) - (5b + 8a) = 2a - 3b - 5b — 8a =
= (2a - 8a) - (3b + 5b ) =
= — 6a — 8b .
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Aufgaben

1 . a) 5a — (36 + 7a) b)5a — (36 — 7a)
c) 5a — ( — 3b + 7a) d)5a - ( - 3b - 7a)

2 . a) (2x — 4y ) — (6x — 4y) b) (2x + 4y) — (6x + 4y)
c) (2x + 4y) — (6x — 4y) d) ( — 2x — 4y) — (6x — 4y)
e) ( — 2x + 4y ) — ( — 6x — 4y) f) — 2x — (4y — 6x) — 4y

3 . a) 3a — (9x + 7a) — ( — 4a — llx )
b) 176 — (15a — 96) — 2a + ( — 17a — 266)
c) 14x — ( — 20a + 7 b — 4x ) — ( — 9x + 19a + 17 b ) + 6x
d) 11a + ( 13 b + (12a - 196 )) - ((4a - 176 ) + 19a)

4 . (9 — 116 + 13a) — (156 + 17 — 19a) — ( — 21c — 26b + 18)
5 . 12x — (23x — 27y) — ( — 29y + 3 z + 4 u) + ( — 43z — 47 u — 59x) —

— ( — 51a — 16x + 56y) — (7z + x)
6 . a) | + a - (i - 2ja )

b) — §b + ja + 3jc — ( — c — ljb )
c) - ( - a + 7| - 4f ) - (6^ + a - 9f )
d) (5,7 - 6 ) - (a + 3,6) - (9,6 - 6 ) + (2,4 + a)

7 . a) — ( — a + | 6 — 21c + 9,05) + (2^6 — 9,5)
b) - ( - ( - 3,5m + 5,5t; - 7 w)) - (3,5u - 5,5v - 7 w )

8 . a) ( - jx + §y - 2) - ( ~ &x + jy - f ) -

b) (ja - 1 - jjb ) - ( - ja - jjb ) - (1 - jjb )
c) (^ - | ^ - 3) - ( - ^ r + f5 - J^ )

9 . a) (3x 2 — 2x + 1 ) — ( — 2x 2 + 4x — 6)
b) (7x 3 - 3x + 2) - ( - 4x + 5x 3 + 3)
c) ( — 3x 3 + 2x — 3) — (4x 2 — 5 — 2x) — 6x 3

d) — (6x 3 — 2x 2 + 5) — (3x 3 + 7x 2 — 2)
10 . a) (| a6 — fa 2 6 + 1 ) — ( — jab + ja 2 b ) + ( — ab + ja 2 b)

b) (f a 2 4- ja — 7) — (a 2 + ja — 5) — (| a 2 + a — 3)

3 .3 .4 Faktor bei der Klammer

Bisher haben wir gelernt , wie man bei Aggregaten vom Typ a + ( 6 — c) —
— (e + f — g) die Klammern auflöst . Was aber , wenn vor einer dieser Klam¬
mern noch ein Faktor steht ? Jetzt muß doch auch die Regel »Punkt vor
Strich « berücksichtigt werden . Die einfachsten Fälle sind a + b (c + d — e)
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und a — b (c + d — e) . Die schwierigeren Fälle , wo beide Faktoren Klammern
sind , wie z . B . a + (b — c) (d — e + f ) , betrachten wir erst in 7 . 1 .
Nun zum ersten Fall :
Wegen der Regel »Punkt vor Strich « können wir eine zusätzliche Klammer
setzen , ohne daß sich der Wert des Aggregats ändert :
a + b (c + d — e) = a + (b (c + d — e)) .
Wir wenden auf den Inhalt der roten Klammer das Distributivgesetz an :
a + (b (c + d — e) ) = a + (bc + bd — be) .
Nach unserer Klammerregel (Satz 104 . 1 ) können wir die rote Plusklammer
einfach weglassen . Damit haben wir :
a + b (c + d — e) = a + bc + bd — be .
Den zweiten Fall können wir analog behandeln :
a — b (c + d — e) = a — (b (c + d — e) ) = Punkt vor Strich

= a — (bc + bd — be) = Distributivgesetz
= a — bc — bd + be . Satz 106 . 1

Vergleichen wir in beiden Fällen das gegebene Aggregat mit dem Ergebnis der
Umformungen , so erkennen wir

Satz 108 . 1 : Steht in einem Aggregat bei einer Klammer ein Faktor, so
multipliziert man jedes Glied in der Klammer mit diesem
Faktor unter Berücksichtigung der Vorzeichen .

a + b (c + d — e) = a + bc + bd — be .
a — b (c + d — e) = a — bc — bd + be .

Beispiele :
1 ) 3x — 5y (2 — 2x + 3y) + 2x ( — 6 + x — 5y) =

= 3x — 10y + 10xy — 15y 2 — I2x + 2x 2 — 10xy =
= 2x 2 — 9x — 15y 2 — 10y .

2) 5 ■ (joab - ib ) - ^a ( - ib + 1 | ) + b (2 ~ .%a) =
= \ ab — 2 b + %ab — 2a + 2b — J ab =
= — 2a .

Aufgaben
1 . a) 3a + 5 (2a — b) b) x — 3 ( 1 — x)

c) 3 + x ( \ — x ) d) 12z 2 — 3z ( — 2 + 4z)
2 . 6 (2 a + 3 b — 1c) + 1 (4a — 3b + 7c) — 8 (5a — 4b + 3c)
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3 . 15 (a + b - 3 ) - 6 (3 a - 2b ) + 7 (4 - 3b) - 8 (5 - 2a)

4 . a) a (a — 2b) — b (2a — b) b) a (2a + 3b) — b (2a + 5b)

5 . x (x — 1 ) — 2x 2 + 4x (2x + 1 ) — 6 (3x + 2)

6 . \ 5a (3x — 4y + la ) + 12x ( lla — ly + 4x) — 10j (13x — 4a + 11y)

7 . (3b 2 — 4ab) 2b — 3a (4ab + b 2) — 5ab (3a — 2b)

. 8 . (12a 2 b - 13 ab 2 + b 3) 5a - (11 a 3 - 32a2 b - 19ab2) ■ 3b -
— 16 ab {a 2 + 2ab + 4b 2)

• 9 . 5a2 bc (2ac - 3 bc 2) - labc 2 (3abc + 4b 2 c 2) - U 3 c 2 (2ac 2 - 3bc 3) -
~ 4ab 2 c 3 ( - 9a ~ \ \ bc)

• 10. \ 1a 2xy {9a 2 x 2 y — 11 ax 3 y 3 + 10xy 2) — 2 \ ax 2 y 2
{ \ 2a2 x 2 y 2 +

+ 15ay — 9a 3 x) + 23axy ( Jaxy 2 — 5 a 3 x 2 y + 9a 2 x 3 y 3)

11 . 5ab (3ab + 4ac — bc) — 3ac (3bc — 4ac + 5 ab ) —
— 4bc (3ab — 4ac + bc) — 4t 2 (3a 2 — b 2 + 2ab) — 15a 2 b 2

• 12 . 40a 2 bc 3 — 4ab 2 (3a2 c + 3 ac 2 + 4bc 3) + 3a 2 c (4ab 2 — 2bc2 — 4 b 2 c) —
— 5abc (9ac 2 — 4abc — 4b 2 c2) + 4bc 2 (5a 2 c — ab 2 c + a 2 b )

13 . 2x (1 - x (3 - 5 jc + 2x 2 ) - x 2 (2 - 3 jc)) - 4x 2 (2x - 2)

14. a (a + b — 2) — b (a + b — 3) — 4 (a — b) — 7 {b — ja )

15 . 4 (x — y + 5) — 5 (x + y ) + \ l (y — x — 3)

16 . 50x - 12 (x + y - z) - \ 4 {x - y + z) + \ l (y + z - x)

17 . (ö - b - 5 + c) ■ 3 + (b - a + c - 11 ) • 7 - (c + a - b - 14) • 6 -
— (2c + 5 b — 5a) ■ 2

18 . 21 {a + b + c) - 29 (a - b + c) + 31 (a + b - c) - 35 (b - c - a)

19 . (x + y + z) ■17 — (x - 4 - z) • 12 - (y — 15 - x ) • 13 - 3 (6x - 49)

20 . 5 (ö + x — 3) + 6x — (x — a — 3 ) • 7 — 3a — 4 (a — x)

21 . (a — b ) ■ 5 + 7 (fl + b) — (a - 7) ■ 5 - 7 (fl + 5)

22 . 100 - 99 (a + b - 1 ) - 50 + 49 {b + a - 1 ) + 50 (a + b - 2)

23 . (x — y - z - 2) ■ 2 + 3 - 4 (z - y - x - 5) + (x + 4) ■ 8 - 5 ( ^ + 2)

24 . a ( l + b + c) — b (2 + a — c) — c (3 + a + b)

25 . y + y ( l - y ) - y (2 - y ) + y 2

26. x (n + 1 ) — x (n — 1 ) + x (n — 2) — nx 4- 3x

27 . x 2 — x (a + x) + x — x (a — 1 ) + (a + 1 + x) x — x (3 — a)

28. 4b + a (x — 3) + a (7 — x) + a — (a + b) • 4
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29 . a (a + b) + c (a + b) — ac — c 2 + bia + b) — bc — 2ab
30 . a 2 + c (b — c) + ac — b {b — c) + a (b — c) — ab — 2bc
31 . a) 3a - (lb - a) + 15 (2a + b ) b) - w (7 - Sv ) + 3w (2 - 3 «)

c) 7 ( 17 + 8fx ) — (x + 7) • 17
d) 3 (2x + llj ) + 7j (l + 5x) + y ( — 2 + x)

32 . a (a 2 b + a 3 c 2) + a 3 (2b + ac 2)
33 . x 2 (5a + bx) + 3a (2b + x 2) + 2 b (a + 2x 3) — 8 a (x 2 + b )
34 . p 2

q (2pr + 4r 3 + Irq 2) + 2r (p 2
q

3 + 5p 2
q + 2p 2 qr 2) —

- 2pqr (p 2 + pq 2 + 5p )
35 . a) 0,5x (0,8x — 0,6^) — 0,4y ( l,5y — 2,5x)

b) 2 ^-a (4fa — 6^ 6) — 2§ 6 (3fa + 8 ^ 6)
c) 6jb (4^ b — Ufa ) — 4§ a (3f 6 — 5 § a)

36 . a) u (v — w) + v (w — u) + w (u — v)
b) x (y + z) — y (x + z) + z (x — y)
c) 5xy + 3y (2x + 1 ) — 6x (y — 2) + 2 (x — y)

37 . a) 4pqr — (8prs — 11 qrs) — (
'
Iprq — 6rsq + 4srp) • ( — 2)

b) 2a (9b — 6c) — b (6a + 15c) + 3c (4a — 2b)
c) 2ab {5 + c) — lb {3a + ac) — ab ( l8c — 7 • 3c)

38 . a) 6p (3pq + q 2) - 2q (9pq - 3p 2) + 8pq (p - q)
b) %a 2 b 2 (\ 5c 2 — 5) + \ ab {%ab — lOahc2) — la 2 b2

39 . a) 3 (Ixy - §y ) - fx ( - fy - 14) + 26y - ix )
b) 3ia ( l^ a - b + 7) - 3^b {^ b - {ffa - 6) -

— (63 — faö + 6| a 2) • + 162
• c) ( — 0,2x ) 2 ( — 0,2 + x) - 0,2x 2 (0,22 - x) - ( - 0,2x) 3

3 .3 .5 Schachtelklammern

Bei komplizierteren Termen kommt es vor , daß in Klammern Klammern
stehen , in denen womöglich wieder Klammern stehen usw.

Beispiel : 4a — ( — 1 + 3 (2a — (a + 3))) .

Wenn es dabei zu unübersichtlich wird , verwendet man auch verschiedene
Klammerarten , z . B . runde und eckige Klammern .

Beispiel : 4a — ( — 1 + 3 [2a — (a + 3 )] ) .



wrrniiwrirtr't-iWttfinninigjtfattaiiai

3 .3 Umgang mit Klammern 111

Mit Hilfe unserer Klammerregeln können wir jetzt solche »Schachtelklam¬
mern « auflösen . Man kann dabei verschieden Vorgehen. Wir empfehlen die

Regel 111 . 1 : 1 . Vereinfache , falls möglich, in jeder Klammer.
2 . Löse die innerste Klammer auf .
3 . Vereinfache wieder .
4 . Wiederhole 2 . und 3 . so lange , bis keine Klammern mehr

vorhanden sind .

Beispiele:
1) 4a - ( - 1 + 3 [2a - (a + 3)] ) = 4a - ( - 1 + 3 [2a - a - 3] ) =

= 4a — ( — 1 + 3 [a — 3] ) =
= 4a — ( — 1 + 3a — 9) =
= 4a — ( — 10 + 3a) =
= 4a + 10 — 3a =
= a + 10 .

2) (3x — (
'lyz + 3z ( — 3 + 2x — 5y) — 6xz )) ( — 5) — (8z — 15x) =

= (3x — (lyz — 9z + 6xz — 15yz — 6xz )) ( — 5) — 8z + 15x =
= (3x — ( — 8yz — 9z)) ( — 5) — 8z + 15x =
= (3x + 8yz + 9z) ( — 5) — 8z + 15x =
= — 15x — 40yz — 45 z — 8z + 15x =
= — 53z — 40^ .

Aufgaben

1 . a) (3a2 + 4 b ) — (5a2 — (2a 2 — b ))
b) (7a 3 - 2b ) - (4a 3 - (Ab - (3a 3 - b )))

2 . a) 5x 3 — xy — (3x^ — (2x 3 + _v
2 + 6x_y)) — (3x_y — (2x 3 + xy ))

b) 2xy - 4x 3 - (2x .y - (3x 3 - y 2 - 8xj )) - ( - 2y 2 - (8 xy + 10x 3 ))

3 . a) 3a4 - b 2 + (Sab - (2a4 - 3b 2)) - (8 ab - (b 2 - 2a4))
b) 6 ab - a 4 - (lab - (4a4 - b 2)) + ( - 4a4 - (lab - Ab 2))

4 . a) — ( — a + (1b — (21c — 9))) b) - [ - ( - 3w + 5t> - 7w)]
c) — [(x — 3y) — ( — 2x + + 1 )]
d) — { — [(6m — 9n ) — ( — p — qj] — ( 1 + 5 m + 10«) } — (1 + P + q)

5 . 0,5a [3v 3 + (2,4m » - 1 )] + 3 [2m - 1,8uv (u + r 2)]

. 6 . (( 11 — 16x + 17x 2) • 3x — 5x (6 — lOx + 10x2)) • 3x —
— 4x ((x + 2) x + 1 ) + 1
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• 7 . ((2a + 3b ) 2b — (3a — 2b ) 3a ) ab 2 + (3a (2a — 3b ) —
- 2b (3a + 2b)) a 2 b

• 8 . 5a (6 - 4 (3 - ä)) - (5a (6a - 11 ) - 4 (3a 2 - 6a + 6)) - 24

89 . 6 [ ((3x - 1 ) 2 - 4 (x + 5)) ■ 5 - 4 (2 - 2 (3 - 3 (4 - 5x )))] -
— 20 (39x — 58) — 19

10 . 3a ((5a — 4) • 5 — (2a — 7 + 2a 2) + 6a (2a — 4)) — 5a 2 (3a — 4)
811 . ((a 2 + ab + b 2) b — a (a 2 + ab + b 2)) b — a (b 3 + 2 ab 2 — a 2 b) + b 3 (b + a)

12. (a 2 + 2b (2b — 3a )) a — b (b 2 — 2a (2a — b )) + b 3 — a 3

13 . 2 (3 - 4 (5 - 6 (7 - je))) - 7 (6 - 5 (4 - 3 (2 - x )))
. 14. 2x (4x ((3x - 2) • 5 - 3 (2x - 4)) + 6 (3x - 1 )) - 3x 2 (x (20 - x) + 20)
. 15 . a (25a - ((4a + 3) - 4 - 15a ) - 2a + 3 (a + 4 (a - 2))) +

-T 4 (a (a a (a 1 )) -)- a)
16 . (ysX — 3x 2) — (3x 2 — jx — (2x 2 — 2 — 4x + i ) + (fx — fx 2 — yf ))

817 . x 2 — (| x + 3x 2 — (2x 2 — 3x — (4x 2 — \ x + 2) + | x 3) — ^x 3) +
+ (fi * - 2o * 3) + 2

18 . \ ab 2 - (6ac 2 - c 3 - 2a (c 2 - \ b 2 ) + ab 2 - fc 3 ) + y{ab 2 + 4ac 2

19 . i b 3 + 4a 2 - (| (3 bc - 4) - (a 2 - bc - 2ab ) + f bc ) - {b 2 - 6 - \^ bc
820 . \ b 2 ( lab - \ a 2 ) - 1b (ab (b - | a ) + -̂ ab 2 ) - ^ ab 2

(20a + 31b )
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4 Gleichungen
4 . 1 Aussagen und Aussageformen

4 . 1 . 1 Definitionen

Jeder Mensch stellt in seinem Leben
viele Behauptungen auf .

Beispiele :
Ich bin heute müde .
Ich habe nicht von Karl
abgeschrieben .
Mathematik macht Spaß .
2 + 3 = 5 .
2 - 3 = 5 .

In der Logik bezeichnet man Sätze , in
denen eine Behauptung aufgestellt
wird , auch als Aussagen . Wesentlich
an einer Aussage ist, daß man
sinnvollerweise sagen kann , daß sie
entweder wahr oder falsch ist . Das ist
bei Sätzen der Umgangssprache oft
nicht einfach zu entscheiden . Bei dem
Satz »Mathematik macht Spaß «
kann man sich verschiedene Entscheidungen vorstellen . Der eine wird zum
Urteil kommen , er sei wahr , der andere , er sei falsch . Um solchen Schwierig¬
keiten aus dem Weg zu gehen , beschränken wir uns auf mathematische Aussa¬
gen , bei denen wir hoffen , daß wir immer entscheiden können , ob eine wahre
oder eine falsche Aussage vorliegt .

Lieber
eine Fünf

in Mathematik
als gar keine
persönliche

Note !

Definition 114 . 1 : Sätze , bei denen feststeht, ob sie wahr oder falsch sind ,
heißen Aussagen.

Man kennzeichnet wahre Aussagen durch ein w und falsche Aussagen durch
ein / . w und / heißen die Wahrheitswerte der Aussagen .

Beispiele :
2 + 3 = 5 (w) 17 2 ^ 288 (/ )
2 - 3 = 5 (/ ) 5 e N (w)

II 00 O ) 0,5 ei ^ (/ )
17 2 < 290 (w) 39 ist eine Primzahl (/ )
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Ersetzt man in einer Aussage eine oder mehrere Zahlen durch Variablen oder
durch einen Term mit Variablen , dann entsteht eine Aussageform .
Ersetzt man in einer Aussageform alle Variablen durch geeignete Zahlen ,
dann entsteht wieder eine Aussage , die wahr oder falsch ist .

Beispiele :

Aussageform Ersetzung Aussage
Wahrheits¬

wert

x ist eine Primzahl x = 39 39 ist eine Primzahl /
x = 41 41 ist eine Primzahl w

x + 3 = 5 * = 2 i + 3 = 5 f
x = 2 2 + 3 = 5 w

x 2 < 25 X II 1 00 ( - 8i ) 2 < 25 f
x = 0 O 2 < 25 w

5 * - T , 2 c
3

+ 7 - 5 x = 1 ; y = 3
5 ‘ 1 - 3

+ 3 2 = 5 f

oIInöIIX
5 - 3

3

- °
+ o^ 5 w

Definition 115 . 1 : Sätze mit mindestens einer Variablen , die durch geeig¬
nete Ersetzungen aller Variablen zu Aussagen werden ,
heißen Aussageformen .

Die Menge , aus der die geeigneten Ersetzungen für die jeweilige Variable ge¬
nommen werden , heißt Grundmenge G dieser Variablen .
Bei der Aussageform »Der größte gemeinsame Teiler der Zahlen 36 und x ist
4« , kurz »ggT (36 ; x) = 4« , sind nur natürliche Zahlen geeignete Ersetzungen
für x . Also kann N als Grundmenge für x gewählt werden .
Kommen in einer Aussageform mehrere Variablen vor , dann muß man
natürlich für jede Variable die Grundmenge angeben , aus der die Einsetzun¬
gen genommen werden dürfen .
Wir treffen folgende

Vereinbarung 115 . 1 : Ist keine besondere Grundmengeangegeben, dann
ist die größte jeweils bekannte Zahlenmenge die
Grundmenge . Das ist zur Zeit die Menge O der
rationalen Zahlen .

Man interessiert sich bei einer Aussageform natürlich besonders für die Erset¬
zungen , bei denen eine wahre Aussage entsteht . Solche Ersetzungen heißen
Lösungen der Aussageform.



116 4 Gleichungen

Definition 116 . 1 : Die Menge aller Ersetzungen, die eine Aussageform zu
einer wahren Aussage machen , heißt Lösungsmenge L
der Aussageform .

Beispiele :
Aussageform Lösungsmenge

v ist eine Primzahl - { 2 , 3,5,7,11, . . . }
v + 3 = 5 { 2}
x 2 < 25 Menge aller Zahlen zwischen — 5 und 5 , also

{x | — 5 < x < 5 }

Außerhalb der Mathematik treten Aussageformen oft als Formulare auf . Die
Variablen werden dann meist durch Leerstellen gekennzeichnet .

Beispiel : Der Schüler .
besucht im Schuljahr . die Klasse
des Euler -Gymnasiums .

Aussageformen können also sehr verschieden aussehen . Für die Mathematik
sind die wichtigsten Aussageformen Gleichungen und Ungleichungen .

Aufgaben
1 . Formuliere 3 wahre und 3 falsche Aussagen aus dem Alltag .
2 . Formuliere 3 wahre und 3 falsche mathematische Aussagen.
3 . Entscheide bei den folgenden Sätzen , ob sie Aussagen sind , und gib gege¬

benenfalls den Wahrheitswert an .
a) Mathematik ist schwierig .
b) Caesar wurde am 15 . März 44 v . Chr . ermordet.
c) Nachts ist es kälter als draußen.
d) Wagadugu ist die Flauptstadt von Mali.
e) Wie alt bist du? f) Rot ist schöner als Blau .

4 . Entscheide bei den folgenden Sätzen, ob sie Aussagen sind , und gib gege¬
benenfalls den Wahrheitswert an .
a) (1j ) 2 = I 9 b) tk — Ä = ~ T2 c) — ^ > 2
d) — 8 ^ — 8 e) Die Winkelsumme im Viereck ist 720 ° .
f) — 3 • 7-j + 12 g) 3,2 ha = 32 a
h) Die Differenz zweier Primzahlen ist eine Primzahl .
i) Die Differenz zweier Primzahlen ist keine Primzahl .
j) 193 ist eine Primzahl .
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5 . Führe in den folgenden Aussageformen die angegebenen Ersetzungen
durch und entscheide , ob sie zu einer wahren oder falschen Aussage
führen .
a) — 2 = — 1 ; xe { 0 , l,ü - 3 }
b) l,5 — x < 2x ; xe { — 2 , — 2^ , 100}

X X

3
+ 5

• c) - = 2x ; xe { 3 , — 5 , 2}x x
3

~
5

d) (x — 3 ) ■ (x + 5) > 0 ; x e { — 4 , — 6 , 0}
e) x ist Teiler von 360 ; x e { 1 , 2, . . . , 10 }

6 . Gib zu den gegebenen Grundmengen die Lösungsmenge der folgenden
Aussageformen an .
a) x < 5 ; G = N 0
b) z 2 < 5 ; 1) G = N 0 2) G = Z
c) < ! ; G = N

• d) t ist Teiler von 36 ; 1) G = N 0
2) G = Menge aller Primzahlen

e) n ist teilerfremd * zu 18 ; G = { 1 , 2 , 3, . . . , 17 }
8f) ggT (36 ; x) = 4 ; G = { 1 , 2 , 3, . . . , 100}
8 g) kgV (y ; 18 ) = 72 ; G = ( 1 , 2 , 3, . . . , 100}

• 7 . Gib die Lösungsmenge bezüglich der Grundmenge Z an .
a) x — x = 0 b) x — 2x = 0

c) x — 1 = x d) — = 1 e) — = 0
X X

8 . Bestimme die Lösungsmenge bezüglich der Grundmenge Z .
a) | x | = 4 b) | x | = — 4 c) | x | < 4
d) | x | > 4 • e) | x | = x 8 f) | x | = — x

4 . 1 .2 Existenzaussagen und Allaussagen

Wir haben oben eine Möglichkeit kennengelernt , wie man aus Aussageformen
Aussagen gewinnt , nämlich dadurch , daß man alle Variablen durch geeignete
Zahlen (oder gegebenenfalls auch Wörter ) ersetzt . Es gibt aber noch eine
zweite Möglichkeit , aus Aussageformen Aussagen zu machen ,
x + 0 = x ist eine Aussageform , ihre Lösungsmenge ist Q . Diesen Sachverhalt
können wir auch so ausdrücken :
Für alle xeQ gilt : x + 0 = x .

* Beachte : 2 Zahlen heißen teilerfremd , wenn ihr ggT gleich 1 ist .
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Dieser Satz enthält zwar eine Variable , ist aber keine Aussageform mehr , weil
durch den vorangestellten Redeteil »Für alle xeQ gilt :« entscheidbar wird ,
ob der Satz wahr oder falsch ist ; d . h . , der Satz ist eine Aussage .
Man kann noch durch einen zweiten Redeteil eine Aussageform zu einer Aus¬
sage machen , nämlich durch »Es gibt ein xeQ , so daß . . . « .
Zum Beispiel erhält man aus der Aussageform x 2 = 9 die Aussage :
Es gibt ein xeO , so daß x 2 = 9 .
Diese Aussage ist wahr , weil z . B . ( — 3) 2 = 9 .
Allgemein legen wir fest:

Definition 118 . 1 : Eine Aussage , die den Redeteil »Es gibt ein . . . « bzw.
»Es existiert ein . . . « enthält , heißt Existenzaussage .
Eine Aussage , die den Redeteil »Für alle . . . « enthält ,
heißt Allaussage .

All- und Existenzaussagen können natürlich auch falsch sein:
»Für alle xeQ gilt x + 1 = 5 « ist falsch , weil z . B . 2 + 1 = 5 falsch ist .
»Es gibt ein x g Q , so daß x + 1 = x« ist falsch , weil für alle x e Q gilt , daß
x + 1 > x ist .
Die wichtigsten Beispiele für wahre All- und Existenzaussagen sind die Re¬
chengesetze für die rationalen Zahlen , wie z . B . das Kommutativgesetz der
Addition , das ausführlich geschrieben so lautet :
Für alle ae £t und alle ieQ gilt a + b = b + a.

Aufgaben

• 1 . Entscheide bei den folgenden Aussagen , ob sie wahr sind .
a) Für alle a g Q gilt : a — a = a.
b) Für alle y e Q gilt: y 2 > 0 .
c) Für alle neN : 2n > n .
d) Für alle xeQ : 2x > x .

• 2 . Entscheide bei den folgenden Aussagen , ob sie wahr sind .
a) Es gibt ein a e <Q , so daß la = a .
b) Es existiert ein n e N , so daß n < 1 .
c) Es gibt ein z e Z : z < 1 .
d) Es gibt ein m g Q : u 2 < 0 .
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4 .2 Lösen von Gleichungen

4 .2 . 1 Gleichung als Information über eine unbekannte Zahl

4 .2 . 1 . 1 Ein historisches Beispiel

Der Hyksoskönig * A ’User -re Apophis (um 1590 - um 1550 v . Chr .) herrschte
schon seit 33 Jahren über Ägypten . Im 4 . Monat der Überschwemmungsjah¬
reszeit dieses 33 . Regierungsjahres schrieb Ahmose * * auf eine Papyrusrol¬
le * * * ein altes Buch der Mathematik ab , das aus der Zeit des Königs
Amenemhet III . ( 1842 - 1794 v . Chr .)
stammte . * * * * Die Rolle wurde im
19 . Jh . wieder aufgefunden und im
Jahre 1858 in Luxor an den schotti¬
schen Juristen Alexander Henry
Rhind ( 1833 - 1863 ) verkauft . Sie ist
33 cm breit und 5,34 m lang und beid¬
seitig beschrieben (Abb . 113) . Der
Text der Rolle - sie heißt heute Papy¬
rus Rhind - beginnt mit einer großen
Versprechung :
»Regeln zur Erforschung aller Dinge ,
zur Erkenntnis alles Seienden , aller
dunklen Geheimnisse « .
Dann kommen Divisionstabellen , an die sich 84 Aufgaben anschließen . Diese
entschleiern zunächst das Geheimnis der Zahlen und der Bruchrechnung ,
dann lösen sie Probleme aus der Geometrie und der Lehre von den Körpern ,
und schließlich beschäftigen sie sich mit Fragen aus der Landwirtschaft .
Aufgabe 24 - man liest den Text von rechts nach links - lautet :

mJ 3

* f 3 4 3 1

Abb . 119 . 1 Papyrusrolle (um 1250 v .
Chr .) Kairo , Ägyptisches Museum

Übersetzung : Haufen , sein Siebentel zu ihm , es macht 19 .
Gemeint war : Ein Siebentel einer unbekannten Zahl wird zu dieser Zahl

hinzugefügt ; man erhält dann 19 .
* Hyksos bedeutet »Fürst aus der Fremde « . Mit diesem Wort bezeichneten die ägyptischen Geschichts¬

schreiber später die aus Westasien stammenden fremden Herrscher , die Ägypten von ca . 1650- ca . 1540

v . Chr . regiert hatten .
** sprich Achmose , zu deutsch Mondgeborener . Oft liest man auch die gräzisierte Form Ahmes .

*** Zu Beginn des 3 . Jahrtausends v . Chr . gelang es den Ägyptern , aus dem faserigen Mark des dreieckigen
Halms der bis zu 6 m hohen Doldenpflanze Cyperus papyrus , die in den Sumpfgebieten wuchs , einen

Beschreibstoff herzustellen , der das Leder verdrängte . Wegen des hohen Verbrauchs wurde die Papyrus¬
staude immer seltener , so daß sich König Eumenes I . (263- 241 v . Chr .) von Pergamon genötigt sah ,
feingegerbtes Leder wieder als Schreibmaterial zu verwenden , das sog . Pergament . Die Papyrusstaude ist
heute in Ägypten ausgerottet .

**** Der Pharao Amenemhet III . war so klug , von den Bürgern nur die Steuern zu verlangen , die sie auch

aufbringen konnten . Dazu ließ er jedes Jahr den höchsten Pegelstand des Nils messen und daraus die zu
erwartende Ernte berechnen . Dann erst setzte er die Jahressteuern fest .
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4 .2 . 1 .2 Die Unbekannte

Die Ägypter waren vermutlich die ersten , die für eine unbekannte Zahl eine
eigene Bezeichnung verwendeten . Im Papyrus Rhind schrieben sie dafür T„

'
Tsj

r- aoZ- f\ _ H
— in Hieroglyphen * a . Ausgesprochen wurde dieses Wort »aha « ;

i l I A T
seine Bedeutung war eigentlich Haufen .
Es war sicherlich ein ganz großer Einfall in der Entwicklung der Mathematik ,
für eine Zahl , die man noch gar nicht kennt , ein eigenes Wort zu verwenden .
Denn nun konnte man , da sie ja einen Namen hatte , von ihr reden , mit ihr
Überlegungen , ja sogar Rechnungen ausführen .
Diese großartige Idee taucht auch bei den Babyloniern und bei den Indern auf ,
im 4 . Jh . v . Chr . finden wir sie bei griechischen Mathematikern . Thymaridas
nennt die gesuchte Zahl genauso , wie wir es heute machen , nämlich unbekannt
aöpioTOv (aöriston ) . Bei al - Charizmi (um 780 - nach 847 ) heißt die un -

m äbekannte Zahl = schal = ein Etwas .♦♦

Nun haben wir oben auf Seite 15 gesehen , daß es sich immer mehr eingebür¬
gert hatte , bekannte Zahlen durch Buchstaben wiederzugeben , wenn man
allgemeine Rechenregeln angeben
oder einen allgemeingültigen Re¬
chenweg beschreiben wollte . Was lag
also näher , als auch für die un¬
bekannte Zahl einen Buchstaben zu
verwenden ? Aber welchen? Recht
einleuchtend ist eigentlich die Idee
von Frant ^ois Viete (1540 - 1603 ) , der
1591 vorschlug , für die unbekannte
Zahl den Vokal A zu verwenden , und ,
falls es mehrere unbekannte Zahlen
gibt , eben die Vokale der Reihe nach
zu benützen , nämlich A , E , I , O , U
und Y. Bekannte Zahlen sollten
durch Konsonanten bezeichnet wer¬
den , also durch B , G , D usw . (Siehe
Abbildung 120 . 1 , Nr . 5 .)
Durchgesetzt hat sich aber eine
Schreibweise , die 1637 der große
französische Philosoph und Mathe¬
matiker Rene Descartes (1596 bis
1650 ) ohne weitere Begründung im
Abschnitt La Geometrie seines Dis-
cours de la methode einführte .
* Entstanden aus den griechischen Wörtern '

legog (hierös ) = heilig und yMipeiv (glyphein ) = einmeißeln .
Sprich hi -eros , Hi -eroglyphe .

ISAGOGE . 7
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Abb . 120 . 1 Seite 7r der In artem analyti -
cem Isagoge (1591 ) des Franijois Viete
( 1540 - 1603)
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Er bezeichnete die unbekannten Zah¬
len mit x , y und z , die bekannten da¬
gegen mit den ersten Buchstaben des
Alphabets , also mit a , b , c usw .
Wir wollen es genauso halten !
Falls du mehr über die geschichtliche Ent¬
wicklung wissen willst, dann lies weiter!

Die Babylonier (um 1800 v . Chr .) nann¬
ten die unbekannte Zahl = usch

= Länge , die Inder (vor 300 v . Chr .)
<4 | c| ^ dN ^ = yavat - tavat = wieviel-soviel .
Erst um 250 n . Chr . kamen griechische
Mathematiker , unter ihnen Diophant ,
(siehe Aufgabe 166/15) , auf die Idee , für
die unbekannte Zahl , die sie kurz Zahl
= &qiÜ|i.6<; (arithmös ) nannten , eine
Abkürzung einzuführen , nämlich <; '

, über
deren Entstehung heute noch die Gelehr¬
ten streiten . Die einen meinen , sie sei der
letzte Buchstabe von dgiOgdi; , zusammen
mit einem Akzent . Andere hingegen
meinen , das Zeichen sei eine Verschmel¬
zung der beiden ersten Buchstaben dieses
Worts . Wie dem auch sei , die Abkürzung
war erfunden ! Fast 400 Jahre später - wir wissen es sogar ganz genau , es war im Jahre
628 - kam auch in Indien jemand auf die Idee , das lange yavat - tavat abzukürzen : In
seinem in Versen abgefaßten Mathematiklehrbuch schrieb Brahmagupta (um 598
bis nach 665 ) einfach = ya dafür .
Die Araber lernten von den Indern die Mathematik , und die Europäer des Mittel¬
alters lernten sie bei den Arabern . Da das schai des al -Charizmi im Arabischen auch
Sache bzw. Ding heißt , übersetzte man es mit dem lateinischen res , gelegentlich auch
mit causa , woraus im 15 . Jh . das italienische cosa wurde . Daraus wurde im Deutschen
Coß als Bezeichnung für das , was wir heute Algebra nennen .
Bis zum x für die Unbekannte war aber noch ein langer Weg . Einige Araber kürzten
das schai mit j ab , Luca Pacioli (um 1445 - 1517) mit co . seine cosa. Das tat man
auch in Deutschland , so z . B . in den vor 1486 geschriebenen Abhandlungen , die im
Codex Dresden C80 zusammengebunden sind : Der Verfasser der Deutschen Algebra
von 1481 schreibt Q für cosa, der der Lateinischen Algebra zunächst , das ist ein c
und ein o , das in ein Schwänzchen ausläuft . Immer mehr aber krümmt er sein c nach
links und gibt ihm schließlich sogar eine Spitze: . Den Plural cosae kenn¬
zeichnet er durch ein kleines hochgestelltes e : . In der Form Ü , führt es Christoff
Rudolff (um 1500 - vor 1543 ) in seiner 1525 gedruckten Coß als Symbol für die Un¬
bekannte ein . Er liest es aber - wie andere auch - als radix , vermutlich , weil es einem
handschriftlichen r ähnelt , vor allem aber , weil Gerhard von Cremona (1114 - 1187)
mit radix das arabische dschidr ( = Wurzel) übersetzt hat , das al -Charizmi auch für
die unbekannte Größe verwendete . * Gelegentlich wurde es übrigens auch res gele-

Abb . 121 . 1 Rene Descartes , latinisiert
zu Cartesius (31 .3 . 1596 La Haye -Des-
cartes/Touraine - 11 .2 . 1650 Stockholm )

* Siehe Lösungsheft Seite 4f.
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sen . * Vor allem durch die Arithmetica Integra (1544 ) Michael Stifels (14877- 1567)
fand 2^ seine Verbreitung . Descartes hat es noch benutzt , doch 1637 entschied er
sich anders : das x als Zeichen für die Unbekannte war geboren .
Mit der Schreibweise von Descartes lautet die Aufgabe 24 des Papyrus Rhind

x + jx = 19 .
Diese Gleichung stellt eine Information über eine unbekannte Zahl x dar .
Unsere Aufgabe besteht nun darin , auf Grund dieser Information die Zahl x
zu entlarven . Da man annimmt , daß durch eine solche Information die un¬
bekannte Zahl x bestimmt ist , nennt man eine solche Gleichung auch Bestim¬
mungsgleichung für x . Zahlen, die für x in Frage kommen, heißen Lösungen
der Gleichung .
Die Methoden , die zur Bestimmung von x , d . h . zur Lösung der Gleichung
führen , werden wir im Abschnitt 4 .2 .2 kennenlernen .

Aufgaben
1 . Schreibe als Bestimmungsgleichung für x die folgenden Aufgaben aus

dem Papyrus Rhind:
a) Aufgabe 25 : Haufen , seine Hälfte zu ihm , es macht 16 .
b) Aufgabe 26 : Haufen , sein Viertel zu ihm , es macht 15 .
c) Aufgabe 27 : Haufen , sein Fünftel zu ihm, es macht 21 .

2 . Im Museum der Schönen Künste in Moskau wird ein mathematischer
Papyrus aufbewahrt , der noch etwas älter als der Papyrus Rhind ist . Er
heißt Moskauer Papyrus . Er ist nur 8 cm breit und 5,44 m lang und enthält
25 Probleme , von denen allerdings die meisten fast unleserlich sind .
Schreibe als Bestimmungsgleichung für x die folgenden Aufgaben aus dem
Moskauer Papyrus :
a) Problem 25 : Haufen , zweimal genommen, und noch ein Haufen , es

ergibt 9 .
b) Problem 19 : Haufen, eineinhalb davon , zusammen mit 4 , es ergibt 10 .

3 . Ich denke mir eine Zahl , vervierfache sie und subtrahiere dann 6 . Wenn ich
das Ergebnis halbieren , erhalte ich 10 .
Schreibe eine Bestimmungsgleichung für die gedachte Zahl z an .

4 .2 . 1 .3 Die Gleichung als Aussageform
x + ljx = 19 ist ein Satz , der eine Variable enthält ; also ist er nach Definition
115 . 1 eine Aussageform . Deuten wir eine Bestimmungsgleichung als Aussage¬
form , so besteht unsere Aufgabe darin , alle Zahlen zu finden , durch die man
die Variable x ersetzen kann , so daß dabei aus der Aussageform eine wahre
Aussage wird . Kurz , wir suchen die Lösungsmenge L der Aussageform .
Im Papyrus Rhind wird behauptet , die Lösungsmenge der Aussageform
x + ljX = 19 sei { 16f} .
* Andere Wissenschaftler meinen aber , sei ursprünglich aus dem Worte res entstanden , dann aber doch

als cosa gelesen worden .
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4 .2 . 1 .4 Die Probe

Wenn man eine Zahl gefunden hat , von der man vermutet , daß sie eine Lösung
der Gleichung ist , dann kann man diese Vermutung durch eine Probe
bestätigen oder widerlegen . Dazu ersetzt man die Variable x durch die gefun¬
dene Zahl und berechnet getrennt die linke Seite und die rechte Seite der
Gleichung . Dabei versteht man unter linker Seite einer Gleichung denjenigen
Term , der links vom Gleichheitszeichen steht . Wir schreiben dafür kurz LS .
Der rechts vom Gleichheitszeichen stehende Term heißt rechte Seite , kurz RS .
Machen wir also in x + jx = 19 die Probe für x = 16f :

LS = 16f + 7 • 16f = RS = 19 .
= 16 f + t " 1 ! 1 =

= 16f + ^ =
= 16| + 2| =
= 19 .

Wir stellen fest : LS = RS , also ist 16f eine Lösung der Gleichung x + jx = 19 ,
was man kurz durch 16f e L ausdrücken kann .
Schon im Papyrus Rhind ist diese Probe ausgeführt !

Aufgaben

1 . Aufgabe 28 des Papyrus Rhind lautet in moderner Form
(x + §x) - j (x + jx ) = 10 .
Ahmose gibt als Lösung x = 9 an . Mach die Probe !

2 . Aufgabe 30 des Papyrus Rhind lautet in moderner Form
fx + ^ x = 10 .
Ahmose gibt als Lösung x = 13^ an . Mach die Probe !

3 . Aufgabe 29 des Papyrus Rhind lautet in moderner Form

3 [ x + | x + i ( x + | x ) ] = 10 .

Ahmose gibt als Lösung x = 13| an . Mach die Probe !

• 4. Aufgabe 32 des Papyrus Rhind lautet in moderner Form
x + -jx + | x = 2 .
Ahmose gibt als Lösung x = 1 + ^ + jj + jxj + jjs an * Mach die Probe !

5 . Für die Bestimmungsgleichung 1 \ x — \ x = f + fx werden die Zahlen 2 , §
und — | als Lösungen angeboten . Mach die Probe und entscheide , welche
der Zahlen wirklich Lösungen sind .

Die Ägypter gaben mit Ausnahme von f alle anderen Brüche nur als Summe von Stammbrüchen , das sind

Brüche mit dem Zähler 1, an .
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6 . Im Algebrabuch des al -Charizmi finden wir eine Aufgabe , die in heutiger
Schreibweise als Bestimmungsgleichung so lautet : x 2 + 15 = 8 x.
Er gibt als Lösungen die Zahlen 3 und 5 an . Sind das Lösungen ?

7 . Für die Bestimmungsgleichung x 3 + x 2 = 2x — 2x 3 werden folgende
Lösungen angeboten : 1 , — 1 , 3-

, §, 0 .
Entscheide durch Proben , welche dieser Zahlen zu der Lösungsmenge
gehören .

4 .2 . 1 .5 Was kann eine Information leisten ?
Wir haben oben gesehen , daß 16f eine Lösung der Gleichung x + jx = 19 ist .
Man wird sich also fragen müssen , ob es noch weitere Lösungen dieser Glei¬
chung gibt oder ob 16f die einzige Lösung ist .
Falls es keine weitere Lösung gibt , dann wird durch die Information
x + jx = 19 eindeutig eine Zahl x bestimmt . Gibt es aber mehr als eine
Lösung , dann ist die Information mehrdeutig .
Allgemein unterscheidet man je nach der Anzahl der Lösungen verschiedene
Arten von Informationen .
1) Eine Information ist eindeutig , wenn sie genau eine Zahl x bestimmt. Die

Lösungsmenge der Aussageform enthält dann eine einzige Zahl .
Unser Informant hat die unbekannte Zahl x genau beschrieben .
Beispiel :

3x = 2 ist eine eindeutige Information über x . Denn wegen Satz 72 . 1
ist § die Zahl , die durch sie eindeutig bestimmt ist .
Die Lösungsmenge der Aussageform 3x = 2 ist die Menge {§} .

2) Manchmal reicht die Information nicht zur eindeutigen Bestimmung der
unbekannten Zahl x aus . Der Informant hat die Zahl x also nicht genau
genug beschrieben . Somit gibt es mehrere Möglichkeiten für x . Man sagt ,
die Information sei mehrdeutig . Die Lösungsmenge einer solchen Aussa¬
geform besteht dann aus mindestens zwei Zahlen .
Beispiel :

x 2 = 64 .
Die Information reicht nicht aus , die unbekannte Zahl x eindeutig zu
ermitteln . Wir können nämlich sagen , daß sowohl + 8 als auch — 8
Lösungen sind .

3) Je mehr Möglichkeiten es für die unbekannte Zahl x gibt, desto wertloser
ist die Information zur Bestimmung der unbekannten Zahl x . Ganz
schlimm wird es , wenn uns der Informant an der Nase herumführt und wir
für die unbekannte Zahl x jede Zahl nehmen können . Die Information ist
also allgemein gültig .
Wir merken uns

Definition 124 . 1 : Eine Gleichung heißt allgemeingültig , wennjede Zahl
Lösung der Gleichung ist .
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Beispiel :
X “t~ 1 = 1 -1- x .
Jede Zahl ist Lösung dieser Gleichung . Also ist sie allgemeingültig .
Die Lösungsmenge der Aussageform x + 1 = 1 + x ist die Menge O .

4) Andererseits kann es aber Vorkommen , daß es solch eine Zahl , wie sie
durch die Information beschrieben wird , gar nicht gibt . Der Informant hat
uns also angeschwindelt !
Wir merken uns

Definition 125 . 1 : Eine Gleichung heißt widersprüchlich, wenn keine Zahl
Lösung der Gleichung ist .

Beispiel :
x + 1 = x .
Es gibt keine Zahl x , deren Wert sich nicht ändert , wenn man 1 dazu¬
zählt . Also ist die Gleichung widersprüchlich .
Die Lösungsmenge der Aussageform x + 1 = x ist die leere Menge { } ,
für die man auch 0 schreibt .

Aufgaben

Bei den folgenden Aufgaben soll entschieden werden , welche Art von Glei¬

chung vorliegt . Gib jedesmal die Lösungsmenge an .

1 . a) x + 3 = — 18 b) x + ^x = fx c) — 3jx = 3j d) x 2 = 256

e) x 4 = 16 0

2 . a) - 0,02x + 0,02 = 0,02 b) - 0,02x + 0,02 = - 0,02x
c) — 2x 2 = — 2,88 d) x + x = 2x e) x 2 = — 4

x ~L 1x 1 Sc ) 9x 2 = 1024= 0. 3 . a) = 1

d) x (x + 3) = 0 e) 3 • (x + 2) = 3x + 6

4 .2 .2 Äquivalenzumformungen von Gleichungen

4 .2 .2 . 1 Äquivalenz von Gleichungen

Der einfachste Gleichungstyp ist von der Bauart x = 7 . Eine Lösung dieser

Gleichung liest man direkt ab , nämlich 7 . Weitere Lösungen gibt es nicht , da
man mit keiner von 7 verschiedenen Zahl an Stelle von x eine wahre Aussage
erhält . Die Information über die gesuchte Zahl ist also eindeutig . Die gesuchte
Zahl ist 7 .
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Wir halten fest : Gleichungen der Bauart x = a sind eindeutige Informationen
über die gesuchte Zahl x . Die gesuchte Zahl x heißt a , die Lösungsmenge der
Gleichung x = a ist die Menge {a } .
Normalerweise sind Gleichungen viel komplizierter , z . B . 13x — 7 = 5x + 4 .
Um solche Gleichungen lösen zu können , formt man sie so lange um , bis man
auf den einfachen Typ x = a kommt . Bei diesem Umformen dürfen aber
keine Lösungen hinzukommen und auch keine Lösungen verlorengehen . Um¬
formungen , die dies leisten , bekommen einen besonderen Namen .

Definition 126 . 1 : Zwei Gleichungen heißen äquivalent , wenn ihre
Lösungsmengen übereinstimmen .
Eine Gleichungsumformung heißt Äquivalenzumfor-
mung, wenn die ursprünglicheGleichung und die neue
Gleichung äquivalent sind .

Unser Ziel ist es nun , Gleichungsumformungen aufzufinden , die als Äquiva¬
lenzumformungen zum Lösen von Gleichungen benützt werden können .

Aufgaben

Stelle bei den folgenden Gleichungen fest , ob sie äquivalent sind . Sind Glei¬
chung I und Gleichung II äquivalent , dann kannst du kurz I <=> II schreiben .

I . x = 3 ; II . 13x = 39 b) I . x + 1 = 2 ; II . x + 9
I . x + 1 = 2 ; II . x + 10 = 9 d) I . x 2 = 1 ; II . x = 1
T _ 3 .11 3 X — 55 II . x 2 = £ b) I . x = x ; II . 0 • x = 0

I . 10f + x = 9% + x ; II . — = 2 d) I . X — X = 0 ; II . 1 = 1

4 .2 .2 .2 Äquivalenzumformung durch Termersetzung
Ersetzt man in einer Gleichung einen Term durch einen äquivalenten , so
ändert sich die Lösungsmenge nicht , weil nach Definition 89 . 1 bei jeder Ein¬
setzung der alte und der neue Term den gleichen Zahlenwert liefern .

Beispiele:
1 ) 2x + 5 — x = l — x — 8

Vereinfacht man die Terme auf der linken und auf der rechten Seite
der Gleichung , so erhält man die äquivalente Gleichung
x + 5 = — 7 — x .
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2) 3 (x — 5) = 14 + 8x
4

Unter Anwendung der Rechengesetze erhalten wir die äquivalente
Gleichung
3x — 15 = j + 2x .

Durch Termersetzungen können wir die Gleichungen also vereinfachen . Zur
vollständigen Lösung brauchen wir allerdings noch weitere Äquivalenzum¬
formungen . Wir werden sie im folgenden kennenlernen . Weil es lästig ist,
jedesmal durch einen Zwischentext zu versichern , daß man gerade eine
Äquivalenzumformung durchgeführt hat , treffen wir die

Vereinbarung 127 . 1 : Die durch Äquivalenzumformungen entstandene
neue Gleichung schreiben wir ohne Kommentar
unter die alte Gleichung . Zur Verdeutlichung kann
man auch zwischen die äquivalenten Gleichungen
das Äquivalenzzeichen o setzen .

Beispiel : — 2 (3 — 5 (x — 1 ) + 4) — 8 = l (x — (9 — 2x))
- 2 (7 - 5x + 5) - 8 = f (x - 9 + 2x)

— 2 (12 — 5x) — 8 = f (3x — 9)
- 24 + 10x - 8 = 7x - 21

lOx - 32 = Ix - 21 .

Der Übersichtlichkeit halber haben wir die äquivalenten Gleichungen im letz¬
ten Beispiel so geschrieben , daß die Gleichheitszeichen immer untereinander
zu stehen kamen . Dadurch erkennt man gut , wie sich die linke Seite und wie
sich die rechte Seite jeweils verändert haben . Gleichungen in dieser Form
untereinanderzuschreiben geht natürlich nur , wenn man schon weiß , wieviel
Platz die linke Seite in der neuen Zeile brauchen wird . Du wirst es im Heft
nicht immer so einrichten können . Eins mußt du aber immer tun : Jede neue
Gleichung muß in eine neue Zeile geschrieben werden . Auch bei einfachen
Termumformungen darfst du nie in derselben Zeile mit einem = -Zeichen
weiterschreiben , auch wenn es noch so bequem wäre .
Beachte : Bei Gleichungen gibt es in jeder Zeile nur ein Gleichheitszeichen !

Beispiel :
Schreibe nicht x = 1 + j = f ,
sondern richtig mit zwei Gleichungen x = 1 + \
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Aufgaben

1 . Vereinfache die folgenden Gleichungen und gib die Lösungsmenge an .
a) x + 0,5x = \ x — 2x
b) f ■ (5 jc — 2) = 1 — 4

c) —^ — - + 1,5 = 3x - (3 : f ) x

d) x - 3 (2£ : lf ) = 0
• e) x (x — 2 (x + 5)) = — 10x — x 2
Jf ) 3i - [2 - x ( lj + 2x ) + x (0,5 + 2x)] = 1

2 . Die unbekannte Zahl muß nicht immer x heißen ! Vereinfache die folgen¬
den Gleichungen und gib die Lösungsmenge an .
a) [(5 — 3 : 4) • 6 — 22] • j; = 0
b) [(5 — 3 : 4) ■ 8 — 34] z = 0
c) (0,25 — 0,35 • f ) • m = 1,55 • §y — 2
d) p - (9 : 4 - 6 — 9 : 6 - 4 — 4 : 6 - 9 — 0,5 ) = 6 : 4 : 9
e) 14iz - 8| z - 5iz = 5i - 8i - 14i

3 . Vereinfache und gib die Lösungsmenge an .
a) [2,6 + m - 2f ) • 2] x = | [2 - j (2 - $) - 1,25 ]
b) [l - 4^ - (2,64 - 4,14) ( - J# )] ^ = i - f - | - f - f

4 .2 .2 .3 Äquivalenzumformung durch Addition von Termen

Bei der Gleichung x — 2>\ = l \ sind beide Seiten schon so einfach wie möglich .
Wir benötigen nun eine neue Aquivalenzumformung , die diese Gleichung auf
die Form x = a bringt . Dazu überlegen wir:
Wenn eine Gleichung eine Lösung besitzt , dann steht , wenn man sie sich ein¬
gesetzt denkt , links und rechts vom Gleichheitszeichen dieselbe Zahl . Addiert
man nun auf beiden Seiten der Gleichung Gleiches , dann ergibt sich auf
beiden Seiten die gleiche Summe . Um also zu erreichen , daß die unbekannte
Zahl x alleine auf der linken Seite übrigbleibt - wir sagen kurz , wir wollen x
isolieren - , müssen wir in unserem Beispiel auf beiden Seiten 3| addieren .
Dieses Vorgehen deuten wir dadurch an , daß wir hinter die Gleichung zwei
senkrechte Striche setzen und dahinter + 3 ] schreiben . Nun führen wir es vor :

x - H = n ll + 3i
(x - 3i ) + 3i = 7| + 3i

x - 3i + 3j = lli
x = 11 ^ .

Die gesuchte Zahl ist also 1
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Die obigen Überlegungen können wir verallgemeinern auf Terme , da Terme
wie Zahlen behandelt werden . Es gilt

Satz 129 . 1 : Die Addition desselben Terms auf beiden Seiten einer
Gleichung ist eine Äquivalenzumformung ; kurz

T, = T2 | | + T
O t1 + t = t 2 + t

Zur Begründung überlegen wir uns :

1 ) Ist a eine Lösung der Gleichung Tx = T2 , dann gilt
7j (a) = T2 (a) , also auch

T1 (a) + T (a) = T2 (a) + T (a) .

Damit ist a auch eine Lösung der durch Termaddition umgeformten Glei¬
chung Tx + T = T2 + T. Es gehen also bei der Umformung durch Termaddi¬
tion sicherlich keine Lösungen verloren .
2) Ist umgekehrt b eine Lösung der umgeformten Gleichung Tx + T = T2 + T,
dann gilt
Tl (b) + T (b ) = T2 (b ) + T (b ) .
Addiert man auf beiden Seiten — T (b) , dann erhält man
Tx (b) = T2 (b) .
Das heißt aber , daß b auch eine Lösung der Gleichung Tx = T2 ist . Es kann bei
der Umformung durch Termaddition also auch keine Lösung hinzugekom¬
men sein.
Da somit bei der Termaddition weder Lösungen hinzugekommen sind noch
verlorengegangen sind , stimmt die Lösungsmenge der Gleichung Tx = T2 mit
der Lösungsmenge der Gleichung Tx + T = T2 + T überein ; die Umformung
durch Addition von Termen ist also eine Äquivalenzumformung .

In der Sprache der Mengenlehre läßt sich die obige Überlegung kurz so schreiben ,
wenn L die Lösungsmenge von 7j = T2 und L ' die von Tx + T = T2 + T bedeuten und
das Zeichen => als Abkürzung für »daraus folgt« steht :
1 ) a e L => a e .
2) beL ’ => be .

d . h . L cl 'l
d . h . L ' czLj

L = L'

Zum Einüben eine etwas anspruchsvollere Gleichung :

Beispiel 1 :
3>x — l = 19 + 2x . Wir wollen * auf der linken Seite isolieren . Dazumuß
7 auf beiden Seiten addiert und 2x auf beiden Seiten subtrahiert werden ,
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d . h . , auf beiden Seiten muß der Term T = 7 — 2x addiert werden . Die
Rechnung sieht also so aus :

3x — 7 = 19 + 2x | | + 7 - 2x

(3x - 7) + (7 - 2x) = (19 + 2x) + (7 - 2x)
3x — 7 T 7 — 2x — 19 T 2x + 7 2x

x = 26 .
Mit einiger Übung kannst du durch Kopfrechnen gleich von der 1 . zur 4 .
Zeile kommen !

Es ist nicht günstig , die unbekannte Zahl auf der linken Seite zu isolieren ,
wenn dort die unbekannte Zahl weniger oft vorkommt als auf der rechten
Seite . In einem solchen Fall isoliert man die unbekannte Zahl eben auf der
rechten Seite!

Beispiel 2:
— 3,5x + 1,4 = — 2,5x + 0,1 | | + 3,5x — 0,1

1,3 = x

Aufgaben

b) x + 56 = 38 c) 2,65 + x = 2^
e) - 28,1 = 16,5 + x f) 17^ = ^ + x

h) — 8^ + 2^ 4 = z — r7

1 . a) 25 + x = 42
d) f = x + 1

g) | - l,5 + 4 - f = z - £

17,3x + 2;b) 16,3x2 . a) 2x — 1 = x — 1
c) fx - f = 1,75 + l,75x
e) J^ x + 7 = 3 + l,625x f) - 2,5x - 0,8145 = - 1,804 - 3,5x

b) 126 + 7x3 . a) 1 - [2 - (x - 5)] = 5 - ( 19 - 9)

c) 7,5 - 2,4x = (3,lx - 9) • 2 - 9,6x

e) jx + | x — 13 = \ x + j ^x 0,2x + 21f ) - x + 18

4 . a) llx — 2 (x — 1 ) = 5 (2x — 3) — (1 + 2x)
b) x + 2 [x + 3 (x + 4)] = 15 + 8x
c) 1 - 5 (4x + ll ) = 5 [3x — 7 (2x — 1 )] + 6 (6x — 14)
d) 1,5 (3 - 5x) - [4 (2,8 + 0,3x ) - 10] + 9x = 0,3x
e ) [ ( X '

2 + 2 ) '
3 + Ü ' I + 4 = 2 — i X



4 .2 Lösen von Gleichungen 131

4 .2 .2 .4 Äquivalenzumformung durch Multiplikation mit Termen

Bei der Gleichung 8x = 15 sind beide Seiten schon so einfach wie möglich . Wir
benötigen nun eine neue Äquivalenzumformung , die diese Gleichung auf die
Form x = a bringt . Dazu überlegen wir:
Wenn eine Gleichung eine Lösung besitzt , dann steht , wenn man diese sich
eingesetzt denkt , rechts und links vom Gleichheitszeichen dieselbe Zahl . Mul¬
tipliziert man nun beide Seiten der Gleichung mit dem gleichen Faktor , dann
stellt sich auf beiden Seiten dasselbe Ergebnis ein . Um bei unserer Gleichung x
zu isolieren , müssen wir also beide Seiten mit j multiplizieren oder beide Seiten
durch 8 dividieren .
Wir führen es vor :

8x = 15 | | ■£ oder 8x = 15 |1 : 8

8x 15
Y = T

8 * - i = ¥ x = 158
* ii °°|£

Die gesuchte Zahl ist also
Die obigen Überlegungen können wir verallgemeinern auf Terme , da Terme
wie Zahlen behandelt werden . Es gilt

Satz 131 . 1 : Die Multiplikation beider Seiten einer Gleichung mit einem
Term ist eine Äquivalenzumformung , falls der Term nicht
null ist .
Kurz : ( T 4= 0)

Zur Begründung überlegen wir uns :
1 ) Ist a eine Lösung der Gleichung = T2 , dann gilt
Ti (a) = T2 (a ) , also auch
7i (a) ■ T (a) = T2 (a) ■ T (a) .
Damit ist a auch eine Lösung der durch Termmultiplikation entstandenen
Gleichung . Es gehen also bei der Umformung durch Termmultiplikation si¬
cher keine Lösungen verloren .
2) Ist umgekehrt b eine Lösung der umgeformten Gleichung 1 \ ■ T = T2 ■ T,
dann gilt
T1 (b) - T (b) = T2 (b) - T (b) . i
Multipliziert man beide Seiten mit — , was natürlich nur für T (b) 4= 0
möglich ist , dann erhält man
Tl (b) = T2 {b) .
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Das heißt aber , daß b auch eine Lösung der Gleichung 7j = T2 ist . Es kann
also bei der Umformung durch Termmultiplikation auch keine Lösung hinzu¬
gekommen sein, wenn T (b) 4= 0 gilt .
Da somit bei der Termmultiplikation weder Lösungen hinzugekommen sind
noch verlorengegangen sind , stimmt die Lösungsmenge der Gleichung
Ti = T2 mit der Lösungsmenge der Gleichung Tx

■ T = T2 - T überein ; die
Umformung durch Multiplikation mit Termen ( 4= 0) ist also eine
Äquivalenzumformung .
Zi irrt Einüben zwei etwas anspruchsvollere Gleichungen .

■5iBeispiel 1 : l \ x =
Zum Rechnen verwandeln wir die gemischten Zahlen besser in gemeine
Brüche :

¥x = - ü

Nun multiplizieren wir die Gleichung mit um x zu isolieren :
22 x = —

x = — 11 -3
2 - 22

_3_
22

X =

Beispiel 2 : 27,2 =
21 . 2
V - —

- 0,06x | | : ( — 0,06)
x

Weil a = b dasselbe bedeutet wie b = a , vertauschen wir der leichteren
Lesbarkeit halber die beiden Seiten und vereinfachen weiter .
v _ 2720X — — 6
v _ 1360X — 3 .

Aufgaben

1 . a) 2x = 5

2 . a) 5x = — 2

3 . a) — x = 7,1
4 . a) — 2,5x = 5j
5 . a) 9 : 14 = £
6 . a) f = 4

7 . a) fx = — 1 + 1

8 . a) | ( - x) = ^ 3“

b) \ x = 3
b) 2^x = - 1
b) ( — 2) x = 1
b) 3 - i = - £ x
b) — 80 = x : 6
b) — f = 7,8
b) x : 17,5 = 5,25
b) ( - x) : 1024 =

• 0,01

17
128

c) fx = 9

c) - 3| = | x

c) — 0,1 x = 0,01
c) 2i = rk
C) ^ = 3 • 2£
c) - f = - ¥

C) 49^“ = 4Ä : i8 >6

c) - ^ = - 3,14 ( - x)
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4 .2 .2 .5 Mehrfache Äquivalenzumformungen

In den meisten Fällen wird man nicht mit einer der drei im letzten Abschnitt
behandelten Äquivalenzumformungen allein auskommen . Fast immer
braucht man alle drei ! Betrachten wir etwa die Gleichung
97 + 2jc — ( 19jc — 15) + 3 = 107 - Ix - (Ux - (5 + 3x)) .
Zuerst vereinfachen wir beide Seiten durch Termersetzungen :
100 + 2x - 19x + 15 = 107 - 7x - (Ux - 5 - 3x)

115 - 17x = 107 - 7x - (8jc - 5)
115 - 17x = 107 — 7x — 8x + 5
115 — 17* = 112 — 15 * .

Durch Addition von Termen sorgen wir jetzt dafür , daß alle x-Glieder auf der
einen und alle von x freien Glieder auf der anderen Seite stehen . Der Bequem¬
lichkeit halber achten wir darauf , daß der Faktor bei x positiv ist .
115 - 17x = 112 - 15x | | + 17x — 112

3 = 2x .
Durch Vertauschen der Seiten erhalten wir die gewohnte Form

2x = 3 .
Zum Abschluß isolieren wir x durch Multiplikation mit
2* = 3 | |
x = f .

Die drei Äquivalenzumformungen reichen aus , um jede Gleichung , in der die
Unbekannte nicht in zweiter oder gar in höherer Potenz vorkommt , zu lösen .
Weil x 1 = x gilt , sagt man auch : Die Unbekannte kommt in der Gleichung
nur in der ersten Potenz vor . Für solche Gleichungen hat man einen eigenen
Namen eingeführt .

Definition 133 . 1 : Eine Gleichung, in der die Unbekannte nur in der
ersten Potenz vorkommt , heißt lineare Gleichung.*

Den Weg zur Lösung einer linearen Gleichung fassen wir zusammen in

Regel 133 . 1 : Eine lineare Gleichung löst man durch Äquivalenzumfor¬
mungen in der folgenden Reihenfolge :
1 . Vereinfachen
2 . Addieren
3 . Multiplizieren

Zum ersten Mal 1694 belegt als egalite Uneaire bei Jean Prestet (1652- 1690) in seinen Nouveaux Elemens des
Mathematiques ou Principes generaux de Toutes les Sciences , qui ont les grandeurs pour objet .
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Zur Einübung der Regel betrachten wir noch ein komplizierteres

Beispiel: 3Jx — (1 ^ + kx) = — 3j + ( ljx — ( 1 | — x)) + 3f
3fx — lj 2 X ~ "So 4" ( 1 ~

2 X 1 2 “b ■*-)
Hx ~ H = — Ä + (2i* — li)
3i:x 1 ^ = So + 2jX I 2
3ix - li = - lM + 2ix | | - 2ix + li

3 V _ II . 4

Manchmal vereinfacht sich die Rechnung , wenn man als allerersten Schritt die
Gleichung mit dem Hauptnenner multipliziert , um die Brüche zu beseitigen .

Beispiel:

5x + 12,5 5 (0,4 — 2 jc) _
9x - 0,7 7x - l,l

7 6 4 3
+

12 (5x + 12,5 ) - 14 ■ 5 • (0,4 - 2x ) = 21 (9x - 0,7) - 28 (7x - 1,1 ) + 2 - 84
60x + 150 - 28 + 140x = 189x - 14,7 - 196x 4- 30,8 + 168

200x + 122 = - 7x + 184,1 | | + 7x - 122
207x = 62,1 | | : 207

x = 0,3

Aufgaben

1 . a) 8 + 6x = 20

2 . a) 1 = 13 - 6x

3 . a) 19 — x = 100 — lOx

4 . a) 4x + 15 — x = 54

5 . a) 17 = 17 — 12x + 3x

6 . a) llx — 41 = lOx — 31 b) 5x — 5 = 15 + 3x

7 . a) 8x + 22 — x = 100 — llx — 42
b) 9x = 7x + 16 + 5x + 7 — lOx
c) 19 + 3x — 23 = 10 + 2x — 34

b) - 3 + 5x = 17

b) 10 = 24 - Ix

b) 3x + 1 = 5x — 3

b) 5x + 2 + x = 26

b) 31 + x = 111 - Ix

c) 4x — 12 = 44

c) — 9x — 144 = — 36

c) 19 — 2x = 8x — 16

c) — x + 8 — 3x = 0

c) 21 + 8x = 30 + 5x

c) 4x — 16 = 19 — 3x

8 . a) 29x + 39 - 34x = 49 - 20x - 10
b) 4x + 4 — 7x = — 8x + 2 + 5x — 4

9 . a) 8x — 17 + x = 9x — 13 — 4
b) 9x — 16 = lOx — 9 — 4x + 5

10. a) 0 = 14 — 8x + x — 3x + x + 4
b) 9x + 34 — 6x — 33 + 2x = 9
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llx — 8x + 15 + 6x + 6 — lOx
21x - 9 - 17x + 10 = 45 + 5x - 4

7x — 6 + 5x — 4 + 3x — 2 + x — 4 = 0
18 = 93 - 6x - 11 - 4x - 5 - 2x + 1

12x — 10 + 8x — 6 + 4x — 8 = 0
6x — 13 + x — 1 + 12x — 15 — lOx + 2 = 0

36 + 12x — 19 — x + 10 — 8x = 0

21 x — 21 — Ix + 7 = Ix + 21 + 14x — 7 — 19x + 26x
121x + 49 - 234x + 3 - x = x - 56 - 115x + 108

b) lx + i

( - 0,7 ) 3 + 5,94x - 9,02 + 2,63x + 11,31 = 6,24x - 6,263 - 1,11
0 = 12,9x - l,45x - 3,29 - 0,99x - llx + 0,32

0,5x + 9 = f x + 4 — f x + 0,2

b) 2x + 11 = 8x - 10

b) 7,5 — 2,4x = 3,lx — 9

b) yX + ^x — 13 = ^x

b) l,5x — 8,5

X

3x + 7

126 + 7x = ix — 44

fx + 18 = -jx + 0,2x + 2

x + 0,5x — 0,43 = x
9 0,72

8 + 12x 6x

13x + 8 1 3 6 — llx
b) 6 3

~
5

+
15

5 = — + o,85

b) (25 + 3x ) • 7 = (7 + 25x ) • 34 (2x — 3) = 2 (3x — 4)

13 — 3 (5 — x ) = 7 (x + 1 ) — 13
5 (2x - 300) - (150 - x ) ■2 = 3x
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29 . a) 3 (1,8 + 3x ) — 26 = 9 — 5 (1,5x — 2)
b) 0,75 (7x - 16) - 0,25 (9x - 60) + 1 = 0

• K ' 4 Ki + 1 ) - 5 (2 ~ *)
30 . a) 3x + (9 - x) = 13 b) 5x - ( 1 + 2x ) = 11

c) — (8 — x ) + 2x = 10

31 . a) 9x - 2 - (7 - 2x ) = 13 b) x - (2x - (3x - 1 )) = 101
c) 12x = — 12 — ( — 12x — 12) d) 5x - (3 - 4x ) = 3 2 - (x + 4)

32 . a) 9 - (5x + 2) + (10 + 8x ) - (3x - 18 ) = x + 20
b) 93 + 2x — (19x — 15) = 100 - Ix - ( llx - (5 + 2x ))

33 . a) (25 + 12x ) - ( lOx - 11 ) = (12 + 6x ) - ((12x + 13) - ( lOx - 11 ))
b) - 2x - (4 + (2x - 3)) = (30 - 18x ) - (2x - (3x - 5))

34 . a) 5 (5 + 2x ) = 9 + 4x b) 0 = 4 (10 - 2x ) - 3 (x - 5)
c) 3 (9 — x) = 5 (x — 9) d) 23 (x — 3 2) = 3 2 (x + 2 3)

35 . a) 1 (4x — 3 ) + 3 (9 — 18x ) = 10 ( 1 — 3x )
b) 7 (3x - 7) + 5 (x - 3) + 4 ( 17 - x) = 103 - llx

36 . a) 13x — 7 ( 11 - x ) + ll = 4x - 3 (20 - x) + 7x
b) 8 (2x — 3) — 5 (2x — 8) = 32 — 4 ( 1 — 3x ) + 8x

37 . a) 3-j-x - 4i = 5^x - 6£ b) 0,1 x - 0,2 = 0,3x - 0,4

38 . a) jx + ix - 4 = - b) | x + ^ = ^x + ^ + i *

39 . a) lOx = 7jX — 3^x + 5| x — 3jx + 1 + 5x

b) x = fx - fx + | x - fx + f
4x 3x 4x 1 9

40 . a ) _ _ _ +
T

+ - = _ _ ^

13 x x x 5 4 9
b) “ 37 M

=
3

“
2

+
6

_ 1
12

X + 2
5

“ 3
IÖ

X + 98

41 . a) 47x — 43 = 73 + 41,5x + 7,2x + 16,6
b) 0 = l,45x - 2,7x - 0,6x + 0,5x - 7,8 - 1,2

42 . a) 18x - 7,52 - 2,35x = 5,381 - 2,9x - 0,58 + 13x
b) l,45x + 3,29 = 12,9x - 0,99x - llx + 0,32

43 . a) f (x — 5) — x = 1 + f ( 11 — 2x )
b) | (3x - 16) = 2x - 3 (5 + fx ) + f (4 - x)
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44. a) 3x (x + 7) - x (3x + 7) + 70 = 0
b) 4x (6 — 3x) + 6x (2x + 1 ) = 15

45. (fx - l ) - 2 \ x - (33x + 5) • = 277

46 . 0,32x (l,25x - 10) + (6,3 - 0,8x ) • 0,5x + 1 = 0

47 . a) x — (x — (x — (x — 1 ) — 1 ) — 1 ) = 0
b) 1 - 2 (x - 3 (x - 4 (x - 5))) = 11 (11 - 2x) + 2x

x — 3 3 + x — x + 3 ,, x — 3
48 . a) 6x - -— = 5x 5- -— b) — -- (- 6x = —- - h 5x

Die Aufgaben 49 bis 51 sollen den Einfluß von Rundungen zeigen.

49. a) 3,14x - 6,28 = - 9,577 b) 3,14x - 6,28 = - 9,58
c) 3,lx - 6,3 = - 9,6 d) 3x — 6 = — 10

50 . a) - l,27x + 9,51 = 9,88 - l,22x b) - l,3x + 9,5 = 9,9 - l,2x
c) — x + 10 = 10 — x

51 . a) 3,14x - 7,28 = - 8,193 b) 3,lx - 7,3 = - 8,2 c) 3x - 7 = - 8

52- 25 (^ + i) _ Jt
53. x + 2 [x + 3 (x + 4)] = 15

+ 2 [ - - 15 | - 36x = 0

55 . 1 — 5 (4x — 11) = 5 [3x — 7 (2x — 1 )]

56 . 1,5 (3 - 5x) - [4 (2,8 + 0,3x ) - 10] + 9x = 0

. 57 . 1 - (2 + 3 ■ [(3x - 8 ) - 2 (8 - 3x)] ) = 5 (1 - 2x) - 2

>58 . (x + 1 ) • 2 +
1 1 \ . 1 _

^3 + 3j
' 4 + 4

- (x + 1 ) ■ 2 + 3 +

x — 2 7 9x + 10
59 . 5 • — - (2x - 18) ■ 3 = - ■

3 3x + 5 2 (2x — 3) — 24 1 (x - 270 ) ' i
2 6

-
5
- = ‘ i

-
§

, 61 .

162.

K* + 4) 3 | ^ — 1[- - x ) = 2x — 11

2 4x + 2,5 / x \ 17 „ 1
+

3
' ~

ir
- - 3 ' -

64
+

32
' (* - 2) =

19216
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* * 4 .2 .2 .6 . Die Äquivalenzumformungen des al -Charizmi oder was bedeutet
Algebra ?

Du kennst nun die 3 Äquivalenzumformungen , mit deren Hilfe du lineare Gleichungen
lösen kannst . Wir faßten sie kurz zusammen in der Regel »Vereinfachen - Addieren -
Multiplizieren « . Diese Äquivalenzumformungen waren von Anbeginn an das
Rüstzeug der Mathematiker , die Gleichungen lösen wollten . Ausführlich hat sie al -
Charizmi in seinem al-Kitab al-muchtasar fi hisab al-dschabr wa- ’l-muqabala
beschrieben .
Zuerst rät al -Charizmi dem Leser , so wie wir es dir geraten haben , in einer Gleichung
die Nenner zu beseitigen , indem man jedes Glied mit dem Hauptnenner multipliziert .
Die Gleichung ist dann einfacher geworden . Dann ersetzt er auf jeder Seite komplizier¬
tere Terme durch einfachere , so wie wir es auch machen . So entsteht z . B .
8 .x + 11 = 13 - 7x .
Al -Charizmi empfindet das Wegnehmen von Ix von der Zahl 13 als etwas , was die 13
verletzt . Er möchte es wiedergutmachen . So wie ein Arzt ein ausgerenktes Glied durch
Einrichten wieder voll funktionsfähig macht , so will er die 13 wieder unverletzt sehen.
Dazu braucht er bloß auf beiden Seiten Ix zu addieren . Diese Äquivalenzumformung
des Wiederherstellens nennt al -Charizmi al-dschabr . Nun weißt du , was das Wort
al-dschabr , aus dem Algebra entstanden ist, mathematisch bedeutet .
Durch al -dschabr wird aus der obigen Gleichung also die äquivalente Gleichung
15x + 11 = 13 .
Jetzt betrachtet al -Charizmi beide Seiten, d . h . , er stellt sie einander gegenüber . Dabei
sieht er , daß auf der linken Seite 11 zu 15x addiert wird . Er stellt sich vor , daß 11 auch
rechts als Summand auftritt , also 13 = 2 + 11 . Durch Subtraktion von 11 auf beiden
Seiten kann er diesen Überschuß ausgleichen . Diese Äquivalenzumformung des Ver-
gleichens und Ausgleichens nennt al -Charizmi al-muqabala . Nun weißt du auch , was
das zweite Wort im Titel seines Algebrabuchs für einen mathematischen Sinn hat .
Durch al-muqabala wird also aus der letzten Gleichung die äquivalente Gleichung
15x = 2 .
Nun muß noch x isoliert werden , d . h . , 15x muß auf lx zurückgeführt werden . Dies
geschieht , indem man die Gleichung durch 15 dividiert ; man erhält x = Diese
Äquivalenzumformung des Zurückführens auf lx nennt al -Charizmi al-radd .
Wäre man aber auf eine Gleichung der Form \ x = 6 gestoßen , dann hätte man jx zu
lx vervollständigen müssen . Dies geschieht , indem man die Gleichung mit 4 multi¬
pliziert ; man erhält x = 24 . Diese Äquivalenzumformung des Vervollständigens auf 1 x
nennt al -Charizmi al- ikmal.
Da für uns die Division durch eine Zahl dasselbe ist wie die Multiplikation mit dem
Kehrwert dieser Zahl - statt durch 15 zu dividieren , multiplizieren wir mit yj - , müssen
wir die beiden letzten Äquivalenzumformungen nicht unterscheiden und haben sie
zusammengefaßt in der Äquivalenzumformung durch Termmultiplikation .
Natürlich war al -Charizmi nicht der erste , der Gleichungen so löste . Der griechischeMathematiker Diophant aus Alexandria (um 250 n . Chr .) beschreibt genau die beiden
Äquivalenzumformungen des Wiederherstellens und des Ausgleichens in seinem Werk
AQiSpr | TiKff>v ßißkia (Arithmetikön biblia) = Bücher über die Zahlenlehre . Aber al -
Charizmi hat dieses Werk nicht gekannt . Es wurde erst nach seinem Tode ins Arabi¬
sche übersetzt .
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4 .2 .3 Produkte mit dem Wert null

Wir erinnern an die Tatsache , daß die Null als Faktor jedes Produkt zu null
macht *

, und halten dies fest in

Satz 139 . 1 : Wenn in einem Produktmindestensein Faktor null ist , dann
hat das Produkt den Wert null .

Beispiele:
1) 3 - 0 = 0 2) 0 • ( — 7) = 0
3) \ • 2 10 - 0 - 8 = 0 4) - 3 • 0 • (u 2 - d) ■0 • 5 = 0

Wissen wir umgekehrt von einem Produkt , daß es den Wert null hat , dann
muß mindestens einer der Faktoren null sein; denn wären alle Faktoren von
null verschieden , dann wäre nach den Yorzeichenregeln auch das Produkt von
null verschieden .
Es gilt also

Satz 139 .2 : Wenn ein Produkt den Wert null hat, dann ist mindestens
einer der Faktoren null .

Als Anwendung dieses Satzes bestimmen wir die Lösungsmenge der Glei¬

chung

(x — l ) (x — 2) = 0 .

Das links stehende Produkt besteht aus den Faktoren x — 1 und x — 2 ; minde¬
stens einer davon muß null sein . Es gilt also x — 1 = 0 oder x — 2 = 0 , d . h . ,
x = 1 oder x = 2 .

Beide Faktoren können nicht zugleich null werden , weil x nicht zwei verschie¬
dene Werte gleichzeitig annehmen kann .
Die Information , die uns die Gleichung (x — l ) (x — 2) = 0 liefert , ist also

mehrdeutig . Sie ist äquivalent mit der Information »x = 1 oder x = 2« . Solche
mit oder zusammengesetzte Aussageformen kommen in der Mathematik häu¬

fig vor , so daß es sich lohnt , für das Wort »oder « in diesem Zusammenhang
eine symbolische Abkürzung einzuführen . Für oder schreibt man kurz v . Das

v soll an das lateinische Wort für oder , nämlich vel, erinnern .
Eine Zahl ist Lösung einer Oder-Aussageform , wenn beim Einsetzen eine

wahre Oder -Aussage entsteht . Eine Oder -Aussage in der Mathematik ist eine

Verknüpfung zweier Teilaussagen durch das Wort oder bzw . durch v .

Eine Oder -Aussage ist genau dann wahr , wenn mindestens eine der Teilaussa-

* Beachte die Groß - und Kleinschreibung : Die Zahl Null hat den Wert null . Bei der Zahl 10 sagt die Ziffer Null ,

daß die Zehn null Einer hat .
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gen wahr ist , d . h . , wenn die erste Teilaussage wahr ist oder wenn die zweite
wahr ist oder wenn beide zugleich wahr sind . Die Lösungsmenge einer Oder -
Aussageform ist also die Vereinigungsmenge der Lösungsmengen der Teilaus¬
sageformen . Das Zeichen u erinnert an v . Unsere Oder -Aussageform
x = 1 v x = 2 besitzt demnach die Lösungsmenge L = { 1 ; 2 } .

** Zur Geschichte der Null

In einem Zeichenwertsystem , wie es die Ägypter ,die Griechen und die Römer verwendeten , brauch¬
te man keine Null ; denn 10 schrieb man römisch
eben als X und 101 als CI . Interessanterweise findet
man aber um 100 v . Chr . bei den Ägyptern ein Zei¬
chen für den Wert null , die abwehrenden Hände
(Abbildung 140 . 1 ) . Bei einem Stellenwertsystem ist
aber ein Zeichen für die nicht besetzte Stelle nötig ;
denn 11 ist etwas anderes als 101 . Beim babyloni¬
schen Stellenwertsystem , dem 60er- oder Sexagesi-
malsystem , taucht bereits um 2000 v . Chr . ein sol¬
ches Lückenzeichen auf , wird aber erst ab 200
v . Chr . systematisch verwendet . (Abbildung 140 .2)
Die Inder besaßen spätestens seit den ersten Jahr¬
hunderten n . Chr . ein Stellenwertsystem , das prak¬
tischste , das jemals erfunden worden war und das
wir heute noch benützen . Zu ihren neun Zahlzei¬
chen für eins, zwei, . . . , neun kommt im 7 . Jh . ein
Zeichen für die Lücke , die sie sunya = die Leere
genannt hatten , hinzu ; es ist ein Punkt oder auch
ein kleiner Kreis .
Woher hatten nun die Inder dieses Zeichen? Dar¬
über streiten bis heute die Gelehrten . Die einen mei¬
nen , die Inder hätten es selbst erfunden . Nun
stammt die früheste erhaltene indische Null als
Kreisring von einer Tempelinschrift bei Gwalior
aus dem Jahre 870. Daher meinen andere Gelehrte ,die Inder könnten den Punkt und den Kreis für die
Null von den Chinesen übernommen haben ; denn
in einem chinesischen astronomischen Text aus der
Zeit von zwischen 718 und 729 ist uns ein Punkt für
die Null überliefert . Noch früher , und vielleicht von
China beeinflußt , sind Inschriften aus Kambo¬
dscha und von der indonesischen Insel Bangka mit
den Jahreszahlen 605 bzw. 608 (Abbildung 140 .3 ) .
Haben die Inder über ihre Kaufleute von dort die
Idee bezogen? Oder stammt sie gar von den Grie¬
chen?
Der größte Astronom des Altertums , Klaudios
Ptolemaios (um 100- 160) benötigte ein Zeichen ,
um anzudeuten , daß ein Winkel null Grad , null
Minuten und nur 14 Winkelsekunden mißt . Er

Abb . 140 . 1 Ägyptisches
Zeichen für null an einem
Tempel in Edfu (2 ./1 . Jh . v .
Chr .)

TTKW
Abb . 140 .2
Der Doppelhaken , das ba¬
bylonische Lückenzeichen :
2 • 60 2 + 0 - 60 + 15 = 7215

<2; l <D»V
Abb . 140 .3
Die Schakajahrzeichen 605
( = 683/4 n . Chr .) und 608
( = 686/7 n . Chr .) Der südin¬
dische Schakakalender be¬
ginnt seine Zeitzählung am
15 . März 78 n . Chr .

• • •

• •

Abb . 140 .4
Die Mayazahl 820 =
= 8 • (20 • 18) + 2 • 20 + 0 =
= 2920 indisch
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schrieb dann öö aS . Dabei soll das o eine Abkürzung von ow)£:v (uden ) = nichts sein.
So legt es uns die aus dem 9 . Jh . stammende älteste erhaltene Handschrift seiner

Moc9ri |icmKf | awra ^iq (Mathematikesyntaxis) = Mathematische Zusammenstellung
des astronomischen Wissens seiner Zeit nahe . Die indischen Astronomen der darauf

folgenden Jahrhunderte lernten aber von den Griechen . Und da sich gerade in der Zeit
zwischen 200 und 600 n . Chr . das indische Stellenwertsystem entwickelte , was liegt da
näher , als anzunehmen , daß sie das o des Ptolemaios als Ziffer für ihre Lücke nahmen
und sie auch Leere nannten ?
Im Jahre 773 brachte ein Inder ein in Sanskrit geschriebenes astronomisches Werk
nach Bagdad an den Hof des Kalifen al -Mansur (regierte 754- 775) . Es wurde ins
Arabische übersetzt . So wurden die Araber mit den indischen Ziffern bekannt , die wir
heute die arabischen nennen . Al -Charizmi überarbeitete später diese Übersetzung
in seinen Astronomischen Tafeln . Zur Verbreitung der indischen Ziffern und der Kunst
des Rechnens mit ihnen trug al -Charizmi wesentlich durch ein Buch bei , das nur
mehr bruchstückhaft in einer lateinischen Übersetzung unter dem Titel Algoritmi de
numero indorum - »Buch des al -Charizmi über die Zahlenschreibweise der Inder « -

erhalten ist . Sunya übersetzten die Araber mit al-sifr, ihrem Wort für Leere . Al-sifr
wurde latinisiert zu cifra , womit sogar noch 1799 Carl Friedrich Gauss (1777- 1855)
die Null bezeichnete . Im Deutschen entstand aus cifra das Wort Ziffer, das im 15 . Jh .
allmählich die heutige Bedeutung von Zahlzeichen erlangte . Im Lateinischen hieß
Zahlzeichen aber figura , der kleine Kreis für die durch kein Zahlzeichen besetzte Stelle

figura nihili = Zeichenfür das Nichts oder auch nullafigura = kein Zahlzeichen. Dar¬
aus entstand im Deutschen zunächst Nulla , dann eine Nulle, so z . B . 1716 belegt im
Mathematischen Lexicon des Christian v . Wolff (1679 - 1754) , der in der 2 . Auflage
1734 bereits die Kurzform Null als Stichwort aufführt .* Unabhängig von der Alten
Welt haben in der Neuen Welt die Maya vielleicht schon um 500 n . Chr . , also noch

vor allen anderen Völkern , ein vollwertiges Stellenwertsystem mit der Null als Ziffer

gekannt (Abbildung 140 .4) .

Aufgaben

1 . a) 145x = 0
c) l - yh = 0
e) 16 + §x = 2\ • 6f

2 . Bestimme die Lösungsmenge,
a) (x + l ) (x — 2) = 0
c) (6x — 3) (2x — 1 ) = 0
e) 14 (3x - 8) (65 + 13x) = 0

3 . a) (x + l ) 2 = 0
c) 2,35 - (x - 2) 3 = 0

4 . a) (2x + l ) (3x + 2) (4a + 3) = 0
c) 89 2 (16 — 5x) (x — l ) 2 = 0

b) x • (17 2 — 6 3 ) = 0
d) (29 — 377 : 13 ) • 3z = 0
f ) l,97x • 4 = 23,5 + 15§ : ( — f )

b) (x - f ) (x + £ ) = 0
d) (fx — 15) ( lf — 2x) = 0
f) (2fx - 34) • 7 2 • (1,5 - 2,5x) = 0

b) 3 • (2x — 5) 2 = 0
d) (x + 9) (x - 9) 2 = 0

b) (5x — 9) (11 + 2x) (7x — 49) = 0

d) [(l,75x — 5,25 ) (x + 19)] • 5 (2 — x) = 0

* Aus dem lateinischen cifra wurde im 15 . Jh . das französische chiffre und schließlich das englische cipher ,

die beide neben Null und Ziffer auch noch Geheimzahl bedeuten . In dieser Bedeutung entstand im 17 . Jh .

das deutsche Fremdwort Chiffre . Bei Leonardo von Pisa (um 1170—nach 1240) wird aus al-sifr 1202

zephirum , woraus das französische zero , das italienische zero und ddas englische zero wurden .
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• 5 . Gib eine möglichst einfache Gleichung an , die die folgenden Zahlen als
Lösung besitzt
a) 2 und 3 b) 2 und — 3 c) — 2 und 3
d) — 2 und — 3 e) | und — i f) 0 und — 1
g) 0 und 1 und — 1 h) 2 und — 2 (zwei Möglichkeiten !)

6 . Entscheide , welche der folgenden Oder -Aussagen wahr sind .
a) Hannibal war ein Römer oder Alexander der Große war ein Römer.
b) Eine Spinne hat 6 oder 8 Beine.
c) Die Hauptstadt der Türkei ist Istanbul oder Izmir .
d) 2 = 3 v 2 < 3
e) 2 = 3 v 2 > 3
f) 2 < 3 v 2 > 3
g) 2 < 3v2 = 3v2 > 3
h) 2 teilt 11 oder 2 teilt 12 .
i) 2 teilt 17 17 oder 2 teilt 1717 + 1 .
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5 Ungleichungen

5 . 1 Was ist eine Ungleichung?

Wir erinnern daran , daß a < b anschaulich bedeutet , daß die Zahl a auf der
Zahlengeraden links von der Zahl b liegt . Rechnerisch bedeutet a < b : Es gibteine positive Zahl p , so daß a + p = b gilt . Abbildung 144 . 1 veranschaulichtdies.

a b

Abb . 144 . 1 a < b <=> Es gibt ein p > 0 , so daß a + p = b.

Was aber bedeutet eine Ungleichung , die eine Variable enthält ?Betrachten wir z . B . die Ungleichung
2x — 3 < 1 — x .
Wie bei einer Gleichung haben wir eine Information über eine unbekannteZahl x vor uns . Diese Information ist in der vorliegenden Form noch sehr
undurchsichtig . Durch Probieren kann man womöglich Zahlen finden , die derInformation entsprechen . Nehmen wir z . B . für x die Zahlen 0 , 2 oder — 2 , soerhalten wir der Reihe nach die Zahlen -Ungleichungen
- 3 < 1 1 < - 1 - 7 < 3 .
Die erste und die dritte sind richtig , die mittlere falsch . Wir sehen , daß durchdie Information 2x — 3 < 1 — x die Zahl x nicht eindeutig festgelegt ist , dabereits die beiden Zahlen 0 und — 2 der Ungleichung genügen . Wie bei Glei¬
chungen möchten wir aber alle Zahlen kennen , die der Information genügen .Betrachtet man die Ungleichung als Aussageform , dann bilden diese Lösungs¬zahlen gerade die Lösungsmenge der Ungleichung .Bei Ungleichungen der Form x < 5 oder x > - 2,3 kann man die Lösungs¬menge sofort sehen . Wir veranschaulichen sie auf der Zahlengeraden . Dabeisoll der kleine , nicht ausgefüllte Kreis über 5 bzw . — 2,3 andeuten , daß dieZahl 5 bzw . — 2,3 nicht zur Lösungsmenge gehört .

Abb. 144 .2 Lösungsmenge der Ungleichung x < 5

? i i
- 2,3 0 1

Abb. 144 .3 Lösungsmenge der Ungleichung x > — 2,3



5 .2 Äquivalenzumformungen von Ungleichungen 145

Unser Ziel ist es , Ungleichungen so lange umzuformen , bis man auf solche
einfache Ungleichungen stößt . Das ist immer dann erreicht , wenn man die
Unbekannte auf einer Seite der Ungleichung isoliert hat . Dabei dürfen aber
weder Lösungen hinzukommen noch verlorengehen . Wie bei Gleichungen
legt man daher fest :

Definition 145 .1 : Zwei Ungleichungen heißen äquivalent, wenn ihre Lö¬
sungsmengen übereinstimmen .
Eine Ungleichungsumformung heißt Äquivalenzum¬
formung , wenn die ursprüngliche Ungleichung und
die umgeformte Ungleichung äquivalent sind .

5 .2 Äquivalenzumformungen von Ungleichungen

Ersetzt man in einer Ungleichung einen Term durch einen äquivalenten , so
ändert sich die Lösungsmenge nicht , weil bei jeder Einsetzung der alte und der
neue Term den gleichen Zahlenwert liefern .

Beispiel: 3x — 5 + x < Ix — (13 — 19)
4x — 5 < Ix + 6

Für die Addition von Termen gilt

Satz 145 . 1 : Monotoniegesetz der Addition
Addiert man auf beiden Seiten einer Ungleichung einen
Term , so bleibt das Ungleichheitszeichen erhalten ; kurz

\ < T2 II + T
o Ij + T < T2 + T

Bemerkung : Satz 145 . 1 gilt natürlich auch für die Subtraktion eines Terms , da
die Subtraktion eines Terms T ja nichts anderes als die Addition des Terms
- T ist .

Beweis : Ist a ein Element der Lösungsmenge der Ungleichung 7j < T2 , dann gilt
7j (a) < T2 (a) . Auf Grund des Monotoniegesetzes der Addition für rationale Zah¬
len (Satz 62 . 1 ) kann man auf beiden Seiten die Zahl T(a) addieren und erhält
Ty (a) + I '(a ) < T2 {a) + T(d) . (Siehe Abbildung 145 . 1 ) Also ist a auch Lösung der
Ungleichung 7j + T < T2 + T. Wir haben somit bei der Addition des Terms T keine
Lösung verloren . .

T | (a ) Ti (a )+T (a ) T2<a ) T2 (a ) + T (a )

Abb . 145 . 1 Ty (a ) < T2 (a) o 7j (a) + T(a) < T2 (a) + T (a)
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Ist umgekehrt b eine Lösung der Ungleichung 7j + T < T2 + T, dann gilt
T̂ b) + T(b ) < T2 {b) + T (b) . Addiert man hier auf beiden Seiten die Zahl — T (b) , so
erhält man nach dem Monotoniegesetz der Addition für rationale Zahlen die Zahlen¬
ungleichung Tx (b) < T2 (b) . Also ist b auch eine Lösung der Ungleichung < T2 .
Somit kann durch die Addition des Terms T keine Lösung hinzugekommen sein.
Die Ungleichungen 7j < T2 und Tx + T < T2 + T sind also äquivalent .

Beispiel : 4x — 5 < 7x + 6 | | — 4x — 6
- 11 < 3x

Bei der Multiplikation von Ungleichungen mit Zahlen muß man aufpassen ,
da es zwei Monotoniegesetze gibt , eines für positive Multiplikatoren und eines
für negative Multiplikatoren . Du kennst sie für rationale Zahlen bereits als
Satz 81 . 1 und Satz 81 .2 .
Deshalb müssen wir auch bei den Äquivalenzumformungen von Ungleichun¬
gen mit Variablen zwei Monotoniegesetze unterscheiden .

Satz 146 . 1 : Monotoniegesetz der Multiplikation
Multipliziert man eine Ungleichung mit einer positiven
Zahl , so bleibt das Ungleichheitszeichen erhalten , kurz

Tt < T2 | | • p , wobei p > 0
o p Tt < p - T2

Bemerkung : Satz 146 . 1 gilt natürlich auch für die Division durch eine positive
1Zahl , da die Division durch p ja nichts anderes ist als die Multiplikation mit —.
P

Beweis : Ist a ein Element der Lösungsmenge der Ungleichung Ä < t 2 , dann gilt
Tl (a ) < T2 (a) . Auf Grund des Monotoniegesetzes der Multiplikation für rationale
Zahlen (Satz 81 . 1 ) kann man beide Seiten mit der positiven Zahl p multiplizieren und
erhält/ » ■ J \ (a) < p ■ T2 (a) . (Siehe Abbildung 146 . 1 ) Also ist a auch Lösung der Unglei¬
chung p ■ T[ < p ■ T2 . Bei der Multiplikation mit p ist keine Lösung verlorengegangen !

p = 3

0 Ti (a ) T2(a ) p -T, (a ) P -T2(a )

P -Ti ( a )

Abb . 146 . 1 Ist p > 0 , dann gilt: 7) (4 ) < T2 (a) o p ■ T̂ ia) < p ■ T2 (a) .

Ist umgekehrt b eine Lösung der Ungleichung p ■ 7j < p ■ T2 , dann gilt
p ■ 7i (b) < p • T2 (b) . Multipliziert man diese Zahlenungleichung mit der positiven
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1Zahl - , dann gilt nach dem Monotoniegesetz der Multiplikation für rationale Zahlen

die Zahlenungleichung 7) (b) < T2 (b ) . Also ist b auch eine Lösung von l \ < T2 . Beider
Multiplikation mit p ist keine Lösung hinzugekommen !
Die Ungleichungen 7j < T2 und p - 7j < p ■ T2 mit positivem p sind daher äquivalent .

Beispiel : — 11 < 3x | | •
3
-

Damit haben wir durch drei Äquivalenzumformungen die eingangs gegebene
Ungleichung 3x — 5 + x < Ix — (13 — 19) schließlich auf die äquivalente
Form — ^ < x gebracht , bei der wir die Lösungsmenge sofort erkennen kön¬
nen ; Abbildung 147 . 1 zeigt sie .

Abb . 147 . 1 Die Lösungsmenge der Ungleichung 3x — 5 + x < Ix — (13 — 19)

Nun zum zweiten Monotoniegesetz der Multiplikation !

Satz 147 . 1 : Gesetz von der Umkehrung der Monotonie
Multipliziert man eine Ungleichung mit einer negativen
Zahl , so wird aus dem Kleiner -Zeichen ein Größer -Zeichen
bzw . aus dem Größer -Zeichen ein Kleiner -Zeichen ; man
sagt dafür auch , das Ungleichheitszeichen kehrt sich um .
Kurz

< T2 (I • q , wobei q < 0
<t> q - T1 > q T1

Bemerkung: Satz 147 . 1 gilt natürlich auch für die Division durch eine negative
Zahl .

Beweis : Ist a ein Element der Lösungsmenge der Ungleichung 7) < 12 , dann gilt
7) (a) < T2 (a) . Auf Grund des Gesetzes von der Umkehrung der Monotonie bei ratio¬
nalen Zahlen (Satz 81 .2) erhält man daraus bei Multiplikation mit einem negativen q
die Zahlenungleichung q • 7) (a) > q ■ 7) (a) . (Siehe Abbildung 148 . 1) Also ist a auch
Lösung der Ungleichung q ■ 7) > q • T2 . Keine Lösung ist verlorengegangen !

Ist umgekehrt b eine Lösung von q ■ 7) > q ■ T2, dann gilt q - T1 (b) > q ■T2 (b) . Multi -
1

pliziert man diese Zahlenungleichung mit der negativen Zahl dann erhält man wegen

des Gesetzes von der Umkehrung der Monotonie bei rationalen Zahlen die Zahlenun¬
gleichung 7) (b) < T2 (b) . Also ist b auch eine Lösung von 7] < T2 . Somit ist bei der
Multiplikation mit q keine Lösung hinzugekommen !
Die Ungleichungen 7) < 7’

2 und q ■ Tx > q ■ T2 mit negativem q sind somit äquivalent .
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q -T2 (a ) q -Ti ( a ) 0 Ti (a ) T2 (a )

Beispiel : — §x < — 6 | | • ( — §)
x > 9

Die in diesem Abschnitt gefundenen Äquivalenzumformungen von Unglei¬
chungen sollen uns nun helfen , die Lösungsmenge einer Ungleichung zu be¬
stimmen .

5.3 Lösen von Ungleichungen

5 .3 . 1 Intervalle

Die Lösungsmengen von Ungleichungen enthalten meistens unendlich viele
Lösungen , denen auf der Zahlengeraden Strecken oder Halbgeraden entspre¬
chen . Diese Zahlenmengen nennen wir Intervalle *

. Für Intervalle gibt es in
der Mathematik Kurzbezeichnungen :

Definition 148 . 1 :

Beschreibung
des Intervalls

Intervall¬
symbol

Art des
Intervalls

Bild des
Intervalls

Menge aller Zahlen zwi¬
schen a und b einschließ¬
lich der Grenzen

[a ; b\ abge¬
schlossen

a b

Menge aller Zahlen zwi¬
schen a und b ohne die
Grenzen

] a ; 6 [ offen UC—

Menge aller Zahlen zwi¬
schen a und b mit a , aber
ohne b

La ; bl halboffen a b

Menge aller Zahlen zwi¬
schen a und b ohne a , aber
mit b

] ö ; &] halboffen ab

* intervallum (lat .) = Zwischenraum , eigentlich der Raum zwischen ( = inter ) zwei Pfählen ( = vallus) einer
Palisade .
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Beachte : In der Intervallschreibweise darf die linke Zahl nicht größer sein als
die rechte .

Wie man mit Intervallen umgeht , zeigen die folgenden

Beispiele: (Vgl . dazu Abbildung 149 . 1 ) .
1 ) 0 e [0 ; 3 [ , l,7e [0 ; 3 [ , 3 $ [0 ; 3 [
2) [0 ; 3 [ c [ — 1,5 ; 6] , (4,1 ; 5 ; 6| ; 7,99 } c ] 4 ; 8 [
3) [ — 1,5 ; 6] n ] 4 ; 8 [ = ]4 ; 6] , [ - 6 ; - 4[ n [ - 4 ; - 2] = { }
4) [ — 6 ; — 4[ u [ — 4 ; — 2] = [ — 6 ; — 2] ,

[ - 1,5 ; 6] u ] 4 ; 8 [ = [ — 1,5 ; 8 [

f I 1 Q
- 6 - 5 - 4 - 3 - 2 0 1 2 7 8

Abb . 149 . 1 Zu den Beispielen 1) bis 4)

Bei Halbgeraden gibt es auf einer Sei¬
te keinen Endpunkt , da es dort keine
letzte Zahl gibt . Als Ersatz für die
fehlende Grenze hat 1655 der engli¬
sche Mathematiker John Wallis
(1616 - 1703) in seiner Arithmetica In¬
finit orum das Symbol oo , gesprochen
unendlich, eingeführt .
Die Römer schrieben mit dem Zeichen co
ihr Zahlwort mille, das einerseits tausend
bedeutet , andererseits im übertragenen
Sinn für unzählig viele verwendet wurde -
denke nur an unseren Tausendfüßer ! Ob
die Römer Wallis inspirierten , wissen
wir nicht . *

Weil oo keine Zahl ist , gehört es nie¬
mals zum Intervall . Je nachdem , ob
man nach links oder rechts ins Un¬
endliche fortschreitet , unterscheidet
man zwischen — oo und + oo .
* Neben oo gab es noch 0 und 0 ) als Zeichen für

mille . Das M ist im wesentlichen mittelalterlichen
Ursprungs , wenngleich es sich gelegentlich auch
in römischen Inschriften findet; frühester Beleg
89 v . Chr.

1698

I

Abb . 149 .2 John Wallis (3 .12 .1616
Ashford/Kent - 8 . 11 . 1703 Oxford )
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Damit haben wir

Definition 150 . 1 :

Beschreibung
des Intervalls

Intervall¬
symbol

Art des
Intervalls

Bild des
Intervalls

Menge aller Zahlen links
von a einschließlich a

] — co ; ß] halboffen fl

Menge aller Zahlen links
von a ohne a

] — oo ; a[ offen fl

Menge aller Zahlen rechts
von a einschließlich a

[fl ; + oo [ halboffen fl

Menge aller Zahlen rechts
von a ohne a

] a ; + oo [ offen a C

Aufgaben

1 . Zeichne die Intervalle
a) [2 ; 4] b) [ - 1,5 ; 5,6] c) ] — 2 ; - 0,5]
d) [ 1,4 ; 4,1 [ e) ] 0 ; 5 [ f) [ 1 ; 1]

2 . Schreibe als Intervall
a) 2 • - • 3,9 b) - 7 • - o 3
c) — 1 o- • 1 d) — 8,3 o- O 16,6

3 . Zeichne die Intervalle
a) [2 ; + oo [ b) ] — 1 ; + oo [ c) ] — co ; 0] d) ] — oo ; — 2 [

4 . Schreibe als Intervall
a) - 5 • - b) - • 7
c) - o 100 d) - o - 13

5 . Schreibe als Intervall
a) <0 b) Q + c) Q “ d) Q0

+ e) Qö 0 { }
6 . Entscheide für jede der Zahlen — 5 ; 20 ; 0 ; — 3,1 ; 1,5 ob sie in dem

folgenden Intervall liegt oder nicht :
a) ] — 5 ; 1,5] b) [ - 3 ; 5] c) ] - 10 ; 20] d) ] - 5,5 ; 0[

7 . Bestimme das größte abgeschlossene Intervall mit ganzzahligen Grenzen ,
das eine Teilmenge des folgenden Intervalls ist :
a) ]0 ; 5 [ b) ] — 2,7 ; 3] c) [ — 2,7 ; 3 [ d) [ — 6 ; — 1,1 [ e) [ — 1 ; 2]

8 . Gib zu den Intervallen der Aufgabe 7 das jeweils kleinste offene Intervall
mit ganzzahligen Grenzen an , welches das gegebene Intervall ganz über¬
deckt .
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Bestimme folgende Schnitt - bzw . Vereinigungsmengen :
a) [ — l ; 2] n ] 0 ; 4[ b) [ - 1 ; 2] u ] 0 ; 4 [
c) [ — 3 ; — 0,5] u [ — 0,5 ; 3 [ d) [ - 3 ; - 0,5] n [ - 0,5; 3 [
e) Nn [0 ; 6 [ f ) Q - 5 ; 0 [ u [ - l ; 4] ) nZ

5 .3 .2 Kleiner- und Größer-Ungleichungen

Mit Hilfe der Äquivalenzumformungen können wir nun Ungleichungen wie
z . B . 2x + 5 < Ix — 3 lösen , wenn es uns gelingt , sie auf eine der Normalfor¬
men x < a oder x > a zu bringen .

Beispiel 1 : 2x + 5 < Ix — 3
8 < 5x

* > f

In der Intervallschreibweise lautet die Lösungsmenge L = ] f ; + oo [ . Sie läßt
sich auch graphisch darstellen :

Abb . 151 . 1 Lösungsmenge der Ungleichung 2x + 5 < Ix — 3

Es gibt aber auch Ungleichungen , die sich nicht auf die Normalformen x < a
bzw . x > a bringen lassen , nämlich dann , wenn die Unbekannte bei den Äqui¬
valenzumformungen »herausfällt « . Es bleibt in diesem Fall eine Ungleichung
zwischen Zahlen übrig , also statt einer Aussageform nur eine Aussage . Ist
diese wahr , dann ist die ursprüngliche Ungleichung allgemeingültig , ihre Lö¬
sungsmenge ist also Q . Ist die übrigbleibende Zahlenungleichung eine falsche
Aussage , dann ist die ursprüngliche Ungleichung widersprüchlich , ihre Lö¬
sungsmenge also { } . Die folgenden beiden Beispiele sollen dir das verdeutli¬
chen .

Beispiel 2 :

Beispiel 3:

2x + 5 < I •- (5 - 2jc)
2x + 5 < 17 -- 5 + 2x
2x + 5 < 12 + 2x | | 1 K

> 1
0 < 7 ; wahre Aussage ! Also L = 0 .

2x + 5 < 7 - (5 - 2x)
2x + 5 < 7 - 5 + 2x
2x + 5 < 2 + 2x | | -- 2x — 5

0 < - 3 ; falsche Aussage ! Also L =
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Aufgaben

1 . a) x — 3 < 5 b) 2 — x > — 3 c) — x < — 3
d) 3x > 18 e) fx < f f) — fx > — f
g) - ^ x < 24f h) H < 2jjx i) 4H < - %x

2 . Schreibe die Lösungsmenge als Intervall .
a) 3x — 11 < 12x — 10 b) 5 — 8x < x — 13
c) 15 — 6y > 1 — 20y d) — z > z — 10

3 . Stelle die Lösungsmenge graphisch dar .
a) 2 X + 2 < i x + l | b) 15f — 14| x > 12fx + 42,25
c) 0,8 - 0,9z > fz + f d) 0,3y - i < jy - 3§

4 . Schreibe die Lösungsmenge als Intervall .
a) x — (3 — x) > 5 — (5 — x)
b) 2j + 3 — (5 + 3y) < 3 — (2y - 1 )
c) 5f - (3 iji - > 8z + (7 - fz )

5 . a) 11z — 3 ( — z + 4) > — (z — 8) + 5 (2z — 3)
b) — 5 (3 — 3x) + 4 (7 — 5x) < 5x + 19 - 2 (x + 11)
c) 2^ + 11 > — 3 ( j ; + l ) — 1

6 . a) 3x - 12 < 4 + 3 (1 - (1 - x))
b) 7| x + 3 ( - j^ x + | ) > 4| x - 6 (£i - ^ x)
c) — llx + (17 — 3x) ■ 3 < 7 — f (50x — 3f)
d) 0,01x — 0,lx + x < 0,02x — 0,31x + l,2x

5 .3 .3 Höchstens- und Mindestens-Ungleichungen
In öffentlichen Verkehrsmitteln können Jugendliche zu einem günstigeren Ta¬
rif fahren , wenn sie höchstens 15 Jahre alt sind . Die Verbilligung kann also
jeder in Anspruch nehmen , der 15 Jahre alt ist oder der weniger als 15 Jahre alt
ist . Bezeichnet man die Anzahl der Jahre kurz mit j , so gibt es Fahrpreisermä¬
ßigung , falls gilt :

7 = 15 v 7 < 15 .
Die beiden Bedingungen dieser Oder-A ussageform faßt man zusammen zu

und liest dies als
7 = 15

»7 ist höchstens 15« oder auch »7 ist kleiner oder gleich 15 « .

Zu Schuljahrsbeginn bietet ein Schreibwarengeschäft 5 % Rabatt * bei Abnah -
* Vom italienischen rabatto = Preisabschlag . Eist im 17 . Jh . wird unser Rabatt aus dem Italienischen entlehnt .
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me von mindestens 10 Heften gleicher Art an . Diesen Preisnachlaß erhält man
also , wenn man 10 Hefte oder mehr als 10 Hefte kauft . Bezeichnet man die
Anzahl der Hefte kurz mit h , so wird Rabatt gewährt , falls gilt:

h = 10 v h > 10 .
Die beiden Bedingungen dieser Oder -Aussageform faßt man zusammen zu

h A 10
und liest dies als

»h ist mindestens 10« oder auch »h ist größer oder gleich 10« .

Definition 153 . 1 : a A b bedeutet a < b v a = b
a ^ b bedeutet a > b v a = b
a + b bedeutet a < b v a > b

Die Zeichen A und 3: wurden 1734 von Pierre Bouguer (1698 - 1758) erfunden .

Ungleichungen mit A bzw . A löst man genauso wie Ungleichungen mit <
bzw . > . Dazu ein

Beispiel: 3jx — ^ A 5^i + 2-f^x | | — 2,^x + ^
ix A 5fi 11 - 2

* ^ Htt -

In Intervallschreibweise lautet die Lösungsmenge L = [ 11 jj ; + oo [ . Abbil¬
dung 153 . 1 veranschaulicht L.

Abb. 153 . 1 Die Lösungsmenge [ll ^ r ; + oo [

Aufgaben

1 . Löse die folgenden Ungleichungen . Veranschauliche die Lösungsmengen
auf der Zahlengeraden .
a) x + 7 A 9 b) x — 16 A — 17 c) x + 2,5 A 5
d) x — f A | e) x + 1 A — 1,75 f) x - 4 * 0

2 . Schreibe die Lösungsmenge als Intervall .
a) 2x — 1 A 1 — 2x b) 1 — x A 17 — 17x
c) 12x - 7 A 8x + 41 d) y - 19 A 19^ - 19
e) 8z — 1 A 18z — 10 f) Uw - 92 A 108 + 11 w
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3 . Stelle die Lösungsmenge auf der Zahlengeraden dar .
a) \ x — \ S 3^ — £x b) 18£ — 7jx S 3£x +
c) 0,01 y - 12,7 ^ 3,3 - 0,ly d) \ z + f A f - fz

• 4 . Schreibe die Lösungsmenge als Intervall .
a) 3x — (1 — 2x) S — 2 (x — 1 ) + 7
b) 3i - 2i (ix - 3f ) ^ 2| x (li - 0,75) + (2| + £x)

• 5 . a) 2,lx 4- 2,1 (0,lx — 2,1 (1 — 0,01x)) ^ 2,1 — 2,1 (( 1 — 2x ) + 2,1 )

5 .3 .4 Doppelungleichungen

Die Deutsche Bundespost erkennt Sendungen nur dann als Briefe an , wenn sie
gewisse Mindest - und Höchstmaße erfüllen . So muß z . B . die Länge minde¬
stens 14 cm und darf höchstens 23,5 cm betragen . Bezeichnet man kurz mit l
die Länge in cm , so muß für einen Brief gelten :

/ ^ 14 und IS 23,5 .

Eine Länge ist Lösung dieser C/n <i -Aussageform , wenn beim Einsetzen eine
wahre Und -Aussage entsteht . Eine Und-Aussage in der Mathematik ist eine
Verknüpfung zweier Aussagen durch das Wort und, das man symbolisch
durch a wiedergibt . Eine Und -Aussage ist genau dann wahr , wenn beide
Teilaussagen wahr sind .
Die obigen Bedingungen für die Länge lassen sich mit dem a - Symbol kurz
schreiben :

l A 14 a IS 23,5 .

Übersichtlicher wird es , wenn man nur Ungleichheitszeichen derselben Rich¬
tung verwendet , also

14 fS / a l S 23,5 oder auch / A 14 a 23,5 2; /

schreibt . Stimmen dann die rechte Seite der ersten und die linke Seite der
zweiten Ungleichung überein , so kann man beide Ungleichungen zu einer
Doppelungleichung zusammenfassen. Statt 14 A / a l S 23,5 schreibt man
kurz

14 Sl ^ 23,5 .

Bei der Notierung / A 14 a 23,5 A / läßt sich unsere Regel nicht anwenden !
Weil die Reihenfolge der Bedingungen in einer Und -Verknüpfung aber keine
Rolle spielt , so kann man sie auch in der Form 23,5 A / a l A 14 schreiben ,
was sich nun zu 23,5 A / A 14 zusammenfassen läßt . - Wir merken uns
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Definition 155 . 1 : a ^ b ^ c bedeutet a ^ b a b £ c
a < b < c bedeutet a < b a b < c
a ^ b > c bedeutet a ^ b a b > c
a > b 't . c bedeutet a > b a b ^ c
usw .

Bemerkungen: 1) Die Doppelungleichung a < b < c drückt aus , daß b
zwischen a und c liegt.

2) Doppelungleichungen mit gegenläufigen Ungleichheitszei¬
chen wie a < b > c sind nicht erlaubt ! Näheres dazu in Auf¬
gabe 156/5.

Eine Doppelungleichung mit einer Unbekannten löst man , indem man die
beiden durch a verknüpften Ungleichungen einzeln löst . Weil eine Lösung
der Doppelungleichung die beiden Teilungleichungen zugleich erfüllen muß ,
ist die Lösungsmenge der Doppelungleichung die Schnittmenge der beiden
Teillösungsmengen . Das a -Zeichen erinnert an das Schnittmengenzeichen n .
Merke dir also den

Satz 155 . 1 : Die Lösungsmenge einer Doppelungleichung ist die
Schnittmenge der Lösungsmengen der beiden Teilunglei¬
chungen .

Beispiel:
4x + 5 A — 3x + 5 < 17

<=> 4x + 5A — 3x + 5 a — 3x + 5 < 17

In zwei getrennten Nebenrechnungen (NR .) lösen wir die beiden Teilun¬
gleichungen :
NR . 1 :

NR . 2 :

4x + 5 rg — 3x + 5 | | + 3x — 5
7x g 0 | | : 7

xgO
=> L x = ] — oo ; 0]
— 3x + 5 < 17 | | - 5

— 3x < 12 f| : ( — 3)
x > - 4

=> L 2 = ] ~ 4 ; + oo [

Als Lösungsmenge L für die Doppelungleichung erhalten wir somit
L = L 1 (xL 2 = ] — 4 ; 0] . Abbildung 156 . 1 veranschaulicht die Entstehung
von L .
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o
+

- 4

o
Abb . 156 . 1 L = L 1 nL 1

Aufgaben

1 . Schreibe als Doppelungleichung und gib die Lösungsmenge als Intervall
an .
a) x > - 1 a b) x 0 a x 2: — 3,5
c) xi £ — 7ax > — 10 d) 15 < xA22 > x

2 . Bestimme die Lösungsmenge als Intervall und stelle sie auf der Zahlenge¬
raden dar .
a) 0 ^ 2x - l ^ l b) 0 < 1 — | x < 2 c) 84 > 7 (5 - f x) ^ - 153

3 . Bestimme die Lösungsmenge als Intervall .
a) 0 < x ^ 1 — x b) 2x ^ 1 ^ 3x c) 3x < 1 < 2x

4 . a) 2x — 1 < 3x — 1 ^ 1 — x
• b) fx - f < fx - ^ < - fx + f
• c) 0,1 (0,1 - 2x) ^ l,01x - 0,5 (2x - 0,3 ) > - 0,7x - l,27

5 . a) In einer Doppelungleichung verbirgt sich neben den beiden Teilunglei¬
chungen der Und -Aussage noch eine weitere Ungleichung ; sie entsteht ,
wenn man das Mittelstück und ein Ungleichheitszeichen wegnimmt .
Wie heißen die drei Ungleichungen , die man aus — 3 < x < 1 erhält ?

b) Hans baut die Und -Aussageform — 3 < xax > — 10 zu einer »Dop¬
pelungleichung « der Art — 3 < x > — 10 zusammen .
Sabine zeigt ihm , daß sich dann beim Vorgehen nach a) ein Wider¬
spruch ergibt . Welcher?
Trotzdem hat die Und -Aussageform — 3 < xax > — 10 eine Lö¬
sungsmenge . Gib sie als Intervall an .

5 .3 .5 Ungleichungen mit Absolutbeträgen
In Gleichungen und in Ungleichungen kann auch der Betrag der Unbekann¬
ten auftreten . Die einfachste solche Gleichung ist von der Art | x | = 4 , die
einfachsten Ungleichungen sind von der Art | x | < 4 bzw . | x | > 4 .
Die Lösung ist ganz einfach , wenn wir uns an die Definition des Betrags
(Definition 43 . 1 ) erinnern : | x | ist die Entfernung des Punkts x vom Nullpunktauf der Zahlengeraden .
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Die Information | x | = 4 teilt uns mit , daß die Zahl x bzw . der zugehörige
Punkt auf der Zahlengeraden 4 Einheiten vom Nullpunkt entfernt ist . Diese
Information ist nicht eindeutig , weil sie auf die beiden Zahlen 4 und — 4
zutrifft . Also gilt :

\ x \ = 4 o x = 4 v x = — 4 .
Die Lösungsmenge ist L = { — 4; 4} .

T i T—
- 4 0 4

Abb . 157 . 1 Die Lösungsmenge von | x | = 4

Durch die Information | x | < 4 wird uns mitgeteilt , daß die Zahl x weniger als
4 Einheiten vom Nullpunkt entfernt liegt . Alle Zahlen zwischen — 4 und 4
erfüllen diese Bedingung . Also gilt :

| x | < 4 o — 4 < x < 4 .
Die Lösungsmenge ist L = ] — 4 ; 4[ .

Abb . 157 .2 Die Lösungsmenge von | x | < 4

Durch die Information | x j > 4 wird uns mitgeteilt , daß die Zahl x mehr als 4
Einheiten vom Nullpunkt entfernt liegt . Alle Zahlen links von — 4 oder rechts
von 4 erfüllen diese Bedingung . Also gilt :

| x | > 4 o x < — 4 v x > 4 .

Die Lösungsmenge ist L = ] — oo ; - 4[ u ]4 ; + 00 [ .

Mit Hilfe des Ohne - Symbols \ läßt sich L statt als Vereinigungsmenge auch als
Restmenge schreiben , nämlich zu L = Q \ [ — 4; 4] . Eine solche Schreibweise
kann gelegentlich übersichtlicher sein.

- 4 0 4

Abb . 157 .3 Die Lösungsmenge von jx | > 4

Man kann also die angegebenen einfachen Gleichungen und Ungleichungen
mit Beträgen auf betragsfreie Formen äquivalent umschreiben .
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Wir merken uns

Satz 158 . 1 : Für a > 0 gilt
| x | = a x — — avx — a
| x | < a <*• — a < x < a
| x | > a x < — a v x > a .

Aufgaben

1 . Welche Zahlen erfüllen die Gleichung ?
a) \ x \ = 4,5 b) | x | = 1986 c) | x | = 0,1
d) Ix | = 0 e) | x | = — f f ) | x [ = | 3,7 - 5,91

2 . Gib die Lösungsmenge der Ungleichung an und stelle sie auf der Zahlen¬
geraden dar .
a) | x | < 1 b) | x | ^ 4,5 c) | x | > — 2 d) | x | rg — 4
e) lxl ^ 3,6 f) | x | > H g) 1* 1 ^ 3,14 h) f =g | x |

3 . Stelle die Lösungsmenge auf der Zahlengeraden dar .
a) 2 ^ | x | ^ 4 b) 0 < | x | ^ 3 c) 4 > | x | > 1

4. Welche rationalen Zahlen erfüllen die folgenden UND -Bedingungen ?
Stelle dazu die Lösungsmengen der Teilbedingungen und die der Gesamt -
bedingung auf der Zahlengeraden dar .
a) | x | > 1 und | x | ^ 5 b) | x | ^ 1 und | x | > 0,5
c) x < 0,3 und | x | > 3,5 d) - 2,75 ^ | x | und x ^ — 1,5
e) x > — 1 und | x | ^ 4 f) | x | < 6 und x < — 2

Zu Seite 159:

Uno lione mangia una chapra in 2 di et
uno lupo la mangia in 3 di et una gholpe
la mangia in 5 di : vo’ sapere in quanto
tempo tuttj questj animalj insieme man-
gereb[o]no detta capra : fa ’ cosi togli uno
numero che abbi | e i e I torraj 30 poi
diraj el j di 30 e 15 el 3 e 10 e ’l | e 6
racogli fa 31 e questo e ’l partitore ; poi
partj 30 per 31 , ne viene ff di di et in
tanto tempo la mangerebono .

Ein Löwe frißt eine Ziege in 2 Tagen , und
ein Wolf frißt sie in 3 Tagen , und ein
Fuchs frißt sie in 5 Tagen . Du willst wis¬
sen , in welcher Zeit all diese Tiere gemein¬
sam diese Ziege fräßen . Mach es wie folgt .
Nimm eine Zahl , die 5 und 1 hat , nimm
30 ; dann sage: \ von 30 ist 15 , 5 ist 10
und 3 ist 6 . Zähle zusammen , das ergibt
31 , und das ist der Teiler. Teile dann 30
durch 31 , daraus erhält man §j des Tages ,
und in dieser Zeit fräßen sie sie .
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Löwe , Wolf und Fuchs fressen eine Ziege.
Fol . 97v des Trattato di aritmetica (1491) des Filippo Calandri (um 1430 Florenz - ?)



6 Textaufgaben

6. 1 Wie löst man Textaufgaben?

Algebra ist entstanden aus Auf¬
gaben und Problemen des All¬
tags , wie uns über 4000 Jahre
alte babylonische Keilschrift¬
texte auf Tontäfelchen und fast
ebenso alte ägyptische Papy¬
rusrollen zeigen . Sicherlich er¬
innerst du dich noch an die ein¬
fachen Aufgaben aus dem Pa¬
pyrus Rhind (Seite 119ff.) , die
dadurch gelöst werden konn¬
ten , daß man der gesuchten ,
aber noch unbekannten Größe
einen besonderen Namen gab .
Die Algebra war geboren !
Immer mehr setzten sich allmählich Buchstaben als Abkürzungen für solche
Namen durch ; für die Rechenoperationen wurden vor rund 500 Jahren Zei¬
chen wie + und — usw . erfunden , und schließlich lehrte Francois Viete
(1540 - 1603 ) , wie man mit diesen Buchstaben und Zeichen umgehen mußte . Es
entstand die Neue Algebra , nämlich eine formale »Sprache « mit Buchstaben ,
aus der die Probleme des Alltags verschwunden waren .
Aber das Leben geht weiter , Wirtschaft , Technik und Wissenschaft und auch
der Alltag liefern stets neue Probleme , die gelöst werden müssen . Formuliert
sind sie aber fast immer in der Umgangssprache . Sie heißen daher Textaufga¬
ben.
Nun hat Francois Viete stolz behauptet , mit seiner Algebra nova könne man

»jedes Problem lösen« .
Wenn wir also Textaufgaben algebraisch lösen wollen , dann müssen wir sie
zuerst aus der Umgangssprache in die Sprache der Algebra übersetzen , die du
in den letzten Kapiteln gelernt hast .
Bei einer solchen Übersetzung kann ein Schema* hilfreich sein . Die folgenden
Beispiele sollen dir zeigen , wie man mit seiner Hilfe eine Textaufgabe lösen
kann .
Da die Aufgaben des Papyrus Rhind zu einfach sind , die des al -Charizmi aber
viel zu schwer - er hat ja sein Buch für Testamentsvollstrecker , Kaufleute ,Landvermesser und Bankhalter geschrieben - , haben wir als erstes eine Auf¬
gabe aus der 1522 erschienenen Rechenung auff der linihen vnd federn des
Adam Ries ( 1492- 1559 ) in der Fassung von 1574 ausgewählt , um dir das
Schema vorzuführen .

Abb . 160 . 1 Babylonische Tontafel mit Keil¬
schriftzahlen , um 1800 v . Chr . - 13 cm x 9 cm.

axnr a (griech .) gesprochen s |chema , hat viele Bedeutungen , u . a . auch Gestalt , Figur , Form .
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Abb . 161 . 1 Titelblatt vom Rechenbuch
auff Linien und Ziphren (1574 ) von Adam
Ries

Abb . 161 .2 Adam Ries (1492 Staffel -
stein—30 . 3 ./1 . 4 . (?) 1559 Annaberg ) als
58jähriger . Holzschnitt vom Titelblatt
der Rechenungnach der lenge , aujf den Li-
nihen vndFeder ( 1550 ) . - Adam Ries war
Rechenmeister , d . h . , er gehörte zu denje¬
nigen , die mit den in arabischen Ziffern
geschriebenen Zahlen auch rechnen
konnten . In Annaberg führte er das Re¬
chenwesen des Erzbergbaus und leitete
eine Rechenschule . Seine Lehrbücher und
damit seine Methoden fanden eine so gro¬
ße Verbreitung , daß schließlich die Re¬
densart »nach Adam Riese« entstand .

Beispiel 1 :

3 « m/ « ncr ^ at3cfr/ » erfpi (röaruon } • fccr #

rom febri$m 4 . fl . mir bem andern Ijanbclf
er / »crleurcr ein tömIjeif/ imD bc(>dt 2 o . fl . tt>tc
Diel fyar er jum erflm MtffocfSfjw ?

Im heutigen Deutsch liest sich die Aufgabe etwa so :

Einer hat Geld , verspielt davon j . Von dem , was ihm übriggeblieben ist , ver¬
braucht er 4 Gulden *

. Mit dem Rest handelt er und verliert ein Viertel . Es
bleiben ihm 20 Gulden . Wieviel Gulden hat er anfänglich besessen?

* = goldene Münze . 1252 begann Florenz mit der Prägung einer solchen Münze , dicfloren und auf französisch
florin hieß . Daher wurde der Gulden mit fl . abgekürzt .
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Lösung:
1 . Festlegung der Unbekannten : Zuerst mußt du dir klarwerden , wonach über¬
haupt gefragt ist . Für diese gesuchte Größe führst du einen Buchstaben , meist
x , als Unbekannte ein:

x = Anzahl der Gulden , die der Mann anfänglich besessen hat .

2 . Übersetzen der Textinformationen und Aufstellen der Gleichung : Durch die
soeben vorgenommene Bezeichnung der unbekannten Größe mit x kannst du
nun so tun , als wäre sie dir bekannt . Damit kannst du alle Informationen des
Textes in mathematische Terme übersetzen , die du am besten gleich verein¬
fachst , und schließlich die Gleichung als Bedingung für diese Terme aufstellen .
Kontrolliere aber , ob du alle Angaben des Textes auch wirklich verwendet
hast . Schrittweise erhalten wir

Anzahl der im Spiel verlorenen Gulden = | x
Anzahl der ihm noch verbliebenen Gulden = x — jx = §x
Anzahl der Gulden , mit denen er handelt = f x — 4
Anzahl der Gulden , die er beim Handel verliert = ^ (fx — 4)
Anzahl der Gulden , die ihm noch bleiben = | (| x — 4) = ^x — 3

Mit der letzten verbliebenen Information können wir nun die Bestimmungs¬
gleichung aufstellen :

}x - 3 = 20 .

3 . Auflösungder Gleichung: Wende auf die gefundene Gleichung die Methoden
an , die du gelernt hast , um die Lösungsmenge der Gleichung zu ermitteln .

jx - 3 = 20
ix = 23

x = 46 , also L = { 46 } .

4 . Antwort : Das mathematische Ergebnis wird nun in die Alltagssprache über¬
setzt und damit die Antwort auf die im Text gestellte Frage gegeben .

»Der Mann besaß anfänglich 46 Gulden . «

5 . Textprobe : Es geht jetzt nicht darum zu prüfen , ob du die in 2 aufgestellte
Gleichung richtig gelöst hast , sondern darum , ob die gefundenen Lösungszah¬
len alle Bedingungen des Textes erfüllen . Du mußt also eine Textprobe durch¬
führen . Geht sie schief , dann hast du dich entweder verrechnet , oder du hast
den Aufgabentext falsch übersetzt . Meist macht man die Textprobe nur
mündlich . Wir schreiben sie ausnahmsweise hin .

Anfänglicher Besitz = 46 fl .
Verlust beim Spiel = { von 46 fl . = 15 } fl .
Rest = 46 fl . — 15 | fl . = 30ffl .
Kapital , mit dem er handelt = 30§ fl . — 4 fl . = 26§ fl .
Verlust beim Handel = j von 26§ fl . = \ ^ fl . = ^ fl . = 6f fl .
Es verbleiben ihm 26f fl . — 6§ fl . = 20 fl . - Stimmt !
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Eine weitere Aufgabe zum Einüben bietet dir ein altes Testament * .

Beispiel 2:
Ein Mann hinterläßt seinen 3 besten Freunden 300 Gulden . Im Testament
bestimmt er , daß Anton um 40 Gulden mehr als Hans erhalten soll; Ulrich
aber soll halb soviel wie die beiden anderen zusammen bekommen . Wie viele
Gulden entfallen auf jeden ?

Lösung :
1 . Festlegung der Unbekannten : Gefragt ist hier nach den Anzahlen der Gul¬
den , die jeder einzelne erhält . Das sind eigentlich 3 Unbekannte . Da aber auf
Grund des Textes ein gewisser Zusammenhang zwischen diesen besteht , hof¬
fen wir , mit einer Unbekannten auszukommen . Wegen der komplizierten Be¬
dingung für Ulrich eignen sich seine Gulden wohl nicht recht dafür . Wir könn¬
ten uns aber mit gleich guten Gründen für den Anteil von Anton oder für den
von Hans entscheiden . Daher führen wir dir beide Möglichkeiten vor .

x = Anzahl der Gulden , die Anton y = Anzahl der Gulden , die Hans
erhält erhält

2 . Übersetzen der Textinformationen und Aufstellung der Gleichung : Nun drük -
ken wir die Anteile , die auf die beiden anderen entfallen , durch die gewählte
Unbekannte aus :
Anzahl der Gulden , die Hans erhält
= x - 40
Anzahl der Gulden , die Ulrich er¬
hält
= 2 Ia + (x ~ 40)] = x — 20

Anzahl der Gulden , die Anton er¬
hält = y + 40
Anzahl der Gulden , die Ulrich er¬
hält
= i [y + (y + 40)] = 7 + 20

Da wir nun die 3 Anzahlen als Terme in x bzw . y kennen , können wir mit Hilfe
der übriggebliebenen Information über die Höhe der Erbschaft die Bestim¬
mungsgleichung aufstellen :

x + (x — 40) + (x — 20) = 300 (y + 40) + y + (7 + 20) = 300

3 . Auflösung der Gleichung :
x + (x - 40) + (x - 20) = 300

x + x — 40 + x — 20 = 300
3x - 60 = 300

3x = 360
x = 120

also L = { 120 } .

(y + 40) + y + (y + 20) = 300
7 + 40 + 7 + 7 + 20 = 300

37 + 60 = 300
37 = 240
7 = 80

also L = { 80} .

testamentum (lat .) = der letzte Wille
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4 . Antwort :
Anton erhält 120 Gulden ,
Hans erhält (120 — 40) Gulden =
= 80 Gulden ,
Ulrich erhält ^ [ 120 + (120 — 40)]
Gulden = 100 Gulden .

Hans erhält 80 Gulden ,
Anton erhält (80 + 40) Gulden ;
= 120 Gulden ,
Ulrich erhält | [80 + (80 + 40)]
Gulden = 100 Gulden .

5 . Textprobe : Die 120 Gulden von Anton sind tatsächlich um 40 mehr als die
80 , die Hans erhält . Zusammen erhalten sie 200; die Hälfte davon ist 100 . Und
unsere Rechnung hat dem Ulrich 100 Gulden zugeteilt . Dadurch haben sie
zusammen (120 + 80 + 100) Gulden = 300 Gulden , was die ganze Erbschaft
ausmacht . - Stimmt !

Aufgaben

1 . Ein Onkel vermacht seinen beiden Neffen ein Vermögen von 12400 DM .
Wieviel erhält jeder , wenn der ältere Neffe laut Testament für sein Studium
3500 DM mehr bekommen soll als der jüngere ?

2 . Ein Vermögen von 14000 DM soll an die drei erbberechtigten Kinder in
folgender Weise verteilt werden : Der Sohn erhält zum Ausgleich für die
Kosten seiner Ausbildung 3000 DM weniger als die jüngere Tochter , die
ältere Tochter als Entschädigung für ihre Mithilfe im Haushalt 2000 DM
mehr als diese.

3 . Eine Erbschaft von 19500 DM soll unter drei Erben A , B , C so verteilt
werden , daß B um 1500 DM mehr als A und C um 3500 DM weniger als A
und B zusammen erhält .

4 . Die Zahl 100 ist in 4 Summanden aufzuteilen. Der 2 . Summand soll die
Hälfte , der 3 . ein Drittel , der 4 . ein Viertel des ersten Summanden sein . Wie
heißen die vier Summanden ?

5 . Die Zahl 1000 soll so in vier Summanden zerlegt werden , daß der zweite
doppelt , der dritte dreimal und der vierte viermal so groß ist wie der erste .

6 . Eine alte chinesische Aufgabe : In einem Stall sind Kaninchen und Fasa¬
nen ; sie haben zusammen 35 Köpfe und 98 Füße . Wieviel Tiere jeder Art
waren es?

7 . In einer Garage stehen Personenkraftwagen , Motorräder und Fahrräder .
Die Gesamtzahl der Fahrzeuge beträgt 30 , die der Kraftfahrzeuge 20 . Die
Fahrzeuge stehen auf insgesamt 86 Rädern . Wie viele Fahrzeuge jeder Art
sind hinterstellt ?

• 8 . Ein aus 12 Wagen und einer Lokomotive bestehender Personenzug ist aus
zweiachsigen Güterwagen und dreiachsigen Personenwagen zusammen -
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gestellt . Die elektrische Lokomotive läuft auf vier Achsen . Aus wieviel
Personen - und Güterwagen besteht der Zug , wenn er einschließlich Loko¬
motive auf insgesamt 72 Rädern läuft ?

9 . Eine Weinlieferung im Wert von 675 DM besteht aus drei Sorten . Eine
Flasche der besten Qualität kostet 13,5 DM , eine von der mittleren Quali¬
tät 10,5 DM und eine der billigen Sorte 6 DM . Von der mittleren Sorte
sind es zweimal und von der teuren Sorte dreimal soviel Flaschen wie von
der billigen Preisklasse . Wieviel Flaschen wurden von jeder Sorte geliefert?

• 10 . Bei einer Kinovorstellung betrugdie Gesamteinnahme 1718 DM . Für den
dritten Platz wurden 83 , für den zweiten 106 und für den ersten 34 Ein¬
trittskarten gelöst . Der Eintrittspreis für den 2 . Platz war um 1,5 DM
höher als der für den 3 . Platz , während der Preis für den 1 . Platz f desjeni¬
gen für den 2 . ausmachte . Wie teuer waren die einzelnen Plätze?

• 11 . Aus dem Chiu Chang Suan Shu : Ein Mann hat Reis bei sich . Er geht durch
3 Zollschranken hindurch . An der äußeren Zollschranke wird ihm | weg¬
genommen , an der mittleren Schranke wird ihm vom Verbliebenen der
fünfte Teil weggenommen , an der inneren Zollschranke wird ihm j von
dem weggenommen , was er noch bei sich hatte . Es blieben ihm 5 Tou . Wie
viele Tou hatte er am Anfang ? (1 Tou « 0,2 dm 3)

• 12 . Von dem armenischen Astronomen und Mathematiker Anania Schira -
kazi ( = Anania von Schirak , f um 670) stammt die Aufgabe :
Ein Mann trat in eine Kirche und bat Gott : Gib mir soviel, wie ich habe ,
dann gebe ich Dir 25 Dahekan . Dasselbe tat er dann in einer anderen
Kirche und schließlich noch in einer dritten . Übrig blieb ihm nichts . Wie
viele Dahekan * hatte er anfangs ?

13 . Aus dem Liber abbaci (1202) des Leonardo von Pisa (um 1170 - nach
1240 ) : De illo qui intravit in viridariopropomis colligendis* * : Jemand ging
in einen Obstgarten , in dem 7 To¬
re waren ; er bekam dort eine be¬
stimmte Anzahl Äpfel . Als er her¬
ausgehen wollte , mußte er dem
ersten Wächter die Hälfte aller
Äpfel geben und einen mehr , dem
zweiten Wächter die Hälfte der
restlichen Äpfel und einen mehr .
Als er so auch den anderen 5
Wächtern gegeben hatte , hatte er
nur noch 1 Apfel . Wie viele Äpfel
hatte er bekommen ?

Abb . 165 . 1 Apfelgarten mit drei Tor¬
wächtern . Aus einem Manuskript des ita¬
lienischen Mathematikers , Astronomen ,
Astrologen und Dichters Paolo Dagoma -
ri (um 1281 - zwischen 1365 und 1372) .

* Dahekan ist ein Gewichtsmaß ; 1 Dahekan entspricht 4,72 g. Zugleich bedeutet es auch eine Goldmünze von
diesem Gewicht .

** Von jenem , der in den Obstgarten ging , um Äpfel zu holen . - Die älteste Aufgabe dieses Typs stammt aus
dem Chiu Chang Suan Shu .
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14 . Aufgabe 26 der propositiones ad acuendos iuvenes des Alkuin (735 bis
804 ) : De cursu canis acfuga leporis * : Ein Hund sieht in einer Entfernung
von 150 Fuß einen Hasen und jagt ihn . Der Hase springt 7 Fuß , der Hund
9 Fuß weit . Nach wie vielen Sprüngen hat der Hund den Hasen erjagt ?

• 15 . Vom Leben des großen griechischen Mathematikers Diophant (Ailxpav -
zog) , den manche Vater der Algebra nennen , weil er die Lehre von den
Zahlen und Gleichungen von der Geometrie abtrennte , wissen wir nichts .
Vermutlich hat er um 250 n . Chr . in Alexandria gelebt . Seine angebliche
Grabinschrift ist aber in der Anthologia Palatina , einer Sammlung griechi¬
scher Epigramme , überliefert .

»Hier dies Grabmal deckt Diophantos - ein Wunder zu schauen !
Durch arithmetische Kunst lehret sein Alter der Stein.

Knabe zu sein gewährt ein Sechstel des Lebens der Gott ihm,
Als dann ein Zwölftel dahin , ließ er ihm sprossen die Wang ’;

Noch ein Siebtel, da steckt ’ er ihm an die Fackel der Hochzeit ,
Und fünf Jahre darauf teilt ’ er ein Söhnlein ihm zu.

Weh! unglückliches Kind ! Halb hatt ’ es das Alter des Vaters
Erst erreicht , da nahm ’s Hades , der schaurige , auf .

Noch vier Jahre ertrug er den Schmerz , der Wissenschaft lebend ,
Und nun sage das Ziel, welches er selber erreicht .«

Wie alt wurde Diophant ? Beachte , daß »das Alter des Vaters« in Zeile 7
auf zwei Arten verstanden werden kann . Einerseits kann damit das von
Diophant wirklich erreichte Lebensalter gemeint sein , andererseits könn¬
te es aber auch das Alter sein , das Diophant beim Tode seines Sohnes
hatte . Welche der beiden Lösungen scheint dir auf Grund der 4 . Zeile des
Epigramms die richtige zu sein?

6 .2 Wichtige Typen von Textaufgaben

Textaufgaben können sehr verschiedenartig aussehen . Trotzdem kann man
bei näherer Betrachtung gewisse Typen ausmachen , die in verschiedener Ein¬
kleidung immer wieder auftauchen . Wenn du erkannt hast , daß eine vorgeleg¬
te Textaufgabe zu einem bekannten Typ gehört , dann fällt dir meist die Lö¬
sung leichter . Einige wichtige Typen stellen wir im Folgenden vor .

* Vom Lauf des Hundes und der Flucht des Hasen . - Ähnliche Aufgaben findet man bereits im Chiu Chang
Suan Shu , aus dem überhaupt die ältesten Bewegungsaufgaben stammen .
Die Aufgaben , die Jugend scharfsinniger zu machen , werden dem angelsächsischen Gelehrten Alkuin
( = Freund des Tempels ) (um 712 York - 19 . 5 . S04 Tours ) zugeschrieben . Alkuin war Freund und Lehrer
Kaiser Karls des Großen . Er übte erheblichen Einfluß auf das geistige Leben seiner Zeit aus .
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6 .2 . 1 Bestimmung von Zahlen

Beispiel:
Eine dreiziffrige Zahl hat die Quersumme 13 . Ihre Einerziffer ist doppelt so
groß wie ihre HunderterzifFer . Vertauscht man Einer - und Zehnerziffer mitein¬
ander , dann erhält man eine um 27 kleinere Zahl . Wie hieß die ursprüngliche
Zahl ?

Lösung :
1 . x = Hunderterziffer

2 . Einerziffer — 2x

Zehnerziffer = 13 — v — 2x = 13 — 3x

Wert der Zahl = * • 100 + (13 - 3x) • 10 + (2x) • 1 =
= lOOx + 130 — 30x + 2x =
= 72x + 130

Wert der veränderten Zahl = x • 100 + (2x ) ■10 + ( 13 — 3x) ■ 1 =
= 117x + 13

Bestimmungsgleichung : 12x + 130 — 27 = 117 .x + 13

3 . 72x + 103 = 117* + 13
90 = 45x
x = 2 .

4 . Die ursprüngliche Zahl hat die Hunderterziffer 2 , die Einerziffer 2 - 2 = 4
und die Zehnerziffer 13 — 3 - 2 = 7 . Also heißt sie 274 .

Beachte : Eine Zahl mit der Einerziffer a , der Zehnerziffer b und der Hunder¬
terziffer c hat den Wert 100 c + 106 + a und die Quersumme
c + b + a .

Aufgaben

• 1 . Aus dem Schlüssel zur Arithmetik von al -Kaschi (f 1429 in Samarkand ) :
Verdoppelt man eine Zahl und addiert die Eins dazu , multipliziert man
dann die Summe mit 3 und gibt 2 dazu , multipliziert man dann das Erhal¬
tene mit 4 und addiert 3 , dann hat man 45 . Wie heißt die Zahl ?

2 . Vermehrt man eine Zahl um 16 , so erhält man um 2 wenigerals ihr Dreifa¬
ches . Wie heißt sie?

3 . Vergrößert man eine Zahl um 5 , zieht vom Doppelten dieser Summe 4 ab
und teilt dann das Ergebnis durch 5 , so erhält man 4 . Welche Zahl ist es?

4 . Welche Zahl hat folgende Eigenschaft: zieht man 9 von ihr ab und addiert
zur Hälfte dieser Differenz 5 , so erhält man wieder die ursprüngliche Zahl?
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5 .

. 6.

. 7.

8.

9.

• 10 .

11 .

. 12.

13.

814 .

15.

Aus Daheim (1884 ) :
Eine Zahl hab ’ ich gewählt ,
90 noch hinzugezählt ,
drauf durch 18 dividiert ,
wieder 18 dann addiert ,

jetzt mit 3 multipliziert ,
84 subtrahiert ,
und als Rest ist mir geblieben
dann zuletzt die heilige 7 .

Welche 3 aufeinanderfolgenden ungeraden Zahlen haben die Summe 33?

Welche zweiziffrige Zahl ist durch 11 teilbar und hat die Quersumme 8?

Bei welcher Zahl ist es gleichgültig , ob man sie durch 2 teilt oder um 2
vermindert ?

Bei welcher Zahl ist es gleichgültig , ob man sie mit 13 multipliziert oder
durch 13 dividiert ?

Die Zehnerziffer einer zweistelligen Zahl ist um 2 kleiner als die Einerzif¬
fer . Die ganze Zahl ist 6mal so groß wie die Einerziffer . Wie heißt die Zahl ?

Auf der Einerstelle einer zweistelligen Zahl steht die Ziffer 6 . Vertauscht
man Einer - und Zehnerziffer und addiert die neue Zahl zur ursprüngli¬
chen , so erhält man 88 . Wie heißt die Zahl ?

Auf der Einerstelle einer dreistelligen Zahl steht die Ziffer 7 . Die Anzahl
der Zehner ist so groß wie die Anzahl der Einer und Hunderter zusammen .
Nun vertauscht man die Einer - mit der Hunderterziffer . Die Summe aus
der neuen und der ursprünglichen Zahl ist 1089 . Wie heißt die Zahl ?

Die Hunderterziffer einer dreistelligen Zahl ist 4 . Streicht man diese links
weg und setzt sie rechts an , so entsteht eine um 243 größere Zahl . Berechne
die ursprüngliche Zahl .
Die Einerziffer einer sechsstelligen Zahl ist 2 . Nimmt man diese Ziffer weg
und setzt sie vor die übrigen , so entsteht eine Zahl , die gleich dem 3 . Teil
der ursprünglichen ist . Berechne die Zahl .
Die Summe zweier Zahlen ist 56 , ihre Differenz 22 . Wie heißen die Zahlen ?

6 .2 .2 Bestimmung des Alters

Beispiel :
Eine Mutter ist jetzt dreimal so alt wie ihre Tochter . In 4 Jahren wird sie
achtmal so alt sein, wie ihre Tochter vor 7 Jahren war . Wie alt sind Mutter und
Tochter jetzt ?

Lösung :

1 . x = jetziges Alter der Tochter in Jahren
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2 . Der Übersicht halber bestimmt man die Terme in einer Tabelle :

vor 7 Jahren jetzt in 4 Jahren

Alter der Tochter
in Jahren x — 7 X x T 4

Alter der Mutter
in Jahren 3x — 7 3x 3x + 4

Bestimmungsgleichung : 3x + 4 = 8 - (x — 7)

3 . 3x + 4 = 8x — 56
60 = 5x
x = 12 .

4 . Die Tochter ist jetzt 12 Jahre alt , die Mutter 36 Jahre .

Aufgaben

1 . Ein Vater ist doppelt so alt wie sein Sohn . Vor 24 Jahren war er um 32
Jahre älter als dieser . Wie alt sind beide jetzt ?

2 . Eine Mutter, die jetzt doppelt so alt ist wie ihre Tochter , war vor 11 Jahren
gerade dreimal so alt wie diese . Wie alt sind beide jetzt ?

3 . Hans ist 16 Jahre , sein Bruder Fritz 12 Jahre alt.
a) Vor wieviel Jahren war Hans doppelt so alt wie Fritz?
b) Vor wieviel Jahren war er ümal so alt?

• 4 . EinVater istjetzt 13 mal so alt wie sein Sohn. Nach 17| Jahren ist das Alter
des Vaters um 2\ Jahre höher als das dreifache Alter des Sohnes . Wie alt
sind beide jetzt ?

5 . An seinem 50 . Geburtstag stellt ein Vater fest , daß seine drei Kinder zu¬
sammen ebenso alt sind wie er selbst . Die Tochter ist um 6 Jahre älter als
der jüngste Sohn , der gerade halb so alt ist wie sein älterer Bruder .
a) Wie alt ist der Vater?
b) Wie alt sind die Kinder?

• 6 . In welchem Jahr fand zwischen Vater und Sohn folgendes Gespräch statt ?
»Bei deiner Geburt war ich 30 Jahre alt . Am Ende des 2 . Weltkriegs warst
du sieben . Heute bin ich gerade dreimal so alt wie du . «

• 7 . Ein Onkel ist jetzt dreimal so alt wie sein Neffe und viermal so alt , wie der
Neffe vor 5 Jahren war . Wie alt sind beide jetzt ?

S 8 . Otto ist jetzt dreimal so alt , wie Heinz vor fünf Jahren war . Nach 5 Jahren
• wird Otto doppelt so alt sein , wie Heinz jetzt ist . Wie alt sind beide jetzt ?

19 . Lotte ist 19 Jahre alt . Als Helga 13 Jahre zählte , war Lotte ebenso alt , wie

Helga jetzt ist . Wie alt ist Helga jetzt ?
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10 . Karl ist 27 Jahre alt . Er ist dreimal so alt , wie Inge war, als Karl doppelt so
alt war , wie Inge jetzt ist . Wie alt ist Inge jetzt ?

11 . Der berühmte französische Philosoph und Mathematiker Rene Descar -
tes (latinisiert zu Cartesius ) hatte 4 Jahre vor Beginn des 30jährigen
Krieges (1618) noch zwei Drittel seiner Lebenszeit vor sich . Er starb zwei
Jahre nach Kriegsende . Berechne sein Geburts - und Todesjahr .

12 . Müller & Sohn werben mit dem Slogan : »Wir haben zusammen 50 Jahre
Berufserfahrung « . Wie alt können Vater Müller und Sohn Karl sein , wenn
sie den Beruf seit dem 18 . Lebensjahr ausüben und wenn der Vater minde¬
stens 20 Jahre älter ist als sein Sohn ? Wie alt sind sie zusammen ?

• 13. Löse ohne Bestimmungsgleichung durch Knobeln :
Platon war ein Schüler des Sokrates , Aristoteles ein Schüler des Pla¬
ton . Der Schüler war jeweils um 43 Jahre jünger als sein Lehrer . Die Zahl
der Lebensjahre hat bei jedem dieser Philosophen die Quersumme 8 . Das
von Platon erreichte Alter wird durch die größte zweistellige Zahl mit
dieser Eigenschaft angegeben . Sokrates starb im 8 . , Aristoteles im 7 .
Jahrzehnt seines Lebens . Vermehrt man die doppelte Summe der drei Le¬
bensalter um 1 , so erhält man das Geburtsjahr des Platon . Berechne für
jeden der drei Philosophen das Geburts - und Todesjahr .

6 .2 .3 Prozentaufgaben

Beispiel :
Jemand hat einen gewissen Betrag als Einlage in ein Geschäft eingebracht .
Nach einem Jahr erhält er 10 % davon als Gewinn . Er erhöht seinen Ge¬
schäftsanteil um diesen Betrag . Im darauffolgenden Jahr erzielt er aber nur
einen Gewinn von 5 % seiner Einlage . Immerhin hat er nun 12400 DM mehr
als anfangs . Wie groß war die ursprüngliche Einlage?

Lösung :
1 . x = ursprüngliche Einlage in DM
2 . Gewinn in DM im 1 . Jahr = 10 % von x = 0,1 x

Einlage in DM für das 2 . Jahr = x + 0,lx = l,lx
Gewinn in DM nach dem 2 . Jahr = 5 % von l,lx = 0,055x
Kapital in DM am Ende des 2 . Jahres = l,lx + 0,055x = l,155x
Bestimmungsgleichung : l,155x = x + 12400

3 . 0,155x = 12400
x = 80000 .

4. Die Einlage betrug anfangs 80000 DM .

Beachte : p % ist die Zahl ^ .F 100

p % von a bedeutet ■ a .
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* * Zur Geschichte des Prozentbegriffs

Die Idee , bei vielen Aufgaben des praktischen Lebens die Zahl 100 als Vergleichszahl
zu wählen , hat sich seit alters her bewährt . Man findet sie bereits in einem babyloni¬
schen Text, bei Aufgaben der Ägypter , Griechen und Inder . Die italienischen Kaufleute
des Mittelalters machten sehr häufig Angaben verschiedener Art »für hundert « = per
cento . In süddeutschen Quellen taucht dieses italienische per cento im 15 . Jh . auf ; es
wird zu Anfang des 16 . Jh .s im hochdeutschen Sprachraum zu einem falsch latinisier¬
ten pro cento*. Schließlich werden die beidenWörter zusammengeschrieben,iml8 .Jh .
dann als das Prozent substantiviert und letztlich auch dekliniert . Im Österreichischen
hat sich die süddeutsche Form als das Perzent noch erhalten .

Vielfach benützt man als Vergleichszahl
auch die Zahl 1000 , die im Lateinischen
mille heißt ; man spricht daher von einer
Promille -Rechnung . Die Idee dazu
stammt wohl von dem berühmten italie¬
nischen Arzt und Mathematiker Gero -
nimo Cardano (1501- 1576) .

Woher kommt unser Prozentzeichen % ?
In Italien kürzte man ab dem 14 . Jh . das
per cento durch p c ° oder auch durch p c
ab , das handschriftlich manchmal die
Form PcH * hatte . In der 2 . Hälfte des
17 . Jh . s wurde vermutlich aus drucktech¬
nischen Gründen aus dem c- 8 einfach §.
Später ließ man das per weg. Schließlich
schrieb 1841 Albert Franz Jöcher das
Zeichen § mit dem schrägen Bruchstrich
als ° / 0, woraus dann das Prozentzeichen
% wurde .

Für pro mille schrieb man zunächst -Jf“ ,
dann ^ und schließlich mit dem schrägen
Bruchstrich % o -

Abb . 171 . 1 Geronimo Cardano
(24 .9 . 1501 Pavia - 20 .9 .1576 Rom )

1572

A/iVtV -Tty nrwr

Aufgaben

1 . Ein Grossist verkauft das aus der Fabrik bezogene Tuch mit 15 % Gewinn
an den Händler , der seinerseits noch 25 % Gewinn daraufschlägt . Nun ist

das Meter um 17,50 DM teurer als der Fabrikpreis . Wie hoch war dieser?

• 2 . Es spekuliert einer mit seinem Vermögen und gewinnt dadurch im ersten
Jahr 7 % , verbraucht aber 20000 DM . Mit seinem jetzigen Vermögen ge¬
winnt er im darauffolgenden Jahr 6 % , verbraucht aber 20 900 DM , so daß

er schließlich um 5 % mehr als am Anfang besitzt . Wieviel hatte er?

Korrekt muß es nämlich pro centum heißen .
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• 3 . Zwei Brüder erben zusammen 9240 DM zu ungleichen Teilen ; da aber der
eine sein Kapital zu 3j % , der andere zu 4 % anlegt , erhalten sie jährlich
den gleichen Zins . Wieviel erbte jeder ?

• 4 . Zwei Kapitalien brachten gleich viel Zins , obwohl das erste um \ % höher
ausstand als das zweite . Wie hoch waren sie verzinst , wenn das erste
3000 DM , das zweite 3375 DM betrug ?

5 . Zu wieviel Prozent sind 2662,50 DM ausgeliehen , wenn sie in 144 Tagen
49,70 DM Zins einbringen ? (Das Zinsjahr hat 360 Tage .)

• 6 . Ein Kapital von 6000 DM verzinst sich mit 3 % . Nach einem Jahr wird der
Zins zum Kapital geschlagen . Gleichzeitig ändert die Bank den Zinsfuß .
Nach einem weiteren Jahr ist das Kapital samt Zinsen auf 6427,20 DM
angewachsen . Wie hoch war der Zinsfuß im zweiten Jahr ?

• 7 . 1800 DM sind zu einem gewissen Zinsfuß ausgeliehen . Ein zweites , um
400 DM größeres Kapital verzinst sich mit einem Zinsfuß , der f von dem
des ersten Kapitals beträgt . Beide Kapitalien zusammen bringen in einem
Jahr 216 DM Zinsen ein . Wie hoch verzinst sich jedes der beiden Kapita¬
lien?

8 . Jemand hat \ eines Kapitals in Pfandbriefen angelegt , die sich mit 4i %
verzinsen , | in Häusern , die 4 % , 1 in Grundstücken , die durch Verpach¬
tung 3j % einbringen . Den Rest hatte er in Aktien angelegt , bei denen er
2 % verlor . Wie groß war sein Kapital , wenn er einen Jahreszins von
8175 DM erhielt ?

• 9 . Auf ein Sparkonto wird ein gewisses Kapital eingezahlt , das mit 4 % ver¬
zinst wird . Nach einem Jahr werden die Zinsen dazugeschlagen und noch
720 DM einbezahlt . Nach weiteren 75 Tagen ist das Konto mit Zinsen auf
5445 DM angewachsen . Wie groß war das Anfangskapital ? (Das Zinsjahr
hat 360 Tage.)

• 10 . Ein Spieler gewinnt beim ersten Spiel 30 % seines Einsatzes . Dadurch er¬
mutigt , wagt er ein zweites Spiel und verliert dabei 125 % des vorher erziel¬
ten Gewinnes . Es bleiben ihm vom ursprünglichen Einsatz noch 74 DM .
Wieviel hatte er eingesetzt ?

11 . Eine Rechnung macht einschließlich 14 % Mehrwertsteuer 889,20 DM .
Wieviel macht der reine Rechnungsbetrag ohne Steuer aus?
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6 .2 .4 Mischungsaufgaben

Beispiel:
Aus einer 10 % igen und einer 4 %igen Salzlösung sollen durch Mischen 2 kg
einer 7,6 %igen Salzlösung hergestellt werden . Wie viele kg von jeder der Aus¬

gangslösungen muß man verwenden ?

Lösung :
1 . x = Anzahl der kg der 10 %igen Salzlösung
2 . Anzahl der kg der 4 % igen Salzlösung = 2 — x

Salzmenge in der 10 %igen Lösung in kg = 10 % von x = 0,1 x
Salzmenge in der 4 %igen Lösung in kg = 4 % von (2 — x) = 0,04 ■ (2 — x) =

= 0,08 — 0,04x
Salzmenge in der 7,6 % igen Lösung in kg = 7,6 % von 2 = 0,076 • 2 =

= 0,152

10 %ig 4 %ig 7,6 %ig

0,1 xkg
+

(0,08 — 0,04x)kg
= 0,152 kg

x kg (2 - x) kg 2 kg

Abb . 173 . 1 Überlegungsfigur zur Aufstellung der Bestimmungsgleichung

Bestimmungsgleichung : 0,1 x + (0,08 — 0,04x) = 0,152

3 . 0,06x = 0,072
x = 1,2.

4 . Man muß 1,2 kg 10 %iger Salzlösung mit 0,8 kg 4 % iger Salzlösung mi¬

schen , um 2 kg einer 7,6 %igen Salzlösung zu erhalten .

Beachte : 1 . Prozentangaben bei Mischungen bedeuten Gewichtsprozente ,
wenn nichts anderes gesagt wird .
So enthält z . B . eine 12 %ige Salzlösung 12 g Salz je 100 g Lösung .
2 . Bei Mischungen gilt :
Menge eines Stoffes vorher = Menge des Stoffes nachher

Abb . 173 .2 Veranschaulichung der Erhaltung der Menge beim Mischen
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Aufgaben

• 1 . Aufgabe 71 aus dem Papyrus Rhind : Aus einem Krug Bier der Stärke 2
wird j abgeschüttet und durch Wasser ersetzt . Wie groß ist die Stärke der
Mischung ?

2 . 800 g einer 10 % igen Sole werden mit 400 g Wasser verdünnt. Wieviel %
Salz enthält die Mischung ?

• 3 . Bei starken Blutverlusten wird häufig f % ige Kochsalzlösung in die Blut¬
bahn eingeführt . Mit wieviel kg reinem Wasser muß man 539 g einer
2 % igen Kochsalzlösung verdünnen , um die erforderliche Konzentration
herzustellen ?

4. 180 g einer Sole werden durch Verdampfen 125 g Wasser entzogen , wo¬
durch ihr Salzgehalt auf 12 % ansteigt . Welchen Salzgehalt hatte sie an¬
fangs?

5 . 255 g einer 15 %igen Zuckerlösung werden mit 207 g einer 8 % igen Zuk -
kerlösung gemischt . Welchen Prozentgehalt an Zucker hat die Mischung ?

6. 595 g einer 15 %igen Zuckerlösung sollen mit 8 %iger Zuckerlösung so
gemischt werden , daß die Mischung 12 % Zucker enthält . Wieviel Gramm
der zweiten Lösung sind dazu erforderlich ?

7 . Wieviel Gramm reines Wasser muß man 300 g 98 % igem Alkohol zuset¬
zen , um 60 % igen Alkohol zu erhalten ?

8 . Von zwei Sorten Spiritus enthält die eine 4 kg Alkohol in 7 kg Spiritus , die
andere 7 kg Alkohol in 8 kg Spiritus . Wie viele kg von jeder Sorte Spiritussind zur Herstellung einer Sorte verwendet worden , die 33 kg Alkohol in
45 kg Spiritus enthält ?

• 9 . Ein Faß enthielt 98 % igen Spiritus . Nachdem jemand 12 kg abzapfte und
durch Wasser ersetzte , war der Alkoholgehalt nur noch 83 % . Wie viele kg
Spiritus enthielt das Faß ?

10 . Das Meerwasser im Persischen Golf enthält etwa 5 % Salz. Wie viele kgSüßwasser muß man zu 40 kg Meerwasser dazugießen , damit der Salzge¬halt der Mischung 2 % beträgt ?

• 11 . Ein Kaufmann bezieht zwei Sorten Rosinen . Der Verkaufspreis würde für
2 kg der ersten Sorte 4,50 DM , für 1 kg der zweiten 1,80 DM betragen .Wieviel kg der zweiten Sorte muß man mit 8 kg der ersten Sorte mischen ,damit man 1 kg der Mischung um 2,04 DM verkaufen kann ?

• 12 . Von einer Kalfeesorte kosten 16 kg 368 DM , von einer zweiten kostet das
Kilogramm 30 DM . Welche Menge der zweiten Sorte muß man mit 26 kgder ersten Sorte mischen , damit das Kilogramm der Mischung um 26 DM
verkauft werden kann ?
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13 . 1 kg Likörbohnen kostet 31,20 DM , \ kg Pralinen 9,60 DM . Wie müssen
die Pralinen und Likörbohnen gemischt werden , damit 1 kg der Mischung
24 DM kostet ?

14 . Ein Auto braucht als Kühlflüssigkeit für den Motor eine Mischung aus
Wasser und einem Frostschutzmittel . Der Anteil des benötigten Frost¬
schutzmittels hängt vom Klima ab .
a) Herr Huber hat in einem Kanister 10 kg Kühlflüssigkeit mit einem

Frostschutzmittelanteil von 25 % . Für den zu erwartenden kalten
Winter braucht er aber einen Frostschutzmittelanteil von 40 % . Wie¬
viel Wasser muß er verdampfen und durch reines Frostschutzmittel
ersetzen?

b) Wieviel kg reines Frostschutzmittel muß man zu 10 kg Kühlflüssigkeit
mit 25 % Anteil schütten , um 40 % ige Kühlflüssigkeit zu erhalten ?

c) Wieviel kg der Kühlflüssigkeitmuß man durch reines Frostschutzmit¬
tel ersetzen , um aus 10 kg 25 %iger Kühlflüssigkeit 10 kg 40 % ige zu
erhalten ?

15 . Mit wieviel g Kupfer muß man 234 g Feingold mischen, wenn die Legie¬
rung den Feingehalt 585 haben soll? (Feingehalt ist der heute meist in
Promille des Gesamtgewichts ausgedrückte Gehalt an reinem Edelmetall .)

16 . In welchem Verhältnis muß man Silber vom Feingehalt 750 mit Silber vom
Feingehalt 600 mischen , um Silber vom Feingehalt 700 zu erhalten ?

17 . Manchmal wird der Feingehalt
von Gold in Karat , der von Sil¬
ber in Lot angegeben . Gold von n

n
Karat besteht zu — aus Feingold ,

n
Silber von n Lot zu — aus Fem -

16
Silber .

*

a) Wieviel g Feingold und wie
viel g Kupfer benötigt man
zur Herstellung eines 14karä -
tigen Ringes von 5 g?

b) Ein Silberschmied möchte 24
lOlötige Teelöffel zu je 50 g
herstellen . Welche Menge des
vorhandenen 141ötigen Silbers
benötigt er?

* Feingold ist Gold mit einem Feingehalt von mehr als 997°/00. Rechne aber so , als wäre Feingold reines Gold .

Das Karat entstand aus dem griechischen Kegauov (kerätion ) =- Hörnchen , womit aber , ihrer Form wegen ,

auch die Hülse des Johannisbrotbaums bezeichnet wurde ; arabisch kirrat . Die harten , nahezu gleichmäßig

großen Samen wurden als Gewichte für Gold und Edelsteine verwendet . Heute gibt es für Edelsteine das

metrische Karat = 0,2 g.
Das Wort Lot stammt aus dem Keltischen , wo es Blei bedeutet . Es wurde später auch als Gewichtseinheit

verwendet .

Abb . 175 . 1 Hülse und Samen des Jo¬
hannisbrotbaums (Ceratonia siliqua) ,
zum Vergleich eine 1 -Pf-Münze . Das Ge¬
wicht der Samen wurde zu 77 , 205 , 221 ,
209 , 202 und 158 mg bestimmt . Die mitt¬
leren vier wiegen also mit guter Näherung
0,2 g . Bedenke die Genauigkeit der alten
Waagen!
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6 .2 .5 Leistungsaufgaben

Die ältesten mathematischen Texte handeln von Aufgaben aus dem Wirt¬
schaftsleben . Ein wichtiger Typ dieser Wirtschaftsaufgaben beschäftigte sich
mit Problemen , bei denen Menschen , Tiere oder Geräte verschiedener Lei¬
stung zusammen wirkten und so eine Gesamtleistung erbrachten .
Einen Sonderfall dieses Aufgabentyps stellen die Zisternenaufgaben dar . Sie
handeln von Zisternen , Brunnen , Bädern , Teichen , Fässern und dergleichen
mehr , die jeweils mehrere Zu - und Abflüsse besitzen . Betrachten wir die älteste
uns überlieferte Zisternenaufgabe . Sie stammt aus dem chinesischen Rechen¬
buch -yf. jjl fyj Chiu Chang Suan Shu ( = Neun Bücher arithmeti¬
scher Technik ) , das vermutlich zu Beginn der Han -Zeit entstanden ist , die von
202 v . Chr . bis 9 n . Chr . dauerte (siehe auch Seite 85):

Beispiel:
Jetzt hat man einen Teich, 5 Kanäle führen ihm Wasser zu . Öffnet man von
ihnen 1 Kanal , dann bekommt man in | Tag 1 Füllung , beim nächsten in 1 Tag
1 Füllung , beim nächsten in 2\ Tagen 1 Füllung , beim nächsten in 3 Tagen
1 Füllung und beim nächsten in 5 Tagen 1 Füllung . Jetzt öffnet man sie alle
gleichzeitig . Frage : In wieviel Tagen füllen sie den Teich?

Lösung :
1 . x = Zeit in Tagen , die zur Füllung des Teichs benötigt wird , wenn Wasser

aus allen Kanälen zufließt .
2 . Der 1 . Kanal liefert in 1 Tag 3 Füllungen.

Der 2 . Kanal liefert in 1 Tag 1 Füllung .
1Der 3 . Kanal liefert in 1 Tag - y Füllungen = f Füllungen .2-2

Der 4 . Kanal liefert in 1 Tag j Füllung .
Der 5 . Kanal liefert in 1 Tag j Füllung .
Somit gilt : Alle 5 Kanäle liefern in 1 Tag (3 + 1 + | + | + | ) Füllungen =
= 4jj Füllungen .
Alle 5 Kanäle liefern in x Tagen 4jf ■x Füllungen . Das soll aber gerade
1 Füllung sein, weil ja nach x Tagen der Teich durch alle Kanäle gefüllt sein
soll . Also erhalten wir die
Bestimmungsgleichung : 4j-| x = 1

15 x = 1
V- — 15

3 .
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4 . Nach 41 Tagen , das sind etwas wenigerals 5 Stunden, wird der Teich durch
alle 5 Kanäle gefüllt .

Beachte : 1 . Bestimme , was in der Zeiteinheit jedes Gerät liefert oder ver¬
braucht .

2 . Bestimme die einzelnen Lieferungen in der betrachteten Zeit .
3 . Die Summe aller Einzellieferungen ergibt die gewünschte Ge¬

samtlieferung (meistens die Einheit ) .

Aufgaben

1 . Von Diophant (um 250 n . Chr .) stammt die Aufgabe :
Bin ein Löw aus Erz . Aus den Augen , aus Mund und der Sohle unter dem
rechten Fuß springen Fontänen hervor . Daß das Becken sich füllt ,
braucht rechts das Auge zwei Tage, links das Auge braucht drei und meine
Fußsohle vier . Doch meinem Munde genügen sechs Stunden . Wie lange
wohl dauert ’s , wenn sich alles vereint , Augen und Sohle und Mund ?

2 . Ein byzantinisches Rechenbuch des frühen 14 . Jh . s überliefert uns :
Einer hatte ein Schiff mit 5 Segeln . Mit dem ersten Segel nun wurde es an
das beabsichtigte Ziel in der Hälfte eines Tages hingebracht , mit dem zwei¬
ten aber in 4 Tag, mit dem dritten in 4 Tag, dem vierten in 4 und mit dem
fünften Segel in 4 Tag . Nachdem nun die 5 Segel gleichzeitig gehißt waren ,
in welchem Teil des Tages wurde das Schiff hingebracht ?

3 . Johannes Widmann von Eger (um 1460 - nach 1500) stellt in seiner Be¬
hende und hübsche Rechenung auff
allen kauffmanschafft 1489 die
folgende Aufgabe :
1 Leb vnd 1 Hunt vnd 1 Wolff
Die essen mit eynander 1 schoff
Und der Leb eß das schaff alleyn
in eyner stund Und der wolff
ynn 4 stunden Und der hunt in 6
stunden . Nu ist die frag wen sy
das schoff all z miteynander essen
in wie langer zeyt sy das essen.

4 . Ein Gasherd mit zwei Brennern
wird aus einer Propangasflasche
gespeist . Mit einer Füllung kann
der eine Brenner 30 Std . , der
andere 20 Std . bei voller Flamme
versorgt werden . Wie lange reicht
der Flascheninhalt , wenn beide
Brenner gleichzeitig in Betrieb
sind?

Tlu mach auch om ©rlttn Sprich fit $
fiunoenoasiji 12 0 mlnuten rynnen 2
eymeiauf wie vil rynnen in j 2 minuin

it f
factt 1 eymeryy Tlu aootr038 als

$u | am fadt gerat»2 eymer vn ffi recht
iirb -tDOlff-ljunt-:-

CUtmoeBgldcbn 1 TL* vno 1 Jfrun»
wo 1 WolffDie effen mit eynanoer 1
fchoff 'fUno ©er JLeb ef oaa fdpaff al*
Uw in eyner ffuno THnoOer wolffynn
4 ftunoen TUno oer hunt in 6 ffunoen .
Tlu ifl oie frag wen f

'
y oas fchoff all 5

miteynanoer effen in wie langer jeyt fy
t»as effm ZDach? alfo multiplicir 1 fiüo

Abb . 177 . 1 Folium 138r der Behende
und hübsche Rechenung auff allen kauff¬
manschafft des Johannes Widmann von
Eger (um 1460 - nach 1500) von 1489
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5 . Ein Wasserbehälter hat zwei Zuflußrohren . Mittels der ersten Röhre allein
kann der Behälter in 6 Std . , mittels der zweiten in 4 Std . gefüllt werden .
Wie lange dauert das Füllen , wenn beide Röhren gleichzeitig in Betrieb
sind?

• 6 . Zum Ausheben einer Baugrube wird ein Bagger verwendet , der die gesam¬
te Arbeit in 8 Tagen erledigen würde . Um schneller voranzukommen , wird
nach 3 Tagen noch ein zweiter Bagger eingesetzt , der den gesamten Aus¬
hub in 12 Tagen allein bewältigen könnte . Wieviel Tage müssen beide
Maschinen noch gemeinsam in Betrieb sein?

6 .2 .6 . Aufgaben aus der Geometrie

1 . Verkleinert man eine Seite eines Quadrats um 1 m , so entsteht ein um
lim 2 kleineres Rechteck . Wie lang ist die Quadratseite ?

2 . Vergrößert man eine Seite eines Quadrats um 2 cm , so entsteht ein um
1,22 dm 2 größeres Rechteck . Wie lang ist die Quadratseite ?

3 . Die zwei Seiten eines Rechtecks unterscheiden sich um 5 cm . Die Fläche
dieses Rechtecks ist um 64 cm2 kleiner als die Fläche eines Rechtecks ,
dessen eine Seite um 13 cm größer ist als die kleinere Seite des gegebenen
Rechtecks , während die andere Seite so lang wie diese ist .

4 . Der Umfang eines Dreiecks ist 20 cm . Die erste Seite ist um 1 cm länger als
die zweite , die dritte um 2 cm kürzer . Wie lang sind die drei Seiten?

5 . In einem Rechteck mit dem Umfang 30 cm ist die Fänge l^mal so groß wie
die Breite . Berechne die Seiten .

6 . In einem gleichschenkligen Dreieck mit der Basis 8 cm ist der Umfang das
3f fache der Schenkellänge . Wie groß ist diese?

• 7 . In einem Dreieck mit den Seiten a , b , c und dem Umfang 12 m ist die
Mittelparallele zu b um 5 dm länger als diejenige zu a ; die Mittelparallele
zu c beträgt das 1 4 fache derjenigen zu b . Berechne die drei Seiten des
Dreiecks .

8 . In einem Trapez ist die Mittellinie um 4 cm länger als die eine der paralle¬
len Seiten , von denen eine 5mal so lang wie die andere ist . Wie lang ist die
Mittelparallele ?

9 . In einem Dreieck ist der Winkel ß um 54 ° 54' größer als a , ferner y um
103 ° 30 ' kleiner als a und ß zusammen . Berechne die drei Winkel .

10 . In einem gleichschenkligen Dreieck ist das Doppelte des Winkels an der
Spitze um 4 ° kleiner als § eines Basiswinkels . Berechne die Winkel .

11 . In einem Dreieck ABC ist der Außenwinkel bei A fmal so groß wie der
Innenwinkel bei B , während der Innenwinkel bei C 5mal so groß ist wie
derjenige bei A . Berechne die Dreieckswinkel .
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• 12 . In einem Viereck ABCD ist der Winkel bei B um 30 ° kleiner als der bei A,
der Winkel bei C 3mal so groß wie der bei B und der Winkel bei D das
Y^fache der Summe aus den Winkeln bei B und C . Berechne die vier Win¬
kel.

13 . Wie groß ist die Eckenzahl eines Vielecks ohne einspringendeEcken, bei
dem die Summe der Innenwinkel
a) 7mal b) 5^mal so groß ist wie die Summe der Außenwinkel?
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Zum Wort Term:
Aus dem indogermanischen Wortstamm ter- = überschreiten, an ein jenseitiges Ziel
gelangen entstanden das griechische teppa (terma ) und die lateinischen Wörter termo,
termen und terminus, die alle die Bedeutung von Ende, Grenzstein, Grenze haben . Im
Französischen und im Englischen wird terminus noch heute im Sinne von Endstation
benützt . Auch unser Fremdwort Termin für einen noch vor uns liegenden Zeitpunkt
kommt daher . Da auch eine Definition eine Sache , einen Begriff gegen alles andere
abgrenzt , wurde terminus im Sinne von Definition in frühen Konzilsakten verwendet .
Auch Boethius (um 480 - 524/25) benützt terminus in diesem Sinne in einem philoso¬
phischen Kommentar , der später weite Verbreitung gefunden hat . Immer mehr nimmt
terminus dann die Bedeutung von Ausdruck an , wofür sich im Französischen terme und
im Englischen term gebildet haben . In der Algebra des deutschen Jesuiten Christoph
Clavius (1537 Bamberg - 1612 Rom ) ist terminus ständiger Fachausdruck für Teil
einer Gleichung , Rene Descartes (1596 - 1650 ) verwendet terme wie wir Term auch
für Glieder eines Aggregats .
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7 Schwierigere Termumformungen

7. 1 Multiplikation von Aggregaten

Nach dem allgemeinen Distributivgesetz (Satz 90 . 2) weißt du bereits , wie du
ein Aggregat mit einer Zahl multiplizierst . Unter Berücksichtigung der Vorzei¬
chenregeln wirst du also beispielsweise so rechnen :

a (b + c — d ) = ab + ac — ad .
Was machst du aber , wenn du zwei Aggregate miteinander zu multiplizieren
hast ? Betrachten wir als Beispiel das Produkt

( — a + b ) (c — d — e) .
Stell dir vor , du könntest die erste Klammer ausrechnen und erhieltest als Wert
die Zahl z . Dann hättest du nur noch z (c — d — e) zu berechnen . Das kannst
du aber nach dem Obigen leicht ausführen :

z (c — d — e) = zc — zd — ze .
Nun setzt du an Stelle von z wieder die ursprüngliche Klammer ( — a + b ) ;
dann nimmt die rechte Seite die folgende Form an :
zc — zd — ze = ( — a + b ) c — ( — a + b ) d — ( — a + b ) e .
Das rechts stehende Aggregat kannst du leicht mit Hilfe von Satz 108 . 1 umfor¬
men :

( — a + b ) c — ( — a + b ) d — ( — a + b ) e = — ac + bc + ad — bd + ae — be .
Betrachtest du nun den Anfang und das Ende deiner Rechnung und ordnest
die erhaltenen Summanden bezüglich des ersten Faktors a bzw . b , so ergibt
sich

( — a + b ) (c — d — e) = — ac + ad + ae + bc — bd — be ,
und du erkennst die Gültigkeit von

Satz 182 . 1 : Zwei Aggregate werden miteinander multipliziert, indem
man unter Berücksichtigung der Vorzeichenregeln jedes
Glied des einen Aggregats mit jedem Glied des anderen
Aggregats multipliziert und die entstandenen Produkte
addiert .

Beachte:
1) Damit du die Übersicht nicht verlierst , raten wir dir folgendes Vorgehen :

Multipliziere zuerst mit dem 1 . Glied des 1 . Aggregats der Reihe nach jedes
Glied des 2 . Aggregats . Multipliziere dann mit dem 2 . Glied des 1 . Aggre-
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gats der Reihe nach jedes Glied des 2 . Aggregats . Fahre so fort , bis du
schließlich mit dem letzten Glied des 1 . Aggregats der Reihe nach jedes
Glied des 2 . Aggregats multipliziert hast .

( — a + b ) (c — d — e) = — ac + ad + ae + bc — bd — be

2) Nehmen wir an , das erste Aggregat bestehe aus m Gliedernund das zweite
aus n Gliedern , dann hat das nach der Ausführung der Multiplikation
entstandene Aggregat m ■n Glieder , weil ja jedes Glied des ersten Aggre¬
gats mit jedem Glied des zweiten multipliziert werden muß . Damit kannst
du kontrollieren , ob du kein Produkt vergessen hast !

Beispiel 1 :
(2x 2 — 3x — 4) (5x — 6) =
= 10x 3 — 12x 2 — 15x 2 + 18x — 20x + 24 =
= 10x 3 - 27x 2 - 2x + 24 .

Beispiel 2:
(fx + 1y) (t^x 2 - jxy + hy 2) =

= Üx 3 - 1x 2 y + | xj 2 + fx 2 y - jxy 2 + £ y 3 =

= Ux 3 + £ y 3 .

Satz 182 . 1 läßt sich auch anwenden , wenn das Produkt aus mehr als zwei
Aggregaten besteht . Sind es drei Aggregate , dann rechnest du am besten von
links nach rechts der Reihe nach . Sind es aber vier oder mehr Aggregate , dann
kannst du unter Verwendung des Assoziativgesetzes und unter Umständen
auch des Kommutativgesetzes jeweils zwei geeignete Aggregate zu einem Pro¬
dukt zusammenfassen und darauf Satz 182 . 1 anwenden . Mit einiger Erfah¬

rung wirst du erkennen , welche Zusammenfassungen günstig sind . Ehe du
dann weiterrechnest , mußt du die erhaltenen Aggregate noch vereinfachen .
Dazu

Beispiel 3:
(2a — 3b ) (2a + 3h ) (5a — b ) =
= [ (2a — 3ö) (2a + 3 A)] (5a — b) =
= (4a 2 + 6 ab — 6ab — 9b 2) (5a — b ) =
= (4a 2 — 9b 2) (5a — b) ~
= 20a 3 — 4a 2 h — 45ah 2 + 9b 3 .

Beispiel 4:
7b (2a — b) {a — 2b) ( — a — 2b) (2a + b) =
= 7h [ (2a — b ) (a ~ 2b )] [ ( — a — 2b) (2a + ü )] =
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= lb (2a 2 — 4ab — ab + 2b 2) ( — 2a 2 — ab — 4ab — 2b 2) =
= 7b (2a 2 - 5 ab + 2b 2) ( - 2a 2 - 5 ab - 2b 2) =
= 7b ( - 4a A - 10a 3 b - 4a 2 b 2 + 10a 3 b + 25 a 2 b 2 + 10ab 3 -

- 4a 2 b 2 - 10ab 3 - 4bA) =
= 7b ( - 4a 4 + \ la 2 b 2 - 4b A) =
= - 28a 4 6 + 119a 2 & 3 - 28Z>5 .

Aufgaben

1 . a) (p + q ) (u + v ) b) (x + y ) (a — b ) c) (3 — s) ( t + 5)
d) (a — b ) (c — d ) e) ( — 1 + m ) (m — n) f) ( — x — y ) ( — u — v )

2 . a) (27a - 3b) (ax + ny ) b) (16p - 18r) (13 ? + 9)
c) ( — lfx + y ) (| x — 4-̂ j ) d) (2,15m — 0,7«) (3,5k + 20,10
e) (0,05 — 5,3a) ( — 1,2a — 3 ) f) ( l ^p 2 + 9,5q ) ( \ ,25p + fg 3)

3 . a) (a + b ) (c — d ) — (a — b ) (c + d)
b) (a — b ) (c — d) — (a + b ) (c — d)
c) (a + b ) (c + d) — (a — b ) (c — d)
d) (3 - r) Cs + 2t ) - (7s + 5t ) (3r + 8) + (4s - t ) (r + 1 )
e) (2y - 7) (5 + y 2) + 4^ (3 - 5^ - 2y 2) - (y - 6) (9y 2 + 1 )

4 . a) (17x 2 a — 3a4) (x — 5a) — (7a 2 x 2 + 2x ) ( l + 5a4)
b) 3m (16m — 9n 3 ) (5m 2 — n) — (12m 3 — 7n) ( — 2m — mn 3 ) ( — 2)

5 . a) (3x 2 + 5y ) [(27y — 8x) — (14x + 2y )
~
\

b) (3a — 9b) (2b + c) ( — c — 5a)
6 . a) (u + v) (x + y + z) b) (3s — 2t + \ ) (p — 3q — 7r )

c) (m 2 — n + 1 ) (« 2 4- m + 1 ) d) (a — 2b + 3c — 4d ) (5e — 6/ + 7g)
7 . a) ( 1 + x + x 2 + x 3 ) (1 — x) b) (1 — y + y 2 — y 3 + y 4') (1 + y)

c) (1 — a 2) ( l + a 2 + a4 + a 6) d) (a 2 + ab + b 2) (a — b)

• 8 . a) ( ljx 2y — | x_y
2) (17^x — ^ — 2jy )

b) (0,04a 2 - 0,laZ> + 0,25b 2) (0,2a + 0,5b )
c) (| x - | ^ ) (t ^x 2 + 0,3xj + 0,16^ 2)

9 . a) (a + b ) (a + 2b) (a + 3b ) b) (a — b) (a — 2b) (a — 3b )
c) (1 — x) (x + x 2 ) (2x — 1 ) d) (2 — x) (4 — x 2 ) (8 — x 3)

• 10 . a) ( l,2x — 0,l ^ ) ( l,44x 2 + 0,01j^2) (0,1 >^ + l,2x )
b) (\ + fx ) (i - ix + fx 2) (fx 2 - i )

11 . a) (1 - x) (2 - x) (3 - x) (4 - x) b) ( 1 - x) (2 + x) (3 - x) (4 + x)
c) (2 - y ) (4 + y 2) (4 + 2y + y 2) ( - y + 2)



7 . 1 Multiplikation von Aggregaten 185

12 . (x 2 — x + l ) (x — 1 ) — (x 2 + x — l ) (x + 1 )
13 . (1 + 2x + x 2) (x — 2) + 4 (x + 1 ) — (x + 2) (x 2 — 2x + 1 )
14 . (3x 2 - 2x + 1 ) (1 - 2x) - llx 2 - 4 (3 + 2x - x 2) + 6x (x 2 + 4)

15 . (x 2 + ax + 2a 2) (2a — x) — (x 2 — 2ax + a 2) (x — 2a) — 2 (3 a 3 — x 3)

16 . (3 ab + 4ac — lbc ) (5ab — 6 ac) — (4ab — 8 ac + lbc ) (5ac — Tbc)

17 . (x 2 y — 2xy 2 + 3y 3 ) (2x 2 — 3 xy ) — (3x 3 + 2x 2y + xy 2) (4xy — 5y 2)

18 . (x + y + z) (x — y) — (x + y — z) (x — z) — (x — y + z) (z — y) —
- (z - x ~ y) (x + y)

19 . (o - p - q) (p + q) + (p - o - q) (o + q) - (q - o - p ) (o + p)

20. (xy + xz — yz) (x + y) — (xy + yz — xz) (y — z) —
— (xz — xy + yz) (x + z)

21 . (6x4 - 9x 2y + lly 2) (8x 2 - ly ) - (\ 3y2 + 2lx 2y - 17x4) ( llx 2 + 13j0

22 . (64a 6 ^ 3 + 48a 3 ^ 5 + 36a4 b n + 21a 3 b 9) (4a z b - 3 ab 3)

23 . (a 2 b4x — 2 aA b 3 x4 — 3 a 6 b 2 x 1 + a 8 bx 10) (a 3 b 2 x 2 — 2a 5 bx 5)

24 . 3a (2b - 5a) (3b + 4a ) - 4b (la 2 - 12ab ) - (5b + 4a ) (3a - 6b ) • 4a

25 . x2 (1 - x) 4- x (1 + x) ( l - 2x) - 2 (2 - x) ( l - 2x + 3x 2)

26 . 9 (14 + 11a + 17a2) ( 10 - 12a) - 13a (15 - 19a) ( 17 + 20a) +
+ 14a 2 (17a — 11 ) — 44a 3

27 . 2 (x - 2) (x - (2 - 3x)) - 3 (2 + (x - l )) (4 (x - 1 ) - 3 (x - 2))

! 28 . ([2x (x - 4) - 3 (x - 2) (2x + 3)] (4x - 2) • 3 + 48x 3 ) (3x - 5) -
— 540 (x 2 — 3x + 1 )

8 29. 3 12 (y - 4) + 5] l (y - 2) • 3 - 2 (y - 4)] -
— 4 [1 — 3 (y + 2) + y1 \ 5 — y — 3 (2 — yj ]

• 30. ([(x - l ) (x - 2) - 2] ■2 - 2 (2 - x)) ■ 2 - [2 - 2 (x - 2) ( l + x) +
+ 2 (1 - 2x)]

Gleichungen und Ungleichungen

31 . a) (x - 34) (x + 7) = (x - 4) (x - 7)
b) 2 (x + 0,1 ) (0,5x + 2) - (3 + ix ) (3x - 4) = 0

32 . 3x (x + 7) — x (3x + 7) + 70 = 0

33 . 4x (6 — 3x) + 6x (2x + 1 ) = 15

34. (ix - 1) • 21x - (33x + 5) ■^ x = 277
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35 . 0,32x ( l,25x - 10) + (6,3 - 0,8x ) • 0,5* + 1 = 0
36 . (x + 1 ) (jc — 14) - (x + l ) (x - 15) = 17
37 . (x - 16) (3x + l ) - (3x - l ) (x - 15 ) ^ - 35

38 . (&x + 3 ) (25 - 3x) + (f - 15) (^ x + 2) > 0

39 . (2,1 x - 1,5) (0,6x - 1,1 ) - (2,5 - 0,9x ) (0,8 - l,4x ) + 5,4 ^ 0
40 . Verlängert man in einem QuadratABCD die Seite [AB] über B hinaus um

2 cm , und [AD ] über D hinaus um 5 cm und ergänzt zu einem Rechteck ,
so ist dessen Fläche um 1,22 dm 2 größer als die des Quadrats . Wie lang ist
die Quadratseite ?

41 . Verlängert man eine Seite der Grundflächeeines Würfelsum 3 cm und ver¬
kürzt die andere um 2 cm , während man die Höhe beibehält , so entsteht
ein Quader gleichen Inhalts . Wie groß ist die Kantenlänge des Würfels ?

Abb . 186 . 1 Niccolö Tartaglia Abb . 186 .2 Simon Stevin
(1499 Brescia - 13 . 12 . 1557 Venedig) ( 1548 Brügge - 20 . 2 . /8 . 4 . 1620 Leiden) *

um 1546

r'Mlw [e'Tart(tfra

£f« 8

* i betont . Niederländischer Mathematiker und Ingenieur . Anfänglich in der Finanzverwaltung tätig , ab 1593
Berater des Prinzen Moritz von Oranien . In seinem Buch De Thiende - „ Der Zehnt “ - (1585) behandelt er als
erster systematisch die Stellenschreibweise von Zehnerbrüchen und trug damit wesentlich zur Verbreitung der
Dezimalbrüche bei . Das bequeme Komma hat 1617 der schottische Mathematiker John Napier (1550- 1617)
eingeführt .
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7 .2 . Binomische Formeln

Bei algebraischen Umformungen treten häufig Terme der Art (a + b) 2 und
(a — b)2 bzw . (a + b) {a — b) auf . Mit Satz 182 . 1 können wir sie leicht berechnen :

( 'a + b ) 2 = (a + b) (a + b ) = a 2 + ab + ab + b 2 = a 2 + lab + b z

(a — b) 2 = (a — b) (a — b) = a 2 — ab — ab + b 2 = a 2 — lab + b2

(ia + b ) (a — b ) = a 2 — ab + ab — b 2 = a 2 — b 2

In allen drei Fällen waren vier Glieder zu erwarten . Sie ließen sich aber zu
weniger zusammenfassen . Daher lohnt es sich, wenn du dir diese drei wichti¬
gen Umformungen als Formeln * merkst . Man nennt sie binomische * * For¬
meln .

Satz 187 . 1 : Die binomischen Formeln
1 . binomische Formel : (a + b) 2 = a 2 + lab + b 2

2 . binomische Formel : (a — b) 2 = a 2 — lab + b 2

3 . binomische Formel : (a + b) (a — b) = a 2 — b2

Beachte : Beim Quadrieren einer Summe oder einer Differenz tritt außer den
Quadraten der beiden Glieder auch noch ihr doppeltes Produkt auf .

Beispiele:
i ) (e^ + fr ) 2 = M* 2 + 5Af + Äk 2

ab a 2 a b b 2

2) (0,1rs 2 — 10r+ ) 2 = (0,lrs 2) 2 — 1 ■ 0,1 rs 2 ■ 10r2 s + (10r2 s) 2 =

ab a 2 a b b 2

= 0,01 r 2 s* - lr 3 s 3 + 100r4 ^2
* Ein Gebilde der Geometrie bezeichnet Euklid als crxiiiia (siehe Fußnote auf S . 160) , das ins Lateinische als

figura übersetzt wurde , was zu unserem Lehnwort Figur führte . Exriiaa wurde aber auch mit forma übersetzt ,
das Boethius zu formula verkleinerte , ihm dabei aber einen neuen Sinn gab . Bei Leibniz (1646- 1716)
gewinnt formula dann die heutige Bedeutung von Formel als Ausdruck einer Gesetzmäßigkeit .

** Spezielle Summen aus zwei Summanden nannte Euklid (4 ./3 .Jh . v. Chr .) im Buch X seiner Elemente £k Öüo

ovopäxcov (ek dyo onomäton ) = aus zwei Namen . Gerhard von Cremona (1114- 1187) verwendet dafür in
seiner Übersetzung der Kommentare des al -Nayrizi (lateinisch Anaritius , t um 922) zu den ersten zehn
Büchern des Euklid das Wort binomium . Luca Pacioli (um 1445- 1517) verallgemeinerte 1494 binomio zu
trinomio und multinomio in seiner Summa de Arithmetica Geometria Proportioni et Proportionalita . Niccolö
Tartaglia (1499- 1557) kommt mit seinem binomio bzw . trinomio de dignitä algebratica im 1560 postum
erschienenen 2 . Teil seines General trattato di numeri , et misure - »Allgemeine Abhandlung über Zahlen
und Maße « - unserem Gebrauch schon sehr nahe . In der 1585 erschienenen L ’Arithmetique des Nieder¬
länders Simon Stevin (1548- 1620) werden binomie in unserem Sinn für a + b und a — b, trinomie für
einen dreigliederigen Ausdruck und multinomie für ein allgemeines Aggregat verwendet . Letzteres setzt
sich nicht durch . In der In artem analyticem Isagoge (1591 ) des Fran5ois Viete (1540- 1603) tauchen ohne
weitere Erklärung die Ausdrücke binomia magnitudo und polynomia magnitudo für eine zweigliedrige bzw .

mehrgliedrige Größe auf . Sie waren anscheinend allgemeinverständlicher mathematischer Wortschatz . Im
Mathematischen Lexicon (1716) des Christian v . Wolff (1679- 1754) liest man schließlich die Beschreibung :
Binomium , © ne 3roet)fad )e ©röffe tmrb genennet , hie aus 310er) Tfyetlen beftefjet , bte mit bem mefyr = Reichen
3ufammen gefet3et toerben , als a + b .
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'sr

3) (1,5 U + yl>) ( l,5 U — yü) = ( l,5w)

1

2 — (yt>) 2 = 2,25 U 2 — yyU
2

a b a b a 2 b 2

Die drei binomischen Formeln waren bereits den Babyloniern um 1700 v . Chr .
bekannt . Ob und wie sie sie gegebenenfalls bewiesen haben , wissen wir nicht .
Der griechische Mathematiker Euklid (4,/3 . Jh . v . Chr .) hat diese drei For¬
meln mit Zeichnungen geometrisch bewiesen . Dieser Beweis setzt allerdings
voraus , daß a und b und gegebenenfalls a — b positive Zahlen sind . Seine
Zeichnung für die 1 . binomische Formel erklärt sich praktisch von selbst :

ab b 2

a 2 ab

a b
- v

a + b

( a + b )2

Abb . 188 . 1 (a + b ) 2 = a 2 + lab + b2

Auch für die beiden anderen Formeln kann man geometrische Veranschauli¬
chungen finden . Sie sind allerdings komplizierter (vgl . Aufgabe 190/24) .

Die 2 . binomische Formel ist nur ein Sonderfall der 1 . binomischen Formel ,
wenn man (a — b ) 2 als (a + ( — 6)) 2 schreibt . Dann gilt :
(a + ( — b)) 2 = a 2 + 2 ■ a ■ ( — b) + ( — b ) 2 = a 2 — lab + b 2 .
Genauso kann man bei anderen Vorzeichenverteilungen verfahren :
( — a + b ) 2 = (( — a) + b ) 2 = ( — ä) 2 + 2 ( — a) ■ b + b 2 = a 2 — lab + b 2
( — a — b ) 2 = (( - a) + ( - h )) 2 = ( - a) 2 + 1 ( - a) ( - b ) + ( - b ) 2 = a 2 + lab + b 2

Aufgaben

1 . a) (1 + x)2

d) ( 1 - 2x)2

2 . a) (3a + 46 ) 2
d) (6xy + 5y 2) 2

b) (x — l )2

e) (x 3 — 3)2

b) (2x + 5y) 2
e) (7ab - 96c) 2

c) (2 + x)2

f) (3 — x2)2

c) (4x 2 — 9y 2) 2
f ) ( lla 2 x + 13xy )2
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3 . a) {lly + 3z) 2 b) (13p - 7q)2

d) (21 + 15t ) 2 e) (| a + lfp ) 2

g) (9m - ft ; ) 2 h) ( l,8r + 3f) 2

c) (14x — ll ) 2
f) (2,3c — 0,11c?)
i) § a - lbf

j) (jx - Hy ) 2 k) (0, \ a 2 b + 10ab 2) 2 1) (^ u 3 - 0,07m4) 2

4 . a) (4 - x) (4 + x) b) (22x 2 + 33) (22 jc 2 — 33)
c) (1 — 4x 2) ( l + 4x 2)

5 . a) (5a — 4x ) (5a + 4x ) b) (17x 2 — 19y 2) (17x 2 + 19y 2)
6 . a) (16x + 24y) (16x — 24y)

b) (12p - 23q) ( i2p + 23q)
c) (7i + 24z) ( - 7| + 24z)
d) ( - 0,25m + 0,07c) ( - 0,25« - 0,07z;)

7 . a) (a + b) ( — a + b) b) (a — b ) ( — a — b )
c) (x - y ) ( - x + y ) d) ( ~ x - y ) (x + y)

8 . a) Beweise die Formel von Brahmagupta (598- nach 665) :
n 2 = {n + a) {n — a) + a2

b) Diese Formel wurde von den Indern zur Berechnungvon Zahlenqua¬
draten verwendet ; z . B .
2972 = (297 + 3) (297 - 3) + 3 2 = 300 • 294 + 9 = 88209 .
Berechne ebenso :
1) 98 2 2) 395 2 3) 1999 2 4) 2001 2 5) 9999 2

9 . Beweise die Formel von Narayana (um 1350 ) :
( a + b ) 2 = (a — b ) 2 + 4ab

10 . Die folgende Formel wurde auf einer altbabylonischen Tontafel aus dem
17 . Jh . v . Chr . gefunden . Beweise sie !

11 . Beweise die Formeln
4 (x 2 + y 2)a) (x + y) 2 + (x - y) 2 + ( - x + y) 2 + ( - x - y)

, , (x + y ) 2 + (x - y) 2
x 2 + y

12 . a) (3uv — 2v 2) 2 b) (7 a 2 b + 4ab2) {la 2 b - Aab 2)
c) (x 6 + y 3) 2 d) ßa 2 b 2 — 5c 4) (5c 4 — %a2 b 2)
e) ( ljp 2 qr 2 — l ) 2 f) ( l,9c 5 J - %d 3 e 2) Qd 3 e 2 + 1,9c5 d)

13 . Berechne (a + b ) 2 — (a — b ) 2 auf zwei Arten.

14 . Bestimme die Werte von (a + b ) 2 und a 2 + b 2 für
a = 7 ( - 4 ; 21 ; - 4j ; und b = 3 (11 ; - 21 ; - f ; - 2,8).
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15 . (2 — x) 2 — (2 — x) (2 + x) + (2 + x) 2

16 . (4a + 3x) 2 + 3 (4a + 5x) (3a — 2x ) — 4 (3a — 4x) 2

17 . (3a 2 — 16ax ) 2 — 4ax (7a — 2x ) (5x — 4a ) — 6a 2 (2x — 3a) (2x + 3a)
18 . 17a 3 - 36 ( lla + 7b ) (7b - 11a) + 2a ( lli - 7a) 2 -

- (nb - 7a) (Ub - 6a) - 3b
19 . x 4 + 2x 2 (x — l ) 2 — 3x (x 2 — x + l ) (x + 1 ) — (x 2 — 2x + 1 ) (1 + x) (l — x)
20. (x 2 - y 2) 2 + x (x - y ) 2 (x - y) - y (x - y) 2 (x + y ) + xy {x + 2y) (2x - y)
21 . (a + l ) 2 • 2a - a (a + 1 ) (1 - a) 2 + 2 (a - l ) (a + l ) 2 +

+ a (a 2 + 2a + l ) (a — 1 )
• 22 . [(x + y ) + z] [(x + y) + z] - [(x - y ) - z] [(x - y) - z] +

+ \iy - x) - z\ [(t - x) - z] - [x + (y + z)] [_(y + z) + x]
23 . [(fa - p ) + l ] [(| a - | Ä) + l ]
24 . Welche Formeln werden durch die Abbildungen veranschaulicht ? Begrün¬

dung !

a) b)

a - b -«

“ V ”
a - b

c) b

a - b a - b
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. 25 . (ffl + ! £ ) (! b - f a) - $ b + la ) 2 - (f b - f a) 2

• 26 . 2 (0,4 — 0,3x ) 2 — 0,4 (1 + 2x) 2 — 3 (x — 0,2) (0,2 — x)
27. Quadrieren zweistelliger Zahlen :

Beispiel :
34 2 = (4 + 3 • 10) 2 = 4 2 + 2 • 4 • 3 • 10 + 3 2 • 100, also:

16 (16 = Quadrat der Einerziffer) 6 an , 1 gemerkt
240 (24 = doppeltes Produkt der Ziffern) 4 + 1 = 5 an , 2 gemerkt
900 ( 9 = Quadrat der Zehnerziffer ) 9 + 2 = 11 j an

34 2 = 1156 1156
Berechne so die Quadrate der Zahlen :
a) 59 ; 26 ; 94 ; 73 ; 88 ; 47 ; 65 ; 31
b) 2,9; 6,7 ; 0,48 ; 0,038; 550 ; 0,00093

41 . 82 . 54 . 71 . 1 . 8 . 670 . 0,85
D 325 195 535 995 23 5 1,2 5 0,044

28 . Umwandlung eines Produkts in die Form (a + b ) (a — b ):
Beispiele:

53 • 47 = (50 + 3) (50 - 3) = 50 2 - 3 2 = 2500 - 9 = 2491
24 • 26 = (25 - 1 ) (25 + 1 ) = 25 2 - l 2 = 625 - 1 = 624

Berechne so folgende Produkte :
a) 29 - 31 ; 65 - 55;
b) 99 - 101 ; 498 - 502 ;
c) 3,8 - 42 ; 0,74 - 6,6;

29 . Das Quadrat einer Zahl mit der Einerstelle 5 , zum Beispiel 65 , berechnet
Peter folgendermaßen :
»6 • (6 + 1 ) = 6 • 7 = 42 ; 25 angehängt ; Ergebnis 4225.«
Er erhält also den richtigen Wert von 65 2 .
Prüfe dieses Verfahren an einigen ähnlichen Beispielen . Beweise, daß man
nach dieser Methode das Quadrat jeder Zahl mit der Einerstelle 5 berech¬
nen kann . (Tip : Schreibe die Zahl als Summe mit 5 als zweitem Summan¬
den und wende die Formel für (a + b) 2 an .)

23 • 27 ;
243 • 257 ;
58 62 .
75 855

72 - 88
1012 - 988
49 . 49
58 62

Gleichungen und Ungleichungen

30 . (2x + 3 ) (2x - 3) = (2x + 3) 2

31 . (x + 3) 2 + 2 (2x + l ) (2x - 1 ) = (5 - 3x) 2

32 . (x — 3) 2 — x 2 = 3 - 3 (x + 2)
33 . (x + l ) 2 > (x + l ) (x - 1 ) + x + 7

34 . (x - l ) 2 ^ x 2 - 2
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35 . (x + 2) 2 — (x — 4) 2 ^ 2 (x — 4) + 9x
36. (x — 3) 2 + (x + l ) 2 + 3x + 5 < 2 (x — l ) (x + 1 ) + 2
37 . (x + l ) 2 - (x + 2) 2 = (x + 3) 2 - (x + 4) 2

38 . (x + 3) (x - 3 ) + (x + 3) 2 = (x - 3) (x + 3) + (x - 3 ) 2

39 . (2x - l ) 2 + x 2 = (3x + l ) 2 - (2x - 5) 2

40. x 2 — 1 + (x — l ) 2 + (x — l ) (x + 1 ) > 3x 2 — 2x
41 . Verkleinert man die Seiten eines Quadrats um je 10 m , so entsteht ein um

1,4 a kleineres Quadrat . Wie lang ist die Seite des ursprünglichen Qua¬
drats ?

42 . Die eine Seite eines Rechtecks ist um 5 cm größer als die andere. Die
Fläche ist um 64 cm 2 kleiner als die Fläche eines Quadrats , dessen Seite
um 4 cm größer als die kleinere Rechtecksseite ist . Berechne die Seiten des
Rechtecks .

43. Wenn in einem Quadrat die eine Seite um 2 cm verkleinertund die andere
um ebensoviel vergrößert wird , so erhält man ein ebenso großes Rechteck
wie bei Verkürzung der einen Quadratseite um 4 cm und Verlängerung der
anderen um 10 cm . Wie groß ist die Quadratseite ?

44 . Der Inhalt eines Rechtecks, dessen Seiten sich um 11 cm unterscheiden,
ändert sich nicht , wenn man die größere Seite um 6 cm verkleinert und die
kleinere um 5 cm vergrößert . Berechne Länge und Breite des ursprüngli¬
chen Rechtecks .

45 . Wird bei einem Würfel die erste Kante um 2 dm vergrößertund die zweite
um ebensoviel verkleinert , während man die dritte beibehält , so entsteht
ein Quader , dessen Volumen um 12 dm 3 kleiner ist als dasjenige des Wür¬
fels . Wie lang ist die Würfelkante ?

46. Bei einem Quader ist die zweite Kante um 1 cm größer als das Doppelte der
ersten , die dritte um 2 cm kleiner als die zweite . Der Rauminhalt dieses
Quaders ist um 5 cm 3 kleiner als das vierfache Volumen eines Würfels ,
dessen Kante mit der ersten Quaderkante übereinstimmt . Berechne die
Kanten des Quaders .

47 . Vergrößert man bei einem Würfel alle Kanten um 1 dm , so nimmt seine
Oberfläche um 0,3 m 2 zu . Wie groß ist der Rauminhalt dieses Würfels ?
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7.3 Quadrate von Aggregaten
Analog zum Binom als zweigliedrigem Aggregat a + b bezeichnet man mit dem Kunst¬
wort Trinom ein dreigliedriges Aggregat der Form a + b + c . Quadriert man dieses
Trinom , so erwartet man 3 - 3 = 9 Glieder , von denen man wie beim Quadrat eines
Binoms hoffen kann , daß sich einige zusammenfassen lassen . Wir probieren es :

(a + b + c) 2 = (a + b + c) (a + b + c) =
= a 2 + ab + ac + ab + b 2 + bc + ac + bc + c 2 =
= a 2 + b 2 + c2 + lab + lac + Ibc .

Das Ergebnis des Quadrierens eines Trinoms entspricht dem Ergebnis des Quadrierens
eines Binoms , also der 1 . binomischen Formel ; man erhält nämlich die Summe aller
Quadrate und die Summe aller möglichen doppelten Produkte .
Besteht nun ein Aggregat aus mehr als 3 Summanden , so ergeben sich beim Quadrieren
wieder alle Quadrate und alle möglichen doppelten Produkte , da jedes Produkt mit
zwei verschiedenen Faktoren genau zweimal auftritt . Die Pfeile sollen es dir zeigen:

a - b
f \

(a b c -\- . . . z) (a b -\- c . . . + z) =
v._ s

a ■b

= a 2 + b 2 + c 2 + . . . + z 2 + lab + lac + . . . + laz + Ibc + . . .

Kommen im Aggregat nicht nur Plus- , sondern auch Minuszeichen vor , dann muß
man bei der Bildung der doppelten Produkte die Vorzeichenregeln beachten . Wir zei¬
gen es dir an

(a — b + c) 2 = (a — b + c) (a — b + c) =
= a 2 — ab + ac — ab + b 2 — bc + ac — bc + c 2 =
= a 2 + b 2 + c 2 — lab + lac — Ibc .

Wir fassen die gewonnenen Erkenntnisse zusammen in

Satz 193 . 1 : Das Quadrat eines Aggregats besteht aus der Summe der Quadrate
aller seiner Glieder und der Summe aller möglichen doppelten Pro¬
dukte unter Berücksichtigung der Vorzeichenregeln.

Beachte: Damit du kein doppeltes Produkt vergißt , mußt du systematisch Vorgehen.
Du beginnst am besten vorne und arbeitest dich nach hinten durch , wie es dir
die Pfeile zeigen:

1 . Schritt

(ü -\- b ~\- c -\- d -\- . . . )
/

2 . Schritt
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Dazu ein

Beispiel :
( — \ x + 2y — xz — A) 2 =
= %x 2 + 4y 2 + x 2 z 2 + 16 — 6xy + 3 x 2 z + I2x — Axyz — 16y + 8xz

Kehren wir zurück zu (a + b + c) 2
. Wir hätten das Quadrat auch anders als oben

ausrechnen können , nämlich mit Hilfe der 1 . binomischen Formel . Dazu müßte man
beispielsweise a + b mittels einer Klammer zusammenfassen :

(a + b + c) 2 = [(a + b) + c] 2 =
= (a + b) 2 + 2 (a + b ) c + c2 =
= a 2 + lab + b 2 + lac + 2bc + c 2 =
= a 2 + b 2 + c 2 + lab + lac + 2bc .

Einen kleinen Vorteil bringt dieses Verfahren , da wir keine 9 Produkte ausrechnen
mußten . Aber Satz 193 . 1 ist natürlich am schnellsten .
Einen großen Vorteil bringt der Trick des Klammerns aber , wenn man ein Produkt von
zwei Aggregaten dadurch auf eine Form bringen kann , bei der sich die 3 . binomische
Formel anwenden läßt .

Beispiel 1 :
(2a + 3 b + 4c) (2a + 3 b — 4c) =
= [(2a + 3 b ) + 4c] [(2u + 3b ) — 4c] =
= (2a + 3b ) 2 - (4c) 2 =
= Aa 2 + \ 2ab + 9b 2 — 16c 2 .

Beispiel 2:
(2a — 3 b + 4c) (2a + 3 b — 4c)
Das sieht recht schwierig aus ! Zwar kann man in der zweiten Klammer 3b — 4c
zusammenklammern . Was soll aber in der ersten Klammer geschehen? Wir
bräuchten ebenfalls (3 b — 4c) , aber ein Minuszeichen davor .
Satz 106 .2 macht ’s möglich :
(2a — 3 b + 4c) (2a + 3b — 4c) =
= [2a — (3b — 4c)] [2a + (3b — 4c)] =
= (2a) 2 - (3b - 4c) 2 =
= 4a 2 — (9b 2 — 2Abc + 16c 2) =
= 4a 2 — 9 b 2 + 2Abc — 16c 2

Aufgaben

1 . a) (u + v + w) 2 b) (u + v — w) 2

2 . a) (3x + 5y + \ )
2

c) (2x — 3y + Az) 2

e) (5x2 - 3y - l ) 2

g) (0,8x — 1,2y + 1,6xy ) 2

c) (u — v — w) 2 d) ( — u — v — w) 2

b) (2x + 3y + Az) 2
d) (0,7a — 1,16 — 0,9c) 2
f) ( lfß — 2§Z>+ l^c) 2
h) (0,lx — 0,2xy + 0,3y) 2

i
*

i
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3 . a) (u + v + w) 2 + (v — u + w) 2
b) (2a — 4b + 6c) 2 — ( — 8 a + b + 2c) 2
c) 100 (0,4r + 0,3s - \ t ) 2 - 4 (2a + \ b - 2,5 c) 2

4 . Stelle die Formel für (a + b + c) 2 durch eine Zeichnung dar .
5 . a) (5m — 8v + 6w — 2 )

2
• c) (17a 2 — I4ab + 13Z>2 — Wb) 2

• e) (W ~ \ b 2 - la + W
6 . a) (m + v + w ) (u + v — w)

c) (u — v + w) (u + v — w)
e) (ix - f y + z) (\ x + fy - z)

7 . a) (a + b + c) (a + b — c) b) (a

b) (3x 3 — 2x 2 + x — l ) 2
• d) ( l,2x 2 + 1,3jF — 0,25x — 0,15y) 2

b) (m + v + w) (u — v — w)
d) (2p + q + 7 r) (2p + q - lr )
f) (0,5a — \ b — 2c) (2c — \ b — 0,5a)
b — c) (a — b + c)

8 . a) ( 1 — x — y ) ( l + x + y ) b) ( 1 — x + x 2
) ( 1 — x — x 2)

• 9 . a) (7a — 9x + llj 2) (7a + 9x — ll _v
2)

b) (6x 2 - 13 / + 15 xj0 (6x 2 - 13y 2 - 15 xy)
• 10. a) (9ax 2 — 11a2 + 4x 4) (9ax 2 + 11a2 — 4x 4)

b) (9ax 2 + 11 a 2 + 4x 4) (9ax 2 - 11 a 2 + 4x 4)
• 11 . a) (a + b + c + d) (a + b — c — d)

b) (1 — x — x 2 + x 3) ( 1 — x + x 2 — x 3)
• 12 . a) (8x 3 + lx 2y + 6xy 2 — 5^ 3) (8x 3 + lx 2y — 6x_r 2 + 5y 3)

b) (19a6 b - 4aAb 2 - 5 a 2 b 3 - m A) (19a6 b - 4a 4 b 2 + 5 a 2 b 3 + 18 bA)
• 13. a) (a — 2b + 2c — x) (a — 2b — 2c + x)

b) (x 2 - 2 + y 2 - b ) (x 2 - y 2 - b + 2)
• 14. a) (b 2 — x + a 2 — y) (a 2 + y — x — b 2)

b) (x + 1 — x 2 — x 3) ( l — x 2 + x 3 — x)
c) ( 1 — a — x — ax ) (a — x + ax + 1 )
d) (a 3 + ab 2 — a 2 b — b 3) (b 3 — ab 2 — a 2 b + a 3)

* * 7 . 4 Höhere Potenzen von Binomen

In manchen komplizierteren Rechnungen kommen nicht nur Quadrate , sondern auch
höhere Potenzen von Binomen vor . Auch für sie kennt der Mathematiker Formeln , die
den Umgang mit ihnen erleichtern . Betrachten wir zunächst die dritte Potenz (a + b ) 3 .
Nach Definition der Potenz müßtest du (a + b ) (a + b ) (a + b ) rechnen , was zunächst 8
Summanden lieferte . Geschickter ist die Anwendung der 1 . binomischen Formel :

(a + b ) 3 = (a + b ) (a + b ) 2 =
= (a + b ) (a 2 + 2ab + b 2 ) =
= a 3 + 2a 2 b + ab 2 + a 2 b + 2ab 2 + b 3 =
= a 3 + 3 a 2 b + 3 ab 2 + b 3 .

Statt der 8 Summanden enthält das Ergebnis nur noch 4!
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Auch für (a — b) 3 können wir eine solche Rechnung durchführen . Einfacher geht ’s ,
wenn wir in dem Ergebnis von eben ( — b) statt b setzen:

(a — b) 3 = (a + ( — b )) 3 = a 3 + 3a 2 ( — b) + 3 a ( — b ) 2 + ( — b ) 3 =
= a 3 — 3a 2 b + 3ab 2 — b 3 .

Wegen des häufigen Vorkommens lohnt es sich, diese Ergebnisse als Formeln auswen¬
dig zu lernen :

Satz 196 . 1 : (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3

(a — b) 3 = a 3 — 3a 2 b + 3ab 2 — b 3

Beispiel :
(3x - 5y ) 3 = Tlx 3 - 3 ■9x 2 ■ + 3 ■3x • 25j 2 - 125j 3 =

= 21x 3 — 135x 2 y + 225 xy 2 — 125j>3 .

Durch eine räumliche Darstellung läßt sich die erste dieser Formeln auch mit Quadern
veranschaulichen .

b

Abb . 196 . 1 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b3

Die Mathematiker gaben sich natürlich nicht mit den Formeln für die Quadrate und
die dritten Potenzen zufrieden und untersuchten auch höhere Potenzen des Binoms
(a + b ) . Diese höheren Potenzen lassen sich schrittweise auf niedrigere zurückführen
und damit berechnen . Wir führen dies für (a + b ) 4 einmal vor :

(a + b ) 4- = (a + b ) (a + b) 3 =
= (a + b ) ( la 3 + 3a 2 b + 3ab 2 + 1Z>3) =
= la 4 + 3a 3 b + 3a 2 b 2 + lab 3 +

+ ia 3 b + 3a 2 b 2 + 3ab 3 + lb 4 =
= U 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + lb 4 .
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Das Koeffizientenmuster 1 — 3 — 3 — 1 wiederholt sich beim Ausmultiplizieren , um
eine Stelle verschoben , in der zweiten Zeile. Das neue Koeffizientenmuster 1 — 4 — 6
— 4 — 1 ergibt sich somit recht einfach , indem man nebeneinanderstehende Koeffizien¬
ten des vorhergehenden Musters 0 — 1 — 3 — 3 — 1 — 0 addiert . Setzt man dieses Ver¬
fahren fort , so erhält man eine dreieckige Anordnung von Koeffizienten . Sie ist auch
als Arithmetisches Dreieck oder PASCAL -STlFELsches Dreieck bekannt .

1
(a + b ) 1 1 1 la + 1b
(a + b)2 1 2 1 1a 2 + 2ab + 1b2

(a + b) 3 13 3 1 la 3 + 3a 2 b + 3ab 2 + 1b 3

(a + h )4 1 4 6 4 1 la 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + 1 bA

(a + b) 5 1 5 10 10 5 1 la 5 + 5a4 h + 10a 3 b 2 + 10a 2 b 3 + 5ab * + 1b

Das Arithmetische Dreieck war bereits den Indern des 2 . vorchristlichen Jh .s und den
Arabern des 11 . Jh .s bekannt . Die früheste erhaltene Darstellung dieses Dreiecks ent¬
hält die Untersuchung der Arithmetischen Regeln der Neun Bücher von Yang Hui aus
dem Jahre 1261 , die auf den chinesischen Mathematiker Qia Hsian [sprich : Tschia
Hsien] (um 1100 ) zurückgeht (sieheAbbildung 197 . 1 ) . Die erste gedruckte Darstellung
in Europa schmückt das Titelblatt des Neuen Rechenbuchsvon 1527 des Peter Apian
(1495 - 1552 ) (siehe Abbildung 197 .2) . Benannt ist das Arithmetische Dreieck nach dem
deutschen Mathematiker Michael Stifel (1487 - 1567) und dem französischen Mathe¬
matiker und Philosophen Blaise Pascal (1623- 1662) , die die interessanten Eigenschaf¬
ten dieses Dreiecks erforscht haben .

*©© ©©
*©©©©©

■©©©©©©

Abb . 197 . 1 Das Arithmetische Drei- Abb . 197 .2 Das Arithmetische Drei¬
eck des Yang Hui (1261) eck des Peter Apian (1527)

Aufgaben

1. a) (2x + l ) 3 b) ( 1 - 3a) 3

d) (3a — 5b) 3 e) ( - a + 4b) 3
c) (2a + 5b) 3

f ) ( — a — 2h) 3
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2. a) (0,1 + uf b) ( - l,2r + 5s) 3 c) ( 1\ a + l^ö) 3

3. a) (jab + f a) 3 b) (fx — 2 fx 2) 3 c) (0,2x — 0,5j ) 3

4 . a) (xy2 + 2x 2y) 3 b) (fa 3 Z>2 — \ a 2 b 3) 3

5 . Berechne (a + b) 5 auf zwei Arten, einmal als (a + b) (a + b 'f und einmal als
(fl + b) 2

(a + bf .
6 . a) (2a + l ) 4 b) (x — 3j>) 5 c) (x — j ) 7

7 .5 Die Kunst des Faktorisierens

7 .5 . 1 Einfaches Ausklammern

Beim weiteren Eindringen in die Mathematik im Laufe der nächsten Jahre
wirst du feststellen , daß man mit Produkten viel mehr anfangen kann als mit
Summen . Daher mußt du Bescheid wissen , wie man Aggregate in Produkte
verwandeln kann . Dieses Verwandeln nennt man auch Faktorisieren eines
Aggregats .
Die einfachste Art des Faktorisierens kennst du bereits als eine Anwendung
des verallgemeinerten Distributivgesetzes (Satz 90 .2) in der Form des Aus-
klammerns . Wir vertiefen deine Kenntnisse durch einige

Beispiele :
1) 6uv + 3 u 2 — 9uw =

= 3m • 2u + 3 m • m — 3m • 3 w =
= 3u (2v + u — 3 w) .
Der Faktor 3 m wurde ausgeklammert .

2) Man kann auch Aggregate ausklammern :
3 (fl + b ) — a (a + b ) + Ab 2

{a + b ) = (a + b ) (3 — a + 4b 2) .

3) Manchmal muß man ein Glied des Aggregats erst in ein Produkt
umschreiben , indem man den Faktor 1 hinzufügt :
3 a 2 + a =
= a ■ 3a + a ■ 1 = Trick : a = a ■ 1
= m (3m -|- 1 ) .

4) Mit Gewalt kann man jeden gewünschten Faktor ausklammern ! Wir
wollen aus dem Aggregat fx 2 — Ixy + x den Term ausklammern ,
damit in der Klammer keine Brüche mehr Vorkommen .
fx 2 — Ixy + x =
= yx • 2x — "ßX ■ 21 y J- yx • 3 =
= | x (2x — 2 \ y + 3 ) .
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5) Besonders aufpassen mußt du , wenn du in Potenzen von Aggregaten
ausklammerst .

(8a z b — 12a) 2 =
= (4a [2ab — 3 ] ) 2 =
= (4a ) 2 (2 ab — 3 ) 2 =
= 16a 2

(2a6 — 3) 2 .

Mit einiger Übung kannst du bald auf die 2 . Zeile unserer Beispiele verzichten ,
indem du im Kopf jeden Summanden durch den auszuklammernden Term
dividierst . Das mußt du aber üben ! Dazu dienen die

Aufgaben
1 . a) 3st — 4s 2 + s

c) 4a 2 - 8a2 + 12a 5

6**9

2 . a) | a + §6
c) I u - ^ v

b) ax 2 + bx + x
d) t ay + Töby - £ y
b) l | x - fj ; + l,2z
d)

3 . Faktorisiere so , daß in der Klammer keine Bruchzahl mehr steht .
a) | x + ib
c) \ r + js — t
e) 1

1 1 " 1

2 h 2

b) 0,4a — 0,5b
d) — 0,01m + 0,1 v + w
f) — 1,2a + §6 — 1

4 . a) abc — acd b) a 2 b + ab 2 — a 2 b 2

c) x 4 — x 3 + x 2 d) u 2 v 3 + uv4 — uv 5

5 . a) 6uv + 6uw — 3uz b) 3^p — 6jp 2 q
c) — ix 4 — ^f -x 3 d) 1 §§m2 i; 3 z — 2xju3 vz 5

6 . Berechne im Kopf nach geeigneter Faktorisierung ,
a) 13 - 9 + 13 b) 7 - 18 + 13 - 18
c) 2,9 - 18 - 1,9 - 18 d) 27 2 — 17 - 27
e) §§ - 83 + 2§§ - 83 f) 13 2 + 3 - 13 — 16 - 13

• 7 . a) 108xy — 162x + 216j^
b) 2jxy 4 z 2 — 2x 2y 2 z 2 — 4-fx 3 y 2 z + X\ xy 2 z 2 — 3| x 2

^ 3 z

• 8 . a) 21m4 — lu 3 + 23§m 2
b) l,3x 3 y + 2,35x 2y 2 - 0,9xy 3

9 . Klammere 3 aus .
a) 18a2 — 2736 b) 9x + 4
c) 1 — 12x d) a — 1
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10 . Klammere — 1 aus .
a) — 3 a 2 + b 2 b) 3 — 5x c) — 1 — 8 ab d) 3a 2 b + 5x

11 . Klammere —§ aus .
a) ja — 4jb b) 8a — f c) — 1 — f b d) 2x + 3y

12 . a) u (v + w) — v (v + w) + w (v + w)
b) x {a + b — c) — y {c — a — b ) + z (a — c + b )
c) m (2a — 3b ) + n (3b — 2a) — p { — 3b + 2a)
d) u (2e — f ) — 3v (4e — 2,f) + vr (3/ — 6e)

13 . a) jx (a — b ) — jjy (a — b ) b) 3,2a (x — 3 ) + 4,86 (x — 3)
c) I4x (3y + 2z) — 28y (3y + 2z)

14 . a) 12a 2 b 3 (Ix — 1 ) + %4ab A (lx — 1 )
b) 6a 3 (1 — x) — 21ab 2

{x — 1 )
c) %x 2y (3x — y ) + 7xy z (y — 3x)
d) 1,2a 2 (x — y ) + 8,4ab (x — y ) — 0,72b 2 (y — x)

15 . a) x (a + b ) + a + b b) x (a — b) + a — b
c) x (a — b ) — a + b d) x (a + b ) + a — b

16 . a) (2^x - y ) (2\ a - b ) - ( l^x + y) (f a - b )
• b) (3,la 2 b + c) (7,3ab 2 — c) + {3,1 a 2 b + c) (2,lab 2 + c)

17 . a) 4x 2y 2 z — 6xyz 2 + I0x 2y 2 z2
b) 3a 8 6 1 V 3 + 27a 7 Z>15 c 9 - 18 (aZ>c) 11

c) a 3 ( - b ) * - ( - a)4 b 3 + ( - a) 5 ( - b ) 5

d) (x + y ) 2 (x 2 + y 2) - (x + y ) (x 3 + y 3)

7 .5 .2 Mehrfaches Ausklammern

In manchen Fällen gelingt ein Faktorisieren auch dann , wenn kein allen Glie¬
dern gemeinsamer Faktor vorhanden ist , indem man zunächst aus geeigneten
Teilaggregaten einen gemeinsamen Faktor heraussetzt .
Dabei gibt es oft mehrere Möglichkeiten des Vorgehens .

Beispiele :
1) Faktorisiere ax — ay + bx — by .

1 . Möglichkeit : 2 . Möglichkeit :
ax — ay + bx — by = ax — ay + bx — by =

= x (a + b ) — y (a + b ) =
= (a + b ) (x - y)

= a {x - y ) + b (x - y)
= (x — y ) (a 4- b )
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2) au + b — bv + av — bu — a =
= {au + av — a) + {b — bv — bu) =
= a (u + v — \ ) + b {\ — v — u) =
= a (u + v — 1 ) — b (u + v — 1 ) =
= {u + v — l ) {a — b )

3) 6a 2 b — 3 ab 2 — 2a + b =
= 3ab {2a — b ) — 2a + b —
= 3ab {2a — b) — {2a — b) =
= {2a - b) {3ab - 1 )

Aufgaben

1 . a) ax + ay + bx + by
c) ab + ac — bx — cx

b) xs — ys + xt — yt
d) xz — yz — ax + ay

2 . a) 2ux + 3vy + 2uy + 3vx
c) x 2 + ax + ab + bx

b) ab + c + b + ac
d) x 2y 2 + x 2 + y 2 + 1

3 . a) mx + ny + nx + my + rx + ry
c) ar + br + er — a — b — c

4 . a) ax — cx + 2a + 2b + bx — 2c
c) x — y — xz + yz — l + z

b) ap — bp — aq + bq + az — bz
d) eh + fh — gh — ei —fi + gi

b) pu — pv + ru — qv — rv + qu
d) 1 a a 2 -F a 2 “F a^ -F a ^

5 . a) 3,3 ax + 3,3 ay — 4,4bx — A,4by
b) 0,7pq — 0,^9pr + 0,7qs — 0,9rs

• c) 4,2uv + 3,5uw + 2w + 2,4v
• d) — 8ax 2 + 9bx 2 — 3,6by2 + 3,2ay 2

6 . a) lax + 3ay — jbx — ^by
b) az2 + f axz + jbz 2 + j ^bxz
c) 0,2xyz — 0,3uxy — 0,6y 2 z + 0,9uy2

d) uv 3 — iuv 2 + §av 3 — §av 2

7 . a) ax — 7bx + 4ay — 28by
b) 12ax — 2ay — 18bx + 3by
c) x {a 4- b — c) — y {a + b — c) + {x - y)
d) y {a — b — c) + x {b + c — a) + {x - y)

• 8 . a) {a + 2b) (3 ux — vy) — {uy — 3vx) {a + 2b )
b) {1xz — 3y) {3a + 4b) - (3a + 4b) {yz - 21 x)
c) (2st - 3ru) { 5p - q) + (3 rt - 2su) {5p - q)
d) {Id - 2) (10eg - 2fh) + (2 - Id ) (5 eh - 4fg)
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9 . a) 64au + 36eu + 64ax + 36ex — 44bu — 44 bx
b) 24ap + 54aq — 36bp — 81 bq + 60 cp + 135c#

t c) \ ay 2 - \ by 2 + %ay - \ a - 2by + jb
• d) \ r 3 sv ~ jör 2 s 2 v + ^ r 2 s 2 u — \ r 3 su + \ rA u — ^ r4 r

7 .5 .3 . Faktorisieren mit Hilfe der binomischen Formeln

Schreibt man die binomischen Formeln von Satz 187 . 1 in der Form
a2 + 2ab + b 2 = (a + b ) 2 bzw . a 2 — 2ab + b 2 = (a — b ) 2 bzw.
a 2 — b 2 = (a + b) (a — b) ,
so kann man gewisse Aggregate mit ihrer Flilfe auch faktorisieren .

Beispiel 1:
u 2 ~y \ 2u -f- 36 —
= u2 + 2 ■ u ■ 6 + 6 2 = (u + 6)2

I III
a a b b

Beispiel 2:

16x4 - 8 x 2 y 3 + y 6 =
= (4x 2) 2 — 2 • 4x 2 • y 3 + (y 3 ) 2 = (4x 2 — y 3) 2

a a b b
Merke : Bestimme zunächst die beiden Glieder , deren Quadrate im gegebenen
Ausdruck Vorkommen , und prüfe anschließend , ob ihr doppeltes Produkt mit
dem entsprechenden Glied des gegebenen Aggregats übereinstimmt .

Beispiel 3:

(3x + ly ) 2 — 25x 2 =
= (3x + ly ) 2 — (5x) 2 = (3x + ly + 5x) (3x + ly — 5x) =

a b
= (8x + ly ) (ly — 2x)

Eine Differenz zweier Quadrate läßt sich stets in ein Produkt verwandeln .
Dagegen ist dies bei einer Summe zweier Quadrate nicht möglich . * Bei
3 . Potenzen dagegen lassen sich sowohl die Differenz wie auch die Summe
faktorisieren . Es gilt nämlich :

Produktzerlegungen von der Form x 2 + y 2 = 1 ■(x 2 + y 2) = i (2x 2 + 2y 2) = . . . usw ., die immer möglichsind , interessieren in diesem Zusammenhang natürlich nicht .



7 .5 Die Kunst des Faktorisierens 203

Satz 203. 1 : a3 + b 3 = {a + b) (a2 — ab + b2)
a3 — b3 — (a — b) (a2 — ab + b2)

Die Richtigkeit dieser Formeln siehst du sofort ein, wenn du die rechten Seiten
ausmultiplizierst (Aufgabe 204/16) .

Beispiel 4:

0,021x 3 + 1000 / = (0,3x + 10p ) (0,09x 2 - 3xp + 100/ )

Aufgaben

1 . a)
c)
e)

2 . a)
c)
e)

x 2 — 8 x + 16 b) u 2 — 6uv + 9v 2

4z 2 + 4pz + p 2 d) 49p 2 — 112pq + 64 /
9p 4 + 30p2 + 25 f) x 10 + 4x 5 + 4

a 2 + a + i b) — 84a + 9a 2 + 196

0,16x 6 - 0,24x 3 p + 0,09p 2 d) 2,25 - 3x + x 2

0,36r 2 — 4,8rs + \ 6s 2 f) 4x 2 + 52x + 169

• 3 . a) f s 2 + + 25t2

c) 1,21 + ö + Yii
4 . a) 625 - 196a2

D - 2 - 1/ 2 — 25 . ,2c ) 16 “ 36 v

5 . a) 2,25 - 0,0256t 2

c) 400x 2y 2 - \ 2 \ u 2 v 2

b)
d)

— | uv + ^ v 2b) fsu
d) l,96x 4 — 2,8x

1 - 81x 2

0,49a 2 — 0,0\ b 2

36 L
2 + l

b)
d)

2S9P
2 — 3,61 /

169 „ 4
324 x 1

• 6 . a) 20x 2 — 45p2

c) 175p 4 — 252 /

7 . a) 6a 2 + 12a6 + 66 2

c) fl 3 + 2fl 2 + fl

b) 3,6x 2 - 4,9p2

d) 48 (xp) 2 — 147w2 r 2

b) 7x 2 — Ix + l |
d) 3x 7 - 12x 5 + 12x3

8 . a) fl4 — b A b) x 6 — p 6 c) x 8

9

- p 8

d) x4 - 2x 2p 2 + p4 e) 81 — 72m2 + 16m 4 S f ) 64x 6 - 1

9 . a) fl 2 + 2ab + b 2 - c 2 b) 4x 2 - 20x + 25 - 9p2

v 2 1
c) 36a 2 + 48 ab + 166 2 - 81c2 d) 196 u 2 - Auv + — - —

e) a 2 + 2ab + b 2 — x 2 + 2xy — y 2 ! f) 16u 2 — v 2 + 2v — l

10 . a) (2a + 3Z>) 2 - 16a2 b) (2a - 3b) 2 - 16a 2

c) I 602 — (2a + 3b) 2 d) 16a 2 — (2a — 3b) 2
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11 . a) (13x + 14+ )
2 - (13x - 14y ) 2

b) (0,1 * — 0,2j ) 2 — (0,1 * + 0,2p ) 2

c) (! * + ! T) 2 - (! * - fy ) 2

d) { \ lx - 2\ y ) 2 - (\ lx + 2\ y ) 2

12 . a) a 2 — b 2 — c 2 + 2bc b) x 2 — y 2 — 2yz — z 2

• c) 2,89a 2 — 0,64 £ 2 + 2,086c — 1,69c 2

• d) 3,24x 2 - 2,56j 2 - 3,52yz - 1,21z 2

• 13. a) 2a 2 — 2b 2 + a 2 x — b 2 x b) 2m 2 x — &n 2 x + 3m 2y — I2n 2y
c) \ 2a 2 x — 2b 2y — 3b 2 x + 8a 2y
d) 36p 2 x 2 — 9p 2y 2 — 16q 2 x 2 + 4q 2y 2

• 14 . a) 9a 2 x — 9 a 2y — 12abx + 12aby + 4b 2y — 4^ 2 *
• b) \ a 2 x 2 — \ a L xy + \ a 2y 2 — ^6 2 x 2 + \ b 2 xy — \ b 2y 2

15 . Verwandle , wenn möglich , in ein Produkt .
a 2 x 2 ■a 2y 2 ~ b 2 x 2 + b 2y 2a)

c) — a 2 — 2ab — b 2 + 1
e) u 2 + uv + v 2

g) 4a 2 - 5b2

b) 36p 2 + 2lpq + 64q 2

d) a 2 — 2ab + b 2 — 1
1) a 4 + Z>4

h) a 2 + 2 ab + b 2 + 1

16 . a) Beweise Satz 203 . 1 .
b) a3 — Sb 3 c) 243 + 216a 6
e) frfa 3 + 2^ Z>3 f ) 0,001 * 3 + y 3 z6

d) ffsx 3 - 1
g) 0,729a 3 — lOOOOOOr3

7 .5 .4 Faktorisieren durch Probieren

Wenn du a 2 + 5a + 6 in ein Produkt verwandeln sollst , so erscheint dir dies
sicherlich auf den ersten Blick als aussichtslos . Erstaunlicherweise kommt
man hier aber mit einigen kleinen Überlegungen und einem geschickten Pro¬
bieren zum Ziel .
Da das Aggregat mit a 2 beginnt und aus 3 Gliedern besteht , versuchen wir den
Ansatz

a 2 + 5a + 6 = (a □ ?) (a A ?) .
Die Symbole □ und A stehen dabei für + oder — .
Die für die Fragezeichen zu wählenden Zahlen müssen , miteinander multipli¬
ziert , 6 ergeben . 6 läßt sich mit natürlichen Zahlen als 2 • 3 , aber auch als 1 • 6
schreiben . Wir versuchen es mit 2 • 3 und setzen also an
a 2 + 5a + 6 = (a □ 2) (a A 3) .
Von den 4 möglichen Kombinationen + + , H- , — |- und - scheiden die
beiden mittleren aus , da wir sonst — 6 für das letzte Glied erhielten . Die Kom -
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bination + + führt zum richtigen mittleren Glied 5a . Also gilt die Faktorisie¬
rung
a 2 + 5a + 6 = (a + 2) (a + 3) .
Hätten wir 6 als 1 ■ 6 zerlegt , so ergäbe (a □ 1 ) (m A 6) für keine der 4 Rechenzei¬
chenkombinationen das mittlere Glied 5a . Man muß also ein Gespür dafür
haben ! Bei a 2 + 5a — 6 führt nämlich gerade 6 = 1 - 6 zum Ziel:

a 2 + 5a — 6 = (a — 1 ) (a + 6) .

Eine derartige Faktorisierung durch Probieren wird natürlich nicht immer
gelingen . Beim Versuch hilft

Regel 205. 1 : Bei Trinomen der Form x 2 + bx + c mit ganzen Zahlen b
und c zerlegt man c in ein Produkt zweier natürlicher Zah¬
len und versucht , die Rechenzeichenkombination so zu be¬
stimmen , daß sich die richtigen Rechenzeichen und das
mittlere Glied ergeben .
Hat das Trinom die Form ax 2 + bx + c , so klammert man
erst a aus .

Beispiel: \ x 2 — 6x + 9 = f (x 2 — 8x + 12) = f (x — 2) (x — 6)

Aufgaben

1 . a) x 2 + Ix + 12
c) x 2 + llx + 10

2 . a) u 2 — 13m + 40
c) z 2 — 10z + 9

• 3 . a) x 2 — 5xy + 4y2

c) a 2 — 9 ab + 18 £ 2

• 4 . a) x 2 + 2x — 48
c) x 2 — 2x + 48

5 . a) 2 .x 2 + 16x + 30
c) \ x 2 + 6x + 9

• 6 . a) 3x 2 — 39x + 108
c) — hx 2 + 9x — 18

. 7 . a) - 0,4z 2 + 2,8z - 4,8
c) W + Ix + 8

b) x 2 — x — 12
d) x 2 + 9x — 10

b) a 2 — 20a + 96
d) x 2 x 4

b) y 2 + yz — 56z 2

d) m2 — 4uv — 21v 2

b) x 2 — 2x — 48
d) x 2 + 2x + 48

b) 7x 2 - 14x - 105
d) — x 2 + 12x — 35

b) hx 2 — 3x + 9
d) 0,1m 2 — 1,1m + 1

b) hp 2 - pq ~ ^ q
2

d) \ y 2 + 25y + 120
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