UNIVERSITATS-
BIBLIOTHEK
PADERBORN

®

Algebra

Barth, Friedrich
Munchen, 1996

urn:nbn:de:hbz:466:1-83493

Visual \\Llibrary


https://nbn-resolving.org/urn:nbn:de:hbz:466:1-83493

5
=
=
-
Q
:
5
=

Ehrenwirth













Algebra
7

Friedrich Barth - Reinhold Federle
Rudolf Haller

Ehrenwirth

Viel lernen und nachher viel wissen,
das ist keine Kunst. ‘
NESTROY

Bestell-Nr. 02644-3




el

Wdam-NRies-Preis
1993

Autoren und Verlag wurden fiir die Lehrbiicher
Algebra 7 bis Algebra 10
mit dem Adam-Ries-Preis 1993 ausgezeichnet,
der vom Adam-Ries-Bund e.V.
Annaberg-Buchholz verlichen wird.

5., verbesserte Auflage 1996

ISBN 3-431-02644-3
Alle Rechte bei Ehrenwirth Verlag GmbH, Miinchen
Zeichnungen: Eduard Bohm
Umschlag: Gert Krumbacher
Satz und Druck: Tutte Druckerei GmbH, Salzweg-Passau
Printed in Germany 1996d




ok

Inhalt
Vorwort
1 Grundbegriffe der Algebra
Woher kommt und was ist Algebra?

1.1
1.2 Variablen
**7ur Geschichte der Variablen

Aufgaben

1.3 Terme
Aufgaben

1.4 Definitionsmenge eines Terms
Aufgaben

Zur Geschichte unserer Fachausdriicke

2 Die rationalen Zahlen und ihre Rechengesetze
2 Die Zahlenmenge B reicht nicht aus!
Aufgaben
22 Einfithrung der negativen Zahlen
**Zur Geschichte der Fachworter positiv und negativ
Aufgaben
2:3 Zahl und Gegenzahl, absoluter Betrag
Aufgaben
2.4 Addition und Subtraktion von rationalen Zahlen

2.4.1 Definition der Addition
2.4.2  Eigenschaften der Addition in @

Aufgaben
2.43  Die Subtraktion in Q
Aufgaben
2.5 Anordnung der rationalen Zahlen
230 Definition der Anordnung in @
2.5.2  Monotoniegesetz der Addition
Aufgaben
2.6 Multiplikation und Division von rationalen Zahlen

2.6.1 Definition der Multiplikation in @

2.6.2  Eigenschaften der Multiplikation in @
Aufgaben

2.6.3  Division in @
Aufgaben

2.6.4 Allgemeine Vorzeichenregeln fiir Produkte und Quotienten
Aufgaben

|

10
12

&

15
17
21
2
27

29

45
50
53
54
58
60
60
61
62
63
63
67
69
71
74
75
78




5

| s B
B B |
—

el

2.7

lad

Inhalt

Die Rechengesetze fiir die rationalen Zahlen
Das Distributivgesetz

Aufgaben

Die Monotoniegesetze der Multiplikation
Aufgaben

Zusammenstellung der Rechengesetze
Aufgaben

**Zur Geschichte der negativen Zahlen

%)
(oo

LS ]
el

(9%}
L
—

L
Lo
bl

R
bo bo b b

b

a2
b b

‘.f_‘.
-

S

(S

Lh

— —
- T e T T e T L T e e e S S ————

Einfache Termumformungen

Aquivalente Terme
Aufgaben

Potenzen

Aufgaben

Umgang mit Klammern
Rechenzeichen und Vorzeichen
Aufgaben

Plusklammern

Aufgaben
Minusklammern
Aufgaben

Faktor bei der Klammer
Aufgaben
Schachtelklammern
Aufgaben

Gleichungen

Aussagen und Aussageformen
Definitionen

Aufgaben

Existenzaussagen und Allaussagen
Aufgaben

Losen von Gleichungen

Gleichung als Information tiber eine unbekannte Zahl
Ein historisches Beispiel

Die Unbekannte

Aufgaben

Die Gleichung als Aussageform
Die Probe

Aufgaben

Was kann eine Information leisten?
Aufgaben

78
78
80
80
82
83
84
85

87

88

94

935

99
101
102
103
103
104
105
107
107
108
110
111

116
117
118
119
119
119
120

122

e |
d

I
b

,_.
L

[ o I o I S B L ]
[ -

Lad

i

R — I — _..,__--—7_—-——*



Inhalt 5]

4.2.2  Aquivalenzumformungen von Gleichungen 125

4.2.2.1 Aquivalenz von Gleichungen 125

Aufgaben 126

4.2.2.2 Aquivalenzumformung durch Termersetzung 126

Aufgaben 128

4.2.2.3 Aquivalenzumformung durch Addition von Termen 128
Aufgaben 13

4.2.2.4 Aquivalenzumformung durch Multiplikation mit Termen 131

Aufgaben 132

4.2.2.5 Mehrfache Aquivalenzumformungen 133

Aufgaben 134

#¥42.2.6 Die Aquivalenzumformungen des AL-CHARIZMI oder was

bedeutet Algebra? 138

4.2.3  Produkte mit dem Wert null 139

**Zur Geschichte der Null 140
Aufgaben 141

5 Ungleichungen 143

5.1 Was ist eine Ungleichung? 144

52 Aquivalenzumformungen von Ungleichungen 145

5.3 Lasen von Ungleichungen 148

= [ntervalle 148

Aufgaben 150

5.3.2  Kleiner- und GroBer-Ungleichungen 151

Aufgaben 152

5.3.3  Hochstens- und Mindestens-Ungleichungen 152

Aufgaben 153

5.3.4  Doppelungleichungen 154

Aufgaben 156

5.3.5  Ungleichungen mit Absolutbetrigen 156

Aufgaben 158

6 Textaufgaben 159

6.1 Wie lost man Textaufgaben? 160

Aufgaben 164

6.2 Wichtige Typen von Textaufgaben 166

6.2.1 Bestimmung von Zahlen 167

Aufgaben 167

6.2.2  Bestimmung des Alters 168

Aufgaben 169

6.2.3  Prozentaufgaben 170

** Zur Geschichte des Prozentbegriffs 171




6 Inhalt

6.2.4  Mischungsaufgaben 173
6.2.5  Leistungsaufgaben 176
6.2.6  Aufgaben aus der Geometrie 178
7 Schwierigere Termumformungen 181
7.1 Multiplikation von Aggregaten 182
Aufgaben 184

i Binomische Formeln 187
Aufgaben 188

73 Quadrate von Aggregaten 193
Aufgaben 194

**7.4 Hohere Potenzen von Binomen 195
Aufgaben 197

75 Die Kunst des Faktorisierens 198
s Einfaches Ausklammern 198
Aufgaben 199

7.5.2 Mehrfaches Ausklammern 200
Aufgaben 201

753 Faktorisieren mit Hilfe der binomischen Formeln 202
Aufgaben 203

7.5.4  Faktorisieren durch Probieren 204
Aufgaben 205
Register 206
Bildnachweis 208

Bildnisse von Mathematikern
Al-Charizmi 10.1 — Boethius 33.2 — Cardano 171.1 — Descartes 121.1 — Euler 102.1 — Hamilton
90.1 — Hankel 86.2 — Letbniz 33.1 — Peacock 86.1 — Stevin 186.2 — Tartaglia 186.1 — Viéte 16.1
Wallis 149.1 — WeierstraB 43.1 — Wolff 40.1




Vorwort

Die Algebra ist das unbedingt nétige Handwerkszeug fiir nahezu den gesam-
ten Bereich der Mathematik. Aus diesem Grund ist eine sorgfiltige und inten-
sive Beschiftigung mit der Algebra fur jeden unerldBlich, der sich in der Ma-
thematik betitigen will. Im vorliegenden Buch wird versucht, den Algebra-
stoff der 7. Jahrgangsstufe sowohl schiilergerecht als auch sachgerecht darzu-
stellen. Wir wollen die Mathematik nicht zu einer Rezeptsammlung verkom-
men lassen. Also mull das Buch vielfach recht ausfithrlich und manchmal auch
anspruchsvoll sein. Vorgefiihrte Beispiele sollen die Sitze und Definitionen
bekommlicher machen. Die vielféltigen geschichtlichen Exkursionen zeigen
die Entwicklung der Ideen und Begriffe in einem weiteren Rahmen und inter-
essieren vielleicht auch Schiiler, die der reinen Mathematik nicht so wohl-
gesonnen sind.

Nach einer kurzen ersten Einfithrung der fundamentalen Begriffe Variable
und 7erm erweitern wir zuerst den aus der 6. Klasse bekannten Zahlenbereich
der positiven Briiche zur Menge der rationalen Zahlen, damit die dann folgen-
den Termumformungen ohne Einschrinkung behandelt werden kénnen. Wir
legen Wert darauf, dal auch Bruchzahlen in den Beispielen und Aufgaben
auftreten, damit die Schiiler das Arbeiten mit ihnen nicht wieder verlernen.
Der Umgang mit absoluten Betrdgen und Potenzen wird getibt, weil er fir
spater grofle Bedeutung hat. Das Losen von Gleichungen und Ungleichungen
auch im Zusammenhang mit Textaufgaben soll dann zeigen, daB die Algebra
recht niitzlich sein kann, wenn es gilt, verwickeltere Probleme zu untersuchen.
Die in Kleindruck gesetzten Abschnitte sind als Ergdnzung und Vertiefung
gedacht und konnen bei Zeitnot weggelassen werden.

Die ungewdhnlich groBe Anzahl der Ubungsaufgaben bietet dem Lehrer Aus-
wahlmoglichkeiten und dem Schiiler zusitzliche Ubungsméglichkeiten. Al-
gebra lernt man nur durch viel eigenes Uben!

Wir haben uns bemiiht, nicht nur triviale, sondern auch schwierigere Aufga-
ben anzubieten, die zum Teil auch mehr Miihe machen werden. Nur so schérft
sich der Geist mit der Zeit, und nur so erreicht der Schiiler die Sicherheit, die er
spater braucht. Die Aufgaben sind dem Schwierigkeitsgrad nach gekennzeich-
net, aullerdem wird eine kleine Auswahl als Pflichtstoff herausgestelit.
Grundlage des vorliegenden Buchs ist die Algebra 1 von SEEBACH-FEDERLE,
die von der Konzeption her Pate gestanden hat und aus der viele bewihrte
Aufgaben libernommen wurden.

Miinchen, im September 1985 Die Verfasser




Kennzeichnung der in Bayern nicht allgemein verbindlichen Stoffgebiete

Fakultative Abschnitte sind durch zwei vorangestellte Sterne (**) gekennzeichnet.

, Kennzeichnung der Aufgaben

=] Rote Zahlen bezeichnen Aufgaben, die auf alle Fille bearbeitet werden sollen. » bzw.
$ usw. bezeichnen Aufgaben, die etwas mehr Ausdauer erfordern, weil sie entweder

- schwieriger oder zeitraubender oder beides sind. Je mehr Punkte, desto mehr Miihe!

: Zitiert werden die Aufgaben unter Angabe der Seite und der Nummer. So bedeutet

| 18/10 die Aufegabe 10 auf Seite 18.

Numerierung von Definitionen, Sitzen, Abbildungen und Tabellen

Die Zahl vor dem Punkt gibt die Seite an, die Zahl nach dem Punkt numeriert auf jeder
Seite. Abb.14.3 bedeutet beispielsweise die 3. Abbildung auf Seite 14.
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Titelblatt der éltesten erhaltenen arabi-  Liber maumeii filii moysi alchoarismi de
schen Handschrift von al-Kitab al-much-  algebra et almuchabala. Ubersetzung des
tasar fi hisab al-dschabr wa-'l-muqabala  arabischen Textes ins Lateinische durch
des ABU ABDALLAH MUHAMMAD IBN GERHARD VON CREMONA (1114-1187),
Musa AL-CHARIzMI (um 780-nach 847) um 1360 in Frankreich geschrieben, auf-
von 743 anno Hegirae = 1342 anno Do- bewahrt in der Universitétsbibliothek
mini, aufbewahrt in Oxford von Cambridge (Mm. 2.18, folium 65r)




1 Grundbegriffe der Algebra

**1.1 Woher kommt und was ist Algebra?

ABU ABDALLAH MUHAMMAD IBN MUSA AL-CHARIZMI®, zu deutsch » MUHAMMAD, Va-
ter des ABDALLAH, Sohn des MosES, aus Choresmien stammend«, war Astronom und
Mathematiker. Unter dem Kalifen** AL-MA’MUN, der von 813 bis 833 in Bagdad
regierte, wurde AL-CHARIZMI — so wollen wir diesen Mann immer nennen — Mitglied
des »Hauses der Weisheit«, an dem viele Gelehrte
arbeiteten. Man nimmt daher an, daf3 AL-CHARIZMI
um 780 geboren wurde. Und wenn die Geschichte
wahr ist, dal} AL-CHARIZMI einer der Astronomen
war, die, 847 ans Krankenbett des Kalifen AL-Wa-
TIQ gerufen, diesem auf Grund seines Horoskops
noch weitere 50 Lebensjahre voraussagten — der
Kalif starb nichtsdestotrotz 10 Tage spiiter —, dann
wissen wir, daBl AL-CHARIZMI erst nach 847 gestor-
ben ist.
Mehr aber wissen wir nicht iiber das Leben dieses
Mannes, der uns mehrere Biicher hinterlassen hat, &
darunter eines, das von vielen Menschen immer L3S AN NOPEIMU
wieder studiert wurde. Wie heiBt dieses Buch? Und
was steht in diesem Buch geschrieben? AL-CHARIZ-
M1 selbst gibt uns im Vorwort seines Buches die Ant-
wort:
»lene Liebe zur Wissenschaft, mit der Gorr den
Imam AL-MA’MUN, Beherrscher der Gliubigen,
ausgezeichnet hat, [ ...] jene Giite und génner-
hafte Herablassung, die er den Lernenden er-
weist, jene Bereitwilligkeit, mit der er sie be-
schiitzt und unterstiitzt, wenn sie Licht in die
dunklen Dinge bringen und Schwieriges bewiiltigen — all dies hat mich ermutigt,***

Abb.10.1 4-Kopeken-Marke
der Post der UdSSR (1983) zum
1200. Jahrestag der Geburt AL-
CHARIZMIS

AL-KITAB AL-MUCHTASAR FI HISAB AL-DSCHABR WA-'L-MUQABALA
ein kurzgefaBtes Buch iiber das Rechnen durch Wiederherstellen und Ausgleichen

zu schreiben, dabei mich aber zu beschriinken auf das Anmutige und Hochgeschatz-
te des Rechenverfahrens fiir das, was die Leute fortwéihrend notwendig brauchen bei
ihren Erbschaften und ihren Verméchtnissen, bei ihren Teilungen, ihren ProzeBbe-
scheiden, ihren Handelsgeschiften und bei allem, womit sie sich gegenseitig befas-
sen, aber auch handelnd von der Ausmessung der Lindereien, der Herstellung von
* Sprich das z wie ein stimmhaftes s, das a betont und dunkel fast wie ein 0. — ABDALLAK bedeutet Knecht
Gottes.

Kalif (von chalifa = Stellvertreter) ist die arabische Bezeichnung fiir den Nachfolger des Propheten Mo-
HAMMED als weltlichem Oberhaupt der muslimischen Gemeinschaft: das geistliche Oberhaupt trigt den
Titel Imam, zu deutsch Vorbild. Den Kalifentitel fihrten zuletzt die tiirkischen Sultane, Seit dem 3. Mirz
1924 gibt es keinen Kalifen mehr.

Betone kitdb, muchtisar, hisib, mugdabala. - Das q ist ein tief in der Kehle gesprochenes k. — Mit dieser
Beschreibung wurde das Buch von spéteren Gelehrten zitiert, da ihm AL-CHARIZMI selbst keinen Titel
gegeben halt.

L
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1.1 Woher kommt und was ist Algebra? 11

Kanilen. der Geometrie und dergleichen anderm nach seinen Gesichtspunkten und
Arten

Im Vertrauen auf die gute Absicht, die diesem Buch zugrunde liegt, hoffe ich, daB
diejenigen, die nun bewandert in dieser Rechenkunst geworden sind, mich belohnen
werden, indem sie durch ihre Gebete mich der Uottlu. 1en Gnade teilhaftig werden
lassen.«

Wir wissen nicht, ob AL-CHARIZMI der erste war, der den Wortern al-dschabr und al-
mugabala einen mathematischen Sinn gab. Was bedeuten sie {iberhaupt? Dariiber strei-
ten bis heute die Gelehrten! Einig ist man sich wenigstens dariiber, daB das Substantiv
al-mugabala vom Verbum gabala kommt, das »einander gegentiberstellen« bedeutet.
Bei al-dschabr gehen die Meinungen aber weit auseinander. Viele Gelehrte vertreten
die Ansicht. daB ihm das Verbum dschabr zugrunde liege in seiner Bedeutung von »ein
ausgerenktes oder gebrochenes Glied wieder einrichten«. Wir werden spiter sehen,
welchen mathematischen Sinn diese beiden Ausdriicke bei AL-CHARIZMI haben (Seite
138). Andere Gelehrte weisen darauf hin, dal} dschabr auch die allgemeinere Bedeu-
tung von »zwingen« hat, Deswegen erklirt der Mathematiker AL-KARADSCHI
(+ 1019/29)*, al- dschabr sei die Kunst. eine unbekannte Zahl immer néher in das Reich
des Bekannten zu zwingen.

Einige Gelehrte vertreten eine ganz andere Ansicht. Sie sagen, bei den alten Assyrern
(um 1600 v.Chr.) habe es in der Mathematik bereits ein Wort gabru gegeben, das die
Bedeutung von »gleich sein, einander gegeniiberstellen« gehabt habe. Auf fverschlunge-
nen Wegen sei die Kenntnis von dieser Rechenkunst schlieBlich zu den Arabern gekom-
men und diese hitten gabru wie dschabr ausgesprochen und mit mugabala ibersetzt.
Dann sei die urspriingliche Bedeutung von al-dschabr vergessen worden und man habe
die oben angegebene Erklidrung vom »Einrichten gebrochener Knochen« erfunden.
Wenn das alles stimmt, dann war es die Absicht des AL-CHARIZMI,

ein kurzgefaftes Buch iiber das Rechnen mittels Gleichungen

zu verfassen.

Chiwa
SCHWARZES
MEER

Bagdad

Abb.11.1 Die Welt der Algebra bis zur Neuzeit

* Sein eigentlicher Name ist ABU BAKR MUHAMMAD IBN AL-HASAN AL-HASIR AL-KarapscH1. Auch er lebte und
wirkte in Bagdad.




17 | Grundbegriffe der Algebra

Natiirlich ist uns das Original nicht erhalten geblieben. Die élteste arabische Abschrift
davon, die wir kennen, stammt aus dem Jahre 743 der Hedschra, d. h. aus dem Jahre
1342 unserer Zeitrechnung. Und wie ist dieses Buch zu uns nach Europa gekommen?
Du weiBt vielleicht schon, daB im Jahre 711 die Araber fast ganz Spanien eroberten
und in Cordoba ein prichtiges Kalifat griindeten. Muslime, Christen und Juden lebten
dort in Eintracht zusammen und widmeten sich auch den Wissenschaften. So soll die
Bibliothek des Kalifen von Cérdoba an die 600000 Handschriften besessen haben! Die
Kunde von der Gelehrsamkeit der Araber drang, von den Teilnehmern an den Kreuz-
zugen bestitigt, ins christliche Europa, in dem um die Mitte des 11.Jh.s ein Auf-
schwung wissenschaftlichen Denkens einsetzte. Man interessierte sich wieder fiir die
Werke der alten griechischen Philosophen und Wissenschaftler und muBte feststellen.
daB sie vielfach nur mehr in arabischer Ubersetzung erhalten waren. Deshalb richtete
der Erzbischof RAIMUND (zwischen 1130 und 1150) in Toledo. das Koénig Alfons VI.
von Kastilien und Leon den Arabern 1085 entrissen hatte, eine grofBe Ubersetzerschule
ein, um die arabischen Texte ins vertraute Latein iibertragen zu lassen. In dieses Toledo
zoges auch den 1114 in Cremona geborenen GERHARD. Und die Stadt des Wissens und
der Biicher lieB ihn nicht mehr los; 1187 verstarb er dort. Uber 90 Werke aus der
Philosophie, der Astronomie, der Mathematik, der Alchimie und der Medizin hat er
aus dem Arabischen ins Lateinische iibersetzt. Darunter auch das in der arabischen
Welt berihmt gewordene Rechenbuch des AL-CHARIZMI. GERHARD VON CREMONA
nannte es
liber maumeti filii moysi alchoarismi de algebra et almuchabala.

Natiirlich besitzen wir auch von der Ubersetzung nicht das Original, sondern nur eine
Abschrift aus dem 14. Jh. GERHARD VON CREMONA schrieb fiir das arabische al-dschabr
einfach algebra, weil man damals ein so geschriebenes Wort wie »aldschebra« aus-
sprach*. Algebra et almuchabala wurden durch GERHARD in Europa zum Namen einer
mathematischen Wissenschaft, die man in Italien spéter auch Ars magna — Die groB3e
Kunst — nannte.

Im 14.Jh. verschwand das er almuchabala immer mehr, und 1577 erschien es zum
letzten Mal im Titel eines Buchs. Von da an hieB diese Kunst nur mehr Algebra. Zu
einer wahrlich groBBen Kunst wurde sie aber erst durch Frangois VIETE (1540-1603). der
1591 die Algebra nova, die neue Algebra begriindete, niimlich das Rechnen mit Buch-
staben. Und wenn du in den néchsten vier Jahren dieses Rechnen mit Buchstaben, also
die Algebra, erlernt haben wirst, dann wirst du dem Ziel niiher gekommen sein, das
VIETE mit seiner Algebra bereits erreicht zu haben glaubte, niamlich

Jedes Problem lésen zu konnen

NULLUM NON PROBLEMA SOLVERE.

1.2 Variablen

Im bisherigen Mathematikunterricht wurden schon oft sogenannte Platzhal-
ter verwendet. Wozu sie notwendig oder niitzlich sind. sollen die folgenden
Beispiele noch einmal zeigen.

* Ins Spanische und Portugiesische ging dieses algebra in der alten Bedeutung des Einrichtens von Knochen
ein; denn der Wundarzt heiBt in diesen Sprachen aleebrista,

By % -



1.2 Variablen 13

Beispiel 1:
Auf die Frage des Lehrers »Wie berechnet man den Rauminhalt eines
Quaders?« antwortet Hans: »Wenn die Kantenlingen z.B. Scm, 6 cm
und 7 cm sind, muB man Scm - 6cm - 7ecm = 210 cm® rechnen.«
Uli beantwortet dieselbe Frage so: »Man mul} das Produkt aus Linge,
Breite und Hohe des Quaders bilden, um das Volumen zu erhalten.«
Hans hat nichts Falsches gesagt, aber Ulis Antwort ist sicher besser!
Denn wihrend Hans nur an einem Beispiel die Volumenberechnung vor-
fithrt, gibt Uli die allgemeine Regel an, nach welcher diese Aufgabe fiir
jeden Quader gel6st werden kann.

Um diese allgemeine Regel uber-

sichtlich anschreiben zu konnen,

beniitzt man fiir die verschiede-

nen GroBen abkiirzende Be-

zeichnungen, z. B. [ fiir die Lin-

ge, b fiir die Breite, s fuir die Ho-

he und V fiir cllus Volumen. Abb.13.1
Dann lautet die Regel:

V=1[-b"h.

Quader

Beispiel 2:
Die Zahlen 2, 4, 6. 8, ..., also die Vielfachen von 2, nennt man bekannt-
lich gerade Zahlen*. AuBerdem wird wegen 0 = 0 - 2 auch null als gerade
Zahl aufeefaBt. Das ldBt sich kurz so zusammenfassen:
Fiir jedes ne N ist z = 2 - n eine gerade Zahl.
Man nennt die Angabe »z = 2 - n, ne Ny« das Bildungsgesetz fur die
geraden Zahlen.
Da man alle ungeraden Zahlen erhilt, wenn man zu jeder geraden Zahl 1
addiert (Abb. 13.2), gilt:
z=2-n+1, neN,, ist das Bildungsgesetz der ungeraden Zahlen.

+1 +1 +1
’/—\‘% /-"'_‘\‘% 1ml I
T i ¥ L}
0 1 2 3 4 5 6

Abb. 13.2 Gerade und ungerade Zahlen

* Die Griechen — belegt zum ersten Mal bei dem um 500 v. Chr. in Syrakus lebenden Komddiendichter
EPICHARMOS — nannten eine gerade Zahl &otioc (artios) = passend, angemessen, eine ungerade Zahl negiooog
(perissos) = diber das Gewdhnliche hinausgehend, iihrighleibend, was man vielleicht so verstehen kann, wie es
EukLiD im Buch vii seiner Elemente ausdriickt, ndmlich, daB die ungerade Zahl sich um 1 von der geraden
Zahl unterscheidet. Diese griechischen Ausdriicke finden ihre Entsprechung im Englischen durch even
— ausgeelichen, gerecht, und odd = sonderbar, itherzéhlig. Die Romer sagten seit Crcero (106-43 v. Chr.) par
und jmpar, was im Franzosischen als pair und impair weiterlebt und 1461 in einer Miinchener Handschrift mit
gleich und ungleich wortlich tibersetzt wurde. Vielleicht rihrt diese Bezeichnung davon her, dali sich eine
gerade Zahl in zwei gleiche Teile zerlegen LiBt. Diese Ausdriicke hielten sich bisins 18.Jh. Unsere Bezeichnun-
gen gerade und ungerade tauchen im 15. Th. auf und finden sich 1489 im Rechenbuch des Johannes WIDMANN
von EGER (um 1460-nach 1500).
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Beispiel 3:

Der Wert einer Summe dndert sich bekanntlich nicht, wenn man die
beiden Summanden vertauscht. So gilt z. B. 3 + 5 = 5 + 3. Aber einzel-
ne Zahlenbeispiele, und seien es noch so viele, kénnen diesen Sachver-
halt nicht allgemeingiiltig zum Ausdruck bringen. Bezeichnet man aber
den einen Summanden mit a, den anderen mit b, so gilt in jedem Fall
a+ b = b+ a. Das heiBt: Setzt man fiir @ und fiir b beliebig je eine Zahl
ein, so ist die erhaltene Gleichung immer richtig.

Die vorausgehenden Beispiele zeigen, wie man einen mathematischen Sach-
verhalt durch Verwendung von sog. Platzhaltern klar und einfach beschreiben
kann. Statt des umgangssprachlichen Wortes »Platzhalter« verwendet man in
der mathematischen Fachsprache den Begriff »Variable«*. Die Festlegung
von Fachwortern geschieht in der Mathematik durch Definitionen**. Wir
merken uns

Definition 14.1: Ein Zeichen, das man als Platzhalter fiir Zahlen verwen-
det, nennt man Variable.

Als Variablen werden in der Regel Buchstaben beniitzt. Diese Buchstaben
selbst sind natiirlich keine Zahlen. Wenn wir trotzdem von einer »Zahl x«
sprechen, so ist das ein kurzer Ausdruck fiir »die Zahl, die wir uns fiir die
Variable x eingesetzt denken«. Ebenso ist die »Summe aus den Zahlen ¢ und
b« eine Kurzform fiir »die Summe aus den fiir ¢ und b eingesetzten Zahlen«.
Auf Grund dieser Vereinbarung kann man also mit Buchstaben wie mit Zah-
len rechnen.

Rechenausdriicke, in denen Variablen vorkommen, erhalten erst dann die
Bedeutung von Zahlen, wenn man alle Variablen durch Zahlen ersetzt. Dabei
ist es wichtig zu wissen, welche Zahlen fiir eine bestimmte Variable eingesetzt
werden diirfen. Man nennt die Gesamtheit dieser Zahlen die Grundmenge fiir
diese Variable.

[m Beispiel 3 kann man sowohl fiir ¢ als auch fiir b jede beliebige Zahl einset-
zen, also jeweils B als Grundmenge beniitzen.*** Dagegen ist fiir die Variable
n des Beispiels 2 nur die Grundmenge N, sinnvoll.

In vielen Féllen konnen wir uns die Angabe der Grundmenge ersparen durch
die

Vereinbarung 14.1: Wenn nichts anderes angegeben ist, soll immer die
Menge aller uns bekannten Zahlen als Grundmenge
verwendet werden, zundchst also die Menge B.

* variabilis (lat.) = veriinderlich
** definire (lat.) = abgrenzen, niher bestimmen, festsetzen

= : - " M, : e .
*#* B ist die Menge aller Zahlen, die als Bruch — mit me M, und ne N darstellbar sind.
n

- — - —— —-——..-...-.-\._.‘
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Kommt in einem Rechenausdruck oder einer Gleichung bzw. Ungleichung
dieselbe Variable mehrmals vor, so muB man beim Einsetzen diese Variable an
jeder Stelle durch die gleiche Zahl ersetzen. So hat man etwa bei der im Beispiel
3 angegebenen Gleichung fiir die Variable a auf beiden Seiten dieselbe Zahl
einzusetzen; das Entsprechende gilt auch fiir 5. Selbstverstindlich kann man
aber fiir verschiedene Variablen auch die gleiche Zahl einsetzen.

Regel 15.1: Innerhalb desselben Rechenausdrucks bzw. derselben Glei- |
churig oder Ungleichung muB man beim Einsetzen gleiche

Variablen durch gleiche Zahlen ersetzen. 1
J

Man kénnte als Variablen an Stelle von Buchstaben noch sinnfélliger ver-
schiedene geometrische Figuren verwenden. Eine bestimmte geometrische Fi-
gur wiirde dann die Stel 1en bezeichnen, welche mit derselben Zahl besetzt
werden miissen; man spricht deshalb auch von Leerstellen. Zum Beispiel lieBe
sich die Gleichung a + b = b + a auch durch Abbildung 15.1 zum Ausdruck

bringen:
Qf s
Abb. 15.1 Kommutativgesetz der Addition

Man kann in die Kreise irgendeine Zahl einsetzen und ebenso in die Quadrate;
es ergibt sich stets eine richtige Gleichung. Ein Beispiel dazu zeigt Abbildung

152
O+&-0+0

Abb.15.2 Beispicl zum Kommutativgesetz der Addition

Das Zeichnen solcher gEOETlCIFl‘sL her Figuren erfordert einige Sorgfalt. Daher
beniitzt man als Variablen im allgemeinen doch lieber Buchstaben. Welche
Buchstaben man jeweils wihlt, ist an sich vollig gleichgiiltig. Es ist jedoch
iiblich, fiir punbekannte Zahlen«, d.h. solche, die erst aus Gleichungen oder
Ungleichungen bestimmt werden sollen, die Endbuchstaben x, y, z des Al pha-
bets zu verwenden.

Zur Geschichte der Variablen

Wir haben gesehen, daB es niitzlich und bequem ist, an Stelle von Zahlen Buchstaben
zu verwenden, wenn man allgemeingiiltige Zusammenhinge, also Gesetze ausdr ticken
will oder wenn man einen Rechenvorgang allgemein beschreiben will. Es ist aber gar
nicht so lange her, daB die Mathematiker das so machen. Friiher hat man ein BLJHpiL].
mit bekannten Zahlen vorgerechnet und dann gesagt, daB man es genauso machen
kénne, wenn andere Zahlen gegeben sind. Ein solches Vorgehen kann natiir lich gefdhr-
lich sein. Denn woher soll man wissen, ob die einmal vorgefithrte Rechnung immer so
geht?

So findet z. B. jemand, daB man ¢ kfl]"/L‘I’l kann, indem man im Zéhler und im Nenner
die gl u-:.ht. Ziffer 6 wegliBt: 2§ = 1. Auch bei 3 stimmt die Ru‘rel' chfa-tssen der 0
ergibt 4. Aber leider stimmt diese schone Regel schon nicht bei 4




16 1 Grundbegriffe der Algebra

Noch ein Beispiel: Jemand findet, daB 2* = 47 ist. Das Austauschen der Zahlen funk-
tioniert aber schon nicht mehr bei 2*; denn 23 ist 8 und damit von 3% = 9 verschieden.
Einer der ersten, der einen allgemeinen Zusammenhang durch Buchstaben ausdriickte,
war BEukrLip (um 300 v.Chr.), der in seinem beriihmten Geometriebuch Elemente
Punkte und Strecken mit Buchstaben bezeichnete.

Im 9. Jahrhundert n.Chr. schrieb in Byzanz der Philosoph und Mathematiker LEON
einen Kommentar zu diesem Geometriebuch, und da wimmelt es schon von Buchsta-
ben; siche Aufgabe 20/28, in der er ein allgemeines Rechengesetz der Algebra aus-
driicken will.

Durchgesetzt hat sich diese Idee aber nicht. Ein ige hundert Jahre spiter lernt der aus
Pisa stammende Kaufmann LEONARDO, genannt auch FioNaccr* (um 1170-nach
1240) auf seinen Reisen die arabische Mathematik kennen, die ihn so fasziniert. daf er
selbst Biicher liber Mathematik schreibt. Und dabei verwendet er gelegentlich Buch-
staben, um Rechengesetze zu beschreiben (Aufgabe 20/29).

Franciscr Vit

IN ARTEM ANALYTICEM
lSAGD GE

Seorlim exeulla ab Opere reffitnre Mathemarica
Analyfeos , Seu, Algebri noud.

TVYRONIS,

Aped TAmETIvM METTAYER Typographum Repium,

i 1 f g1

(4

Abb.16.1 Frangois VIETE, latinisiert zu Abb.16.2 Titelblatt von FrRANCISCUS

Franciscus VIETA (1540 Fontenay-le- VIETAS EINFOHRUNG IN DIE ANALYTI-

Comte/Vendée — 13.[?]2.[?] 1603 Paris) SCHE KUNST. eigens herausgenommen
aus dem Gesamitwerk der wiederherge-
stellten Mathematischen Analysis, nédm-
lich, der neuen Algebra. TOURS. bei -
METIUS METTAYER K6niglichem Drucker.
im Jahre 1591

* LeonaArDO nennt sich in seinen Schri ften filius Bonacci (Sohn des Bonatius), woraus Fibonaccei wurde. Manch-
mal nennt er sich auch Leonardo bigollo, Leonard der Télpel. — LEoNARDO verkehrte auch am Hofe Kaiser
Friedrichs II.

==
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Von da an tauchen immer hdufiger Buchstaben als Zeichen fiir Zahlen auf. Eine mathe-
matische Sprache, d.h. eine Rechenkunst mit Buchstaben, schuf aber erst Frangois
VIETE (1540-1603), dessen Name in latinisierter Form mit VIETA wiedergegeben wird.
Er verwendete erstmals systematisch sowohl Buchstaben an Stelle von Zahlen als auch
Zeichen fiir die verschiedenen Rechenoperationen wie Addition, Multiplikation usw.
Damit konnte er fiir die Summe aus A und B kurz A + B schreiben.

VIETE war Jurist und muBte ab 1564 als Sekretir des Hauses Sousist auch die damals
11jéhrige Tochter Catherine de PARTHENAY unterrichten. Diese interessierte sich so
sehr fur Astronomie und Mathematik, dal auch VIETE sich mit diesen Wissenschaften
beschaftigen muBte. Und die Mathematik lieB ihn nicht mehr los! Als Ergebnis dieser
Beschiftigung veroffentlichte er 1591, als er lingst Rat am Hofe des franzésischen
Konigs war, ein Buch unter dem Titel /n artem analyticem Isagoge, zu deutsch Einfiih-
rung in die analytische Kunst. In diesem Buch zeigt VIETE, wie man mit Buchstaben an
Stelle von Zahlen und unter Beniitzung von Rechenzeichen rechnen muB, um allgemei-
ne Erkenntnisse in der Mathematik zu finden. Die moderne Algebra war geboren! Zu
Recht nannte VIETE seine Rechenkunst Algebra nova, die neue Algebra.

Frangois VIETE verwendete nur grofle Buchstaben, was sicherlich nicht sehr bequem
ist. Thomas HARRIOT (1560-1621) lernte in der um 1594 verfaBten und erst 1839
gedruckten Ars logistica John NapiErs* (1550-1617) die Verwendung von kleinen
Buchstaben kennen. Im Druck erschienen sie dann in seiner erst 1631 postum** her-
ausgegebenen Artis analyticae praxis ad aequationes algebraicas resolvendas; dort fiihr-
te man auch ein, Formelbuchstaben vom gewohnlichen Text durch Kursivschrift zu
unterscheiden, wie auch wir es machen.

Aufgaben

1. Wie lautet die Berechnungsregel fiir den Flidcheninhalt A eines Rechtecks?
Schreibe sie mit Variablen an***

b

. Wie heilit die Formel (= Berechnungsregel) fiir den Rauminhalt V eines
Wirfels mit der Kantenlinge a?

3. a) Wie kann man allgemein aus der Kantenlinge a eines Wiirfels seine
Oberfliche S berechnen? Fertige eine Skizze an.****
b) Was ergibt sich, wenn man fiir @ die Werte 1 cm bzw. 2 cm bzw. 4 cm
bzw. 8 cm in diese Oberflichenformel einsetzt? Wie dndert sich dem-
nach S beim Verdoppeln der Kantenldnge?

4. a) Nach welcher Formel wird die Oberfliche S eines Quaders mit den
Kantenldngen a, b, ¢ berechnet? Zeichne einen Quader.
b) Berechnen § fiir die Quader mit den Kanten
1) 2¢cm, 3cm und 5cm; 2) 4dm, 6 dm und 10 dm;
3) 2.5dm, 1,25¢cm und 4 m.

* gesprochen 'neipia

* Betont auf dem u, seit dem 18.Jh. im Deutschen verwendet. Das lateinische postumis bedeutet zundichst

der letzte, dann das nach dem Tode des Vaters geborene Kind. Im tibertragenen Sinne wird postum z. B. bei

Biichern verwendet, wenn sie erst nach dem Tode des Autors erschienen sind. — Fiir postum findet man

auch die filschliche Schreibung posthum, die aus post = nachher und humare = beerdigen entstanden sein

diirfte.

Der Flicheninhalt einer Figur wird hiufig mit A bezeichnet; area (lat. und engl.) = Fliche

#*** Die Oberfliche eines Korpers wird hdufig mit § bezeichnet; superficies (lat.) = surface (engl., franz.)
= Oberfliche

&
»
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o 5. Wie verhalten sich
a) die Oberflichen, b) dic Rauminhalte
zweier Quader O und Q’, wenn entsprechende Kantenldngen sich wie 1 zu
2 verhalten, alsoa’' =2-a, b’ =2-b,¢' =2 c gilt?

6. a) Wielang muB ein Holzstab mindestens sein, damit man von ihm die fiir
das Kantenmodell eines Wiirfels notwendigen Stiicke abschneiden
kann, wenn a die Kantenldnge ist?

eb) Berechne die Gesamtlinge der Kanten fiir jeden der in Aufgabe 4.b)
angegebenen Quader. Stelle dafiir zunéchst eine Formel auf.

7. Welches Rechengesetz wird durch
»Fiir alle (1 e B und alle A e B gilt: [J - A = A - [« ausgedriickt?

8. Schreibe mit geometrischen Figuren als Variablen
a) das Assoziativgesetz der Addition,
b) das Distributivgesetz.

9. a) Hans behauptet, daB es gleichgiiltig ist, ob man a - 2 oder a? schreibt.
Dazu rechnet er Uli vor, daB sowohl fiir « = 0 als auch fiir a = 2
jeweils a - 2 und @? denselben Wert haben. Stimmt seine Rechnung?

b) Uli beweist Hans, daB die Gleichung @ -2 = a* trotzdem nicht all-
gemein gultig ist. Wie macht er das wohl?

10. a) Ubertrage die folgende Tabelle in dein Heft und ergénze sie, indem du
fur die angegebenen Werte von @ und b sowohl (a+b) - (a — b) als
auch a® — b* berechnest.

a ‘ b | (a+b) (a—b) | a*— b?
5 > |
14,5 3,7 '
3 1
i 5 ‘
1000 | 900

b) Istesnach den Ergebnissen von a) moglich, daBfiiralleae Bundbe B
die Gleichung (a + b) - (a — b) = a* — b? gilt? Folgt aus a) bereits, dal3
diese Gleichung allgemein gelten mul3?

11. Driicke folgende Sitze durch eine Gleichung aus:
a) Die Zahl x ist 9mal (3mal; 4,5mal) so groB3 wie die Zahl «.
b) Die Zahl y ist um 15 groBer als die Zahl .
¢) Die Zahl z ist um 12,3 kleiner als die Zahl ».
d) Die Zahl s ist ebenso groll wie die Summe der Zahlen u und v.
e) Die Zahl d ist gleich der Differenz der Zahlen « und v.
f) Man erhélt die Zahl x, indem man vom Produkt der Zahlen p und ¢ die
kleinste zweistellige Zahl abzieht.
g) Das Fiinffache der Summe aus ¢ und b ergibt die Zahl c.
h) Die Hilfte der Zahl u ist um 3 groBer als £ der Zahl v.
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12. Driicke folgende Gleichungen durch einen Satz aus:
a) x+ 12 =2y D)5 =03
ey z=u"n—1 d) (p+a9):(p—q) =1

13. Ein Kilogramm einer Ware kostet 5 DM. Welchen Preis y DM muB3 man
fiir x kg dieser Ware zahlen?

14. Ein Dutzend Eier kostet 3 DM. Welchen Betrag z DM muB man dann fiir
n Eier entrichten?

15. Ein Auto, das mit gleichbleibender Geschwindigkeit fihrt, legt in der
Stunde @ km zuriick. Der in b Std. zuriickgelegte Weg sei ¢ km. Driicke ¢
durch @ und b aus.

16. In der Prozentrechnung hast du folgende Zinsformel kennengelernt:
= K-ipst
36000
a) Welche Bedeutung haben hier die einzelnen Variablen?
b) Berechne den Zins, den ein Kapital von 24 500 DM bei einem Zinssatz
von 6% in 8 Monaten einbringt.

17. a) Welche Werte nnmmt z = 2-n — 1 an, wenn man fir » nacheinander
die natiirlichen Zahlen einsetzt?
b) Welche Grundmenge mull man fiir die Variable » wihlen, damit man
aus z = 2 -n— 7 alle ungeraden Zahlen erhalt?

18. Schreibe die durch 3 teilbaren natiirlichen Zahlen in allgemeiner Form an.

19. Wie kann man mit Hilfe einer Variablen alle
a) durch 4, b) durch 7, ¢) durch 12
teilbaren natiirlichen Zahlen darstellen? Welche Grundmenge mull man
fir die Variable wihlen?

20. Setze in x = 5 - n der Reihe nach die geraden Zahlen 2, 4, 6, ... ein. Wel-
che gemeinsamen Teiler haben alle so erhaltenen Zahlen?

e 21. Warum sind, wenn m, n e N, gilt, alle Zahlen der Form
a) 10-m+2-n, by n-(n+1)
durch 2 teilbar?

22. Wie kann man diejenigen Zahlen allgemein beschreiben, die
a) bei Division durch 4 den Rest 1 lassen;
b) bei Division durch 7 den Rest 5 lassen:
e ¢) bei Division durch 2 den Rest 1 und zugleich bei Division durch 5 den
Rest 2 lassen?

23. n sei eine Ziffer. Welchen Wert hat die zweistellige Zahl, deren erste Ziffer,
von links her, n ist, wihrend die zweite 3 (0; 8) heil3t?
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24. Gib den Wert derjenigen dreistelligen Zahl y an, deren erste Stelle n ist,
wiahrend an zweiter Stelle 5 und an dritter Stelle m steht.
Welche Zahlen kommen fiir #n bzw. fiir m in Frage?

25. Wennman in n-(n— 1) + 5 fiir n die natiirlichen Zahlen 1 bis 4 einsetzt,
erhidlt man stets eine Primzahl*, Priife diese Behauptung nach.
Kann man daraus folgern, daB sich fiir jede natiirliche Zahl # eine Prim-
zahl ergibt?

26. Weise nach, daB sich ausn-(n+ 1)+ 11 fuirne {0, 1, 2, ..., 9} stets eine
Primzahl ergibt. Erhélt man vielleicht fiir jedes n e N, eine Primzahl?

<
—J

/. Fasse die folgenden Angaben in Worte und entscheide jeweils, ob etwas
Wahres oder etwas Falsches gesagt ist:

a) 2¢B b) 0.5¢B ¢) 1eB

d NcB e) NgnB =N, ) NuB=N

o 28. LEON vON ByzANZ (9.Jh. n.Chr.) hat folgendes Gesetz gefunden:
Gegeben seien die Zahlen a, b, ¢. Das Produkt aus a, b sei d, das Produkt
aus b, ¢ se1 e, das Produkt aus a, ¢ sei f, das Produkt aus a, e sei g, das aus b,
f'sei h, das aus ¢, d sei i. Ich behaupte, dal3 die Zahlen g, A, i gleich sind. **
Schreibe die Behauptung LEONs nur mit den Buchstaben a, b und ¢ unter
Verwendung von Klammern und Malpunkten, die LEoN ja noch nicht
kannte.

e 29. LEONARDO VON PI1sA (um 1170-nach 1240) schreibt:

Die Zahl a sei1 in zwei Teile [ = Summanden] b, g geteilt. Man teile @ durch

b, das Ergebnis sei e; und man teile ¢ durch g, das Ergebnis sei 4. Ich

behaupte, dall das Produkt von d und ¢ gleich der Summe von d und e ist.

a) Schreibe die Behauptung LEONARDOs mit modernen Rechenzeichen
nur unter Verwendung der Buchstaben b und g.

b) Zerlege die Zahl a = 5 in zwei natiirliche Summanden und tiberpriife
fur alle moglichen Zerlegungen die in a) gefundene Formel. Berechne
dazu jeweils die linke Seite und die rechte Seite getrennt.

¢) Stimmt die Formel noch, wenn man 5 als 1% + 35 schreibt?

* Speustppos (um 350 v. Chr.), der Nachfolger PLatons (428-348 v, Chr.) in der Leitung der Akademie
bezeichnet eine Zahl, die nur durch 1 und sich selbst teilbar ist, als dordudc modtoc Ko datw
pritos kai asynthetos) = erste oder auch unzusammengesetzte Zahl, eine Zahl, die mehr als 2

¢ (arithmos

eiler hat, als
dp1dudc oedtepoc kai atvietog (arithmos dedteros kai synthetos) ==weite oder auch zusammengeselzie Zahl.
(Wir wiirden statt erste Zahl heute Zahl erster Art sagen.) EUKLID (um 300 v. Chr,) verkiirzte im Buch VII
seiner Elemente zu modrog doduds bew. givieros dotduoc, was ins Lateinische wortlich als numerus primus
baw. mumerus compositus iibersetzt wurde - so belegt bei BOETHIUS (um 480-524/525). Johann SCHEYBL
(1494-1570) versuchte in seiner Euklid-U bersetzung die Eindeutschung erste Zahi und wngeteilte Zahl, was
sich aber nicht einbiirgerte. Es entstand schlieBlichh das Lehnwort Primzahl und die Ubersetzune zusam-
mengesetzie Zahl. ;

** Natiirlich hat Leon griechische Buchstaben verwendet.
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1.3 Terme

Wie der vorausgehende Abschnitt gezeigt hat, arbeitet man in der Algebra
nicht nur mit Zahlen, sondern auch mit Variablen. Meistens sind Zahlen und
Variablen mit Hilfe der verschiedenen Rechenarten zu Rechenausdriicken zu-
sammengesetzt.

Beispiele: 2+ x, S (e

Gleichungen und Ungleichungen sind ihrerseits wieder aus solchen Rechen-
ausdrucken aufgebaut. Man kann somit sagen, dafl Zahlen, Variablen und
daraus gebildete Rechenausdriicke das Grundmaterial fiir die Algebra dar-
stellen. Daher ist es sinnvoll, fiir diese verschiedenen » Bausteine« eine einheit-
liche Bezeichnung zu verwenden; man nennt sie Terme*,

Beispiele:
1) Die Gleichung 5 = 2 + 3 enthdlt den Term 5 und den Term 2 + 3.
2) Die Gleichung x = y: 0,7 enthélt die Térme x und y:0.7.
3) Die Ungleichung 2-n+1 < 2-(n+ 1) enthélt die Terme 2-n+ 1
und 2-(n+1).

Die Verwendung der Bezeichnung »Term« regeln wir durch folgende

‘ Definition 21.1: 1. Jede Zahl ist ein Term. |
2. Jede Variable ist ein Term.

| 3. Summe, Differenz, Produkt und Quotient zweier |

| Terme sind ebenfalls wieder Terme. |

Teil 3 der Definition besagt (zusammen mit 1 und 2), daB jeder mit Hilfe der
vier Grundrechenarten aus Zahlen und Variablen gebildete Rechenausdruck
ein Term ist.

Nach unserer Definition sind die in den obigen Beispielen fiir Gleichungen
und Ungleichungen auftretenden Ausdriicke tatsichlich Terme: 5 ist eine
Zahl, also ein Term (Regel 1); da 2 und 3 Zahlen, also Terme sind, ist nach
Regel 3 auch 2 + 3 ein Term. x ist eine Variable, also ein Term (Regel 2); da
sowohl die Variable y als auch die Zahl 0,7 Terme sind, ist nach Regel 3 auch
»:0,7 ein Term. Usw.

Durch wiederholte Anwendung der 3. Termbildungsregel lassen sich aus gege-
benen Termen neue Terme aufbauen.

* Niheres zum Wort Term findest du auf Seite 180.
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Beispiel:
Gegeben seien die Terme 7}, =17, T, = a, 15 = b, T, = 25.
Daraus lassen sich z. B. folgende neue Terme bilden:

T }r. 1 17 T = T-; (o 1?'(}
B AT Hr— a ; _?:%_ b
=T 15=a-b T, =T,+T,=25+a

T 25+4+a . 17-a 25+a
Io=—= To=T —To= -
Lo iz @b 10 6 ) 5 o USW

Fiir die Schreibweise mehrfach zusammengesetzter Terme gelten natiirlich die
bekannten Vereinbarungen, an die wir erinnern in

Vereinbarung 22.1: »Klammern haben absoluten Vorrang.«
»Punkt geht vor Strich.«
»Bruchstrich ersetzt Klammern um Zahler und
Nenner.«

Beispiele:
1) {(40=2)u3 = 1053 = 420,
DN 42— 2-3=420—6=36,

-3
Pl e )

b+ 5

Beachte: Bel gemischten Zahlen werden ein Pluszeichen und Klammern weg-
gelassen. So bedeutet 53 - 3 ausfiihrlich (5 +3) - 3.

Im obigen Beispiel 2 gibt uns die »Punkt vor Strich«-Regel die richtige Rei-
henfolge der beiden Rechenschritte an. Wie mull man aber vorgehen, wenn
zwel »Punktrechnungen« aufeinanderfolgen, also z. B. 42 : 2- 3 oder 42 -2 : 3
usw.? Hiangt bei solchen Termen das Ergebnis von der Reihenfolge ab, in der
man die beiden Rechenschritte ausfiithrt, oder ist diese ohne Bedeutung? Letz-
teres trifft sicher im Fall @-b-¢ zu; denn nach dem Assoziativgesetz der
Multiplikation gilt ja (a- b) - ¢ = a- (b - ¢), so daB} es also gleichgiiltig ist, ob
man die erste oder die zweite Multiplikation zuerst ausfithrt. Um auch die
anderen Falle zu prifen, nehmen wir wie oben ¢ =42, =2 und ¢ = 3:

Beispiele:
1) (42:2):3=84:3=28
42:(2:3)=42-2=5%2=-20
22y 3 =243 =638 =
42:(2:3) =426 =7 |
SHR G il el = el = ] :
42:(2:3)=42:2=42-3=213 63 [ °
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Die Reihenfolge der beiden Rechenschritte kann also fiir das Ergebnis von
wesentlicher Bedeutung sein! Das gilt natiirlich erst recht, wenn mehr als zwei
Punktrechnungen aufeinanderfolgen. Damit solche Terme eindeutig definiert
sind, treffen wir die folgende

Vereinbarung 23.1: Sind aufeinanderfolgende Punktrechnungen nicht
nur Multiplikationen, dann muf3 der Reihe nach ge-
rechnet werden, es sei denn, daB3 durch Klammern
die Reihenfolge der Rechenschritte anders festgelegt
iSt.

Beachte, dal3 also Schreibweisen wie 42:2-3 oder 42-2:3 oder auch
(@+ b): c:d usw. zuldssig sind und die Berechnung von links nach rechts
ausgefiihrt werden mul3. Bei 42 : (2 - 3) ist hingegen zuerst das Produkt 2 - 3
zu berechnen, und dann erst 42 durch 6 zu teilen.

Fiir Produkte verwenden die Mathematiker oft eine vereinfachte Schreibwei-
se, bei welcher der Malpunkt weggelassen wird. Das ist jedoch nicht immer
moglich. Es gilt folgende

[ T T ] SR o

| Vereinbarung 23.2: Bei einem Produkt darf vor einer Variablen oder vor
I einer Klammer der Malpunkt weggelassen werden.
I :

Beispiele:
20— 2a. a:b=ab, 3-(a+b)=3(a+b),
(a+b)c-d=(a+b)cd, a:(b-c)=a:(bo).

Beachte: 1) Vor einem Zahlzeichen darf der Malpunkt nicht entfallen; vgl.
etwa 3 -5 im Gegensatz zu 35, oder 2 - 3 im Gegensatz zu 23.
2) 51x =(5+1)-x.
In der Algebra ist es wichtig, einen umfangreicheren Term richtig »lesen« zu
konnen, d. h., seinen Aufbau aus einfacheren Termen im Sinne der 3. Termbil-
dungsregel rasch zu iiberblicken.

Beispiel 1:
174+ x)-3—y:11
Dieser Term ist eine Differenz mit dem Minuenden (17 + x) - 3 und dem
Subtrahenden y : 11. Der Minuend ist ein Produkt aus einer Summe als
erstem und 3 als zweitem Faktor. Die Summe besteht aus den Summan-
den 17 und x. Der Subtrahend ist ein Quotient mit y als Dividend und 11
als Divisor.
Eine iibersichtliche Darstellung des Termaufbaus, den Termgliederungs-
baum, zeigt Abbildung 24.1.

Hmwwm Glls
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Term
DI F_I"FR_E’\JZ

S g

Minuend ~ Subtrahend
PRODUKT QUOTIENT _

1. Faktor 2. Faktor Dividend l Divisor
SUMME 3 y 11

|

1. Summand | ‘ 2. Summand

[

17

X

Abb.24.1 Termgliederungsbaum zu Beispiel 1

Beispiel 2:

[a:9 —3(b:7)]-5

Der Term ist ein Produkt mit der in eckigen Klammern stehenden Diffe-
renz als erstem und 5 als zweitem Faktor. Der Minuend ist der Quotient
aus a als Dividend und 9 als Divisor. Der Subtrahend ist das Produkt aus
3 und dem in runden Klammern stehenden Quotienten aus » und 7.

Bei solchen Beschreibungen kommt es darauf an, den Aufbau des Terms aus
den einzelnen Bausteinen, also den Zahlen und Variablen, genau und liicken-

los anzugeben. Es mulBB mdglich sein, aus der Beschreibung den Term zu re-

konstruieren. Diese umgekehrte Aufgabe, namlich einen gegebenen Text in
einen Term umzusetzen, tritt ebenfalls sehr hdufig auf und muB ebenso gut
beherrscht werden.

Beispiel 3:

In einer Summe ist der erste Summand ein Bruch. dessen Zihler die
Summe der Variablen « und v darstellt; sein Nenner ist die Differenz mit
u als Minuend und v als Subtrahend. Der zweite Summand ist die Diffe-
renz aus 9 und dem Fiinffachen von c.

Auch hier ist es niitzlich, sich zunéchst einen Termgliederungsbaum auf-
zuzeichnen. Der Term lautet:

L L

I

Beispiel 4:

Der Dividend eines Quotienten ist das Produkt aus der Zahl £ und der
Variablen x; der Divisor ist der Quotient aus 2 und x. Der Term lautet:
(F-x): 3 x)
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1.3 Terme
Aufgaben

1. Begriinde anhand der drei Termbildungsregeln, daB es sich bei den folgen-
den Beispielen um Terme handelt:

a) 3:5—10-10 b) 24:(6:2) c) (24:6):2
623 a b
d) -'%_1-“_1 ( T E) (_‘h = f) 2 (.\' f] f) (;} = (—) 2 {2(! = 3{')

2. Welche der folgenden »Schreibfiguren« sind keine Terme?
Begriinde jeweils deine Antwort.

2
a) =3 by a=> c)-—_—l d 5+(-31] e 2—7:(n—n
=
4w :
f) z(x+y) g) z-(x+)y h) T o —_% i) 24:6:2

3. Gegeben sind die Terme 7, =x+2und 75, = 3 — y.
S(..hlelb(.. die folgenden 1erme an und leur]cgc bei Produkten, ob der Mal-
punkt geschr‘ieben werden mulb:

1
8l dls - oy Lo hoaee) hnds ) :1;,‘- e) 2: T,

2

1
E
3
3

ol siliie L eyt i 7 (R G ) ) B BT
N (L) K - L) D 1:7,+1: L

4. Vereinfache die Schreibweise der folgenden Terme, indem du unnotige
Klammern und Malpunkte vermeidest.

a) 24+ (a-b) b) 2:(a: h} ) 2=lua-h)

d 7-5-(x+3) e) 7-x-(x+3) ) (x—2) (x+3):7
Dl 3 G

g) (10 - 3) 30k wdi) Lﬁ_r—( ﬂ (52
3y X7

b . S

i) (@-¢):b+ (a:;}—-) k) [u:(5:v)] +1 D u:[(5:0)+1]

T

5. Andere die Schreibweise der folgenden Terme so ab, daB3 kein Bruchstrich
mehr vorkommt.

Sx+1 B dop="1 5x
- b c) — d
a) 3 ) H— U ) y ) 3y
2x—10 2a¢ b 5¢ —I 1 2('
. 3 -l—y_ D b - 3 8) 8d d

6. Berechne und vergleiche:
a) 100:50:10-5 b) 100:(50-10)-5 ¢) 100:(50-10-5)
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. Berechne und vergleiche:

a) 12:6:(4-3) b) 12:(6:4)- ¢) 12:(6:4-3)

. Berechne und vergleiche:

a) 16:8:4:2 b) 16:8:(4:2) ¢) 16:(8:4):2 d) 16:(8:4:2)

. Zeichne jeweils den Termgliederungsbaum und beschreibe den Aufbau des

Terms in Worten:

a) (x+y)-5—-3 b) (x+p)-(5—3) ¢) x+(y-5—3)
d) x+y:-(5—3) e) (x+y- 3} =13 D w—v)—w
g) u—(v—w) h) 1:[a-(b:c)] D (1 a):- (b c)
\ X = % o
) [:(@-b)]:c k) - + 1) ( A ) 5|
S i o

10. Schreibe die folgenden Terme an:

11.

a) die Summe aus der Variablen z und dem Produkt von 7 und der Varia-
blen y;

b) die Differenz mit dem Produkt der Variablen # und v als Minuenden
und der Summe dieser Variablen als Subtrahenden:

¢) den Bruch mit dem Zihler 3 und der Summe aus dem Fiinffachen von p
und dem dritten Teil von ¢ als Nenner;

d) das Produkt aus der Differenz von 15 und ¢ als erstem Faktor und dem
Quotienten aus z und 5 als zweitem Faktor:

e) den Quotienten, dessen Divisor die Summe der Variablen x und y ist,
wahrend der Dividend das Produkt derselben Variablen ist:

f) den Quotienten mit der Variablen b als Dividenden und folgender
Summe als Divisor: der erste Summand ist das Produkt aus 7 und der
Differenz von 12 und dem Dreifachen der Variablen ¢; der zweite Sum-
mand heif3t 1.

Welcher Term wird durch folgenden » Baum« dargestellt?
a)

~ Term

PRODUKT

1. Faktor 2. Faktor
DIFFERENZ SUMME

=

—

Minumd ‘ Subtrahend I T Summ_and 2. Summand
BRUCH | x 1

Za h er —‘ Vumer
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b) Term
QUOTIENT
" Dividend Divisor
10 DIFFERENZ

‘Minuend Subtrahend

2 PRODUKT
1. Faktor 2. Faktor
3 | SUMME

; 1. Summand 2, Summamd‘
X 5

1.4 Definitionsmenge eines Terms

Die einfachsten Terme sind solche, die keine Variablen enthalten. Bei einem
derartigen Term wird es oft moglich sein, alle verlangten Rechenschritte aus-
zufiithren: in diesem Fall ist der Term selbst eine Schreibweise fiir eine be-
stimmte Zahl aus [B.

Wir fithren folgende Bezeichnung ein:

Definition 27.1: Jeder Term., der eine Zahl aus B darstellt, hei3t Zahlen-

term.

Beispiele:

1)

2)
3)

4)

)

5-—2

~

3 .

ist eine Schreibweise fiir die Zahl %, also ein Zahlenterm.

S

(3:2—%) 32 — 4 stellt die Zahl 0 dar, ist also ein Zahlenterm.

(3,75 — 43) : (3,25 — 2 - 13) ist kein Zahlenterm, da Division durch 0
nicht moglich ist.

[(51-49 + 1) —50-10] : 10 ist eine Schreibweise fur die Zahl 200,
also ein Zahlenterm.

(15 — 25) + 8 ist kein Zahlenterm; die verlangte Subtraktion ist nicht

ausfiithrbar.

6) 0- (1 —2) ist kein Zahlenterm, da die verlangte Subtraktion nicht

ausfithrbar ist.

Ein Term. der eine Variable enthilt. kann zu einem Zahlenterm werden, wenn
man fiir die Variable eine Zahl einsetzt.

1
E
i
5
3
=
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Beispiele:
1) Aus dem Term (2x —7) - x enls‘lml bei Ersetzung von x durch die
Zahl 5 der Zahlenterm (2-5—7): 5; er Im[ den V\elt 15. Dagegen

ergibt die Einsetzung x = 3 den lcrm (2-3—7)- 3, der kein Zahlen-
term 1st.
: G . : e
2) Aus — : entsteht bei der Einsetzung x = 7 ein Zahlenterm; dage-
% —0

gen liefert z.B. x = 6 oder x = 4 keinen Zahlenterm. Begriindung?

Fir einen Term T, der die Variable x enthilt, wrwendcl man hdufig die Be-
zeichnung T(.\) ;__esplmht,n »1 von x«. Der Term, der aus T'(x) z.B. beim
Einsetzen von 3 fiir x, kurz: fir x = 3, entsteht, heiBt 7'(3), gesprochen
»T von 3«.

Beispiele:

. X
) T =1

| 0
‘ rilt: = = T)=7—=" T{0)=
Dann gilt: 7(1) T (3) 211 (0) 0+ 1

2) T(2) = (22— 15) (2 + 3).
Dann gilt: T (2-2—15)(3+ 3);

2)
Sy =2 5— IS}(§+3J:
TED =(2- 15)(32: 2+ 3).

ok
Cad|ba
L | b

Welche der in den letzten beiden Beispielen angegebenen Terme sind Zahlen-
terme? Welche Zahlen aus B darf man in 7'(x) bzw. in T'(z) einsetzen, wenn
man einen Zahlenterm erhalten will?

Die Einsetzungen in die Variable eines Terms werden stets aus einer Grund-
menge G genommen, welche eine echte oder unechte Teilmenge von B ist.
Dabei interessiert man sich besonders fiir diejenigen Einsetzungen, die auf
einen Zahlenterm fihren.

Definition 28.1: Gegeben sei ein Term 7°(x) und eine Grundmenge G.
Die Menge D aller Zahlen a aus G. fiir die T'(a) ein
Zahlullum 15t, heilit Definitionsmenge von 7'(x) beziig-
lich der Grundmenge G. Kiirzer:
D = {alae G und T(a) ist Zahlenterm!

Beispiele:

Begriinde jeweils die Angabe tiber D.
1) T(x)=5—x)(x+5), G=N:dannist D = ,2. 354
2) T)=@—-3)4-y), G=B8B:

dannist D = {y|yeB und 3 < y < 4}.

Lh
NE
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4

Dty =it :
3) T(u) = -, G=0B; dannist D= G = B,

u+1

e D
4) TI'(s) = T G=DB;dannist D={}.
5) T(n) = (n—20)(20 —n), G = Np; dann ist D = {20}.

1
6) T(k)=k- e G=1{1,2,3,4,5,6}; dannist D = {4,5, 6}
(" e} ;

Enthilt ein Term mehrere Variablen, z. B. x und y, so schreibt man dafiir
T(x; y). Um daraus einen Term ohne Variablen zu machen, mu3 man eine
Zahl fiir x und eine Zahl fiir y einsetzen.

Beispiele:

1) T(x;y)=x+Q2y—3), xeB, yeb,
x=2und y = 5 ergibt T(2;5)=9;
x = 0,6 und y = 3,05 ergibt 7'(0,6; 3,05) = 3,7,
x =0 und y =1 ergibt keinen Zahlenterm.

2) T(a;b;c)=[a(b+c)+bla+c)] —c(a+b),acB, beB, ceb;
a=0,b=10 und ¢ = 5 ergibt 7(0;10; 5) = 0;
a=1,b=2,5und ¢ = 3,14 ergibt 7(1; 2,5; 3,14) = 5.

Aufgaben

1. Entscheide, welche der folgenden Terme Zahlenterme sind, und ermittle
gegebenenfalls eine moglichst einfache Schreibweise fiir diese Zahlen.

a) 2-17+(26+5)-13 b) (7-18 —8-17): 5

&) (5-25):(17:5—34)  d) (7-19—399:3): (3 — 3,14)
P=5 e P 2=35)17

@) Eemic Sy D 553

2. Gegeben ist der Term T'(x) = (2x — 5) : (16 — 2x). Setze fiir die Variable x
die angegebenen Zahlen ein und entscheide jeweils, ob ein Zahlenterm
entsteht. Gib dann die Zahl in moglichst einfacher Form an.

a) 5 b) § ¢) 1.5 d) 6% e) 8 £)7.99 g) 100

3. Bearbeite wie bei Aufgabe 2 die folgenden Beispiele:
a) T(y)=10-y— 10: y; Einsetzungen fiir y: 0; 3; 1; 2; 10
b) T(z) = (3z — 2) - (5z — 3); Einsetzungen fiir z: 1; 2; 3; 4, 5
n-(n—1 : :
) Tin)= : / - Einsetzungen fiir n: 0; 1; 2; 3; 4
' 112
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4. Bestimme beziiglich der Grundmenge N, die Definitionsmengen der fol-
genden Terme:

1
a) 1Ii(x)=x b) T(x)= = ¢) T(x)=x+3

1
d), Blx) —=x=3 BT ) — 3 —% ) T(x)=—

|

x
g) T(x)=2x+5 h) T(x)=2x—-5 i) T(x)=5-2x

5. Wie lauten die Definitionsmengen der Terme von Aufgabe 4, wenn man B
als Grundmenge wihlt?

6. Grundmenge sei B. Ermittle auf dieser Grundmenge die Definitionsmen-
gen folgender Terme:

a) Ty)=0+1)-(»r+3) b) T(y) = ( D-(y+3)
¢) T =u+1 )[1—*) d)fl]—(i )=y = 3
e)h}—(l—n( 3) 0 ToHH=0—»:-—-3
g) Ty)=(1—y) -_1'} T =(G—1):C- 13

7. Welche Dctinitionsmenge haben beziiglich der Grundmenge B die folgen-
den Terme?

a) -1- + ] b) i + ]
T % x+ 2

c) 1 f 1 d) 1 + l
oy x — 1 4—x

8. Gegeben ist der Term T'(x;y) = 2x+ 5 -3
Welche der folgenden Terme sind Zahlenterme? Gib die entsprechenden
Zahlen in moglichst einfacher Form an.

a) L(3:2) b T3 c) T(6;6) d) 7(5:5) e) 7(2,3;3.2)

9. T(a: b)) = (a+ +b) - (4a — b) — 3ab. Berechne, falls mi‘nu]icl
a) T(S;') b) T(1:3) c) T d) T(:2) e) T(3g;2

e10. T(x; y) = (2x+ 3y) — 8.
a) Welche DLhI]ItIOI‘i%mLH“L D, hat T(x;2)?
b) Welche Definitionsmenge D, hat T'(3; y)?

=% Zur Geschichte unserer Fachausdriicke

FFast alle mathematischen Fachworter stammen aus dem Lateinischen, einige auch aus
dem Griechischen. Natiirlich kénnen wir oft nicht sagen, wer als erster ein Fachwort
wirklich erfunden und benutzt hat; denn viele Handschriften sind durch Kriege und
durch Verfolgungen vernichtet worden, andere wurden einfach nicht mehr abgeschrie-
ben, weil es inzwischen modernere Abhandlungen tiber dasselbe Thema gab. Wir kén-
nen daher oft nur angeben, in welchen uns zufillig erhalten gebliebenen Schriften wir




1.4 Definitionsmenge eines Terms 31

welche Fachworter zum erstenmal finden. Wir konnen damit also nur feststellen, ab
welchem Zeitpunkt ein solches Fachwort vorhanden ist, wir konnen aber nicht be-
haupten, daB es dieses Wort nicht schon frither gegeben hat. Anders ist es dann mit der
Neuzeit, d. h. mit den letzten 500 Jahren. Da wissen wir fast immer, wer als erster einen
neuen Begriff und ein neues Zeichen erfunden hat. Fiir dich ist es eine Selbstverstind-
lichkeit, daB es Rechenzeichen gibt wie das Plus- und das Minuszeichen oder das
Gleichheitszeichen. Wenn du aber aufmerksam die Geschichte der Mathematik be-
trachtest, dann wirst du verwundert feststellen, daB all diese Zeichen und die Kunst des
Buchstabenrechnens, die du jetzt erlernen sollst, erst knapp 500 Jahre alt sind.
Welch kurze Zeitspanne ist dies im Vergleich zu der langen Zeit, die der Mensch schon
auf Erden existiert!

Im Folgenden stellen wir die Fachworter zusammen und berichten dir dann noch
von den Minnern, von denen diese Fachworter stammen.

Addition

Addition und addieren gehen auf das lateinische addere = hinzugeben zuriick. Als Fach-
worter kommen sowohl additio wie auch addere bel BoerHIus (um 480-524) vor.
Das Wort Summe hat eine interessante Geschichte. Das lateinische Substantiv summa
bedeutet das Oberste, das Hiochste. Da es schon bei den Griechen und dann bei den
Rémern Brauch war, das Ergebnis einer Rechnung in die oberste Zeile zu schreiben,
hie3 jedes Ergebnis summa, gleichgiiltig, ob es beim Addieren oder Multiplizieren
entstanden war. In diesem Sinne verwendet bereits Marcus Tullius Cicero (106-43
v.Chr.) das Wort summa. Die Einengung auf Summe als Ergebnis einer Addition
beginnt im 15.Jh. Umgangssprachlich bedeutet Summe einen Geldbetrag. In diesem
Sinne verwendet bereits LEONARDO VON P1sa (um 1170 —nach 1240) das Wort summa.
Summieren findet man 1489 bei Johannes WIDMANN VON EGER (um 1460—nach 1500),
Summand erst 1713 bei Christian voN WOLFF (1679—1754) in seinen Elementa mathe-
Seos universae.

Seit dem Mittelalter nennt man, abgeleitet vom lateinischen resultare = zuriick-
springen, das Ergebnis einer beliebigen Rechenaufgabe Resultat, d.h. das, was einer
Aufgabe entspringt.

Subtraktion

Das zugrundeliegende subtrahere = heimlich fortziehen erhilt bereits bei Sextus [ulius
FrRONTINUS (um 30-nach 100) die mathematische Bedeutung des Abziehens. Es findet
sich genauso wie das zugehdrige Substantiv subtractio auch bei BOETHIUS. In der Mitte
des 15. Jh.s wird subtrahieren so wie auch addieren ein deutsches Fremdwort.
Unser Wort Minuend geht zuriick auf den numerus minuendus = die zu verkleinernde
Zahl des JOHANNES HISPALENSIS (wirkte um 1135-1153), unser Subtrahend auf den
numerus subtrahendus = die abzuziehende Zahl des JOHANNES DE SACRO B0scoO
(1200(7)-1256(2)). Das lateinische differentia = Unterschied nimmt erst bei LEONARDO
voN Pisa die Bedeutung an, die wir heute mit dem Fremdwort Differenz verbinden.

Multiplikation
Das lateinische multiplicare bedeutet eigentlich viele Falten machen, mehrmals zusam-
menfalten und geht in seiner mathematischen Bedeutung vielleicht auf die dgyptische
Art der Berechnung eines Produkts zuriick:
26-75
/13- 150
6 - 300
3-600
1 - 1200, also 26 - 75 = 1200 + 600 + 150 = 1950.

1
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Nachzuweisen sind multiplicare und multiplicatio bei VitrRuvius (1. Jh. v. Chr.) und bei
CoLUMELLA (1.Jh. n. Chr.), der das Ergebnis der Multiplikation summa ex multiplica-
tione nennt. Erst bei JOHANNES DE SAcRO Bosco findet man dafiir productum
= Hervorgebrachtes, woraus 1489 bei Johannes WIDMANN vON EGER unser Wort Pro-
dukt wurde. Bei JoHANNES DE SACRO Bosco findet man auch numerus multiplicandus
= zu vervielfachende Zahl, was Michael StiFEL (1487?-1567) in seiner Deutschen
Arithmetica 1545 als Multiplikand eindeutscht, wogegen multiplicator = Vervielfacher
auf BoeTHIUS zuriickgeht. Im 16.Jh. biirgerte sich ein, beide Zahlen durch den Aus-
druck Faktor zu bezeichnen, hergeleitet vom lateinischen facere = machen, das bei den
romischen Feldmessern im Sinne von multiplizieren verwendet worden war.
Division

Allen Begriffen liegt das lateinische dividere = teilen, einteilen zugrunde. Erst bei GER-
BERT von Aurillac (um 945-1003), Lehrer Kaiser Ottos II1., als Papst Sylvester II.,
finden wir es als Fachwort ebenso wie divisio = Teilung, divisor = Teiler und dividen-
dus = zu Teilendes. Bei GERNARDUS (1. H. 13.Jh.) heiBt das Ergebnis der Teilung nume-
rus denotans quotiens = Zahl, die angibt wie oft; im 15.Jh. deklinierte man numerus
quotientis, obwohl quotiens ein Adverb ist. Im Bamberger Rechenbuch von 1483 er-
scheint das deutsche Wort Quotient.

Unsere Rechenzeichen

Im 15. Jh. wurde das lateinische et = und durch ein kopfstehendes t, also durch '\"
abgekiirzt. Das lateinische Wort minus = weniger kiirzte man oft durch wig ab. Durch
Weglassen der Buchstaben entstand vielleicht unser Minuszeichen, und aus dem )];
wohl das +. Zum ersten Mal erschienen jedenfalls + und — gedruckt im Rechenbuc
des Johannes WIDMANN vON EGER (um 1460 -nach 1500) im Jahre 1489. (Abbildung
32.1)
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Abb.32.1 Titelblatt der Behende und hubsche Rechenung auff allen kauffimanschafft
(1489) des Johannes WipManNN voN EGER und daraus folium 88r mit den idltesten
gedruckten Plus- und Minuszeichen, die folgendermaBen erklirt werden:

was — ift Das i|t minus [Zeile 7f.] unnd das + das ift mer [Zeile 14].
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Der heute Gbliche Malpunkt wurde von
dem groBen Philosophen und Mathema-
tiker Gottfried Wilhelm LemBnNiz (1646
1716) erfunden, und zwar im Brief vom
29. Juli 1698 an den Schweizer Mathema-
tiker Johann BERNOULLI (1667-1748)*.
Auf LemBNiz geht iibrigens auch der Dop-
pelpunkt als Divisionszeichen zurlick, er-
funden um 1678/79. Der Brauch, ein
Multiplikationszeichen zwischen Buch-
staben wegzulassen, stammt von Thomas
Harrior (1560(7)—-1621). René DEs-
CARTES (1596-1650) (Abbildung 121.1)
lieB dieses dann auch zwischen Zahlen
und Buchstaben weg.
Das dlteste unserer Rechenzeichen ist der
vaagrechte Bruchstrich. Bereits bei den
[ndern steht der Zdhler iiber dem Nenner:.
Westarabische Mathematiker trennen
beide durch einen waagrechten Strich.
LEONARDO VON Pisa biirgert diese Sitte
dann im Abendland ein. Verbreitung fin-
det der Bruchstrich hauptsidchlich durch
die Werke von VIETE.
Der schrigstehende Bruchstrich / scheint
neueren Datums und aus drucktechni-

schen Griinden erfunden worden zu sein.

Biographische Notizen

BOETHIUS**, Anicius Manlius Severinus
(um 480-524(?)), stammt aus einer vor-
nehmen romischen Familie. Er stellt sich
dem Ostgotenkonig Theoderich d.Gr.
(regierte 474 bis 526) zur Verfiigung und
wird dessen Ratgeber und auch hoher
Verwaltungsbeamter. Als er sich fiir einen
des Hochverrats angeklagten Freund ein-
setzt, wird er selbst angeklagt, nach lan-
ger Kerkerhaft ungehort verurteilt und in
Pavia vermutlich 524, und zwar am
23.10., enthauptet. Im Kerker schrieb er
sein beriihmtes Buch De consolatione phi-

* Zwar hat der frinkische Mathematiker Johannes
MUOLLER (1436-1476), der sich REGIOMONTANUS
nannte, den Malpunkt einmal in einem Brief ver-
wendet; ebenso taucht er in einer Prager Hand-
schrift um 1500 auf. Bekannt wurde er aber erst,
als LemNiz ihn erfunden hatte.

** Auch Boerius, gesprochen bo-ezius.

1703
S
< et
Abb.33.1 Gottfried Wilhelm LEmBNIZ
(1.7.1646 Leipzig—14.11.1716 Hannover)
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Abb. 33.2 Die Philosophie trostet Bog-
raus im Kerker. Buchmalerei Anfang
des 13.Jh.s — Cod. lat. mon. 2599
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losophiae — Vom Trost der Philosophie. Fiir uns ist interessant, dal BoETHIUS als Wis-
senschaftler die »mathematischen« Disziplinen der Arithmetik, Geometrie, Astrono-
mie und Musik zu einer Einheit, dem Quadrivium, zusammenfafBte und daftir Lehrbii-
cher schrieb. Seine beiden Biicher institutio arithmetica sind das einzige erhaltene Werk
der romischen Zeit uber dieses Fach.

COLUMELLA, Lucius [unius Moderatus, lebte im 1. Jh. n. Chr. und stammt aus Gades,
dem heutigen Cadiz/Spanien. In Italien hat er spiter seine Giiter bewirtschaftet und
ein die gesamte Landwirtschaft umfassendes 12bidndiges Handbuch mit dem Titel De
re rustica geschrieben.

FRONTINUS, Sextus Iulius (um 30-nach 100), von 74 bis 78 Statthalter der Romer in
Britannien, nahm vermutlich 83 am Krieg gegen die Germanen teil, ab 97 fiir die
Wasserversorgung Roms verantwortlich. Er verfalite mehrere Lehrbiicher, u.a. iber
die Wasserversorgung Roms, iiber Kriegslisten und iiber das Kriegswesen; das uns am
meisten interessierende Buch handelt von der romischen FeldmeBkunst.

JOHANNES HISPALENSIS, auch JOHANNES VON SEVILLA genannt, ein in Spanien gebore-
ner Jude. wirkte um 1135 bis 1153 in Toledo. Er tibersetzte aus dem Arabischen ins
Lateinische, u.a. ein arithmetisches Werk von AL-CHARIZMI.

JOHANNES DE SACRO Bosco (1200-1256), stammt vermutlich aus Halifax/England.
In Paris lehrte er Mathematik und Astronomie und schrieb fiir den Unterricht im
Quadrivium bedeutende Lehrbiicher tiber Arithmetik, Kalenderrechnung und Astro-
nomie.

VITRUVIUS POLLIO, Marcus, lebte im 1.Jh. v. Chr. Militirtechniker unter Ciésar und
Augustus, dem er seine 10 Biicher De architectura (geschrieben vor 31 v. Chr.) widmete.
Sie behandeln Stidteplanung, Baustoffkunde, Tempelordnungen, Wasserleitungsbau,
vielerei Maschinen und sind geprigt von umfassenden Kenntnissen in Philosophie,
Mathematik, Physik, Musik, Klimatologie und Astronomie.

Zu Seite 35:
TypruUs ARITHMETICAE — DIE DAME ARITHMETICA

Unter ihrer Aufsicht treten PyrHAGORAS und BoETHIUS, die im Mittelalter falschlicher-
weise fur die Erfinder des Abakus-Rechnens bzw. der arabischen Ziffern gehalten
wurden, zu einem Wettstreit an. PYTHAGORAS hat die Zahlen 1241 und 82 gelegt; der
Sinn der Ziffernrechnung des BoETHIUS ist leider unklar. Die besorgte Miene des Py-
THAGORAS und das Licheln des BOETHIUS sagen uns aber, daB letzterer der Sieger ist.

Auf dem Gewand der ARITHMETICA, die eine der Sieben Freien Kiinste ist, erkennt man
die Vierzahlgruppen 1, 3,9, 27 und 1, 2, 4, 8, die in der Zahlenmystik der Pythagoreer
eine groBe Rolle spielten. — Holzschnitt aus der Margarita philosophica — »Philoso-
phische Perle« — des Kartduserpriors Gregor REIScH (um 1470-1525) von 1503, in
der u.a. die Rechenregeln fiir beide Rechenverfahren ausfithrlich behandelt werden.
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2 Die rationalen Zahlen und ihre Rechengesetze

2.1 Die Zahlenmenge B reicht nicht aus!

Die Menge B der Bruchzahlen hat, abgesehen von der grundsétzlich unmogh-
chen Division durch null, fiir das Rechnen einen wesentlichen Mangel: die
Subtraktion zweier Zahlen aus B ist nicht immer ausfithrbar. Dieser Mangel
ist nicht nur ein Schonheitsfehler innerhalb der mathematischen Theorie, er
macht sich auch in der Praxis storend bemerkbar.

Beispiele:

1) An einem Dezembertag zeigt mittags
das Thermometer die Temperatur 4°C
(= 4 Grad Celsius) an. Bis zum Abend
nimmt sie um 3 Grad ab. Daraus kon-
nen wir den neuen Thermometerstand
berechnen: 4 Grad — 3 Grad = 1 Grad;
die Abendtemperatur betragt also 1°C.
Bis Mitternacht sinkt nun die Tempera-
tur noch einmal um 4 Grad. Wie kann
man jetzt die neue Temperaturanzeige
ermitteln? Die Rechnung »1 Grad mi-
nus 4 Grad« ist ja nicht ausfithrbar! Be-
kanntlich hilft man sich hier so, dal}
man z.B. sagt, die Temperatur sei auf
»3 Grad unter O« gesunken oder die
Temperatur sei »minus 3 Grad«, wofir
man kurz »— 3°C« schreibt (Abbil-
dung 36.1).

Abb.36.1 Thermometer

2) Herr Knapp hat auf seinem Bankkonto 530,60 DM. Fiir dringende
Anschaffungen benotigt er 700 DM, die er von seinem Konto
abhebt. Auf seinem néchsten Kontoauszug diirfte Herr Knapp als
Kontostand » — 169.40 DM« oder auch »169.40 DM Soll« lesen. Das
bedeutet, dall er der Bank 169.40 DM schuldet (Abbildung 37.1).

3) In Agypten liegt westlich von Kairo die Kattara-Senke, fiir die man im
Atlas die Hohenangabe » — 134« findet. Damit wird bekanntlich aus-
gedriickt, daB der so gekennzeichnete Ort »134 m unter dem Meeres-
spiegel«, genauer: 134 m tiefer als der Nullpunkt der fiir solche Ho-
henangaben verwendeten Skala liegt.* (Abbildung 37.2)

* Dieser Nullpunkt, genannt Normalnull (NN), ist nach dem Amsterdamer Pegel festgelegt und gibt ungefihr
die mittlere Meereshohe an.
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KONTONUMMER ALTER KONTOSTAND
1234567890 VOM 14.01.85 ‘ DM 530,60 HA
ABHEBUNG AM 17.01.85 DM 700,00 SO

NEUER KONTOSTAND
BUCHUNGSDATUM 18.01.85 | DM 169,40 SO

Abb.37.1 Kontoauszug

Wie diese Beispiele zeigen, kommt es vor, dall man beim Riickwirtszdhlen den
Nullpunkt einer Skala, also eines Zahlenstrahls, iberschreiten muf3. Man ge-
langt zu Ergebnissen »unter Null«, zu deren Beschreibung man Zahlen be-
nutzt, vor die ein Minuszeichen gesetzt wird.

Sicher wire es auch aus mathematischer Sicht giinstig, wenn es Zahlen »unter
Null« gabe, mit denen man z. B. Rechnungen wie »1 — 4« ausfithren konnte.
Das Rechnen wiirde sich sehr vereinfachen, wenn auch die Subtraktion immer
ausfithrbar ware. Man miiBte dann beim Auftreten von Differenzen nicht
jedesmal iiberlegen, ob sie definiert sind bzw., falls Variablen vorkommen, fur
welche Werte der Variablen das der Fall ist.

Eine dhnliche Situation gab es schon frither beim Rechnen mit den natiirlichen
Zahlen*. Dort war die Division nicht unbeschrinkt ausfithrbar; man konnte
z.B. 12 nicht in 5 gleiche Teile zerlegen. Diese Schwierigkeit liel3 sich dadurch

B o TN
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Abb.37.2 Die Kattira-Senke in Agypten

* Die Zahlen der Folge 1, 2, 3, ... nannte bereits NIKOMACHOS von Gerasa (um 100 n. Chr.) puotkog dot3poc

(physikos arithmos), was BorrHIus (um 480-524/525) mit numerus naturalis ins Lateinische iibersetzte und
das im Deutschen zu natiirliche Zahl wurde.
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38 2 Die rationalen Zahlen und ihre Rechengesetze

beseitigen, daB man die Menge N, durch Einfithrung der Briche er weiterte. In
dem s_mf’:ucn Zahlenbereich B ist die Division immer ausfithrbar, falls der
Divisor von 0 verschieden ist; z.B. gilt 12:5 = 22,

Dieses Beispiel legt den Versuch nahe, die Mume B noch einmal durch neue
Zahlen so zu erweitern, daB auch die Subtraktion immer ausfithrbar wird.
Natiirlich ist eine solche Erweiterung nur dann sinnvoll, wenn man im vergro-
Berten Zahlenbereich wieder »verniinftig« rechnen kann! Das soll heillen: In
der erweiterten Zahlenmenge sollen die gleichen Rechengesetze wie bisher
gelten. Diesen Grundsatz, von dem man sich in solchen Fillen stets leiten 143,
bezeichnet man als Permanenzprinzip, genauer »Prinzip der Permanenz der
Rechengesetze*«. Ob sich dieses Anliegen verwirklichen 1aBt, ist natlirlich
nicht von vornherein sicher.

Aufgaben

1. Was zeigt ein Thermometer an, wenn die Temperatur von —3°C aus
a) um 4 Grad sinkt, b) um 2.5 Grad steigt, ¢) um 11 Grad steigt?

2. Nachdem der Kontostand des Herrn Knapp auf — 169,40 DM gesunken
war, erhielt er vom Finanzamt eine Steuerriickzahlung von 340,00 DM.
Welches Guthaben stand dann auf seinem néchsten Kontoauszug?

3. Westlich der Kattara-Senke mit der llnhumngabe —134 liegt die Oase

Siwa, fiir deren tiefsten Punkt im Atlas die Angabe — 25 zu finden ist.

a) Welche der beiden Senken liegt tiefer und wie grof3 ist der Unterschied?

b) Zwischen den beiden Senken liegt ein Hohenzug, fiir dessen hochsten

Punkt die Hohenangabe 70 0|It Welche Hohenunterschiede miifite

man auf dem Weg von der Oase Siwa iiber den Hohenzug in die Katta-
ra-Senke tiberwinden?

2.2 FEinfiihrung der negativen Zahlen

Auf dem Zahlenstrahl ist jeder Zahl x € B eindeutig ein Punkt zugeordnet.
AuBerdem kann die Zahl x durch den vom Nullpunkt zum Punkt x zeigenden
Pfeil dargestellt werden (Abbildung 38.1).

0 % X
Abb.38.1 Die Zahl x als Punkt und als Pfeil auf dem Zahlenstrahl

Ahnlich wie beim Thermometer setzen wir nun die Skala nach links iiber 0
hinaus fort. Indem wir eine, zwet, drei, ... Lingeneinheiten nach links abtra-

* permanere (lat.) = fortdauern, erhalten bleiben. Der Ausdruck Permanenzprinzip wurde von dem englischen
Mathematiker und Professor der Astronomie George PEacock (1791-1858) in seinem 1830 erschienenen
Werk A rreatise of algebra geprigt, — Siehe Abbildung 86.1.
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gen, erhalten wir Punkte, die wir mit —1, — 2, — 3, ... bezeichnen. Allgemein
erhalten wir zu jeder Zahl x > 0, also x € B, den links von 0 liegenden Punkt

x, indem wir den zu x gehorigen Pfeil um den Nullpunkt nach links umklap-
pen. Das heillt, wir zeichnen von 0 aus einen nach links gerichteten Pfeil der
Linge x. Seine Spitze liefert einen Punkt, den wir mit — x beschriften. Den
Pfeil selbst bezeichnen wir ebenfalls mit — x (Abbildung 39.1).

Abb.39.1 Erweiterung des Zahlenstrahls

Natiirlich wollen wir nun diese Punkte bzw. Pfeile —1, —2, =3, ..., allge-
mein — x, als Vera :15chuuiichmwcn neuer Zahlen deuten! Diese ebenfalls mit
= i N . bezeichneten Zahlen nennen wir negative Zahlen.

In dieser Buudmuncr Lommt zum Ausdruck, dal} es sich bei ihnen um die
»Gegenstiicke« zu den schon bekannten positiven Zahlen, also den Zahlen der
Menge B\ {0} (= B ohne die Zahl 0), handelt. Der erweiterte Zahlenstrahl
heil3t Zahlengerade (Abbildung 39.2).

=2 = Z 2,7
| : 1 I% ] 5 ; [ B »
I ! 1 5 1 1 . L 1
=3 -2 -1 0 1 2 3
negative Zahlen Null positive Zahlen

Abb.39.2 Die Zahlengerade

Unser erweiterter Zahlenvorrat besteht nunmehr also aus den schon bisher
bekannten positiven rationalen Zahlen und der Null sowie den neu eingefiihr-
ten negativen rationalen Zahlen. Alle diese Zahlen zusammen bilden die Men-
ge der rationalen Zahlen*, die man mit Q bezeichnet. Fiir die Teilmenge der
positiven bzw. der negativen rationalen Zahlen verwendet man die Bezeich-
nung Q@ * bzw. Q . Die bisher héufig beniitzte Zahlenmenge B (Briiche!) laBt
sich nun in der Form B = Q" u {0} darstellen; man schreibt dafiir auch kurz
Qg -

Es gilt also:

Definition 39.1: @ = Menge der rationalen Zahlen
O* = Menge der positiven rationalen Zahlen
)~ = Menge der negativen rationalen Zahlen

Q7 = Menge der nicht-negativen rationalen Zahlen

* pationalis bedeutet seit dem 2. Th. zir den Rechmungen gehirend und hingt mit ratio = Rechnung, Verhdlinis,
Vernunfi zusammen. Die mathematische Bedeutung kdnnen wir dir aber erst im Band Algebra 3 erkliren.
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**Zur Geschichte der Fachworter positiv und negativ

An der Entstehung des heutigen Gegensatzpaares positiv—negativ kann man sehr gut
verfolgen, wie bei der Herausbildung einer Fachsprache die urspriingliche Bedeutung
der Worter meist verlorengeht.

Das seit dem 4. Jh. belegte lateinische Wort positivus = geserzt, gegeben hatte als Ge-
gensatz das Wort privativus = abgesondert, hinweggenommen, das in spiterer Zeit auch
noch den Sinn von verneinend annahm. Das alte Wort fiir verneinend war aber negativus
(2.Jh.), zu dem das Gegensatzwort affirmativus = bejahend gehorte (nachgewiesen
5./6.Jh.). In der vor 1486 geschriebenen kleinen Lateinischen Algebra des Dresdener
Codex C80, eines Sammelbands verschiedener mathematischer Handschriften, finden
wir sduberlich getrennt die beiden Gegensatzpaare positiv—privativ und affirmativ—ne-
gativ. Bald jedoch werden diese Paare vermischt, und das Wort privativ verschwindet
immer mehr und wird durch negativ ersetzt. So verwendet Frangois VIETE (1540-1603)
den Gegensatz affirmativus—negaius (1591). Der deutsche Philosoph und Mathema-
tiker Christian von WoLrF (1679-1754) verfalit 1716 ein Mathematisches Lexicon, in
dem das Gegensatzpaar positiv—negativ zu Fachwortern wird. Und dabei ist es dann
geblieben!

Mathematifdes

LEXICON,

Darinnen
vi¢ in allen heilen dev Mathena
tick 11blichen Kunit - Mo fev

erPldret,
unb

Sut Hifforie

et
Mmathematifihen Wifen{dhafften
Dienlidye Tadvrichten ertheilet,
QAuch bie Edirifften, 1
tooiede Matevic ausgefihret su finden,
anaefubret toerben

YHuff Begebrin bevaud gegeben

Chriftian Wolfen,

£ H.unb P. P. O,

Leipsig,
Bep Job. Friedrich Gleditfyens feel. Sobn.
1716.
Abb.40.1 Christian, Freiherr von Abb.40.2 Titelblatt der 1. Auflage

(seit 1745) WoLFF, auch WOLF, (24.1.1679
Breslau — 9.4.1754 Halle/Saale)
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Aufgaben

un
"

Trage auf einer Zahlengeraden mit der Langeneinheit 1 cm die zu folgen-
den Zahlen gehorenden Punkte ein:

a) 4.6 b) —4 c) 0 d) — 1.5 e) 2,2 )i
Gib auf einer Zahlengeraden mit der Ldngeneinheit 2 cm die den folgen-
den Zahlen entsprechenden Punkte an:

S b = ; — = Ry N, B R |
u=21 o==21 w==125 =5 —=11 ‘2= —uo-

b

Zeichne von einer Zahlengeraden mit der Lingeneinheit 6 cm den Ab-

schnitt von — 1 bis 0.5 und markiere darauf die Punkte fiir folgende Zah-
len:

3} "‘-i = 'li h} -\I'.E i, ; C) '\-3 = :I' d} -\.—1- = lﬁl C) '\_5 = 1'2

f) 02 9)y,=—03 Wy, =—090 i) y,=—005

7ciclmc fiir eine Zahlengerade mit der Lingeneinheit 1 cm den Abschnitt
von — 5 bis 5. Trage ddmu[ folgende Punkte ein und gib die zugehdrigen
rationalen Zahlen an:

a) A liegt 3,5 cm links vom Punkt 2.

b) B 1 cgl 2,8 cm rechts vom Punkt

¢) C liegt 23 cm links vom Punkt 0.

d) D g. 3L‘ m links vom Punkt 1.

e) E liegt 1,4 cm rechts vom Punkt —1%.

) F l egt 4,5 cm rechts vom Punkt —4%

Bestimme folgende Zahlenmengen. (Beschreibe die sich ergebenden Men-
gen zuerst in Worten und dann mit Mengensymbolen.)

a) QT nQ° b OTud ¢) Qn N d) Q" nN,

e) QT UN, ) O\Q g) Q\Q~ h) Q\(@"uQ7)

2.3 Zahl und Gegenzahl, absoluter Betrag

Jede Zahl a € @ 148t sich auf der Zahlengeraden durch den von 0 zum Punkt a
zeigenden Pfeil darstellen. Zu dem Elugh angen, aber entgegengesetzt gerich-
teten Pfeil gehort wieder eine rationale Zahl, die wir die Gegenzahl von a
nennen und mit — ¢ bezeichnen.

Definition 41.1: Zwei Zahlen, zu denen auf der Zahlengeraden gleich |
lange, aber entgegengesetzt gerichtete Pfeile gehoren, |
heiBen (ein Paar von) Gegenzahlen.

Die Gegenzahl von @ wird mit — a bezeichnet.
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Die schon auf Seite 39 eingefithrte Schreibweise fiir die negativen Zahlen steht
im Einklang mit der in dieser Definition vereinbarten Bedeutung von —a:
negative Zahlen wie —1; —3,7; — % ... &'ind ja gerade die Gegenzahlen der
entsprechenden positiven Zahlen 1; 3.7; Beachte aber, daB3 Definition
41.1 fur beliebige, also auch fiir I'ItLdii\L’ ' dh]cn gilt! (Abbildung 42.1)

-a a l b | -b
T T ¥ ]
-a 0 a b 0 -b

Abb.42.1 Zahl und Gegenzahl

Beispiele:
Die Gegenzahl von 5,2 ist — 5,2
Die Gegenzahl von 0 ist — 0 = 0.
Die Gegenzahl von — 3 hei3t — (— 3); ihr Pfeil ergibt sich aus dem Pfeil
fiir — 3 durch Umklappen und somit aus dem Pfeil 3 durch zweimaliges
Umklappen. Also gilt: —(—3) = 3.

Die im letzten Beispiel durchgefithrte Uberlegung 148t sich auf jede Zahl an-
wenden. Daher gilt:

Satz 42.1: Fir ae@ gilt: — (—a) = a.

Die Gegenzahlen der natiirlichen Zahlen, also —1, —2, —3, ... werden als
negative ganze Zahlen bezeichnet. Sie bilden zusammen mit 0 und den natirli-
chen Zahlen die Menge der ganzen Zahlen, fiir welche das Zeichen Z verwen-
det wird:

Definition 42.1: 7 = {..., —3, —2, —1, 0,1, 2, 3, ...} heiBt Menge der
ganzen Zahlen.*

4 } ; : t 4 f : t t f ' ;
-6 -5 4. '=31=210.4 0 1 2 3 b 6
Abb.42.2 Die ganzen Zahlen
- i
In Beispielen wie —3, — %, —a, — (x + 5), ... ist das Minuszeichen kein Re-

chenzeichen, es wird ja keine Suhlmkllon ver ];11101 Das vorangestellte Minus-
zeichen bedeutet hier jeweils die Aufforderung »Bilde die Gr.gen/.dhi VON«.

* Der Ausdruck ganze Zahl ist die deutsche l:.’ihl.‘l':&ul?.'llﬂg des lateinischen numerus integer, mit dem LEONARDO
vON Pisa (um 1170-nach 1240) den go3pog dhoxkneoc (arithmos holokleros) des DiopHANT (um 250
n.Chr.) ins Lateinische Gibertragen hatte. Sowohl das lateinische wie auch das griechische Adjektiv bedeuten
unversehrt, vollstindie, noch ganz. -
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Derartige Minuszeichen nennt man Vorzeichen. In entsprechender Weise wird
oft auch das Pluszeichen als Vorzeichen verwendet, wofiir man festsetzt:
+a = a, (a e Q). Obwohl man demnach auf das Vorzeichen » + « verzichten
kénnte, erweist sich, wie sich noch zeigen wird, seine Verwendung gelegenthich
doch als niitzlich und sinnvoll.

Besonders wichtig ist es, sich klarzumachen, daB das Vorzeichen » — « keines-
wegs immer auf eine negative Zahl hinweist! Es gilt ja:

. . positiv negativ
Satz 43.1: —a st . genau dann, wenn a J5% LRt
negatv positly

Eine Zahl und ihre Gegenzahl werden durch Pfeile gleicher Lange dargestellt;
die entsprechenden Punkte auf der Zahlengeraden haben vom Nullpunkt glei-
che Entfernung.

Definition 43.1: Die Entfernung des Punktes @ vom Nullpunkt, also die
Linge des Pfeiles a, heilit absoluter Betrag der Zahl a; er
wird mit |a| bezeichnet.

Die beiden senkrechten Striche nennt man »Betrags-
striche«.

Der Fachausdruck absoluter Betrag und
die beiden senkrechten Striche dafir
wurden von Karl Theodor Wilhelm
WEIERSTRASS (1815-1897) eingefiihrt. Im
Druck erschien absoluter Betrag 18506, die
Absolutstriche aber erst 1876. WEIER-
STRASS war von 1842 bis 1855 Lehrer an
einem Gymnasium, wurde dann als Pro-
fessor ans Gewerbeinstitut nach Berlin
und 1864 an die Universitit berufen. Er
ist einer der bedeutendsten Mathemati-
ker des 19. Jh.s.

Abb.43.1 Karl Theodor Wilhelm
WEIERSTRASS (31.10.1815 Ostenfelde
Landkreis Warendorf — 19.2.1897 Berlin)
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Eine Zahl und ihre Gegenzahl haben denselben Absolutbetrag; denn die ent-
sprechenden Pfeile sind gleich lang.

Beispiele:
1) 7! [I= 3=
2) I?|—|17|—1?
3) 7l=3
Da der Nullpfeil die Lange 0 hat, gilt|0]| = 0. Jede von 0 verschiedene Zahl hat

einen positiven Absolutbetrag.
Wir fassen zusammen:

| Satz 44.1: 1) Der Betrag einer Zahl ist nicht negativ.
Es gilt also: |a| = 0 fiir jedes a e Q.
2) Nur die Zahl 0 hat den Betrag 0.
Kurz*: |la|=0 = a=0.
3) Zahl und Gegenzahl haben gleichen Betrag.
Also: | —al| = |al.

Bei positiven Zahlen und bei 0 stimmt der absolute Betrag mit der Zahl selbst
uberein. Bei negativen Zahlen unterscheidet sich jedoch der Betrag von der
Zahl selbst:

Beispiele:
=2 =28 =St =547 3) | —3 =%

51
Die Beispiele lassen erkennen, dall der Betrag einer negativen Zahl a mit der
positiven (!) Gegenzahl — a iibereinstimmt. Es gilt ja:

|—=2|=2=—(=2), |—=517|=517=—(—517) usw.

Diese Uberlegungen fiihren zu

. ‘ a, wenn a positiv ist;
Satz 44.2: |a| = 0, wenna=0:
I a, wenn a negativ ist.

Dieser Satz zeigt, wie man den Betrag einer Zahl auch ohne Verwendung von
Betragsstrichen angeben kann: Bei 0 und den positiven Zahlen darf man die
Betragsstriche einfach weglassen; bei negativen Zahlen muBl man als Betrag
die Gegenzahl nehmen.

* Das Zeichen <= hat die Bedeutung »genau dann, wenn,
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Aufgaben
1. Wie heil3t die Gegenzahl von
a) 167 b) —3,14 ¢ 22 @ —0,001?
2. Vereinfache die Schreibweise der folgenden Zahlen:
)= — (=2 NPy — (=03 e) = ===y e S =S G
e) +49 s o o I el 1 A et ) U 1) e S ST
3. Welche der folgenden Aussagen sind wahr? Berichtige die falschen Aussa-
gen.,
a) Die Gegenzahl einer positiven Zahl ist nicht positiv.
b) Die Gegenzahl einer rationalen Zahl ist negativ.
¢) Die Gegenzahl einer nichtnegativen Zahl ist negativ.
d) Die Gegenzahl einer natiirlichen Zahl ist eine ganze Zahl.
¢) Wenn man zu den Elementen von N alle ihre Gegenzahlen hinzufiigt,
erhilt man die Menge Z.
4. Bestimme |x| fiir x e {—1000; —111; —0,1; 0; 0,12; 63; 10°}.
5. Bestimme alle Zahlen mit folgender Eigenschaft:
a) Der absolute Betrag ist 7.5.
b) Die Zahl ist negativ und hat den Betrag 2.8.
¢) Die Zahl ist positiv und hat denselben Betrag wie —99.
d) Weder die Zahl selbst noch ihr absoluter Betrag sind positiv.
e) Die Zahl ist von ihrem Betrag verschieden, und dieser hat den Wert 7.
6. Berechne:
a) [7.9] +|— 5] b) |7.9] — | = 5|
¢) |—81|+]|—19| d) | —81|—|19]
e) | —43]—|—0.85] 0 |—1]— 41— |4l
7. Bestimme die Losungsmengen:
a) |x| =05 b) x| =7 ¢) |x|=0
d) |x]==1 e) x| =0 f) |x|=0.
8. Welche Zahlen z € Z erfiillen folgende Bedingung?
a) |z[|=0 b) |z] <1 c) |zl =3
d) |z] >0 e) |z| =2 ) 1<|z|<4.

2.4 Addition und Subtraktion von rationalen Zahlen

2.4.1 Definition der Addition

Ob die neu eingefiihrten negativen Zahlen zu Recht als Zahlen bezeichnet
werden, entscheidet sich an der Frage, ob man mit ihnen in gewohnter Weise
rechnen kann. Wir wollen dies zuniichst fiir die Addition untersuchen. Dazu
betrachten wir einige Beispiele von Summen aus rationalen Zahlen:

e [ il
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Beispiele:
1) 2+3.7 2) 54+0 3) 52+(—3)
4) (—4)+13 5) (—2.4)+(—3,7) 6) 0+ (—1)

Beachte: Beim Anschreiben solcher Summen ist es wichtig, zwischen Rechen-
zeichen und Vorzeichen genau zu unterscheiden. Das Vorzeichen ist ein Be-
standteil der betreffenden Zahl! Dies wird, wie die Beispiele 3 bis 6 zeigen,
durch Klammern zum Ausdruck gebracht.

Die Summen in den Beispielen 1 und 2 sind von bekannter Art. Dagegen
stellen uns die iibrigen Beispiele vor neue Situationen: Wir wissen ja noch
nicht, wie Summen mit negativen Summanden zu berechnen sind! Man muf
erst einmal definieren, welche Bedeutung solche Summen haben sollen. Na-
turlich soll diese Definition der Addition rationaler Zahlen so beschaffen sein,
dal} sie fiir nicht-negative Summanden (Beispiele 1 und 2) mit der altbekann-
ten Addition ubereinstimmt.

Bei der Suche nach einer geeigneten Definition erinnern wir uns an die graphi-
sche Darstellung der Addition bei positiven Zahlen (Abbildung 46.1):

I

Abb. 46.1 Veranschaulichung der Addition in O

Man erhilt, wie Abbildung 46.1 zeigt, den Pfeil fiir die Summe a + b, indem
man an die Spitze des Pfeils a den Pfeil b ansetzt. Der Summenpfeil liuft dann
vom Anfangspunkt des ersten zur Spitze des zweiten Summandenpfeils. Wir
wollen dieses geometrische Verfahren im folgenden kurz als Pfeiladdition be-
zeichnen.

Es liegt nun nahe, diese Pfeiladdition versuchsweise auch auf Summen mit
negativen Summanden zu iibertragen. Fiir die obigen Beispiele 3, 4 und 5
ergeben sich dabei folgende Abbildungen:

-

Abb.46.2 524 (—3)
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Abb.47.1 (—4)+13

Abb.47.2 (—24)+(—3.7)

Aus der jeweils leicht errechenbaren Linge und der Richtung des Summen-
pfeils erkennt man, dafB dieses Additionsverfahren folgende Ergebnisse liefert:
524+(—3)=22; (—4H+12=—2% (—249+(—37=-6,1.

Deutet man z. B. positive Zahlen als Guthaben, negative als Schulden, so
erkennt man, daB3 diese Ergebnisse durchaus sinnvoll sind. Wir wollen daher
das in diesen Beispielen angewandte Verfahren zur Definition der Addition
beliebiger rationaler Zahlen verwenden.

Definition 47.1: Unter der Summe a + b zweier rationaler Zahlen ¢ und
b verstehen wir diejenige Zahl, deren Pfeil sich durch
Anwendung der Pfeiladdition auf die Pfeile @ und b er-
gibt.

Mit dieser Definition ist es uns tatsidchlich moglich, zwei beliebige Zahlen aus
Q@ zu addieren. Wie man an den vorausgehenden Beispielen erkennt, sind
dabei jeweils zwei Uberlegungen notwendig, ndmlich:
{. Welche Richtung hat der Summenpfeil (falls seine Linge nicht 0 ist)?
2. Wie lang ist der Summenpfeil?
Die Antwort auf die erste Frage liefert das Vorzeichen der zu bestimmenden
Summe, die Antwort auf die zweite ihren Absolutbetrag. Wie man vorgehen
muB, um jeweils die richtigen Antworten zu finden, hingt von Betrag und
Vorzeichen der beiden Summanden ab.
Wir untersuchen dazu verschiedene typische Fille:
Fall 1: Die beiden Summanden a und b sind positiv.

Fir diesen lingst bekannten Fall gilt (vgl. Abbildung 46.1):

a+ b ist positiv und |a + b| = |a| + | b|,

also a+b=|al+|b]|.
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Fall 2: Die beiden Summanden a und b sind negativ.

Abb. 48 1

3 Aus Abbildung 48.1 erkennt man leicht, daB nunmehr gilt;
: a+ b ist negativ und |a + b| = |a| + | b|,
also a+b=—(la|+|b]).

Fall 3. a ist positiv, b negativ und |a| > |b|.

a+b
Abb.48.2

Nach Abbildung 48.2 gilt:
a+ b ist positiv und |a + b| = |a| — ||,
I also a+b=|a|—|b].

=

Fall 4: a ist positiv, b negativ und |a

bl.

l I b a ]

Abb. 48.3

Abbildung 48.3 zeigt:
a+ b 1st negativ und |a+ b| = |b| — |al.
also a+b=—(b|—|al).

Ganz entsprechend wie die Fille 3 und 4 lassen sich die Fille »a negativ, b
positiv und |a| > |bl« bzw. »a negativ, b positiv und |a| < | 6]« behandeln.
Zeige dies z.B. anhand der Aufgaben 1.b) und 1.e) auf Seite 53.

Die Ergebnisse dieser Untersuchungen lassen sich so beschreiben:
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Satz 49.1: Zwei Zahlen mit gleichen Vorzeichen werden addiert, indem

man ihre Betrdge addiert und dieser Summe das Vorzeichen
der beiden Summanden gibt.
Zwel Zahlen mit verschiedenen Vorzeichen werden addiert,
indem man vom groBeren Betrag den kleineren subtrahiert
und dieser Differenz das Vorzeichen des Summanden mit
dem groBeren Betrag gibt.

Beispiele:

) (—3)+(—75) =2
Beide Summanden sind negativ, also auch die Summe. Die Betrage
der Summanden werden addiert. Somit gilt:
(—=3N4+(=75=—(=-3|+|=-75D=—-@B+17,5 =—10S5.

2) 58 +(—83) ="
Die Summanden haben verschiedene Vorzeichen. Der Summand mit
dem groBeren Betrag, also — 8.3, ist negativ; daher wird auch die
Summe negativ. Die Betrdge der Summanden werden voneinander
subtrahiert. Somit gilt:
58+(—83)=—(—8,3]—|58))=—=(8,3—58)=—2,

3) (—3)+4="
Die Summanden haben verschiedene Vorzeichen. Der Summand mit
dem groBeren Betrag ist positiv, also auch die Summe. Die Betrage
der Summanden werden voneinander subtrahiert. Somit gilt:

hn

1 1 | L 1 1 . =il D=
(Fochde=-hldel=| 33D =+@s=33) = k=%
Von besonderem Interesse sind noch die zwei folgenden Falle:
Fall 5: |a| = |b| und @ und b haben verschiedene Vorzeichen. In diesem Fall
ist b die Gegenzahl von «, also b = —a.
[l b=-a a | || a I b=-a [
: 0 a a 0 ]
-a —cy
Abb. 49.1

Aus Abbildung 49.1 erkennt man: a+(—a) = 0.

Satz 49.2: Die Summe aus einer Zahl und ihrer Gegenzahl ist 0.

a4+ (—a)=0 fiir jedes aec@
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Fall 6: Ein Summand ist 0.
Da der Pfeil fiir die Zahl 0 die Lange 0 hat, ergibt sich unmittelbar aus
Definition 47.1:

_ . R |
Satz 50.1: Fiir jede rationale Zahl a gilt
a+0=04+a=a.

Dieser Satz besagt, dal die Zahl 0 auch in der Zahlenmenge Q das neutrale
Element der Addition ist.

2.4.2 Eigenschaften der Addition in

Von der im Abschnitt 2.4.1 eingefithrten Addition rationaler Zahlen wissen
wir noch nicht, ob sie wirklich alle erwiinschten Eigenschaften besitzt. Es geht
hier vor allem um die Frage, ob fiir sie die Rechengesetze giiltig bleiben, die
uns von der Addition in @, her schon bekannt sind. Zur Wiederholung wol-
len wir diese Rechengesetze hier zusammenstellen:

Rechengesetze der Addition in Q

Fiir alle Zahlen a, b, ¢ aus Q gilt:

(E) a+ b ist wieder eine Zahl aus @; eindeutige Existenz der Sum-
me

(K) a+b=b+a Kommutativgesetz* der Addi-
tion

(A) (a+b)+c=a+(b+o Assoziativgesetz** der Addi-
tion

(Na+0=a 0 ist neutrales Element der Ad-
dition

Wir miissen nun priifen, ob die in der groBeren Za hlenmenge O eingefiihrte

Addition ebenfalls diesen Rechengesetzen geniigt.

1) Existenz der Summe: Nach dem in Definition 47.1 festgelegten Verfahren
kann man zwei rationale Zahlen stets addieren; die Summe ist wieder eine
Zahl aus (0. Damit bleibt (E) in Q giiltig.

* commutare (lat.) = veriindern, vertauschen. — Der Ausdruck kommutativ wurde 1814 von Francois Joseph
SERVOIS (1767-1847) in seinem Essai sur un nowvean mode d'exposition des principes du caleul différentiel
in die Mathematik eingefiihrt.
associare (lat.) = vereinigen, anschlieBen, verbinden. — Der Ausdruck assoziariv wurde 1843 von dem be-
rithmten irischen Mathematiker und Astronomen William Rowan Hamizron (1805 1865) bei der Erfin-
dung ganz besonderer »Zahlen«, der sog. Quaternionen, in die Mathematik eingefiihrt. — Abb. 90.1
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Kommutativgesetz der Addition: Wir konstruieren und vergleichen die
Pfellsummen a + b und b + « fiir die verschiedenen Vorzeichenzusammen-
stellungen:

Abb. 51.1 Zum Nachweis des Kommutativgesetzes

Abbildung 51.1 zeigt, daB in allen diesen Fillen a + b = b + a gilt. Wenn
ein Summand 0 ist, gilt nach Satz 50.1 ebenfalls a + 0 = 0 + a. Also bleibt
(K) in @ giltig.

Assoziativgesetz der Addition: Anstatt hier fiir alle typischen Fille Pfeil-
summen zu konstruieren, iiberlegen wir: Wenn man aus drei Pfeilen a. b, ¢
die Summen (a + b) + ¢ und a + (b + ¢) bildet, lduft das in beiden Féllen
darauf hinaus, daB man die Pfeile einfach der Reihe nach aneinandersetzt.
Das Ergebnis ist unabhiingig davon, ob @ und b oder b und ¢ zu einer
Zwischensumme zusammengefaBt werden. Damit gilt wieder (a + b) +
+ec=a+(b+c), d.h., (A) bleibt auch fiir die Addition in @@ giltig.

Ein Beispiel zeigt Abbildung 52.1. In den ersten beiden Zeichnungen wird
jeweils oberhalb der Zahlengeraden die Zwischensumme a + b bzw. b + ¢
konstruiert, die dann darunter zur Ermittlung der ganzen Summe
(a + b) + ¢ bzw. a + (b + ¢) verwendet wird. Der letzte Teil der Abbildung
zeigt zum Vergleich die drei der Reihe nach aneinandergesetzten Pfeile.
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i|:- {a+lI)}+c c
[
I
C
b b+c
1 a a+(b+c) c
i L
b 0 a I b+c
c
b_
aﬁ
b 0 a atb+c c

Abb.52.1 Zum Assoziativgesetz der Addition

4) Neutrales Element der Addition: Der schon bewiesene Satz 50.1 besagt, daf3
0 auch fiir die Addition in @ neutrales Element ist, so daB auch (N) giiltig
bleibt.

Damit gilt

Satz 52.1: Fir die Addition in der Menge @ der rationalen Zahlen
gelten wieder die auf Seite 50 zusammengestellten Rechen-
gesetze (E), (K), (A), (N). .

Fir die Rechenpraxis sind insbesondere die Gesetze (A) und (K) von groBer
Bedeutung. Aus (A) folgt bekanntlich, dal man bei dreigliedrigen Summen
darauf verzichten kann, die Reihenfolge der beiden Additionen durch Klam-
mern festzulegen. Da es nach dem Assoziativgesetz gleichgiiltig ist, ob man
(@ + b) + ¢ oder a + (b + ¢) berechnet, geniigt es auch, einfach a + b+ ¢ zu
schreiben. Nimmt man noch das Kommutativgesetz hinzu, so zeigt sich, daB
auch die Reihenfolge der Summanden beliebig verindert werden kann. Das-
selbe gilt, wie man zeigen kann, auch fiir Summen mit mehr als drei Summan-
den.

Beispiel 1:
Behauptung: a+b+c=c+b+a
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Beweis: Der Einfachheit halber schreiben wir im folgenden das bei einer
Umformung dﬂUL,\hll'ldlt Rechengesetz iiber das Gleichheitszeichen.
Zum Buwpml hat 2 die Bedeutung »ist wegen RLLhuwW.t/ (A) gleich«.

at+b+ec :(cH—h)—w-é ¢+ (a+b) Ec+(b+ a)= 2e+b+a

Beispiel 2:
12,54+ (—23,91) + 7,52 (12,5+ (—23.91)) + 7,5
£7.54+(12,5+4 (—" 91)) =
2 (7,5+12,5) 4+ (—2391) =
=20 + (—23,91) = — 391,

Beispiel 2 zeigt, wie man durch die Wahl einer giinstigen Reihenfolge der
Summanden und der Rechenschritte die Durchfithrung einer Rechnung oft
vereinfachen kann. Achte stets auf solche Rechenvorteile!

Aufgaben

1. Bestimme die folgenden Summen durch eine Pfeilkonstruktion. Verwende
dazu eine Zahlengerade mit der jeweils angegebenen Langeneinheit (LE).
a) (—3,2)+(—1,3), LE 1cm; b) (—2,6)+8, LE 1cm;
¢) 64+ (—97), LE 1 mm; d) 0,754+ (—0.,48), LE 1dm;
¢) (—1,1)+0,8 LE 5¢cm; f) (—3)+(—1%), LE 6cm.

I

Berechne die folgenden Summen. Uberlege jeweils zuerst, welches Vorzei-
chen das Ergebnis erhilt und wie man seinen Betrag berechnet.

a) (—10)+ 12 b) 10+ (—12) ¢) (—9.1)+(—-19)
d) 1,5+45 e (=745 +7% 1) 0,865+ (—1,39)
g (=9 +(—13 h) 42+ (—24%) i) (—0,196) + £

3. Konstruiere fiir dm folgenden Zahlenbeispiele zur Uberpriifung des Asso-
ziativgesetzes der Addition die Pfeilsummen (¢ + b) + ¢ und a + (b + ¢).
Kennzeichne dabei die zuerst gebildeten Zwischensummen durch zweifar-
bige Pfeile (vgl. Abbildung 52.1).

a) a =4 b==3c==3.5;LB:dcm
blia=—"—24 b= 30 =—— 7; 2: LE 1cm
) d=-—06b=- 1 ¢=5 LEdcm

4. Berechne die folgenden Summen. Achte dabei auf eventuelle Rechenvor-

teile.
¢) 1010 + (— 2000) + 990 d) (—123) (—63) F(—132)
e) (—0.93)+ 1,134+ (—0,63) ) (—225)+(—4,75)+ 7,25

g) 23+ (—15)+ (155 h) 15.8+(—2(};)+4-§--
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5. Berechne:
a) 27T+(=15)+(—8)+(—9) b) (—109) + (85 + 13 + (—45))
¢) ((—3,14) + 2,38) + (— 0,167) + 1,427
d) (4%+(—10,5) + (82 + (—23)
6. Berechne:
a) (—71+|—17| b) | —2,5|4+12,5] ey 24 —32|
d) [3+(=4)| e) |3|+]|—4| f) [(—3)+4|
g) [(—1,16) + (=239 h) |—1,16]+[—2.39] i) [(—55+|— 23]
7. Ist x positiv, null oder negativ, wenn folgende Gleichung gilt? (Hinweis:
Beachte Satz 49.1.)
a) |7+x|=T7+|x| b) [(=7)+x|="T+|x|
¢ |[x+2|=2—|x| d) [x+2|=|x|—2
e) Welche Angabe iiber | x| 1aBt sich im Fall ¢) bzw. im Fall d) machen?

8. Was kann man tiiber die Vorzeichen von x = 0 und y =+ 0 sagen, wenn gilt
a) |x+y|=|x[+|y| b) |x+y|=|x|—yl
Q) [x+(=l=lxl+Iy| & [(=x)+(=»NI=IxI-1Ipl ?

2.4.3 Die Subtraktion in Q@

Beim Addieren besteht die Aufgabe darin, aus den gegebenen Summanden die
Summe zu berechnen. Oft kommt es aber auch vor, daB3 von einer Summe der
Wert schon bekannt st und einer der Summanden gesucht wird. Um diesen zu
berechnen, mull man bekanntlich eine Subtraktion ausfithren. Man bezeich-
net wegen dieses Zusammenhangs die Subtraktion als Umkehrung der Addi-
tion.

Beispiel:
Auf einer StraBenkarte ist die Entfernung Miinchen—Niirnberg mit
162 km und die Teilstrecke Miinchen—Ingolstadt mit 73 km angegeben.
Wie lang ist dann die Strecke von Ingolstadt nach Niirnberg?
Bezeichnet man sie mit x km, so ist x die Losung der Gleichung
7134+ x =162, also x =162 — 73 = 89.
Die Strecke Ingolstadt—Niirnberg ist somit 89 km lang.

Das Beispiel zeigt deutlich den Zusammenhang zwischen der Differenz
162 — 73 und der Gleichung 73 + x = 162: die Differenz ist die Lisung der
Gleichung. Ganz allgemein legt man fest:

| Definition 54.1: Unter der Differenz b — a versteht man die Losung der
‘ Gleichung a + x = b.

b — a ist also diejenige Zahl, die man zu @ addieren muf3, um b zu erhalten.
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Nach dieser Definition hat eine Differenz » — a nur dann einen Sinn, wenn die
entsprechende Gleichung a + x = b genau eine Losung besitzt. In der Zahlen-
menge (05 war dies nur unter der Voraussetzung a < b der Fall. Fura > b war
die Gleichung unlésbar, somit die Subtraktion b — ¢ nicht ausfithrbar. Hat
sich daran durch die Einfithrung der negativen Zahlen etwas gedndert? Ist in
der Zahlenmenge @ die Subtraktion immer durchfithrbar?

Um diese wichtige Frage zu kldren, betrachten wir als Beispiel zunéchst eine
Gleichung, die in Q@ keine Losung hat:

BeiSpielz E

Fe—3 0 1 7 s,

Abb.55.1 Zur Gleichung 7+x =3

Die Pfeildarstellung zeigt, dall es genau eine Zahl x gibt, die man zu 7
addieren mufB}, um 3 zu erhalten. Sie wird durch den von 7 nach 3 zeigen-
den Pfeil dargestellt. Man erkennt leicht, dal} es die Zahl — 4 ist.

Es gilt also: 7+ x =3 hat die Léosung x =3 -7 = —4.

Das in diesem Beispiel angewandte Verfahren 13t sich auf jede Gleichung der
Form a + x = b iibertragen: Man stellt @ und b durch vom Nullpunkt der
Zahlengeraden ausgehende Pfeile dar. Dann gibt es genau einen Pfeil x, der
von der Spitze des Pfeils ¢ zur Spitze des Pfeils b fithrt; er stellt die einzige
Losung der Gleichung dar. Die Abbildung 55.2 zeigt einige typische Fille.

> Y
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Damit gilt folgender

Satz 56.1: Die Gleichung @ + x = b hat in der Menge © der rationalen
Zahlen stets genau eine Losung.

Da man die Ldsung der Gleichung a + x = b durch die Differenz b — a aus-

driickt (siehe Definition 54.1) und diese also fiir beliebige a, b € (D definiert ist,

gilt weiter der wichtige

| Satz 56.2: In der Menge () der rationalen Zahlen ist die Subtraktion
unbeschrinkt ausfithrbar.

Durch die Einfithrung der negativen Zahlen ist es uns also gelungen, die frither
ber der Subtraktion notwendigen Beschrinkungen aufzuheben!

Ein wichtiger Sonderfall der Gleichung a + x = b ergibt sich fiir = 0. In
diesem Fall, also fiir die Gleichung a + x = 0, lautet die Losung: x = 0 — a.
Bei dieser Differenz handelt es sich aber, wie Abbildung 56.1 zeigt, um die uns
schon bekannte Gegenzahl von a, also x = —a.

a a

I ; o

Abb. 56.1 Die Gleichung a + x = 0

Damit gilt

Satz 56.3: Die Differenz 0 — a ist die Gegenzahl von a.
0—a=-—a

Man kann nun also — ¢ auch als Kurzschreibweise fiir die Differenz 0 — a
auffassen. Analog dazu kann man + a als Kurzform fiir die Summe 0 + ¢
verstehen.

Die schon in Satz 49.2 aufgetretene Gleichung a + (— a) = 0 kann nun auch
folgendermaBen gedeutet werden: Zu jeder Zahl a € (0 gibt es eine zweite Zahl
(ndmlich —a), so daBl die Summe dieser Zahlen das neutrale Element der
Addition, also 0, ist. Man sagt dazu auch: »Die beiden Zahlen heben sich beim
Addieren gegenseitig auf.« In der Mathematik bezeichnet man solche Zahlen
als zueinander invers* beziiglich der Addition.

* inversus (lat.) = umgekehrt
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Satz 57.1: Zu jeder rationalen Zahl a gibt es genau eine Inverse beziig-
lich der Addition, ndmlich die Gegenzahl —a.

Dieser Satz stellt ein weiteres Rechengesetz der Addition dar, das als »Exi-
stenz des Inversen« bezeichnet wird. Wir verwenden dafiir die Abktrzung (I).
Damit haben wir fiir die Addition in @ funf Rechengesetze:

(E), (K), (A), (N), (

Wir betrachten noch einmal die Pfeildarstellung der Differenz b — a (Abbil-
dung 57.1).

‘l'a ‘ . a ”b
L] 0 T b
b-a -a

Abb. 57.1 Pfeildarstellung der Differenz

Offensichtlich erhiilt man den Pfeil » — a auch dadurch, daB man an den
Pfeil b den Pfeil — a ansetzt, also die Pfeilsumme b + (—a) bildet! Ob das
allgemeingiiltig ist, konnen wir durch Rechnen iiberpriffen. Da b—a die
Losung der (chlc.hunu a4+ x = b ist, rechnen wir nach, ob auch b+ (—a)
diese (:luahung erfullt:

a+ b+ (—a) Ea+(—a)+b) L2@+(—a)+b=0+b=0>,

also a+(h+(—a)=>b.

Damit ist gezeigt, daB} die Losung der Gleichung a + x = b, fiir die wir in
Definition 541 die Differenzschreibweise x = b — a vereinbart haben, auch
in der Form x = b + (— a) geschrieben werden kann. Da die Gleichung nur
eine einzige Losung besitzt, kann es sich bei b —« und b+ (—a) nur um
\*Lrb(,hli.duu, Darstellungen derselben Zahl handeln! Es gilt Ltlso

Satz 57.2: b—a=b+(—a)
Das heiBt: Das Subtrahieren einer Zahl ist gleichbedeutend
mit dem Addieren ihrer Gegenzahl.

Mit diesem Satz kann man jede Differenz in eine Summe, jede Subtraktion in
eine Addition umwandeln! Das ist deshalb von groBer praktischer Bedeutung,
weil wir das Addieren in der Zahlenmenge @ bereits gut beherrschen — und
damit nun auch schon das Subtrahieren.
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Beispiele:
IS —=lli=5 Ft{=H)==1lE=35)= =6
2) (=210) —8.05=(—2 1) +(=8 k= —(217 4805 =—10,22,
S 6 e NG SR O =G RO L
=+ (935 — 61%) = -1(:0 = 315.
Aufgaben
I. Berechne folgende Differenzen:
a) 99 — 1000 b) (—99) — 1000 ¢) (—99) — (—1000)
dy 52—79 e}l =16 d5)—(—17.5) f) (—0,625) — 0,625
g) & — 4 h) 23— (—53) i) (—10:D) — (= 7.2)

2. a) Beschreibe fiir die im folgenden angegebenen Fille, wie man das Vor-
zeichen und den Betrag der Differenz @ — b aus den Vorzeichen und
Betrdgen von Minuend ¢ und Subtrahend b erhilt. (Vergleiche dazu die
entsprechende Untersuchung auf Seite 48 fiir die Summe a + b.) Ferti-
ge jeweils eine Pfeilskizze an.

1. Fall: a positiv und b negativ
2. Fall: a negativ und b positiv
3. Fall: ¢ und b pmm\ und |a| > |b|
4. Fall: @ und b positiv und |a| < |b|
5. Fall: @ und b negativ und |a| > |b|
6. Fall: @ und b negativ und |a| < |b|

b) Formuliere nun einen dem Satz 49.1 entsprechenden Satz fiir die Sub-
traktion.

3. Schreibe nach Definition 54.1 die Losung der Gleichung als Differenz und
berechne sie.

a) 3+x=1 b) —3+x=1 e} S X =1

d) =3 +Fy==1 e) x+2.9=1.,5 e ti(=27y=1.5
g) x+27=-15 h) x+(=2D=-15 i) 5; =.\'—;—8-%
k) 21 —4L =914 x ) 231,77+ 378,29 = — 167,71

4, Berechne:

a) 21 — (17 + 14) b) (—123) — (213 — 321)
¢) (—76)— (18 + 58) d) (—51,6) + (34.9 — (— 17,7)
e) ((—15) + 813) — 100 f) 13,25— (23— (-13)

5. Berechne:
a) ( 65 — 640) + (575 — 700)
b) (62,8 — 20,25) — (32,08 4+ 10.47)
c) ((—[)"(n +0,173) — (17,3 — 21,6)
d) (16 — 127%5) — (8,75 + (— 33))
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Bestimme die Losung einer Gleichung vom Typ x —a = b,indemdu x — a
als Summe schreibst und Definition 54.1 anwendest.

@) x—5==3 by x—22=293

¢) x—24=31-6: d) 52— 14 = x— &3

e) 33—(17+ 4%) = x — 23 Tiek— (31l3 am 8315') = 4"['1g = [5

. Bestimme die Losungeiner Gleichung vom Typ a — x = b,indemdu a — x

als Summe schreibst und nach Definition 54.1 zuerst —x berechnest.
a) 16— x=20 b) 32— x
¢) 692 x=217—(0,25—4,5)d) 443l =75 —x

=L
=

Wihrend eines Wintertages wurde im Abstand von je 3 Stunden die Tem-

peratur abgelesen und notiert:

Uhrzeit | AT i gl jIE]’

Temperatur —10,7 | —11,8 | —5,6 ‘ 2.?! 2.1 | —2.1|-5.8 i—?.3

i 6 ‘ | |

a) Berechne die Temperaturinderung zwischen je zwei aufeinanderfol-
genden Ablesungen.

b) In welchem dieser Zeitabschnitte war die Temperaturabnahme, in wel-
chem die Temperaturzunahme am grofB3ten?

lgh

o

‘—9.5

. Gase werden bei sehr tiefen Temperaturen fliissig, z.B. Sauerstoff bei

—183°C und Helium bei — 269 °C. Um wieviel Grad mull man Helium,
das mit fliissigem Sauerstoff vorgekiihlt wurde, noch weiter abkiihlen, um
es zu verfliissigen?

Wenn man Quecksilber abkihlt, erstarrt es bei einer Temperatur von
— 59°C. Um wieviel Grad muB sich Quecksilber, das die Temperatur von
fliissigem Sauerstoff (—183°C) hat, erwdrmen, damit es wieder fliissig
wird?

Auf das Bankkonto des Herrn Knapp wurde am Monatsersten sein Ge-
halt in Héhe von 3275 DM iiberwiesen. Am gleichen Tag wurden 840 DM
als Monatsmiete abgebucht. Danach betrug sein Guthaben 2361,42 DM.
Wie hoch war der Kontostand vor den beiden Buchungen?

Aufeiner Reise durch den Westen der USA iibernachtet Familie Brown im
beriihmten Death Valley (California). Am nidchsten Tag fahren sie weiter
nach NW in die Sierra Nevada und erreichen dabei am Tioga-PalBl (Mee-
reshéhe 3031) den hochsten Punkt. Herr Brown stellt fest, dal sie damit an

diesem Tag einen Hohenunterschied von 3116 m iiberwunden haben. Auf

welcher Meereshdhe liegt demnach der tiefste Punkt des Death Valley
(= tiefster Punkt in den USA!)?
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2.5 Anordnung der rationalen Zahlen

2.5.1 Definition der Anordnung in Q
Fiir je zwei Zahlen p und g aus der Menge Q ist die folgende Aussage richtig:

Entweder gilt p =g, gelesen »p ist gleich g«,
oder es gilt p < g, gelesen »p ist kleiner als g«,
oder es gilt p > q. gelesen »p ist groBer als g«.

fJG t‘

Man sagt deshalb: »Die Zahlenmenge @, ist angeordnet.« Die Aussagen
p < g oder p > g nannte 1838 der LJ}n1m1~,|c11d|1t,k101 Johann Heinrich Trau-
gott MULLER (1797-1862) in seinem Lehrbuch der Mathematik fiir Gymnasien
und Realschulen Ungleichungen.

Das Zeichen = wurde von dem Englinder Robert RECORD(E) (1510(?)-1558) erfun-
den. In seinem The whetstone of witte (Der Schleifstein des Denkens) schreibt er 1557;
»And to avoid the tedious repetition of these words »is equal to<I will set [ ... ] a pair of
parallels, or twin lines of one length, thus: ==, because no 2 things can be more
equal.« — 70:'(1’:{’:: der Gleichheit nannte es 1791 Johann Heinrich VoigT (1751-1823).
Die Zeichen < und > erscheinen zum ersten Mal in der postum 1631 gedruckten Artis
analyticae praxis ad aequationes algebraicas resolvendas des Englinders Thomas HAR-
RIOT (1560-1621). Der Herausgeber, Walter WARNER, gab HARRIOTS handschriftlichen
Zeichen < bzw. > diese einfache Form.

(‘.I’

Wir wollen nun versuchen, die Anordnung in @ aufdie gréere Menge @ der
rationalen Zahlen auszudehnen. Dazu miissen wir auch fiir die neu hinzuge-
kommenen negativen Zahlen die Verwendung der Zeichen < und > sinnvoll
festlegen. Da in @, die Ungleichung p < ¢ ‘bedeutet, daB auf dem Zahlen-
strahl der Punkt p links vom Punkt ¢ liegt, bietet es sich an, zu vereinbaren,
dal auch fir zwei Zahlen @ und b aus Q die Beziehung a < b genau dann
gelten soll, wenn auf der Zahlengeraden der Punkt a links vom Punkt b liegt
(Abbildung 60.1). Damit miiite z.B. —20 < —1 oder — 300 <0 oder
— 2 < 0,2 gelten! Deutet man die Zahlen etwa als Angaben {iber Temperatu-
ren oder Kontostande, so erkennt man, daB3 solche Ungleichungen durchaus
sinnvoll sind.

Definition 60.1: Fiir zwei rationale Zahlen ¢ und b gilt ¢ < b genau
dann, wenn auf der Zahlengeraden der Punkt a links
vom Punkt b liegt.

Statt @ < b schreibt man auch b > a.

l
]

Abb. 60.1 Veranschaulichung von a < b

Aus Definition 60.1 folgt, daBl nun auch in der Menge @ fiir je zwei Zahlen a, b
die Aussage zutrifft:

Es gilt entweder a=b oder a<b oder a>b.
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Auf Grund der Anordnung auf der Zahlengeraden bestehen zwischen den
negativen Zahlen, der Zahl null und den positiven Zahlen die folgenden Bezie-
hungen:

Jede positive Zahl ist grofler als 0.
Jede negative Zahl ist kleiner als 0.
ede negative Zahl ist kleiner als jede positive.

e

Wegen Teil 1 und 2 dieses Satzes konnen wir die Aussagen »a ist positiv« bzw.
»a ist negativ« kiirzer durch die Ungleichungen a > 0 bzw. a < 0 beschreiben.

Wie die Abbildung 60.1 zeigt, ist im Fall @ < b der Pfeil von a nach b stets
rechtsgerichtet; er stellt also eine positive Zahl p dar. p ist digjenige Zahl, die
man zu a addieren muB, um b zu erhalten, also die Differenz b — a. Da umge-
kehrt fiir eine Zahl p > 0 zur Summe a + p immer ein rechts von a liegender
Punkt der Zahlengeraden gehort, gilt

=

Satz 61.2: a < b gilt genau dann, wenn es eine positive Zahl p gibt, so
daBa+p=>.

Beispiele:
1) —20<—1; denn —20+4+19=—1.
2) —500<0; denn — 500+ 500=0.
3) —2<02; denn —-2+4+22=0,2.
4) %<3 4 2

A = | L=
<2 denn F+35=35-

2.5.2 Monotoniegesetz der Addition

Wir wissen: Wenn man zwei gleiche Zahlen a und b hat und zu jeder dieselbe
Zahl ¢ addiert, erhilt man auch gleiche Summen. Das heiBt, aus a = b folgt
stetsa+c=b+c.

Beispiel*: 243=5=(2+3)+8=5+8

Welche Beziehung besteht aber zwischen @ + ¢ und b + ¢, wenn a4 und b ver-
schiedene Zahlen sind, wenn z.B. a < b gilt?

c

—>| r——n — [

b+c b

Abb.61.1 Zum Monotoniegesetz der Addition

* Den Folgepfeil = liest man daraus folgi.
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Wie Abbildung 61.1 zeigt, gilt mit @ < b stets auch a + ¢ < b + ¢, und zwar
unabhingig davon, ob ¢ > 0 oder ¢ < 0 oder ¢ = 0 gewihlt wird. Die Addi-
tion von ¢ verschiebt jeden der Punkte @ und b auf der Zahlengeraden um
den Pfeil ¢. Dabei bleibt ihre Reihenfolge und sogar ihre Entfernung erhalten.
Dall umgekehrt aus ¢ + ¢ < b + ¢ auch wieder die Ungleichung a < b folgt,
erkennt man, indem man auf beiden Seiten — ¢ addiert. Damit gilt

Satz 62.1: Monotoniegesetz der Addition
Addiert man auf beiden Seiten einer Ungleichung dieselbe
Zahl, so bleibt das Ungleichheitszeichen erhalten; kurz:
a<b < a+c<b+c

Ein entsprechendes Monotoniegesetz gilt auch fiir die Subtraktion, denn man
kann ja nach Satz 57.2 jede Differenz auch als Summe schreiben. Durchfiih-
rung in Aufgabe 63/3.

Das Monotoniegesetz der Addition wendet man gerne an, um festzustellen, ob
eine Ungleichung zutrifft oder nicht.

Beispiele:
1) ~36<—6 < —36+6<—-646 < —30<0
2) —36<—-6<= —364+36<—-6+36 <= 0<30
3) 36b6<-6<= —36+21<—6+21 = —15<15
4) 225> 3 = 225—5>3 -7 « 225-0,35>42 < 19> 2()
5) 225> %0 < 225-225>41—-225 <« 0>235—225 <= 0>0,1()

Die Beispiele 1, 2 und 5 zeigen, wie man durch Anwendung des Monotoniege-
setzes der Addition bzw. Subtraktion eine Ungleichung auf »Nullform« brin-
gen, d. h. auf einer Seite der Ungleichung die Zahl 0 herstellen kann. An einer
solchen Nullform erkennt man besonders leicht, ob die Ungleichung wahr
oder falsch ist.

Aufgaben

Stelle aus den Zahlen der folgenden Paare mit einem der Zeichen =, <, >
eine richtige Gleichung bzw. Ungleichung her.

a) 0; 0,1 b) 3; —1 c) —56;—65 d) —5& —0,35

e) —25 0 f) —099 001 g —2% X% h) —43; —23

i) —3;—1 k) —14; 1 ) 10; —100 m) —57; —75
2. Unter den folgenden Ungleichungen sind einige falsch! Welche?

a) 1,65 <2 b —l.65%=—~2

¢) 1¢>0,56 d) —1t < —0,56

e)d =2705==225 B —1,3=245< <4475

g) 3.5—(24+0,625 + (12— H - 0,875

h) 0.5-G+H+12-L
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3. Zum Monotoniegesetz der Subtraktion
a) Fasse folgenden Satz in Worte und begriinde ihn:
Firallea,b,ceQglt: a<b = a—c<b-—c.
b) Begriinde: Fiir alle ¢, b, deQ gilt: a—d<b—d = a<b. i

i

Stelle bei den folgenden Ungleichungen ihre beiden Nullformen her und
entscheide, ob die Ungleichungen wahr oder falsch sind.

a) 9,99 < 9,999 b) —1,001 < —1,01
) 1,85>42 d) —45 >—=28
€)1, 5ttt f) 161 —11> 181 —32

n

Auch fir Ungleichungen der Form a + b gilt das Monotoniegesetz der
Addition: a+ b = a+c+ b+c.

a) Gib zu diesem Monotoniegesetz drei Beispiele an.

b) Begriinde dieses Monotoniegesetz.

6. Wenn man bei zwei Ungleichungen a < b und ¢ < d die Zahlen links vom
Ungleichheitszeichen sowie die Zahlen rechts davon addiert und das Un-
gleichheitszeichen beibehilt, so entsteht wieder eine richtige Ungleichung.
Kurz:
aus a<bhb

und ¢ <d
a) Prife diese Behauptung an drei Zahlenbeispielen.
eb) Beweise die obige Behauptung, indem du bei @ < b auf beiden Seiten ¢
(*) und bei ¢ < d auf beiden Seiten b addierst und die erhaltenen Unglei-
chungen miteinander vergleichst. Mache dir die Zusammenhénge auch
an der Zahlengeraden klar.
ec) An der Ungleichung 3 + 97 < 1 + 100 erkennt man, daf3 der in b) be-
wiesene Satz nicht umkehrbar ist. Begriinde dies und gib ein weiteres
Gegenbeispiel an.

} folgt a+c<b+d.

2.6 Multiplikation und Division von rationalen Zahlen

2.6.1 Definition der Multiplikation in Q

In der Menge der rationalen Zahlen beherrschen wir bis jetzt erst das Addieren
und das Subtrahieren. Zwar wissen wir auch, wie Zahlen aus der Menge Q)
miteinander multipliziert werden, aber wir kennen noch keine Produkte mit
negativen Faktoren. Was soll z.B. 3:(—4) oder (—24)-% oder gar
(—3,4) - (—5,1) bedeuten?

Zunichst eine Bemerkung zur Schreibweise: Auch bei Produkten ist es sehr
wichtig, zwischen Vorzeichen und Rechenzeichen genau zu unterscheiden. Ein
Faktor mit Vorzeichen muB, wie die Beispiele zeigen, in Klammern gesetzt
werden.
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Produkte mit negativen Faktoren miissen wir also erst noch definieren. Natiir-
lich versuchen wir wieder, es so einzurichten, daB fiir die Multiplikation in @
die Rechengesetze erhalten bleiben, die uns fiir die Multiplikation in Q@ ge-
laufig sind (Permanenzprinzip, vgl. Seite 38). Zur Wiederholung stellen wir
diese Rechengesetze hier zusammen:

Rechengesetze der Multiplikation in Q

Fiir alle Zahlen a, b, ¢ aus Qg gilt:
(E) a- b ist wieder eine Zahl aus Q

(K) a‘b=b-a

(A) (a*b):c=a-(b:c)

eindeutige Existenz des
Produkts

Kommutativgesetz der
Multiplikation
Assoziativgesetz der Multipli-
kation

1 ist neutrales FElement der
Multiplikation

Produkte traten erstmals beim Rechnen mit natiirlichen Zahlen auf, Sie wur-
den dort als Kurzschreibweise fiir Summen mit gleichen Summanden einge-
fihrt; z.B. gilt: 3-4 =4 + 4 + 4. Deshalb liegt es nahe, ein Produkt wie
3 - (—4) ebenfalls als abgekiirzte Schreibweise fiir eine Summe aufzufassen.
namlich als 3 - (—4) = (—4) + (—4) + (— 4). Die rechts vom Gleichheitszei-

chen stehende Summe konnen wir berechnen! Wir erhalten so 3-(—4) =
= —12, wofiir man wegen 12 = 3 - 4 auch schreiben kann:

3-(-4)=-(3-4)

Das sieht nach einer sehr einfachen Regel aus! Man kann sie offenbar immer

dann anwenden, wenn der erste Faktor eine natiirliche Zahl und groBer als 1

DH(0,D+(—0,D+(—=0,7)+(—0,7) =

1) 5:(—0,7) =(
—3,5=—(5-0,7)

=65=—(2-3%)

G

Ein Produkt wie 3,4 - (— 5,1), bei dem der erste Faktor zwar wieder positiv,
jedoch nicht ganzzahlig ist, kann nicht mehr als Summe gedeutet werden.

Wohl aber ist es auch hier moglich, den Term — (3.4 - 5.1) zu berechnen. Der
Vergleich mit den obigen Beispielen legt nahe, zu vereinbaren, daB
34-(—5,1)=—(3.4-5,1) gelten soll. Dieses Verfahren 14Bt sich auf alle Pro-
dukte mit positivem ersten und negativem zweiten Faktor anwenden. Wir
erhalten so
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Definition 65.1: Fiir das Produkt aus einer positiven Zahl p und einer
negativen Zahl — g soll gelten:

p(—q)=—(p*q)

Beachte, daB3 in dieser Definition (und auch im folgenden) die Variablen p und
q positive Zahlen vertreten!

Vertauscht man im Beispiel 3.4 - (—5,1) die Rethenfolge der Faktoren, so
erhédlt man ein Produkt, bei dem der erste Faktor negativ, der zweite po-
sitiv ist. Natiirlich soll, da wir ja das Kommutativgesetz retten wollen, die-

ses Produkt denselben Wert wie 3.4 - (—5,1) erhalten! Es soll also gelten:
(=51):-34=34-(—5,1)=—(3.4-5.1) bzw., da man die positiven Fakto-

ren in der letzten Klammer vertauschen darf:
(=5,1)-34=—(51"-34)

Die Verallgemeinerung dieser Uberlegung fiihrt zu

Definition 65.2: Fiir das Produkt aus einer negativen Zahl — p und einer
positiven Zahl g soll gelten:

(=p)a=—(p:q)

Die beiden in den Definitionen 65.1 und 65.2 enthaltenen Regeln lassen sich so
zusammenfassen: Man erhalt das Produkt aus einer positiven und einer nega-
tiven Zahl, indem man das Minuszeichen des negativen Faktors vor das Pro-
dukt der beiden Betrige setzt.

Wenn wir nun weiter iiberlegen, wie man ein Produkt aus zwel negativen
Faktoren, z. B. (— 3,4) - (— 5.1), definieren soll, so liegt es nahe, die Regeln in
den Definitionen 65.1 und 65.2 versuchsweise auch jetzt zu beniitzen, also das
wHerausziehen des Minuszeichens« auch in diesem Fall anzuwenden (Per-
manenzprinzip!). Damit erhilt man:

(=34)-( 1= (34151 = (Anwendung von Def. 65.1 auch bei
negativem 1. Faktor!)
=—(—(3.4-51) = (nach Def. 65.2)
= JideiSil (nach Satz 42.1)

Die Verallgemeinerung dieses Vorgehens wiirde also folgende Regel ergeben:
(=p)-(—g)=p-qgfirp>0und g>0.

Demnach miiite das Produkt zweier negativer Zahlen positiv sein! Das mag
auf den ersten Blick iiberraschen. Sinnvoll erscheint aber jedenfalls, dali, wie
in den vorausgehenden Fiillen, der Betrag des Produktes wieder den Wert p - ¢
haben soll. Dann kann das Produkt selbst aber nur p - g oder — (p - ¢) sein.
Der Produktwert — (p - ¢) ergab sich aber bereits in den Fillen p - (—¢) und
(—p) - q, von denen sich (—p) - (—q) doch sicherlich unterscheiden sollte.
Das spricht wieder fiir das Ergebnis p - ¢, also fiir
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Definition 66.1: Fiir das Produkt zweier negativer Zahlen —p und — ¢
soll gelten:

(=p)'(—q)=p-q

Der jetzt noch verbleibende Fall, daB3 eine negative Zahl mit 0 multipliziert
werden soll, bereitet uns wenig Miihe. Natirlich soll ein solches Produkt wie-
der den Wert 0 haben:

Definition 66.2: Fiir das Produkt einer negativen Zahl — p mit der Zahl
0 soll gelten:

(=p) 0=0-(—p)=0

Nunmehr sind wir in der Lage, das Produkt zweier beliebiger rationaler Zah-
len zu berechnen. Die dafiir geltenden Regeln kann man so zusammenfassen:

Satz 66.1: Zwei rationale Zahlen mit gleichen Vorzeichen werden multi-
pliziert, indem man ihre Betrdge multipliziert.
Zwei rationale Zahlen mit verschiedenen Vorzeichen werden
multipliziert, indem man das Produkt ihrer Betrige bildet
und ithm das negative Vorzeichen gibt.
Ein Produkt mit dem Faktor 0 hat den Wert 0.

Beispiele:
1) 4- (- S} { B)i=7720
D=3 =il o F) 1?] — 54
J)(—1)- (—1)" Iis

=1
=R h)_b ?5:6{}
5)2,5-(—=3,7)=—2,5:3,7) =—925
O(-DB=-—0E1H=-G 3P=-3
7) (—100000) - 0 = 0

Wichtige Sonderfille von Produkten sind solche aus zwei gleichen Faktoren,
2

also die Quadrate™® rationaler Zahlen: a- a = a*.
Beispiele:

1)42=16; 2)(—4)*=(—4)-(—4)=4-4=16

0= 0; 4 (=12)2=(—12):(-1,2)=12-12 =144

* Das Produkt einer Zahl mit sich selbst nannten die Griechen — so belegt bei EUKLID, 8. Buch der Elemente -
tetpayovos [apidpoc] (tetrigonos [arithmos]) = viereckig[e Zahi], da sie den Inhalt des terpdymvoy
[oyfina] (tetrdgonon [s-chemal]) = viereckig[e Figur] angab, falls diese Figur gleichseitig rechtwinklig ist.
Uber das lateinische gquadratus = viereckig enisiand das deutsche Quadrat.
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Auf Grund dieser Beispiele vermuten wir die Giiltigkeit von

Satz 67.1: Das Quadrat einer von 0 verschiedenen rationalen Zahl ist
positiv. Das Quadrat von 0 ist 0. Kurz:

a0 = a*>0 und 0*=0

Der Beweis ergibt sich unmittelbar aus Satz 66.1 (vgl. Aufgabe 69/2).

2.6.2 Eigenschaften der Multiplikation in Q@

Es war unser Ziel, die Multiplikation in @ so zu definieren, dal} die auf Seite 64
zusammengestellten Rechengesetze giiltig bleiben. Ob uns das gelungen ist,
mul} nun gepriift werden.

1) Existenz des Produkts: Mit Hilfe der Definitionen in 2.6.1 bzw. nach Satz
66.1 kann man zwei rationale Zahlen stets miteinander multiplizieren. Das
Ergebnis ist wieder eine Zahl aus Q. Damit bleibt (E) in Q giiltig.

2) Kommutativgesetz der Multiplikation: Hier mulB3 untersucht werden, ob die
Gleichung a - b = b - a fur beliebige rationale Zahlen gilt. Bei den hierzu
notwendigen Fallunterscheidungen verwenden wir wieder p und ¢ als Zei-
chen fur positive Zahlen.

I.Fall: a>0und 6> 0
Dann gilt, wie schon bekannt, ¢-b=5b-a ((K)in Q).

2. Fall: a>0und b <0

Wir setzen a = p, b = — ¢; dann gilt
a-b=p-(—qp)=—(p:q)= (Definition 65.1)
=—(g-p)=  (K)in Q)
=(—q):p= (Definition 65.2)
=ba,
3. Fall: a<O0und b>0
Wir setzen @ = —p und b = g; dann gilt
a-b=i=nl g — D) — (Definition 65.2)
— (K) in Qg)
=g-(=p)= (Definition 65.1)
=ba.
4. Fall: a<QOund b<0
Wir setzen @ = —p und b = — g; dann gilt
ab=(—p)(—q)=p-q= (Definition 66.1)
= ((K) in Qp)
= (=alil=ip)= (Definition 66.1)

—
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5. Fall: a=0o0derb=0
Dann gilt a-b=0=5h-a (Satz 66.1)

Damit ist nachgewiesen, dal} in jedem Fall @ - b = b - a gilt. Also bleibt (K)
fiir die Multiplikation in @ gultig.

3) Assoziativgesetz der Multiplikation: Gilt (¢ b)-c=a- (b - ¢) fir
beliebige rationale Zahlen a, b, ¢?
1) Wenn mindestens einer der drei Faktoren 0 ist, gilt nach Satz 66.1:
@b -e=0=a- (b e).
2) Wenn keiner der drei Faktoren 0 ist, bestehen folgende acht Moglichkei-

ten:
l : : - I
1. Fall| 2. Fall | 3. Fall | 4. Fall | 5. Fall | 6. Fall | 7. Fall | 8. Fall
a pos. | pos. | pos. | pos. | neg. | neg. | neg. | neg.
b | pos. | pos. | neg. | neg. | pos. | pos. | neg. | neg.
|
¢ || pos. | neg. | pos. | neg. | pos. | neg. | pos. | neg. ‘

Im 1. Fall gehoren alle drei Faktoren zur Menge @ *, in welcher (A) gilt.
Als Muster fir die Uberpriifung der tibrigen Fille soll hier nur der
6. Fall untersucht werden:
6. Fall: a<0,6>0unde<0

Wir setzen a = —p. b=gund.c = —r, Mitip, g, r ausd*

Dann gilt:

@:b)e=(=p)-q@):(=r)=(—(pg))-(—r)= (Definition 65.2)

= (pg)r. (Definition 66.1)
a-(b-c)=(=p)-(q-(=r)=(—p)-(—(gr)) = (Definition 65.1)
= plqr). (Definition 66.1)

Wegen der Giiltigkeit von (A) in Q7 ist aber (pg) r = p(gr), also gilt
(a-b)-c= a-(b-c).

Nach derselben Methode kann man auch die Gibrigen Fille untersuchen
(vgl. Aufgabe 70/4). Dabei zeigt sich, dal3 (A) fiir die Multiplikation in @
giiltig bleibt.

4) Neutrales Element der Multiplikation: Fiir a < 0, also a = — p, gilt:
a1=(—p):1=—(p-1) =  (Definition 65.2)
=l = (NYin@Q™)
= d.

Daraus folgt, dafl 1 auch fiir die negativen und damit fiir alle rationalen
Zahlen neutrales Element der Multiplikation ist.
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Damit st gezeigt:

=

| Satz 69.1: Fiir die Multiplikation in der Menge @ der rationalen Zahlen
- gelten wieder die auf Seite 64 zusammengestellten Rechenge-

| setze (E), (K), (A), (N).

Ebenso wie bei dreigliedrigen Summen kann man nun auch bei Produkten mit
drei Faktoren wegen (A) auf Klammern verzichten:
(a-b)-c=a: (b -¢c)=a-b'c.

Mit Hilfe von (K) erkennt man, dall auch die Reihenfolge der Faktoren belie-
big verindert werden darf:
Beispiel 1:

Behauptung: abe = cha

- A K . K A

Beweis: abc = (ab)c = c(ab) = c(ba) = cba.
Ganz entsprechend 146t sich auch bet Produkten mit mehr als drei Faktoren
zeigen, daB man auf Klammern verzichten kann und dafl auch die Reihenfolge
der Faktoren beliebig geandert werden darf.
Beispiel 2:

12: 5 - 23915

:l'_;.

12,5 -((—23.91) - 8) =
((=23,91)8):12.5=
(—23,91)-(8-12.5) =
=(—=23.91) - 100= —2391..

I= [l

Beispiel 2 zeigt, wie man durch die Wahl einer gunstigen Reihenfolge der
Faktoren und der Rechenschritte die Berechnung eines Produktes oft verein-
fachen kann. Achte also stets auf solche Rechenvorteile.

Aufgaben
l.a) (—35)-24 b) 16 - (— 30) ¢) (—125):(—81)
d) (—2,5-028 e) (—17,25)-(—3,04) f) 0,064 -(—6,25)
g 3 - (=290 (A i) (—8.45)- 155
2. Beweise Satz 67.1. Unterscheide dabei die Fille a > 0, a = 0 und a < 0.
3.:a) 142 b) (—0.,11)? c) (—32)2 d) (-8
e) 0375—32 N @-97 pE=3 W~
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Uberpriife das Assoziativgesetz (ab)c = a(bc) nach dem Muster des auf
Seite 68 durchgefiihrten 6. Falles

a) fir 2= 0.0 >0,c:< 0" (2. Fall),

b) fir ¢a>0,b<0,c<0 (4. Fall),

¢) fir a<0,56<0,c<0 (8. Fall).

5. Berechne die folgenden Produkte. Achte dabei auf Rechenvorteile.

10.

1L

12.

a) 4-(—37)-3 b) (—107) -8 - (—25)
¢) (—0,2)-(—6,28)-(—50) d) (—300)-13-(—0,132)
e) (—51) 0-(—3% ) (—29)% (%) 3
. Begriinde den Satz: Ein Produkt, in dem kein Faktor 0 ist, hat genau dann

einen positiven Wert, wenn die Anzahl der negativen Faktoren gerade ist.

. Setze zwischen die folgenden Zahlenterme eines der Zeichen <, =, > so,

daf eine wahre Aussage entsteht. In welchen Beispielen ist dies ohne Rech-
nung moglich?

a) 7-(—0,02) und 1 b) (—12)-(—13) und 150

¢) —6und (—1)(—=2)-(—3) d) (- (3D (—%Dund 0
e) (—0,64)2 und — 0,64 ) (—13)-4,5und 54 (—0,6)
A (=152 (=D =H W idi(r=2) 3u(=4)

©) (2,5 (—1,6)+3,25-(—0,5) d) 1515 (— 1) - 14

. Achte bei der Berechnung der folgenden Summen und Differenzen auf die

richtige Reihenfolge der Rechenschritte.

a) (ShE= 2103 (1) 2 (=3 (—4)

¢) 200-(=0.25Y— 25-(=0,250)" @) (—4,56)-(—10.5)=£63-(—7.6)
& (8D H-(-098) (- (DI (P+2:(—D-%

a) (263 — 298)(298 — 263) b) 41,54+ (—67,75)) - ((—2,1)—1,9)
0 (12-29-35-(-1H-H @ 1-PC-HB-D

Berechne folgende Absolutbetrige:

a) |5(—2)| b) [(—8)-9] ¢) [(=17)(—3)| d) |24 - 25|
el |U.?5(—4}(—§)] {)|(_g~?5}.4,_§_|

g) [(—0,75)(—4)(—3)| h) 9,81 - (— D) -0 (= 3D
Beweise den Satz: Der Betrag des Produktes zweier rationaler Zahlen a

und b ist gleich dem Produkt der Betrdge dieser Zahlen, d. h.
la*b| = |a|-|b].

. Berechne den Wert der folgenden Terme fiir die angegebenen Einsetzun-

gen:

a) T(x)=x>+4x+1 fiir x=—5(—23:0:2)

b) T(a;b) =(a+2b)(a—2b) fir a=3;b=—-1,5 und
far ai= R 3 h——38
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STy s) =xpz—ll—9)(y— 2 s =101 =g 7= 18
und fir, x =038y = —1.25. 2 — =965

d) Fla:b:e)=|(a=b)=¢c|=(|la]l=|b==q|) Tir a==22; b
=33 und: v g = =143 b= =58 p=—=GT

—18:

Il

2.6.3 Division in )

Es kommt hdufig vor, daBl von einem Produkt der Wert bekannt ist und einer
der Faktoren bestimmt werden mul}. Dessen Berechnung fithrt auf eine Divi-
sion. Man bezeichnet wegen dieses Zusammenhangs die Division als Umkeh-
rung der Multiplikation.

Beispiel:
Die Klasse 7a mietet fiir einen Ausflug einen Bus. Sie mul} dafiir
350 DM bezahlen. Welchen Fahrpreis hat jeder der 28 Schiiler zu ent-
richten?
Wenn wir den Fahrpreis pro Schiiler mit x DM bezeichnen, muB3 gelten:

28 x=350; also x= 35028 =125

Jeder Schiiler muB also 12,50 DM bezahlen.

Man erkennt an diesem mit Zahlen aus Q@ * gebildeten Beispiel, dali der Quo-
tient 350 : 28 die Losung der Gleichung 28 - x = 350 darstellt. Genau diese
Bedeutung wollen wir nun auch fiir Quotienten aus beliebigen rationalen Zah-
len vereinbaren:

| Definition 71.1: Unter dem Quotienten b : a der rationalen Zahlen b und
a + 0 versteht man die Losung der Gleichunga - x = b.

Statt b : g schreibt man auch
a

b:a ist also diejenige Zahl, mit der man a multiplizieren mul}, um & zu
erhalten.
Nach dieser Definition hat ein Quotient 5 : @ nur dann einen Sinn, wenn die
entsprechende Gleichung a - x = b fiir @ = 0 genau eine Losung hat. Wir wis-
sen schon, daB dies fiir ¢ @ " und b € Qg zutrifft. Gilt das aber auch, wenn
a oder b negativ ist? Das ldBt sich mit Hilfe einer Fallunterscheidung uber-
priifen:
I. Fall: a>0und b<0

Wir setzen ¢ = pund b = —q (p > 0, ¢ > 0); dann gilt:

a-x=b < px=—gq.
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Falls diese Gleichung eine Losung x besitzt, muB} sie negativ sein. Fiir sie

gilt also: x = — | x|. Damit erhilt man:
prx=—g s p-(=Ix|)=—¢q < —(p-|x])=—9q = p-|x| =4
Dies ist nun eine Gleichung mit positiven Zahlen. Sie hat die Losung
. q b q
| x| = =. Damit gilt: x = —=.
P = p
, : S . - q
Ergebnis: Die Gleichung p - x = — ¢ hat die Losung x = 5

Auf ganz entsprechende Weise kann man auch den 2. und 3. Fall untersuchen.
Man findet dabei folgende Ergebnisse:

2. Fall: a<Qund b =0

Die Gleichung (—p) - x = g hat die Losung x = — ;’: .
3. Fall: a<0und b <0

S R q

Die Gleichung (—p) - x = —¢ hat die Losung x = —.

4. Fall: a<0und b =0
Nach Satz 66.1 ist x = 0 eine Losung der Gleichung @ - x = 0. Dies mul3
auch die einzige Losung sein; denn fiir x > 0 wdre a - x < 0, fiir x < 0 wire
a-x = 0.

Damit ist nachgewiesen:

Satz 72.1: Die Gleichung a - x = b hat fir a # 0 in der Menge Q der
rationalen Zahlen stets genau eine Losung.

Fiir den Fall @ = 0, d.h. fir die Gleichung 0 - x = b, gelten in Q dieselben
Feststellungen wie in Qg :

Wenn b =+ 0, hat die Gleichung 0 - x = b keine Lésung,

wenn b = 0, ist jede Zahl eine Losung.

Daher sind Quotienten mit dem Nenner 0 auch in @ sinnlos. Damit gilt

Satz 72.2: In der Menge O der rationalen Zahlen kann man jede Zahl
| durch jede von 0 verschiedene Zahl dividieren.
Aber: Durch 0 kann man nicht dividieren.

Aus den in den ersten drei Fillen berechneten Losungen der Gleichung
@ - x = bund der Quotientendefinition 71.1 kénnen wir weitere wichtige Fol-
gerungen ableiten:

Die Gleichung p - x = —¢ (1. Fall) hat die Lésung x = — L Fir diese Lo-
8 P
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: : _— e . =g :
sung haben wir aber in Definition 71.1 die Schreibweise > vereinbart. Daher

c T (

gilt: i 'r‘.

i ) P

Ganz entsprechend erhalten wir im 2. und 3. Fall:
q ¢ -

! . 4 - : z . as .
5 u und . = Ii . Damit haben wir Vorzeichenregeln fiir Quotienten
gewonnen! Diese entsprechen ganz den Regeln fiir Produkte, die wir in den
Definitionen 65.1, 65.2 und 66.1 aufgestellt haben.

Satz 73.1: Fiir Quotienten rationaler Zahlen gelten mit p > O und g > 0

folgende Vorzeichenregeln:

=dr

e SR )

bzw. (—q):p=—(q:p), 4q:(—p)=-(q:p),
(=9):(—-p)=4q:p

=, . . A q
P PP

-

=
P-e

Beispiele:
]) “Hl_-l el .'l:— = 3: _1212] — _!_2,_-21 — _121 —= S‘S‘
2) 6,25:(—1,25) =—(6,25:1,25) =—5

) (- (- =t =1 3= $=23

Einen wichtigen Sonderfall stellt die Gleichung a - x =1 dar. Fiir a + 0 hat

: 1 -
sie nach Satz 72.1 genau eine Losung, nimlich x = —, also den Kehrwert von
a
o , 1 2 I ;
a. Es gilt somit a- — = 1, d.h., das Produkt der Zahlen a und — ist gleich
i a a

dem neutralen Element der Multiplikation. Daher bezeichnet man diese Zah-
len als zueinander invers beziiglich der Multiplikation. Es gilt

Satz 73.2: Zu jeder von 0 verschiedenen rationalen Zahl a gibt es ge-
nau eine Inverse beziiglich der Multiplikation, ndmlich ihren
1

Kehrwert
ol

Dieser Satz stellt ein weiteres Rechengesetz der Multiplikation dar, das man
als »Existenz des Inversen« bezeichnet und mit (I) abkiirzt. Damit kennen wir
fiir die Multiplikation in @ die fiinf Rechengesetze (E), (K), (A), (N), (I).

Fiir ¢ + 0 hat also der Term « - — stets den Wert 1. Multipliziert man ihn mit
{

# l o I
einem Faktor b, so erhilt man daher (L’." ) -h=1-5, also (u- u) b =b.
E‘r “
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Eine einfache Umformung der linken Seite liefert die Gleichung
i
1
a-|(b-—)=b.
a
Diese 1af3t sich nun so deuten:

] - _, :
b - ist Losung der Gleichung a-x = 5.
a

Da aber diese Gleichung nur eine einzige Losung hat und wir fiir diese in

o : b

Definition 71.1 die Schreibweise — eingefiihrt haben, miissen — und b -

a a
lediglich verschiedene Schreibweisen fiir dieselbe Zahl sein. Daher gilt

Satz 74.1: Die Division durch eine Zahl a &= 0 kann man durch die Mul-

1

tiplikation mit threm Kehrwert — ersetzen und umgekehrt,

()

b 1
dh,—=b-= bzw. b:a=b-(1:a) fir a+0.

. a a
BciSpidL
312@31_1%:m:—& 4) (—6,6) & =(—66):2,2=
Aufgaben
Berechne die folgenden Quotienten‘
a) 105:(—15) b) (—=7):(—1) ¢) (—65):125
d) (—3,24):(—1,8) e) 1024 132 ) (—10,24):0,064
g) 2,7:(—81) h) (—2,5):(—0.,35) i) (—18):21,6
Gib den Wert der folgenden Briiche in mdglichst einfacher Form an:
5 —16 —35 84
b d
). ) 12 s ) 144
(=1)% (=1)3 —1 (1)
e) f : : A e
=il ) (=l L}[—U‘" }i—]}°'
- 8 {_ 2 3 = )' 7 24
i) - 5 k) - ) 1) ( ) m) -

(—2)? 5 (—3)° (—1)
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3. Berechne:

a) 3—5%:(20-9) b) G+ 0,625): (3 — 0,625)
¢) (24—5):45 d) (—109): G5 19)

e) (11-25): (31— 75) ) 8,5:(—3):(—3.4)-2,5

4. Berechne den Wert folgender Bruchterme:

16-1,2 —20 3625 (—16)
a) i e

16—12 20 3,6+ (2,5— 1,6)
c)43—pJ2@—3n m(ﬂ@;ﬁﬁqgﬁ—@y

2:(=73) :J(_’:UH

5. Gib, wenn moglich, zu den folgenden Zahlen die Inversen beziiglich der
Addition und beziiglich der Multiplikation an.
a1 b) —1 ¢) 0 d) —0.125
e) % f) —45 g) 0,75 h) —2+%

6. Begriinde den Satz: Es gibt keine rationale Zahl, fiir welche die Inverse
beziiglich der Addition gleich der Inversen beziiglich der Multiplikation
i1st.

7. Schreibe nach Definition 71.1 die Losung der Gleichung als Quotienten
und berechne sie.

a) (—1)-x=17 b) 3x=—12 ¢) x-(—38)=-17,6

d 2-x=—3% &) 2—Hx=23 ) x(=2)=0,125-1,25
8. Welche Losungsmengen haben die folgenden Gleichungen?

a) x-(32-08) =1 b) (0,625:5—%) - x=0

0 x@G-P=%-1 d) G5—0,15) x = (FH%—0,15)-7

2.6.4 Allgemeine Vorzeichenregeln fiir Produkte und Quotienten

Die Multiplikation einer Zahl @ € @ mit 1, dem neutralen Element der Multi-
plikation, bewirkt keine Anderung: @ - 1 = a. Was aber erhalt man, wenn man
a mit der Gegenzahl von 1, also mit —1, multipliziert?

Beispiele:
1) 7-(—1)=—(11)=—T; 2) (—1)-0i=—(10)
3) (—=1)-3,14=—(1-314) =314 4 (=D (-D)=31=

~afn |

Wie man leicht beweisen kann (vgl. Aufgabe 78/2) gilt

Satz 75.1: Multipliziert man eine Zahl mit —1, so erhalt man ihre Ge-
genzahl.
a-(=1)=(—-1)ra=—a
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Das Interessante an diesem Satz ist, daBl man das Bilden der Gegenzahl nun
auch als Multiplikation mit —1 beschreiben kann. Das ist oft niitzlich, z. B.
bei den folgenden Uberlegungen:

In der Algebra treten hiaufig Produkte der Form a - (—b), (—a) - (— b) usw.
auf, bei denen die Variablen a, b beliebige rationale Zahlen vertreten. Zum
Vereinfachen solcher Produkte darf man daher nicht ohne weiteres die in den
Definitionen 65.1, 65.2 und 66.1 aufgestellten Regeln anwenden, denn die dort
beniitzten Variablen p, g bedeuten positive Zahlen. Immerhin wiére es denkbar
und wunschenswert (Permanenzprinzip!), dall diese Regeln auch fiir beliebige
rationale Zahlen giiltig bleiben. Das soll nun untersucht werden:

Bcispiel 1

—b) kann man folgendermaf3en umformen:
b)

f!'{ =a-((—1)-b) = (Satz 75.1)

5 (b (—1) =

2 (g b)(—1) =

=—(a-b). (Satz 75.1)
Natirlich ist wegen (K)) damit auch die Regel (—a) - b = — (a - b) bewie-
sen.

Beispiel 2:
(—a) - (—b) kann man so umformen:

(—a) (=b)=(—a)-((=1):b) = (Satz 75.1)
A ((=a) (=1)):-b=
=(—(—aq))-b= (Satz 75.1)
=a-b. (Satz 42.1)

Nimmt man der Vollstandigkeit halber noch die Vereinbarung a-b = ab
hinzu und schreibt, um die \amzun,hn,n zu betonen, fir a, b und ab noch +a.

+b, +ab, so erhilt man folgende allgemeingiiltigen Vorzeichenregeln fiir
Produkte:

Satz 76.1: Fur beliebige rationale Zahlen a, b gilt:
(+a): (+b)=+ab (—a)' (=b)=+ab
(+a): (—=b)= —ab (—a): (+b)= —ab

Diese Vorzeichenregeln prigt man sich am besten in folgender Form ein:

Regel 76.1: (+) (+)= + f¥).{_): +
(El(=j =" (=)' (+)=—

Man kann nun also auch Produkte mit Variablen, die beliebige Zahlen vertre-
ten, in gewohnter Weise vereinfachen. Dazu einige
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Beispiele:
1) 5(—a) = —5a; 2) (—2)(—3b) = 6b;
3) (—x)y(—2) = xyz; 4) (—=2)(—0,5)(—32) = —3z

Auch von den in Satz 73.1 enthaltenen Vorzeichenregeln fiir Quotienten, die
dort nur fiir positive Zahlen p, ¢ bewiesen wurden, kann man zeigen, daB sie
fiir beliebige rationale Zahlen gelten:

Beispiel:
—b 1 A
=(—b): — = (Satz 74.1)
ol a
s I 3 i
=({(=1)b) == (Satz 75.1)
a
. k]
- (—1) (h . ) =
a
b y
=(—1):- == (Satz 74.1)
e
b y o
= - . (Satz 75.1)
o
: ¥ : ) b =hanb ..
Auf dieselbe Weise kann man zeigen, dall auch = ——und — = —fur
— i a =T [4]
5 5 ; : o ot b b =
beliebige Zahlen gilt. Zusammen mit = + — erhadlt man so
T d o
Satz 77.1: Fiir rationale Zahlen a # 0 und b gilt:
+b b -—b b +b b -—=b b
——t -y —=t—, —=——, —=——
+a a —da a —da a +a a
Die entsprechende Merkregel lautet:
— - - -
Regel 77.1: — = — =+ i — ==
= A - -

Beachte. daf man in diesen Regeln den Bruchstrich auch durch den Doppel-
punkt als Divisionszeichen ersetzen kann.

Beispiele:
a a (—x)y —(xy) xy
D) ot 2)(—2: =Dy Wiz’
3) 15:(—w)=—([15:uw); A (2vw):(—)= 2ow) : (xp).
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Aufgaben
Vereinfache durch Anwendung der Vorzeichenregeln fiir Produkte:
a) (—2)-x b) (—5)(—y) e)(—2)(+2,3)
d) a(=b)(+c) e) (—a)(=b)c ) (+a)(+b)(—0
2. Beweise die Gleichung a - (—1) = —a (Satz 75.1) mit Hilfe der Fallunter-

scheidung a > 0, @ = 0, @ < 0. Gib jeweils an, welche Definitionen oder
Sétze beniitzt werden.
3. a) Stelle entsprechend der Regel 76.1 die Vorzeichenregeln fiir Produkte
mit drei Faktoren symbolisch dar.
b) Erganze zu richtigen Vorzeichenregeln:
(Z)=CE) =) = und () =) - (=)l (=) =7

Vereinfache durch Anwenden der Vorzeichenregeln fiir Quotienten:

2(—m) (=1 (+m) (=21)(—s)t
a) b) - ¢
=3 (+1)(—n) qg(+r)(—3)
5. Verwandlein den folgenden Produkten den Zahlenfaktor in einen Divisor.
a) m-= b) n-0,2 ¢) p-(—0,25)
d (=5)-q er-(13 f) (—13)s
6. Schreibe die folgenden Quotienten als Produkte:
a) x:0,5 b) y:i c) z:(—%)
d) (—u):(—0,125) ¢) v:3) f) w:(—0,001)

2.7 Die Rechengesetze fiir die rationalen Zahlen

2.7.1 Das Distributivgesetz

[m bisherigen Rechenunterricht hast du schon das Verteilungs- oder Distribu-
tivgesetz* kennengelernt. Es besagt, daB man beim Multiplizieren einer Sum-
me auf zwei verschiedenen Wegen zum richtigen Ergebnis kommen kann.
Dazu ein

Beispiel:
Die Klasse 7b besteht aus 16 Knaben und 10 Midchen. Fiir den Besuch
einer Ausstellung sammelt der Klassensprecher pro Schiiler 2,50 DM
ein. Wieviel Geld muB3 er dann haben?
I. Weg: Man rechnet »2,50 DM - Gesamtzahl der Schiiler«, also
2,50 DM - (16 + 10) = 2,50 DM - 26 = 65,00 DM.
* distribuere (lat.) = verteilen. — Der Ausdruck distributiv wurde ebenso wie das Wort kommutativ 1814 von

dem franzosischen Professor der Mathematik Frangois Joseph Servors (1767-1847) gepragt. Siehe auch
die FuBnote* auf Seite 50.
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2. Weg.: Man rechnet »2,50 DM - Zahl der Knaben« + »2,50 DM - Zahl
der Midcheny, also
2,50 DM - 16 + 2,50 DM - 10 = 40,00 DM + 25,00 DM =
65,00 DM.

Man erkennt: 2,50 DM - (16 + 10) = 2,50 DM - 16 + 2,50 DM - 10.
Allgemein gilt fiir @, b, c € @ § die Beziehung a(b + ¢) = ab + ac. Dies ist das
Distributivgesetz, fiir das wir die Abkiirzung (D) verwenden.

Nachdem wir nun wissen, wie in der groBeren Zahlenmenge Q@ die Addition
und die Multiplikation auszufithren sind, stellt sich die Frage, ob das Rechen-
gesetz (D) auch in @ giiltig bleibt. Wir priifen dies zunéchst an einigen Beispie-

len.
Beispiel 1: a=—2,b=5,¢c=—38
dann gilt: a(b+ ¢) —( 2) (5
und: ab+ac=(—2)"

Beispiel 2: a=4,1;b=—48; ¢ =35

dann gilt: a(b+¢)=4,1-((—4.8)+3 5] = 1’) = —35,33
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und: ab+ac=4,1-(—438)+4,1-
Beispiel 3: a=—%b=—3,¢c=—15
dann gilt: a(b+)=(=2) (=D + (=) =(=2) (—G+:7) =
=2G+1D = L i = 14:-511
und: ab+ac=(—%-(—3+ ._'%}‘(—121 =2.242. 2=
Sn ] iy g e
e T A PR I54 — 154°*

Diese Beispiele lassen also vermuten, dafl (D) fiir alle rationalen Zahlen gilt.
Der genaue Nachweis dafiir erfordert eine ziemlich umfangreiche Fallunter-
scheidung und ist schwierig. Fiir Interessenten soll hier als Beispiel einer der
einfacheren Fille untersucht werden:
Fall: a>0,b<0,¢<0

Wir setzena =p, b= —q,c=—rmitp, g, re Q"

Dann gilt: a(b+¢) = p((—q) +(—=r) =p(—(@g + r)) =

—(plg+r)) =—(pg+pr).
Hier wurde beim letzten Schritt (D) in @ © angewandt.
Weiter gilt: ab + ac = p(—q) + p(—r) = (—pg) + (—pr) =
= —(pg+ pr).
Damit ist fiir diesen Fall (D) bewiesen. Man kann so tatsdchlich zeigen,
daB das Distributivgesetz in jedem Fall gilt. Dies halten wir fest in

Satz 79.1: Fiir beliebige rationale Zahlen a, b, ¢ gilt das Distributiv-
gesetz: (D): a(b+ c) = ab + ac
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Beispiele:
) (—=2)(@a+5)=(—2)a+(—2):-5=—2a—10.
2) (x+2p)-19=19(x+2y) = E()\; - 38y,
3) 6.5(a—4b)=06.5(a+(—4b)) = 6.5a+ 6,5(—4b) = 6.5a — 26b.
4) (—32)—T7)-(—10)=((—32z)+(=T7)) - (—10)
=(—32)( —-](}} --1 (=7 (—10) = 30z+ 70.

Aufgaben

I. Berechne zur chlplutu]w des Distributivgesetzes die Terme
I, =a(b+c)und T, = ab + ac fiir folgende Zahlenwerte:

a) a=—8;b=—-2;¢=35 b)) a=1,1; b=-0,7; '——160
¢) a=—36;b=+;c=—13 d) a=-25b=-9,11 -

bajta
Lnjt

e 2. Begriinde bei dem auf Seite 79 stehenden Beweis des Distributivgesetzes
fiir den Fall a > 0, b <0, ¢ < 0 die einzelnen Termumformungen, z. B.

durch Angabe der dabei verwendeten Sétze oder Regeln.

tributivgesetz auch fir den Fall « < 0, b < 0 und ¢ < 0.

4. Verwandle die angegebenen Pmdul\u in Summen oder Differenzen:
a) (16x+3y)-9 b) (2.8xy—5)-(—=12,5) ¢) (—=0,5) (1,60 —3w)
d) 12(—4a+3b) e (—n)-(2n+ ?) f) (—3x—3p)-5

5. Berechne und vergleiche 7} = (a+b):cund T, = a: c+ b : ¢ fiir folgen-
de Zahlenwerte:
a) a=22:b=10c=8 b) a=—54;b=78;¢=—6
¢) a=—25b=—3hc=% d) a=—-Lb=—16c=-04

Beweise nach dem Muster des auf Seite ?9 durchgefiihrten Falles das Dis-

6. Begrinde, dal auch fiir das Dividieren einer Summe ein Distributivgesetz

gilt, nimlich (¢ +b):c=a:c+ b: e, fiir ¢ = 0.
Hinweis: Beachte Satz 74.1.

7. Verwandle die folgenden Quotienten in Summen oder Differenzen:
a) 8x+6y):4 b) (0,64z%—1):0,4
¢) Gu—5v):(—2) d) (—51p—8,5g9):(—17)

2.7.2 Die Monotoniegesetze der Multiplikation

Wir wissen schon nach Satz 62.1. dabB eine U 11L1 ichu
man auf beiden Seiten dieselbe Zahl addiert: a < b = a+c¢ < b+ c. Gilt

ng erhalten bleibt, wenn

eine entsprechende Feststellung auch, wenn man beide Seiten einer Unglei-

chung mit derselben Zahl multipliziert?



b

2.7 Die Rechengesetze fiir die rationalen Zahlen 81
Beispiele:
1) Multiplikation mit 7:
Aus 2 < 5 wird 14 < 35, weil 14 links von 35 liegt.

Aus —5 < 1,5 wird —35 < 10,5.

Aus —3.1 < —1,2 wird —21,7 < —8,4.

2) Multiplikation mit — 3:
Aus 2 < 5 wird —6 > —15, weil —6 rechts von —15 liegt.
Aus —5<1,5wird 15> —4.,5.
Aus =31 <—1.2wird 9,3 > 3,6

Die Beispiele unter 1) lassen vermuten, daf} gilt:

Satz 81.1: Monotoniegesetz der Multiplikation
Multipliziert man eine Ungleichung mit einer positiven Zahl,
so bleibt das Ungleichheitszeichen erhalten; also
a<b

i = qc¢ < be.
c>0

Bemerkung: Da statt a < b auch b > @ und statt ac < be auch be > ac ge-
schrieben werden kann, gilt Satz 81.1 natiirlich dann auch fiir Ungleichungen
mit dem GroBerzeichen.

Beweis: a < b bedeutet nach Satz 61.2, daB} es eine Zahl p > 0 gibt, fiir welche
a+p=b gilt.
Dann ist auch (a + p)e = be bzw. ac + pe = be.
Wegen ¢ > 0 und p > 0 gilt auch pc > 0. Man muB also zu ac die
positive Zahl pc addieren, um be zu erhalten. Nach Satz 61.2 bedeutet
dies aber ac < bc, was zu zeigen war.

Die Beispiele 2) lassen erkennen, daB fiir negative Faktoren das Monotoniege-
setz nicht gilt. Offenbar kehrt sich in diesem Fall das Ungleichheitszeichen um,
d.h., aus dem Kleinerzeichen wird ein GroBerzeichen bzw. aus dem Groler-
ein Kleinerzeichen. Es gilt der folgende

Satz 81.2: Gesetz von der Umkehrung der Monotonie
Multipliziert man eine Ungleichung mit einer negativen Zahl,
so kehrt sich das Ungleichheitszeichen um, d.h.,

! a<h

= ac > bc.
c<0

Beweis: @ < b bedeutet nach Satz 61.2, daB3 es eine Zahl p > 0 gibt, fiir welche
a+p=b gilt.
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Die Auflésung dieser Gleichung nach a liefert
a=b—p oder a=b+(—p).
Dann gilt auch ac=(b+(—p))c=

2 be + (—p)e.
Nach Voraussetzung sind (—p) und ¢ negative Zahlen; somit ist
(—p)c positiv. Da man also zu be eine positive Zahl addieren mulB,
um ac zu erhalten, gilt ac > be, was zu zeigen war.

Einen wichtigen Sonderfall von Satz 81.2 stellt das Multiplizieren einer Un-
gleichung mit —1 dar. Es gilt (Abbildung 82.1):

a<b = a-(—1)>b-(—1), also
a<b = —a> —>b.

ot

Abb.821 a<b < —a>—b
Natiirlich gelten die beiden Monotoniegesetze auch fiir das Dividieren einer
Ungleichung durch eine positive oder negative Zahl. Das ergibt sich daraus,

daB man die Division durch ¢ # 0 als Multiplikation mit — auffassen kann.
7

1 : : :
Da ¢ und — gleiches Vorzeichen haben, gilt also:
=

a<b a b a<hb a b
= — < — und = — > —
c>0 CEe c<l CR

Aufgaben

Multipliziere die Ungleichung mit der angegebenen Zahl.
a) —20 < —2]|-5 b) 1,7> —1.8] - (—0,5) ¢) 24>0|-(—3)

&
d) 2> -7 (=21) e) 2x > y|l- 0,7 f) 02u<—8v|-(—3)
Dividiere die Ungleichung durch die angegebene Zahl:
a) —2<1|:5 b) 68 > 0] : (—0.5)
¢} —SA=—45|(—=2 d) £ <Z:04

e) 0,001 > —0,1]:(—=0,001) fH —08>—%|:|-2|
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3. Multipliziere die zwischen a und b bestehende Ungleichung mit dem Fak-
tor c:
a)a=37;b=—"1;¢c=3 b) a=%b=2¢=—-10
¢) a=—19,b=—-21;¢=—-02 d) a=—-0985:b=0; c=200
Was ergibt sich, wenn man eine Ungleichung mit 0 multipliziert?

Ist x positiv, null oder negativ, wenn gilt

alia=<b =" axi=bx b) u>v = ux=uvx
no_m p (

) n>m = — < dp>=>0=—->07?
X% Rl w

2.7.3 Zusammenstellung der Rechengesetze

| Fiir rationale Zahlen a, b, ¢ gelten folgende Rechengesetze:

Gesetze der Addition Gesetze der Multiplikation | Bezeichnungen
(Ey) a+beQ (E) a*beQ Existenz der
Summe/des
Produkts
(Ky) a+b=b+a (K.)) a:b=b-a Kommutativ-
gesetz
(Ay) (@a+b)+c= (A) (ab):c=a-(b-c)| Assoziativ-
=a+(b+c) gesetz
Ny) a+0=a (N.)) a‘1=a Existenz des
neutralen
Elements
1 ;
I,) a+(—a)=0 (I,) a-—=1, falls a % 0 | Existenz des
4 inversen
Elements
(D) (@a+b):c=a‘c+b-c Distributiv-
gesetz
a<bh Monotonie-
a<bh=a+c<b+c = g c<bcC
c>0 gesetz
a<h 4 Umkehrung
e e Lt der Monotonie
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Die hier zusammengestellten Rechengesetze bilden die Grundlage fir das
Rechnen mit rationalen Zahlen und tberhaupt fur die ganze Algebra. Du
wirst sie im folgenden immer wieder bendtigen, besonders haufig die mit (E),
(K), (A), (N), (I) und (D) bezeichneten Gesetze. Prige sie dir daher gut ein
(Merkwort: EKANID, vgl. auch Aufgabe 84/5.).

Besonders auffillig an dieser Gesetzestafel ist natiirlich die weitgehende Ana-
logie zwischen den Rechengesetzen der Addition und der Multiplikation: die
»EK ANI-Gesetze« gibt es fiir beide Rechenarten. Zu ihrer Unterscheidung
wurde in der Tafel ein an den Kennbuchstaben angehangtes Plus- bzw. Mal-
zeichen verwendet. Im Distributivgesetz (D) — und nur in ithm (!) — kommen
beide Rechenarten zugleich vor. Es stellt eine Verbindung zwischen den beiden
durch die Gesetze der Addition und der Multiplikation beschriebenen Re-
chenbereichen dar.

Aufgaben

1. Welches der in @ geltenden Rechengesetze der Addition konnte in der
Zahlenmenge @ 5 noch nicht aufgestellt werden und warum nicht?

2. Weshalb benétigt man keine eigenen Rechengesetze fiir die Subtraktion
und die Division? (In welchen Rechengesetzen der Addition und Multipli-
kation sind diese Umkehroperationen enthalten?)

3. Istesrichtig, zusagen »Wenn man in den Rechengesetzen der Addition die
Pluszeichen durch Malzeichen ersetzt, erhdlt man die Rechengesetze der
Multiplikation«?

4. Erkldre an der Zahlengeraden, warum es bei der Addition keine »Umkeh-
rung der Monotonie« gibt.

5. a) Wie gefillt dir der Wahlspruch »In Mathe fit mit EK ANID«?

Oder folgender: »Was EKANID weil}, macht mich nicht heif3«?
Denke dir selbst bel3’re Merksitze aus!
Vielleicht wird gar ein Gedicht daraus?

b) »Beim Rechnen in (5 eckt man oft an,
Weil man héufig nicht subtrahieren kann.
Das liegt daran: Man hat nur EKAN!
Erfinde zu diesem groBartigen Gedichtanfang eine passende Fortset-
zung, welche auf den mit @ und EKANI erreichten Fortschritt hin-
weist!




2.7 Die Rechengesetze fiir die rationalen Zahlen 85 !

**Zur Geschichte der negativen Zahlen

Bereits in altbabylonischen Texten um 2000 v. Chr. kommen an einigen Stellen negati-
ve Zahlen vor. Aber wir wissen nicht, wie die Babylonier sie aufgefaB3t und ob sie mit
thnen gerechnet haben.

Im chinesischen Rechenbuch Chiu Chang Suan Shu* = Neun Biicher arithmetischer
Technik, von dem man nicht weil}, wie alt es wirklich ist — der dlteste erhaltene Text ist
die 263 n. Chr. von Liu Hui mit Kommentaren versehene Ausgabe** —, kommen posi-
tive und negative Zahlen vor. Die positiven Zahlen werden rot, die negativen schwarz
geschrieben. Die Regeln fiir die Addition und Subtraktion negativer Zahlen sind be-
kannt und werden angegeben. Ergeben sich beim Losen von Gleichungen negative
Zahlen, so werden sie als Losungen anerkannt,

Rechenregeln fiir das Ausmultiplizieren von (@ — b) (¢ — d) findet man auch bei Dio-
PHANT (um 250 n.Chr.), der aber im Grunde nur mit Differenzen arbeitet, die einen
positiven Wert haben. Negative Zahlen als Losungen von Gleichungen bezeichnet er

als »unstatthaft«.
ARITHMETI

Die Inder kennen positive und negative
CA' INTEGRA.

Zahlenund benennensie durch die Worter
dhana = Vermogen und rna = Schulden.
Bei BRAHMAGUPTA (598—nach 665) werden
negative Zahlen durch einen dariiberge-
setzten Punkt gekennzeichnet: er schreibt
also z. B. 3 fiir unser — 3. In der weiteren
Entwicklung der indischen Mathematik
werden negative Zahlen auch als Ldsun-
gen von Gleichungen zugelassen.
Die Araber iibernehmen zwar von den In-
dern das Rechnen mit negativen Zahlen,
erkennen sie aber nicht als Losungen von
Aufgaben an.
Spitestens im 9. Jh. kann man im Abend-
land mit negativen Zahlen rechnen, aber | ) )
als erster 1it LEONARDO VON Pisa (um | N‘":“h" .:?EI‘“LI"":EE'E::““"“
1170-nach 1240) eine negative Zahl als il 3 |
Lasung zu, die er als Schulden deutet; an- Cum grartia & priuilegio Cxfareo
dernfalls wire die Aufgabe unlésbar. *** atqp Reegio ad Sexennium,
Ahnlich geht auch Michael STIFEL * ; ~
(1487 (7)-1567) vor, obgleich er zu tiefe- M_é / : /
rer Einsicht in das Wesen der negativen M AR /"‘fﬂ‘
Zahlen gekommen ist. Er spricht 1544 in

Abb. 85.1

tegra — »Die ganze Arithmetik«

Authore Michacle Snifelio.

Cum prafatione Philippi Melanchthonis.

Titelblatt der Arithmetica in-

(1544)

seiner Arithmetica integra davon, dal}
man sich Zahlen kleiner als null vorstellen

konne und daB null zwischen den »wah-
ren« Zahlen und den »absurden« Zahlen
liege. Im Gegensatz zu STIFEL hat sein

*  gesprochen tschiu tschang suan schu

von Michael StiFeL (14877 Esslingen bis
19.4.1567 Jena) und dessen Unterschrift.
Ein Bildnis ist nicht iiberliefert.

**  Der erste Kaiser Chinas, Scui HuanG-Ti (= ersier erhabener Kaiser, Regierungszeit 221-210v. Chr.),
lieB 213 v. Chr. alle Biicher verbrennen und viele konfuzianische Gelehrte lebendig begraben. Liu Hu
berichtet, daB das Rechenbuch von CHANG Tsan (f 152v.Chr.) aus erhalten geblicbenen Resten neu
zusammengestellt und von CHinGg Ch’ou-ch’ang (um 50 v. Chr.) erweitert wurde.

##% Um 1430 wird in einer auf provenzalisch geschriebenen Handschrift zum ersten Mal eine negative Zahl

als Lésung ohne weitere Erkldrung akzeptiert.
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Zeitgenosse Geronimo CARDANO (1501-1576) keine Schwierigkeiten mit negati-
ven Zahlen als Losungen von Aufgaben, nennt sie aber »gedachte« Zahlen im Gegen-
satz zu den positiven, den »wahren« Zahlen. Frangois VIETE (1540-1603), der
Begriinder der modernen Algebra, hingegen erkennt die negativen Zahlen nicht als
Losungen an. René DESCARTES (1596-1650) verwendet zwar positive und negative
Ordinaten bei seinen graphischen Darstellungen, die Abszissen sind fiir ihn aber immer
positiv. Negative Gleichungslosungen nennt er »falsche« Losungen im Gegensatz zu
den »wahren« positiven. Auch Buchstaben stellen bei ihm immer positive Zahlen dar.
Der erste. bei dem ein Buchstabe — so wie bel uns jetzt ublich — sowohl eine positive wie
auch eine negative Zahl vertreten konnte, war der Amsterdamer Biirgermeister und
Mathematiker Jan HUDDE (1628(7)—1704), und zwar in seiner um 1655 verfaliten
Schrift De reductione aequationum.

Selbst im 18. Jahrhundert gelang es noch nicht, eine befriedigende Erklirung der nega-
tiven Zahlen zu finden. Dies fiihrte dazu, daB diese Zahlen von manchen Mathemati-
kern nicht anerkannt wurden, zum Beispiel auch nicht durch Christian von WOLFF
(1679-1754). Im groBen und ganzen wurden sie aber allméhlich gleichberechtigt neben
die positiven Zahlen gestellt.

Die endgiiltige wissenschaftliche Klirung dieses Problems brachte erst das 19. Jahr-
hundert, insbesondere durch George PEAcock (1791-1858) und Hermann HANKEL
(1839-1873). Sie erkannten, daB man bei der Erweiterung eines Zahlenbereichs nach
Moglichkeit so zu verfahren hat, daB die fiir die bisherigen Zahlen giiltigen Gesetze
auch im erweiterten Zahlenbereich giiltig bleiben. PEAcOock nannte 1830 diesen Grund-
satz das Permanenzprinzip (vgl. Seite 38).

30.11. 1869

Hacrweid

Abb.86.1 George Peacock (1791 Abb.86.2 Hermann HANKEL (14.2.1839
Thornton Hall/Denton — 1858 Ely (7)) Halle/Saale — 29.8.1873 Schramberg)
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3 FEinfache Termumformungen

/ hysd B2
Endstation der Autobuslinie 84 an der Place du Panthéon in Paris (1985)

Zum Wort Term siehe Seite 180.




3 FEinfache Termumformungen

3.1 Aquivalente Terme

Terme, also auch Variablen, stehen fiir rationale Zahlen. Beim Rechnen mit
Termen denken wir uns jede Variable durch eine geeignete Zahl ersetzt. Da-
durch wird der Term selbst zu einer rationalen Zahl, und man kann mit ihm
wie mit einer rationalen Zahl rechnen. Also gelten die Rechengesetze fiir ratio-
nale Zahlen auch fir das Rechnen mit Termen. Mit Hilfe der Rechengesetze
kann man dann Terme in andere Terme umwandeln. Vor allem will man natiir-
lich komplizierte Terme vereinfachen. Wir zeigen dieses Umformen von Ter-
men mittels der Rechengesetze an einigen Beispielen.

1) Umformungen mit Hilfe der Rechengesetze fiir die Addition
Kommutativgesetz: a+b=b+a
2x+3=3+2x |l —x=—x+1
Assoziativgesetz: (a+b)+c=a+(b+c)=a+b+c¢
Bx+1)+12=3x+(1+12)=3x+13
(13x—33) — 23 =(13x+ (—3)) + (=2H =

=14x+(—-33-2H)=11x—6

0 als neutrales Element der Addition: a4+ 0=0+a=a
3x+ 0 =3x
Inverses Element bei der Addition; a + (—a)=a—a=0
x—x=0 3.7x=3.7x =0 Bx+5y+8)—Bx+5r+8=0

2) Umformungen mit Hilfe der Rechengesetze fiir die Multiplikation
Kommutativgesetz: a-b=b-a
S — N x (=) =(=Dx=—3x
Assoziativgesetz: (a*b)c=a-(b-¢)=a-b-¢
Lo x) =20y % = 8%
(—=3)(—2D)x)={(—=3)(—21)x =63x

1 als neutrales Element der Multiplikation: l-a=a*1=a

Joe = P L]
= : J 1 a
Inverses Element bei der Multiplikation: a-—=—=1 fir a0
a a
1 1 3 X
X =1 {2‘ 1 Xx) =1 —
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3) Umformungen mit Hilfe des Distributivgesetzes

Ausmultiplizieren: Ausklammern:
a*(b+c¢)y=a-b+a-c ab+a-c=a-(b+0¢)
3-(x+2)=3'x+3"2=3x+6 2x+2y=2(x+1y)
(—=2)-3—x)=—6+2x 2x+3x=(2+3)x = 5x
(1) (x=TN=—x+17 2x+x=02+1)x=3x

Interessanter, aber auch schwieriger wird es, wenn mehrere Gesetze nachein-
ander oder gleichzeitig angewendet werden:

. K Rk e _
(=3+x)+1=Kx+(=3))+1=x+{(-3N+D)=x+(-2)=x-2
8x— 14

a3

i

R R S S D

8x—14 8x 14
= =4x—17
2 2 2
Der umgewandelte und der urspriingliche Term sind mathematisch gleichwer-
tig. Setzt man nédmlich in beide Terme irgendeine Zahl ein, so entstehen jeweils

oder kiirzer

. 3 o5, : 8x — 14
gleiche Zahlenwerte. So ergibt sich z. B. bei den Termen 7} (x) = ———— und
: . o it i et~y b
T, (x) = 4x — 7 bei der Einsetzung x = 3 emerseits 7; (3) = el

2

andererseits 7,(3) =43 — 7 = 5, also jedesmal 5.
Man kennzeichnet diese Gleichwertigkeit von Termen durch ein Fachwort:

Definition 89.1: Zwei Terme 7; (x) und 75 (x) heiBen dquivalent™®, wenn
sie bei jeder Einsetzung fiir x jeweils gleiche Zahlenwer-
te liefern.

Kommen in Termen mehrere Variablen vor, so miissen
sie bei der Ersetzung aller Variablen durch Zahlen je-
weils gleiche Zahlenwerte liefern.

Die Rechengesetze liefern uns Beispiele fiir 4quivalente Terme. So sagt z. B.
das Kommutativgesetz der Addition, daf die Terme a + b und b + a aquiva-
lent sind.

Die Grundmenge @ hat unendlich viele Elemente. Daher kann man mit der
Methode des Einsetzens die Aquivalenz von Termen niemals nachweisen, da
man mit dem Einsetzen nie fertig wird. Wie kann man aber dann feststellen, ob
zwei Terme dquivalent sind? Antwort hierauf gibt

* aequus (lat.) = gleich; valere (lat.) = wert sein, gelten fur
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| Satz 90.1: Zwei Terme, die durch Anwendung der Rechengesetze aus-
| s . s .
‘ einander hervorgehen, sind aquivalent.

Zur Begrindung dieses Satzes uiberlegen wir uns: Wenn man einen Term mit
Hilfe eines Rechengesetzes durch einen anderen ersetzt, so haben der ur-
spriingliche und der neue Term bei jeder Einsetzung den gleichen Wert. Also
sind die beiden Terme aquivalent.

Bei umfangreichen oder kompliziert gebauten Termen ist der Nachweis der
Aquivalenz sehr langwierig. So ist insbesondere der Nachweis, daf} die Re-
chengesetze auf mehr als 2 bzw. 3 Summanden und Faktoren verallgemeinert
werden konnen, sehr mithsam. Fiir Tiftler fithren wir als Beispiel vor, wie
man ein Kommutativgesetz der Addition bei 4 Summanden beweisen kann.

Wir wollen zeigen:
a+b+ct+d=d+b+c+a

Mit Hilfe des Assoziativgesetzes (A) und
des Kommutativgesetzes (K) formen wir
]Lil’]g.‘;iiﬂ'l LT,

((a+b)+c)+d=

a+b+c+d

= d+((a+b)+¢) =

Ed+((b+a)+o) =

l d+(b+(a+c) =

L2d+ b+ (c+a) =

A

=d+((b+o)+a) = _ // £
2d+b+o)+a= ‘//ﬂ—;: 220 Plon

|}

(d+b)+ ) +a=

Abb.90.1 Sir (seit 1835) William Ro-
=d+b+ec+a

wan Hamirton (4.8. 1805 Dublin bis
Wer selber so etwas versuchen will, soll  2.9. 1865 Dunsink bei Dublin), der 1843
Aufgabe 95/12 losen! das Wort assoziativ prigte.

Auch andere Rechengesetze lassen sich verallgemeinern. Es gilt nimlich

Satz 90.2: Verallgemeinerte Rechengesetze

Verallgemeinertes Kommutativgesetz

Bei Summen darf die Reihenfolge Bei Produkten darf die Reihenfol-
der Summanden beliebig gedndert ge der Faktoren beliebig gedndert |
werden, ohne dal} sich der Wert werden, ohne dal3 sich der Wert |
der Summe édndert; z. B. des Produkts dndert: z. B.

a+b+c+d=d+b+c+a , a*brcd=d b-ca
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3.1 Agquivalente Terme o1

Verallgemeinertes Assoziativgesetz

Bei Summen dirfen Klammern Bei Produkten diirfen Klammern
beliebig gesetzt und weggelassen beliebig gesetzt und weggelassen
werden, ohne dal} sich der Wert werden, ohne dal} sich der Wert
der Summe indert:; z. B. des Produkts dndert; z. B.
(a+({(b+c)+d)= a‘((b-c):dy=(a"b):(c-d

=(a+b)+(c+d)

Verallgemeinertes Distributivgesetz

Ausmultiplizieren: Eine Summe Ausklammern: Enthélt in einer
wird mit einer Zahl multipliziert, Summe aus Produkten jedes Pro-
indem man jeden Summanden mit dukt denselben Faktor, so kann
dieser Zahl multipliziert und die man diesen Faktor »ausklam-
entstandenen Produkte addiert; mern«; z. B.
z. B.
a*(b+c+d+e)= ab+ ac+ ad+ ae =
=ab + ac+ ad + ae . =ab+c+d+e) |
a s AR : Tt
Da wegen a:b = o a eine Division immer durch eine Multiplikation
) 7

mit dem Kehrwert des Divisors ersetzt werden kann, erhalten wir aus dem
verallgemeinerten Distributivgesetz eine merkenswerte Folgerung; namlich

: = |
Satz 91.1: Eine Summe wird durch eine Zahl dividiert, indem man jeden
Summanden durch diese Zahl dividiert und die entstandenen
Quotienten addiert; z. B. .

(a+b+c+d:e=a:e+b:etc:e+d:e oder

g b ckd ax b e d
_ e =t —F4 =4 -
IJ_! {) LI {J Lﬂ

Eine besonders wichtige Anwendung finden die verallgemeinerten Rechenge-
setze beim Zusammenfassen "ELthdIlIUL‘ Terme. Dabeil nennt man Terme
gleichartig, wenn sie ﬂludu HliL]I‘ahthﬂ]dklU!(.ﬂ haben. So sind z.B. 7x Lmd

3x gleichartig, n.hn,nm $a*b und a® 2 h. Nicht gleichartig sind hingegen 3a®
und Sa. Du Zahlenfaktor eines Terms heil3t Imerﬁncnt*du Furm Die Terme
7x, —2a*bh und uv haben die Koeffizienten 7 bzw. — 2 bzw.

Mit Hilfe des verallgemeinerten Distributivgesetzes fe mm wir nun gleicharti-

ge Terme zusammen:
Ix+5x+8x=(3+5+8)x=16x
1lab—ab = (11 — 1)ab = 10ab

* coefficiens (lat.) = mitbewirkend. Eingefiihrt wurde das Wort als Facl hausdruck in die Mathematik von
Frangois VIETE(1540-1603) in se mm rf ogisticen speciosam notae priores 1591. Im Deutschen sagt man statt

Koeffizient gelegentlich auch Beiz
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Mit einiger Ubung erspart man sich das Ausklammern der Koeffizienten und
addiert diese gleich im Kopf:

la+12a+ a = 20a

Wir merken uns

Satz 92.1: Gleichartige Terme werden addiert, indem man ihre Koeffi-
zienten addiert und das Variablenprodukt beibehilt.

Aus einfachen Termen kann man durch Addition umfangreichere Terme auf-
bauen. z. B.

3x+ (=5 +72xy+ (—3x) + (—13).

So wie wir fiir @ + (— b) kurz a — b geschrieben haben, vereinbaren wir diese
einfache Schreibweise auch fiir komplizierte Terme aus mehr als zwei Glie-
dern. Damit 148t sich der obige Term kurz und tibersichtlich schreiben:
3x—5+72xy—3x—13.

Da ein so gebauter Term eigentlich eine Summe ist, nennt man ihn zur Unter-
scheidung algebraische Summe. Vielfach ist dafiir auch der Name Aggregat*
im Gebrauch. Wir merken uns

Definition 92.1: Eine Verbindung mehrerer Terme durch Plus- oder Mi-
nuszeichen nennt man algebraische Summe oder Aggre-
gat. Die einzelnen Summanden heillen Glieder des Ag-
gregats.

Wegen des Kommutativgesetzes und des Assoziativgesetzes der Addition diir-
fen die Glieder eines Aggregats mit ihren Vorzeichen beliebig umgestellt und
zusammengefalit werden:

2x—34+8x+5—x=
=2x+(—3)+8x+5+(—x) =

=2x+8x+(—x)+(—=3)+5=
=2x+8x—x—3+5=

— LD

*

grex (lat.) = Herde, Haufen; aggregare (lat.) = beigesellen. LEONARDO vON Pisa {um 1170-nach 1240) ver-
wendet das Wort aggregarum. Als Aggregat im Sinne von Summe erscheint es 1489 im weitverbreiteten
Werk Behende und hubsche Rechenung auff allen kauffmanschafft des Johannes WinMaNN von EGER (um
1460—nach 1500), Professor an der 1409 gegriindeten Universitdt von Leipzig. Im Sommer 1486 hielt
WIDMANN in seinem Haus als Zusatzveranstaltung zum Lehrprogramm die erste ffentliche Vorlesung iiber
Algebra im deutschen Sprachraum, wofiir er von jedem Studenten 2 Gulden (= 42 Silbergroschen [ = gr])
verlangte, ein unerhért hoher Betrag, verglichen z. B. mit den 8gr fiir die 20 bis 30 Wochen dauernde
Vorlesung iiber die ersten Biicher EUKLIDS. WiDMmann zufolge verdiente ein Maurer Sgr am Tag, und fiir
2 Gulden erhielt man ca. 4,5g reines Gold. Ubrigens bekam man 1480 in Sachsen fiir 4 gr ein Schaf und
fiir 2 gr ein Paar Schuhe. Frangois ViETe (1540-1603) beniitzt in seiner fn artem analyticem Isagoge (1591)
das Wort aderegatum. Im Mathematischen Wirterbuch von Georg Simon KLOGEL (1739-1812) von 1803
wird Aggregat in unserem Sinne verwendet.
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Beim praktischen Rechnen erspart man sich das Umschreiben in eine Summe
und stellt gleich unter Mitnahme des Vorzeichens um:

Wir merken uns

Satz 93.1: In einem Aggregat diirfen die Glieder unter Mitnahme ihres
Vorzeichens beliebig umgestellt und zusammengefalit wer-

L den.

Beispiel:
2+a —7b+9ab+ja+33b—Sa=
— —2la+1a—5a—Tb+33b+9ab =

=(—24+3—5a+(—7+ 3hb +9ab = —63a 33b + 9ab.

Da die Gesetze der Multiplikation von der gleichen Bauart sind wie die der
Addition, gilt auch

Satz 93.2: In einem Produkt diirfen die Faktoren beliebig umgestellt
und zusammengefalit werden. J

Mit Hilfe dieses Satzes kannst du die Faktoren in einem Produkt ordnen.
Dadurch werden die Terme iibersichtlicher und sind leichter zu vergleichen.
Fiir das Ordnen der Faktoren empfiehlt sich die

Vereinbarung 93.1: Zuerst entscheidet man auf Grund der Vorzeichen-
regeln iiber das Vorzeichen des Produkts. Dann
kommen die Zahlenfaktoren und schlieBlich die
Buchstaben dem Alphabet nach. Fir das End-
ergebnis wird der Wert des Zahlenprodukts ausge-

rechnet.
Beispiele:
1) 4a-3b=3-4-ab=12ab.
) (D x- (=) (=3D=—3"% xy=—3xy.

3) r-(—=2.51) - ( — s =+3" 3. rst = {]Hf
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Aufgaben
a) (x—2,5)+1,9 b) 334+ (# —2u)
¢) (8 +a)—3 d) (5,93y —812) — (5,93y — 812z)

e) (Gg—2.8)—(—2+1,759)

a) 12 (4tx) b) (=3):r- (=9 ¢) (2,15):(—1,2)
D) (=D(=3750) & (=a)(=9) (=D D (0,550 (%)
I 3.a) 3a- ;“ b) (—7a- :{ ¢) 7a-1
a) (=35)(—x)(—y) b) (—8a)(—9b)(+5¢) ¢) (—0.,5¢r)-1,7s(—3,41)
S.a) 12(—wv(—2w) b) (—1,8)(—x)(—0,25)y
©) (—3)(+ab)(—18¢) d) (—D)(+a)(—=b)(—c)(+1)
e) (—D(—x)(—p)(—32) D (+625(—uv)(+w)(—4x)(+2y)
6. a) (—ab):(4(—c)) b) (=2)(+x)(+2): (7(=p)(—1))
== X : — R S
7. a) ((4:):(— ,:;;235}:) ) ({ -—Ei}} 10.11;;3:(—0 (}”)
Q) (+x1)(—%(—2)(+343): [(—3)>(—uv)(—243w)]
: 8. a) 3(0,.9x —0,3) b) 7(r+ s) c)(p—gq)-3
d) 3(a—$%h) e) (0,5¢+¢d) - 6 f) 32(3a + 3b)
g) x(3x— 5) h) —5aGa—3) i) (8x + 2x2)4y
D 3-(—2u—5v) k) —2z(—r+32z) D —2x(—3tx—3sx)
9.a) 3x—4x b) 7dx —x ¢) a+2a—3a
d) 0,15 —0,01h e) 325+ 2Lis f) 30—
g) axy+3xy h) 10,57s —11,5¢rs 1) 3,7uv — uv
j) 1985abc —1648abc k) 0,003rst —03rst 1) —5%x2y—41y2y
10. Wende das Distributivgesetz der Division an.
2) 12x — 51 b) —4.9 + 5.6a & —1.,44u — 0,72
3 0,7 36
: 11. LEON VON ByzANz (9.Jh.n.Chr.) hat behauptet, daB a(bc) = b(ac) =

= c(ab) sei. Beweise die Richtigkeit dieser Behauptung durch Anwen-
dung der Rechengesetze.
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12. Zeige durch Anwendung der Rechenregeln:

a) abed = dbca b) a(lb+c¢+d)=ab+ ac+ ad

Schreibe als Summe:

a) Tx—3y b) —2a—5b ¢) 3—x+y

d —5u+3v—-9 e —1—-2x—13y f) Sa—6b+7c—8d
14. Schreibe als Summe:

a) 12xy —3,Tuv b) 8 —(a—b) ¢) B3x—5y)—(2x+3y)

d) Gu+5v)—Qu—3v—1)—2v € 2(x+p)—3(x—y)—2(x*—y?)
15.2) 2x+Ty+3y+x b) 2x —Ty+3y+x

¢) —2x+7y—3y+x d) 2x—Ty—3y—x

e) —2x+T7y+3y—x f) —2x—Ty—-3y—x

g) 2a+ib+3La+3b h) 2a— b+ 3ta+2b

i) —2a+3ib—3%a+32b i) 2a—Lib—33a—2

k) —2a+1ib+3%a—32b ) —2a—1b—3%a—32b

16.a) 3x —32+5xy—2—x

b) 8,1x>—8,1x—8,1+29x+ X2 =119
¢) 3ab—0,3a—03ab+ 3,7a+ 2,3ab

d) —4dx+3Ly+xy—33x+13ix—xy— 43y

3.2 Potenzen

Fiir Produkte mit lauter gleichen Faktoren fithrt man eine abkiirzende
Schreibweise ein*:

*

a-a=:a*, gesprochen »a hoch 2« oder »a Quadrat«

a-a-a=:a’, gesprochen »a hoch 3«
-a-a-a=:a”, gesprochen »a hoch 4«

Um kenntlich zu machen. was das neue Symbol ist, verwendet man gern ein Gleichheitszeichen in Verbindung
mit einem Doppelpunkt, der entweder links oder rechts vom Gleichheitszeichen stehen kann. Dabei bedeutet
A= B, dab 4 das neue Zeichen, die neue Schreibweise fiir das schon bekannte B ist. Umgekehrt bedeutet
C=: D, daB das neue P durch das schon bekannte € erklirt wird.

Das Wort Symbol kommt vom griechischen atufoiov (symbolon) = Erkennungszeichen, vereinbartes Zei-
chen. Urspriinglich bezeichnete man damit das dem Gastfreunde iibergebene abgebrochene Stiick einer
Sache, z. B. cines Rings, eines Tafelchens, das mit seinem Bruchrand genau in das zuriickbehaltene Stiick
paBte, so daB man durch Zusammenlegen (= ovpfaiiery [symballein]) den rechtméBigen Besitzer wieder
erkennen konnte.
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Macht man so weiter,

3 Einfache Termumformungen

so kommt man zu

Ma

Definition 96.1: Fiir das Produkt @-a - ... a ausn gleichen Faktoren a
schreibt man kurz a", gesprochen »a hoch n«, und nennt
es n-te Potenz von a; kurz:

a“=a‘a*...a, ne{2,3,4,...}.

n Faktoren

n sagt: @ wird mit » potenziert. ¢ heiBt Grundzahl

oder Basis, n heil3t Hochzahl oder Exponent.*

Da n die Anzahl der F

‘aktoren im Produkt angibt, gilt die Definition von "

nur fiir natiirliche Zahlen, die gréBer als 1 sind. Wir sind oben nimlich von

a-a=a’ zu immer h

oheren Potenzen fortgeschritten. Ein Schritt zuriick

brichte rein formal die Zeile @ = a'. Das liefert eine naheliegende Erginzung
der Potenzdefinition, die sich im folgenden als zweckmaDBig erweisen wird:

Definition 96.2: a':

ik | | |

In Termen, die aus Potenzen, Produkten und Summen bestehen, muB man
wissen, in welcher Reihenfolge die Rechnung auszufiihren ist. So ist z. B. un-
klar, wie 3 - 52 zu verstehen ist:

Geht die Multiplikatic

n vor oder das Potenzieren?

Geht die Multiplikation vor, so muB man 3 - 52 = 152 = 225 rechnen.
I

Geht hingegen das Po
Durch Setzen von Klas

1
tenzieren vor, so ergibt sich 3 - 52 = 3-25 = 75.
nmern kann man die Anweisung eindeutig machen: im

ersten Fall schriebe man (3 - 5)%, im zweiten Fall 3 - (52).
Um Klammern zu sparen, hilt man sich an die 1873 von Ernst SCHRODER

(1841-1902) in seinem
Studirende eingefuhrte

Lehrbuch der Arithmetik und Algebra fiir Lehrer und

Vereinbarung 96.1:

1. »Potenz vor Punkt vor Strich.«
2. »Klammern haben absoluten Vorrang.«

* DIOPHANT (um 250 n. Chr.) verwendet fiir die 2, Potenz einer Unbekannten neben tetpaywvog (siche Seite 66)

bevorzugt duvapis (dynamis)

= Kraft, das bereits bei HEroN (wirkte um 62 n. Chr. in Alexandria) so belegt

ist, wogegen HiPPOKRATES von Chios (2. Hilfte des 5. Jh.s v. Chr.) damit die Quadratzahl bezeichnet hatte.

Raffaele BoMBELL1 (1526-1572) verwendet 1572 in seiner I. ‘Algebra dafir das italienische Wort porenza.

Im 18. Jh. setzt sich potentia, zu deutsch Potenz. als allgemeine Bezeichnung fiir ¢" gegeniiber den bis dahin
gebriauchlichen Wértern wie potestas (VIETE) und dignita (TARTAGLIA und BomeeLLY) durch. Leonhard FuLer
(1707-1783) versucht in seiner Vollstindigen Anleitung zur Algebra 1770 die Verdeutschung Mach:, die sich
aber nicht verbreitete. Basis ist das griechische Wort Baoi, das Grundlage, Fundament bedeutet. Das Wort
Exponent wurde 1544 von Michael Stirer (14877-1567) in seiner Arithmetica integra geprigt; exponere

(lat.) bedeutet herausstellen.
tibliche a®, a* usw. geht auf

Auch die Schreibweise fiir Potenzen hat eine lange Geschichte. Das heute
Rene DESCARTES (1596-1650) zuriick, und zwar auf die 1628 entstandenen

und erst 1701 erschienenen Regulae ad directionem ingenii. Potenzen mit einem allgemeinen Exponenten

n kommen jedoch erst bei Isaac Newrton (1643-1727) vor
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Beispiele:
1) 44-3-52=4+3-25=4+75="T9
2)4+D-":?63:725=H5
3) 4+(3-5)2=4+15> =44+

5)
5) (4+3):5)*=(7-52=35

Beachte: Manche Taschenrechner halten sich nicht an diese Vereinbarung.
Studiere also jeweils genau die Gebrauchsanweisung!

Beim Umgang mit Potenzen passieren dem Anfinger manchmal folgende

zwel Fehler:

1. Fehler: Er verwechselt a® mit ¢ - 3. Aber es gilt
a®=a-a-a und a-3=3:a=a+a+ a, zum Beispiel
5*=5-5-5=125 und S-J=3-..=5-+-S-:—-3:15_

2. Fehler: Er rechnet @® — a? = a, z.B. 7° — 7% = 7. Dabei laBt sich a* — a?
nicht weiter berechnen, 7% — 7% aber zu 343 — 49 = 294 aus-
rechnen, und das ist nicht 7.

Wie geht man aber richtig mit Potenzen um? Vorldufig geniigen uns drei Re-

chenregeln:

1) Multiplikati(}n von Potenzen mit gleicher Basis

23.2 .(')'}f} (2:2-2-2)= e i o) S e o K

Bei der Umformung war es nicht wesentlich, dall 2 die Basis war; also gilt fur
jede Basis a

a’-a*=(a-a-a)-(a-a-a-a)=a-a-a-a-a-a-a=a’.

Genauso konnen wir allgemein vorgehen:

m n

ategi=laca.. . ca)s(aeas . Pa)=aa g Edi=a

m Faktoren n Faktoren m + n Faktoren

f—\lao gilt

Satz 97.1: Potenzen gleicher Basis werden miteinander muhnp]mul
indem man die Exponenten addiert und die Basis beibehlt;

m +

kurz g A= (m,ne P:J}

Beispiele:

1) x8: x19 = x8+19 — x27,
2) _.,_,EZTI,L’...’.l_,.l-I-_'-';._:\

: 2+ 4 (2+3)+4 2+3+4 _ .9
Bagtiadeat=as at=ia B = a’.
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2) Potenzieren einer Potenz

(23}4 = 23 2 2_"; i 23 _23 = 2_’3-!-3 =343 o 'jl.Z'

Auch hier war es nicht wesentlich, da3 2 die Basis war; also gilt fiir jede Basis a

34 = 3. g3 . g3 B = 3333 _ g12

(a
Genauso konnen wir allgemein vorgehen:

n Summanden m
_

m '}H s m ] mi-_: memt ... +tm n-m m-n

(a R L e =a = da

n Faktoren a™

Somit gilt

Satz 98.1: Eine Potenz wird potenziert, indem man die Exponenten
miteinander multipliziert und die Basis beibehalt; kurz

(@a™)"=a™" (m,neN).

Beispiele:
1) (x =gt =%
2) ((°)°) q={:“'5)?=:"3'5"-’=:5'5‘?=:”’5.

Beachte: (x?)® # x*. Auf der linken Seite wird nimlich die Basis x2 mit 3
potenziert, und das ergibt x°®. Auf der rec hten Seite hingegen wird die Basis x
mit dem l:xpnm,nlen 23 potenziert; da x2" die Kurzschreibweise fiir x(” ist,
erhilt man x

3) Potenzieren eines Produkts bzw. eines Quotienten
Betrachten wir gleich den allgemeinen Fall:

(@-b)y'=(ab)-(a-b) ... -(a-b)=(@-a...-a)-(b-b-...-b)y=a"- b"

n Faktoren (a - b) n Faktoren a n Faktoren b

Satz 98.2: Ein Produkt wird potenziert, indem man jeden Faktor poten-
ziert und die entstandenen Potenzen miteinander multi-
pliziert; kurz

(@a:b)"=a":b" (neN).

Offensichtlich gilt dieser Satz auch fiir Produkte aus mehr als zwei Faktoren,
B . (ﬂ = b S af}n . ”M v hn " (,J’l - (!m.
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Beispiele:

' Cx)t =30 =81x"

2) (0,3 x*)* =103 (x2)* =0,0081x5.
Fiir Briiche erhalten wir analog:

n Faktoren a

a "_ﬂ‘ a f.f_(.r-u-...'u_ﬂ”
Bl BB b bbb ..-b B

s [ .
n Faktoren ¥ n Faktoren b

Satz 99.1: Ein Bruch wird potenziert, indem man Zihler und Nenner
potenziert und die Zahlerpotenz durch die Nennerpotenz
dividiert; kurz

a

(3) =:—" (b0 AneN).

Beispiele:

3 £ 3\* 3 A ]
1) (:) -",1’3) _ (1) Cxt ()t = - x*pl2 = - xtpl12,

) (3:!.1.‘3)3 (3ax?)? 340%(x2)2 P2

L

4:’}3_1‘ Iz (44’)".}-'}3 " 4333 y? o 64b° y>

Aufgaben
I. Berechne die Quadrate der Zahlen von 1 bis 25 und lerne sie auswendig.

2. Wie lauten die dritten Potenzen der Zahlen von 1 bis 10?

3. a) 4> +252—14>-7° b) 9° — 9% 4 5% — 52
€) 6°—182—212+4° d)==037%4: 8> =162 =62

4. Berechne die Potenzen von 2 bis zum Exponenten 10 und lerne sie
auswendig.

5. Berechne die Potenzen von 10 bis zum Exponenten 6.

6. Berechne die Potenzen a’, a2, a°, a* fir a=0; 3; 1; 2.

7. Berechne und vergleiche:
a) 2° und 3?2 b) 3° und 5°
¢) 2=+ 5*und 2% 452 d) (17 —12)? und 17* — 127
e) (3:-52%und 3-5°2 f) (12:4)% und 12:42
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11.
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. a) Berechne und vergleiche: 1) (2%)? und (2*)? 2) (3%)* und (33)?

b) Was kann man allgemein von (¢™)" und (a")™ aussagen? Beweis!

«a))? b) (—3)* o) (1%* d) (—39° ¢)(10,3"
AN —03 T glas" W) 0,03 @ =25 k) 0,252
Rechenvorteil: 3% = (3%)% = 812 = 6561
Berechne in entsprechender Weise:

a) 3° b) 4* ¢) 5 d) 22 e) 22

Zerlege unter Verwendung der Potenzschreibweise folgende Zahlen in ihre
Primfaktoren:

a) 512 b) 432 ¢) 1400 d) 1568
e) 1089 f) 1352 g) 1331 h) 3636
Rechenvorteil:

28-75=02%-D-(3-5)=3-7-(2-5*=21-100 = 2100
Berechne ebenso:

a) 12-65 b) 24 - 375 c) 625 48
d) 25-24-15 e) 225-64-125 f) 12-175-14
[.a) x*ox° b) 2a*:3a ¢) u-Su-2u’
d) 35242 e) (ab)?-a’ of) 3xy? - (5xy)?
e2) 2p°:3(pg?)* eh) Bu?v?)? - (2u?v3)? 8i) [2a(3ab?)?]? - (4a*b)?
14. 2a) x(x+y) b) v(u—v) ¢) 2a+b)-a?

od) 3b*(5b—2c%) se) xy2(2—3x*y) ef) (@’b+bc*+1)ac

e15.
16.

Fiir welche natiirlichen Zahlen ¢ und b gilt ¢* = a - b?
Zehnerpotenzschreibweise. Der besseren Lesbarkeit wegen schreibt man
oft groBBe Zahlen als Produkt aus einer Zahl zwischen 1 und 10 und einer
Zehnerpotenz. Fir 1300000 schreibt man also lieber das Produkt
132107,

a) Schreibe die folgenden Zahlen mit Hilfe einer Zehnerpotenz:

1) 7840000 4) 80500000
2) 100000 5) 724
3) 3020 6) 17 Billionen
b) Schreibe ohne Zehnerpotenz:
1) 1,03-10° 4) 1,35-10°
2y 3-10° 5) 5,05-10°
3) 1.5 - 10 6) 8,07-10°
a) (—%x?y*)? b) (0,02ab?)> ¢) (—1irts?)3

2 D GE—H G oi-(G-I?
e (G—-%HH* D E-%H*4
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19. Bestimme die Werte der folgenden Potenzen:
a) (—1)* b) (—1)° e} (—1)° d) (="
(:‘) {_1}3 f} {_”i'.-‘ E)‘ (_1]103 h) ( __”123-1-
i) Welche Werte konnen Potenzen mit der Grundzahl — 1 annehmen? Bei
welchen Hochzahlen treten die verschiedenen Potenzwerte auf?

20. Berechne:
a) (—0,1)% b) (—10)? e)u(=0it)2 d) (—10)3
e) (—0,01)* H (—0,01)° g (—1000> h) (—100)°

21.a) (—a)® b) (—a)’ o) (—a)* d) (—2a)*
e) (—a)*, neN f) (—a)*"*1, neN g) (—a)*" !, neiN

22.a) (—o)*—c* b)) (—¢)>+{—c)° ¢) (—ab)’ d) (—ab)?
e) —(—ab)* ) [—(—ab)]* gl —(—uyt o —(— ')

(2 e o [—(—] [ (—

24. a) (—a)%2(=b)3(—0)* b) (—a)’(—=b)2(—c)
¢) (—H)*(—=x)*(—»)* d) (—8a)*(—%a)’(—8a)*
oe) —4da(—3a)* - (a)’ 8D (—0,5x)%-2,7x-(=34x)*

25.2) 14+(-1' B 1+(-1P Q1+(=1)® D1+(-1)*
e 1—=(=1'  HI—(=1)*  gl=(=1) Bi1-(=1)*

3.3. Umgang mit Klammern

Der Term (3x + 2y — 5) — (2y — 5 + 3x) 1dBt sich zu 0 vereinfachen, weil Mi-
nuend und Subtrahend gleich sind, wie man durch Umordnen des Subtrahen-
den erkennt. Schwieriger ist es, wenn man einen Term wie (3x + 2y — 5) —
—(—8x + 3y — 1) vereinfachen will. Die Klammern lassen sich nicht ver-
einfachen, und dennoch hat man das Gefiihl, daB man diesen Term auch
einfacher schreiben kann. Tatsichlich geht es auch. Die dazu nétigen Hilfsmit-
tel erarbeiten wir uns in diesem Kapitel.

Es hat sehr lange gedauert, bis sich Klammern als Zeichen fiir das Zusammenfassen
durchgesetzt haben. Zum erstenmal wurden runde Klammern von Michael STIFEL
(14877-1567) verwendet, als er in seinem Handexemplar seiner Arithmetica integra
eine Randbemerkung machte. Bei Niccold TARTAGLIA (1499--1557) erschienen sie 1556
in seinem General trattato di numeri, et misure im Druck. Wichtig wurden Zusam-
menfassungszeichen aber erst, als man allgemein mit Buchstaben rechnen wollte.
Frangois VIETE (1540-1603) faBte 1593 zusammengehorige Ausdriicke durch eckige
und geschweifte Klammern zusammen. Viele Mathematiker hatten das Zusammen-
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gehoren durch Unterstreichen ausge-
driickt. René DESCARTES (1596-1650)
filhrte statt dessen 1637 das Uberstrei-
chen ein, das durch seine Schiiler allge-
meine Verbreitung fand; man schrieb also
7+ 3:5 an Stelle des heutigen (7 + 3): 5.
Da aber fir die Druckereien Klammern
bequemer zu setzen waren als Uberstrei-
chungen, setzten sie sich immer mehr
durch. Leonhard EULER (1707-1783) ver-
wandte 1770 in seiner Vollstdndigen Anlei-
tung zur Algebra zum erstenmal das deut-
sche Wort Klammer.

Abb.102.1 Leonhard EULER (15.4.1707 =
Basel — 18.9.1783 St. Petersburg) = CM@_

3.3.1 Rechenzeichen und Vorzeichen
Wir erinnern daran, daf3 die Subtraktion zweier Terme nichts anderes ist als
die Addition des Gegenterms:
a—b=a+ (—5).
Das Rechenzeichen Minus auf der linken Seite verwandelt sich dabei zum
Vorzeichen Minus auf der rechten Seite. Das Vorzeichen Plus bei ¢ lassen wir
wie iiblich weg.
Stehen vor einem Term mehrere Vorzeichen, so kann man sie immer mit der
Vorzeichenregel auf eines reduzieren: nimlich
+(+a)=+a=a —(+a)=—a
+(—a)=—a —(—a)=+a=aqa.
Man kann damit auch ganze Vorzeichenserien abbauen:
— (= (+(—(F(—a))=—(—(F+ (—(—a=
=—(—(+(+a) =
= — (= (+a) =
=—(—a)=
= d.

Wir haben die Serie daber von innen nach aullen abgebaut. Genausogut
konnte man sie auch von aullen nach innen abbauen.
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Aufgaben
Reduziere auf ein Vorzeichen:
a) + (+3a) b) —( -f:;r.’?)
¢) —(+xyz) d) + (—4ab)
eyt —(F (= Toey)) = Rt == (=S Rl A )

2. Reduziere auf ein Vorzeichen:
a) +(a—0b) b) — (= (a-10)) ) —(+(—(a—b))

3. Du erinnerst dich sicher:

Malpunkte in Produkten diirfen vor Variablen und Klammern wegge-
lassen werden, z.B. 3:a-(x —y) = 3a(x — y).

— Das Pluszeichen bei gemischten Zahlen kann entfallen, also 1 + 3 = 13
Das Pluszeichen als Vorzeichen am Anfang schreibt man nicht, z. B.
+2ab+ 5a—b=2ab+ 5a—b.

Was versteht man nun eigentlich unter dem Term —1354?
Welche der folgenden Vorschldge hiltst du fiir richtig:

a) (—1)-%-b b) —(1+1%)-b
ey etz d) (=1-3)-b
e) (—1+H-b ) —(1+41-b)?

3.3.2 Plusklammern

Steht in einem Aggregat vor einer Klammer ein Pluszeichen, so spricht man
kurz von einer Plusklammer, z. B. 3x + (7y — 5x + 8). Weil es uiblich ist, am
Anfang keine Pluszeichen zu schreiben — denke etwa daran, daB 3 + 5 auch
als 4 3 + 5 geschrieben werden kann — so ist auch eine am Anfang stehende
Klammer eine Plusklammer: (3x + 5) + 8x.

Diese Plusklammern wollen wir nun beseitigen. Dabei hilft uns das verall-
gemeinerte Assoziativgesetz. Weil es nur von Summen handelt, mussen wir
gegebenenfalls den Inhalt der Plusklammer als Aggregat, d. h. als algebraische
Summe, betrachten und dann das verallgemeinerte Assoziativgesetz
anwenden.

Beispiel: a+(—b—c+d)=a- (=b)+(—c)+d) =
—a+(=b)+(—0c)+d=
=ag—b—c+d.
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Untersuchen wir das vorgefiihrte Beispiel auf das Wesentliche, so erkennen
Wir

Satz 104.1: In einem Aggregat kann eine Plusklammer mitsamt threm
Plusrechenzeichen weggelassen werden, ohne dal} sich der
Wert des Aggregats dndert. Die Rechenzeichen in der Klam-
mer bleiben erhalten. Falls vor dem ersten Glied in der
Klammer kein Zeichen steht, so mub} ein Plusrechenzeichen
gesetzt werden; kurz:
Plusklammern konnen weggelassen werden, Rechenzeichen
bleiben.

Wenn man bedenkt, dal3 der Inhalt der Plusklammer ein Aggregat ist, dann
laBt sich dieser Satz auch noch anders ausdriicken, ndmlich:

Ein Aggregat wird addiert, indem man jedes Glied des Aggregats einzeln addiert.

Nach Satz 104.1 kann man also Plusklammern an beliebiger Stelle in einem
Aggregat weglassen. Umgekehrt kann man sie demnach an beliebiger Stelle
setzen! Wir merken uns

Satz 104.2: Ein Aggregat dndert seinen Wert nicht, wenn man beliebig
viele Glieder in einer Plusklammer zusammenfal3t und
! dabei ihre Rechenzeichen beibehilt, z. B.

a+b—c+d—e—f=at+b—-—c+d)+(—e—Jf).

Nun konnen wir endlich das eingangs angefiihrte Aggregat vereinfachen:
3x+(Ty—5x+8)=3x+7y—5x+8 =

=Ty+3x—5x+8 =

=Ty+(Bx—5x)+8 =

=7y—2x+38.
Aufgaben
l. a) Sa+(3b+7a) b) (5a+3b)+ Ta
¢) Sa+ (3b—"Ta) d) —Sa+(—3b+ T7a)
e)i(—oa+30h)—Ta f) —5a+(—3b—7a)
2. a) 2x+4y)+(6x+ 4y) b) (2x —4y) + (—6x + 4y)
) (—2x +4y) +(6x —4y) d) (—2x—4y)+ (—6x —4y)

e) 2x+ (—4y+6x—4y) f) —2x+(4y—6x)—4y
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3. a) 3a+9x+T7a)+ (15a+ 11x)
b) 17h+ (15a+9b) + 2a+ (11a+ D)
¢) 14x+ (20a+ 7b+4x) + (9x + 13a + 31h)
d) 11a+ (13b+ (12a + 19b)) + ((4a + 27b) + 14a)
4. O+ 116+13c)+ (156 +174+ 19¢) + (21c + 23D + 25)
5. 12x+(23x+279)+(—29y+3z—4u) + (43z+47u — 59x) H
+(—43u—Tx—=2y)+(—19x+ 4y —462)
6. 24+ x+(x+(p+2D)+x+2)+(((x+2)+2)+2)
ol. n+1+0+D+((r+D+T+1)+QR+2r+1)+(2r+1))
8. (—24+x)+(1—x+((1—-x)+(-1+x)N+({A—x)+Kx+1)
9. a) Wie lautet die Quersumme* g der Zahl 10 - x + y; x€ {1, 2, 3,4, 5, 6,
7.:8:9% vel: 1 2. 3 .. O3
b) Warum sind alle Zahlen der Form 10-x+(9—x) mit
xe{0;1;2;...;9} durch 9 teilbar?
ec) Sind auch alle Zahlen der Form 100-x+ (99 — x) mut
xe{0;1;2;...;99} durch 9 teilbar?
2d) Welche gemeinsamen Teiler haben alle Zahlen aus c)?

3.3.3 Minusklammern

Steht in einem Aggregat vor einer Klammer ein Minuszeichen, so spricht man
kurz von einer Minusklammer, z.B. 3x — (7y — 5x + 8).

Diese Minusklammer wollen wir nun beseitigen. In Satz 75.1 haben wir
gezeigt, daB —a = (—1) - aist. Setzen wir an Stelle von a ein Aggregat, dann
erhalten wir z. B.

(h—e—dyey=(=1):-(b=c—d+e)=(—1)-(br(—e) +{- d)+e).
Mit Hilfe des Distributivgesetzes ergibt sich fiir die rechte Seite
(—1):b 4+ (=1 (= =1 (—d)yF+ (=) e= -b+c+d—e.

Also gilt:

(b—c—d+e)=—b+c+d—e.

Mit dieser Erkenntnis kénnen wir nun auch Minusklammern im Innern eines
Aggregats beseitigen:

a—(b—c—d+te=a+[—(b—c—d+e)]l =
—a+(—1):(b—c—d+e)=
—a+(—b+c+d—e)=
—aga—b+c+d—e.

* Das bequeme Fachwort Quersumme scheint erst im 19, Jh. aufgekommen zu sein.
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Weil sich unsere Uberlegungen auf jedes Aggregat ibertragen lassen, gilt:

Satz 106.1: In einem Aggregat kann man, ohne daB sich der Wert des |
Aggregats andert, eine Minusklammer mitsamt ihrem Mi-
| nuszeichen weglassen, wenn man alle Rechenzeichen in der
: J' Klammer dndert, d. h. Pluszeichen durch Minuszeichen und
£ Minuszeichen durch Pluszeichen ersetzt. Falls vor dem er-
' sten Glied in der Klammer kein Zeichen steht, so muB ein
Minuszeichen gesetzt werden;
| kurz: Minusklammern diirfen weggelassen werden, wenn alle
Rechenzeichen geiindert werden.

Beispiel:
Ix—(Ty—5x+8)=3x—Tp+5x—8=8x—Ty—8.
Wenn man bedenkt, dafl der Inhalt der Minusklammer ein Aggregat ist, dann
14Bt sich dieser Satz auch noch anders ausdriicken, namlich:
i'"--ji Ein Aggregat wird subtrahiert, indem man jedes Glied des Aggregats
subtrahiert.
Beispiel:

3x—(ly—23x+8)=3x—Ty—(—=5%)—8 =
3x—Ty+5x—8 =
=8x — Ty —8.

Nach Satz 106.1 kann man also Minusklammern an beliebigen Stellen in
einem Aggregat weglassen, wenn man alle Rechenzeichen in der Klammer
andert. Umgekehrt kann man demnach Minusklammern an beliebigen Stellen
setzen, wenn man die Rechenzeichen bei den Gliedern dndert, die in die Min-
usklammer kommen. Wir haben damit

Satz 106.2: Ein Aggregat dndert seinen Wert nicht, wenn man beliebig
viele Glieder in einer Minusklammer zusammenfaBt und
dabei alle Rechenzeichen dndert, z. B.

at+b—ctd—e—f=a—(=b+c—d)—(e+f).

Wie man mit diesem Satz arbeitet, zeigen wir an folgendem

Beispiel: —(—2a+3b)— (5h+8a)=2a—3b—5bh—8a =
= (2a — 8a) — (3b + 5b) =
= —6a—8b.
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Aufgaben
1.a) S5a—(3b+ Ta) b)5a — (3b — Ta)
¢) Sa—(—3b+7a) d)5a—(—3b—Ta)
2.a) (2x —4y) —(6x—4y) b) (2x +4y)— (6x+4y)
¢) 2x+4y)—(6x—4y) d) (—2x —4y)—(6x —4y)

e) (—2x+4y)—(—6x—4y) ) —2x—(4y—6x)—4)
3.a) 3a— (9x+7a)— (—4a—11x)
b) 176 — (15a—9b) — 2a+ (—17a — 26b)
¢) 14x—(—20a+T7b—4x)—(—9x+ 19a+ 17b) + 6x
d) 11a+ (135 + (12a — 195)) — ((4a — 17b) + 19a)
4. (9 —11b+13¢) — (156 + 17— 19¢) — (—21c — 26b + 18)
5. 12x — (23x—27y) — (— 29y + 3z + 4u) + (— 43z — 47u — 59x) —
—(—=51u—16x+ 56y) — (7z + x)
6.a) 3+a—(z—23a)
b) —%b+3a+3%c—(—c—13D)
¢) —(—a+75—43)—(655+a—93)
d) (57—b)—(a+3,6)—(9.6-05)+(24+a)
7.a) —(—a+21b—21c+9,05 + (256 —9.5)

b) —(—(—3,5u+ 5,50 — Tw)) — (3,5u — 5,5v — Tw)

8.a) (—ix+2y—2)—(—Sx+%H—3)—%«x

b) Ga—1—b)—(—3a—1h)— (1 —13b)
¢) Gr—3s—3)—(—&r+is—4H

9. a) (1\‘— 1) — (—2x2% 4+ 4x — 6)
B (Tx! — 3.\ +2)—(—4x+5x3+3)
¢) (—3x*+2x—3)—(4x?>—5—2x)— 6x°
d) —(6x>—2x*+5)—Bx>+7x*—2)

10. a) Gab—3a*b+1)— (—iab+3a*h)+ (—ab+ La*b)

b) Ga®+4a—T7) —(a®>+3a—5)—(3a®>+a—3)

3.3.4 Faktor bei der Klammer

Bisher haben wir gelernt, wie man bei Aggregaten vom Typ a - F(b—c) —
— (e + f— g) die Klammern auflost. Was aber, wenn vor einer dmsu Klam-
mern noch ein Faktor steht? Jetzt muB3 doch auch die Regel »Punkt vor
Strich« beriicksichtigt werden. Die einfachsten Fille sind a +b(c+d—e)
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und a — b(c + d — e). Die schwierigeren Fille, wo beide Faktoren Klammern
sind, wie z.B. a+ (b — ¢)(d — e + ), betrachten wir erst in 7.1.

Nun zum ersten Fall:

Wegen der Regel »Punkt vor Strich« konnen wir eine zusdtzliche Klammer
setzen, ohne dal} sich der Wert des Aggregats dndert:
a+blc+d—e)=a+(b(c+d—e)).

Wir wenden auf den Inhalt der roten Klammer das Distributivgesetz an:
a+ (blec+d—e))=a+ (bec+ bd — be).

Nach unserer Klammerregel (Satz 104.1) konnen wir die rote Plusklammer
einfach weglassen. Damit haben wir:

a+b(c+d—e)=a+ bc+ bd— be.

Den zweiten Fall konnen wir analog behandeln:

a—blc+d—e)=a—(b(c+d—e)) = Punkt vor Strich
=a— (bc+ bd — be) = Distributivgesetz
= qa— be— bd+ be. Satz 106.1

Vergleichen wir in beiden Fillen das gegebene Aggregat mit dem Ergebnis der
Umformungen, so erkennen wir

| Satz 108.1: Steht in einem Aggregat bei einer Klammer ein Faktor, so
' multipliziert man jedes Glied in der Klammer mit diesem
Faktor unter Beriicksichtigung der Vorzeichen.

a+b(c+d—e)=a+ bc+ bd — be.
a—b(c+d—e)=a—bc—bd+ be.

Beispiele:
1) 3x—=5y2—-2x43p)+2x(—6+x—5p) =
=3x— 10y + 10xy — 15y% — 12x + 2x% — 10xy =
=2x%—9x—15y> — 10y.
2) 5-(fgab—%b) —3a(—32b+1H) + b2 —1a) =
=3ab—2b+3ab—2a+2b—jab =

—2a.

Aufgaben

1. a) 3a+5Q2a—b) b) x—3(1 —x)
¢) 34+ x(1—x) d) 122> —3z(—2442)
2.6(2a+3b—Tc)+T(4a—3b+7¢c)—8(5a—4b+ 3¢)




—w

9.

s10.

11.

o12.

13.
14.
Ax—y+5)=5x+y)+17(y—x=3)
16.
a—b—5+)-3+(b—at+c—11)-T—(c+a—>b—14)-6—
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AS(a+bh—3)—6Ba—2b)+7(4—3b)—8(5—2a)
.a) a(a—2b)—b(2a—"b) b) a(2a+ 3b) — b(2a + 5b)
x(x—1)—3x244x2x+1)—6(3x+2)

.15a(3x —4y+Ta)+12x(11a— Ty +4x) —10y(13x — 4a + 11y)
. (3b%2 —4ab)2b — 3a(4ab + b*) — 5ab(3a — 2b)
. (12a%b —13ab?* + b*)5a— (11a” — 32a%b — 19ab?) - 3b —

— 16ab(a® + 2ab + 4b?%)
Sa?be(2ac — 3bc?) — Tabe? (3abe + 4b% ¢?) — 8b3 ¢ (2ac® — 3bc?) —
d4ab?ec®(—9a — 11bc)
17a%xy(9a®x*y — 11ax*y> + 10xy?) — Hax?y*(12a*x*y* +
+ 15ay — 9a* x) + 23axy (Taxy* —5a*x*y + 9a? x*y3)

5ab(3ab + 4ac — be) — 3ac(3be — dac + Sab) —
— 4be(3ab — dac + be) — 4¢? (3a® — b + 2ab) — 15a° b?

40a2be? — 4ab?(3a®c + 3ac? + 4bc®) + 3a® c(4ab? — 2bc* — 4b%¢) —

— Sabe(9ac? — dabe — 4b* ¢?) + 4bc?(5a*c— ab*c + a’h)
2x(1 —x(3—5x+ 2x?) — x?(2 —3x)) — 4x%(2x —2)

a(a+b—2)—bla+b—3)—4(a—b)— 71(b — %a)
S0x—12(x+y—2z)—14(x—y+2)+17(y+z— x)

—(2¢+ 5b—5a)-2

2Ma+b+c)—29(a—b+c)+31(a+b—c)— 35(b—c—a)
(x+y+2)1T—(x—4—2)-12—(y— 15—x)-13 —3(6x—49)
.5(a+x—3)+6x—(x—a—3):7T—3a—4(a- x)

- [a-—h]-ﬁ—k?[a—l—h)--{c:—?)'ﬁ—?(frfﬁ}

100 —99(a+b—1)—50+49(b+a—1)+50(a+b—2)
x—y—z—=2)'2+3—-4(z—yp—x—35)+ (x+4)-8—5(y+2)
.al+b+e)—b(2+a—¢c)—c(B3+a+b)
y+yA—p)—y2—y)+y*
xn+1D)—x(r—1)+x(n—2)—nx+3x
x2—x(a+x)+x—x(@a—1+@+1+x)x— x(3 —a)
Ab+a(x—=3)+a(T—x)+a—(a+ b)-4
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29.
30.
1.a) 3a—(Tb—a)+ 15(2a + b) b) —w(7—8v)+ 3w (2 — 3v)

3
5
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al@a+b)+cl@a+b)—ac—c*+b(a+b)—bc—2ab
a’+c(b—e)+ac—b(b—c)+ alb—c)—ab—2bc

¢) T(17+8%x)—(x+7)- 17
d) 3@x+ 11y) + Ty +5x) + y (=2 +x)

32. a(a’b + a’c?) + a>(2b + ac?)
33. x*(5a+ bx) + 3a(2b + x?) + 2b(a + 2x%) — 8a(x2 + b)
e34. p*q(2pr +4r3 + Trq® + 2r(p2q® + S;J“q + 2p2qr?) —
—2pqr(p* + pg* + 5p)
35. a) 0.5x(0.8x — 0,6p) — 0,4y(1,5y — 2,5x)

36.

Xt

38.

3.35

b) 23a(42a—61b) —22b(33a+ 81h)

¢) 63b(41b—1124)— 43(1(_33:’3 — 5%a)

a) u(v—w)+ov(w—u)+ w(u—r)

b) x(y+z)—y(x+2)+z(x—y)

¢) Sxy+3yCx+1)—6x(y—2)+2(x—y)

a) 4pgr — (8prs — 11qrs) — (Tprq — 6rsq + 4srp) - (—2)
b) 2a(9b — 6¢) — b(6a + 15¢) + 3c(da — 2b)

¢) 2ab(5+¢)—Tb(3a+ ac)—ab(18c—7 - 3¢)

a) 6p(3pg+q*) —2qOpq—3p*) +8pq(p —q)
b) $a*b*(15¢% — 5) + 3ab(8ab — 10abc?) — 7a? b2

- 3) 3(@xy —3y) —3x(—8y — 13) + 26y ({5 — $x)

b) Ha(lda—5b+7) — ”-l—h(‘ﬂﬁh 1330 — 6) —
- (63(}1’7 r— qah —I' (‘9{4’ ) 14 + jh

e¢) (—0.2x)?(—0,2+ x) —0,2x2(0,2> — x) — (—0,2x)?

Schachtelklammern

Beir komplizierteren Termen kommt es vor, daB in Klammern Klammern
stehen, in denen womdglich wieder Klammern stehen usw.

Beispiel: 4a —(—1+32a— (a+3))).

Wenn es dabei zu untibersichtlich wird, verwendet man auch verschiedene
Klammerarten, z. B. runde und eckige Klammern.

Beispiel: 4a —(—1+ 3[2a— (a+ 3)]).
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Mit Hilfe unserer Klammerregeln konnen wir jetzt solche »Schachtelklam-
mern« auflésen. Man kann dabei verschieden vorgehen. Wir empfehlen die

Regel 111.1: 1. Vereinfache, falls moglich, in jeder Klammer.
2. Lose die innerste Klammer auf. i
3. Vereinfache wieder.
4, Wiederhole 2. und 3. so lange, bis keine Klammern mehr
‘ vorhanden sind.

~d

Beispiele:

1) 4a—(—1+4+3[2a—(a+3)])=4a—(—1+3[2a—a—3]) =
=4a—(—1+3[a—-3]) =
=da—(—14+3a—-9) =
=4a—(—10+ 3a) =

=4a+10—3a =
= a+ 10.
2) B3x — (Tyz+ 32(—3 +2x — 5p) — 6x2))(—5) — (82 — 15x) =
:("%\— '?1" — 9z + 6xz —15yz—6x2))(—5) —8z+ 15x =
=Bx—(—8yz—92))(—=5)—8z+15x =
= (3x +8i" F92)(—5)—8z+15x =
=—15x —40yz — 45z — 8z + 15x =
= —53z —40yz.
Aufgaben

1. a) (3a*+4b) —(5a* — (2a* — b))
b) (7a® —2b) — (4a® — (4b — (3a> — b))
2. a) 5x3 —xpy— (3xy—(2x3+ y? 4+ 6xp)) — Bxy — (2x° + xp))
b) 2xy —4x3 — 2xy — (3x® — y* — 8xp)) — (— 2y — (8xy + 10x7))
3. a) 3a*— b+ (5ab— (2a* — 352)) — (8ab — (b* — 2a%))
b) 6ab — a* — (2ab — (4a* — b?)) + (—4a* — (Tab — 4h%))
4.a) —(—a+(Tb—-(21c—-9))) b) —[—(—3u+5v—"Tw)]
¢) —[(x—=3p)—(—2x+y+1)] _
d) —{—[(6m—9n)—(—p—q)] -1 +5m+ 10n)} —(1+p+9)
5. 0,5u[3v3 + (2,4uv — 1)] + 3[2u — 1,8uv(u + v?)]
06. (11 —16x +17x?) - 3x — 5x(6 — 10x + 10x?%)) - 3x —
—4dx((x+2)x+1)+1




112

o7.

o 8.
9.

10.
ell.
12.
13.
el4.
o 15.

16.
217.

18.
19.
¢ 20.

3 Einfache Termumformungen
((2Qa+3b)2b— (3a— 2b)3a)ab? + (3a(2a — 3b) —
—2bQBa+ 2b))a*b
5a(6 —4(3 — a)) — (Sa(6a — 11) —4(3a® — 6a + 6)) — 24

6[(Bx—1)2—4(x+5)-5—42—-2(3=3(@—=5%))] —
— 20(39x — 58) — 19

3a((5a—4)-5—(2a—T+2a%)+ 6a(2a —4) — 5a*(3a— 4)
((@*> + ab+ b%)b— a(a®* + ab+ b*)b — a(b® + 2ab* — a®b) + b3 (b + a)
(@2 +2b02b—3a))a—b(b*—2a(2a— b))+ b? —a°
23—4(35—-6(7T—x)—7(6—54—-32—x))
2x(4x(Bx—2)-5—3(2x—4)) +6(3x — 1)) — 3x*(x(20 — x) + 20)
a(25a— ((da+3)-4—15a)-2a+ 3(a+4(a—2))) +
+4(ala+ ala+ 1)) + a)
(FHx—3x%)—(CBx?—3x—(2x* -2 —4x+DH+ (tx—%x

2—19)
P —(Gx+3x2—(2x7 —3x—(4x* — x4+ 2)+3x) —ixH +
+ Box — 36x°) + 2
Yab? — (6ac® — ¢® — 2a(c? — 3b*) + ab? — 3c?) + Llab? + 44,2

#b° +4a*> — 3(3bc — 4) — (a® — bc — 2ab) + 8bc) — b3 — 6 — M be
2b? (Tab — 3a*) — 3b(ab (b — 2a) + {5ab®) — 25ab? (20a + 37b)
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4 Gleichungen

4.1 Aussagen und Aussageformen

4.1.1 Definitionen

Jeder Mensch stellt in seinem Leben
viele Behauptungen auf.

Beispiele:

Ich bin heute miide.

Ich habe nicht von Karl

abgeschrieben.

Mathematik macht Spal.

2+3=3.

253 —5
[n der Logik bezeichnet man Sétze, in
denen eine Behauptung aufgestellt
wird, auch als Aussagen. Wesentlich
an emner Aussage ist, dal man
sinnvollerweise sagen kann, dal} sie
entweder wahr oder falsch ist. Das ist
bei Sdtzen der Umgangssprache oft
nicht einfach zu entscheiden. Bei dem
Satz »Mathematik macht Spal«

Lieber
. eine Funf
in Mathematik
als gar keine
personliche

Note!

Nan Miach & Schess

kann man sich verschiedene Entscheidungen vorstellen. Der eine wird zum
Urteil kommen, er sei wahr, der andere, er sei falsch. Um solchen Schwierig-
keiten aus dem Weg zu gehen, beschrénken wir uns auf mathematische Aussa-
gen, bei denen wir hoffen, dall wir immer entscheiden konnen, ob eine wahre

oder eine falsche Aussage vorliegt.

Definition 114.1: Sitze, bei denen feststeht, ob sie wahr oder falsch sind.
heillen Aussagen.

Man kennzeichnet wahre Aussagen durch ein w und falsche Aussagen durch

ein f. w und f heillen die Wahrheitswerte der Aussagen.

Beispiele:
243=5 (W) 172 < 288
LmFi=:51""1f) SelN
172 = 289 (w) 0,5e N

172 <290 (w)

(f)
(w)
(f)

39 ist eine Primzahl (f)
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Ersetzt man in einer Aussage eine oder mehrere Zahlen durch Variablen oder
durch einen Term mit Variablen, dann entsteht eine Aussageform.

Ersetzt man in einer Aussageform alle Variablen durch geeignete Zahlen,
dann entsteht wieder eine Aussage, die wahr oder falsch ist.

Beispiele:
’ : Wahrheits-

Aussageform Ersetzung Aussage ; N
= = wert

x ist eine Primzahl | x = 39 39 ist eine Primzahl if

x = 41 41 ist eine Primzahl W

x+3=5 g s +3=5 it

3] 243=5 W

x2=725 x=—283 (—85)%* <25 if

x=1 02 < 25 W

Sx—y 3:1=—3
=gl s x=1;y=23 - +32=35 f
3 3
5:3—0 .
x=3y=0 — 0F =5 "

Definition 115.1: Sitze mit mindestens einer Variablen, die durch geeig- |
nete Ersetzungen aller Variablen zu Aussagen werden,
heilBen Aussageformen.

= )

Die Menge, aus der die geeigneten Ersetzungen fiir die jeweilige Variable ge-
nommen werden, hei3t Grundmenge G dieser Variablen.

Bei der Aussageform »Der groBte gemeinsame Teiler der Zahlen 36 und x ist
4«, kurz »ggT (36; x) = 4«, sind nur natiirliche Zahlen geeignete Ersetzungen
fiur x. Also kann N als Grundmenge fiir x gewidhlt werden.

Kommen in einer Aussageform mehrere Variablen vor, dann mull man
natiirlich fiir jede Variable die Grundmenge angeben, aus der die Emnsetzun-
gen genommen werden diirfen.

Wir treffen folgende

Vereinbarung 115.1: Ist keine besondere Grundmenge angegeben, dann
ist die groBte jeweils bekannte Zahlenmenge die
Grundmenge. Das ist zur Zeit die Menge Q der
rationalen Zahlen.

Man interessiert sich bei einer Aussageform natiirlich besonders fur die Erset-
zungen, bei denen eine wahre Aussage entsteht. Solche Ersetzungen heillen
Losungen der Aussageform.
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Definition 116.1: Die Menge aller Ersetzungen, die eine Aussageform zu
einer wahren Aussage machen, hei3t Losungsmenge L
der Aussageform.

=4
i
|
|

Beispiele:
Aussageform Losungsmenge
x ist-eine Primzahl = | 42, 3,5.7, 11, ...}
x+3=5 {2}
x2 =25 Menge aller Zahlen zwischen — 5 und 35, also
sxl—5 < X =151

Aulerhalb der Mathematik treten Aussageformen oft als Formulare auf. Die
Variablen werden dann meist durch Leerstellen gekennzeichnet.

Beispiel:
SRt Der Schiilet

besucht im Schuljahr ........... die Klasse

des Euler-Gymnasiums. |

Aussageformen konnen also sehr verschieden aussehen. Fiir die Mathematik
sind die wichtigsten Aussageformen Gleichungen und Ungleichungen.

Aufgaben

~

1. Formuliere 3 wahre und 3 falsche Aussagen aus dem Alltag.

-

Formuliere 3 wahre und 3 falsche mathematische Aussagen.

[

-

Entscheide bei den folgenden Sétzen, ob sie Aussagen sind, und gib gege-
benenfalls den Wahrheitswert an.

a) Mathematik ist schwierig.

b) Caesar wurde am 15. Mirz 44 v.Chr. ermordet.

¢) Nachts i1st es kilter als drauBlen.

d) Wagadugu ist die Hauptstadt von Mali.

e) Wie alt bist du? ) Rot ist schoner als Blau.

4. Entscheide bei den folgenden Sitzen, ob sie Aussagen sind, und gib gege-
benenfalls den Wahrheitswert an.

a) (137 =15 b) 5 —35=—73 E)e—Ti= %
d —8§=-38 ¢) Die Winkelsumme im Viereck ist 720°,
) —3-75+12 g) 3,2ha=32a

h) Die Differenz zweier Primzahlen ist eine Primzahl.
i) Die Differenz zweier Primzahlen ist keine Primzahl.
j) 193 ist eine Primzahl.
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5. Fiihre in den folgenden Aussageformen die angegebenen Ersetzungen
durch und entscheide, ob sie zu einer wahren oder falschen Aussage

fiithren.
a) Ix—2=—1; xe{0,1,3.% —3)
o A~ e = { ) 1 7l iTakl
b) 7.5—x<2x; xei1—2, —3% 23, 100}
Mk
3'3%5 _
eC) =2%; xel3 . —5.2]
ol
S

d) x—3)(x+5>0;, xe{—4, —6,0}
e) x ist Teiler von 360; xe{l,2,...,10;

6. Gib zu den gegebenen Grundmengen die Losungsmenge der folgenden
Aussageformen an.

A =5 G =D

b) 22 <5 1) G =Dl 2l — 4
¢) L<i<il G=N
od) 7 ist Teiler von 36; 1) G =N,
2) G = Menge aller Primzahlen
e) n ist teilerfremd* zu 18; G =1{1,2,3,..., 17}
SO geT(Gixy—4 G =11273. . . 100
$o) keV (18 = 712: G=4L2 3..., 100]
e7. Gib die Losungsmenge beziiglich der Grundmenge Z an.
a) x—x=10 b) x—2x=0
X X
¢c) x—1=x d —=1 e)—=0
X X

8. Bestimme die Losungsmenge beziiglich der Grundmenge Z.
a) x| =4 b) x| =—4 c) |x|<4
d) |x| >4 oe) |x|=x of) |x|=—x

4.1.2 Existenzaussagen und Allaussagen

Wir haben oben eine M églichkeit kennengelernt, wie man aus Aussageformen
Aussagen gewinnt, nimlich dadurch, dal man alle Variablen durch geeignete
Zahlen (oder gegebenenfalls auch Worter) ersetzt. Es gibt aber noch eine
zweite Moglichkeit, aus Aussageformen Aussagen zu machen.

x + 0 = xist eine Aussageform, ihre Lésungsmenge ist Q. Diesen Sachverhalt
konnen wir auch so ausdriicken:

Fiir alle xe @ gilt: x+0=x.

* Beachte: 2 Zahlen heiBen teilerfremd, wenn ihr ggT gleich 1 ist.
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Dieser Satz enthilt zwar eine Variable, ist aber keine Aussageform mehr, weil
durch den vorangestellten Redeteil »Fiir alle x € @ gilt:« entscheidbar wird,
ob der Satz wahr oder falsch ist; d. h., der Satz ist eine Aussage.

Man kann noch durch einen zweiten Redeteil eine Aussageform zu einer Aus-
sage machen, ndmlich durch »Es gibt ein x € @, so daB ...«.

Zum Beispiel erhilt man aus der Aussageform x? = 9 die Aussage:

Es gibt ein x € Q, so daB x? = 9.

Diese Aussage ist wahr, weil z.B. (—3)? = 9.

Allgemein legen wir fest:

Definition 118.1: Eine Aussage, die den Redeteil »Es gibt ein ...« bzw.
»Es existiert ein ...« enthdlt, hei3t Existenzaussage.
Eine Aussage, die den Redeteil »Fiir alle ... « enthélt,
heil3t Allaussage.

All- und Existenzaussagen koénnen natiirlich auch falsch sein:

»Fiir alle x e @ gilt x + 1 = 5« ist falsch, weil z.B. 2 + 1 = 5 falsch ist.
»Es gibt ein x € Q, so daBl x + 1 = x« ist falsch, weil fiir alle x € Q@ gilt, daB
x+1> x ist.

Die wichtigsten Beispiele fiir wahre All- und Existenzaussagen sind die Re-
chengesetze fiir die rationalen Zahlen, wie z. B. das Kommutativgesetz der
Addition, das ausfithrlich geschrieben so lautet:

Fir alle ae @ und alle beQ gilt a+ b=b+a.

Aufgaben

o 1. Entscheide bei den folgenden Aussagen, ob sie wahr sind.
a) FurallegaeQ gilt: a—a=a
b) Fiir alle ye @ gilt: y? > 0.
¢) Firalle neN: 2n>n.
d) Firalle xe@Q: 2x> x.

e 2. Entscheide bei den folgenden Aussagen, ob sie wahr sind.
a) Es gibt ein a e Q, so daB 7a = a.
b) Es existiert ein ne N, so dal n < 1.
¢) EsgibteinzeZ: z<I.
d) Es gibtein ue @: u? <0.
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4.2 Losen von Gleichungen

4.2.1 Gleichung als Information iiber eine unbekannte Zahl

4.2.1.1 Ein historisches Beispiel

Der Hyksoskonig* A’USER-RE APOPHIS (um 1590-um 1550 v. Chr.) herrschte
schon seit 33 Jahren tiber Agypten. Im 4. Monat der Uberschwemmungsjah-
reszeit dieses 33. Regierungsjahres schrieb AHMOSE** auf eine Papyrusrol-
le*** ein altes Buch der Mathematik ab, das aus der Zeit des Konigs
AMENEMHET II1. (1842-1794 v.Chr.)
stammte. **** Die Rolle wurde im
19.Jh. wieder aufgefunden und im

Jahre 1858 in Luxor an den schotti- ¥ o
schen Juristen Alexander Henry % S
RuinD (1833-1863) verkauft. Sie ist : \

33 ¢m breit und 5,34 m lang und beid- W RS
seitig beschrieben (Abb. 113). Der EYSUN.
Text der Rolle — sie heilt heute Papy- g :#';

rus Rhind — beginnt mit einer groflen
Versprechung:

»Regeln zur Erforschung aller Dinge, : 2
ur Brikenntegs. alles Seienden, aller Apbil19:1iiEapyrusrolleruny 12000w:
Sl Galsimnisse Chr.) Kairo, Agyptisches Museum
Dann kommen Divisionstabellen, an die sich 84 Aufgaben anschliefen. Diese
entschleiern zunichst das Geheimnis der Zahlen und der Bruchrechnung,
dann l6sen sie Probleme aus der Geometrie und der Lehre von den Korpern.,
und schlieBlich beschiftigen sie sich mit Fragen aus der Landwirtschaft
Aufgabe 24 — man liest den Text von rechts nach links — lautet:

./// J 8 ” /) ;_f». L'rj ,T-
L“ ,h/%m_%i{/l
UbL‘I’HClKLlﬂgl Haufen, sein Siebentel zu ihm, es macht 19.

Gemeint war: Ein Siebentel einer unbekannten Zahl wird zu dieser Zahl
hinzugefiigt; man erhilt dann 19.

* Hyksos bedeutet »Fiirst aus der Fremde«. Mit diesem Wort bezeichneten die agyptischen Geschichts-
schreiber spiter die aus Westasien stammenden fremden Herrscher, die Agypten von ca. 1650-ca. 1540
v.Chr. regiert hatten.

** sprich Achmose, zu deutsch Mondgeborener. Ofi liest man auch die grizisierte Form AHMES.

k&% 71 Beginn des 3. Jahrtausends v. Chr. gelang es den Ay gyptern, aus dem £ aserigen Mark des dreieckigen
Halms der bis zu 6 m hohen I)qsldmpll.um Cyperus papyrus, die in den Sumpfgebieten w uchs, einen
Beschreibstofl herzustellen, der das Leder verdringte. Wegen des hohen Verbrauchs w urde die Papyrus-
staude immer seltener, so daB sich Konig EuMexes I (263-241 v.Chr.) von Pergamon gendtigt sah,
feingegerbtes Leder wieder als Schreibmaterial zu verwenden, das sog. Pergament. Die ]’il]‘l_\'l'll.\'.‘iiilleL‘ ist
heute in Agypten ausgerottet.

#*%% Der Pharao AMENEMHET II1. war so klug, von den Blrgern nur die Steuern zu verlangen, die sie auch
aufbringen konnten. Dazu liel er jedes I: ahr-den hmIN\u Pegelstand des Nils messen und daraus die zu
erwartende Ernte berechnen. Dann erst setzte er die Jahressteuern fest.




1
|
i
|
|
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4.2.1.2 Die Unbekannte

Die Agypter waren vermutlich die ersten, die fiir eine unbekannte Zahl eine
eigene Bezeichnung verwendeten. Im Papyrus Rhind schrieben sie dafiir E'}f'
—in Hieroglyphen* % Ausgesprochen wurde dieses Wort »aha«;
i)

seine Bedeutung war eigentlich Haufen.

Es war sicherlich ein ganz grofer Einfall in der Entwicklung der Mathematik,
fur eine Zahl, die man noch gar nicht kennt, ein eigenes Wort zu verwenden.
Denn nun konnte man, da sie ja einen Namen hatte, von ihr reden, mit ihr
Uberlegungen, ja sogar Rechnungen ausfiihren.

Diese groBartige Idee taucht auch bei den Babyloniern und bei den Indern auf,
im 4. Jh. v.Chr. finden wir sie bei griechischen Mathematikern. THYMARIDAS
nennt die gesuchte Zahl genauso, wie wir es heute machen, namlich unbekannt
G6protov (aodriston). Bei AL-CHARIZMI (um 780-nach 847) heit die un-

£ #* : e
(s~ = schai = ein Etwas.

LY

bekannte Zahl

Nun haben wir oben auf Seite 15 gesehen, dal es sich immer mehr eingebiir-
gert hatte, bekannte Zahlen durch Buchstaben wiederzugeben, wenn man
allgemeine Rechenregeln angeben ey lan il ‘
oder einen allgemeingiiltigen Re-
chenweg beschreiben wollte. Was lag

ISAGOGE

also nidher, als auch fir die un- o S ol
bekannte Zahl einen Buchstaben zu :
verwenden? Aber welchen? Recht Dy il e L e o oo

einleuchtend ist eigentlich die Idee
von Frangois VIETE (1540-1603), der
1591 vorschlug, fiir die unbekannte
Zahl den Vokal A zu verwenden. und,
falls es mehrere unbekannte Zahlen
gibt, eben die Vokale der Reihe nach
zu beniitzen, namlich A, E. [. O. U
und Y. Bekannie Zahlen sollten
durch Konsonanten bezeichnet wer-
den, also durch B, G, D usw. (Siehe
Abbildung 120.1, Nr. 5.)
Durchgesetzt hat sich aber eine
Schreibweise, die 1637 der grofie
franzosische Philosoph und Mathe-
matiker René DESCARTES (1596 bis —
1650) ohne weitere Begriindung im  Abb.120.1  Seite 7r der In artem analyti-
Abschnitt La Géométrie seines Dis- cem Isagoge (1591) des Francois VIETE
cours de la méthode einfiihrte. (1540-1603)

* Entstanden aus den griechischen Wortern legog (hierds) = heifig und yhigewy (glyphein) = einmeifieln.
Sprich hi-eros, Hi-eroglyphe.
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Er bezeichnete die unbekannten Zah-
len mit x, y und z, die bekannten da-
gegen mit den ersten Buchstaben des
Alphabets, also mit a, b, ¢ usw.

Wir wollen es genauso halten!

Falls du mehr uber die geschichtliche Ent-
wicklung wissen willst, dann lies weiter!

Die BABYLONIER (um 1800 v. Chr.) nann-
ten die unbekannte Zahl iﬂT usch
= Linge, die INDER (vor 300v.Chr.)

mm_ vaval-tavat = wieviel-soviel.
Erst um 250 n.Chr. kamen griechische
Mathematiker, unter ihnen DIOPHANT,
(siche Aufgabe 166/15), auf die Idee, fir
die unbekannte Zahl, die sie kurz Zah!
= gouog (arithmos) nannten, eine
Abkiirzung einzufiithren, ndmlich ¢', iiber
deren Entstehung heute noch die Gelehr- WW
ten streiten. Die einen meinen, sie sei der
letzte Buchstabe von &o19poc, zusammen  Abb. 121.1 René DESCARTES, latinisiert
mit einem Akzent. Andere hingegen zu CarTesIUS (31.3.1596 La Haye-Des-
meinen, das Zeichen sei eine Verschmel-  cartes/Touraine — 11.2.1650 Stockholm)
zung der beiden ersten Buchstaben dieses
Worts. Wie dem auch sei, die Abkiirzung
war erfunden! Fast 400 Jahre spiter — wir wissen es sogar ganz genau, es war im Jahre
628 — kam auch in Indien jemand auf die Idee, das lange yavat-tavat abzukiirzen: In
seinem in Versen abgefaBten Mathematiklehrbuch schrieb BRAHMAGUPTA (um 598
bis nach 665) einfach IqT = ya dafiir.
Die ARABER lernten von den Indern die Mathematik, und die EUROPAER des Mittel-
alters lernten sie bei den Arabern. Da das schai des AL-CHARIZMI im Arabischen auch
Sache bzw. Ding heiBt, iibersetzte man es mit dem lateinischen res, gelegentlich auch
mit causa. woraus im 15. Jh. das italienische cosa wurde. Daraus wurde im Deutschen
Coff als Bezeichnung fiir das, was wir heute A/gebra nennen.

Bis zum x fiir die Unbekannte war aber noch ein langer Weg. Einige Araber kurzten
das schai mit s ab, Luca Pac IOLI (um 1445-1517) mit ¢o. seine cosa. Das tat man
auch in Deutschland. so z.B. in den vor 1486 geschriebenen Abhandlungen, die im
Codex Dresden C80 zusammengebunden sind: Der Ve rfasser der Deutschen Algebra
von 1481 schreibt 9 fiir cosa, der der Lateinischen Algebra zunichst Y, das ist ein ¢
und ein o. das in ein Schwinzchen auslduft. Immer mehr aber kriimmt er sein ¢ nach
links und gibt ihm schlieBlich sogar eine bpllzL ’2¢2¢ . Den Plural cosae kenn-
zeichnet er durch ein kleines hochgestelltes e: I der Form 3& fiihrt es Christoff
RupoLrr (um 1500—vor 1543) in seiner 1525 gcdrucktcn Cof als Symbol fiir die Un-
bekannte ein. Er liest es aber — wie andere auch — als radix, vermutlich, weil es einem
handschriftlichen r dhnelt. vor allem aber, weil GERHARD VON CREMONA (1114-1187)
mit radix das arabische dschidr (= Wurzel) iibersetzt hat, das AL-CHARIZMI auch fur
die unbekannte GroBe verwendete.* Gelegentlich wurde es iibrigens auch res gele-

Siehe Losungsheft Seite 41,
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sen.® Vor allem durch die Arithmetica integra (1544) Michael STIFELS (14877-1567)
fand 2p seine Verbreitung. DESCARTES hat es noch benutzt, doch 1637 entschied er
sich anders: das x als Zeichen fur die Unbekannte war geboren.

Mit der Schreibweise von DESCARTES lautet die Aufgabe 24 des Papyrus Rhind
x+1ix=19.

Diese Gleichung stellt eine Information tiber eine unbekannte Zahl x dar.
Unsere Aufgabe besteht nun darin, auf Grund dieser Information die Zahl x
zu entlarven. Da man annimmt, dall durch eine solche Information die un-
bekannte Zahl x bestimmt ist, nennt man eine solche Gleichung auch Bestim-
mungsgleichung fiir x. Zahlen, die fiir x in Frage kommen, heillen Losungen
der Gleichung.

Die Methoden, die zur Bestimmung von x, d.h. zur Losung der Gleichung
fithren, werden wir im Abschnitt 4.2.2 kennenlernen.

Aufgaben
1. Schreibe als Bestimmungsgleichung fiir x die folgenden Aufgaben aus
dem Papyrus Rhind.:
a) Aufgabe 25: Haufen, seine Hilfte zu ihm. es macht 16.
b) Aufgabe 26: Haufen, sein Viertel zu ihm, es macht 15.
¢) Aufgabe 27:. Haufen, sein Fiinftel zu ihm, es macht 21.

2. Im Museum der Schonen Kiinste in Moskau wird ein mathematischer
Papyrus aufbewahrt, der noch etwas élter als der Papyrus Rhind ist. Er
heilt Moskauer Papyrus. Erist nur 8 cm breit und 5,44 m lang und enthilt
25 Probleme, von denen allerdings die meisten fast unleserlich sind.
Schreibe als Bestimmungsgleichung fiir x die folgenden Aufgaben aus dem
Moskauer Papyrus:

a) Problem 25: Haufen, zweimal genommen, und noch ein Haufen, es
ergibt 9.
b) Problem 19: Haufen, eineinhalb davon, zusammen mit 4, es ergibt 10.

3. Ich denke mireine Zahl, vervierfache sie und subtrahiere dann 6. Wenn ich
das Ergebnis halbieren, erhalte ich 10.
Schreibe eine Bestimmungsgleichung fiir die gedachte Zahl z an.

4.2.1.3 Die Gleichung als Aussageform

x + 2x = 19 ist ein Satz, der eine Variable enthilt; also ist er nach Definition
115.1 eine Aussageform. Deuten wir eine Bestimmungsgleichung als Aussage-
form, so besteht unsere Aufgabe darin, alle Zahlen zu finden, durch die man
die Variable x ersetzen kann, so daBl dabei aus der Aussageform eine wahre
Aussage wird. Kurz, wir suchen die Loésungsmenge L der Aussageform.
Im Papyrus Rhind wird behauptet, die Losungsmenge der Aussageform
" L A Y e 4 51 g

x +3x =19 sei {163}.

* Andere Wissenschaftler meinen aber, ¢ sei urspriinglich aus dem Worte res entstanden. dann aber doch
als cosa gelesen worden.
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4.2.1.4 Die Probe

Wenn man eine Zahl gefunden hat, von der man vermutet, daB sie eine Losung
der Gleichung ist, dann kann man diese Vermutung durch eine Probe
bestitigen oder widerlegen. Dazu ersetzt man die Variable x durch die gefun-
dene Zahl und berechnet getrennt die linke Seite und die rechte Seite der
Gleichung. Dabei versteht man unter /inker Seite einer Gleichung denjenigen
Term, der links vom Gleichheitszeichen steht. Wir schreiben dafiir kurz LS.
Der rechts vom Gleichheitszeichen stehende Term heil3t rechte Seite, kurz RS.
Machen wir also in x + 3x = 19 die Probe fiir x = 163:
LS =163+ 4163 = RS =19.

— 16541133

=165+ % =
16§ + 23 =

=19
Wir stellen fest: LS = RS, also ist 163 eine Losung der Gleichung x + 3x = 19,
was man kurz durch 16§ € L ausdriicken kann.
Schon im Papyrus Rhind ist diese Probe ausgefiihrt!

Aufgaben

Aufgabe 28 des Papyrus Rhind lautet in moderner Form
(x +2x) —31(x +%x) = 10.

AHMOSE gibt als Losung x = 9 an. Mach die Probe!

2. Aufgabe 30 des Papyrus Rhind lautet in moderner Form
2x + i5x = 10.
AHMOSE gibt als Lésung x = 1355 an. Mach die Probe!

LF¥]

Aufgabe 29 des Papyrus Rhind lautet in moderner Form

Lx +3x + 3(x + %) = 10.

AHMOSE gibt als Losung x = 134 an. Mach die Probe!

e4. Aufgabe 32 des Papyrus Rhind lautet in moderner Form
Xx+ix+4x=2.

AHMOSE gibt als Lésung x = 1 + & + {5 + 11z + 733 an.* Mach die Probe!

— . ’ & -‘ - [F=% of =1 e L 3 '-‘
5. Fiir die Bestimmungsgleichung 13x — 3x = § + 3x werden die Zahlen 2, 3

und — 2 als Lésungen angeboten. Mach die Probe und entscheide, welche
der Zahlen wirklich Losungen sind.

* Die Agypter gaben mit Ausnahme von £ alle anderen Briiche nur als Summe von Stammbriichen, das sind
Briiche mit dem Zihler 1, an.
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6. Im Algebrabuch des AL-CHaARrIZMI finden wir eine Aufgabe, die in heutiger

Schreibweise als Bestimmungsgleichung so lautet: x* + 15 = 8.x.
Er gibt als Losungen die Zahlen 3 und 5 an. Sind das Lésungen?

b

7. Fiir die Bestimmungsgleichung x>
Losungen angeboten: 1, —1, 4, £, 0.
Entscheide durch Proben, welche dieser Zahlen zu der Losungsmenge

gehdren.

+ x* = 2x — 2x? werden folgende

4.2.1.5 Was kann eine Information leisten?

Wir haben oben gesehen, daBl 163 eine Losung der Gleichung x + 3x = 19 ist.
Man wird sich also fragen miissen, ob es noch weitere Losungen dieser Glei-
chung gibt oder ob 163 die einzige Losung ist.
Falls es keine weitere LOsung gibt, dann wird durch die Information
X+ 4x = 19 eindeutig eine Zahl x bestimmt. Gibt es aber mehr als eine
Losung, dann ist die Information mehrdeutig.
Allgemein unterscheidet man je nach der Anzahl der Losungen verschiedene
Arten von Informationen.
1) Eine Information ist eindentig, wenn sie genau eine Zahl x bestimmt. Die
Losungsmenge der Aussageform enthélt dann eine einzige Zahl.
Unser Informant hat die unbekannte Zahl x genau beschrieben.
Beispiel:
3x = 2 ist eine eindeutige Information tiber x. Denn wegen Satz 72.1
ist § die Zahl, die durch sie eindeutig bestimmt ist.
Die Losungsmenge der Aussageform 3x = 2 ist die Menge {2}.

2) Manchmal reicht die Information nicht zur eindeutigen Bestimmung der
unbekannten Zahl x aus. Der Informant hat die Zahl x also nicht genau
genug beschrieben. Somit gibt es mehrere Moglichkeiten fiir x. Man sagt,
die Information sei mehrdeutig. Die Losungsmenge einer solchen Aussa-
geform besteht dann aus mindestens zwei Zahlen.

Beispiel:
X7 =64,
Die Information reicht nicht aus, die unbekannte Zahl x eindeutig zu
ermitteln. Wir kénnen nidmlich sagen, daB sowohl + 8 als auch — 8
Lésungen sind.

3) Je mehr Moglichkeiten es fiir die unbekannte Zahl x gibt, desto wertloser
ist die Information zur Bestimmung der unbekannten Zahl x. Ganz
schlimm wird es, wenn uns der Informant an der Nase herumfithrt und wir
fiir die unbekannte Zahl x jede Zahl nehmen kdénnen. Die Information ist
also allgemein giiltig.

Wir merken uns

Definition 124.1: Eine Gleichung heiB3t allgemeingiiltig, wenn jede Zahl
Losung der Gleichung ist.
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Beispiel:
x+1=1+x
Jede Zahl ist Losung dieser Gleichung. Also ist sie allgemeingiiltig.
Die Losungsmenge der Aussageform x + 1 = 1+ x ist die Menge Q.

4) Andererseits kann es aber vorkommen, dal es solch eine Zahl, wie sie
durch die Information beschrieben wird, gar nicht gibt. Der Informant hat
uns also angeschwindelt!

Wir merken uns

Definition 125.1: Eine Gleichung heil3t widerspriichlich, wenn keine Zahl
Losung der Gleichung ist.

Beispiel:
x+1=x.
Es gibt keine Zahl x, deren Wert sich nicht dndert, wenn man 1 dazu-
zihlt. Also ist die Gleichung widerspriichlich.
Die Losungsmenge der Aussageform x + 1 = xist die leere Menge i}
fiir die man auch 0 schreibt.

Aufgaben

Bei den folgenden Aufgaben soll entschieden werden, welche Art von Glei-
chung vorliegt. Gib jedesmal die Losungsmenge an.

1. ) x43=—18 b)Y x+ix=3x ¢ —3Hx=34 d) x?=256
X X X
e) xt=16h f) =3 g) — =1 h) — =0
X % x
2. a) —0,02x+ 0,02 = 0,02 b) —0,02x+ 0,02 = —0.,02x
¢) —2x*2=-2288 d) x+x=2x e) x’=—4
el oy ULl $c) 9x2 = 1024
X %
d) x(x+3)=0 e) 3-(x+2)=3x+6

4.2.2 Aquivalenzumformungen von Gleichungen

4.2.2.1 Aquivalenz von Gleichungen

Der einfachste Gleichungstyp ist von der Bauart x = 7. Eine Losung dieser
Gleichung liest man direkt ab, ndmlich 7. Weitere Losungen gibt es nicht, da
man mit keiner von 7 verschiedenen Zahl an Stelle von x eine wahre Aussage
erhilt. Die Information iiber die gesuchte Zahl ist also eindeutig. Die gesuchte
Zahl ist 7.
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Wir halten fest: Gleichungen der Bauart x = a sind eindeutige Informationen
uber die gesuchte Zahl x. Die gesuchte Zahl x heilit ¢, die Losungsmenge der
Gleichung x = a ist die Menge {a}.

Normalerweise sind Gleichungen viel komplizierter, z.B. 13x — 7 = 5x + 4.
Um solche Gleichungen 16sen zu koénnen, formt man sie so lange um, bis man
auf den einfachen Typ x = @ kommt. Bei diessm Umformen diirfen aber
keine Losungen hinzukommen und auch keine Losungen verlorengehen. Um-
formungen, die dies leisten, bekommen einen besonderen Namen.

Definition 126.1: Zwei Gleichungen heillen #Aquivalent, wenn ihre
Losungsmengen iibereinstimmen.
Eine Gleichungsumformung heiBt Aquivalenzumfor-
mung, wenn die urspriingliche Gleichung und die neue
Gleichung dquivalent sind.

Unser Ziel 1st es nun, Gleichungsumformungen aufzufinden, die als .f'kc.]uiva—
lenzumformungen zum Ldsen von Gleichungen beniitzt werden kénnen.
Aufgaben

Stelle bei den folgenden Gleichungen fest, ob sie dquivalent sind. Sind Glei-
chung I und Gleichung II dquivalent, dann kannst du kurz [ <> II schreiben.

) x =5 H. 13x=139 b) . x+1=2; II.x+9 =10
&) I.x+1 =2 Il.x}10=9 dILx*2=1; II.x=1
2. a) Lix=% ILx2=% by =g 1L 0 =10

I3

) L4034 6=0 +x: IMLE2—2 @) Lx—5=0:T1=1

4.2.2.2 Aquivalenzumformung durch Termersetzung

Ersetzt man in einer Gleichung einen Term durch einen dquivalenten, so
andert sich die Lésungsmenge nicht, weil nach Definition 89.1 bei jeder Ein-
setzung der alte und der neue Term den gleichen Zahlenwert liefern.

Beispiele:

1) 2x4+5—x=1—x—8§8
Vereinfacht man die Terme auf der linken und auf der rechten Seite
der Gleichung, so erhilt man die dquivalente Gleichung
X+ 5= T—x.
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. 14 + 8x
2) 3(x—95) =
4
Unter Anwendung der Rechengesetze erhalten wir die dquivalente
Gleichung

3x—15=4+2x.
Durch Termersetzungen konnen wir die Gleichungen also vereinfachen. Zur
vollstindigen Losung brauchen wir allerdings noch weitere Aquivalenzum-
formungen. Wir werden sie im folgenden kennenlernen. Weil es ldstig ist,
jedesmal durch einen Zwischentext zu versichern, dall man gerade eine
Aquivalenzumformung durchgefithrt hat, treffen wir die

Vereinbarung 127.1: Die durch Aquivalenzumformungen entstandene
neue Gleichung schreiben wir ohne Kommentar
unter die alte Gleichung. Zur Verdeutlichung kann
man auch zwischen die dquivalenten Gleichungen
das Aquivalenzzeichen <> setzen.

Beispiel: —2(3 —5(x—1)+4)—8=73(x
—2(]—5x+5) —8= ;-{x — 94 2x)
2(12 2 5%) = 8 =1
—244+10x—8 =Tx— 21
10x—32=Tx—21.

Der Ubersichtlichkeit halber haben wir die aquivalenten Gleichungen im letz-
ten Beispiel so geschrieben, daB die Gleichheitszeichen immer untereinander
zu stehen kamen. Dadurch erkennt man gut, wie sich die linke Seite und wie
sich die rechte Seite jeweils verdndert haben. Gleichungen in dieser Form
untereinanderzuschreiben geht natiirlich nur, wenn man schon weil, wieviel
Platz die linke Seite in der neuen Zeile brauchen wird. Du wirst es im Heft
nicht immer so einrichten konnen. Eins muf3t du aber immer tun: Jede neue
Gleichung muB in eine neue Zeile geschrieben werden. Auch bei einfachen
Termumformungen darfst du nie in derselben Zeile mit einem =-Zeichen
weiterschreiben, auch wenn es noch so bequem wire.

Beachte: Bei Gleichungen gibt es in jeder Zeile nur ein Gleichheitszeichen!

Beispiel:
Schreibe nicht x =1+ 3 = 3,
sondern richtig mit zwei Gleichungen x=1+3

Pl |fid
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Aufgaben
1. Vereinfache die folgenden Gleichungen und gib die Losungsmenge an.
a) x+0,5x =3x — 2x
b) 3-(5x—2)=1—4
15x—6 . S
c) = +1,5=3x—(3:5x
=Y
d x—3(22:18)=0

o) Xx(x—2(x+5)=—10x — x2
8N 31 2—x(11+20)+x(0,5+2x)] =7

2. Die unbekannte Zahl muld nicht immer x heillen! Vereinfache die folgen-
den Gleichungen und gib die Losungsmenge an.

a) [(5—3:4-6—-22]-y=0

b) [(5—3:4):8—34]z=0

0) (0*%—01% P-u=1,55-33 -2

d) y-(9:4-6—9:6-4—4:6-9—0,5)=6:4:9
e) |4;: 8%z —5kz = 5L —8L— 141

6= (i}
3. Vereinfache und gib die Losungsmenge an.
a) [264(13—-2YH-2lx=3[2-102 -1 —1,25]
b) [5-44%—(2,64—414) (- )]y=4-2-2.

30
A

(4]

4.2.2.3 Aquivalenzumformung durch Addition von Termen

Bei der Gleichung x — 3} = 73 sind beide Seiten schon so einfach wie méglich.
Wir bendtigen nun eine neue Aquivalenzumformung, die diese Gleichung auf
die Form x = a bringt. Dazu iiberlegen wir:

Wenn eine Gleichung eine Losung besitzt, dann steht, wenn man sie sich ein-
gesetzt denkt, links und rechts vom Gleichheitszeichen dieselbe Zahl. Addiert
man nun auf beiden Seiten der Gleichung Gleiches, dann ergibt sich auf
beiden Seiten die gleiche Summe. Um also zu erreichen, daB die unbekannte
Zahl x alleine auf der linken Seite {ibrigbleibt — wir sagen kurz, wir wollen x
isolieren —, miissen wir in unserem Beispiel auf beiden Seiten 35 addieren.
Dieses Vorgehen deuten wir dadurch an, daB wir hinter die Gleichung zwei
senkrechte Striche setzen und dahinter + 33 schreiben. Nun fithren wir es vor:

x—33="73 | +33
(x—33)+ 3L =73 + 34
x —35+ 35 =113
xi= 115

Die gesuchte Zahl ist also 115.
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Die obigen Uberlegungen konnen wir verallgemeinern auf Terme, da Terme
wie Zahlen behandelt werden. Es gilt

Satz 129.1: Die Addition desselben Terms auf beiden Seiten einer
Gleichung ist eine Aquivalenzumformung; kurz
I,=1T, || +T
o Tyl T

Zur Begriindung iiberlegen wir uns:
1) Ist @ eine Losung der Gleichung 7; = 7,, dann gilt

Ii(a) = T;(a), also auch
Ii(a)+ T(a) = T (a) + T(a).

Damit 1st @ auch eine Losung der durch Termaddition umgeformten Glei-
chung T} + T = T, + T. Es gehen also bei der Umformung durch Termaddi-
tion sicherlich keine Losungen verloren.

2) Ist umgekehrt b eine Losung der umgeformten Gleichung 7, + I'= T, + T,
dann gilt

L)+ Tb) =T,(b)+ T(h).

Addiert man auf beiden Seiten — T'(b), dann erhilt man

1,(b) = T, (b).

Das heif3t aber, dal3 5 auch eine Losung der Gleichung 7; = 7, ist. Es kann beli
der Umformung durch Termaddition also auch keine Lésung hinzugekom-
men sein.

Da somit bei der Termaddition weder Lésungen hinzugekommen sind noch
verlorengegangen sind, stimmt die Losungsmenge der Gleichung 7} = 7, mit
der Losungsmenge der Gleichung 7} + T = T, + T tberein; die Umformung
durch Addition von Termen ist also eine Aquivalenzumformung.

[n der Sprache der Mengenlehre 1aBt sich die obige Uberlegung kurz so schreiben,
wenn L die Losungsmenge von 7; = 75 und L' die von T, + T = T, + T bedeuten und
das Zeichen = als Abkiirzung fiir »daraus folgt« steht:

1y aeL = ael’, dh. Ecl

2) beLl' = belL, dh. L'cL

= =l

Zum Einiiben eine etwas anspruchsvollere Gleichung:

Beispiel 1:
3x—T =19 4+ 2x. Wir wollen x auf der linken Seite isolieren. Dazu mul3
7 auf beiden Seiten addiert und 2x auf beiden Seiten subtrahiert werden,
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d.h.. auf beiden Seiten muB der Term 7' = 7 — 2x addiert werden. Die
Rechnung sieht also so aus:

—2x

3x—T=19+2x |7
Bx—ND+(7T—2x)=(19+2x)+ (7 —2x)
Ix—T+7—2x=19+4+2x+7—2x

x = 20.

Mit einiger Ubung kannst du durch Kopfrechnen gleich von der 1. zur 4.
Zeile kommen!

Es ist nicht giinstig, die unbekannte Zahl auf der linken Seite zu isolieren,
wenn dort die unbekannte Zahl weniger oft vorkommt als auf der rechten
Seite. In einem solchen Fall isoliert man die unbekannte Zahl eben auf der
rechten Seite!

Beispiel 2:

-35x+14=—-25x+ 0.1 | + 3,5x— 0,1
1.3=2x
Aufgaben
. a) 25+ x =42 b) x+ 56 = 38 ¢) 2,65+ x=233
d2=x+32 ¢) —281=165+x fH 175=2F+=x
g) %_1-5'14'.‘?::_”4 h) —85%+275=z2—37
2 a) Px—1 =s—1 b) 163x—4=173x+2%
©) 2x—a=175+175x d) 2x=—1X
e) Px+7=3+1,625x f) —2,5x—0,8145=—1,804 —3,5x
/\
3. a) 1 —-[2—(x—9)]=5—(19-9) b) 17(‘+7‘=(5 ) 30
R N o e LS et i 418
; 2 8 4 b
4. e 1 1 4 X X
e) Sx+45x—13 =gx+15x f) —x+18 = -02x+ 21— —
) 3 . 6

b) x4+ 2[.1' -3 '.\:—|—4
¢) 1—5(@x+11)=5[3x—72x—1)]+ 6(6x — 14)
d) 1,53 —=5x)—[4(2,8 + 0.3_\—) 10] + 9x = 0,3x
) [ +BA+4] ta=
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4.2.2.4 Aquivalenzumformung durch Multiplikation mit Termen

Bei der Gleichung 8x = 15 sind beide Seiten schon so einfach wie moglich. Wir
bendtigen nun eine neue Aquivalenzumformung, die diese Gleichung auf die
Form x = a bringt. Dazu iiberlegen wir:

Wenn eine Gleichung eine Losung besitzt, dann steht, wenn man diese sich
eingesetzt denkt, rechts und links vom Gleichheitszeichen dieselbe Zahl. Mul-
tipliziert man nun beide Seiten der Gleichung mit dem gleichen Faktor, dann
stellt sich auf beiden Seiten dasselbe Ergebnis ein. Um bei unserer Gleichung x
zuisolieren, mussen wir also beide Seiten mit g multiplizieren oder beide Seiten
durch 8 dividieren.

Wir fithren es vor:

8x=15 | -3 oder Bx=15 | :8
PR R )
(62) "5 =" 8 8
8x -t =12 x =12
X = iﬁﬁ

Die gesuchte Zahl ist also 2.
Die obigen Uberlegungen kénnen wir verallgemeinern auf Terme, da Terme
wie Zahlen behandelt werden. Es gilt

Satz 131.1: Die Multiplikation beider Seiten einer Gleichung mit einem
Term ist eine Aquivalenzumformung, falls der Term nicht
null ist.

Kurz:

L=L% II-T (T + 0)
@?}‘T:Tz' T

Zur Begriindung tiberlegen wir uns:

1) Ist a eine Losung der Gleichung T, = T, dann gilt
1) (a) = T,(a), also auch

Ti(a): T(a) = T;(a): T(a).

Damit ist @ auch eine Losung der durch Termmultiplikation entstandenen

Gleichung. Es gehen also bei der Umformung durch Termmultiplikation si-

cher keine Lésungen verloren.

2) Ist umgekehrt b eine Losung der umgeformten Gleichung 7} - T'= 175 - T,

dann gilt

T,(b) - T(b) = T,(b) - T(b).

Multipliziert man beide Seiten mit T was naturlich nur fiur 7T(b) = 0
e " . - :I

moglich ist, dann erhélt man :

T, (b) = T5(b).
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Das heil3t aber, dal3 b auch eine Losung der Gleichung 7; = T, ist. Es kann
also bei der Umformung durch Termmultiplikation auch keine Lésung hinzu-
gekommen sein, wenn T'(b) % 0 gilt.

Da somit bei der Termmultiplikation weder Losungen hinzugekommen sind
noch verlorengegangen sind, stimmt die Losungsmenge der Gleichung
T, = T, mit der Losungsmenge der Gleichung T} - T = T, - T lberein; die
Umformung durch Multiplikation mit Termen (=0) ist also eine
Aquivalenzumformung.

Zum Einiiben zwei etwas anspruchsvollere Gleichungen.

Beispiel 1: 75x = —53
Zum Rechnen verwandeln wir die gemischten Zahlen besser in gemeine
Briiche:
L 11
Jek =

2o 11 ik,
T — 2 Il "33
o 11-3
L= 50
3
=t

Beispiel 2: 27,2 = —0,06x || : (—0,06)

27.2 ;
—0;06 — >
Weil a = b dasselbe bedeutet wie b = a. vertauschen wir der leichteren
Lesbarkeit halber die beiden Seiten und vereinfachen weiter.

x = — 2120
x = 1380
Aufgaben
L) 2 =5 b) tx=3 €) 3x=9
2. a) Sx=-—2 b) 2ix = —1 ¢) —33=3%x
3. a) —x=17,1 b) (—2)x=1 c¢) —0,1x=10,01
4. a) —2,5x=5% b)3-1=—Fx ) 35 =18
5. a) 9:id =4 b) —80=x:6 c) &=3-2¢
6. a) 5=4 b) —3=738 o) —c=——%
7. a) Sx=—3+1 b) x:17,5=525-0,01 ¢) s5c =4,3:18,6
8. a) (—x) == b) (—x):1024 =% ¢) =498 _ _314(—v)
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4.2.2.5 Mehrfache Aquivalenzumformungen

In den meisten Fillen wird man nicht mit einer der drei im letzten Abschnitt
behandelten Aquivalenzumformungen allein auskommen. Fast immer
braucht man alle drei! Betrachten wir etwa die Gleichung

97+ 2x — (19— 15)+ 3 =107 — Tx — (11x — (5 + 3x)).
Zuerst vereinfachen wir beide Seiten durch Termersetzungen:
100 4+2x—19x+15=107 —7x — (11x — 5 — 3x)

115—-17x =107 —-T7x — (8x — 5)

115—17x=107—-Tx—8x+5

115 —17x = 112 — 15x.

Durch Addition von Termen sorgen wir jetzt dafiir, daB alle x-Glieder auf der
einen und alle von x freien Glieder auf der anderen Seite stehen. Der Bequem-
lichkeit halber achten wir darauf, daB@ der Faktor bei x positiv ist.

115—17x =112 —15x ||+17x— 112
3=2%.

Durch Vertauschen der Seiten erhalten wir die gewohnte Form
2x—=23.

Zum AbschluB isolieren wir x durch Multiplikation mit 4.

%

-3 || 3

= =
Il

(8] %]

Die drei Aquivalenzumformungen reichen aus, um jede Gleichung, in der die
Unbekannte nicht in zweiter oder gar in hoherer Potenz vorkommt, zu l6sen.
Weil x' = x gilt, sagt man auch: Die Unbekannte kommt in der Gleichung
nur in der ersten Potenz vor. Fiir solche Gleichungen hat man einen eigenen
Namen eingefiihrt.

Definition 133.1: Eine Gleichung, in der die Unbekannte nur in der
ersten Potenz vorkommt, heil3t lineare Gleichung.*

Den Weg zur Lésung einer linearen Gleichung fassen wir zusammen in

Regel 133.1: Eine lineare Gleichung 16st man durch Aquivalenzumfor-
mungen in der folgenden Reihenfolge:
1. Vereinfachen
2. Addieren
3. Multiplizieren |

* Zum ersten Mal 1694 belegt als égalité linéaire bei Jean PRESTET (1652-1690) in seinen Nouveaux Elémens des
Mathématiques ou Principes généraux de Toutes les Sciences, qui ont les grandeurs pour ohjet.
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Zur Einiibung der Regel betrachten wir noch ein komplizierteres

Beispiel: 33x — (13 + 3x) = —ﬁ + (13x — (12 — x)) + 33
B¥x—1i—ix=—3%+ (12\ — 13+ Xx)
3 — 1= —35+ (2 x—13)
Ux—1t=—F+24x—13
3ix— 11 =—133 + 23x | —2ix+ 13
i-\_: —30 Il h:
X=—3

Manchmal vereinfacht sich die Rechnung, wenn man als allerersten Schritt die
Gleichung mit dem Hauptnenner multipliziert, um die Briiche zu beseitigen.

Beispiel:
129" 5{04—2xy 9x =0T " Tx—1.1

_.i_ A
— — ' - 2] - 84
7 6 4 3 i

12(5x+12,5—14:5:(0,4—2x) =21(9x—0,7) —28(7x—1,1) + 2 - 84
60x + 150 — 28 + 140x = 189x — 14,7 - 19(}.\ +30.8 4+ 168
200x+ 122 = —7x + 184,1 | +7x—122
207x = 62,1 | :207

x=0,3
Aufgaben
1. a) 8+ 6x =20 b) —34+35x=17 ¢) 4x—12 =44
2.a) 1=13—6x b) 10=24 —7x ¢) —9x—144 = 36

3.a) 19—x=100—10x b) 3x+1=5x— ¢) 19 —2x=8x—16
4.a) 4x+15—x =54 b) 5x+24+x=26 ¢) —x+8—3x=0
5.a) 17=17—12x+3x b) 314 x ¢) 21 +8x =30+ 5x
6.2) 11x—41=10x—31 b) 5x—5=1543x ¢) 4x—16=19—-3x
8x+22—x=100 —11x — 42

b) 9x=7x+16+5x+4+7—10x

¢) 1943x—23=10+42x—34
8.a) 29x+ 39 —34x =49 — 20x — 10

b) 4x+4—Tx=—8x+2+5x—4
9.a) 8x—174+x=9x—13—-4

b) 9x—16=10x—9—4x45

10.2) 0 =14 —8x+x—3x+x+4

(W%

Il
(B
iy
(S

|
|
-

“_-J
=]
"
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11.a) 11x=8x+15+6x+6—10x
b) 27x—9—17x4+10=4545x—4

12.2) Tx—6+5x—4+3x—2+4+x—4=0
b) 18.=93—6x—11 —4x—5—2x+u

13.a) 12x—10+8x—6+4x—8 =0
b) 6x —13 4 x—14+12x—15-10x-42=10

14. a) 19x=5x+4+24+5x+34+7x+3+6

15.a2) 21x—-21 —7x+7=Tx+21 +14x— 7 —19x + 26x
b) 121x+49—-234x+3 —x=x—5—115x+ 108

16.a) 5 —5+5—F+3i+5=11 b) Ix+Z—Zx+1=3—-1Lx

17. a) (—0,7)> +5,94x — 9,02 + 2,63x + 11,31 = 6,24x — 6,263 — 1,11
b) 0=129x —1,45x — 3,29 —0,99x — 11x + 0,32

18.a) 2x —3x—3x=3x—1—-2x+2—5x
b) —05x+9=3x+4—%2x+0,.2
19.a) 5x—9=3x+7 b) 2x+ 11 =8x—10
20.a) 126 +7x=4x — 44 b) 7.5—-24x=31x—-9
21.2) sx—$x=2+3x b) ix+3ix—13=1x
22.2) tx+18=1x+02x+2  b) 1,5x—8,5=1%
064 . D75 e eilgy
23. a) 3 x+05x—043 =x b) 9 X 0.7 +x4+6=0
2x+ 35 8+12x 6x—17
e : ST 4
3Ix—6 1—15x 13x+8 1 3 6-—11x
5 Ay - — = -
sl 2 : i 3T 57 15
5% 3Ix—7
TN i
36 3 J
284 0,7x 8§—11x 2
s ST | Gigs d) 3+ ==
6 3
27.a) 4(2x—-3)=23x—4) b) 25+ 3x)-7T=(7+25x)"3

5—x)=T(x+1)—13
2x —300) — (150 — x) - 2 = 3x

28. a) 13 —3(°
b) 5(

L |
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29.2a) 3(1,84+3x)—26=9—5(1,5x—2)

30.

31.

32.

[#8)
n

40.

41.

43.

b)
c)

d)

a)
c)
a)
c)

a)

b)

a)
b)

. a)

b)

a)
b)

0,75(7x—16) — 0,25(9x —60)4+1 =0

X X _ %
o(2-20) 33 +3) =3 -1
' : 1

1 2 3fx

1(1-2)3(2 11)=loon

3Ix+ 9 —x)=13 b) 5x—(1+2x) =11
—(8—x)+2x=10

O9x—2—(7T—2x)=13 b) x—2x—0Bx—-1)) =101

12x=—12—(—12x—12) d) 5x— (3 —4x) =32-(x+4)

9 — (5x+ 2) + (10 + 8%) — (3x — 18) = x + 20
93 4+ 2x — (19x — 15) = 100 — Tx — (11x — (5 + 2x))

(25 + 12x) — (10x — 11) = (12 + 6x) — (12x + 13) — (10x — 11))
—2x — (4 +(2x—3)) = (30 — 18%) — 2x — (3x — 5))

5(5+2x) =9+ 4x b) 0 =4(10—2x)—3(x —5)
3(9—x) = 5(x—9) d) 23(x —32) = 32(x+23)

1(4x—3)+3(9—18x) =10(1 — 3x)
T3x—T7+5(x—3)4+4(17—x) =103 — 11x
13x—7T(11 —x)+11 =4x—-320—x)+ Tx
8(2x—3)—52x—8)=32—4(1 —3x) + 8x
3x —4; =5t — 6} b) 0,1x—02=03x—04
SxEx "} = — 3f b) 3x+15= '11\ S 1!3 15 tl\‘
10x = 73x — 33x + 54x — 34x+ 1 + 5x
X = 3"1 = %1 + i_\' :\ - ;
4x X . 4x e 9
o R R R
30X 5 4 9
e - —1—x+2-—3—x+98
B3 e s

47x —43 =734+ 41,5x + 7.2x 4+ 16,6
0=145x—27Tx—0,6x+0,5x— 7.8 —1,2

18x—7,52 —2,35x=5,381 —-29x— 0,58 + 13x
1,45x+ 3,29 =129x—0,99x — 11x 4 0,32
2x—5—x=1+3%(011-2x)

13x—16) =2x—3(5+320)+2%24—x)
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44, a) 3x(x+7)—xBx+7)+70=0
b) 4x(6 —3x)+ 6x(2x+1) =15
45. Bx —D-21x — (33x+5) - 5x =277
46. 0,32x(1,25x —10) + (6,3 —0,8x) - 0,5x +1 =0
47.3a) x—(x—(x—(x—1)—1)—1)=0
b) 1—2(x—3(x—4(x—15)) =11(11 —2x) + 2x
c—3 34+ x —x+3 x—3

X .
48. a) 6x — - Sl QXL - b) T + 6x = - o +

n

X

Die Aufgaben 49 bis 51 sollen den Einflufs von Rundungen zeigen.

49. a) 3.14x — 6,28 = —9,577 b) 3,14x — 6,28 = —9,58
¢ 3,1x—63=-96 d) 3x—6=—10

50.a) —1,27x+ 9,51 =9,88 —1,22x b) —1,3x+9,5=99—1.2x
¢) —x+10=10—x

51.3) 3,14x—728 = —8193 b) 31x—73=—82 ) 3x—T7=-8

2 1 X
32. 25 (1 5.\' E %) —x+2 (; - 15) —36x =0

53. x4+ 2[x+3(x+4)] =15

ol st ORI et 1
S I\ gt usgabi gy =5

55.1 — 5(4x —11) = 5[3x —7(2x — 1)]
56. 1,5(3 — 5x) —[4(2,8 + 0,3x) —10] +9x =0
o57. 1 — (2 +3: [Bx—8)—2@8 —30)]) =5(1 —2%)—2

1 1 1 %
-SS.(E,\'%--I)-E—F?—J-E—F7’)-4—{—4:({:.\’-1—1)-2{—;-

s ) Q
5R5~l—:——QI—1&‘3:z')x?19

3 3x+5 2(2x—3)—24 1 (x—270)-%
e60. _ - 1= — : 5
2 6 3 4 (o]
4
3

:+"‘_)~4+x
e 4

P4

D

e 61.
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*%4.2.2.6. Die Aquivalenzumformungen des AL-Crarizmi oder was bedeutet

Algebra?

Du kennst nun die 3 Aquivalenzumformungen, mit deren Hilfe du lineare Gleichungen
I6sen kannst. Wir faiten sie kurz zusammen in der Regel » Vereinfachen — Addieren
Multiplizieren«. Diese Aquivalenzumformungen waren von Anbeginn an das
Rustzeug der Mathematiker, die Gleichungen l6sen wollten. Ausfiihrlich hat sie AL-
CHARIZMI in seinem al-Kitab al-muchtasar fi hisab al-dschabr wa-"I-mugabala
beschrieben.

Zuerst rat AL-CHARIZMI dem Leser, so wie wir es dir geraten haben, in einer Gleichung
die Nenner zu beseitigen, indem man jedes Glied mit dem Hauptnenner multipliziert.
Die Gleichung ist dann einfacher geworden. Dann ersetzt er auf jeder Seite komplizier-
tere Terme durch einfachere, so wie wir es auch machen. So entsteht z. B.

Sx+ 11 =13 —7x.

AL-CHARIZMI empfindet das Wegnehmen von 7x von der Zahl 13 als etwas, was die 13
verletzt. Er mochte es wiedergutmachen. So wie ein Arzt ein ausgerenktes Glied durch
Einrichten wieder voll funktionsfiahig macht, so will er die 13 wieder unverletzt sehen.
Dazu braucht er bloB auf beiden Seiten 7x zu addieren. Diese Aquivalenzumformung
des Wiederherstellens nennt AL-CHARIZMI a/-dschabr. Nun weiBt du, was das Wort
al-dschabr, aus dem Algebra entstanden ist, mathematisch bedeutet.

Durch al-dschabr wird aus der obigen Gleichung also die dquivalente Gleichung

15x - 11 =13.

Jetzt betrachtet AL-CHARIZMI beide Seiten, d. h., er stellt sie einander gegeniiber. Dabei
sieht er, daB auf der linken Seite 11 zu 15x addiert wird. Er stellt sich vor, daB 11 auch
rechts als Summand auftritt, also 13 = 2 4+ 11. Durch Subtraktion von 11 auf beiden
Seiten kann er diesen UberschuB ausgleichen. Diese Aquivalenzumformung des Ver-
gleichens und Ausgleichens nennt AL-CHARIZMI al-mugabala. Nun weiBt du auch. was
das zweite Wort im Titel seines Algebrabuchs fiir einen mathematischen Sinn hat.

Durch al-mugabala wird also aus der letzten Gleichung die dquivalente Gleichung

I5x=2.

Nun mull noch x isoliert werden, d.h., 15x muB auf 1 x zuriickgefiihrt werden. Dies
geschieht, indem man die Gleichung durch 15 dividiert: man erhilt x = 2. Diese
Aquivalenzumformung des Zuriickfiihrens auf 1x nennt AL-CHARIZMI al-radd.
Wiire man aber auf eine Gleichung der Form 1x = 6 gestoBen, dann hiitte man X 7U
1 x vervollstindigen miissen. Dies geschieht, indem man die Gleichung mit 4 multi-
pliziert; man erhélt x = 24. Diese .?iqui\-'aien;f.umfm'mung des Vervollstindigens auf 1 x
nennt AL-CHARIZMI al-ikmal.

Da fiir uns die Division durch eine Zahl dasselbe ist wie die Multiplikation mit dem
Kehrwert dieser Zahl - statt durch 15 zu dividieren, multiplizieren wir mit s —, miissen
wir die beiden letzten Aquivalenzumformungen nicht unterscheiden und haben sie
zusammengefaBt in der ;‘iquivalcmLmt"m'mung durch Termmultiplikation.
Natirlich war AL-CHARIZMI nicht der erste, der Gleichungen so 16ste. Der griechische
Mathematiker DIOPHANT aus Alexandria (um 250 n. Chr.) beschreibt genau die beiden
Aquivalenzumformungen des Wiederherstellens und des Ausgleichens in seinem Werk
‘Apuduntikdy Pifiio (Arithmetikdn biblia) = Biicher iiber die Zahlenlehre. Aber AL-
CHaRrIZMI hat dieses Werk nicht gekannt. Es wurde erst nach seinem Tode ins Arabi-
sche libersetzt.
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4.2.3 Produkte mit dem Wert null

Wir erinnern an die Tatsache, daB die Null als Faktor jedes Produkt zu null
macht*, und halten dies fest in

‘ Satz 139.1: Wenn in einem Produkt mindestens ein Faktor null ist, dann
‘ hat das Produkt den Wert null.

Beispiele:
1) 3r0=1 2)0-(—7)=0
3)£-219.0-8=0 4 —3:0-(@*—a)-0-5=0

Wissen wir umgekehrt von einem Produkt, daB es den Wert null hat, dann
muB mindestens einer der Faktoren null sein; denn wiren alle Faktoren von
null verschieden, dann wiire nach den Vorzeichenregeln auch das Produkt von
null verschieden.

Es gilt also

Satz 139.2: Wenn ein Produkt den Wert null hat, dann ist mindestens
einer der Faktoren null.

|
Als Anwendung dieses Satzes bestimmen wir die Losungsmenge der Glei-
chung

(x—1)(x—2)=0.

Das links stehende Produkt besteht aus den Faktoren x — 1 und x — 2; minde-

stens einer davon muB null sein. Es gilt also x — 1 = 0 oder x — 2i=10d h
x=1 oder x=2,
Beide Faktoren konnen nicht zugleich null werden, weil x nicht zwei verschie-

dene Werte gleichzeitig annehmen kann.

Die Information, die uns die Gleichung (x —1)(x — 2) = 0 liefert, ist also
mehrdeutig. Sie ist dquivalent mit der Information »x = 1 oder x = 2«. Solche
mit oder zusammengesetzte Aussageformen kommen in der Mathematik hdu-
fig vor, so daB es sich lohnt, fiir das Wort »oder« in diesem Zusammenhang
eine symbolische Abkurzung einzufithren. Fiir oder schreibt man kurz v . Das
v soll an das lateinische Wort fiir oder, ndmlich vel, erinnern.

Eine Zahl ist Losung einer Oder-Aussageform, wenn beim Einsetzen eine
wahre Oder-Aussage entsteht. Eine Oder-Aussage in der Mathematik ist eine
Verkniipfung zweier Teilaussagen durch das Wort oder bzw. durch v.

Eine Oder-Aussage ist genau dann wahr, wenn mindestens eine der Teilaussa-

* Beachte die GroB- und Kleinschreibung: Die Zahl Nullhat den Wert null, Bei der Zahl 10 sagt die Ziffer Null,
daB die Zehn null Einer hat.
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gen wahr ist, d. h., wenn die erste Teilaussage wahr ist oder wenn die zweite
wahr ist oder wenn beide zugleich wahr sind. Die Losungsmenge einer Oder-
Aussageform ist also die Vereinigungsmenge der Lésungsmengen der Teilaus-

sageformen. Das Zeichen U erinnert an v .

Unsere Oder-Aussageform

x =1 v x = 2 besitzt demnach die Losungsmenge L = {1; 2}.

Zur Geschichte der Null

In einem Zeichenwertsystem, wie es die Agypter,
die Griechen und die Rémer verwendeten. brauch-
te man keine Null; denn 10 schrieb man rémisch
eben als X und 101 als CI. Interessanterweise findet
man aber um 100 v. Chr. bei den Agyptern ein Zei-
chen fiir den Wert null, die abwehrenden Hinde
(Abbildung 140.1). Bei einem Stellenwertsystem ist
aber ein Zeichen fiir die nicht besetzte Stelle ntig;
denn 11 ist etwas anderes als 101. Beim babyloni-
schen Stellenwertsystem, dem 60er- oder Sexagesi-
malsystem, taucht bereits um 2000 v.Chr. ein sol-
ches Liickenzeichen auf, wird aber erst ab 200
v. Chr. systematisch verwendet. (Abbildung 140.2)
Die Inder besaBen spiitestens seit den ersten Jahr-
hunderten n. Chr. ein Stellenwertsystem, das prak-
tischste, das jemals erfunden worden war und das
wir heute noch bentitzen. Zu ihren neun Zahlzei-
chen fiir eins, zwei, ..., neun kommt im 7. Jh. ein
Zeichen fiir die Liicke, die sie sunya = die Leere
genannt hatten, hinzu; es ist ein Punkt oder auch
ein kleiner Kreis.

Woher hatten nun die Inder dieses Zeichen? Dar-
tiber streiten bis heute die Gelehrten. Die einen mei-
nen, die Inder hédtten es selbst erfunden. Nun
stammt die friiheste erhaltene indische Null als
Kreisring von einer Tempelinschrift bei Gwalior
aus dem Jahre 870. Daher meinen andere Gelehrte.
die Inder kénnten den Punkt und den Kreis fiir die
Null von den Chinesen iibernommen haben: denn
in einem chinesischen astronomischen Text aus der
Zeit von zwischen 718 und 729 ist uns ein Punkt fiir
die Null iiberliefert. Noch friither, und vielleicht von
China beeinfluBlt, sind Inschriften aus Kambo-
dscha und von der indonesischen Insel Bangka mit
den Jahreszahlen 605 bzw. 608 (Abbildung 140.3).
Haben die Inder tiber ihre Kaufleute von dort die
Idee bezogen? Oder stammt sie gar von den Grie-
chen?

Der grolite Astronom des Altertums, Klaudios
ProLEMAIOS (um 100-160) benétigte ein Zeichen,
um anzudeuten, daBl ein Winkel null Grad, null
Minuten und nur 14 Winkelsekunden miBt. Er

I

Abb. 140.1 Agyptisches
Zeichen fiir null an einem
Tempel in Edfu (2./1. Jh. v.
Ehr.)

T7 é Qan
Ty
Abb. 140.2
Der Doppelhaken, das ba-
bylonische Liickenzeichen:
2:60*+0-60415= 7215

Q& o Do

Abb. 140.3

Die Schakajahrzeichen 605
(= 683/4 n. Chr.) und 608
(= 686/7 n. Chr.) Der stidin-
dische Schakakalender be-
ginnt seine Zeitzihlung am
15. Mérz 78 n. Chr.

Abb. 140.4

Die Mayazahl 820 =
=8-(20-18)+2-20+ 0=
= 2920 indisch
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schrieb dann 66 o8. Dabei soll das o eine Abkiirzung von o86&v (udén) = nichts sein.
So legt es uns die aus dem 9.Jh. stammende alteste erhaltene Handschrift seiner
Modnporien obvragig (Mathematike syntaxis) = Mathematische Zusammenstellung
des astronomischen Wissens seiner Zeit nahe. Die indischen Astronomen der darauf
folgenden Jahrhunderte lernten aber von den Griechen. Und da sich gerade in der Zeit
swischen 200 und 600 n. Chr. das indische Stellenwertsystem entwickelte, was liegt da
nither. als anzunehmen, daB sie das o des ProLEmAIlOS als Ziffer fur thre Liicke nahmen
und sie auch Leere nannten?

Im Jahre 773 brachte ein Inder ein in Sanskrit geschriebenes astronomisches Werk
nach Bagdad an den Hof des Kalifen AL-MANSUR (regierte 754-775). Es wurde ins
Arabische iibersetzt. So wurden die Araber mit den indischen Ziffern bekannt, die wir
heute die arabischen nennen. AL-CHARIZMI iiberarbeitete spiter diese Ubersetzung
in seinen Astronomischen Tafeln. Zur Verbreitung der indischen Ziffern und der Kunst
des Rechnens mit ihnen trug AL-CHARIZMI wesentlich durch ein Buch bei, das nur
mehr bruchstiickhaft in einer lateinischen Ubersetzung unter dem Titel Algoritmi de
wumero indorum — »Buch des AL-CHARIZMI {iber die Zahlenschreibweise der Inder«
erhalten ist. Sunya ibersetzten die Araber mit al-sifr, ihrem Wort fiir Leere. Al-sifr
wurde latinisiert zu cifra, womit sogar noch 1799 Carl Friedrich Gauss (1777-1855)
die Null bezeichnete. Im Deutschen entstand aus cifra das Wort Ziffer, das im 15. Jh.
allmihlich die heutige Bedeutung von Zahlzeichen erlangte. Im Lateinischen hiel3
Zahlzeichen aber figura, der kleine Kreis fiir die durch kein Zahlzeichen besetzte Stelle
figura nihili = Zeichen fiir das Nichts oder auch nulla figura = kein Zahlzeichen. Dar-
aus entstand im Deutschen zunichst Nulla, dann eine Nulle, so z.B. 1716 belegt im
Mathematischen Lexicon des Christian v. WOLFF (1679-1754), der in der 2. Auflage
1734 bereits die Kurzform Null als Stichwort auffithrt.* Unabhangig von der Alten
Welt haben in der Neuen Welt die Maya vielleicht schon um 500 n. Chr., also noch
vor allen anderen Vélkern, ein vollwertiges Stellenwertsystem mit der Null als Ziffer
gekannt (Abbildung 140.4).

Aufgaben
1. a) 145x =0 b) x-(172—6%) =0
¢) 2y 5=0 d) 29—-377:13)-3z=0
e) 16+ 2x =24 62 f) 1.97x-4=23,5+15%:(—%
2. Bestimme die Losungsmenge.
a) (x+1)x—-2)=0 b) (x—H(x+1=0
¢) (6x—3)2x—1)=0 d) 3x—1515—-2x)=0
e) 14(3x—8)(65+13x) =0 f) 22x—34)-7*-(1,5—=2,5%x) =0
3. a) (x+1)*=0 b) 3:-(2x—5)*=0
¢ 235-(x—2°%*=0 d) (x+9)(x—9*=0

od. 2) 2x+1)(B3x+2)(4x+3)=0 b) (5x—9)(11+2x)(7x—49) =0

¢) 892(16 —5x)(x—1)2 =0
d) [(1,75x—525)(x+19)]-52—x) =0
* Aus dem lateinischen cifra wurde im 15 Jh. das franzosische chiffre und schlieBlich das englische cipher,
die beide neben Nul! und Ziffer auch noch Gehetmzahl bedeuten. In dieser Bedeutung entstand im 17. Jh.

das deutsche Fremdwort Chiffre. Bei LEONARDO VON Pisa {um {170-nach 1240) wird aus al-sifr 1202
zephirum, woraus das franzosische zéro, das italienische zero und ddas englische zere wurden.
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e35. Gib eine moglichst einfache Gleichung an, die die folgenden Zahlen als
Losung besitzt

a) 2 und 3 b) 2 und —3 ¢) —2und 3
d) —2und -3 e) 3und —1 f) 0und —1
g) Ound 1 und —1 h) 2 und —2 (zwei Méglichkeiten!)

6. Entscheide, welche der folgenden Oder-Aussagen wahr sind.
a) Hannibal war ein Romer oder Alexander der GroBe war ein Rémer.
b) Eine Spinne hat 6 oder 8 Beine.
¢) Die Hauptstadt der Tiirkei ist Istanbul oder Izmir.

d) 2=3v2<3

e) 2=3wv2>3

§) 2 =32=3

g) 2=3v2-—3yv2=3

h) 2 teilt 11 oder 2 teilt 12.

) 2 teilt 17" " oder 2 teilt 1717 4 1.
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S Ungleichungen

5.1 Was ist eine Ungleichung?

Wir erinnern daran, daB a < b anschaulich bedeutet. daB die Zahl a auf der
Zahlengeraden links von der Zahl b liegt. Rechnerisch bedeutet g < b: Es gibt
eine positive Zahl p, so daB ¢+ p = b gilt. Abbildung 144.1 veranschaulicht

dies. .
iy

a b

Abb.144.1 a<b <= Es gibtein p > 0, so daB a + o=

Was aber bedeutet eine Ungleichung, die eine Variable enthilt?
Betrachten wir z. B. die Ungleichung

2x — B <d —

Wie bei einer Gleichung haben wir eine Information iiber eine unbekannte
Zahl x vor uns. Diese Information ist in der vorliegenden Form noch sehr
undurchsichtig. Durch Probieren kann man womoglich Zahlen finden, die der
Information entsprechen. Nehmen wir z. B. fiir x die Zahlen 0,2 oder —2, so
erhalten wir der Reihe nach die Zahlen-Ungleichungen

—3<1 v —1 —7 <3,

Die erste und die dritte sind richtig, die mittlere falsch. Wir sehen. daB durch
die Information 2x — 3 < 1 — x die Zahl x nicht eindeutig festgelegt ist, da
bereits die beiden Zahlen 0 und — 2 der Ungleichung geniigen. Wie bei Glei-
chungen méchten wir aber alle Zahlen kennen. die der In formation gentigen.
Betrachtet man die Ungleichung als Aussageform, dann bilden diese Losungs-
zahlen gerade die Losungsmenge der U ngleichung.

Bei Ungleichungen der Form x < 5 oder x > — 2.3 kann man die Losungs-
menge sofort sehen. Wir veranschaulichen sie auf der Zahlengeraden. Dabei
soll der kleine, nicht ausgefiillte Kreis iiber 5 bzw. — 2.3 andeuten, daB die
Zahl 5 bzw. — 2,3 nicht zur Losungsmenge gehort.

T 7

1 T +

1 5
Abb.144.2 Losungsmenge der Ungleichung x < 5
' ; }
-23 0 1
Abb. 144.3 Losungsmenge der Ungleichung x > —2.3
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Unser Ziel ist es, Ungleichungen so lange umzuformen, bis man auf solche
einfache Ungleichungen stofBt. Das ist immer dann erreicht, wenn man die
Unbekannte auf einer Seite der Ungleichung isoliert hat. Dabei diirfen aber
weder Losungen hinzukommen noch verlorengehen. Wie bei Gleichungen
legt man daher fest:

Definition 145.1: Zwei Ungleichungen heiBen fiquivalent, wenn ihre Lé- |
sungsmengen iibereinstimmen. ,
Eine Ungleichungsumformung heiBt Aquivalenzum-
. formung, wenn die urspriingliche Ungleichung und
| die umgeformte Ungleichung dquivalent sind.

5.2 Aquivalenzumformungen von Ungleichungen
Ersetzt man in einer Ungleichung einen Term durch einen dquivalenten, so
dndert sich die Losungsmenge nicht, weil bei jeder Einsetzung der alte und der

neue Term den gleichen Zahlenwert liefern.

Beispiel: 3x—5+x<7x—(13-19)
4x—-5<Tx+6

Fiir die Addition von Termen gilt

Satz 145.1: Monotoniegesetz der Addition
Addiert man auf beiden Seiten einer Ungleichung einen
Term, so bleibt das Ungleichheitszeichen erhalten; kurz

L= 5
< Lh+T<L+T

Bemerkung: Satz 145.1 gilt natiirlich auch fir die Subtraktion eines Terms, da
die Subtraktion eines Terms T ja nichts anderes als die Addition des Terms
— T 1st.

Beweis: Ist @ ein Element der Losungsmenge der Ungleichung 7; < 7, dann gilt
Ti (a) < T;(a). Auf Grund des Monotoniegesetzes der Addition fur rationale z"dh—
len (Satz 62. 1) kann man auf beiden Seiten die Zahl T'(a) ) addieren und erhélt
T, (a) + T(a) < T>(a) + T(a). (Siche Abbildung 145.1) Also ist a auch Losung der
Unw eichung 7, + T < T, + T. Wir haben somit bei der Addition des Terms T keine
Losung verloren.

% %

T1(a) Ty(a)*T(a) T,(a) T(a)*T(a)
Abb. 1451 T, (a) < Ty(a) < Ti(a)+ T(a) < T1(a) + T(a)
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: Ist umgekehrt b eine Losung der Ungleichung 7, + T< T, + T, dann gilt
o T, (b) + T(b) < T, (b) + T(b). Addiert man hier auf beiden Seiten die Zahl — T'(h). so
= erhélt man nach dem Monotoniegesetz der Addition fiir rationale Zahlen die Zahlen-
ungleichung T; (b) < T, (b). Also ist b auch eine Losung der Ungleichung 7, < Ts.
Somit kann durch die Addition des Terms T keine Losung hinzugekommen sein.
Die Ungleichungen 7; < T, und T} + T < T, + T sind also dquivalent.

Beispiel: 4x—5

<Tx+6 | —4x—6
—11 < 3.

Y

Bei der Multiplikation von Ungleichungen mit Zahlen mull man aufpassen,

= da es zwei Monotoniegesetze gibt, eines fiir positive Multiplikatoren und eines
| fiir negative Multiplikatoren. Du kennst sie fur rationale Zahlen bereits als

Satz 81.1 und Satz 81.2.
Deshalb miissen wir auch bei den Aquivalenzumformungen von Ungleichun-
gen mit Variablen zwei Monotoniegesetze unterscheiden.

Satz 146.1: Monotoniegesetz der Multiplikation
Multipliziert man eine Ungleichung mit einer positiven
Zahl, so bleibt das Ungleichheitszeichen erhalten, kurz

L <L | p, wobei p>0
<ph<pl

Bemerkung: Satz 146.1 gilt natiirlich auch fiir die Division durch eine positive

Zahl, da die Division durch p ja nichts anderes ist als die Multiplikation mit 1—

P
Beweis: Ist a e Element der Losungsmenge der Ungleichung 7, < 7,, dann gilt
T; (a) < T3(a). Auf Grund des Monotoniegesetzes der Multiplikation fiir rationale
| Zahlen (Satz 81.1) kann man beide Seiten mit der positiven Zahl p multiplizieren und
= erhéltp - Ty (a) < p - T (a). (Siche Abbildung 146.1) Also ist aauch Loésung der Unglei-
chung p - 7} < p- T;. Bei der Multiplikation mit p ist keine Lésung verlorengegangen!

|
p=3
1' ! | | . -
o 0 Ti(a) Tala) p:Ty(a) p-Tx(a)
=
s ! ! (P ) i TG O
p-Ty(a) Ty(a) 0 To(a) p-Tx(a)

"_'-'-_'i Abb.146.1 Ist p > 0, dann gilt: T (a) < T;(a) <> p- T, (a) < p- T;(a).

Ist umgekehrt b eine Losung der Ungleichung p-T, <p-7,, dann gilt
p- Ty (b) < p- T,(b). Multipliziert man diese Zahlenungleichung mit der positiven
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Zahl = dann gilt nach dem Monotoniegesetz der Multiplikation fiir rationale Zahlen

die Zahlenungleichung 7, (b) < T, (b). Also ist bauch eine Losung von T} < T,. Bei der
Multiplikation mit p ist keine Losung hinzugekommen!
Die Ungleichungen T; < T, und p- T; < p - T, mit positivem p sind daher dquivalent.

[

Beispiel: —11 < 3x | -3

Damit haben wir durch drei Aquivalenzumformungen die eingangs gegebene
Ungleichung 3x — 5+ x < 7x — (13 — 19) schlieBlich auf die &dquivalente
Form —4! < x gebracht, bei der wir die Losungsmenge sofort erkennen kon-
nen; Abbildung 147.1 zeigt sie.

97 l |

ey
=

(%)

)

Abb.147.1 Die Lésungsmenge der Ungleichung 3x — 5+ x < 7x — (13 —19)

Nun zum zweiten Monotoniegesetz der Multiplikation!

Satz 147.1: Gesetz von der Umkehrung der Monotonie
Multipliziert man eine Ungleichung mit einer negativen
Zahl, so wird aus dem Kleiner-Zeichen ein GrofBer-Zeichen
bzw. aus dem GroBer-Zeichen ein Kleiner-Zeichen; man
sagt dafiir auch, das Ungleichheitszeichen kehrt sich um.
Kurz

L <L | -q, wobei g<0
< qh>qT

Bemerkung: Satz 147.1 gilt natiirlich auch fiir die Division durch eine negative
Zahl.

Beweis: Ist a ein Element der Losungsmenge der Ungleichung 7} < T, dann gilt
T, (a) < T, (a). Auf Grund des Gesetzes von der Umkehrung der Monotonie bei ratio-
nalen Zahlen (Satz 81.2) erhilt man daraus bei Multiplikation mit einem negativen g
die Zahlenungleichung ¢ - T; (@) > q - T;(a). (Siche Abbildung 148.1) Also ist a auch
Losung der Ungleichung ¢ - 7; > ¢ - T,. Keine Losung ist verlorengegangen!

Ist umgekehrt b eine Losung von g+ T; > ¢ T, dann gilt ¢ - T (b) = g+ T,(b). Multi-
- Sl % : : ; o 1 =
pliziert man diese Zahlenungleichung mit der negativen Zahl 7 dannerhalt man wegen

des Gesetzes von der Umkehrung der Monotonie bei rationalen Zahlen die Zahlenun-
gleichung T; (b) < T, (b). Also ist b auch eine Losung von T; < T5. Somit ist bei der
Multiplikation mit ¢ keine Losung hinzugekommen!

Die Ungleichungen 7; < T, und ¢ - T; > g - T, mit negativem ¢ sind somit dquivalent.
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q=-2
f"_/,///{‘;‘— | | " =
Q'i;_-tél} q-T1{aJ 0 T1".E’l:| Tz(a]
# mlr
q-Tzla) Ti(a) o TZIE] q_i’,l:a}

Abb.148.1 Ist g <0, dann gilt: T} (a) < T5(a) <= g T,(a) > q- T»(a).

Beispiel: —%x < —6 I - (=32
x>9

Die in diesem Abschnitt gefundenen Aquivalenzumformungen von Unglei-
chungen sollen uns nun helfen, die Losungsmenge einer Ungleichung zu be-
stimmen.

5.3 Losen von Ungleichungen

5.3.1 Intervalle

Die Losungsmengen von Ungleichungen enthalten meistens unendlich viele
Losungen, denen auf der Zahlengeraden Strecken oder Halbgeraden entspre-
chen. Diese Zahlenmengen nennen wir Intervalle*. Fiir Intervalle gibt es in
der Mathematik Kurzbezeichnungen:

Definition 148.1:

Beschreibung Intervall- Art des Bild des

des Intervalls symbol Intervalls Intervalls
Menge aller Zahlen zwi- [a; b] abge- [ —
schen @ und b einschliel3- schlossen
lich der Grenzen
Menge aller Zahlen zwi- | Ja;b[ offen a On—) b
schen @ und b ohne die
Grenzen
Menge aller Zahlen zwi- [a; b[ halboffen (1 o— |
schen ¢ und & mit a, aber
ohne b
Menge aller Zahlen zwi- la; b] | halboffen (4 Co— )
schen @ und b ohne a, aber
mit b

* intervallum (lat.) = Zwischenraum, eigentlich der Raum zwischen (= inter) zwei Pfiihlen (= vallus) einer
Palisade.
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Beachte: In der Intervallschreibweise darf die linke Zahl nicht gréBer sein als
die rechte.

Wie man mit Intervallen umgeht, zeigen die folgenden

Beispiele: (Vgl. dazu Abbildung 149.1).
1) 0€e[0;3[, 1,7 € [0; 3[, 3¢[0;3[
2) [0;3[ =[—1,5; 6], {4.1; 5;6%; 7,99} = 14; 8[
3) [—1,5:6] n]4; 8] = 4 6], [—6; —4[n][—4; -2]={}

4) [—6; —4[ L[4 —2] = [—6; 2],
[—1,5; 6] Ul4: 8 =[—1,58[

Abb.149.1 Zu den Beispielen 1) bis 4)

Bei Halbgeraden gibt es auf einer Sei-
te keinen Endpunkt, da es dort keine
letzte Zahl gibt. Als Ersatz fiir die
fehlende Grenze hat 1655 der engli-
sche Mathematiker John WALLIS
(1616-1703) in seiner Arithmetica In-
finitorum das Symbol co, gesprochen
unendlich, eingefuhrt.

Die Romer schrieben mit dem Zeichen oo
ihr Zahlwort mille, das einerseits tausend
bedeutet, andererseits im tibertragenen
Sinn fiir unzdhlig viele verwendet wurde
denke nur an unseren Tausendfiier! Ob
die Romer WALLIS inspirierten, wissen
wir nicht.*

Weil oo keine Zahl ist, gehort es nie-
mals zum Intervall. Je nachdem, ob
man nach links oder rechts ins Un- v
endliche fortschreitet, unterscheidet 1698

man zwischen — oo und + oo. 3

* Neben oo gab es noch () und (|) als Zeichen fiir
mille. Das M ist im wesentlichen tniL[:‘]tllllchrlichu:L Abb.149.2 John WaLLIS (3]21 616
Ursprungs, wenngleich es sich gelegentlich auch 3/ £k TS
: I RERT : P A5 [ BC d _ } rd
in romischen Inschriften findet; frithester Beleg Ashford/Kent 8.11.1703 Oxforc )
89 v.Chr.




150 5 Ungleichungen

Damit haben wir

Definition 150.1:

Beschreibung | Intervall- Art des | Bild des
des Intervalls symbol Intervalls | Intervalls
Menge aller Zahlen links | ]— oo; a] halboffen —

von a einschlieBlich a

Menge aller Zahlen links | ]— oo; a[ offen ——
von a ohne a

Menge aller Zahlen rechts | [a; + o[ halboffen N =
von a einschlieBlich a

Menge aller Zahlen rechts | Ja; + oo offen (1 e—
von a ohne a

Aufgaben

1.

b

th

Zeichne die Intervalle

a) [2;4] b) [—1,5;5,6] ¢) 1—2;: —0,5]
d) [1.4;:41] e) ]0; 5[ f) [1:;1]
Schreibe als Intervall

a) 2 e e 39 b) —7 e @3

¢c) lo—eol d) —830—0 16,6

Zeichne die Intervalle
B e | b) ]=1; + oo ¢) ]—co; 0] d) ]—o0; —2[

Schreibe als Intervall

a —S5e b) e 7

c) o 100 d) o —13

Schreibe als Intervall

a) Q b) O ¢) - d) Q; e) Qg P {}

Entscheide fiir jede der Zahlen —5; 20; 0; —3.1; 1,5 ob sie in dem

folgenden Intervall liegt oder nicht:
&) |—5:5] & =345 o 1102207 '@ J=550f

Bestimme das grofite abgeschlossene Intervall mit ganzzahligen Grenzen,
das eine Teilmenge des folgenden Intervalls ist:

a) 10;5[ b) 1-2,7;3] e [—2.7;3[ d) [—6;,—1,1[ e) [—1;2]

Gib zu den Intervallen der Aufgabe 7 das jeweils kleinste offene Intervall
mit ganzzahligen Grenzen an, welches das gegebene Intervall ganz tiber-
deckt.
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9, Be:s{immc folgende Schnitt- bzw. Vereinigungsmengen:

a) [—1;2]n]0; 4] b) [—1;2]u ]0; 4]
o [=3 —05]u[=053[ {-3: _0,5]1A[—0,5; 3[
e) Nm[0;6[ D (=50 u[—1;4]) r‘m”'

5.3.2 Kleiner- und Grofler-Ungleichungen

Mit Hilfe der Aquivalenzumformungen konnen wir nun Ungleichungen wie
z.B. 2x + 5 < 7x — 3 losen, wenn es uns gelingt, sie auf eine der Normalfor-
men x < a oder x > a zu bringen.

Lad

x—=3 | —2x+
S5x |5

Beispiel 1: 2x +

o GO Lh
AN A
h —]

[
PAR

s
A%
thioe

In der Intervallschreibweise lautet die Lésungsmenge L = ]%; + oo[. Sie 148t
sich auch graphisch darstellen:

1
T
0

w_m__.i)
L

Abb.151.1 Losungsmenge der Ungleichung 2x +5 < 7x—3

Es gibt aber auch Ungleichungen, die sich nicht auf die Normalformen x < a
bzw. x > a bringen lassen, ndmlich dann, wenn die Unbekannte bei den Aqui-

valenzumformungen »herausfillt«. Es bleibt in diesem Fall eine Ungleichung
zwischen Zahlen iibrig, also statt einer Aussageform nur eine Aussage. Ist
diese wahr, dann ist die urspriingliche Ungleichung allgemeingiiltig, thre Lo-
sungsmenge ist also @. Ist die iibrigbleibende Zahlenungleichung eine falsche
Aussage, dann ist die urspriingliche Ungleichung mdcrsprudﬂmh ihre Lo-

sungsmenge also { }. Die folgenden beiden Beispiele sollen dir das \ereulli-

chen.

Beispiel 2: 2x+5<1 —(5—2x)
2x+5<17—5+2x
2x+5<12+4+2x I8=2x— 5

0 < 7; wahre Aussage! Also L = Q.

Beispiel 3: 2x+5<7—(5—2x)
2x+5<T7—5+2x
2x+5<2+42x | —2x—35

0 < —3; falsche Aussage! Also L = {
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Aufgaben
1. a) x—3<5 b) 2—x> -3 ¢) —x< —3
d) 3x > 18 ey == ) —3x> —3
) —#x<2f WBP<Ax D) i< I
2. Schreibe die Losungsmenge als Intervall.
a) 3x—11 <12x—10 b) 5—8x<x—13
c) 15—6y>1—20y dy —z2>2—-10
3. Stelle die Lc")tsulwsmenge graphisch dar.
a) 3x4+1<ix413 b) 152 — 145 x > 12Lx + 42,25
¢) 0,8—09z>3z+1% d) 03y—3<iy—32

4. Schreibe die Losungsmenge als Intervall.

a) x—3—x)>5—(05—x)

b) 2y+3—-(05+3y)<3—-(2y—1)

€) 53— (3%2—3)>8z+(7T—%2)

a) 11z '5{—»”+4] —{z—0)+3Rz—3)

b) —5GB —3x)+4(7—5x) < 5x+19—2(x+ 11)
¢c) 2y+11> —3(y+1)—1

]

6. a) 3x—12<44+3(1—-(1—x)

b) 73x +3(—15x+%) > 44x — 6(3 — 35X)
¢) —11x+(17—-3x): <?—q(5ﬂ\—3fj
d) 0,01x—0,1x+x < (],(12.\ —031x+1.2x

5.3.3 Hochstens- und Mindestens-Ungleichungen

[n 6ffentlichen Verkehrsmitteln konnen Jugendliche zu einem giinstigeren Ta-
rif fahren, wenn sie hochstens 15 Jahre alt sind. Die Verbilligung kann also

jeder in Anspruch nehmen, der 15 Jahre alt ist oder der weniger als 15 Jahre alt

ist. Bezeichnet man die Anzahl der Jahre kurz mit j, so gibt es Fahrpreisermi-
Bigung, falls gilt:
j=15v j<15

Die beiden Bedingungen dieser Oder-Aussageform faft man zusammen zu
1

1A
L

J
und liest dies als

»j ist hochstens 15« oder auch »j ist kleiner oder gleich 15«.

Zu Schuljahrsbeginn bietet ein Schreibwarengeschiift 5% Rabatt* bei Abnah-

* Vom italienischen rabatto = Preisabschlag. Exstim 17, JTh, wird unser Rabart aus dem Italienischen entlehnt.
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me von mindestens 10 Heften gleicher Art an. Diesen Preisnachlal3 erhilt man
also, wenn man 10 Hefte oder mehr als 10 Hefte kauft. Bezeichnet man die
Anzahl der Hefte kurz mit A, so wird Rabatt gewihrt, falls gilt:

h=10 v h > 10.
Die beiden Bedingungen dieser Oder-Aussageform faB3t man zusammen zu
h=10

und liest dies als

»h ist mindestens 10« oder auch »h ist groBer oder gleich 10«.

Definition 153.1: a £ b bedeutet a<bva=D>b
a=zb bedeutet a>bva=bhb
a*bh bedeutet a<bva>h

Die Zeichen < und = wurden 1734 von Pierre BouGuEer (1698—1758) erfunden.

Ungleichungen mit < bzw. = 10st man genauso wie Ungleichungen mit <
bzw. > . Dazu ein

- . s : 5
Beispiel: 3%x — 3 = 555 + 215X | =25 + 1%
3X 2 5% I -2

x = 11&.

In Intervallschreibweise lautet die Losungsmenge L = [1155; + oo[. Abbil-
dung 153.1 veranschaulicht L.

. 2 3

|
0 12

Abb.153.1 Die Losungsmenge [1155; + o[

Aufgaben

1. Lose die folgenden Ungleichungen. Veranschauliche die Losungsmengen
auf der Zahlengeraden.

a) x+7=<9 b) x—16 < —17 ¢) x+ 25
d x—%2=<1] e) x+3=—175 f) x—4+
Schreibe die Losungsmenge als Intervall.

a) 2x—1=1-—2x b) 1 —x=17—-17x

¢) 12x—7 = 8x + 41 d) y—19=19y—19
e) 8z2—1=182—10 f) 11w—92=<108+4 11w

5

0

=
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3. Stelle die L{jt'.umzmnenge auf der Zahlengeraden dar.
| a) fx—3=34—9x b) 184 — 7hx < 34x + 755
¢) 0,01 ’J?> 3—-01y d)3z4+3=<3_3;

e4. Schreibe die Losungsmenge als Intervall.
a) 3x—(1-2x) = -2(x—1)+7
b) 34 —23(Gx—33) = 2Lx(11 —0,75) + (2L + %)

e3. a) 2,1x421(0,1x— 1(1-—00 \}):2 —21((1 —2x)+2,1)
b) 46 —40) — 4G — 40 2 4G -

r_ac._

5.3.4 Doppelungleichungen

_ Die Deutsche Bundespost erkennt Sendungen nur dann als Briefe an, wenn sie
gewisse Mindest- und HochstmaBe erfiillen. So muB z. B. die Linge minde-
stens 14 cm und darf hochstens 23,5 cm betragen. Bezeichnet man kurz mit /
die Linge in cm, so muB fiir einen Brief gelten

=14 und [=235.
Eine Liange ist Losung dieser Und-Aussageform, wenn beim Einsetzen eine
wahre Und-Aussage entsteht. Eine Und-Aussage in der Mathematik ist eine
Verkniipfung zweier Aussagen durch das Wort und, das man symbolisch
durch A wiedergibt. Eine Und-Aussage ist genau dann wahr, wenn beide
Teilaussagen wahr sind.
Die obigen Bedingungen fiir die Lange lassen sich mit dem A -Symbol kurz
schreiben:

’ R o i TR R e
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Ubersichtlicher wird es, wenn man nur Ungleichheitszeichen derselben Rich-
tung verwendet, also

14=<IAl1=£235 oderauch /=14 A 235>

schreibt. Stimmen dann die rechte Seite der ersten und die linke Seite der
zweiten Ungleichung iiberein, so kann man beide Ungleichungen zu einer
Doppelungleichung zusammenfassen. Statt 14 </ A [ < 23,5 schreibt man
kurz

=
1A
[IA

23,5,

Bei der Notierung / = 14 A 23,5 = / 14Bt sich unsere Regel nicht anwenden!

= Weil die Reihenfolge der Bedingungen in einer Und-Verkniipfung aber keine
= Rolle spielt, so kann man sie auch in der Form 23,5 = / A / = 14 schreiben,
was sich nun zu 23.5 = [/ = 14 zusammenfassen 14B8t. — Wir merken uns
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| Definition 155.1: a<b=c¢ bedeutet a<bab=c

| a<h<c bedeutet a<bAb<c
az=b>c bedeutet a=2bAab>c
a>b=c¢ bedeutet a>bab2c
USW.

Bemerkungen: 1) Die Doppelungleichung a < b < ¢ driickt aus, dall b
zwischen a und c¢ liegt.
2) Doppelungleichungen mit gegenldufigen Ungleichheitszei-
chen wie @ < b > ¢sind nicht erlaubt! Néheres dazu in Auf-
gabe 156/5.

Eine Doppelungleichung mit einer Unbekannten 16st man, indem man die
beiden durch A verkniipften Ungleichungen einzeln 16st. Weil eine Losung
der Doppelungleichung die beiden Teilungleichungen zugleich erfiillen muB,
ist die Losungsmenge der Doppelungleichung die Schnittmenge der beiden
Teillosungsmengen. Das A -Zeichen erinnert an das Schnittmengenzeichen .
Merke dir also den

Satz 155.1: Die Losungsmenge einer Doppelungleichung ist die ‘
Schnittmenge der Losungsmengen der beiden Teilunglei-

chungen. ‘
Beispiel:
4x+5=5 —-3x+5<17
o dx+5Z—3x+5 A —3x+5<17

[n zwei getrennten Nebenrechnungen (NR.) 16sen wir die beiden Teilun-
gleichungen:

NR.1: 4x+5=5 —3x+4+35 | +3x—5
Ix=<0 |
x=0

= E; =7]—0;0]

NR.2: —3x+5<17 | =5

— =12 | :(—3)
x > —4

= L,=]1—4; +oo[

Als Losungsmenge L fiir die Doppelungleichung erhalten wir somit
L=L,nL,=7]—4;0]. Abbildung 156.1 veranschaulicht die Entstehung
von L.
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Abb.1561 L=L,nL,
Aufgaben
1. Schreibe als Doppelungleichung und gib die Lésungsmenge als Intervall
an.
a) x> —1Ax=5 b) x£0Ax= —3.,5
¢) x=—-T7Ax>—-10 @) 13=%x'A2)2>%

I~

Bestimme die Losungsmenge als Intervall und stelle sie auf der Zahlenge-

raden dar.
2) 0<2x—1=<1 b0<1—-3x<2 ¢)84>7(5—2x)2=—153

3. Bestimme die Losungsmenge als Intervall.

a) 0<xs=1—x b) 2x =1 < 3x ¢c) Ix<1<2x
4 a) 2x—1<3x—1=<1—x
ob) Jr—3 <fx—} < —gx+]
°C) (}101—2_) 0 Jh—UJ(“\— 3)> —0,7x — 1,27
5. a) Ineiner Doppelungleichung verhirgl sich neben den beiden Teilunglei-
chungen der Und-Aussage noch eine weitere Ungleichung; sie entsteht,
wenn man das Mittelstiick und ein Ungleichheitszeichen wegnimmt.
Wie heilen die drei Ungleichungen, die man aus —3 < x < 1 erhilt?
b) Hans baut die Und- Alli‘;aigcibrm —3 < x A x> —10 zu einer »Dop-
pelungleichung« der Art —3 < x > — 10 zusammen.
Sabine zeigt ithm, daB3 sich daﬂn beim Vorgehen nach a) ein Wider-
spruch ergibt. Welcher?
Trotzdem hat die Und-Aussageform —3 < x A x > —10 eine Lo-
sungsmenge. Gib sie als Intervall an.
5.3.5 Ungleichungen mit Absolutbetriigen

In Gleichungen und in Ungleichungen kann auch der Betrag der Unbekann-

ten duftretul Die einfachste solche Gleichung ist von der Art

:a.]—4 die

einfachsten Ungleichungen sind von der Art | x| < 4 bzw. | x| >
Die Losung ist ganz einfach, wenn wir uns an die Definition des Betrags

(Definition 43.1) erinnern: | x| ist die Entfernung des Punkts x vom I\ullpunl-.{
auf der Zahlengeraden.
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Die Information | x| = 4 teilt uns mit, da3 die Zahl x bzw. der zugehorige
Punkt auf der Zahlengeraden 4 Einheiten vom Nullpunkt entfernt ist. Diese
Information ist nicht eindeutig, weil sie auf die beiden Zahlen 4 und —4
zutrifft. Also gilt:

x| =4 <= x=4vXx=—4.
Die Losungsmenge ist L = {—4; 4}.

SV S L

1 T T -

-4 0 4

Abb.157.1 Die Losungsmenge von |x| =4

Durch die Information | x| < 4 wird uns mitgeteilt, da3 die Zahl x weniger als
4 Einheiten vom Nullpunkt entfernt liegt. Alle Zahlen zwischen —4 und 4
erfiillen diese Bedingung. Also gilt:

x| <4 <= —4<x<4,

Die Losungsmenge ist L = ]—4; 4[.

e

T T -

-4 0 4

Abb.157.2 Die Lésungsmenge von |x| < 4

Durch die Information | x| > 4 wird uns mitgeteilt, daB die Zahl x mehr als 4
Einheiten vom Nullpunkt entfernt liegt. Alle Zahlen links von — 4 oder rechts
von 4 erfiillen diese Bedingung. Also gilt:

|x] >4 <& x< —4vx>4.

Die Losungsmenge ist L = ]—co; —4[ v ]4; + cof.

Mit Hilfe des Ohne-Symbols \ liBt sich L statt als Vereinigungsmenge auch als
Restmenge schreiben, nimlich zu L = Q \ [ — 4; 4]. Eine solche Schreibweise
kann gelegentlich tibersichtlicher sein.

Abb. 157.3 Die Losungsmenge von |x| > 4

Man kann also die angegebenen einfachen Gleichungen un_d Ungleichungen
mit Betriigen auf betragsfreie Formen dquivalent umschreiben.




Wir merken uns
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Satz 158.1: Fiir a > 0 gilt

|x|=a < x==avx=a
x| <a < —a<x<a
| |x] >a < x<—avx>a.

¢) |x| = 0.1

Aufgaben

1. Welche Zahlen erfiillen die Gleichung?
a) |x|=4,5 b) | x| = 1986
d) [x|=0 e) |x|=—3

f) |x|=]3,7—59]

2. Gib die Losungsmenge der Ungleichung an und stelle sie auf der Zahlen-

geraden dar.
a) = b) |[x| 4,5

e) x| =3,6 f) |x|> 35

ot

a) 2=|x|=4

¢) |x|>-=2 d) x| =—4
g |x| =314 h) 5 < x|

Stelle die Losungsmenge auf der Zahlengeraden dar.
b) 0<|x|<3

¢) 4>|x| >1

4. Welche rationalen Zahlen erfiillen die folgenden UND-Bedingungen?
Stelle dazu die Losungsmengen der Teilbedingungen und die der Gesamt-
bedingung auf der Zahlengeraden dar.

a) |x|>1 und [x|=S5
€) x<03 und |x|>3,5
¢) x>—1 und |[x]|]=4

Zu Seite 159:

Uno lione mangia una chapra in 2 di et
uno lupo la mangia in 3 di et una gholpe
la mangia in 5 di: vo’ sapere in quanto
tempo tuttj questj animalj insieme man-
gereb[ o]no detta capra: fa’ cosi togli uno
numero che abbi 3 e § e & torraj 30 poi
dirajel di30€é15el 1€ 10el1 166
racogli fa 31 e questo ¢ 'l partitore; poi
partj 30 per 31, ne viene 3¢ di di et in
tanto tempo la mangerebono.

b) |x|
d -2
f) [x] <6 und x<-2

=1 und |x|>0,5
J3=|x| und x=-=15

Ein Lowe {riBt eine Ziege in 2 Tagen, und
ein Wolf friBt sie in 3 Tagen, und ein
Fuchs frilit sie in 5 Tagen. Du willst wis-
sen, in welcher Zeit all diese Tiere gemein-
sam diese Ziege friilen. Mach es wie folgt.
Nimm eine Zahl, die 3, § und £ hat, nimm

30; dann sage: 3 von 30 ist 15, 4 ist 10

und j ist 6. Zahle zusammen, das ergibt

31, und das ist der Teiler. Teile dann 30
durch 31, daraus erhilt man 39 des Tages,
und in dieser Zeit friBen sie sie.
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Lowe, Wolf und Fuchs fressen eine Ziege. .
Fol. 97v des Trattato di aritmetica (1491) des Filippo CALANDRI (um 1430 Florenz 7




6 Textaufgaben

6.1 Wie lost man Textaufgaben?

Algebra ist entstanden aus Auf-
gaben und Problemen des All-
tags, wie uns iiber 4000 Jahre
alte babylonische Keilschrift-
texte auf Tontafelchen und fast
ebenso alte dgyptische Papy-
rusrollen zeigen. Sicherlich er-
innerst du dich noch an die ein-
fachen Aufgaben aus dem Pa-
pyrus Rhind (Seite 119ff.), die
dadurch gelést werden konn-
ten, dall man der gesuchten,
aber noch unbekannten Grofe
einen besonderen Namen gab.
Die Algebra war geboren!
Immer mehr setzten sich allméhlich Buchstaben als Abkiirzungen fiir solche
Namen durch; fiir die Rechenoperationen wurden vor rund 500 Jahren Zei-
chen wie + und — usw. erfunden, und schlieBlich lehrte Frangois VIETE
(1540-1603), wie man mit diesen Buchstaben und Zeichen umgehen muBte. Es
entstand die Neue Algebra, ndmlich eine formale »Sprache« mit Buchstaben.
aus der die Probleme des Alltags verschwunden waren.

Aber das Leben geht weiter, Wirtschaft, Technik und Wissenschaft und auch
der Alltag liefern stets neue Probleme, die gelost werden miissen. Formuliert
sind sie aber fast immer in der Umadm_wpmc,he Sie heilen daher Textaufga-
ben.

Nun hat Frangois VIETE stolz behauptet, mit seiner Algebra nova konne man

Abb. 160.1 Babylonische Tontafel mit Keil-
schriftzahlen, um 1800 v. Chr. — 13cm X 9cm.

»jedes Problem losen«.

Wenn wir also Textaufgaben algebraisch 16sen wollen, dann miissen wir sie
zuerst aus der Umgangssprache in die Sprache der Algebra tibersetzen, die du
in den letzten Kapiteln gelernt hast.

Bei einer solchen Ubersetzung kann ein Schema* hilfreich sein. Die fol genden
Beispiele sollen dir zeigen, wie man mit seiner Hilfe eine lexmui;:dbe 16sen
kann.

Da die Aufgaben des Papyrus Rhind zu einfach sind, die des AL-CHARIZMI aber
viel zu schwer — er hat ja sein Buch fiir Testamentsvollstrecker, Kaufleute.
Landvermesser und Bankhalter geschrieben —, haben wir als erstes eine Auf-
gabe aus der 1522 erschienenen Rechenung fmff der linihen vnd federn des
Adam Ries (1492-1559) in der Fassung von 1574 ausgewihlt, um dir das
Schema vorzufiihren.

* ayfjux (griech.) gesprochen s|chema, hat viele Bedeutungen, u.a. auch Gestalt, Figur, Form.
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Abb.161.1 Titelblatt vom Rechenbuch
auff Linien und Ziphren (1574) von Adam
RIES

Beispiel 1:

161

Abb.161.2 Adam Ries (1492 Staffel-
stein—30.3./1.4.(?) 1559 Annaberg) als
58jahriger. Holzschnitt vom Titelblatt
der Rechenung nach der lenge, auff den Li-
nihen vnd Feder (1550). — Adam RIES war
Rechenmeister, d. h., er gehorte zu denje-
nigen, die mit den in arabischen Ziffern
geschriebenen Zahlen auch rechnen
konnten. In Annaberg fiihrte er das Re-
chenwesen des Erzbergbaus und leitete
eine Rechenschule. Seine Lehrbiicher und
damit seine Methoden fanden eine so gro-
e Verbreitung, daB schlieBlich die Re-
densart »nach Adam Riese« entstand.

A |

Stermt/ ¢iner hae gele / perfpilt darton 1. veve
sehrt vom pbrigen 4. 1. miedem andern handele
<r / verleurct ¢in viereheil/ - vnd bebelt 2 o, . toie¢
il hae cr sum crften aufgefihree?

Im heutigen Deutsch liest sich die Aufgabe etwa so:

Einer hat Geld, verspielt davon %. Von dem, was ihm iibriggeblieben ist, ver-
braucht er 4 Gulden*. Mit dem Rest handelt er und verliert ein Viertel. Es
bleiben ihm 20 Gulden. Wieviel Gulden hat er anfinglich besessen?

* — goldene Miinze. 1252 begann Florenz mit der Prigung einer solchen Miinze, die floren und auf franzésisch
HAorin hieB. Daher wurde der Gulden mit fl. abgekiirzt.




162 6 Textaufgaben

Losung:

1. Festlegung der Unbekannten: Zuerst muBt du dir klarwerden, wonach tiber-
haupt gefragt ist. Fiir diese gesuchte GroBe fithrst du einen Buchstaben, meist
x, als Unbekannte ein:

x = Anzahl der Gulden, die der Mann anfiinglich besessen hat.

2. Ubersetzen der Textinformationen und Aufstellen der Gleichung: Durch die
soeben vorgenommene Bezeichnung der unbekannten Grofe mit x kannst du
nun so tun, als wire sie dir bekannt. Damit kannst du alle Informationen des
Textes in mathematische Terme iibersetzen, die du am besten gleich verein-
fachst, und schlieBlich die Gleichung als Bedingung fiir diese Terme aufstellen.
Kontrolliere aber, ob du alle Angaben des Textes auch wirklich verwendet
hast. Schrittweise erhalten wir

Anzahl der im Spiel verlorenen Gulden = §x
Anzahl der ihm noch verbliebenen Gulden = x — {x =
Anzahl der Gulden, mit denen er handelt = $x — 4
Anzahl der Gulden, die er beim Handel verliert = 3(5x — 4)
Anzahl der Gulden, die ihm noch bleiben = 3(3x —4) = 3x—3
Mit der letzten verbliebenen Information konnen wir nun die Bestimmungs-
gleichung aufstellen:

1y —3=20.

X

#H ]

3. Auflosung der Gleichung: Wende auf die gefundene Gleichung die Methoden

an, die du gelernt hast, um die Losungsmenge der Gleichung zu ermitteln.
1x—3=20
e

x=46, also L= {46}.

4. Antwort: Das mathematische Ergebnis wird nun in die Alltagssprache liber-
setzt und damit die Antwort auf die im Text gestellte Frage gegeben.

»Der Mann besal} anfinglich 46 Gulden.«

5. Textprobe: Es geht jetzt nicht darum zu priifen, ob du die in 2 aufgestellte
Gleichung richtig gelost hast, sondern darum, ob die gefundenen Losungszah-
len alle Bedingungen des Textes erfiillen. Du muBt also eine Textprobe durch-
fiihren. Geht sie schief, dann hast du dich entweder verrechnet, oder du hast
den Aufgabentext falsch iibersetzt. Meist macht man die Textprobe nur
miindlich. Wir schreiben sie ausnahmsweise hin.

Anfinglicher Besitz = 46 fl.

Verlust beim Spiel = 3 von 46 fl. = 155 fl.
Rest = 46 fl. — 155 1. = 305 fl.

Kapital, mit dem er handelt = 305 fl. — 4 fl. = 265 fl.
Verlust beim Handel = 4 von 263 fl. = ;- 82 fl. =22 fl. = 65 fl.
Es verbleiben ihm 26% fl. — 6% fl. = 20 fl. — Stimmt!
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Eine weitere Aufgabe zum Eintiben bietet dir ein altes Testament™*.

Beispiel 2:

Ein Mann hinterldafB3t seinen 3 besten Freunden 300 Gulden. Im Testament
bestimmt er, daBl Anton um 40 Gulden mehr als Hans erhalten soll; Ulrich
aber soll halb soviel wie die beiden anderen zusammen bekommen. Wie viele
Gulden entfallen auf jeden?

Losung:

1. Festlegung der Unbekannten: Gefragt ist hier nach den Anzahlen der Gul-
den, die jeder einzelne erhéilt. Das sind eigentlich 3 Unbekannte. Da aber auf
Grund des Textes ein gewisser Zusammenhang zwischen diesen besteht, hof-
fen wir, mit einer Unbekannten auszukommen. Wegen der komplizierten Be-
dingung fiir Ulrich eignen sich seine Gulden wohl nicht recht dafiir. Wir konn-
ten uns aber mit gleich guten Griinden fiir den Anteil von Anton oder fiir den
von Hans entscheiden. Daher fithren wir dir beide Moglichkeiten vor.

x = Anzahl der Gulden, die Anton y = Anzahl der Gulden, die Hans
erhalt erhilt
2. Ubersetzen der Textinformationen und Aufstellung der Gleichung: Nun driik-

ken wir die Anteile, die auf die beiden anderen entfallen, durch die gewahlte
Unbekannte aus:

Anzahl der Gulden, die Hans erhilt Anzahl der Gulden, die Anton er-
= x —40 hilt = y + 40

Anzahl der Gulden, die Ulrich er- Anzahl der Gulden, die Ulrich er-
halt halt

=i[x+(x—40)] =x—20 =i[y+(y+40)] =y+20

Da wir nun die 3 Anzahlen als Terme in x bzw. y kennen, konnen wir mit Hilfe
der iibriggebliebenen Information iiber die Hohe der Erbschaft die Bestim-
mungsgleichung aufstellen:

X + (x — 40) + (x — 20) = 300 (y + 40) + y + (¥ + 20) = 300

3. Auflésung der Gleichung:

X+ (x — 40) + (x — 20) = 300 | (y+40)+y+ (y+20) =300
x4 x — 40 + x — 20 = 300 y+40+y+y+20 =300
3x — 60 = 300 3 + 60 = 300
3x = 360 3y = 240
x =120 y= 80

also L = {120} . also L = {80}.

* testamentum (lat.) = der letzte Wille
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4. Antwort: |

Anton erhilt 120 Gulden, Hans erhélt 80 Gulden,

Hans erhilt (120 — 40) Gulden = | Anton erhilt (80 + 40) Gulden =
= 80 Gulden, = 120 Gulden,

Ulrich erhilt 1[120 + (120 — 40)] Ulrich erhilt £[80 + (80 + 40)]
Gulden = 100 Gulden. Gulden = 100 Gulden.

5. Textprobe: Die 120 Gulden von Anton sind tatsdchlich um 40 mehr als die
80. die Hans erhilt. Zusammen erhalten sie 200; die Hélfte davon ist 100. Und
unsere Rechnung hat dem Ulrich 100 Gulden zugeteilt. Dadurch haben sie
zusammen (120 + 80 + 100) Gulden = 300 Gulden, was die ganze Erbschalft
ausmacht. — Stimmt!

Aufgaben

1.

[

8.

Ein Onkel vermacht seinen beiden Neffen ein Vermdgen von 12400 DM.
Wieviel erhilt jeder, wenn der dltere Neffe laut Testament fiir sein Studium
3500 DM mehr bekommen soll als der jiingere?

. Ein Vermdgen von 14000 DM soll an die drei erbberechtigten Kinder in

folgender Weise verteilt werden: Der Sohn erhilt zum Ausgleich fiir die
Kosten seiner Ausbildung 3000 DM weniger als die jiingere Tochter, die
iltere Tochter als Entschadigung fur ihre Mithilfe im Haushalt 2000 DM
mehr als diese.

. Eine Erbschaft von 19500 DM soll unter drei Erben A, B, C so verteilt

werden, da3 B um 1500 DM mehr als A und C um 3500 DM weniger als A
und B zusammen erhalt.

_ Die Zahl 100 ist in 4 Summanden aufzuteilen. Der 2. Summand soll die

Hilfte. der 3. ein Drittel, der 4. ein Viertel des ersten Summanden sein. Wie
heiBen die vier Summanden?

. Die Zahl 1000 soll so in vier Summanden zerlegt werden, dal} der zweite

doppelt, der dritte dreimal und der vierte viermal so grof3 ist wie der erste.

. Eine alte chinesische Aufgabe: In einem Stall sind Kaninchen und Fasa-

nen: sie haben zusammen 35 Kopfe und 98 Fiile. Wieviel Tiere jeder Art
waren es?

. In einer Garage stehen Personenkraftwagen, Motorridder und Fahrrader.

Die Gesamtzahl der Fahrzeuge betriigt 30, die der Kraftfahrzeuge 20. Die
Fahrzeuge stehen auf insgesamt 86 Radern. Wie viele Fahrzeuge jeder Art
sind hinterstellt?

Ein aus 12 Wagen und einer Lokomotive bestehender Personenzug ist aus
zweiachsigen Giiterwagen und dreiachsigen Personenwagen zusammen-
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gestellt. Die elektrische Lokomotive lduft auf vier Achsen. Aus wieviel -
Personen- und Giiterwagen besteht der Zug, wenn er einschlieBlich Loko-
motive auf insgesamt 72 Radern lauft?

9. Eine Weinlieferung im Wert von 675 DM besteht aus drei Sorten. Eine
Flasche der besten Qualitat kostet 13,5 DM, eine von der mittleren Quali-
tdt 10,5 DM und eine der billigen Sorte 6 DM. Von der mittleren Sorte
sind es zweimal und von der teuren Sorte dreimal soviel Flaschen wie von
der billigen Preisklasse. Wieviel Flaschen wurden von jeder Sorte geliefert?

¢ 10. Bei einer Kinovorstellung betrug die Gesamteinnahme 1718 DM. Fiir den
dritten Platz wurden 83, fiir den zweiten 106 und fiir den ersten 34 Ein-
trittskarten gelost. Der Eintrittspreis fiir den 2. Platz war um 1,5 DM
hoher als der fiir den 3. Platz, wihrend der Preis fiir den 1. Platz 3 desjeni-
gen fiir den 2. ausmachte. Wie teuer waren die einzelnen Platze?

e 11. Aus dem Chiu Chang Suan Shu: Ein Mann hat Reis bei sich. Er geht durch
3 Zollschranken hindurch. An der duBeren Zollschranke wird ihm § weg-
genommen, an der mittleren Schranke wird thm vom Verbliebenen der
fiinfte Teil weggenommen, an der inneren Zollschranke wird ihm % von
dem weggenommen, was er noch bei sich hatte. Es blieben ihm 5 Tou. Wie

viele Tou hatte er am Anfang? (1 Tou ~ 0,2 dm”)

2 12. Von dem armenischen Astronomen und Mathematiker ANANIA SCHIRA-
KAZI (= ANANIA VON SCHIRAK, T um 670) stammt die Aufgabe:

Ein Mann trat in eine Kirche und bat Gott: Gib mir soviel, wie ich habe,
dann gebe ich Dir 25 Dahekan. Dasselbe tat er dann in einer anderen
Kirche und schlieBlich noch in einer dritten. Ubrig blieb ihm nichts. Wie
viele Dahekan* hatte er anfangs?

(11
)

Aus dem Liber abbaci (1202) des LEONARDO VON Pisa (um 1170-nach
1240): De illo qui intravit in viridario pro pomis colligendis**: Jemand ging
in einen Obstgarten, in dem 7 To- - B e
re waren; er bekam dort eine be-
stimmte Anzahl Apfel. Als er her-
ausgehen wollte, mulite er dem
ersten Wichter die Halfte aller
Apfel geben und einen mehr, dem
zweiten Wichter die Hilfte der
restlichen Apfel und einen mehr.
Als er so auch den anderen 5 Abb.165.1 Apfelgarten mit drei Tor-
Wichtern gegeben hatte, ha}}'e €r  wichtern. Aus einem Manuskript des ita-
nur noch 1 Apfel. Wie viele Apfel  Jienischen Mathematikers, Astronomen,
hatte er bekommen? Astrologen und Dichters Paolo DAGOMA- 5
RI (um 1281 — zwischen 1365 und 1372). |

* Dahekan ist ein Gewichtsmal: 1 Dahekan entspricht 4,72 g. Zugleich bedeutet es auch eine Goldmiinze von
diesem Gewicht. 5
** Von jenem, der in den Obstgarten ging, um Apfel zu holen. — Die élteste Aufgabe dieses Typs stammt aus
dem Chiu Chang Suan Shu.
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6 Textaufgaben

Aufgabe 26 der propositiones ad acuendos iuvenes des ALKUIN (735 bis
804): De cursu canis ac fuga leporis*™: Ein Hund sieht in einer Entfernung
von 150 FuB einen Hasen und jagt ihn. Der Hase springt 7 Ful3, der Hund
9 Ful3 weit. Nach wie vielen Spriingen hat der Hund den Hasen erjagt?

. Vom Leben des groBen griechischen Mathematikers DIOPHANT (4:0¢av-

to¢), den manche Vater der Algebra nennen, weil er die Lehre von den
Zahlen und Gleichungen von der Geometrie abtrennte, wissen wir nichts.
Vermutlich hat er um 250 n. Chr. in Alexandria gelebt. Seine angebliche
Grabinschriftist aber in der Anthologia Palatina, einer Sammlung griechi-
scher Epigramme, tiberliefert.

wHier dies Grabmal deckt Diophantos — ein Wunder zu schauen!
Durch arithmetische Kunst lehret sein Alter der Stein.
Knabe zu sein gewihrt ein Sechstel des Lebens der Gott ithm,
Als dann ein Zwdlftel dahin, liefl er ihm sprossen die Wang’;
Noch ein Siebtel, da steckt® er ihm an die Fackel der Hochzeit,
Und finf Jahre darauf teilt’ er ein S6hnlein ithm zu.
Weh! ungliickliches Kind! Halb hatt’ es das Alter des Vaters
Erst erreicht, da nahm’s Hades, der schaurige, auf.
Noch vier Jahre ertrug er den Schmerz, der Wissenschaft lebend,
Und nun sage das Ziel, welches er selber erreicht.«

Wie alt wurde DiopHANT? Beachte, daf3 »das Alter des Vaters« in Zeile 7
auf zwei Arten verstanden werden kann. Einerseits kann damit das von
DiorpHANT wirklich erreichte Lebensalter gemeint sein, andererseits konn-
te es aber auch das Alter sein, das DioPHANT beim Tode seines Sohnes
hatte. Welche der beiden Losungen scheint dir auf Grund der 4. Zeile des
Epigramms die richtige zu sein?

6.2 Wichtige Typen von Textaufgaben

Textaufgaben konnen sehr verschiedenartig aussehen. Trotzdem kann man
bei niherer Betrachtung gewisse Typen ausmachen, die in verschiedener Ein-
kleidung immer wieder auftauchen. Wenn du erkannt hast, dab eine vorgeleg-
te Textaufgabe zu einem bekannten Typ gehort, dann féllt dir meist die Lo-
sung leichter. Einige wichtige Typen stellen wir im Folgenden vor.

* Vom Lauf des Hundes und der Flucht des Hasen. — Ahnliche Aufgaben findet man bereits im Chiu Chang
Suan Shu, aus dem tiberhaupt die dltesten Bewegungsaufgaben stammen.
Dic Aufzaben, die Jugend scharfsinniger zu machen, werden dem angelsdchsischen Gelehrten ALkKuiN

(=

Freund des Tempels) (um 712 York — 19.5.804 Tours) zugeschrieben. ALKUIN war Freund und Lehrer

Kaiser Karls des GroBen. Er iibte erheblichen Einflull auf das geistige Leben seiner Zeit aus.
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6.2.1 Bestimmung von Zahlen
Beispiel:
Eine dreiziffrige Zahl hat die Quersumme 13. Thre Einerziffer ist doppelt so
grol3 wie ihre Hunderterziffer. Vertauscht man Einer- und Zehnerziffer mitein-
ander, dann erhilt man eine um 27 kleinere Zahl. Wie hieB3 die urspriingliche
Zahl?
Liosung:
1. x = Hunderterziffer
2. Einerziffer = 2x

Zehnerziffer = 13 —x —2x =13 — 3x

Wert der Zahl = x-100+ (13 —3x) - 10+ (2x) -1 =
= 100x + 130 — 30x + 2x =

= 72x+ 130
Wert der veranderten Zahl = x - 100 + (2x)-104+ (13 —3x) -1 =
=473
Bestimmungsgleichung: 72x + 130 — 27 = 117x + 13
3 72x+103 = 117x 413
90 = 45x
%2

4. Die urspriingliche Zahl hat die Hunderterziffer 2, die Einerziffer 2-2 = 4
und die Zehnerziffer 13 — 3 -2 = 7. Also heil}t sie 274.

Beachte: Eine Zahl mit der Einerziffer a, der Zehnerziffer b und der Hunder-
terziffer ¢ hat den Wert 100¢ + 105 + @ und die Quersumme
c+ b+ a.

Aufgaben

o1. Aus dem Schliissel zur Arithmetik von AL-KAscHI (T 1429 in Samarkand):
Verdoppelt man eine Zahl und addiert die Eins dazu, multipliziert man
dann die Summe mit 3 und gibt 2 dazu, multipliziert man dann das Erhal-
tene mit 4 und addiert 3, dann hat man 45. Wie heil3t die Zahl?

2. Vermehrt man eine Zahl um 16, so erhiilt man um 2 weniger als ihr Dreifa-
ches. Wie heilt sie?

3. VergroBert man eine Zahl um 5, zieht vom Doppelten dieser Summe 4 ab
und teilt dann das Ergebnis durch 5, so erhilt man 4. Welche Zahl ist es?

4. Welche Zahl hat folgende Eigenschaft: zieht man 9 von ihr ab und addiert
zur Hilfte dieser Differenz 5, so erhiilt man wieder die urspriingliche Zahl?
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5. Aus Daheim (1884):
Eine Zahl hab’ ich gewihlt, jetzt mit 3 multipliziert,
90 noch hinzugezihlt, 84 subtrahiert,
drauf durch 18 dividiert, und als Rest ist mir geblieben
wieder 18 dann addiert, dann zuletzt die heilige 7.
e 6. Welche 3 aufeinanderfolgenden ungeraden Zahlen haben die Summe 337
o 7. Welche zweiziffrige Zahl ist durch 11 teilbar und hat die Quersumme 8?
8. Bei welcher Zahl ist es gleichgiiltig, ob man sie durch 2 teilt oder um 2

e 10.

11.

o12.

[ 1]
=
[#S]

s14.

vermindert?

. Bei welcher Zahl ist es gleichgiiltig, ob man sie mit 13 multipliziert oder

durch 13 dividiert?

Die Zehnerziffer einer zweistelligen Zahl ist um 2 kleiner als die Einerzif-
fer. Die ganze Zahl ist 6mal so groB wie die Einerziffer. Wie heiB3t die Zahl?

Auf der Einerstelle einer zweistelligen Zahl steht die Ziffer 6. Vertauscht
man Einer- und Zehnerziffer und addiert die neue Zahl zur urspriingli-
chen, so erhélt man 88. Wie heildt die Zahl?

Auf der Einerstelle einer dreistelligen Zahl steht die Ziffer 7. Die Anzahl
der Zehner ist so groB wie die Anzahl der Einer und Hunderter zusammen.
Nun vertauscht man die Einer- mit der Hunderterziffer. Die Summe aus
der neuen und der urspriinglichen Zahl ist 1089. Wie heilit die Zahl?

. Die Hunderterziffer einer dreistelligen Zahl ist 4. Streicht man diese links

weg und setzt sie rechts an, so entsteht eine um 243 groBere Zahl. Berechne
die urspriingliche Zahl.

Die Einerziffer einer sechsstelligen Zahl ist 2. Nimmt man diese Ziffer weg
und setzt sie vor die tibrigen, so entsteht eine Zahl, die gleich dem 3. Teil
der urspriinglichen ist. Berechne die Zahl.

. Die Summe zweier Zahlen ist 56, ihre Differenz 22. Wie heilBen die Zahlen?

6.2.2 Bestimmung des Alters

Beispiel:

Eine Mutter ist jetzt dreimal so alt wie ihre Tochter. In 4 Jahren wird sie
achtmal so alt sein, wie ihre Tochter vor 7 Jahren war. Wie alt sind Mutter und
Tochter jetzt?

Losung:

1. x = jetziges Alter der Tochter in Jahren
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2. Der Ubersicht halber bestimmt man die Terme in einer Tabelle:

4,

vor 7 Jahren jetzt in 4 Jahren
Alter der Tochter
in Jahren x—1 et o
Alter der Mutter
in Jahren Ix—17 3x Ix+4

Bestimmungsgleichung: 3x +4=8-(x—7)

3x+4 =8x—56
60 = Sx
x =12
Die Tochter ist jetzt 12 Jahre alt, die Mutter 36 Jahre.

Aufgaben

o4.

Ein Vater ist doppelt so alt wie sein Sohn. Vor 24 Jahren war er um 32
Jahre dlter als dieser. Wie alt sind beide jetzt?

. Eine Mutter, die jetzt doppelt so alt ist wie ihre Tochter, war vor 11 Jahren

gerade dreimal so alt wie diese. Wie alt sind beide jetzt?

. Hans ist 16 Jahre, sein Bruder Fritz 12 Jahre alt.

a) Vor wieviel Jahren war Hans doppelt so alt wie Fritz?

b) Vor wieviel Jahren war er 13mal so alt?

Ein Vater ist jetzt 13mal so alt wie sein Sohn. Nach 174 Jahren ist das Alter
des Vaters um 22 Jahre hoher als das dreifache Alter des Sohnes. Wie alt
sind beide jetzt?

. An seinem 50. Geburtstag stellt ein Vater fest, daB seine drei Kinder zu-

sammen ebenso alt sind wie er selbst. Die Tochter ist um 6 Jahre dlter als
der jiingste Sohn, der gerade halb so alt ist wie sein dlterer Bruder.

a) Wie alt ist der Vater?

b) Wie alt sind die Kinder?

26. In welchem Jahr fand zwischen Vater und Sohn folgendes Gesprich statt?

»Bei deiner Geburt war ich 30 Jahre alt. Am Ende des 2. Weltkriegs warst
du sieben. Heute bin ich gerade dreimal so alt wie du.«

. Ein Onkel ist jetzt dreimal so alt wie sein Neffe und viermal so alt, wie der

Neffe vor 5 Jahren war. Wie alt sind beide jetzt?

. Otto ist jetzt dreimal so alt, wie Heinz vor fiinf Jahren war. Nach 5 Jahren

wird Otto doppelt so alt sein, wie Heinz jetzt ist. Wie alt sind beide jetzt?

_Lotte ist 19 Jahre alt. Als Helga 13 Jahre zihlte, war Lotte ebenso alt, wie

Helga jetzt ist. Wie alt ist Helga jetzt?
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ol1l.

$12.

. Karlist 27 Jahre alt. Er ist dreimal so alt, wie Inge war, als Karl doppelt so

alt war, wie Inge jetzt ist. Wie alt ist Inge jetzt?

Der bertihmte franzésische Philosoph und Mathematiker René DESCAR-
TES (latinisiert zu CARTESIUS) hatte 4 Jahre vor Beginn des 30jihrigen
Krieges (1618) noch zwei Drittel seiner Lebenszeit vor sich. Er starb zwei
Jahre nach Kriegsende. Berechne sein Geburts- und Todesjahr.

Miiller & Sohn werben mit dem Slogan: »Wir haben zusammen 50 Jahre
Berufserfahrung«. Wie alt konnen Vater Miiller und Sohn Karl sein, wenn
sie den Beruf seit dem 18. Lebensjahr ausiiben und wenn der Vater minde-
stens 20 Jahre élter ist als sein Sohn? Wie alt sind sie zusammen?

. Lose ohne Bestimmungsgleichung durch Knobeln:

PLATON war ein Schiiler des SOKRATES, ARISTOTELES ein Schiiler des PLA-
TON. Der Schiiler war jeweils um 43 Jahre jiinger als sein Lehrer. Die Zahl
der Lebensjahre hat bei jedem dieser Philosophen die Quersumme 8. Das
von PLATON erreichte Alter wird durch die groBte zweistellige Zahl mit
dieser Eigenschaft angegeben. SOKRATES starb im 8., ARISTOTELES im 7.
Jahrzehnt seines Lebens. Vermehrt man die doppelte Summe der drei Le-
bensalter um 1, so erhilt man das Geburtsjahr des PLATON. Berechne fiir
jeden der drei Philosophen das Geburts- und Todesjahr.

6.2.3 Prozentaufgaben

Beispiel:

Jemand hat einen gewissen Betrag als Einlage in ein Geschiift eingebracht.
Nach einem Jahr erhilt er 10% davon als Gewinn. Er erhoht seinen Ge-
schiftsanteil um diesen Betrag. Im darauffolgenden Jahr erzielt er aber nur
einen Gewinn von 5% seiner Einlage. Immerhin hat er nun 12400 DM mehr
als anfangs. Wie groB3 war die urspriingliche Einlage?

Losung:

1. x = urspriingliche Einlage in DM
2.

3

Gewinn in DM im 1. Jahr = 10% von x = 0,1x

Einlage in DM fiir das 2. Jahr = x +0,1x = 1,1x

Gewinn in DM nach dem 2. Jahr = 5% von 1,1x = 0,055x
Kapital in DM am Ende des 2. Jahres = 1,1x + 0,055x = 1,155x
Bestimmungsgleichung: 1,155x = x 4+ 12400

0,155x = 12400
x = 80000.

4. Die Einlage betrug anfangs 80000 DM.

Beachte: p% ist die Zahl 1

p
00"

/
p% von a bedeutet 1‘;{] =,
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** Zur Geschichte des Prozentbegriffs

Die Idee, bei vielen Aufgaben des praktischen Lebens die Zahl 100 als Vergleichszahl
su withlen. hat sich seit alters her bewihrt. Man findet sie bereits in einem babyloni-
schen Text, bei Aufgaben der Agypter, Griechen und Inder. Die italienischen Kaufleute
des Mittelalters machten sehr hiufig Angaben verschiedener Art »fiir hundert« = per
cento. In siiddeutschen Quellen taucht dieses italienische per cento im 15.Jh. auf; es
wird zu Anfang des 16. Jh.s im hochdeutschen Sprachraum zu einem falsch latinisier-
ten pro cento*® SchlieBlich werden die beiden Worter zusammengeschrieben,im18.Jh.
dann als das Prozent substantiviert und letztlich auch dekliniert. Im Osterreichischen
hat sich die siiddeutsche Form als das Perzent noch erhalten.

Vielfach beniitzt man als Vergleichszahl
auch die Zahl 1000, die im Lateinischen
mille heiBt; man spricht daher von einer
Promille-Rechnung. Die Idee dazu
stammt wohl von dem berithmten italie-
nischen Arzt und Mathematiker Gero-
nimo CARDANO (1501-1576).

Woher kommt unser Prozentzeichen %?
In Italien kiirzte man ab dem 14.Jh. das
per cento durch p ¢° oder auch durch p ¢
ab. das handschriftlich manchmal die
Form P<c— hatte. In der 2. Halfte des
17.Jh.s wurde vermutlich aus drucktech-
nischen Griinden aus dem c— einfach §.
Spiiter lieB man das per weg. SchlieBlich
schrieb 1841 Albert Franz JOCHER das
Zeichen ¢ mit dem schriigen Bruchstrich
als °/,, woraus dann das Prozentzeichen
% wurde.

00

Fiir pro mille schrieb man zunichst 5g, {572
dann g% und schlieBlich mit dem schrigen -
Bruchstrich g,. Misdd ﬂyz nmwmr al*r;ﬂdhw"

Abb.171.1 Geronimo CARDANO
(24.9.1501 Pavia — 20.9.1576 Rom)

Aufgaben

1. Ein Grossist verkauft das aus der Fabrik bezogene Tuch mit 15 % Gewinn
an den Handler. der seinerseits noch 25 % Gewinn daraufschlagt. Nun ist
das Meter um 17.50 DM teurer als der Fabrikpreis. Wie hoch war dieser?

¢ 2. Es spekuliert einer mit seinem Vermogen und gewinnt dadurch im ersten
Jahr 7%, verbraucht aber 20000 DM. Mit seinem jetzigen Vermogen ge-
winnt er im darauffolgenden Jahr 6 %, verbraucht aber 20900 DM, so daB
er schlieBlich um 5% mehr als am Anfang besitzt. Wieviel hatte er?

* Korrekt muB es namlich pro cenfum heilen.
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e 3. Zweil Briider erben zusammen 9240 DM zu ungleichen Teilen; da aber de

o4.

e 6.

o7.

eine sein Kapital zu 35 %, der andere zu 4% anlegt, erhalten sie jihrlich
den gleichen Zins. Wieviel erbte jeder?
Zwei delld]lbﬂ brachten gleich viel Zins, obwohl das erste um 1% héher

ausstand als das zweite. \ML hoch waren sie verzinst, wenn das erste
3000 DM, das zweite 3375 DM betrug?

. Zu wieviel Prozent sind 2662,50 DM ausgelichen, wenn sie in 144 Tagen

9.

e 10.

49,70 DM Zins einbringen? (Das Zinsjahr hat 360 Tage.)

Ein Kapital von 6000 DM verzinst sich mit 3 %. Nach einem Jahr wird der
Zins zum Kapital geschlagen. Gleichzeitig dndert die Bank den ZinsfuB.
Nach einem weiteren Jahr ist das Kapital samt Zinsen auf 6427.20 DM
angewachsen. Wie hoch war der ZinsfuBl im zweiten Jahr?

1800 DM sind zu einem gewissen Zinsfull ausgeliehen. Ein zweites, um
400 DM groBeres Kapital verzinst sich mit einem ZinsfuB, der 2 von dem
des ersten Kapitals betriigl Beide Kapitalien zusammen bringen in einem
Jahr 216 DM Zinsen ein. Wie hoch verzinst sich jedes der beiden Kapita-
lien?

Jemand hdt s eines Kapitals in thdbm,&n angelegt, die sich mit 45 %
verzinsen, 5 in Hédusern, die 4%, + in Grundstiicken, die durch Vupdf.h—
tung 33 % einbringen. Den Rest ]mll{, er in Aktien dnsc,(,legt bei denen er

2% verlor. Wie grol} war sein Kapital, wenn er einen Jahreszins von
8175 DM erhielt?

Auf ein Sparkonto wird ein gewisses Kapital eingezahlt, das mit 4% ver-
zinst wird. Nach einem Jahr werden die Zinsen dazugeschlagen und noch
720 DM einbezahlt. Nach weiteren 75 Tagen ist das Konto mit Zinsen auf
5445 DM angewachsen. Wie groB war das Anfangskapital? (Das Zinsjahr
hat 360 Tage.)

Ein Spieler gewinnt beim ersten Spiel 30 % seines Einsatzes. Dadurch er-
mutigt, wagt er ein zweites Spiel und verliert dabei 125 % des vorher erziel-
ten Gewinnes. Es bleiben ihm vom urspriinglichen Einsatz noch 74 DM.
Wieviel hatte er eingesetzt?

11. Eine Rechnung macht einschlieBlich 14 % Mehrwertsteuer 889,20 DM.

Wieviel macht der reine Rechnungsbetrag ohne Steuer aus?
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6.2.4 Mischungsaufgaben

Beispiel:

Aus einer 10 %igen und einer 4 %igen Salzlosung sollen durch Mischen 2 kg
einer 7,6 %oigen Sdlflosuno herg guiul]l werden. Wie viele kg von jeder der Aus-
gangslosungen mull man “verwenden?

Losung:

1. x = Anzahl der kg der 10%igen Salzlosung

2. Anzahl der kg der 4%igen Salzlosung = 2 — x
Salzmenge in der 10 %igen Losung in kg = 10% von x = 0,1x
Salzmenge in der 4 %igen Losung in kg= 4% von 2—x)=0,04-(2—x)=
= (0,08 — 0,04x
Salzmenge in der 7.6 %igen Losung in kg = 7.6 % von 2 =0,076-2 =

=02
10 "’ulg ulg 7, f!”’uig
ot A52 kg
0.1xks (0, (18 D 04 x) I l
X L.:,_I 2 —x) kﬂ 2 l\n

Abb.173.1  Uberlegungsfigur zur Aufstellung der Bestimmungsgleichung

Bestimmungsgleichung:  0,1x + (0,08 — 0, 04x) = 0,152
3. 0?{)6_\' = (0.072
=
4. Man muB 1,2 kg 10%iger Salzlosung mit 0.8 ks_ 4%iger Salzlosung mi-
schen, um 2 kg einer 7, 6 %igen Salzlosung zu erhalten.

Beachte: 1. Prozentangaben bei Mischungen bedeuten Gewichtsprozente,
wenn nichts anderes gesagt wird.
So enthilt z. B. eine 12 %ige Salzlosung 12 g Salz je 100 g Losung.
2. Bei Mischungen gilt:
Menge eines Stoffes vorher = Menge des Stoffes nachher

b - [
e

Abb. 1732 Veranschaulichung der Erhaltung der Menge beim Mischen
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Aufgaben

el. Aufgabe 71 aus dem Papyrus Rhind: Aus einem Krug Bier der Stirke 2

wird ; abgeschiittet und durch Wasser ersetzt. Wie groB3 ist die Stirke der
Mischung?

I~

- 800 g einer 10 %igen Sole werden mit 400 g Wasser verdiinnt. Wieviel %
Salz enthilt die Mischung?

3. Bei starken Blutverlusten wird hiufie 2%ige Kochsalzlosung in die Blut-
&3 = =

bahn eingefithrt. Mit wieviel kg reinem Wasser muB man 539 g einer
2 %i1gen Kochsalzl6sung verdiinnen, um die erforderliche Konzentration
herzustellen?

=

180 g einer Sole werden durch Verdampfen 125 g Wasser entzogen, wo-
durch ihr Salzgehalt auf 12% ansteigt. Welchen Salzgehalt hatte sie an-
fangs?

n
-

255 g einer 15%igen Zuckerlosung werden mit 207 g einer 8 %igen Zuk-
kerl6sung gemischt. Welchen Prozentgehalt an Zucker hat die Mischung?

6. 595 g einer 15%igen Zuckerlosung sollen mit 8 %iger Zuckerlosung so
gemischt werden, daB die Mischung 12 % Zucker enthilt. Wieviel Gramm
der zweiten Losung sind dazu erforderlich?

7. Wieviel Gramm reines Wasser muf3 man 300 g 98 %igem Alkohol zuset-
zen, um 60 %igen Alkohol zu erhalten?

8. Von zwei Sorten Spiritus enthilt die eine 4 kg Alkohol in 7 kg Spiritus, die
andere 7 kg Alkohol in 8 kg Spiritus. Wie viele kg von jeder Sorte Spiritus
sind zur Herstellung einer Sorte verwendet worden, die 33 kg Alkohol in
45 kg Spiritus enthilt?

Ein Fal enthielt 98 %igen Spiritus. Nachdem jemand 12 kg abzapfte und
durch Wasser ersetzte, war der Alkoholgehalt nur noch 83 % . Wie viele kg
Spiritus enthielt das Fal3?

10. Das Meerwasser im Persischen Golf enthilt etwa 5% Salz. Wie viele kg
SiBwasser mufl man zu 40 kg Meerwasser dazugieBen, damit der Salzge-
halt der Mischung 2% betriigt?

11. Ein Kaufmann bezieht zwei Sorten Rosinen. Der Verka ufspreis wiirde fiir

2 kg der ersten Sorte 4,50 DM, fiir 1 kg der zweiten 1.80 DM betragen.
Wieviel kg der zweiten Sorte muB man mit 8 kg der ersten Sorte mischen,
damit man 1 kg der Mischung um 2,04 DM verkaufen kann?

o 12. Von einer Kaffeesorte kosten 16 kg 368 DM, von einer zweiten kostet das

Kilogramm 30 DM. Welche Menge der zweiten Sorte mufl man mit 26 kg
der ersten Sorte mischen, damit das Kilogramm der Mischung um 26 DM
verkauft werden kann?




13.

14.

n
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1 kg Likérbohnen kostet 31,20 DM, 4 kg Pralinen 9,60 DM. Wie miissen
die Pralinen und Likorbohnen gemischt werden, damit 1 kg der Mischung
24 DM kostet?

Ein Auto braucht als Kiihlfliissigkeit fiir den Motor eine Mischung aus
Wasser und einem Frostschutzmittel. Der Anteil des benotigten Frost-
schutzmittels hangt vom Klima ab.

a) Herr Huber hat in einem Kanister 10 kg Kiuhlflussigkeit mit einem
Frostschutzmittelanteil von 25%. Fiir den zu erwartenden kalten
Winter braucht er aber einen Frostschutzmittelanteil von 40 %. Wie-
viel Wasser muB er verdampfen und durch reines Frostschutzmittel
ersetzen?

b) Wieviel kg reines Frostschutzmittel mull man zu 10 kg KiihIfliissigkeit
mit 25% Anteil schiitten, um 40 %ige Kiihlfliissigkeit zu erhalten?

¢) Wieviel kg der Kiihlflissigkeit muB3 man durch reines Frostschutzmit-
tel ersetzen, um aus 10 kg 25%iger Kiihlfliissigkeit 10 kg 40 %ige zu
erhalten?

. Mit wieviel g Kupfer muB man 234 g Feingold mischen, wenn die Legie-

rung den Feingehalt 585 haben soll? (Feingehalt ist der heute meist in

Promille des Gesamtgewichts ausgedriickte Gehalt an reinem Edelmetall.)

16. In welchem Verhiltnis mufB man Silber vom Feingehalt 750 mit Silber vom

Feingehalt 600 mischen, um Silber vom Feingehalt 700 zu erhalten?

17. Manchmal wird der Feingehalt
% 3 in Kara jon Sil- 1)
on_(:old in Karat, derﬁmn Sil ) P ¢ s (S
ber in Lot angegeben. Gold von n
H 9
Karat besteht zu 24 aus Feingold,
; H :
Silber von n Lot zu T¢ aus Fein-
. 2
silber.* 5 - :
iTay, i : Abb.175.1 Hiilse und Samen des Jo-
a) V_""C\f"d g Feingold und Wi€  hannisbrotbaums (Ceratonia siliqua),
viel g Kupfer bendtigt man  zum Vergleich eine 1-Pf-Miinze. Das Ge-
zur Herstellung eines 14kard- wicht der Samen wurde zu 77, 205, 221,
tigen Ringes von 5 g? 209. 202 und 158 mg bestimmt. Die mitt-
b) Ein Silberschmied mochte 24 leren vier wiegen also mit guter Néaherung
1016tice Teeldffel zu je 50 g 0,2 g. Bedenke die Genauigkeit der alten
=) e, o faasrein)
herstellen. Welche Menge des Waagen!
vorhandenen 1416tigen Silbers
benotigt er?
* Feingold ist Gold mit einem Feingehalt von mehr als 997°%/,,. Rechne aber so, als wire Feingold reines Gold.

Das Karat entstand aus dem griechischen xegétiov ( keration) = Hdornchen, womit aber, ihrer Form wegen,
auch die Hiilse des Johannisbrotbaums bezeichnet wurde; arabisch kirrat. Die harten, nahezu gleichmélig
grofen Samen wurden als Gewichte fiir Gold und Edelsteine verwendet. Heute gibt es fiir Edelsteine das
metrische Karat = 0,2 g.

Das Wort Lot stammt aus dem Keltischen, wo es Blei bedeutet. Es w urde spater auch als Gewichtseinheit

verwendet.
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6.2.5 Leistungsaufgaben

Die dltesten mathematischen Texte handeln von Aufgaben aus dem Wirt-
schaftsleben. Ein wichtiger Typ dieser Wirtschaftsaufgaben beschiftigte sich
mit Problemen, bei denen Menschen, Tiere oder Gerite verschiedener I ei-
stung zusammenwirkten und so eine Gesamtleistung erbrachten.

Einen Sonderfall dieses Aufgabentyps stellen die Zisternenaufgaben dar. Sie
handeln von Zisternen, Brunnen, Biddern, Teichen, Fissern und dergleichen
mehr, die jeweils mehrere Zu- und Abfliisse besitzen. Betrachten wir die ilteste
uns uberlieferte Zisternenaufgabe. Sie stammt aus dem chinesischen Rechen-

buch 7 f? :ﬁ_ A5 Chiu Chang Suan Shu (= Neun Biicher arithmeti-

scher Technik), das vermutlich zu Beginn der Han-Zeit entstanden ist. die von
202 v.Chr. bis 9 n.Chr. dauerte (siche auch Seite 85):

Beispiel:

Jetzt hat man einen Teich, 5 Kanile fiithren ihm Wasser zu. Offnet man von

thnen 1 Kanal, dann hekomml mamin 3 Tag 1 Fiillung, beim néichstenin 1 Tag

I [—uIELmrF beim niachsten in 23 Tagen 1 Fiillung, beim néichsten in 3 Tagen
Li||1II‘1L und beim néchsten in 5 ’Idwcn 1 F uIles_ Jetzt 6ffnet man sie alle

g:luc,hzutlg, Frage: In wieviel Tagen fiillen sie den Teich?

Losung:
L. x = Zeit in Tagen, die zur Fillung des Teichs benétigt wird, wenn Wasser
aus allen Kanilen zuflieBt.

2. Der 1. Kanal liefert in 1 Tag 3 Fiillungen.
Der 2. Kanal liefert in 1 Tag 1 Fiillung.

Der 3. Kanal liefert in 1 Tag 51 Fiillungen = 2 Fullungen.
._.2

Der 4. Kanal liefert in 1 Tag 4 Fiillung.

Der 5. Kanal liefert in 1 Tag { Fiillung.

Somit gilt: Alle 5 Kaniile liefern in 1 Tag (3 4+ 1 + %2 + 1 + 1) Fiillungen =
= 44% Fiillungen.

Alle 5 Kanile liefern in x Tagen 443 - x Fillungen. Das soll aber gerade
1 Fiillung sein, wulja nach x Tcwcn du Teich durch alle Kanile gefiillt sein
soll. Also erhalten wir die

Bestimmungsgleichung: 41%x = 1

155 =

3. Tix =1
X

£luh
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4. Nach 43 Tagen, das sind etwas weniger als 5 Stunden, wird der Teich durch
alle 5 Kanile gefiillt.

Beachte: 1. Bestimme, was in der Zeiteinheit jedes Gerit liefert oder ver-
braucht.
2. Bestimme die einzelnen Lieferungen in der betrachteten Zeit.
3. Die Summe aller Einzellieferungen ergibt die gewiinschte Ge-
samtlieferung (meistens die Einheit).

Aufgaben

1. Von DioPHANT (um 250 n.Chr.) stammt die Aufgabe:
Bin ein Low aus Erz. Aus den Augen, aus Mund und der Sohle unter dem
rechten FuB springen Fontinen hervor. DaB das Becken sich fiillt,
braucht rechts das Auge zwei Tage, links das Auge braucht drei und meine
FuBsohle vier. Doch meinem Munde geniigen sechs Stunden. Wie lange
wohl dauert’s, wenn sich alles vereint, Augen und Sohle und Mund?

2. Ein byzantinisches Rechenbuch des frithen 14. Jh.s tberliefert uns:
Einer hatte ein Schiff mit 5 Segeln. Mit dem ersten Segel nun wurde es an
das beabsichtigte Ziel in der Hilfte eines Tages hingebracht, mit dem Zwel-
ten aber in 1 Tag, mit dem dritten in £ Tag, dem vierten in 5 und mit dem
fiinften Segel in 3 Tag. Nachdem nun die 5 Segel gleichzeitig gehil3t waren,
in welchem Teil des Tages wurde das Schiff hingebracht?

3. Johannes WIDMANN VON EGER (um 1460—nach 1500) stellt in seiner Be-
hende und hubsche Rechenung auff ]

allen kauffmanschafft 1489 die
folgende Aufgabe:

Tu mach auch ven oritti Speichinz
ftunoen oag ift 1 8 ominuten rpnnen £

1 Leb vnd 1 Hunt vnd 1 Wolff
Die essen mit eynander 1 schoff
Und der Leb eB3 das schaff alleyn
in eyner stund Und der wolff
ynn 4 stunden Und der huntin 6
stunden. Nu ist die frag wen sy
das schoff all z miteynander essen
in wie langer zeyt sy das essen.

4. Ein Gasherd mit zwel Brennern
wird aus einer Propangasflasche
gespeist. Mit einer Fiillung kann
der eine Brenner 30 Std., der
andere 20 Std. bei voller Flamme
versorgt werden. Wie lange reicht
der Flascheninhalt, wenn beide
Brenner gleichzeitig in Betrieb
sind?

Abb.177.1 Folium 138r d
und hubsche Rechenung auff allen kaufj-
manschafft des Johannes WIDMANN VON

epmed auf wie vil rynnenin 3 z minui

'JET facit 1 epmer - T 2voir d3s 9l

sufam facit gerav $ epmer vil ift reche

iLeb-wolff Tunt.:
@ Ptrii ves gleichi 1 Foch vnd 1 Punt
¥110 1 Yol Diceffen mit epnanver |
{choff Wno ver Lueb efoas [chaff als
leyn in eprer ftuno Wno der wolfF pnn
4 ftunbeq ‘TIno oer buntin 6 ftunven .
Tuift vie frag wen (y vas (choff all 3
mitepnanver effen it wic [anger 3ept [y
0as effen XD achF alfo multiplicir ¢ lﬁﬁo

er Behende

EGER (um 1460—nach 1500) von 1489
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5. Ein Wasserbehdlter hat zwei ZufluBrohren. Mittels der ersten Rohre allein
kann der Behilter in 6 Std., mittels der zweiten in 4 Std. gefiillt werden.
Wie lange dauert das Fiillen, wenn beide Rohren gleichzeitig in Betrieb
sind?

26. Zum Ausheben einer Baugrube wird ein Bagger verwendet, der die gesam-
te Arbeit in 8 Tagen erledigen wiirde. Um schneller voranzukommen, wird
nach 3 Tagen noch ein zweiter Bagger eingesetzt, der den gesamten Aus-
hub in 12 Tagen allein bewdltigen konnte. Wieviel Tage miissen beide
Maschinen noch gemeinsam in Betrieb sein?

6.2.6. Aufgaben aus der Geometrie

1. Verkleinert man eine Seite eines Quadrats um 1m, so entsteht ein um
11 m? kleineres Rechteck. Wie lang ist die Quadratseite?

2. VergroBert man eine Seite eines Quadrats um 2 cm, so entsteht ein um
1,22 dm? groBeres Rechteck. Wie lang ist die Quadratseite?

3. Die zwei Seiten eines Rechtecks unterscheiden sich um 5 cm. Die Fldche
dieses Rechtecks ist um 64 cm? kleiner als die Fliche eines Rechtecks,
dessen eine Seite um 13 cm grofer ist als die kleinere Seite des gegebenen
Rechtecks, wihrend die andere Seite so lang wie diese 1st.

4. Der Umfang eines Dreiecks ist 20 cm. Die erste Seite ist um 1 cm ldnger als
die zweite, die dritte um 2 cm kiirzer. Wie lang sind die drei Seiten?

In einem Rechteck mit dem Umfang 30 cm ist die Linge 13mal so groB3 wie
die Breite. Berechne die Seiten.

1

6. In einem gleichschenkligen Dreieck mit der Basis 8 cm ist der Umfang das
33fache der Schenkellinge. Wie grof ist diese?

L 1]
=,

[n einem Dreieck mit den Seiten g, b, ¢ und dem Umfang 12 m ist die
Mittelparallele zu b um 5 dm léinger als diejenige zu g; die Mittelparallele
zu c betrigt das 13fache derjenigen zu b. Berechne die drei Seiten des
Dreiecks.

8. In einem Trapez ist die Mittellinie um 4 cm ldnger als die eine der paralle-
len Seiten, von denen eine Smal so lang wie die andere ist. Wie lang ist die
Mittelparallele?

9. In einem Dreieck ist der Winkel § um 54°54" groBer als «, ferner y um
103°30’ kleiner als o und f zusammen. Berechne die drei Winkel.

¢ 10. In einem gleichschenkligen Dreieck ist das Doppelte des Winkels an der
Spitze um 4° kleiner als % eines Basiswinkels. Berechne die Winkel.

. In einem Dreieck ABC ist der AuBenwinkel bei A §mal so gro3 wie der
[nnenwinkel bei B, wihrend der Innenwinkel bei C 5mal so groB ist wie
derjenige bei A. Berechne die Dreieckswinkel.
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¢12. In einem Viereck ABCD ist der Winkel bei B um 30° kleiner als der bei A,
der Winkel bei C 3mal so groll wie der bei B und der Winkel bei D das
izfache der Summe aus den Winkeln bei B und C. Berechne die vier Win-
kel.

13. Wie groB ist die Eckenzahl eines Vielecks ohne einspringende Ecken, bei

dem die Summe der Innenwinkel
a) 7mal b) 5imal so groB ist wie die Summe der AuBenwinkel?
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Zum Wort Term:

Aus dem indogermanischen Wortstamm ter- = iiberschreiten, an ein jenseitiges Ziel
gelangen entstanden das griechische tégpa (terma) und die lateinischen Worter termo,
termen und terminus, die alle die Bedeutung von Ende. Grenzstein, Grenze haben. Im
Franzosischen und im Englischen wird terminus noch heute im Sinne von Endstation
beniitzt. Auch unser Fremdwort Termin fiir einen noch vor uns liegenden Zeitpunkt
kommt daher. Da auch eine Definition eine Sache, einen Begriff gegen alles andere
abgrenzt, wurde terminus im Sinne von Definition in frithen Konzilsakten verwendet.
Auch BoetHius (um 480-524/25) beniitzt terminus in diesem Sinne in einem philoso-
phischen Kommentar, der spiter weite Verbreitung gefunden hat. Immer mehr nimmt
terminus dann die Bedeutung von Ausdruck an, wofiir sich im Franzosischen terme und
im Englischen term gebildet haben. In der Algebra des deutschen Jesuiten Christoph
CrLavius (1537 Bamberg—1612 Rom) ist terminus stindiger Fachausdruck fiir Teil
einer Gleichung, René DESCARTES (1596-1650) verwendet terme wie wir Term auch
fiir Glieder eines Aggregats.
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7 Schwierigere Termumformungen

7.1 Multiplikation von Aggregaten

Nach dem allgemeinen Distributivgesetz (Satz 90.2) weilit du bereits, wie du
ein Aggregat mit einer Zahl multiplizierst. Unter Berticksichtigung der Vorzei-
chenregeln wirst du also beispielsweise so rechnen:

alb+c¢—d)=ab+ ac—ad.

Was machst du aber, wenn du zwei Aggregate miteinander zu multiplizieren
hast? Betrachten wir als Beispiel das Produkt

(—a+b)(c—d—e).

Stell dir vor, du konntest die erste Klammer ausrechnen und erhieltest als Wert
die Zahl z. Dann hittest du nur noch z(e¢ — d — ¢) zu berechnen. Das kannst
du aber nach dem Obigen leicht ausfithren:

z(c—d—e)=zc— zd — ze.

Nun setzt du an Stelle von z wieder die urspriingliche Klammer (—a + b);
dann nimmt die rechte Seite die folgende Form an:

zc—zd—ze=(—a+b)c—(—a+b)d—(—a+b)e.

Das rechts stehende Aggregat kannst du leicht mit Hilfe von Satz 108.1 umfor-
men:

(—a+blce—(—a+byd—(—a-+ble=—ac+ be+ ad— bd+ ae — be.

Betrachtest du nun den Anfang und das Ende deiner Rechnung und ordnest
die erhaltenen Summanden beziiglich des ersten Faktors @ bzw. b, so ergibt
sich

(—a+b)lc—d—e)=—ac+ ad+ ae+ bc — bd — be,
und du erkennst die Giiltigkeit von

Satz 182.1: Zwei Aggregate werden miteinander multipliziert, indem |
man unter Berlicksichtigung der Vorzeichenregeln jedes
Glied des einen Aggregats mit jedem Glied des anderen
Aggregats multipliziert und die entstandenen Produkte
addiert.

Beachte:

1) Damit du die Ubersicht nicht verlierst, raten wir dir folgendes Vorgehen:
Multipliziere zuerst mit dem 1. Glied des 1. Aggregats der Reihe nach jedes
Glied des 2. Aggregats. Multipliziere dann mit dem 2. Glied des 1. Aggre-
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gats der Reihe nach jedes Glied des 2. Aggregats. Fahre so fort, bis du
schlieBlich mit dem letzten Glied des 1 Aggregats der Reihe nach jedes
Glied des 2. Aggregats multipliziert hast.

o’
(—a+b)¢c—d—e)=—ac+ ad+ ae + bc — bd — be

Nehmen wir an, das erste Aggregat bestehe aus m Gliedern und das zweite
aus n Gliedern, dann hat das nach der Ausfithrung der Multiplikation
entstandene Aggregat m - n Glieder, weil ja jedes Glied des ersten Aggre-
gats mit jedem Glied des zweiten m umplmen werden mufl. Damit kannst
du kontrollieren, ob du kein Produkt vergessen hast!

Beispiel 1:

2x%* —3x —-4)(5x—6) =

=10x> — 12x2 —15x> + 18x—20x + 24 =
= 10x3 —27x% — 2,\'+ 24.
Beispiel 2:
{4\4‘%1}{16\-_ }(;!' }_
=213 —3x%y+ -f,-,_\'_r3 Fax2y —dxpi+fy® =

2o S B...3
eax” + 37)

Satz 182.1 14Bt sich auch anwenden, wenn das Produkt aus mehr als zwel
Aggregaten besteht. Sind es drei Aggregate. dann rechnest du am besten von
links nach rechts der Reihe nach. ‘%md es aber vier oder mehr Aggregate, dann
kannst du unter Verwendung des Assoziativgesetzes und unter Umxtdndu.n
auch dés Kommutativgesetzes jeweils zwel geeignete Aggregate zu einem Pro-
dukt zusammenfassen und darauf Satz 182.1 dlmmdcn Mit einiger Erfah-
rung wirst du erkennen, welche Zusammenfassungen giinstig sind. Ehe du
dann weiterrechnest, mufBt du die erhaltenen Aggregate noch vereinfachen.
Dazu

Beispiel 3

(2a — 3b)(2a+ 3b)(5a—b) =

A [(2a —3b)(2a+ 3b)] (5a — b) =

— (4a® + 6ab — 6ab —9b*)(5a — b) =
= (4a% — 9b*)(Sa—b) =

— 204> — 4a*b — 45ab* + 9b°.

Beispiel 4:

Tb(2a — b)(a— 2b)(—a —2b)(2a + b) =
2 76l (2a—b)(a—2b)[(—a—2b)(2a+b)] =

e
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= Tb(2a* —4ab — ab + 2b*)(—2a* — ab— 4ab — 2b?%) =
= Th(2a*— 5ab + 2b*)(—2a*— 5ab — 2b%) =
= 7b(—4a* —10a°b —4a*b* + 10a3b + 254%b2 + 10ab® —
—4g%b* — 10ab® — 4b%) =
Th(—4a* +17a%b* — 4b*) =

-28a*b + 11942 b3 — 28b°.

Aufgaben
l.a) (p+q)utv) b) (x+ y)(a—b) e) B3—15)(t+5)
d) (a—b)(c—d) e) (—1+m)(m—n) B (—x—y)(—u—1n)
2.a) (27a—3b)(ax+ 11y) b) (16p — 18r)(13qg +9)
c) (—1%5x+ y)(Ex —4Ly) d) (2,15m —0,7n)(3,5k + 20,11)
e) (0,05—53a)(—1,2a—3) f) (12p%+0,59)(1,25p +34>)
3.a) (a+b)(c—d)—(a—b)(c+d)

b)
c)
d)
e)
4. a)
b)

5. a)
b)
6. a)
c)
. a)
c)
8. 2)
b)

¢)

9. a)
¢)

e 10. 2)
b)
: a)
c)

(a—b)le—d)—(a+b)(c—d)
(a+b)(c+d)—(a—b)(c—d)
B—r)s+2t))—(Ts+5)Br+8)+MEs—1)(r+1)
Ry—DGE+y)+4yB =5y =2y —(y—6)(9p* + 1)
(1T% g —3at)x—35a) = (Tax 126l 5a?)

3m(16m — 9n>)(5m* —n) — (12m> — Tn)(—2m — mn>)(—2)

(3x2 4 )27y —8x) — (14x + 2y)]
(3a—9b)2b+ c)(—ec — 5a)

(u+v)(x+y+2) b) ' (3s =2t +1)(p— 39— Tr)
m2—n+1)@*+m+1) d) (a—2b+3c—4d)(Se—6f+Tg)
A+x+x2+x)1 —x) b) (1 —y+y*—y*+yHU + )
(1 —=a®)(1 +a*+a* +a® d) (a®> +ab+b>(a—b)

-

(153x*y — 3xp*)(173x — 75 — 2%y)

(0,04a*> — 0.1ab + 0,255%)(0.2a + 0,5b)

Gx —2p)(Ex? +0,3xy +0,16p%)

(a -+ b)(a-+ 2b)(a+ 3b) b) (a— b)(a— 2b)(a — 3b)

(1 — x)ixa 22 Cx—1) d) 2—x)dE—32B=x>)

(1,2x —0,1y)(1,44x* + 0,013 (0,1 + 1,2x)

G+20E -Ix+E&xH(EX2 -1

1—x2—-—x)3—x)(4—x) b) (1 —x)24+x)3—x)(4+ x)
C—@+y)E4+2y+y)(—y+2)
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12. (x2 —x+1D(x—1)— 2 Ex=1Dx+1)
13. A +2x+x)(x—2)+4Ex+1)—(x+2)(x* —2x+ 1)
14. 3x* —2x+1)(1 —2x) — 11 x2—4034+2x —xH) +6x(x*+4)
15. (x2 + ax + 2a®)(2a — x) — (x? = 2ax + a®) (x — 2a) — 2(3a® — x°)
16. (3ab + 4ac — Tbe)(5ab — 6ac) — (4ab — 8ac + The)(Sac — The)
17. (x2y — 2xp2 + 3y3)(2x%* — 3xy) — (Bx3 +2x2y + xyH)(4xy — 5p°)
18. x+y+2)x—y)—(x+y—2)x—2)—(x—y+2)(z—y)—
z—x—p)x+y)
19.0o—p—q)(p+q)+(p—o0—q)o+qg)—(g—o—p)lo+p)
20. (xy+xz—y2)(x+y)—(xy+yz—xz)(y—2)—
—(xz —xy+yz)(x+2)
21, (6x*—9x2y+ 11y }(8\‘"—?1)—{1?1”—+ 21x?y —17xH)(11x* +13y)
22. (64a°b> + 48ab> + 36a*h” + 27a*b’ ) (da?b — 3ab?®)
23. (a2b*x — 2a*b3x* — 3a°b2x" + a®bx'%)(a®b*x* — 2a° bx>)
24. 3a(2b — 5a)(3b + 4a) — 4b(Ta* — 12ab) — (5h + 4a)(3a — 6b) - 4a
25. x2(1 —x) +x(1 + x)(1 —2x) —2(2 — x)(1 — 2x + 3x?)
26. 9(14 + 11a + 17a*)(10 — 12a) — 13a(15 — 19a) (17 + 20a) +
+ 1442 (17a — 11) — 444’
27.2(x—2D(x—2=3x)—-32+(x—1)@(x—1)—3(x— 2))
$28. ([2x(x —4) — 3(x —2)(2x + 3] (4x —2) - 3+ 48x*)(3x — 5) -
— 540 (x% — 3.\ +1)
$29. 3[2(y—4) +S1[(y—2):3—-2(y—4)] —
—4[7-3(+2)+y1[5—y—32—y)]
$30. [((x—1)(x—2)—2]:2—-22—x):2—-[2-2(x—-2)Q +x) +
+2(1 —2x)]

Gleichungen und Ungleichungen
31. a) ( x+7) == E=1)
b) 'ﬁ_(_\ F {].I )(0,5x +2)— (3 +3x)(B3x—3) =0
32. 3x(x+7D—xBx+7N+70=0

33. 4x(6 —3x) +6x(2x+1) =15

34. Bx—D - 2x—(33x+5) - 7rx = 277

R TR e T
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35.0,32x(1,25x—10) 4+ (6,3 —0,8x) - 0,5x+1 =0

36. (x + 1) (x— 14) — (x + 1) (x —15) =17

37 = 16) Q)= B —1)(x =15) =—=35

38. (Fx+5)(25-3x)+E - 15)(Fx+2)> 0

39. (2,1x—1,5)(0,6x—1,1) — (2,5—0,9x)(0,8 —1,4x) + 54 = 0

40. Verldngert man in einem Quadrat ABCD die Seite [ AB] iiber B hinaus um
2 cm, und [AD] iiber D hinaus um 5 cm und ergidnzt zu einem Rechteck,
so ist dessen Flache um 1,22 dm? groBer als die des Quadrats. Wie lang ist
die Quadratseite?

41. Verlangert man eine Seite der Grundflache eines Wiirfels um 3 cm und ver-
kiirzt die andere um 2 cm, wihrend man die Hoéhe beibehilt, so entsteht
ein Quader gleichen Inhalts. Wie grol3 ist die Kantenlinge des Wiirfels?

um 1546

Nirolo Tartalea vy (& £E0s,

Abb. 186.1 Niccolo TARTAGLIA Abb. 186.2 Simon STEVIN
(1499 Brescia — 13.12.1557 Venedig) (1548 Briigge — 20.2./8.4.1620 Leiden)*

* 1 betont. Niederlindischer Mathematiker und Ingenieur. Anfinglich in der Finanzverwaltung titig, ab 1593
Berater des Prinzen Moritz von Oranien. In seinem Buch D¢ Thiende — ,,Der Zehnt'* —(1585) behandelt er als
erster systematisch die Stellenschreibweise von Zehnerbriichen und trug damit wesentlich zur Verbreitung der

Dezimalbriiche bei. Das bequeme Komma hat 1617 der schottische Mathematiker John Napier (1550-1617)

eingefiihrt.
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7.2. Binomische Formeln

Bei algebraischen Umformungen treten hiufig Terme der Art (¢ + b)* und
2 - . - 0 . . .
(a — b)* bzw. (a + b) (a — b) auf. Mit Satz 182.1 kénnen wir sie leicht berechnen:
i i 2

(@a+b)?> =(a+b)(a+b)=a*+ab+ab+ b* = a* + 2ab + b?

(a—b)?> =(a—b)(a—b) =a*—ab—ab+ b* = a* — 2ab + b*
(a+b)(a—b) =a* —ab+ ab— b* = a* — b*

In allen drei Fillen waren vier Glieder zu erwarten. Sie lie3en sich aber zu
veniger zusammenfassen. Daher lohnt es sich, wenn du dir diese dre1 wichti-

gen Umformungen als Formeln* merkst. Man nennt sie binomische** For-
meln.

Satz 187.1: Die binomischen Formeln |

—

. binomische Formel: (a+ b)? = a? + 2ab + b?
. binomische Formel: (a — b)* = a* — 2ab + b?
. binomische Formel: (a + b)(a — b) = a* — b*

LS i B0

Beachte: Beim Quadrieren einer Summe oder einer Differenz tritt aulBer den
Quadraten der beiden Glieder auch noch ihr doppeltes Produkt auf.

Beispiele:
1) (Gx+3)% = G2 +2-fx-3

2

a b a a

2) (0,1rs* —10r5)* = (0,1rs%)> —2- 0,1rs> - 10r°s + (1 10726)% =

1 2

o e oY
= 36X T 5XY T 33)

1 y

a b a“ a b b=

= 0.01r2s* — 2r3s3 + 100r*s*

* Ein Gebilde der Geometrie bezeichnet EUKLID als oy fipe (siche FuBnote auf S. 160), das ins Lateinische als
[figura iibersetzt wurde, was zu unserem Lehnwort Figur fiihrte. Zymjpa wurde aber auch mit forma iibersetzt,
das BorTHIus zu formula verkleinerte, ihm dabei aber einen neuen Sinn gab. Bei Lemniz (1646-1716)

gewinnt formufa dann die heutige Bedeutung von Formel als Ausdruck einer GesetzmaBigkeit.

*%

Spezielle Summen aus zwei Summanden nannte EUKLID (4./3.Jh. v. Chr.) im Bue h X seiner Elemente £k 600
v Lmuzm (ek dvo onomaton) = aus zwei Namen. GERHARD vON CREMONA (1 l 14—1187) verwendet dafur in
seiner Uberset tzung der Kommentare des AL-NAYRIZI (lateinisch AnaARITIUS, T um 922) zu den ersten zehn
Biichern des EUkLID das Wort binomium. Luca PacioLl (um 1445-1517) verallgemeinerte 1494 binontio zu
trinomio und mudtinomio in seiner Summa de Arithmetica Geometria Proportioni et Proportionalita. Niccolo
TARTAGLIA (1499-1557) kommt mit seinem hinomio bzw. trinomio de dignita algebratica im 1560 postum
erschienenen 2. Teil seines General trattato di numeri, et misure — »Allgemeine Abhandlung iiber Zahlen
und MaBe« — unserem Gebrauch schon sehr nahe. In der 1585 erschienenen L'Arithmetique des Nieder-
linders Simon STEVIN (1548-1620) werden hinomie in unserem Sinn fiir a+ & und a — b, trinomie fur
einen dreigliederigen Ausdruck und mudtinomie fiir ein allgemeines Aggregat verwendet. Letzteres setzi
sich nicht durch. In der In arfem analyticem Isagoge (1591) des Frangois Viire (1540-1603) te iuchen ohne
weitere Erklirung die Ausdriicke binomia magnitudo und polynomia magnitudo fiir eine zwe igliedrige bzw.
mehrgliedrige Grobe auf, Sie waren anscheinend allgemei 1'|\L1\I andlicher mathematischer Wortschatz. Im
Maithematisehen Lexicon (1716) des Christian v. WOLEF (1679-1754) liest man schlieBlich die Beschretbung
Binomium, Eine 3wenfache Grofje wird genennet, die aus gwen .Ll_ulk‘!t beftehet, die mit Dem mebr= Jeichen
sufammen gefetzel werben, als a + b,




=

188 7 Schwierigere Termumformungen

3) (1,5u+3v)(1,5u —tv) = (1,5u)* — (tv)? = 2,25u> — 502

a D a 8] a 8]

Die drei binomischen Formeln waren bereits den Babyloniern um 1700 v. Chr.
bekannt. Ob und wie sie sie gegebenenfalls bewiesen haben, wissen wir nicht.
Der griechische Mathematiker EUukLID (4./3.Jh. v.Chr.) hat diese drei For-
meln mit Zeichnungen geometrisch bewiesen. Dieser Beweis setzt allerdings
voraus, dall ¢ und b und gegebenenfalls ¢ — b positive Zahlen sind. Seine
Zeichnung fiir die 1. binomische Formel erklért sich praktisch von selbst:

r (a+b)?
b ab b?
a+b <
a a? ab
I L{ S iy
a+b

Abb.188.1 (a+b)2=a® -+ 2ab + b>

Auch fiir die beiden anderen Formeln kann man geometrische Veranschauli-
chungen finden. Sie sind allerdings komplizierter (vgl. Aufgabe 190/24).

Die 2. binomische Formel ist nur ein Sonderfall der 1. binomischen Formel,
wenn man (a — b)? als (@ + (— b))? schreibt. Dann gilt:
(@a+(—=b)’=a*+2-a-(—b)+ (—b)2 =a*—2ab+ b2

Genauso kann man bei anderen Vorzeichenverteilungen verfahren:

(—a+b)P=((—a)+b)=(—a)®>+2(—a)-b+b%=a%>—2ab+ b2
(=a—=>0)=(—a)+ (—=8)2 =(—a)®+ 2=a)(—b)+(=b)2 = a2+ 2ab+b*

Aufgaben
1. a) (1+ x)? b) (x—1)? ¢) (24 x)?
d)nEl=2x) o) i@ —3)? (3 —x?)>?
2. a) (3a+ 4b)? b) (2x + 5y)2

¢)
d) (6xy+5y*)* e) (Tab—9bc)? )
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3.a2) 17y +32)> b) (13p—T7q)° ¢) (14x —11)2
d) (21 +151)? e) ((a+ 1%p)? f) (2,3¢—0,11d)?
g) (Yu—%v)* h) (1,87 + 33)* i) Ga—12b)?
) @Ex—34y)? k) (0,1a%b +10ab?®)? 1) (Fu> —0,07u*)?
4.2a) 4—x)4+x) b) (22x2 + 33)(22x% —33)
¢) (1 —4xH)( + 4x?)
5.a) (5a—4x)(5a+4x) b) (17x% — 19y (17x2 + 19y2)

6.a) (16x + 24y)(16x — 24y)
b) (12p —234q)(12p + 23q)
) (75+252)(— 75+ 232)
d) (—0,252+ 0,07v)(— 0,254 — 0,07v)
7.a) (a+b)(—a—+b) b) (a—b)(—a—>b)
¢ (x—y)(—x+y) d) (—x—»x+y)
8. a) Beweise die Formel von BRAHMAGUPTA (598-nach 665):
n? = (n+a)(n—a)+a’
b) Diese Formel wurde von den Indern zur Berechnung von Zahlenqua-
draten verwendet; z. B.
2972 = (297 + 3)(297 — 3) + 32 = 300 - 294 + 9 = 88209.
Berechne ebenso:
1) 982 2) 3957 3) 19992 4) 20012 5) 99992
9. Beweise die Formel von NARAYANA (um 1350):
(@a+ b)* = (a— b)* + 4ab

10. Die folgende Formel wurde auf einer altbabylonischen Tontafel aus dem
17.Jh. v.Chr. gefunden. Beweise sie!

‘a+ :’})3 (u = b)z
( — [ — = gb
2 )

11. Beweise die Formeln
a) (x+1)2+x—1)>2+(—x+y)P+(—x—yp)P=4(x*+y?)
G+ +&—y)°

b) 5 =x% 4 y?
12. a) Quv — 2v?)? b) (7a®b + 4ab?)(7a>b — 4ab?)
©) (x°%+y?)? d) (8a%b* — 5¢*)(5¢* — 8a?b?)
e) (15p2qr® —1)° f) (1,9¢°d—3gde?)Fd?e* +1,9¢°d)

2

13. Berechne (a + b)? — (a — b)* auf zwei Arten.

14. Bestimme die Werte von (a + b)? und a? + b* fiir
a=9(—4. 21 —4i: &y und b=3 (11  —21; -3 —2.8).
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15. 2—x)>—2—x) 2+ %)+ 2+ x)?
16. (4a + 3x)% + 3(4a + 5x)(3a— 2x) — 4(3a — 4x)*?
17. (3a* — 16ax)* — 4ax(7a — 2x)(5x — 4a) — 6a*(2x — 3a)(2x + 3a)
18. 17a> —3b(11a+ 7b)(Th — 11a) + 2a(11b — Ta)? —

—(11b—Ta)(11b — 6a) - 3b
19. x* +2x* (x —1)? = 3x(x? —x+ D(x+ 1) —(x2 = 2x+ 1)1 + x)(1 — %)
20. (x* — 32+ x(x — y)2(x — y) — y(x — »)*(x 4+ ¥) + xp(x + 2p) 2x — y)
21. @+ 1)?-2a—a(@a+ 1)1 —a)?> +2(a—1)(a+1)> +

+a(@®>+2a+1)(a—1)

022 [(x + ) + 21 [(x + ») + 21 — [(x — ) — 21 [(x — ») — 2] +

+[(y—x)—z][(y—x) —z] =[x+ (¥ + 2)][(y + 2) + x]
23. [(3a—3b) + 1]1[(3a —3b) + 1]
24. Welche Formeln werden durch die Abbildungen veranschaulicht? Begriin-

dung!
a) b)
b b
.
ra
a—b<
i L ) L b |

.
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®
]
T

. (Za+3b)(3b—2a) — Bb+2a)®> — b —2a)?
©26. 2(0,4 — 0,3x)* —0,4(1 + 2x)> — 3(x — 0,2) (0,2 — x)
27. Quadrieren zweistelliger Zahlen:
Beispiel:
342 =(4+3-10)02=4%2+2-4-3:10+ 32100, also:
16 (16 = Quadrat der Einerziffer) 6 an, l gemerkt

240 (24 = doppeltes Produkt der Ziffern)4 + 1 = 5' an, 2 gemerkt
_9@ ( 9 = Quadrat der Zehnerziffer) 9+2=11|| an

34% — 1156 1136

Berechne so die Quadrate der Zahlen:

a) 59; 26; 94; 73; 88; 47; 635 3

b) 2,9; 6.7, 0.48; 0,038; 550; 0,00093

C) L S AR T ) I 6 i 0,85
32> 53

99, 23 > 1,2: 0,044

28. Umwandlung eines Produkts in die Form (a + b)(a — b):

Beispiele:
53 - 47 = (50 + 3)(50 — 3) = 50% — 32 = 2500 — 9 = 2491
24-26=(25—1)(254+1) =252 —-12=625—1=624
Berechne so folgende Produkte:
a) 29 31; 65 < 55; 23-27; 72 - 88
b) 99 -101; 498 - 502; 243.- 257; 1012 - 988
c) 3,8-42; 0,74 6,6; 3%- 8% 8

29. Das Quadrat einer Zahl mit der Einerstelle 5, zum Beispiel 65, berechnet
Peter folgendermalfen:
»6:(6+ 1) = 6-7 = 42; 25 angehidngt; Ergebnis 4225.«
Er erhilt also den richtigen Wert von 65°.
Priife dieses Verfahren an einigen ahnlichen Beispielen. Beweise, dall man
nach dieser Methode das Quadrat jeder Zahl mit der Einerstelle 5 berech-
nen kann. (Tip: Schreibe die Zahl als E.umme mit 5 als zweitem Summan-
den und wende die Formel fiir (a + b)* an.)

Gleichungen und Ungleichungen

30. 2x +3)(2x —3) = 2x + 3)?
3.(x+3)2+202x+1)2x—1) = (5 —3x)?
32. (\—1)2— 13:’)—?(x+7)
B.x+DE>x+DE—-1)+x+7

M. (x—1)2=x*-2




43.

44.

46.

47.
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. Verkleinert man die Seiten eines Quadrats um je 10 m, so entsteht ein um

1.4a kleineres Quadrat. Wie lang ist die Seite des urspriinglichen Qua-
drats?

. Die eine Seite eines Rechtecks ist um 5cm groBer als die andere. Die

Flache ist um 64 cm? kleiner als die Fliche eines Quadrats, dessen Seite
um 4 cm groBer als die kleinere Rechtecksseite ist. Berechne die Seiten des
Rechtecks.

Wenn in einem Quadrat die eine Seite um 2 cm verkleinert und die andere
um ebensoviel vergrofBert wird, so erhilt man ein ebenso grofles Rechteck
wie ber Verkiirzung der einen Quadratseite um 4 cm und Verldngerung der
anderen um 10 cm. Wie groB ist die Quadratseite?

Der Inhalt eines Rechtecks, dessen Seiten sich um 11 ¢cm unterscheiden,
dndert sich nicht, wenn man die gréBere Seite um 6 cm verkleinert und die
kleinere um 5 cm vergroBert. Berechne Linge und Breite des urspriingli-
chen Rechtecks.

. Wird bei einem Wiirfel die erste Kante um 2 dm vergréBert und die zweite

um ebensoviel verkleinert, wihrend man die dritte beibehilt, so entsteht
ein Quader, dessen Volumen um 12 dm? kleiner ist als dasjenige des Wiir-
fels. Wie lang ist die Wiirfelkante?

Bei einem Quader ist die zweite Kante um 1 cm groBer als das Doppelte der
ersten, die dritte um 2 cm kleiner als die zweite. Der Rauminhalt dieses
Quaders ist um 5 cm? kleiner als das vierfache Volumen eines Wiirfels.
dessen Kante mit der ersten Quaderkante {ibereinstimmt. Berechne die
Kanten des Quaders.

Vergroflert man bei einem Wiirfel alle Kanten um 1 dm, so nimmt seine
Oberfliche um 0,3 m* zu. Wie groB ist der Rauminhalt dieses Wiirfels?
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7.3 Quadrate von Aggregaten

Analog zum Binom als zweigliedrigem Aggregat ¢ + b huu:,hn:.l man mit dem Kunst-

wort Trinem ein dl(‘lLllLdIl“C‘s Aggregat der Form a + b + ¢. Quadriert man dieses
Trinom, so erwartet man 3 - 3 = 9 Glieder, von dmcn man wie beim Quadrat eines

Binoms hoffen kann, dal} sich einige zusammenfassen lassen. Wir probieren es:

(@a+b+c)=(a+b+c)latbte)=
2 ) 3
=a*+ab+ac+ab+b*+bc+ac+bc+c* =
=a*+b*+c*+2ab+ 2ac 4 2b¢.
Das Ergebnis des Quadrierens eines Trinoms entspricht dem Ergebnis des Quadrierens
eines Binoms, also der 1. binomischen Formel; man erhélt nimlich die Summe aller
Quadrate und die Summe aller moglichen doppelten Produkte.
Besteht nun ein Aggregat aus mehr als 3 Summanden, so ergeben sich beim Quadrieren

wieder alle Quadrate und alle méglichen doppelten Produkte, da jedes Produkt mit
zwei verschiedenen Faktoren genau zweimal auftritt. Die Pfeile sollen es dir zeigen:

(a+b+c+ ...+2)la+b+e+ ... +2)=

7

=a*+ P44 .. +z2+2ab+2ac+ ... +2az4 2be+ ...

Kommen im Aggregat nicht nur Plus-, sondern auch Minuszeichen vor, dann mul}

man bei der Bildung der doppelten Produkte die Vorzeichenregeln beachten. Wir zei-

gen es dir an

(a—b+c)=(a—b+e)la—b+c)=
=a*—ab+ac—ab+b*—bec+ac—bet+c* =

7 ¥ 2
=a“+b°+c*—2ab + 2ac —2be.

Wir fassen die gewonnenen Erkenntnisse zusammen in

Satz 193.1: Das Quadrat eines Aggregats besteht aus der Summe der Quadrate
aller seiner Glieder und der Summe aller moglichen doppelten Pro-
dukte unter Beriicksichtigung der Vorzeichenregeln.

Beachte: Damit du kein doppeltes Produkt vergifit, muit du systematisch vorgehen.
Du beginnst am besten vorne und arbeitest dich nach hinten durch, wie es dir
die Pfeile zeigen;

l. Schritt
(a+b+c+d+ ... )2
il L e
2. Schritt

B T e k== — —— = oo e
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Dazu ein
Beispiel:
x+2y—xz—4)* =

=4x? +4y* + x*22 + 16 — 6xy + 3x*z + 12x — 4xyz — 16y + 8xz

Kehren wir zuriick zu (a + b + ¢)2. Wir hitten das Quadrat auch anders als oben
ausrechnen konnen, namlich mit Hilfe der 1. binomischen Formel. Dazu miiite man
beispielsweise a + b mittels einer Klammer zusammenfassen:
(@+b+c)=[(a+bh)+c]*=

= (a+ ‘;,)3 - 2(a+ble+c* =

= a* 4+ 2ab + b* + 2ac + 2be + ¢* =

A

=qg 4+ b 4 L 2abd2aqc - 2he.

Einen kleinen Vorteil bringt dieses Verfahren, da wir keine 9 Produkte ausrechnen
mulbiten. Aber Satz 193.1 ist natiirlich am schnellsten.

Einen groBen Vorteil bringt der Trick des Klammerns aber, wenn man ein Produkt von
zwel Aggregaten dadurch auf eine Form bringen kann, bei der sich die 3. binomische
Formel anwenden laft.

Beispiel 1:
2a+ 3b+4c)(2a+ 3b —4¢) =
= [(2a + 3b) dc][(Za+3b) —4c] =
= (2a+3b)2 —(4¢)* =
= 4a® + 12ab + 9b> — 16¢2.

Beispiel 2:
(2a—3b+4¢)(2a+3b—4c)
Das sieht recht schwierig aus! Zwar kann man in der zweiten Klammer 35 — 4c¢
zusammenklammern. Was soll aber in der ersten Klammer geschehen? Wir
brauchten ebenfalls (35 — 4¢), aber ein Minuszeichen davor.
Satz 106.2 macht’s moglich:
(2a—3b+4c)(2a+3b—4c) =
=[2a— (3b—4¢)][2a+ (3b—4c)] =
= (2a)2 — (3b—4¢)% =
= 4a* — (9b* — 24bc + 16¢2) =
=dg®—9p*+ 24bc— 16¢*

Aufgaben
1. a) W+o+w)2 b) (w+v—w)2 &) wu—v—w)* d) (—u—v—w)?
2. 3) Bx+5y+1)> b) 2x+ 3y +42)?

¢) (2x — 3y + 4z)* d) (0,7a—1,16—0,9¢)*

e) (5x2—3y—1)? ) (12a—2%b+ 14c)?

g) (0,8x — 1,2y + 1,6xy)* h) (0,1x —0,2xy + 0,3y)?
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3.8 Wtov+wiP+w—u+w)?
b) 2a—4b+6¢)2 — (—8a+ b+ 2c)*

¢) 100(0,4r + 0,35 —31)* —4(a+3b—2,5¢)*

4. Stelle die Formel fiir (@ + & + ¢)* durch eine Zeichnung dar.

5. a) (5u—8v+ 6w —2)? DGt =22+ x—1)>
ec) (17a* — 14ab + 13b* — 115)? ed) (1,2x%+1,3y%> —0,25x — 0,15y)>
se) (Ga? —4b? —3q 4 2p)?
6. a) (u+v+wu+ov—w) b) (u+v-+whlu—v—w)
¢) (u—v+w)u+v—w) d) Cp+q+7)2p+q—Tr)
e) Bx—3y+2)Bx+ 5y —z) f) (0,5a—4b—2¢)(2c —3b—0,5a)

7.a) (a+b+e)lat+b—c) b) (a+b—c)la—b+c)
8. a)(1l—x—p)A+x+y) B = x i = —x%)
e9. a) (Ta—9x 4+ 1 1}."’}(?{! 4+ 9y —1 I_1'3}
b) (6x* —13y? + 15xy)(6x% — 13p% — 15xy)
010. 2) 9ax?® — 11a* + 4x*)(Qax® + 114> — 4xY)
b) 9ax® + 11a* + 4xH)(9ax? —11a> + 4x)
oll. a) (¢a+-b+ct+dlat+b—c—d)
b) (1 x—x2 4 ,\"‘}{] e ek el
ol2. a) (8x3 4+ Tx*y 4 6xy* — 5°)(8x> + 7x?y — 6xp? + 5)°)
b) (19a%h — 4a*b* — 5a%b> — 185%)(19a°b — 4a*b? + 5a% b3 + 18h%)
e13. a) (a—2b+2¢c—x)(a—2b—2¢+ x)
b) (=2 _1‘1 — e = _1'3 — b+ 2)
eld. a) (> —x+a*—p)(@*+y—x b?)
W ix+1—x2— 3 —x* 4+ x°
¢) (l—a—x—ax)la—x+ax+1)
d) (a® + ab? — a’b — b3)(b> — ab* — a’b + a?)

— X)

**7.4 Hohere Potenzen von Binomen

[n manchen komplizierteren Rechnungen kommen nicht nur Quadrate, sondern auch
hohere Potenzen von Binomen vor. Auch fiir sie kennt der Mathematiker Formeln, die
den Umgang mit ihnen erleichtern. Betrachten wir zunéchst die dritte Potenz (a + b)°.
Nach Definition der Potenz miiBtest du (a + b)(a + b)(a + b) rechnen, was zunéchst 8
Summanden lieferte. Geschickter ist die Anwendung der 1. binomischen Formel:
(a+b)® =(a+b)a+b)* =

= (a+ b)(a® + 2ab + b*) =

=a® +2a*b + ab* + a*b + 2ab* + b* =

= a> + 3a%b + 3ab* + b>.

Statt der 8 Summanden enthiilt das Ergebnis nur noch 4!
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Auch fiir (a — b)® kdnnen wir eine solche Rechnung durchfiihren. Einfacher geht’s,

wenn wir in dem Ergebnis von eben (— &) statt b setzen:

(a—b)* =(a+ (—b)? =a®+3a*(—b) + 3a(—b)* 4

2 L1 2
=a°—3ag*b+ 3ab—bh

Wegen des hiufigen Vorkommens lohnt es sich, diese Ergebnisse als Formeln auswen-

dig zu lernen:

3

Satz 196.1: (a+ b)® = a’ + 3a?b + 3ab? + b*
(@a=b)® = a® — 3a?b + 3ab* — b*

Beispiel:

(Bx—35y) =27x>—3-9x*-
= 27x3 —135x*y

i

Durch eine rdumliche Darstellung 1aBt sich die erste dieser Formeln auch mit Quadern

veranschaulichen.

Abb.196.1 (a+b)> =a’ +3a%b+ 3ab®+ b3

Die Mathematiker gaben sich natiirlich nicht mit den Formeln fiir die Quadrate und
die dritten Potenzen zufrieden und untersuchten auch hohere Potenzen des Binoms
(¢ + b). Diese hoheren Potenzen lassen sich schrittweise auf niedrigere zuriickfiihren
und damit berechnen. Wir fithren dies fur (a + b)* einmal vor:

(a+b)* =(a+b)a+b)’ =

= (a4 b)(1a® + 3a2 b+
4+ 3a%b
+1adb+
- la* + 4ab +

= la

3ab? + 1b%) =
3a?h* + lab? +
3a2b? + 3ab® 4 15¢

6a’b® + dab? + 16*.
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Das Koeffizientenmuster 1 — 3 — 3 — | wiederholt sich beim Ausmultiplizieren, um
eine Stelle verschoben, in der zweiten Zeile. Das neue Koeffizientenmuster | — 4 — 6

4 — 1 ergibt sich somit recht einfach, indem man nebeneinanderstehende Koeffizien-
ten des vorhergehenden Musters 0 — 1 — 3 — 3 — | — ( addiert. Setzt man dieses Ver-
fahren fort, so erhdlt man eine dreieckige Anordnung von Koeffizienten. Sie ist auch
als Arithmetisches Dreieck oder PASCAL-STIFELsches Dreieck bekannt.

(a+ b)! L4 -4 la+ 1b

(a+ b)? I 2 la? + 2ab + 1b?

(a+b)? {08030 1a® + 3a%b+ 3ab? + 163

(a+b)* I 4. 6 4 1 la* + 4a*b + 6a*b* + 4ab® + 1b*

(a+b)° I 5 10 10 5 {1 1a® + 5a*b + 10a3b? + 10a%b> + 5ab* + 1b?

Das Arithmetische Dreieck war bereits den Indern des 2. vorchristlichen Jh.s und den
Arabern des 11. Jh.s bekannt. Die friiheste erhaltene Darstellung dieses Dreiecks ent-
hilt die Untersuchung der Arithmetischen Regeln der Neun Biicher von YANG Hui aus
dem Jahre 1261, die auf den chinesischen Mathematiker Q1A Hsian [sprich: Tschia
Hsien] (um 1100) zuriickgeht (siche Abbildung 197.1). Die erste gedruckte Darstellung
in Europa schmuckt das Titelblatt des Neuen Rechenbuchs von 1527 des Peter APIAN
(1495-1552) (siche Abbildung 197.2). Benannt ist das Arithmetische Dreieck nach dem
deutschen Mathematiker Michael StiFEL (1487—1567) und dem franzosischen Mathe-
matiker und Philosophen Blaise PASCAL (1623-1662), die die interessanten Eigenschaf-
ten dieses Dreiecks erforscht haben.

r~®
SICICIC) .O
@@@@

Abb.197.1 Das Arithmetische Drei- Abb.197.2 Das Arithmetische Drei-
eck des YanG Hui (1261) eck des Peter APIAN (1527)
Aufgaben

1. a) Cx+1)° b) (1 —3a)? ¢) (2a+ 5b)°

d) 3a — 5b)° e) (—a+4b)? f) (—a—2b)°
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2. a) (014w b) (—1,2r+ 55)? ¢) (13a+ 13b)?

3. a) Gab+%a)’ b) 3x —2 £x%)° ¢) (0,2x—0,5y)°

4; a) (xp>+2x*y)? b) (3a’h? — 2a?b?)>

5. Berechne (a + b)® auf zwei Arten, einmal als (a + b) (@ + b)* und einmal als
(a+ b)Y (a+ b

6. a) (2a+1)? b) (x—3y)° &) (x—y)"

7.5 Die Kunst des Faktorisierens

7.5.1 Einfaches Ausklammern

Beim weiteren Eindringen in die Mathematik im Laufe der nichsten Jahre
wirst du feststellen, dal man mit Produkten viel mehr anfangen kann als mit
Summen. Daher mul3t du Bescheid wissen, wie man Aggregate in Produkte
verwandeln kann. Dieses Verwandeln nennt man auch Faktorisieren eines
Aggregats,

Die einfachste Art des Faktorisierens kennst du bereits als eine Anwendung
des verallgemeinerten Distributivgesetzes (Satz 90.2) in der Form des Aus-
klammerns. Wir vertiefen deine Kenntnisse durch einige

Beispiele:

2 7
1) 6uv 4+ 3u® —%uw =
= 3u - 2v -+ YL i — 3u 3w =

=3u(2v + u — 3w).

Der Faktor 3u wurde ausgeklammert.

2) Man kann auch Aggregate ausklammern:
3(a+b)—ala+b)+4b*(a+b) = (a+b)(3 —a-+ 4b>).

3) Manchmal muB man ein Glied des Aggregats erst in ein Produkt
umschreiben, indem man den Faktor 1 hinzufiigt:
3a* +a=

=a'3ad+a-1= Trick: a=a-1
—=dPa-1).

4) Mit Gewalt kann man jeden gewiinschten Faktor ausklammern! Wir
] ) (o
wollen aus dem Aggregat $x° — 7xy + x den Term 3x ausklammern,
damit in der Klammer keine Briiche mehr vorkommen.
2

g
3
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3) Besonders aufpassen mullt du, wenn du in Potenzen von Aggregaten
ausklammerst.
(8a%b—12a)* =
= (4a[2ab —3])* =
= (4a)>(Qab — 3)* =
= 16a%(2ab — 3)2.

Mit einiger Ubung kannst du bald auf die 2. Zeile unserer Beispiele verzichten,
indem du im Kopf jeden Summanden durch den auszuklammernden Term
dividierst. Das muf3t du aber iiben! Dazu dienen die

Aufgaben
l. a) 35t —4s®+5 b) ax®+ bx + x
¢) 4a®—8a®+ 124° d) ay + by — &2
2. a) %a+3%b b) 15x—%y+ 1.2z
9 u—bi0 d) ks — 3
3. Faktorisiere so, daB in der Klammer keine Bruchzahl mehr steht.
a) x4+ 3y b) 0.4a — 0,56
c) r+3s—1 d —0,0lu+01v+w
e) 13+ 15x— 14z ) —12a+3%b—1
4. a) abc — acd b) a?b + ab* — a*b?
¢) x*—x>+ x> d) v?v® + uv? —up®
5. a) 6uv + 6uw — 3uz b) 3ip —63p%¢q
¢) —gx*—3gx° d) 1334203z — 250z

6. Berechne im Kopf nach geeigneter Faktorisierung.

a) 13-9+13 b) 718 +13-18
c) 29-18—1,9-18  d) 27> —17-27
e) 12-834232-83  f) 132+3-13—16-13

e7.2a) 108xy —162x + 216y
b) 2%xy*z2 — 2x%y2z% — 42x3p?z + 13xy?2? — 32x?)y?z
o8. a) 21u* — 7w’ + 235u?
b) 1,3x3y+2,35x%y% —0,9x)°
9. Klammere 3 aus.
a) 18q4% —273b b) 9x + 4
¢) 1—12x d) a—1

e ——— e e ————
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10. Klammere —1 aus.

a) —3a?4- b2 b) 3 —5x &) —4.—8h d) 3a’b+ 5x
11. Klammere —% aus.

a) -?{-a —42p b) 8a—3% c) —1—3b d) 2x+ 3y
12.a) u(v+w) —v(w+w)+ww+w)

b) x(a+b—c)—yle—a—b)+z(a—c+b)

¢) m(2a—3b)+n(B3b—2a)—p(—3b+ 2a)

d) u(e—f) —3v(de—2f) + w(3f — be)

13.a) 2x(a—b) —%iy(a—b) b) 3,2a(x —3)+4.8b(x — 3)
¢) 14x(3y+22)—28y(By+ 22)

14. a) 12a%b*(7x — 1) + 84ab*(Tx — 1)
b) 6a2(1 = x)—27ab?(x—=1)
¢) 2x2y(Bx—y)+7xy*(y — 3x)
d) 1,2¢%(x—y)+ 8,4ab(x—y)—0,72b%(y — x)
15.a) x(a+b)+a+b b) x(a—b)+a—b
¢) x(a—b)—a+b d) x(a+b)+a—>b
16. a) (23x—y)(23a—b)—(1ix+y)Ba—b)
ob) (3, ?uzh +¢)(7,3ab% — ¢) + (3,7a%b + ¢)(2,7ab* + ¢)
17.2) 42 y%z — 6xpz? + i()\. e
b) 3a®b %e'd+27a’ b2 ¢® — 18(abo)t!
ey =B ahe i —a) (—b}
e

d) (x+p)2x*+v)—(x+p) p?)

7.5.2 Mehrfaches Ausklammern

In manchen Féllen gelingt ein Faktorisieren auch dann, wenn kein allen Glie-
dern gemeinsamer Faktor vorhanden ist, indem man zunéchst aus geeigneten
Teilaggregaten einen gemeinsamen Faktor heraussetzt.

Dabei gibt es oft mehrere Moglichkeiten des Vorgehens.

Beispiele:
1) Faktorisiere ax —ay + bx — by.
1. Maglichkeit: 2. Moglichkeit:
ax—ay+bx—by= ax—ay+bx—by=

=g(x—y)+bx—y)= =x(a+b)—y(a+b)=
= (x—y)(a+b) =(a+b)(x—y)
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2) au+b—bv+av—bu—a=
= (au+av—a)+ (b —bv—bu) =
=a(u+v—1)+b(1l —v—u) =
—aglu+v—1)—blut+v—1)=
=(u+v—1)(a—>b)

3) 6a%b—3ab®*—2a+b=
= 3ab(2a—b)—2a+ b =
= 3ab(2a—b) —(2a—b) =
= (2a—b)(3ab—1)

Aufgaben

1. a) ax+ay+ bx+ by b) xs—ys+ xt—yt
¢) ab+ac—bx—cx d) xz—yz—ax+ay

2. a) 2ux+3vy+ 2uy+ 3vx b) ab+c+b+ac
¢) x%+ax+ab+ bx d) x?2y2 +x*+y2+1

3. a) mx+ny+nx+my+rx+ry b) ap —bp —aq+ bg+ az — bz
¢) ar+br+cr—a—b—c d) eh+fh—gh—ei—fi+gi

4. a) ax—cx+2a+2b+bx—2c b) pu—pv+ru—qv—rv+qu
) x—y—xz+yz—1+z d)1+a+a’+a*+a*+a’

thn

a) 33ax+ 3,3ay —4,4bx —4,4by
b) 0,7pq —0.9pr+ 0,7gs — 0.9rs
oC) 4.2uv + 3,5uw + 2w+ 2,4v
od) —8ax?+9bx?—3,6by* + 3,2ay?

6. a) 7ax -+ 3ay —1bx —3by
b) az?+ 3axz + 3bz% +15bxz
©) 0,2xyz—0,3uxy—0,6y*z + 0,9uy?

3 ol
d) uv?® —tuv® + 3av® — 3av?

7. a) ax— Tbx+ 4ay — 28by

b) 12ax — 2ay — 18bx + 3by
¢c) x(a+b—c)—ylat+b—c)+(x—y)
d) y@a—b—c)+x(b+c—a)+(x—y)

e8. a) (a+2b)(Bux—vy)—(uy —3vx)(a+ 2b)
b) (7xz—3y)(3a+4b) — (3a+4b)(yz —21x)
¢) (2st—3ru)(5p—q)+ (3rt— 2su)(5p —q)
d) (7d —2)(10eg — 2fh) + (2 — 7d)(5eh — 4/g)
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9. a) 64au+ 36eu + 64dax + 36ex — 44bu — 44bx
b) 24ap + 54aq — 36bp — 81bg + 60cp + 135¢q

$¢) tay® —1by? +%ay —La—2by+1b

2 Al e i, ; £ J
8d) Zrisv—Hristo + risu—Ltr¥su+ trtu — Srh

7.5.3. Faktorisieren mit Hilfe der binomischen Formeln

Schreibt man die binomischen Formeln von Satz 187.1 in der Form

a +2ab+b*=(a+b)*> bzw. a®>—2ab+ b? = (a—b)* bzw.

a*—b%:=(a+b)(a—b),

i

so kann man gewisse Aggregate mit ihrer Hilfe auch faktorisieren.

Beispiel 1:
W +12u+ 36 =
=u+2 u 646> = (u+6)>

¢l ) _.J ]

Beispiel 2:

16x* — 8x2y3 + y© =
— (4_\_3}2 Tl 413 : .1'3 0 U,_")E = (4.\‘2 __1.3}2

h
| D

Merke: Bestimme zunéchst die beiden Glieder, deren Quadrate im gegebenen
Ausdruck vorkommen, und priife anschlieBend, ob ihr doppeltes Produkt mit
dem entsprechenden Glied des gegebenen Aggregats iibereinstimmt.

Beispiel 3:

a b

= Bx+T7y)(Ty — 2x)

Eine Differenz zweier Quadrate 14Bt sich stets in ein Produkt verwandeln.
Dagegen ist dies bei einer Summe zweier Quadrate nicht moglich.* Bei
3. Potenzen dagegen lassen sich sowohl die Differenz wie auch die Summe
faktorisieren. Es gilt ndmlich:

* Produktzerlegungen von der Form x* + p? = 1+ (x* + 3%) = 1(2x% + 29%) = ... usw., die immer méglich
sind, interessieren in diesem Zusammenhang natiirlich nicht.
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Satz 203.1: @+ b* = (a + b)(a* — ab + b?)
a® — b = (a — b)(a* — ab + b?)

Die Richtigkeit dieser Formeln siehst du sofort ein, wenn du die rechten Seiten
ausmultiplizierst (Aufgabe 204/16).

Beispiel 4:
0,027x3 + 1000y® = (0,3x + 109)(0,09x> — 3xy + 100y?)

Aufgaben
l.a) x> —8x+16 b) u? — 6uv + 9v?
c) 422 + 4;), + p? d) 49p® — 112pq + 644°
e) 9y* +30y* +25 f) x1°+4x°>+4
2.2) a*+a+3 b) —84a-+9a*+ 196
¢) 0,16x% —0,24x3y + 0,09* d) 2.25 —3x-+ K
e) 0,36r> —4,8rs+ 1652 f) 4x% 4+ 52x+ 169
03. a) %5% + 1857+ 1842 b) &u® —juv+ 2392
¢) 1,21 +a+55a° d) 1,96x* —2,8x> +1
4. a) 625 —196a° b) 1 —81x?
c) tsu’ —3530’° d) 0,494 —0,01h
5. a) 2,25 —0,0256¢> b) £&p* — 3,61¢°
¢) 400x2y% —121u*v? d) 35 x*—1
6. 3) 20x2 — 45)2 b) 3.6x2 —4,9y>
¢) 175p* —252¢4* d) 48(xy)* — 147u?v?
7. a) 6a*+ 12ab+ 6b? b) 7x*> —T7x+ 13
¢c) a>+2a*+a d) =127 12
8.a) a*—b* b) x®—y° eyt —3°
d) x*—2x2p2+y* e) 81 —T72u®+ 16u* $f) 64x° —1
9.a) a®+2ab+b?—c? b) 4x% — 20x + 25 — 9)?
T 3 . v?
¢) 36a’ +48ab + 16b* — 81¢~ d) 196u* — 4uv + R
&) a?+2ab+b>—x*+2xy—y> o) 16u*—v*+2v—1
10. a) (2a + 3b)* — 164> b) (2a — 3b)* — 164>
¢) 16a*- (Ecr+.~h}‘ d) 164 — (2a — 3b)?
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11. a) (13x+ 14y)> — (13x — 14y)?
b) (0,1x—0.,2y)*> —(0,1x + 0,2y)>
) Gx+3y)* = Gx—%)’
d) (13x—23p)% — (13x + 21y)?
12.3) a-— b2 —¢*> | 2hc b) x> —y2—2yz— 22
ec) 2,894% — 0,64b% + 2,08bc — 1,69¢2
od) 3,24x*—2,56y* —3,52yz — 1,212
el3. 2) 24% —2b* +a*x —b2x b) 2m*x — 8n?x + 3m*y — 12n%y
¢) 12a*x—2b%y —3b%x + 8a?y
d) 36p°x* —9p?y? — 164%x? + 442y
o14. a) 9a’x — 9a®y — 12abx + 12aby + 4b%y — 4b*x
8b) 5a’x? —ga’xy +4a?y? —§b*x* + b2 xy — Lb?y2

15. Verwandle, wenn moglich, in ein Produkt.

a) a*x*—a’y*—b*x® -+ b¥y? b) 36p* + 21pq + 644>
¢) —a*—2ab—0%+1 d) a®> —2ab+ b2 —1
e) u? 4 uv+v? f) at + b*
g) 4a* — 5h* h) a? +2ab + b2 + 1
16. a) Beweise Satz 203.1.
b) a* — 853 c¢) 243 4+ 216a° d) &-x*—1
e) 2434° 4+ 249p3 f) 0,001x + 326 g) 0,72943 — 100000003

7.5.4 Faktorisieren durch Probieren

Wenn du a* + 5a + 6 in ein Produkt verwandeln sollst, so erscheint dir dies
sicherlich auf den ersten Blick als aussichtslos. Erstaunlicherweise kommt
man hier aber mit einigen kleinen Uberlegungen und einem geschickten Pro-
bieren zum Ziel.

Da das Aggregat mit a* beginnt und aus 3 Gliedern besteht, versuchen wir den
Ansatz

a’+5a+6=(@ao)aa?).

Die Symbole 0O und A stehen dabei fiir + oder —.

Die fiir die Fragezeichen zu wihlenden Zahlen miissen, miteinander multipli-
ziert, 6 ergeben. 6 1d63t sich mit natiirlichen Zahlen als 2 - 3, aber auch als 1- 6
schreiben. Wir versuchen es mit 2 - 3 und setzen also an

a4+ S5a+6=(ano2)(an3l).

Von den 4 moglichen Kombinationen + +, + —, — + und — — scheiden die
beiden mittleren aus, da wir sonst — 6 fiir das letzte Glied erhielten. Die Kom-
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bination + + fithrt zum richtigen mittleren Glied 5a. Also gilt die Faktorisie-
rung
a?+5a+6=(a+2)(a+3).

Hitten wir 6 als 1 - 6 zerlegt, so ergiibe (@ 0 1) (a & 6) fiir keine der 4 Rechenzei-
chenkombinationen das mittlere Glied 5a. Man muB also ein Gespiir dafiir
haben! Bei ¢? + Sa — 6 fithrt namlich gerade 6 = 16 zum Ziel:
a*+S5a—6=(a—1)(a+6).

Eine derartige Faktorisierung durch Probieren wird natiirlich nicht immer
gelingen. Beim Versuch hilft

Regel 205.1: Bei Trinomen der Form x* + bx + ¢ mit ganzen Zahlen b
und ¢ zerlegt man ¢ in ein Produkt zweier natiirlicher Zah-
len und versucht, die Rechenzeichenkombination so zu be-
stimmen, daB sich die richtigen Rechenzeichen und das
mittlere Glied ergeben.

Hat das Trinom die Form ax? + bx + ¢, so klammert man
erst a aus.

Beispiel: 3x>—6x+9=3(x>—8x+12)=3(x—2)(x—6)

Aufgaben
1. a) x*?+7x+12 b) x> —x—12
¢) x>+ 11x+10 d) x24+9x—10
2. a) u?—13u+40 b) a®> — 20a+ 96
¢) z2—10z+9 d) x>?—x—4
3. a) x*—5xy+ 4y? b) y*+ yz— 56z°
¢) a®>—9ab+ 18h* d) u? — 4uv — 210
ed. a) x> +2x—48 b) x? —2x—48
¢) x> —2x+48 d) x2+2x+48
5. a) 2x?+16x+ 30 b) 7x? — 14x — 105
¢) 2x>+6x+9 d) —x24+12x—135
6. ) 3x%—39x+ 108 b) Lx>—3x+9
¢) —ix2+9x—18 d) 0,1a% —1,1a+1
7. a) —04z°+28z—438 b) 1p2 — pg — 3 q?
¢) ix? +Ix+8 d) 3y2 425y + 120
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