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Kennzeichnung der in Bayern nicht allgemein verbindlichen Stoffgebiete

Fakultative Abschnitte sind durch zwei vorangestellte Sterne (* *) gekenn¬
zeichnet .

Kennzeichnung der Aufgaben

Rote Zahlen bezeichnen Aufgaben , die auf alle Fälle bearbeitet werden sollen .
• bzw . Jusw . bezeichnen Aufgaben , die etwas mehr Ausdauer erfordern , weil
sie entweder schwieriger oder zeitraubender oder beides sind . Je mehr Punkte ,
desto mehr Mühe !
Zitiert werden die Aufgaben unter der Seite und der Nummer . So bedeutet

21/10 die Aufgabe 10 auf Seite 21 .

Nummerierung von Definitionen , Sätzen , Abbildungen und Tabellen

Die Zahl vor dem Punkt gibt die Seite an , die Zahl nach dem Punkt num¬
meriert auf jeder Seite . Abb . 40 .2 bedeutet beispielsweise die 2 . Abbildung
auf Seite 40.



7

Vorwort

Algebra 9 soll in Fortsetzung der Bände Algebra 7 und 8 den Teil der Algebra
darstellen , der üblicherweise in der 9 . Jahrgangsstufe behandelt wird . Im Zen¬
trum stehen zwei Themen :
(1) die Einführung der reellen Zahlen und der Umgang mit ihnen, insbeson¬

dere das Rechnen mit Quadratwurzeln ;
(2) die Lösung von quadratischen Gleichungen und in diesem Zusammenhang

erste Bekanntschaft mit quadratischen Funktionen und ihren Graphen ,den Parabeln .
Beide Themen spielen in der Geschichte der Mathematik eine bedeutende
Rolle . Wie in den vorangegangenen Büchern ist auch hier wieder versucht
worden die historischen Bezüge ausführlich und gut lesbar darzustellen . In¬
teressierte Schüler finden auf diesen Seiten eine Vielzahl von Informationen
und Anregungen , die ihnen die Algebra vielleicht etwas spannender und weni¬
ger blutleer erscheinen lassen .
Das Buch soll als Angebot verstanden werden und bietet daher an manchen
Stellen auch Ausblicke und Erweiterungen , die zur Bereicherung des Unter¬
richts beitragen können , die aber nicht zum Pflichtstoff gehören . Die entspre¬
chenden Abschnitte sind durch ** gekennzeichnet .
Der Aufgabenteil ist wieder sehr reichhaltig und bietet Aufgaben von der
Fingerübung bis zum echten mathematischen Problem . Auch hier soll der
Lehrer eine seiner Klasse und seinen Vorstellungen angemessene Auswahl
treffen können . Zur Erleichterung sind die Aufgaben gekennzeichnet : Rote
Zahlen bedeuten Aufgaben , die eigentlich jeder Schüler bearbeiten sollte .
Die Kennzeichnung durch • , J , . . . weist auf Aufgaben hin , die mühsamer
oder schwieriger sind als das , was üblicherweise verlangt wird . Sie sind auch
als »Futter « für Schüler gedacht , denen die »normale Kost « zu wenig abver¬
langt . So soll das Buch sowohl für schwächere Schüler genügend Erklärungen
und einfache Beispiele als auch für interessiertere Schüler die Möglichkeit zur
intensiveren Beschäftigung mit der Algebra bereithalten .

München , im Mai 1989 Die Verfasser



Zur Widmung auf der Titelseite

Menaichmos lebte um die Mitte des 4 . Jh . s v . Chr . , war ein Schüler des Eudoxos und

Freund Platons . Er schuf die ersten Ansätze zur Kege'lschnittlehre . Die Anekdote ,
Menaichmos habe auf Alexanders Frage , ob es keinen leichteren Zugang zur Mathe¬

matik gebe, die auf der Titelseite zitierte Antwort gegeben, wurde von Stobaios (5 . Jh .

n . Chr .) in seiner Anthologia überliefert . Da sonst nirgends berichtet wird , dass Alex¬

ander neben Aristoteles noch einen besonderen Lehrer für Mathematik gehabt ha¬

ben soll, halten einige sie für eine Nachbildung der Erzählung , dass Euklid diese

Antwort Ptolemaios I . (reg . 305 - 283 v . Chr .) auf dessen gleich lautende Frage ge¬

geben habe . Andere hingegen nehmen an , dass die Menaichmos -Anekdote die ur¬

sprüngliche sei und später auf den berühmteren Euklid übertragen worden sei .

Die Anekdote über Euklid überlieferte uns der bedeutende Neuplatoniker Proklos

(410/411 Byzanz - 17 .4 .485 Athen ) in seinem Kommentar zum I . Buch von Euklids

Elementen:
Kai yäß ö 'AoxipfiShs euißakcbv Kai xrö tcqgixo ) [nroA -spaiq )] (ivripoveuEi roß

EüxkeiSou , xai psvxoi xai tpaorv ön nxokEpaiog f)qetö tcote auxöv, si xi<; soxiv

jrsßi yscopEXßiav ödöq auvxopoixEQa xfjg axoiXEicoasroq - ö 8s üuEXßivuxo , |if | stvai

ßaai/axf ]v axganöv £7ti y£a»|iEXQiav.
Denn Archimedes , der nach dem ersten Ptolemaios lebte , erwähnt Euklid und erzählt

auch in der Tat , Ptolemaios habe ihn einmal gefragt , ob es nicht für die Mathematik

einen kürzeren Weg gebe als die Lehre der Elemente . Er aber antwortete , es führe kein

königlicher Weg zur Mathematik .

NB : Wir haben bewusst das griechische geometria mit Mathematik übersetzt ; denn

bis ins 17 . Jh . verwendete man das Wort Geometrie im Sinne von Mathematik .



1 Die reellen Zahlen
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Pentagramm - Siegel Salomonis - Drudenfuß
Gipsschnittstukkatur aus Marokko

Das magische Zeichen, das 5-mal A , das große griechischeAlpha , enthält und deswegen
auch Pentalpha heißt , symbolisiert das Weltall, die Vollkommenheit und auch die
Gesundheit . Es diente den Pythagoreern (500- 350 v . Chr .) und später den Neupla -
tonikern (3 .- 6 . Jh . n . Chr .) als Zeichen ihres Bundes . - Salomo , König von Israel und
Juda (um 965- 926 v . Chr .) , galt in den ersten Jahrhunderten unserer Zeitrechnung bis
ins Mittelalter hinein als großer Zauberer ; das Pentagramm wurde zu seinem Siegel . -
Die Drude ist eine Hexe , ein weiblicher Nachtgeist , der für Alpträume und Magen¬
drücken verantwortlich ist . Ihr Fußabdruck , der Drudenfuß , ist , auf die Schwelle ge¬
zeichnet , ein Abwehrsymbol gegen Druden , später ein allgemeines Bannzeichen gegen

Geister und den Teufel (siehe Goethe , Faust 1 . Teil , Vers 1394ff.)



1 Die reellen Zahlen

1 . 1 Das Problem der Quadratverdoppelung

Der griechische Philosoph Platon
(428 - 348 v . Chr .) beschreibt in sei¬
nem vor 389 v . Chr . verfassten Dialog
Menon (82b- 85b) die Lehrmethode
seines berühmten Lehrers Sokrates
(470- 399 v . Chr .) . Er schildert , wie
Sokrates einem mathematisch unge¬
bildeten Sklaven seines Freundes
Menon dazu verhilft , die folgende
Aufgabe zu lösen :

Zu einem gegebenen Quadrat soll
ein zweites Quadrat gefunden wer¬
den , dessen Flächeninhalt doppelt
so groß ist .

Der Sklave schlägt zunächst vor jede
Seite des gegebenen Quadrats (Abbil¬
dung 10 .2) zu verdoppeln , erkennt
dann aber , dass sich dabei der Flä¬
cheninhalt vervierfacht (Abbildung
10 .3) . Das gesuchte Quadrat darf nur
halb so groß sein ; man muss also die
Fläche des großen Quadrates halbie¬
ren . Die Lösung , zu der Sokrates den
Sklaven anleitet , beruht darauf , dass
von jedem der vier Teilquadrate die
Hälfte weggenommen wird , indem
man sie , wie Abbildung 10 .4 zeigt ,
durch Diagonalen zerschneidet . ABCD ist dann das gesuchte Quadrat . Seine

Seite ist die Diagonale des gegebenen Quadrats .
D

Abb . 10 . 1 Platon , eigentlich Aristo -
kles (428 Athen oder Ägina - 348 Athen )
Kaiserzeitliche römische Kopie nach dem
Werk des Silanion , entstanden wohl bald
nach 348 v . Chr . München , Glyptothek

Abb . 10 .2
gegebenes Quadrat

Abb . 10 .3 Quadrat mit
doppelter Seitenlange

Abb . 10 .4 Quadrat mit
doppeltem Flächeninhalt
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Uns interessiert die Frage , wie lang die Seite des Lösungsquadrats ist . Das
hängt natürlich von der Größe des gegebenen Quadrats ab . Zur Verein¬
fachung setzen wir voraus , dass es sich um das Einheitsquadrat handelt , also
um das Quadrat mit der Seitenlänge 1 (d . h . 1 Längeneinheit ) . Sein Flächen¬
inhalt ist damit ebenfalls 1 (d . h . 1 Flächeneinheit ) . Da somit das Lösungs¬
quadrat ABCD den Flächeninhalt 2 besitzt , muss für seine Seitenlänge x
gelten : x ■x = 2 , kurz x 2 = 2 .
Um die Länge der Diagonale des Einheitsquadrats angeben zu können
muss man also diese Gleichung lösen . Man erkennt leicht , dass x eine Zahl
zwischen 1 und 2 sein muss , denn es ist 1 2 < 2 und 2 2 > 2 ; also muss 1 < x < 2
gelten . Eine genauere Eingrenzung von x erhält man , indem man die Qua¬
drate von 1,1 ; 1,2 ; 1,3 ; . . . berechnet ; wegen 1,4 2 = 1,96 und 1,5 2 = 2,25 gilt :
1,4 < x < 1,5 . Ebenso findet man mit Hilfe des Taschenrechners schnell die
Ergebnisse

1,41 < x < 1,42
1,414 < x < 1,415

1,4142 < x < 1,4143 .
Können wir auf diesem Wege den genauen Wert von x finden?
Sicherlich nicht ! Denn wenn man einen Dezimalbruch mit einer , zwei, drei, . . .
Stellen nach dem Komma quadriert , erhält man eine Zahl mit zwei, vier , sechs,
. . . Stellen nach dem Komma , also niemals eine ganze Zahl . * Die Gleichung
x 2 = 2 kann somit keinen endlichen Dezimalbruch als Lösung haben .
Neben den ganzen Zahlen und den endlichen Dezimalbrüchen gehören zu der
uns zur Verfügung stehenden Menge Q der rationalen Zahlen auch Brüche ,
deren Dezimalentwicklung unendlich und periodisch ist . Das sind bekannt¬
lich diejenigen Brüche , deren Nenner nach vollständigem Kürzen noch einen
von 2 und 5 verschiedenen Primfaktor enthalten . Gibt es unter ihnen eine
Lösung von x 2 = 2?

Angenommen , x = — mit p , q e N wäre eine solche Lösung ; dabei sei dieser
q

Bruch vollständig gekürzt . Da x keine ganze Zahl ist , muss q > 1 gelten .
Durch Quadrieren erhält man x 2 = ^ ^

. Dieser Bruch kann aber keine
q - q

ganze Zahl sein; denn , da p und q teilerfremd sind , lässt er sich nicht kürzen ,
und wegen q > 1 ist sein Nenner von 1 verschieden . Das heißt aber : Es gibt
keinen Bruch , dessen Quadrat den Wert 2 hat .
Das Ergebnis unserer Überlegungen lautet somit : Die Gleichung x 2 = 2 ist
mit rationalen Zahlen nicht lösbar . Wir sind mit den uns zur Verfügung ste¬
henden Zahlen nicht in der Lage die Länge der Diagonale des Einheitsqua¬
drats anzugeben . Man erkennt leicht , dass es neben x 2 — 2 noch viele andere ,
ebenso einfache Gleichungen gibt , die in Q nicht lösbar sind . Weitere Beispiele
findest du in den folgenden Aufgaben .

Wir setzen dabei voraus , dass die letzte Stelle der zu quadrierenden Zahl jeweils nicht 0 ist .
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Aufgaben
1 . Zeige : Die folgenden Gleichungen haben keine rationalen Lösungen ,

a) x 2 = 3 b) x 2 = 6 c) x 2 = 8 d) x 2 = 500
2 . Die folgenden Gleichungen sind in Q lösbar . Gib alle Lösungen an .

a) x 2 = 1 b) x 2 = 4 c) x 2 = 121 d) x 2 = 625
e) x 2 = f) x z = 2% g) x 2 = 0,64 h) x 2 = 0,0004

• 3 . Beweise: Die Gleichung x 2 = n,ne \Kl , ist genau dann in Q lösbar , wenn n
eine Quadratzahl ist .

4. Der folgende auf den Begriff »gerade Zahl« sich stützende Beweis für die
Unlösbarkeit der Gleichung x 2 = 2 in der Menge Q wurde bereits von
Aristoteles (384 - 322 v . Chr .) in seinen Analytica priora (1 . 23 . 41a . 23 -
27) angedeutet und ist als Anhang zu Buch X der Elemente des Euklid
(um 300 v . Chr .) überliefert .

Angenommen , der vollständig gekürzte Bruch — sei eine Lösung der
Gleichung x 2 = 2 . Dann gilt ^

p 2 = lq 2

Daher ist p 2 und somit auch p eine gerade Zahl . Man kann deshalb
p = 2n setzen , mit n e [Kl .
(2«) 2 = 2 q 2

| | : 2
2 n2 = q2

Also ist auch q 2 und damit q eine gerade Zahl .
Begründe die angewandten Schlüsse . Erkläre , wieso die Annahme zu ei¬
nem Widerspruch geführt hat und somit falsch ist .

• 5 . Der Beweisvon Aufgabe 4, bei dem die Teilbarkeitdurch den Primfaktor2
die entscheidende Rolle spielt , lässt sich auch auf andere Primfaktoren
übertragen . Zeige nach dieser Methode , dass auch die folgenden Glei¬
chungen in Q unlösbar sind : a) x 2 = 7 b) x 2 = 12 c) x 2 = 15

6 . Die Gleichung x 2 = f hat keine rationale Lösung . Das kann man so be¬
weisen : Aus x 2 = | erhält man (3x) 2 = 2 - 3 (Multiplikation mit 3 2) . Mit
der Substitution z — 3x wird daraus z2 = 6 , eine in <Q unlösbare Glei¬
chung (vgl . Aufgabe lb ) .
Begründe mit dieser Methode die Unlösbarkeit der Gleichungen
a) x 2 = 5 , b) x 2 = 2f , c) x 2 = 0,2, d) x 2 = 1,25
in der Grundmenge Q.

• 7 . Beweise: Die Gleichung x 2 = - , p , q e \bi , ist in Q genau dann lösbar ,
wenn p • q eine Quadratzahl ist . (Hinweis : Beachte die Aufgaben 6 und 3 .)
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8 . Gegeben ist ein Quadrat mit der Seitenlänge a , a e Q + .
a) Bestimme die Seitenlange eines Quadrats, dessen Flächeninhalt

1) 4 -mal, 2) 49 -mal, 3) 2,25-mal, 4) ff -mal so groß ist .
b) Gibt es eine rationale Zahl, welche die Seitenlänge eines Quadrats mit

dem 1) 5fachen , 2) löfachen , 3) l,6fachen Flächeninhalt angibt ?

9 . Kannst du mit Hilfe rationaler Zahlen angeben , wie lang die Seiten folgen¬
der Figur sind?
a) Quadrat mit 1) 15 m 2

, 2) 16 cm 2
, 3) 2,3 dm 2 Flächeninhalt

b) Rechteck mit dem Seitenverhältnis 2 : 3 und 1) 36cm 2
, 2) 324mm 2 ,

3) 0,24 m 2 Flächeninhalt

10 . Dem Problem der Quadratverdoppelung entspricht bei den Körpern das
der Würfelverdoppelung :

Zu einem gegebenen Würfel soll ein zweiter Würfel gefunden werden ,
dessen Rauminhalt doppelt so groß ist .

Diese Aufgabe wird als delisches Problem bezeichnet aufgrund einer Er¬
zählung des Eratosthenes (3 . Jh . v . Chr .) :
Als auf der Insel Delos die Pest wütete , wandten sich die Bewohner Hilfe
suchend an Apollo . Sie erhielten den Auftrag , den würfelförmigen Altar
in seinem Heiligtum zu verdoppeln , aber dabei die Gestalt zu bewahren ,
a) Zeige, dass die Kantenlänge x eines Würfels, dessen Volumen doppelt

so groß ist wie das des Einheitswürfels , die Gleichung x 3 = 2 erfüllen
muss .

• b) Begründe nach der bei x 2 = 2 angewandten Methode , dass auch die
Gleichung x 3 = 2 in Q nicht lösbar ist .

• 11 . Die Tatsache , dass es Streckenpaa¬
re gibt , deren Verhältnis sich nicht
durch eine rationale Zahl ausdrü -
cken lässt , wurde zuerst von den
Griechen erkannt . Die Pythago -
reer , deren Bundeszeichen das re¬
gelmäßige Fünfeck war (vgl . Ab¬
bildung 9 . 1 ) , entdeckten gerade an
diesem Fünfeck , dass - ebenso wie
beim Quadrat - Seite und Diago¬
nale kein rationales Verhältnis ha¬
ben .
Aus der Ähnlichkeit der Fünfecke
ABCDE und A' B ' C ' D ' E ' in Ab¬
bildung 13 . 1 folgt , dass das Ver¬
hältnis von Seite und Diagonale in
beiden Fällen gleich ist . Abb . 13 . 1 Das regelmäßige Fünfeck

D
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Es gilt also

d d'
~
s

=
7 ' ( i )

a) Weise nach, dass sich d ' und s ' folgendermaßen durch d und s aus -
drücken lassen :

d’ und s ’ = 2s — d (2)

(Hinweis : Welche besondere Eigenschaft haben die Vierecke ABCB ' ,
ABA ' E , C ' E ' CA ' und C ' E ' B ' E?)
Begründe sodann die Abschätzung
s < d < 2s . (3)

b) Zeige mit Hilfe von (2) , dass die Gleichung ( 1 ) durch die Substitution
d

x ■■= - folgende Form erhält :
s
x — 1

x (4)

Welche Abschätzung für x ergibt sich aus (3)?
c) Aus der Annahme , ein Bruch - mit teilerfremdennatürlichen Zahlen p

q
und q sei Lösung der Gleichung (4) , lässt sich folgende Gleichung
herleiten :

P2
p + q = — (5)q
Führe die Herleitung aus .

d) Begründe anhand der Gleichung (5) , dass die in c gemachte Annahme
falsch ist und dass demnach Seite und Diagonale des regelmäßigen
Fünfecks kein rationales Verhältnis haben .

1 .2 Irrationale Zahlen; Intervallschachtelungen
Wir mussten feststellen , dass die rationalen Zahlen schon zum Lösen von
so einfachen Gleichungen wie x 2 = 2 nicht ausreichen . Dazu benötigen wir
also neue , nicht rationale Zahlen .
Jede rationale Zahl lässt sich, wie wir wissen , als Dezimalzahl schreiben .
Sofern es sich nicht um eine ganze Zahl handelt , erhält man dabei entweder
eine endliche oder eine unendliche periodische Dezimalzahl .

Beispiele:
1 = 0,75 ; 1 = 0 , 6 ; 1 = 1,318 ; 3lö = 3,07
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Natürlich kann man sich auch Dezimalzahlen vorstellen , bei denen die Zif¬
fernfolge hinter dem Komma unendlich und nicht periodisch ist , zum Beispiel
0,63633633363333 . . . oder
5,18118811188811118888 . . . ,
wobei man sich die Ziffernfolge nach der leicht erkennbaren Gesetzmäßigkeit
endlos fortgesetzt denken muss . Dass man auch mit solchen Gebilden ebenso
rechnen kann wie mit den rationalen Zahlen , ist keineswegs selbstverständ¬
lich . Darauf soll erst im nächsten Abschnitt näher eingegangen werden .
Diese neuen nicht rationalen Zahlen werden in der mathematischen Fach¬
sprache als irrationale * Zahlen bezeichnet . Es gilt also

Definition 15 . 1 : Eine Zahl, deren Dezimalentwicklung unendlich und
nicht periodisch ist , heißt irrationale Zahl .

Es ist nicht schwer , sich eine Vorstellung davon zu machen , wie die neuen
irrationalen Zahlen in die bekannten rationalen Zahlen einzuordnen sind . Als
Beispiel betrachten wir die irrationale Zahl z = 0,63 633 6333 . . . und verglei¬
chen sie mit geeigneten rationalen Zahlen . Die Ziffer 0 vor dem Komma sagt
uns , dass z zwischen den ganzen Zahlen 0 und 1 , also im Intervall [0 ; 1 ]
liegen soll:

O ^ z ^ l d . h . ze [0 ; 1 ]
Nimmt man die erste Stelle nach dem Komma hinzu , so ergibt sich die Ab¬
schätzung

0,6 ^ z 0,7 d . h . ze [0,6 ; 0,7] .
Indem man so fortfährt und jeweils eine weitere Ziffer der unendlichen Dezi-
malzahl berücksichtigt , erhält man

0,63 ^ z ^ 0,64 d . h. z e [0,63 ; 0,64] ,
0,636 ^ z ^ 0,637 d . h. ze [0,636 ; 0,637] ,

0,6363 ^ z ^ 0,6364 d . h. ze [0,6363 ; 0,6364] ,
0,63633 ^ z ^ 0,63634 d . h. ze [0,63633 ; 0,63634] ,

Man erreicht so eine immer schärfere Eingrenzung von z durch rationale Zah¬
len . Die Folge der Intervalle für z muss man sich ohne Ende fortgesetzt denken .

0,63 0,64
\ /

0,6 1 07

Abb . 15 . 1 Intervalle für z = 0,636336333 . . .
irrational = nicht rational . Zur Geschichte dieses Wortes siehe Seite 63.
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Man erkennt leicht (Abbildung 15 . 1 ) , dass diese Intervalle »ineinander ge¬
schachtelt « sind , d . h . , dass das jeweils nächste ganz im vorausgehenden ent¬
halten ist . Die Längen dieser Intervalle sind der Reihe nach 1 , jq , y^ , j ^qö ,
sie nehmen schnell ab und werden beliebig klein , d . h . , jede positive Zahl , auch
wenn sie noch so klein ist , wird von den Intervalllängen schließlich unterschrit¬
ten . Für eine solche Intervallfolge führt man eine passende Bezeichnung ein :

Definition 16 . 1 : Eine Folge von unendlich vielen abgeschlossenen Inter¬
vallen , bei welcher

( 1 ) jedes Intervall in allen vorangehenden enthalten ist und
(2) die Intervallängen beliebig klein werden ,
heißt Intervallschachtelung .

Das vorausgehende Beispiel zeigt , dass und wie man zu einer irrationalen Zahl
eine Intervallschachtelung angeben kann . Aber auch für rationale Zahlen gibt
es Intervallschachtelungen . Das zeigen die folgenden

Beispiele:
1 ) I = 0,6

Intervallschachtelung : [0 ; 1 ] , [0,6 ; 0,7] , [0,66 ; 0,67] , [0,666 ; 0,667] , .
2) l £ = 1,318

Intervallschachtelung :
[ 1 ; 2] , [13 ; 1,4] , [ 1,31 ; 1,32] , [ 1,318 ; 1,319 ] , [ 1,3181 ; 1,3182] , . . .

3) 2,3 = 2,30 ( !)
Intervallschachtelung : [2 ; 3] , [2,3 ; 2,4] , [2,30 ; 2,31 ] , [2,300 ; 2,301 ] , .

Man kann also für alle Zahlen , gleichgültig ob rational oder irrational , Inter¬
vallschachtelungen angeben . Wichtig ist , dass durch eine solche Schachtelung
die entsprechende Zahl eindeutig bestimmt ist . Es können nämlich niemals
zwei verschiedene Zahlen allen Intervallen einer Intervallschachtelung ange¬
hören . Denn ein Intervall , in dem zwei verschiedene Zahlen z y und z2 liegen,
muss mindestens eine Länge \z 1

— z2 \ haben . Diese positive Zahl wird aber
bei einer Intervallschachtelung von den Intervalllängen schließlich unter¬
schritten , da diese ja beliebig klein werden (Abbildung 16 . 1 ) .

— ^
Z1 Z 2

Abb . 16 . 1 Die Intervalllängen werden kleiner als \z x — z2 1.

Es gilt also

Satz 16 . 1 : Jede rationale oder irrationale Zahl kann man durch eine
Intervallschachtelung eindeutig festlegen.
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Aufgaben
1 . Entwickle die folgenden Zahlen in Dezimalbrüche :

a) Ä b) M c) ff d) & e) YS
f) ü g) ^7 h) i) ^ k) ^

2 . Gib drei neue Beispiele für unendliche nicht periodische Dezimalbrüche
an . Beschreibe jeweils die Regel , nach der die Ziffernfolge sich endlos
fortsetzen soll.

• 3 . Begründe , dass die folgenden unendlichen Dezimalzahlen irrational sind .
(Hinweis : Untersuche das Auftreten der Ziffer 0 . Gibt es beliebig lange
Abschnitte , die nur aus Nullen bestehen ?)
a) v = 0,12345678910111213 . . . ; d . h . , die Ziffernfolge nach dem Kom¬

ma entsteht durch »Hintereinanderschreiben aller natürlichen Zah¬
len« .

b) y = 0,149162536496481100121 . . . ; d . h . , die Ziffernfolge nach dem
Komma entsteht durch »Hintereinanderschreiben aller Quadratzah¬
len« .

c) z = 0,126241207205040 . . . ; der k -te Abschnitt der Ziffernfolge nach
dem Komma ergibt sich hier durch die Berechnung des Produkts
1 • 2 • 3 • . . . • k , wofür man kurz A; ! schreibt , gelesen »k Fakultät « .

4 . Welche der folgenden Dezimalzahlen stellen irrationale Zahlen dar ? (Die
Ziffernfolge soll sich nach der erkennbaren Gesetzmäßigkeit endlos fort¬
setzen .)
a) 0,367999 . . . b) - 1,343443444 . . . c) 5,211221122211 . . .
d) - 7,727727727 . . . e) 0,204080160 . . . f ) - 4,32100000 . . .

5 . Stelle fest , ob die angegebene Intervallfolge eine Intervallschachtelung ist .
a) [5 ; 6] , [5,6 ; 5,7] , [5,66 ; 5,67 ] , [5,666; 5,667] , . . .
b) [0 ; 2] , [0,9 ; 1,1 ] , [0,99 ; 1,01] , [0,999 ; 1,001 ] , . . .
c) [3 ; 3,5] , [3 ; 3,05 ] , [3 ; 3,005] , [3 ; 3,0005] , . . .
d) [ 1 ; 2] , [2 ; 2,1 ] , [3 ; 3,01 ] , [4 ; 4,001 ] , . . .
e) [ - 2 ; - 1 ] , [ - 2,1 ; - 1,9] , [ - 2,11 ; - 1,99] , [ - 2,111 ; - 1,999 ] , . . .
f) [ — 1 ; 2] , [ - 0,1 ; 0,2] , [ - 0,01 ; 0,02] , [ - 0,001 ; 0,002] , . . .

• 6 . a) Gib eine Intervallschachtelung für die Zahl 0,9 an .
b) Begründe, dass 1 die einzige Zahl ish die in allen Intervallen dieser

Schachtelung liegt , und dass somit 0,9 = 1 gilt .
c) Begründe entsprechend : 0,09 = 0,1 ; 0,009 = 0,01 .
d) Schreibe als endlichen Dezimalbruch: 1,19 ; 0,409 ; — 9,9.
e) Verwandle in unendliche Dezimalbrüche, ohne die Ziffer 0 als Periode

zu verwenden : 2,5 ; — 0,89 ; 11 ; — 2,011 .
• 7 . Bei den bisher betrachteten Beispielen von Intervallschachtelungen ent¬

stand das jeweils nächste Intervall durch Zehnteilung des vorausgehen -
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den . Manchmal werden auch andere Unterteilungsverfahren benützt .
a) Beschreibe die Regel , nach der die Intervallfolge [0 ; 1 ] , [| ; §] , [f ; f ] ,

[Ml 27] ’ [so 8il > • • • konstruiert ist . Stelle die ersten vier Intervalle auf
einer Zahlengeraden mit der Längeneinheit 9 cm dar .

b) Begründe, dass die in a angegebene Intervallfolge eine Intervallschach-
telung ist . Welche Zahl wird durch sie festgelegt?

c) Vom »Halbierungsverfahren« spricht man, wenn das jeweils nächste
Intervall eine der Hälften des vorausgehenden ist . Berechne die ersten
fünf Intervalle einer Intervallschachtelung für die Zahl f , indem du mit
[0 ; 1 ] beginnst und die weiteren Intervalle nach dem Halbierungsver¬
fahren bestimmst .

8 . Gib Intervalle der Länge 1 ; 0,1 ; 0,01 und 0,001 an , in denen eine positive
Lösung der Gleichung
a) x 2 = 3 , b) x 2 = 0,5 , c) x 2 = 200, d) x 2 =
liegen müßte .

• 9 . Bestimme Intervalle mit den Längen 1 ; 0,1 ; 0,01 und 0,001 , in denen die
Kantenlänge eines Würfels liegen müsste , dessen Volumen « -mal so groß
wie das des Einheitswürfels ist .
a) n = 2 b) n = 10 c) n = 100

* * 1 .3 . Rechnen mit Intervallschachtelungen
Wir haben schon erwähnt , dass man auch mit den irrationalen Zahlen sinnvoll
rechnen kann . Das ist keineswegs selbstverständlich . Schon bei der Frage , wie
mit ihnen die verschiedenen Rechenarten auszuführen sind , stößt man auf
Schwierigkeiten . Da es sich um unendliche Dezimalzahlen handelt , kann man
ja z . B . beim Addieren nicht wie bei endlichen Dezimalzahlen mit der letzten
Stelle beginnen . Bei den periodischen Dezimalzahlen umgeht man dieses Pro¬
blem , indem man sie durch die entsprechenden gewöhnlichen Brüche ersetzt ,
z . B . 0,6 durch f . Bei den unendlichen nicht periodischen Dezimalzahlen schei¬
det diese Möglichkeit aus . Für das Rechnen mit ihnen benötigen wir andere
Hilfsmittel . Als solche eignen sich z . B . die Intervallschachtelungen . Mit ihnen
kann man die Rechenoperationen auch für irrationale Zahlen definieren und
die weitere Gültigkeit der Rechengesetze nachweisen . Dies soll für die Addi¬
tion näher erläutert werden . Zunächst betrachten wir ein Beispiel mit zwei
rationalen Summanden .

Beispiel 1 :
a = \ \ b = 2,3 => a + b = § + 2,3 = f + 2^ = 2§§
Intervallschachtelungen für a und b haben wir bereits im vorausgehenden
Abschnitt angegeben (vgl . Seite 16) . Aus deren ersten Intervallen erkennt
man , dass 0 a ^ 1 und 2 ^ b 3 gilt . Durch Addition dieser Unglei¬
chungen erhält man
li ^ a + b ^ A d . h . , a + be \_2 ; 4] .



1 .3 Rechnen mit Intervallschachtelungen 19

Analog erhält man aus den zweiten , dritten , vierten , . . . Intervallen
0,6 + 2,3 g a + b ^ 0,7 + 2,4 d . h . a + b e [2,9 ; 3,1 ]

0,66 + 2,30 ^ a + b ^ 0,67 + 2,31 d . h . a + b e [2,96 ; 2,98 ]
0,666 + 2,300 Sa + b ^ 0,667 + 2,301 d . h . a + be [2,966 ; 2,968] usw.

Man erkennt leicht , dass die rechts stehenden Intervalle für a + b wieder
eine Intervallschachtelung bilden . Durch sie ist die Zahl a + b eindeutig
festgelegt . Aus der Dezimalentwicklung von a + b = 2 §§ = 2,96 erkennt
man ebenfalls , dass a + b jedem Intervall dieser Schachtelung angehört .

Das vorausgehende Beispiel zeigt , wie man aus Intervallschachtelungen für
zwei Zahlen a und b durch Addition entsprechender Intervallgrenzen wieder
eine Intervallschachtelung für die Summe a + b erhält . Der Vorteil dieser an
sich umständlichen Additionsmethode liegt darin , dass man sie auch auf irra¬
tionale Summanden anwenden kann .

Beispiel 2:
z x = 0,636336333 . . . ; z2 = 5,181188111888 . . .
Intervallschachtelung für z+.
[0 ; 1 ] , [0,6 ; 0,7] , [0,63 ; 0,64] , [0,636 ; 0,637] , [0,6363 ; 0,6364] , . . .
Intervallschachtelung für z2 :
[5 ; 6] , [5,1 ; 5,2] , [5,18 ; 5,19 ] , [5,181 ; 5,182] , [5,1811 ; 5,1812] , . . .
Durch Addieren entsprechender Intervallgrenzen erhält man die Inter¬
vallfolge
[5 ; 7] , [5,7 ; 5,9] , [5,81 ; 5,83 ] , [5,817; 5,819] , [5,8174; 5,8176] , . . .
Dies ist wieder eine Intervallschachtelung , durch welche die Summe
Zi + z2 bestimmt ist . Ihre Dezimalentwicklung beginnt mit 5,817; man
kann durch fortgesetzte Intervalladdition beliebig viele weitere Dezima¬
len berechnen .

Allgemein gilt : Zwei Zahlen a und b kann man addieren , indem man für sie
Intervallschachtelungen [n ^ AJ , [a2 ; A2] , [a 3 ; A 3] , . . . bzw . [b ^ B^ ,
[b 2 , B2

~
\ , [/; 3 ; 5 3] , . . . aufstellt und aus den Intervallpaaren [a„ ; A „] , [6 „ ; ß „] ,

n = 1 , 2 , 3, . . . , die Intervalle [c/„ + bn ; An + B„] berechnet . Diese bilden wie¬
der eine Intervallschachtelung , wie du anhand der Aufgabe 20/6 begründen
kannst .
Da aus den Ungleichungen an S a S A n und bn + b + Bn die Doppelunglei¬
chung an + i>n = a + b ^ An + Bn folgt , liegt die Summe a + b in jedem der
Intervalle [a„ + bn \ An + 2?„] und ist damit durch diese Intervallschachtelung
eindeutig bestimmt .
Da die bei Vertauschung der Summanden a und b erhaltenen Intervalle
[ bn + an ; Bn + A„] , n = 1 , 2 , 3, . . . , dieselbe Intervallschachtelung liefern , gilt
a + b = b + a , d . h . das Kommutativgesetz der Addition für beliebige , also
auch für irrationale Zahlen . Ebenso kann man zeigen , dass auch die übrigen
Rechengesetze der Addition gültig bleiben .
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Auch die Multiplikation von rationalen und irrationalen Zahlen kann man
mit Hilfe von Intervallschachtelungen durchführen . Es zeigt sich , dass auch
für sie die bekannten Rechengesetze gültig bleiben (vgl . die Aufgaben 20/7
bis 21/10 ) .

Aufgaben
1 . Gib für a und b Intervallschachtelungen an und berechne daraus die ersten

fünf Intervalle einer Schachtelung für a + b . Gib die Dezimalentwicklung
von a + b an , soweit sie durch die berechneten Intervalle gesichert ist .
a) a = 0,373373337 . . . und b = -fr
b) a = 2,0408016 . . . und 6 = 1,505505550 . . .
c) a = 2,039 und b = - 1,808008000 . . .
d) a = - 0,771771177111 . . . und b = - 3,141144111444 . . .

2 . Die Subtraktion zweier Zahlen lässt sich nach der Regel a — b = a + ( — b)
auf die Addition zurückführen . Berechne so die ersten fünf Intervalle
einer Schachtelung für a — b mit den Zahlen
a) von Aufgabe 1 a , b) von Aufgabe 1 d .

3 . a) Berechne die Summe der Irrationalzahlen z x = 0,151151115 . . . und
z2 = 2,626626662 . . . Ist das Ergebnis wieder eine irrationale Zahl ?

b) Gib zwei irrationale Zahlen an , deren Summe null ist .
4 . a) Welche Zahl muss man zu 0,585585558 . . . addieren um 1 zu erhalten ?

Ist die gesuchte Zahl rational oder irrational ?
b) Welche Zahl muss man von 0,585585558 . . . subtrahieren um

0,252252225 . . . zu erhalten ? Handelt es sich wieder um eine irrationale
Zahl ?

• 5 . Beweise, dass die Summe aus einer rationalen und einer irrationalen Zahl
stets irrational ist . (Hinweis : Welche Folgerung für b ergibt sich aus
a + b = c , wenn man annimmt , dass a und c rational sind?)

16 . [ fl A„] bzw . [6„ ; ß „ ] , n = 1 , 2 , 3, . . . , seien Intervallschachtelungen .
a) Beweise, dass für jede natürliche Zahl n gilt : Das Intervall

K + i + bn + u A„ + 1 + ß „ + J liegt ganz in [a „ + b„ ; An + ßj .
b) Zeige , dass die Länge des Intervalls [a „ + bn , A n + ßj die Summe der

Längen von [a „ ; A „ ] und [b„ ; Bn] ist .
Begründe damit , dass die Längen der Intervalle [a„ + bn : an + ß n ] mit
wachsendem n beliebig klein werden .

7 . a) Berechne mit den auf Seite 16 angegebenen Intervallschachtelungen
für a = f und b = 2,3 die Intervalle \an

■ bn ; An
■ ßj für n = 1 bis n = 4 .

Prüfe , ob sie ineinander geschachtelt sind und ob die Zahl a ■ b in
jedem dieser Intervalle liegt .
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b) Berechne die Längen der in a bestimmten Intervalle.
c) Sprechen die Ergebnisse von a und b dafür, dass die Intervalle

[ö„
• bn ; An

■ Bn ] eine Intervallschachtelung für a - b bilden ?

8 . a) Stelle für die beiden Irrationalzahlen a = 1,505505550 . . . und
b = 0,20406080 . . . Intervallschachtelungen auf und berechne die Inter¬
valle \_an

■ b„ ; An
■ 5 „] bis n = 4 .

b) Zeige, dass diese Intervalle ineinander geschachtelt sind , und berechne
ihre Längen .

• 9 . Wenn [a„ ; A„] und [b„ ; /i „] , n — 1 , 2 , 3, . . . , Intervallschachtelungen mit
positiven Intervallgrenzen sind , dann bilden die Intervalle [a„

• bn , An
■ B,J

wieder eine Intervallschachtelung . Der nicht ganz einfache Beweis dafür
beruht auf den folgenden Schlüssen . Erläutere sie !
a) Aus a„ < A „ und bn < B„ folgt an bn < An Bn ; also ist [_an bn ; AnB„] ein

Intervall .
b) Aus an ^ an + 1 und bn ^ b„ + 1 folgt an bn ^ a„ + 1 bn + 1 , aus A„ ^ A„ + 1

und Bn ^ B„ + 1 folgt A„ B„ ^ A„ + 1 Bn + 1 .
Daher gilt : [an + 1 Z>„ + 1 ; A„ + 1 ß „ + 1] c [an b„ ; An Bn

~
] .

c) Für die Länge des Intervalls \_a„ bn, An B„] gilt:
An B„

- an bn = An (Bn
- bn) + bn (A n

- an) < A 1 (Bn
— b„) + B x (A n

- a„)
Da mit wachsendem n die Werte der geklammerten Terme beliebig
klein werden , gilt dies auch für die Intervallänge .

10 . Welche einfachere Form ergibt sich für die Abschätzung in Aufgabe 9c ,
wenn die beiden Intervallschachtelungen nach der Zehnteilungsmethode
konstruiert sind und die ersten Intervalle die Länge 1 haben ?

• 11 . a) Gib für a = — f und b = — 3,6 Intervallschachtelungen an und berech¬
ne daraus die ersten vier Intervalle für das Produkt a ■ b .

b) Erkläre , warum bei Intervallschachtelungen mit negativen Intervall¬
grenzen die Intervalle der Produktschachtelung die Form
[A„

■ Bn ; an
■ b „] haben .

1 .4 Die Menge der reellen Zahlen

Die rationalen und die irrationalen Zahlen werden unter dem gemeinsamen
Namen reelle Zahlen * zusammengefasst .

* Das Fachwort reell geht auf Rene Descartes (1596- 1650) zurück . Er unterteilte 1637 in seiner La Geometrie
die Lösungen von nicht linearen Gleichungen (wie z . B . ax 2 -F bx + c = 0) in wirkliche und nur denkbare .
Das französische Wort für wirklich ist reel , das auf ein erst im Mittelalter auftauchendes lateinisches realis
zurückgeht , das zu res = Sache gebildet worden war . Mit realis wird Descartes ’ reel 1649 in der lateinischen
Übersetzung seiner La Geometrie wiedergegeben . Wann aus realis das deutsche Fachwort reell entstand ,
konnten wir nicht feststellen . Nach 1831 ist es auf alle Fälle bei Carl Friedrich Gauss (1777- 1855) belegt .
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Man verwendet folgende Bezeichnungen :

Definition 22 . 1 :
[R = Menge der reellen Zahlen
[R + = Menge der positiven reellen Zahlen
IR

“ = Menge der negativen reellen Zahlen
[Ro = Menge der nicht negativen reellen Zahlen

Für das Rechnen mit den reellen Zahlen gelten die schon bekannten Rechen¬
gesetze , die wir in der folgenden Tabelle noch einmal zusammenstellen .

Für reelle Zahlen a, b, c gelten folgende Rechengesetze :

Gesetze der Addition Gesetze der Multiplikation Bezeichnungen

(E + ) a + AelR (E . ) « • Ae IR Existenz der
Summe/des
Produkts

(K + ) a + b = b + a (K . ) a • A = b ■ a Kommutativ -
gesetz

(A + ) (a + b) + c =
= a + (b + c)

(A . ) (fl • A) • c = a • (A • c) Assoziativ¬
gesetz

(N + ) a + 0 = a (N . ) a • 1 = a Existenz des
neutralen
Elements

(I + ) « + ( — «) = o (I ) a • — = 1 , falls a # 0
a

Existenz des
inversen
Elements

(D) (a + b) - c = a - c + b - c Distributiv¬
gesetz

fl < b => a + c < b + c
a C A |
c > 0j

^ a c < b ' c
Monotonie¬
gesetz

a < b )
S => a - c > b - c

c < OJ
Umkehrung
der Monotonie

Jede reelle Zahl x lässt sich durch eine Intervallschachtelung darstellen . Da
deren Intervalle beliebig klein werden , ziehen sie sich auf der Zahlengeraden
auf einen Punkt zusammen , den wir ebenfalls mit x bezeichnen . Jeder reellen
Zahl ist somit eindeutig ein Punkt der Zahlengeraden zugeordnet .
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Es stellt sich nun die Frage :
Gehört umgekehrt auch zu jedem Punkt der Zahlengeraden eine Zahl ?
Solange man nur die rationalen Zahlen zur Verfügung hatte , musste man
diese Frage verneinen ! Zum Beispiel zeigt Abbildung 23 . 1 die Konstruktion
eines Punktes P der Zahlengeraden , zu dem keine rationale Zahl gehört .

- 1 0 1 P 2 3

Abb . 23 . 1 Konstruktion eines »nicht rationalen Punktes «

Nach der Einführung der irrationalen Zahlen muss aber die oben gestellte
Frage anders beantwortet werden : Zu jedem Punkt P der Zahlengeraden ge¬
hört eine reelle Zahl .
Dies kann man so begründen :
Wir betrachten zunächst die den ganzen Zahlen zugeordneten Punkte . Es kann sein,
dass P einer von ihnen ist ; dann gehört zu P eine ganze Zahl . Andernfalls liegt P
zwischen zwei derartigen Punkten ; wir bezeichnen sie mit n und n + 1 , wobei neZ gilt.
Wir zerlegen nun [» ; n + 1 ] in zehn gleiche Teile . Falls P einer der Teilpunkte ist , gehört

k
zu ihm eine Zahl n + — mit k e { 1,2, . . . , 9 } . Andernfalls liegt P zwischen zwei Teil¬

punkten . Das von diesen begrenzte Intervall zerlegen wir wieder in zehn gleiche Teile
usw .
Es gibt nun zwei Möglichkeiten :
Entweder : P fällt irgendwannmit einemTeilungspunktzusammen; dann gehört zu ihm
eine Zahl mit einer endlichen Dezimaldarstellung .
Oder: P wird niemals ein Teilungspunkt; dann erhält man eine Intervallschachtelung,
die sich auf den Punkt P zusammenzieht . Zu ihr , und damit zu P , gehört eine Zahl mit
einer unendlichen Dezimalentwicklung .

Somit gilt

Satz 23 . 1 : Jeder reellen Zahl ist eindeutig ein Punkt der Zahlengeraden
zugeordnet und umgekehrt ist jedem Punkt der Zahlengeraden ein¬
deutig eine reelle Zahl zugeordnet .

Aufgaben
Kennzeichne auf der Zahlengeraden die Zahlenmenge

1 . a) IR +
, b) IR

“
, c) IR0

+ .

Beschreibe die folgenden Zahlenmengen möglichst einfach :
2 . a) IR + nZ b) [R 0

+ nZ c) [R
' u (R + d) [R \ <Q
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2 3 . Bei den bisher betrachtetenInter¬
vallschachtelungen haben wir je¬
weils rationale Zahlen als Inter¬
vallgrenzen benützt . Man kann
nun auch Intervallschachtelun¬
gen bilden , bei denen die Inter¬
vallgrenzen beliebige reelle Zah¬
len sind . Kann man damit noch
einmal neue Zahlen erzeugen ?
Mache dir den Sachverhalt an der
Zahlengeraden klar .

4 . Begründe die folgenden Aussa¬
gen durch Widerspruchsbeweise :
a) Das Produkt einer von 0 ver¬

schiedenen rationalen Zahl
mit einer irrationalen Zahl ist
irrational .

b) Der Kehrwert einer irrationa¬
len Zahl ist irrational .

5 . a) Gib eine rationale Zahl an,
die zwischen den irrationalen
Zahlen a = 0,414114111 . . .
und b = 0,414414441 . . . liegt ,

b) Zu zwei verschiedenen reellen
Zahlen kann man immer rationale Zahlen angeben , die dazwischen
liegen . Begründe diese Aussage .

• 6 . a) Gib eine irrationale Zahl an , die
1) zwischen 1,5 und 1,6 2) zwischen ff und ff liegt.

b) Gib eine irrationaleZahl an , die zwischenden Zahlen von Aufgabe 5 a
liegt .

c) Zu zwei verschiedenenreellen Zahlen kann man immereine irrationale
Zahl angeben , die dazwischen liegt . Begründung !

7 . Wenn bei einer Zahlenmenge M für die Addition und die Multiplikationdie Rechengesetze E , K , A , N , I und D gelten , spricht man von einem
Zahlenkörper (M ; + , • ) . *
a) Du kennst nunmehr zwei verschiedene Zahlenkörper. Welche sind

dies?
2 b) Für die Menge der irrationalen Zahlen gilt:

( [R \ Q ; + , • ) ist kein Zahlenkörper . Welche Rechengesetze sind in die¬
sem Fall nicht gültig?

1868

Abb . 24 . 1
Julius Wilhelm Richard Dedekind
(6 . 10 .1831 Braunschweig 12 .2 . 1916 ebd .)

* Den Begriff Körper prägte 1871 Richard Dedekind (1831- 1916) ; seine Verwendung im heutigen Sinn (seit
1893) geht auf Heinrich Weber (1842- 1913) zurück .
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** 1 .5 Ein Vergleich der Zahlenmengen Q und IR

In welchem Maße hat sich durch die Einführung der irrationalen Zahlen unser
Zahlen Vorrat vergrößert ? Ist die Menge * der irrationalen Zahlen »größer «
oder »kleiner « als <Q?
Diese Frage ist nicht leicht zu beantworten , da ja beide Mengen unendlich
viele Elemente haben . Beim Vergleichen können wir uns auf die positiven
Zahlen beschränken ; da die negativen Zahlen die Gegenzahlen der positiven
sind , liefert bei ihnen ein Vergleich der rationalen mit den irrationalen dasselbe
Ergebnis .
Die Zahlen der Menge Q + kann man nicht der Größe nach geordnet aufzäh¬
len . Dennoch ist es möglich , sie in eine bestimmte Reihenfolge zu bringen und
dadurch abzuzählen . Georg Cantor (1845 - 1918 ) erfuhr dies bereits als Stu¬
dent in einem Seminar bei seinem großen Lehrer Karl Weierstrass (1815 bis
1897) und erwähnte diese Möglichkeit im Brief vom 29 . 11 . 1873 an Richard
Dedekind ( 1831 - 1916 ) . Vorgeführt hat es Cantor aber erst in einem sehr
ausführlichen Brief vom 18 . 6 . 1886 an den Berliner Gymnasiallehrer
F. Goldscheider . Veranschaulichen kann man dieses Abzählen durch ein
Verfahren , das auf Augustin Louis Cauchy (1789 - 1857 ) zurückgeht und das
1 . Diagonalverfahren heißt . In Abbildung 25 . 1 ist es dargestellt.

Abb . 25 . 1 Abzählen der rationalen Zahlen nach dem 1 . Diagonalverfahren

* Der Philosoph , Theologe und Mathematiker Bernard Bolzano (1781 - 1848) verwendete das Wort Menge als
mathematischen Begriff in seiner um 1835 geschriebenen Größenlehre , die erst 1975 veröffentlicht wurde , und
auch in den 1847 verfassten und 1851 gedruckten Paradoxien des Unendlichen . Georg Cantor (1845 - 1918) ,
der diese Schrift sehr bewunderte , benützte das Wort Menge erst ab 1895; bis dahin sprach er von Mannigfal¬
tigkeit oder Inbegriff .
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Wir betrachten die Gitterpunkte im
1 . Quadranten eines Koordinatensy¬
stems und ordnen dem Punkt P (x | y)

xmit x e [Kl und y e [Kl den Bruch — zu.
T

Dann durchlaufen wir von y aus die
Gitterpunkte in der durch die rote Li¬
nie angegebenen Weise und numme¬
rieren dabei die Brüche , y ist also der
erste Bruch , \ der zweite , f der dritte
usw . (vgl . die roten Nummern in Ab¬
bildung 25 . 1 ) . § können wir überge¬
hen , da dieser Bruch wieder dieselbe
Zahl wie y darstellt . Auch § ( = y) , f
( = i ) , i ( = 2 ) liefern keine neuen ra¬
tionalen Zahlen ; man erkennt , dass
alle kürzbaren Brüche beim Numme¬
rieren übergangen werden können
(vgl . dazu Aufgabe 28/2) . Wenn man
dieses Durchlaufen der Gitterpunkte
ohne Ende fortsetzt , wird jede Zahl
aus Q + genau einmal mit einer Num¬
mer versehen . Wir haben damit die
positiven rationalen Zahlen in eine
bestimmte Reihenfolge gebracht ; sie
sind durchnummeriert . Das Erstaun¬
liche daran ist , dass die natürlichen
Zahlen , die ja eine echte Teilmenge von Q+ bilden , ausreichen um alle Zahlen
der Menge Q + zu nummerieren . Man sagt dazu : »Die Mengen Q + und INI
sind von gleicher Mächtigkeit .« Eine Menge , welche dieselbe Mächtigkeit
wie [Kl hat , nennt man abzählbar . * Damit kann man als Ergebnis des 1 . Dia¬
gonalverfahrens festhalten :

um 1870

Abb . 26 . 1 Georg Ferdinand Ludwig
Philipp Cantor (3 . 3 . 1845 Petersburgbis
6 . 1 . 1918 Halle)

Satz 26. 1 : Die Menge Q + der positiven rationalen Zahlen ist abzählbar.

Nun betrachten wir alle positiven reellen Zahlen auf dem Zahlenstrahl
] 0 ; + 00 [ und führen folgendes Gedankenexperiment aus : Ein Papierstreifen
von beliebiger Länge s wird in zwei Stücke der Länge js zerschnitten (Abbil¬
dung 27 . 1 ) . Mit einer der Hälften verdecken wir den Punkt 1 auf dem Zahlen¬
strahl . 1 ist bei der von uns in Abbildung 25 . 1 eingeführten Nummerierung die
erste rationale Zahl ! Auch die übrigen rationalen Punkte * * werden sodann in

* Das Fachwort Mächtigkeit hat Cantor 1878 bei dem großen Geometer Jakob Steiner (1796- 1863) ent¬
lehnt und auf seine heutige Bedeutung erweitert . Im gleichen Jahr verwendete er erstmals den Begriff
abzahlbar im oben angegebenen Sinn .

** Punkte der Zahlengeraden , denen eine rationale Zahl zugeordnet ist , nennen wir kurz »rationale Punkte « .
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der durch die Nummerierung festgelegten Reihenfolge abgedeckt , indem man
immer wieder folgende Anweisung ausführt : »Halbiere den verbliebenen Teil
des Streifens und verdecke mit einer Hälfte denjenigen Punkt des Zahlen¬
strahls , welcher zu der nächsten rationalen Zahl gehört .«

Papierst reifen

i- ^ i r- l
i- h-M—i—i- 1- 1- 1- »-
0 l—i L- 1 2 3 4 x

1 1
2

Abb . 27 . 1 Die rationalen Punkte werden verdeckt .

Natürlich werden durch das fortgesetzte Halbieren die Streifenstücke immer
schmäler , aber zum Abdecken von Punkten , die ja die Breite null haben ,
reichen sie immer wieder aus . Wir können auf diese Weise alle rationalen
Punkte des Zahlenstrahls (und nicht nur sie !) bedecken . Zu den nicht verdeck¬
ten Punkten des Zahlenstrahls gehören nur noch irrationale Zahlen . Da aber
die abgedeckten Teile des Zahlenstrahls zusammen höchstens die Länge s
haben und s zudem beliebig klein sein darf , bleibt fast der ganze Zahlenstrahl
unbedeckt . Man erkennt daraus , dass die Menge der rationalen Zahlen im
Vergleich zu derjenigen der irrationalen verschwindend klein ist ! Durch die
Einführung der irrationalen Zahlen hat sich also unser Zahlenvorrat ganz
gewaltig vergrößert .
Ist dann vielleicht die Menge der reellen Zahlen nicht mehr abzählbar ? Mit
dieser Frage beschäftigte sich Georg Cantor , und er richtete sie auch in dem
oben erwähnten Brief vom 29 . 11 . 1873 an Richard Dedekind . Dieser wusste
darauf keine Antwort , und Cantor meinte am 2 . 12 . 1873 , dass »sie kein be¬
sonderes praktisches Interesse [ . . .] hat und [ . . .] nicht zu viel Mühe verdient .
Es wäre nur schön , wenn sie beantwortet werden könnte .« Und schon am
7 . 12 . 1873 schickt Cantor seinen Beweis dafür , dass IR nicht abzählbar ist , an
Dedekind . Am 8 . 12 . 1873 gratuliert Dedekind und schickt eine stark verein¬
fachte Fassung des Beweises an Cantor , der diese fast wörtlich in seine im
Jahre 1874 erschienene Abhandlung übernimmt . In Aufgabe 29/10 kannst du
selbst einen Beweis führen für

Satz 27 . 1 : Die Menge IR der reellen Zahlen ist nicht mehr abzählbar .
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Aufgaben
• 1 . a) Wo liegen in Abbildung 25 . 1 die Gitterpunkte , denen die positiven

Bruchzahlen mit — < 1 zugeordnet sind?
9

Gib in einer Zeichnung einen Weg an , auf dem man alle diese Punkte
durchlaufen und die verschiedenen Bruchzahlen nummerieren kann .
Führe dies bis zur Nummer 10 durch .

b) Gib für die Gitterpunkte, denen die Brüche mit - A 1 zugeordnet sind ,
9

einen sie durchlaufenden Weg an und nummeriere die ersten zehn
Bruchzahlen in der damit festgelegten Reihenfolge .

2 . a) Welche Gesetzmäßigkeit erkenntman, wenn man bei den Brüchen, die
in Abbildung 25 . 1 den Gitterpunkten einer bestimmten Diagonallinie
zugeordnet sind , die Summe aus Zähler und Nenner bildet ?

b) Wie ändert sich diese Summe beim Übergang zur nächsten Diagona¬
len?

c) Wie ändert sich die Summe aus Zähler und Nenner , wenn ein Bruch
gekürzt wird?

• d) Begründe nun , dass bei der in Abbildung 25 . 1 festgelegten Reihenfolge
jedem kürzbaren Bruch einer mit gleichem Wert vorausgeht und somit
die entsprechende rationale Zahl bereits nummeriert ist .

3 . Zeichne ein Koordinatensystem und betrachte alle Gitterpunkte der obe¬
ren Halbebene , also die Punkte (x \y) mit xe Z und y e IN , und ordne

x
jedem Punkt die Zahl — zu . Beweise die Abzählbarkeit aller rationalen

y
Zahlen , indem du einen von (011) ausgehenden Weg angibst , der alle Git¬
terpunkte durchläuft . Wie lauten die ersten zehn rationalen Zahlen bei der
so erzeugten Anordnung ?

4 . Die folgenden Mengen sind abzählbar. Gib zum Beweis dafür eine ent¬
sprechende Zuordnung ihrer Elemente zu den natürlichen Zahlen , also
eine Nummerierung an . Beschreibe diese Zuordnung als Funktion
n i—►/(«) , n e IN .
a) die Menge der geraden natürlichen Zahlen
b) die Menge der ungeraden natürlichen Zahlen
c) die Menge IN 0 d) die Menge Z
e) die Menge der Stammbrüche n e IN
f) * die Menge der Quadratzahlen n 2

, n e IN
5 . Zwei Mengen heißen genau dann gleichmächtig , wenn man ihre Elemente

eineindeutig einander zuordnen kann .
Begründe folgende Aussagen :

Dieses Beispiel findet sich bereits in den Discorsi (1638) des Galileo Galilei (1564- 1642) .
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a) A = { 1,2,3 , . . . , 60 } und 5 = {« gIkI | 77 < u < 138 } sind gleichmächti¬
ge Zahlenmengen .

b) Die Menge P aller zweistelligen Primzahlenund die Menge Vder durch
4 teilbaren zweistelligen Zahlen sind nicht gleichmächtig .

c) Zwei endliche Mengen sind genau dann gleichmächtig, wenn sie diesel¬
be Anzahl von Elementen haben .

6 . Beweise die Gleichmächtigkeit der Mengen A und B :
a) A = Q +

; Ü = Q _ b) A = {xGQ | 0 < x < l } ; 5 = {_yeQ | >' > l }
• c) A = { xeQ | 0 < x < l } ; ß = Q +

7 . Wenn man in Aufgabe 6 jeweils Q durch [R ersetzt , sind die neuen Mengen
A und B ebenfalls gleichmächtig . Begründe dies .

8 . Die von Bernard Bolzano (1781 - 1848 ) in seinen Paradoxien des Unendli¬
chen (1847 ) klar herausgestellte Tatsache , dass bei unendlichen Mengen
eine echte Teilmenge dieselbe Mächtigkeit wie die ganze Menge haben
kann , wird oft als eine Paradoxie * der Mengenlehre bezeichnet .
In welchen Teilaufgaben a) von Aufgabe 4 , b) von Aufgabe 6
finden sich solche Paradoxien ?

9 . a) Begründemit Hilfe der in Ab¬
bildung 30 . 1 angegebenen Zu¬
ordnung P i—>■ P '

, dass die
Strecken [AB] und [CD ]
gleichmächtige Punktmengen
sind .

b) In Abbildung 30 .2 ist M der
Mittelpunkt der Strecke
[AB] , Ä das Spiegelbild von
A bezüglich g und Z der Mit¬
telpunkt von [ÄB] . Beweise
mit Hilfe der Zuordnung
P; i—>■P/ , dass die Strecke [AB]
ohne ihre Endpunkte und die
Gerade g gleichmächtige
Punktmengen sind .

10 . Georg Cantor (1845 - 1918 ) ge¬
lang 1873 der Nachweis , dass die
Menge der reellen Zahlen überab-
zählbar , d . h . nicht mehr abzähl¬
bar ist . Einen Beweis dafür
kannst du anhand der folgenden
Teilaufgaben erbringen .

Abb . 29 . 1 Bernard Bolzano
(5 .10 .1781 Prag - 18 .12 .1848 ebd .)

Aifflr-nlffflifti” ,.§ &-J £

Die Paradoxie oder das Paradoxon = eine (echte oder scheinbare ) Widersinnigkeit ; paradox = widersinnig .
Zugrunde liegt das griechische Adjektiv TiapaSo^cx; (parädoxos ) — unerwartet .



30 1 Die reellen Zahlen

A

Abb . 30 . 1 Zu Aufgabe 9 a Abb . 30 .2 Zu Aufgabe 9 b

a) Wenn man von einer Teilmenge M von IR zeigen kann, dass sie über -
abzählbar ist , dann gilt das erst recht für R selbst . Erläutere dies.
(Nimm z . B . an , R wäre abzählbar !)

b) Die Zahlen der Menge M — {xeR | 0 < x < l } kann man in eindeuti¬
ger Weise als unendliche Dezimalzahlen darstellen , wenn man dabei
Dezimalzahlen mit der Periode 0 verbietet . Wie lautet dann die
Schreibweise für folgende Zahlen ? (Beachte Aufgabe 17/6 .)

17
250 -

c) Wir nehmen nun an , die Zahlenmenge M sei abzählbar . Dann kann
man ihre Elemente durchnummerieren ; sie sollen der Reihe nach mit
x 1 , x2 , x 3 , . . . bezeichnet sein . Wir denken uns diese Zahlen als unend¬
liche Dezimalzahlen untereinander geschrieben :
x 1 = 0 ,

'di a2 a 3 a4 . . . (ah b t , c ; , . . . bedeuten die einzelnen Ziffern
x 2 = 0 , b ^%2 b 3 b4 . . . der Dezimalzahldarstellung )
x 3 = 0 , c x c2\ x c4 . . .
usw . \
Nun bilden wir eine unendliche Dezimalzahl z = 0 , z 1 z2 z3 z4 . . . nach
folgender Regel : Aus der Ziffernmenge { 1 , 2, . . . , 8 } wählen wir
- für Zj eine von a 1 verschiedene Ziffer,
- für z2 eine von b 2 verschiedene Ziffer,
- für z 3 eine von c 3 verschiedene Ziffer usw . ,
d . h . , man wählt allgemein eine Ziffer zt aus { 1 , 2, . . . , 8 } , welche von
der z-ten Dezimalen der Zahl xh also von der auf der roten Diagonalli¬
nie stehenden Ziffer verschieden ist . *
Begründe , dass die so gewonnene Zahl z zwar zur Menge M gehört ,
aber mit keiner der Zahlen x t , x 2 , x 3 , . . . übereinstimmt .

d) Das Ergebnis von c bedeutet , dass die Annahme , die Menge M sei
abzählbar , falsch ist . Erläutere dies und folgere daraus auch die Nicht¬
abzählbarkeit von R .

* Man bezeichnet die Auswahlregel für die Ziffern z, als 2 . oder Cantor ’sches Diagonalverfahren . Cantor hat
es 1890 entwickelt .
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m
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Ein Bote bringt dem Schatzmeister des Perserkönigs Darius einen Sack Geldes von
tributpflichtigen Völkern . Der Schatzmeister hält in seiner Linken eine Doppeltafel ,
auf der wir TAAANTA H ( = 100 Talente) entziffern können . Auf ihr sind die Pos¬
ten aufgeschrieben , die er nacheinander mit Hilfe von Rechensteinchen ( = yfjcpoi
[psephoi]) auf den Rechentisch ( = dßdKiov [abäkion ] ) überträgt . Dort lesen wir

MYTiAP 0 < T , also 1731 [Drachmen ] 4 [oboloi ] . Bei M = 10000, < = y Obolos und
O > oo » «© L9 O OO

T = ] Obolos liegen keine Steinchen . - 1 Talent = 60 Minen = 6000 Drach¬
men = 36000 Obolen . (Siehe auch Fußnote auf Seite 67) - Nachzeichnung von der

rotfigurigen Dariusvase von Abbildung 32 . 1 .



32

« -3 ( 1gä *'* «»«gwrf ^ rwfRxw . . >7 ), -
A ^VVV ; 4 , • j

fS ’" / :
l

w r.

Abb . 32 . 1 Die Dariusvase aus dem Nationalmuseum von Neapel , Höhe 1,3 m , größter
Umfang 2 m , vermutlich aus dem 4 . Jh . v . Chr . , gefunden in Canosa , dem alten Canu -
sium , in Apulien . In der oberen Reihe des Hauptkörpers nimmt Zeus mit anderen
Göttern Griechenland in Schutz . In der Mitte sitzt Darius I . (reg . 522- 486) auf dem
Thron , vor ihm steht ein Perser , der vor dem Krieg zu warnen scheint . Darunter die

Schatzmeisterszene von Abbildung 31 . 1 .
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2 . 1 Definition der Quadratwurzel

Besitzt die in Q unlösbare Gleichung x 2 = 2 in der uns nun zur Verfügung
stehenden größeren Zahlenmenge [R eine Lösung ?
Falls es eine positive Lösung x 1 dieser Gleichung gibt , muss für sie gelten
(vgl . Seite 11) :

1 < Xi < 2 also Xi ed ; 2 ]

1,4 < Xl < 1,5 also Xl e [ 1,4 ; 1,5]
1,41 < Xi < 1,42 also Xl e [ 1,41 ; 1,42 ]

1,414 < Xi < 1,415 also Xl e [1,414; 1,415 ]
1,4142 < Xl < 1,4143 also Xl e [1,4142; 1,4143]

Man erhält so eine Intervallschachtelung , welche die Zahl x 1 festlegt . Um zu
prüfen , ob diese Zahl wirklich die Gleichung x 2 = 2 löst , berechnen wir die
entsprechende Intervallschachtelung für x 2 :

[ l 2
; 2 2] , [ 1,4 2

; 1,5 2] , [ 1,41 2
; 1,42 2] , [1,4142

; 1,415 2] , . . .
Da die Intervalle für x 1 gerade so gewählt wurden , dass die Quadrate der
linken Grenzen kleiner als 2 , die der rechten Grenzen größer als 2 sind , liegt die
Zahl 2 in jedem Intervall der Schachtelung für x 2

. Diese stellt somit die Zahl 2
dar und es gilt tatsächlich x \ = 2 .
Gibt es noch andere Lösungen der Gleichung x 2 = 2? Um dies zu entschei¬
den nehmen wir an , x 2 sei eine von x , verschiedene Lösung . Aus x 2 = 2 und
x\ = 2 folgt x 2 — x 2 = 0 und damit (x x

— x 2) (x 1 + x2) = 0 . Da nach unserer
Annahme der 1 . Faktor des links stehenden Produktes von null verschieden
ist , erhalten wir x x + x2 = 0 , also x 2 = — x, . Damit ist gezeigt , dass außer x 1
nur noch die Gegenzahl — x 1 als Lösung in Frage kommt . Da tatsächlich
( — xQ 2 = x 2 = 2 gilt , ist L = {x x ; — xj die Lösungsmenge der Gleichung .
Ebenso wie bei x 2 = 2 lässt sich für jede Gleichung der Form x 2 = a mit a > 0
zeigen, dass sie in der Menge [R der reellen Zahlen genau eine positive Lösung
Xj besitzt . Dazu kommt als negative Lösung die Zahl x 2 = — x, . Die positive
Lösung von x 2 = a , also diejenige positive Zahl , deren Quadrat gleich a ist ,
wird Quadratwurzel von a genannt und mit 1fa bezeichnet . Auch im Fall der
Gleichung x 2 = 0 wird für die einzige Lösung x = 0 die Wurzelschreibweise
noch zugelassen , indem man vereinbart , dass ]/Ö = 0 gelten soll . Das ergibt die

Definition33. 1 : Der Term ]fa mit a A 0 bedeutet diejenigenicht negative
Zahl , deren Quadrat den Wert a hat .

Beachte also : 1fa ist nur für a ^ 0 definiert und es gilt
]fa ^ 0 und ( lfaf = a .
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Beispiele:
1/4 = 2 ; ]/6Ö5 = 2,5 ; V& = £ ;

l/2 = 1,4142 . . . (irrational ) ; / lO = 3,1622 . . . (irrational )

Das Zeichen \T heißt Wurzelzeichen; der unter dem Wurzelzeichen stehende
Term heißt Radikand . Statt »die Wurzel aus a berechnen « sagt man auch »aus
a die Wurzel ziehen« oder »a radizieren « . \/a ist meist eine irrationale Zahl ; nur
wenn a das Quadrat einer rationalen Zahl ist , »geht die Wurzel auf« , d . h . ist
auch lfa eine rationale Zahl .
Die Gleichung x 2 = a mit a > 0 hat die Zahl x , = Va als positive Lösung .
Für die negative Lösung x2 = — x 1 gilt daher : x2 = — Va.

Satz 34 . 1 : Die Gleichung x 2 = a mit a > 0 hat die Lösungen
x l = Va und x2 = — 1fa .

* *Zur Geschichte von »Wurzel« und Wurzelzeichen

Stellt man sich eine Zahl als Maßzahl für den Inhalt eines Quadrats vor , so gibt die
Quadratwurzel aus dieser Zahl die Länge der Quadratseite an . Diese Vorstellung liegt
dem Wort nAsupa (pleurä ) = Seite zugrunde , womit die Griechen , so z . B . Euklid (um
300 v . Chr .) in Buch X seiner Elemente , die Quadratwurzel bezeichneten . Durch das
entsprechende lateinische Wort latus drückten die Agrimensoren , die römischen Feld¬
messer , die Quadratwurzel aus . Nikomachos (um 160 n . Chr .) verwendet das griechi¬
sche Wort plQ/. (rhiza ) , das ursprünglich Wurzel einer Pflanze , im übertragenen Sinn
Grundlage und Ursprung bedeutet , im mathematischen Sinn von Ausgangszahl .
Wortgetreu übersetzt Boethius (um 480 - 524?) es mit radix ins Lateinische .
Ob der Inder Aryabhata I (um 476 - ? n . Chr .) durch das griechische piQi angeregt
wurde mit dem indischen Wort müla , das ebenfalls Wurzel einer Pflanze bedeutet , die
Quadratwurzel aus einer Zahl zu bezeichnen , wird wohl immer ungeklärt bleiben müs¬
sen . Interessanterweise übernehmen die Araber , so auch al -Charizmi (um 780 - nach
847) einerseits das griechische -nAeupd (pleurä ) , wenn sie z . B . in ihren geometrischen
Beweisen die Quadratwurzel als Seite eines Quadrats darstellen - sie nennen sie dann
auch dil, das ist ihr Wort für Seite - , andererseits das indische müla, dem ihr arabisches
Wort j .L=- (dschidr) entspricht , wenn sie die Quadratwurzel als Zahl auffassen . Leider
verwenden sie aber dschidr auch zur Bezeichnung der Unbekannten selbst , was aller¬
hand Verwirrung stiftete und immer noch stiften kann . Denn noch heute verwendet
man in so manchen Lehrbüchern das Wort Wurzel im Sinne von »Quadratwurzel « und
im Sinne von »Lösung einer Gleichung « . Wir wollen uns diesem Brauch aber nicht
anschließen .
Gerhard von Cremona (1114- 1187 ) , der neben anderen arabischen Abhandlungen
auch das Werk al -Charizmis übersetzte , wählte für dschidr die wortgetreue Entspre¬
chung radix , das wiederum folgerichtig mit Wurzel ins Deutsche übertragen wurde , so
um 1400 in der Geometria Culmensisund 1461 in der Deutschen Algebra , wo man liest
»Radix ist die wurcz der zal« (Abbildung 68 . 1 , Zeile 6 von folio 133v ) . In derselben
Handschrift wird das Wurzelziehen , das mittelalterliche radicem extrahere des Jorda -
nus Nemorarius (t 1237) und des Johannes de Sacro Bosco (1200 - 1256), mit »zuech
ausz dye wurcz« eingedeutscht . Das Fachwort radizieren erscheint erst 1836 in An -
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fangsgründe der reinen Mathematik für den Schulunterricht von Carl Koppe (1803 bis
1874) , der dort auch das Wort Radikand für die »zu radizierende Zahl « prägt .
Ein besonderes Zeichen für die Quadratwurzel , nämlich ff

“
, tritt zum ersten Mal bei

den Ägyptern auf , z . B . im Papyrus Moskau (19 . Jh . v . Chr .) . Die Inder kürzen ihr müla
einfach durch die Silbe mü ab . Die Araber kehren leider zu der vollen Wortalgebra
zurück , sodass es erst im mittelalterlichen Italien wieder zu einem Zeichen für die
Quadratwurzel kommt . Man kürzt das Wort radix durch ein durchgestrichenes R , also
durch fr ab , zum ersten Mal belegt bei Leonardo von Pisa (um 1170 -nach 1240 ) in
seiner Practica geometriae von 1220 . Geronimo Cardano (1501- 1576) und Niccolö
Tartaglia (1499 - 1557) verwenden es , in Deutschland Johannes Widmann von Eger
(um 1460 - nach 1500 ) . Franqois Viete (1540 - 1603 ) benützt stattdessen , seinem Lands¬
mann Petrus Ramus (1515 - 1572 ) folgend , /. , den Anfangsbuchstaben von latus .
Das heute übliche Wurzelzeichen stammt aus Deutschland . Im vor 1486 geschriebenen
Algorithmus de Surdis des Codex Dresden C80 setzt der unbekannte Verfasser einen
Punkt in die Mitte vor die Zahl und erklärt : »In extraccione radicis quadrati alicuius
numeri preponatur numero unus punctus « (Zum Ausziehen der Quadratwurzel aus
einer Zahl setzt man der Zahl einen Punkt voran ) . Bald wird dieser viereckig mit
Aufstrich , so im Codex Leipzig 1696 (vermutlich Ende des 15 . Jh .s) und auch in der
um 1517 von Adam Ries (1492- 1559) niedergeschriebenen Algebra des Initius
Algebras (Codex Dresden C 349 ) , dann erstmals im Druck 1525 in der Coß Christoff
Rudolffs (um 1500 - vor 1543 ) , auch dort noch gelesen als »Punkt « (dies sogar noch
1551 in Johann Scheybls [1494 - 1570] Algebra) . In Michael Stifels (14877- 1567)
Arithmetica Integra - »Die ganze Arithmetik « - verlängert sich 1544 der Punkt zum
Abwärtsstrich (der in den Figuren schon das Ansatzstrichlein hat ) : Der Wurzelhaken
war geboren .
Es blieb aber bei allen Wurzelzeichen das Problem , ob z . B . |/ a + b die Quadratwurzel
aus der Summe a + b oder die Summe aus dem 1 . Summanden / a und dem 2 . Summan¬
den b bedeuten soll . Nahezu jeder Mathematiker hatte dafür eigene Vorschriften . So
erscheinen bei dieser Gelegenheit 1556 zum ersten Mal runde Klammern im Druck : im
General trattato di numeri, et misure - »Allgemeine Abhandlung über Zahlen und Ma¬
ße« - des Niccolö Tartaglia steht fr v . ( fr 24 piu fr 12 ) für j/l/24 + V+2 . Dabei be¬
deutet fr v . radix universalis = Gesamtwurzel, die 1572 Raffaele Bombelli (1526 bis
1572) in seiner L ’algebra als radix legata — gebundene Wurzel bezeichnet und durch
R .L ausdrückt . Das Ende der Bindung kennzeichnet ein etwas tiefer gestelltes gespie¬
geltes L , also J , sodass bei ihm j/4 + ]/6 + 2 als R . q . L4 .p . R . q .6 j p .2 erscheint , wobei
R .q . radix quadrata bedeutet . Äus L und J dürfte unsere eckige Klammer entstanden
sein . In seinem Manuskript drückte Bombelli 1557/60 die Bindung noch so wie andere
Mathematiker durch Unterstreichen aus . Durchgesetzt hat sich von all den Möglich¬
keiten aber die Schreibweise von Rene Descartes (1596 - 1650 ) aus seiner La Geometrie
von 1637 : Er fasste die zusammengehörigen Glieder durch Überstreichen zusammen ,
schrieb also ]/ a + b . Verbindet man diesen Querstrich mit dem Wurzelhaken , so hat
man unser Wurzelzeichen , das sich aber sehr langsam verbreitete . Schließlich setzte
man den Querstrich auch da , wo er keinerlei Bedeutung hatte ; denn bei
Va + b war es ja eigentlich nicht nötig , ]fa + b zu schreiben .

Leonardo von Pisa W- Niccolö Tartaglia fr Adam Ries V
'

Widmann von Eger Raffaele Bombelli fy l em r <M7 Christoff Rudolff J
Geronimo Cardano ri Dresdener Codex • 2 ^ = ]/25 Michael Stifel ^

Abb . 35 . 1 Verschiedene Wurzelzeichen . - Wegen des Codex Leipzig 1696 , s . Abb . 70 .1
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Aufgaben
1 . Gib die folgenden Zahlen in wurzelfreier Schreibweise an :

a) 1A
e) l/lÖÖ
i) 1/196

b) l/l6
f) 1/25ÖÖ
k) l/l69

c) ]/81
g) 1/490000
1) 1/256

d) 1/36
h) 1/1000000
m) l/361

2 . Ziehe die Wurzeln :
a) ]/M b) 1/ m c) l/s¥ d) l/ioooo
e) 1//25 f) 1/^ 29 g) l/Ö^ 289 h) 1/0,000625

3 . Berechne und vergleiche :
a) l/9 + 16 und j/9 + l/l6
b) ]/169 — 25 und j/l69 —

]/25
c) j/576 + 49 und ]/576 + ]/49
d) ]/1681 - 1600 und ]/l681 - l/l60Ö
e) j/l + 4 + 4 und j/l + ]/4 + j/4
f) 1/49 + 16 - 1 und l/49 + l/l6 - ]/T
g) ]/196 — 36 + 9 und ]/l96 — l/36 + ]/9
h) ]/961 - 25 - 36 und ]/ % I - j/25 - J/36

4 . Berechne :
a) ]/l + 3 b) ]/l + 3 + 5 c) ]/l + 3 + 5 + 7

d) j/1 + 3 + 5 + 7 + 9 e) l/l + 3 + 5 + 7 + 9 + ll

5 . Beispiel: ]/j/25 —T = |/5 — 1 = j/4 = 2 . Verfahre ebenso :

a) i/j/n b) j/j/ü c) i/pi5 d) 1/1/10000

e) 1/1 + 1/9 f) l/ü - 1/25 g) l/1/400 — 4 h) yfMTl

i) l/l/l
"
+ l/576 k) / l/4 + l/S 1) l/l/ilf - l/ ®

6 . Welche Zahlen dürfen bei den folgenden Wurzeltermen für die Variable
eingesetzt werden ? Gib jeweils die Definitionsmenge des Terms an .
a) l/2u b) j/ ^ ä c) l/l + a d) l/5 - 2a

e) ]/2 \ x \ f) j/ — 3 | x | g) ]/x
2 + l h) 1/ x 2 - l

i) J/l - x 2 k) l/l ^ | - 3 » l/ /
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7 . Vereinfache :
a) ( l + l/2 ) 2 b) (3 — l/3 ) 2 c) (2 + 1/6) (2 - 1/6)
d) (/ä - 26) 2 e) (3/x + 5^) 2 f) (3p - ]/3p ) (/3

~

p + 3p)

8 . Fasse zusammen :
a) 3 + 5/2 - 7/2 + 15 b) 2a - 9 ]/a - 5 ]fä + 12a

c) - 111/5 + 81/3 + 2 - 61/3 + 71/5
d) 5 ( 1 - Vl + 21/6) — 3 (31/6 + 5/7 - 5)
e) (4/13 - 15) ( 1 + 81/13 ) - 29 (13 - 41/13)
f) (3m — ]/n ) 2 — (3m + Yn) 2 + 12m ]/n

9 . Bestimme die Lösungsmenge der Gleichung :
a) x 2 = 1225 b) 5x 2 - 320 = 0
d) 2x 2 — 4 = 0
g) 0,2x 2 - 5 = 0
k) x 2 - V3 = 0

e) 17x 2 + 61 = 350
h) fx 2 - 2 = fx 2 + 1
1) x 2 + l/5

"
= l/7

c) 16 (x 2 + 9) = 144
f) 121 = 49 - 4x 2

i) 0,15 = fx 2 + x 2

m) x 2 + l/5 - / 3 = 0

10. Welche Gleichung der Form x 2 = a hat die angegebene Zahl als Lösung?
Wie lautet die Lösungsmenge ?

a) - 1 b) 1/7 c) 0 d) — l/l/2 e) 4 = f) 1/0,5 - / /
l/3

11 . Wie lang ist die Diagonale eines Quadrats mit dem Flächeninhalt
a) 1 m 2

, b) 8 cm2
, c) 9 dm 2

, d) 450 mm 2
, e) 1,62 a , f ) 3 km 2 ?

12. Bekanntlich ist / 2 eine irrationale Zahl . Stelle bei den folgenden Termen
fest , ob sie rationale oder irrationale Zahlen darstellen .
a) 1 + 1/2 b) 1 — 1/2 c) 2/2 d) ( 1 + 1/2 ) + ( 1 - /2 )
e) (/2 ) 2 i) 1/2 ( 1 - 1/2) g) ( 1 + /2 ) 2 h) ( l + /2 ) ( l - /2 )

13 . Bestimme die Lösungsmenge:
a) j/x = 2 b) 2/x = 6 c) / x — 1 = 0 d) / je + 1 = 0
e) 2// + 5 = 3/x + 2 f) ll - 5/x = 3 - 7j/x

g) 2 (3/ / + 7) = 9 + 2// + 5 h) (// - 17) - 5 - 2/ / = 3 ( 11 + /x )
i) 7 — (2/x — 7) ■ 3 = 2/x + 4 (7 — 2/x )

14. Bei einem Fotoapparat wird bekanntlich das zur Bilderzeugung verwen¬
dete Lichtbündel durch eine meist kreisförmige Blende begrenzt . Der
Blendendurchmesser d kann verändert werden , die jeweilige Einstellung

/
d

beschrieben ; dabei bedeutet / die Brenn¬wird durch die Blendenzahl
weite des Objektivs ,
a) Wie groß ist bei einem Apparat mit/ = 50 mm der Blendendurchmes¬

ser, wenn »Blende 8 « , also die Blendenzahl 8 , eingestellt ist?



38 2 Die Quadratwurzel

b) Auf der Objektivfassung eines bestimmten Fotoapparats sind sieben
Blendenzahlen angegeben , die kleinste davon heißt 2 . Die übrigen
Blendenzahlen sind so gewählt , dass beim Übergang von einer zur
nächsten sich jeweils die Blendenfläche halbiert . Berechne die übrigen
Blendenzahlen und gib die ersten beiden Ziffern ihrer Dezimalentwick¬
lung an . (Damit erhält man die auf der Blendenskala angegebenen
Zahlen !)
Hinweis : Beachte , dass die Blendenfläche zu d 2 proportional ist .

2 .2 Berechnung von Quadratwurzeln

Wie findet man zu einer Zahl a > 0 den Wert von ]fa ?
Bei den bisherigen Beispielen war das recht einfach ; man konnte meist schnell
eine positive Zahl angeben , deren Quadrat die Zahl a ergab . Schwieriger wird
diese Aufgabe schon , wenn a eine große , uns nicht geläufige Quadratzahl ist .
Wie findet man z . B . , dass [/33489 bzw . ]/157,7536 den Wert 187 bzw . 12,56
hat ? Aber auch das sind noch Sonderfälle . Im Allgemeinen ist ja der Radikand
a nicht das Quadrat einer rationalen Zahl ; ]fa ist dann irrational , und man
muss sich damit begnügen , einen hinreichend genauen Näherungswert zu
bestimmen .
Dir ist sicher schon bekannt , dass man solche Aufgaben bequem mit dem
Taschenrechner lösen kann . Man muss lediglich den Radikanden a eingeben
und die Wurzeltaste (manchmal zwei Tasten ) drücken und schon wird ein
(Näherungs -)Wert von V

~
a angezeigt . Wie ist das möglich ? Sind die Wurzel¬

werte schon im Taschenrechner gespeichert und müssen nur abgerufen wer¬
den? Sicherlich nicht , wie du dir leicht klarmachen kannst ! Die gesuchte Wur¬
zel muss vielmehr jedes Mal neu berechnet werden . Dazu dient ein sehr schnell
ablaufendes Rechenprogramm , das mit dem Drücken der Wurzeltaste gestar¬
tet wird . Für das Berechnen von Quadratwurzeln gibt es verschiedene Verfah¬
ren . Im Folgenden sollst du einige kennen lernen .

2 .2 . 1 Intervallschachtelungsverfahren

Bei diesem schon bekannten Verfahren schließt man den Wurzelwert zwischen
zwei aufeinander folgende ganze Zahlen ein . Aus diesem Anfangsintervall ge¬
winnt man durch Anwendung der Zehnteilungsmethode eine Intervallschach -
telung für die gesuchte Wurzel . Der Rechenaufwand ist meist ziemlich groß .

2 .2 .2 Iterationsverfahren
Um zu einer Zahl a > 0 die Quadratwurzel zu berechnen , beginnen wir mit
einem Schätzwert x l > 0 . Dieser ist zu groß bzw . zu klein bzw . richtig , wenn
xf > a bzw . x \ < a bzw . x \ = a gilt . Den letzten Fall , in welchem die Bestim¬
mung von Vä zufällig schon gelungen ist , können wir im Folgenden außer Acht
lassen .
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Wegen x \ > a o x , > — bzw . x 2 < a o x , < — kann man auch durch die
X x X xa

Berechnung des Quotienten — entscheiden , ob der Schätzwert zu groß oder zu
Xi

klein ist . In jedem Fall liegt aber der gesuchte Wurzelwert zwischen den Zahlen
a

x x und — . Als nächsten Näherungswert x 2 wählen wir daher eine Zahl aus
•W

diesem Intervall , und zwar den einfach zu berechnenden Mittelwert von x 1

und — , also x2 =
X, :

Ausgehend von x 2 kann man nun nach derselben Methode einen Näherungs¬
wert x 3 , dann x4 , x 5 , . . . berechnen . Allgemein erhalten wir den (n + l )ten
Näherungswert x„ + 1 aus x„ nach der Formel

(I)

Beispiel 1 :
Gesucht ist
Wir beginnen (z . B . !) mit dem Schätzwert x , = 30 .
Durch Anwendung von (I) erhält man * :

( a \
: 2 , n e !Kl .X„ + 1 = X „ H-

V xJ

1/841 .

x2 = (30 + f ) : 2 ^ r 2 = 29,016666
und weiter x 3 = 29,000004 ; x4 = 29 ; x 5 = 29 ; . . .
Da 29 2 = 841 , hat man mit x4 bereits den richtigen Wert der Wurzel
gefunden !

Beispiel 2 :
Gesucht ist |/6 .
Mit dem Schätzwert x x = 2 erhält man * nach (I)

x2 = 2,5 ; x 3 = 2,45 ; x4 = 2,4494897 ; x 5 = x4 ( !) .

Sobald zwei aufeinander folgende Näherungswerte übereinstimmen , kann
man die Rechnung abbrechen ; der nächste Schritt wäre nur eine Wiederho¬
lung des vorausgehenden und müsste wieder dasselbe Ergebnis liefern . Dass
dieses Ergebnis die gesuchte Wurzel ist , lässt sich leicht begründen :
Mit x „ + 1 = x „ folgt aus (I)

x „
=

( * " + : 2 II ' 2x n

2x 2 = x 2 + a II ~ xl
x„

2 = a .
Da x„ > 0 gilt , ist somit x„ = Jfa .
* Die angegebenen Zahlenwerte wurden auf einem Taschenrechner mit achtstelliger Anzeige berechnet .
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Natürlich gilt in Beispiel 2 die Gleichung x 5 = x4 nicht exakt , sondern
nur im Rahmen der Anzeigegenauigkeit des verwendeten Taschenrechners .
x4 = 2,4494897 ist deshalb nur der bestmögliche Näherungswert , der mit die¬
sem Rechner für die irrationale Zahl ]/ö ermittelt werden kann . Dasselbe
Ergebnis erhält man , wenn man nach Eingabe von 6 die Wurzeltaste drückt .
Das Besondere an dem hier angewandten Rechenverfahren besteht darin , dass
zur Bestimmung der verschiedenen Näherungswerte immer wieder dieselbe
Regel , hier (I) , benützt wird . Eine solche Berechnungsmethode bezeichnet
man als Iterationsverfahren . *
Ein Iterationsverfahren ist für das praktische Rechnen sehr vorteilhaft : Man
kann beim Taschenrechner immer wieder dieselbe Tastenfolge benützen . Die
Iterationsregel (I) lässt sich, sobald ein Näherungswert in der Anzeige steht ,
z . B . mit folgender Tastenfolge ausführen :

speichern J | a |V
* _

Speicherinhalt
aufrufen ) eom

Nach dem zweiten - Befehl wird der neue Näherungswert angezeigt . Mit
ihm kann man , wie der Pfeil andeutet , das Verfahren wiederholen . Ein Itera¬
tionsverfahren lässt sich vor allem auf einem programmierbaren Rechner sehr
einfach durchführen . Die Abbildungen 40 . 1 und 40 .2 zeigen ein Strukto -
gramm und ein Flussdiagramm für Programme zur Berechnung von ]/o

~nach
dem Iterationsverfahren (I) . Bei den Taschenrechnern ist ein entsprechendes
Programm fest eingebaut .

Eingabe : a (Radikand )
e (Genauigkeitsschranke )
x (Startwert )

Solange | x2 — a | > £ tue

X := J

Ausgabe : ]/a ~ x

a (Radikand)
<5 (Genauigkeit )
x (Startwert )

nein x — y | > <5

Abb . 40 . 1 Struktogramm zum Itera¬
tionsverfahren (I) mit der Abbruchbedin¬
gung \x2

n - a | g e

Abb . 40 .2 Flussdiagramm für das Ite¬
rationsverfahren (I) mit der Abbruchbe¬
dingung | x „ + 1 - x„ | ^ S

iterare (lat .) = etwas noch einmal tun , wiederholen ; iteratio (lat .) = die Wiederholung .
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Das Iterationsverfahren (I) lässt sich auch geometrisch veranschaulichen . Wir
zeichnen dazu den Graphen der Iterationsfunktion , das ist in unserem Fall die

Funktion mit der Gleichung y = f x + — ) : 2 , x e (R +
. Sie liefert zu jedem

\ x J
Näherungswert x den nächsten Näherungswert y ; d . h . , setzt man x = xn , so
gilt t = x„ + 1 . Um dann die Zahl y als x n + 1 wieder auf der x -Achse anzutragen
verwendet man die Gerade mit der Gleichung y = x . Der auf ihr liegende
Punkt mit der Ordinate y hat auch die Abszisse y , also xn + 1 (Abbildung 41 . 1 ) .

Abb. 41 . 1 Graphische Erzeugung von x„ + 1 aus x,

x + A

Abb . 41 .2 Graphische Darstellung des Iterationsverfahrens

Der rote Linienzug in Abbildung 41 .2 zeigt , dass die Zahlen x2 , x 3 , x4 , . . . sich
von oben rasch der Abszisse des Schnittpunktes S der beiden Graphen nähern .
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Man kann zeigen , dass dies immer so ist (vgl . Aufgaben 44/4 und 45/7 ) . Da S
die Koordinaten ( ]/ä \ ]/ä ) hat , strebt die Zahlenfolge x 2 , x 3 , x 4 , . . . immer
monoton fallend gegen ]fa (vgl . Aufgabe 45/5 ) .

* *2 .2 .3 Divisionsverfahren

Es gibt einen interessanten Algorithmus *
, bei dem - ähnlich wie beim Intervallschach -

telungsverfahren - die einzelnen Ziffern der Dezimalentwicklung einer Wurzel nach¬
einander berechnet werden , wobei aber der wesentliche Schritt bei der Bestimmung
einer Dezimalen im Ausführen einer Division besteht .
Zunächst eine einfache Vorüberlegung zur Größe von ]/a . Es gilt

1 ^ a < 100 => 1 iS ]fa < 10 , d . h . , \/a hat 1 Stelle vor dem Komma

100 51 a < 10000 => 10 ?£ Va < 100 , d . h . , ]/a hat 2 Stellen vor dem Komma

104 :£ a < 10 6 => 102 ^ Va < 10 3
, d . h . , ]Va hat 3 Stellen vor dem Komma

usw.
Daraus folgt : Die Zahl der Stellen, die bei der Dezimalbruchentwicklung von 1fa mit
a > 1 vor dem Komma stehen , ergibt sich, indem man den Radikanden a vom Komma
aus nach links in Zweiergruppen einteilt .

Beispiele: j/l3 |67,5 hat 2 Stellen vor dem Komma .

]/6 | 15 ]34 hat 3 Stellen vor dem Komma .

j/l0 |47 |69,824 hat 3 Stellen vor dem Komma .

Eine entsprechende Regel lässt sich auch für Radikanden zwischen 0 und 1 aufstellen
(Aufgabe 46/10) .
Zur Erklärung des Divisionsverfahrens betrachten wir zunächst das einfache

Beispiel 1 : Berechnung von 1/1369
Das Ergebnis ist eine Zahl mit 2 Stellen vor dem Komma , also |/l 3 ]69 = _ _ , . . .

a) Bestimmung der ersten Ziffer
Man sucht die größte Ziffer, deren Quadrat kleiner oder gleich 13 ist ; Ergebnis
3 .
Begründung : Der Radikand enthält 13 Hunderter ( 1 . Zifferngruppe von links) ,
liegt also zwischen 900 und 1600 . Daher muss die Wurzel einen zwischen 30
und 40 liegenden Wert haben .

b) Bestimmung der nächsten Ziffer
Aus dem Ansatz l/l369 = 30 + r mit 0 r < 10
folgt 1369 = (30 + r) 2

1369 = 900 + 60 r + r2
469 = (60 + r) r

Algorithmus = Rechenverfahren . Das Wort Algorithmus entstand aus algorismus , einer Verballhornung des
Namens al -Charizmi , der in Vergessenheit geraten war , sodass man unter algorismus die Lehre vom Rechnen
verstand . Erst 1849 hat der Orientalist Joseph -Toussaint Reinaud den Ursprung dieses Wortes erkannt .



2 .2 Berechnung von Quadratwurzeln 43

Der ganzzahlige Teil von r ist die gesuchte Einerziffer . Um sie zu bestimmen
bringen wir die letzte Gleichung auf die Form 469 : (60 + r) = r . Da der Divi¬
sor 60 + r zwischen 60 und 70 liegt , kann r nur 7 Ganze enthalten ; denn
8 • 60 > 469 und 6 • 70 < 469 .
Somit gilt : (/1369 = 37, . . .

c) Bestimmung eventueller weiterer Stellen
Aus dem Ansatz ]/1369 = 37 + ,v mit 0 + s < 1
folgt 1369 = (37 + s) 2

1369 = 1369 + 74j + j 2

0 = (74 + j ) j
Wegen s ^ 0 folgt daraus .v = 0 .

Wir erhalten somit das Ergebnis : ]/l369 = 37 .

Die hier durchgeführte Rechnung lässt sich in einer sehr kurzen Niederschrift
darstellen ; zu Beginn des Schrittes b sieht sie etwa so aus :

]/l3 |69 = 3 d ,
- 9 _ (3 2 = 9)

469
6 □ • □ (3 - 2 = 6)

Die drei roten Kästchen müssen nun mit derselben Ziffer besetzt werden ! Ein
Schätzwert für diese ergibt sich aus der Rechnung 46 : 6 « 7 . Wegen 67 ■7 + 469
ist 7 die richtige Einerziffer . Die vollständige Rechnung lautet damit

1/1369 = 37 ,
- 9

469
- 469 67 - 7

0
Da der neue Rest 0 beträgt , ist die Rechnung beendet .

Solange die bei diesem Divisionsverfahren auftretenden Reste positiv sind , kann man
die Rechnung fortsetzen und wie bei b die nächste Ziffer ermitteln . Dies gilt auch
beim Überschreiten des Kommas . Dazu das

Beispiel 2 : Berechnung von l/4ff9
Das Ergebnis hat 1 Stelle vor dem Komma : j/40,9 = 6 , . . .

Aus dem Ansatz 1/4 (09 = 6 + r mit 0 + r < 1

folgt 40,9 = 36 + 12r + r2

4,9 = (12 + r) r

Die gesuchte nächste Ziffer ist nun der ganzzahlige Teil von lOr . Wir führen
deshalb r ' = lOr ein . Dazu multiplizieren wir beide Faktoren auf der rechten Seite
mit 10, die ganze Gleichung also mit 100 :

490 = ( 120 + r ') r'

490 : (120 + r ') = r ' .also
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Als ganzzahliger Teil von r' ergibt sich daraus nicht 4 , sondern 3 . Somit gilt:
V4ÖJ = 6,3 . . .
Ganz entsprechend verfährt man bei der Bestimmung weiterer Ziffern . Die Kurz¬
form der Rechnung sieht dann so aus :

V4Öfi = V 40,90 00 00 . . . = 6,395
- 36

4 90
- 3 69 123 - 3

1 21 00
- 1 17 21 1269 - 9

6 79 00
- 6 39 25 12785 • 5

39 75

(6 2 = 36)

(6 - 2 = 12)

(63 • 2 = 126 = 123 + 3)

(639 • 2 = 1278 = 1269 + 9)

Man rechnet so lange , bis die gewünschte Genauigkeit erreicht ist .
* * Zur Geschichte

Das angegebene Divisionsverfahren hat 1540 Reinerus Gemma Frisius (1508 - 1555 )
in seiner um 1536 geschriebenen Arithmeticae practicae methodusfacilis veröffentlicht .

Aufgaben
1 . Bei der Berechnung von ]/31 nach dem Intervallschachtelungsverfahren

erhält man [5 ; 6] als erstes und [5,5 ; 5,6] als zweites Intervall . Muss man
zur Bestimmung des nächsten Intervalls die Quadrate aller Zwischenwerte
5,51 ; 5,52 ; . . . ; 5,59 berechnen ? Wie viele Quadrate sind bei geschicktem
Vorgehen höchstens notwendig ? Wie heißt das dritte Intervall für l/3T?

2 . Das fünfte Intervall der Schachtelung für ]/21,8 heißt [4,6690 ; 4,6691 ] ,
Wie entscheidet man am einfachsten , ob der auf vier Stellen nach dem
Komma gerundete Wert von 1/21,8 mit der linken oder mit der rechten
Intervallgrenze übereinstimmt ?

3.

4 .

Berechne nach dem Iterationsverfahren (I) die Näherungswerte x2 bis x 5für

a) l/l3 und x x
— 3 , b) ]/l3 und x x = 4 ,

c) l/6,32 und x 1 = 2 , d) ]/ö,32 und x t = 2,5,
e) 1/3987 und x t = 60 , f ) l/0,95 und Xj = l .
Zeichne den Graphen der zur Berechnung von j/8 gehörenden Iterations¬
funktion x 1—>■ ( x + — ) : 2 im Intervall 0 < x ^ 10 und veranschauliche

\ x J
~~

das Iterationsverfahren wie in Abbildung 41 .2 . Verwende dabei als (sehr
schlechten !) Anfangswert zuerst 10 , dann 0,5 .
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5 . Beweise, dass die Gerade y = x die Kurve y = : 2 , x > 0 , im
Punkt S ( l/a | l/ä ) schneidet .

^

• 6 . Die halbe Summe zweier Zahlen bezeichnet man als ihr arithmetisches
Mittel*

; die Wurzel aus dem Produkt zweier positiver Zahlen heißt geo¬
metrisches Mittel* . Weise nach, dass das geometrische Mittel zweier Zah¬
len stets kleiner oder gleich ihrem arithmetischen Mittel ist .

7 . a) Bilde das geometrische Mittel der in der Formel des Iterationsverfah -
a

rens (I) vorkommenden Zahlen x n und — . Zeige , dass für
n

n + 1 x n + —
j : 2 stets die Ungleichung x n _, x 2: Va gilt (n e N) .

Q _ ^

die Beziehung xn + 1 — x„ = — — — und begründe damit die
^

b) Bestätige die Beziehung xn + 1 — x„ = — — — und
Ungleichungen x2 ^ x 3 ^ x4 ^ . . .

”

c) Die aus zwei positiven Zahlen u und v gebildete Zahl

x2 ^ x 3 ^ x4 ^ . . .
2 uv

i positiven Zahlen u und v gebildete Zahl - bezeichnet
man als harmonisches Mittel * von u und v .

u -tv
Beweise, dass für die beim Iterationsverfahren (I) auftretenden Zahlen¬

paare

Das arithmetische Mittel der Zahlen eines Paars ist die erste Zahl des
nächsten Paars . Das harmonische Mittel der Zahlen eines Paars ist die
zweite Zahl des nächsten Paars .

* Archytas , der als Staatsmann , Feldherr , pythagoreischer Philosoph und Mathematiker um 375 v . Chr . in
Tarent wirkte , sagt , dass es in der Musik drei Mittel gebe , und zwar die pEap aQiOpr |TiKf| (mese arithmetike ) ,
das arithmetische Mittel , für das u — m = m — v gilt , die pecrq ye&psTpiKri (mese geometrl ke) , das geometri¬
sche Mittel , für das u : m = m : v gilt , und schließlich die psar ] imsvavrir ) (mese hypenantie ) , das konträre
oder entgegengesetzte Mittel , das auch piaTj appoviKTj (mese harmonike ) , harmonisches Mittel , genannt
wird und für das (u — m) : u = (m — v) : v gilt . Hippasos (Mitte 5 . Jh . v . Chr .) soll , anderen Berichten zufolge ,
als erster den Ausdruck harmonisches Mittel gebraucht haben . Löst man jeweils nach m auf , dann erhält man

die bekannten Ausdrücke
U

bzw . ]/üv bzw . —UV
.2 y u + v

Die Mittel ergeben sich aus Sonderfallen von Proportionen . Setzt man nämlich in der arithmetischen Propor¬
tion a — b — c — d bzw . in der geometrischen Proportion a : b = c : d die Innenglieder b und c gleich , dann
erhält man mit den Außengliedern u und v die oben angegebenen stetigen oder fortlaufenden Proportionen
(siehe Seite 99) u — m = m — v bzw . u : m = m : v. Allmählich wurde es Brauch , eine solche dreigliedrige
stetige Proportion peaÖTriq (mesötes ) = Mittelheit zu nennen . Euklid (um 300 v . Chr .) verwendet nur die

geometrische Proportion . In Buch VI , Satz 13 der Elemente nennt er |/ uv mittlere proportionale Größe (psaov
(isyeOog dvaXoyov [meson megethos anälogon ] ) , was Johannes de Sacro Bosco ( 1200- 1256) mit medium

proportionale übersetzt . Johannes Widmann von Eger (um 1460- nach 1500) bildet 1489 in seinem Re¬
chenbuch dafür eyn mittel zal und Johann Scheybl (1494- 1570) in seiner Euklidübersetzung Das sibend/acht
und neunt buch des hochberümbten Mathematici Euclidis Megarensis von 1555 das mittel proportional zwaier
zalen oder kurz mittel . Den Ausdruck geometrisches Mittel hat anscheinend 1808 Georg Simon Klügel
(1739- 1812) in seinem Mathematischen Wörterbuch geprägt . Bei Johannes Kepler (1571- 1630) findet man
1615 medium arithmeticum in seiner Nova Stereometria doliorum vinariorum - »Neue Raummesskunst für
Weinfässer « die Eindeutschung arithmetisches Mittel erst im 1. Viertel des 19 . Jh .s .
(Übrigens verwechselt Scheybl wie so mancher andere den Mathematiker Euklid [um 300 v . Chr .] mit
dem Philosophen Euklid von Megara [ um 450 - um 370 v. Chr .] , einem Schüler des Sokrates . Federigo
Commandino [ 1509- 1575] weist 1572 in seiner Euklidübersetzung auf diesen Irrtum hin .)
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8 . Wähle einen Startwert x L und berechne mit dem Iterationsverfahren (I)
die ersten vier geltenden * Ziffern der Dezimalentwicklung von
a) ]/817Ö b) ]/14,36 c) \/0 ,088855 d) j/0,000001234 .

9 . Wie viel Stellen vor dem Komma hat die Dezimalentwicklung der Wurzel
und wie heißt die erste Ziffer?

a) ]/5 b) |/37,64 c) j/428 d) ]/3650809

e) |/82145 f) j/8214,5 g) l/821,45 h) l/82,145
10 . a) Welche Ungleichung für ]fa folgt aus

l ) l > a £ 0,01 ; 2) 0,01 > a ^ . 0,0001 ; 3) ^ > a ^

b) Wo steht in der Dezimalentwicklung von 1) / f/5 ; 2) 1/0,025 ;
3) 1/0,004 die erste von 0 verschiedene Ziffer und wie heißt sie?

11 . Wie muss bzw. kann der Anfang der Dezimalentwicklung der Wurzel
aussehen ? (Die Punkte bedeuten weggelassene Ziffern .)
a) 1/0,7 . . . b) 1/0,006 Z7 c) 1/0,12 . . . d) l/0,0147 . . .

12 . Berechne nach dem Divisionsverfahren den ganzzahligen Teil der Wurzel ,
a) l/lOÖÖ b) 1/80656 c) j/338725 d) 1/3387,25

13 . Berechne nach dem Divisionsverfahren den auf Hundertstel gerundeten
Wert von a) j/l9 , b) l/l87,5 , c) j/l 7,7241 , d) |/0,6196 .

14 . Auf der in Abbildung 48 . 1 gezeigten altbabylonischen Keilschrifttafel
YAT 6598 (um 1600 v . Chr .) wurde zur näherungsweisen Berechnung von
Quadratwurzeln folgendes Verfahren angewandt , das auch Heron (um 62
n . Chr .) in seinem Ilepi pkzjxnv - »Vermessungslehre « - angibt :

1/ p 2 + q » P + ~ Cp > 0 ; p 1 + q ^ 0)

Welcher Wert ergibt sich damit

a) für l/3 aus der Zerlegung 3 = 4 — 1 ;
b) für l/3 aus der Zerlegung 3 = 2,89 + 0,11 ;
c) für j/ö aus der Zerlegung 6 = 6,25 — 0,25;
d) für l/435 aus der Zerlegung 435 = 400 + 35;
e) für l/435 aus der Zerlegung 435 = 441 — 6;
f) für l/l000 aus der Zerlegung 1000 = 1024 — 24?

Vergleiche das Ergebnis mit dem Näherungswert des Taschenrechners .
* Die geltenden Ziffern werden von links nach rechts gezählt . Die erste von 0 verschiedene Ziffer ist dabei die

erste geltende Ziffer .
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15 . Welcher Näherungswert x2 ergibt sich nach der Formel von Aufgabe 14
für 1fa , wenn man mit Hilfe eines Schätzwertes x , den Radikanden in der
Form a = x\ + (a — x { ) darstellt ? Vergleiche damit das entsprechende Er¬
gebnis beim Iterationsverfahren (I) .

16 . Von Heron (um 62 n . Chr .) wird angenommen , dass er für Wurzeln der

Form |/ n 2 — 1 mit ne \Kl auch die Näherungsformel

]/n 2 — 1 ä n - 1- - verwandte .v In - 1 (2n - 1 ) • {In + 1 )

a) Zeige , dass die von Heron angegebene Näherung 1/3 » ff mit dieser
Formel gewonnen werden kann .

b) Welcher Näherungswert ergibt sich aus obiger Formel für

1) |/l5 , 2) j/63 , 3) l/l20 ?

c) Vergleiche die HERONsche Näherung für ]/
~
3 mit der von Archimedes

(um 287- 212 v . Chr .) stammenden Abschätzung

265 1351- < V3 < - .
153 780

Vergleiche die Ergebnisse jeweils auch mit den von deinem Taschenrechner
gelieferten Näherungswerten .

17. Die Babylonier rechneten bekanntlich im Sexagesimalsystem*
, also im

Stellenwertsystem mit der Grundzahl 60 . In den Übersetzungen ihrer Keil¬
schrifttexte werden Zahlen meist in der Form geschrieben , dass hinter die
Ganzen ein Strichpunkt und zwischen Einer , Sechziger, . . . bzw . zwischen
Sechzigstel , 3600stel, . . . jeweils ein Komma gesetzt wird . Zum Beispiel
bedeutet 4,20 ;25,08 die Zahl 4 • 60 + 20 + + 3^ 0.

a) Prüfe die aus einer babylonischen Wurzeltabelle stammende Gleichung

j/0 ; 38,24 = 0 ;48 .
b) Gib den Wert von 1) ]/%45 , 2) ]/l ;33,45 , 3) ]/ll ; 13,21

im Sexagesimalsystem an .
18 . Die Keilschrifttafel VAT 6598 (Abbildung 48 . 1 ) enthält folgende Aufga¬

be : Ein Tor . \ GAR und 2 Ellen Höhe , 2 Ellen Weite . Seine Diagonale ist
was?
a) Wie viel Ellen misst die Diagonale , wenn 1 GAR = 12 Ellen * * gilt?

b) Auf der Tafel wird für die Länge der Diagonale der Wert
0 ;41,15 GAR angegeben . Zeige , dass dies keine exakte Lösung ist und
dass sie sich nach der Näherungsformel von Aufgabe 14 ergibt , wenn

* sexagesimus (lat .) = der sechzigste
** 1 GAR bedeutet etwa 6 Meter , 1 babylonische Elle also etwa 5 dm .
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Abb . 48 . 1 Rückseite der altbabylonischen Keilschrifttafel VAT 6598 , aufbewahrt in
Berlin, Staatliche Museen : Vorderasiatische Abteilung ; Ton tafeln , samt zugehöriger
Autographie (wörtlich : Selbstgeschriebenes) , d . h . handschriftlicher Übertragung der
in den Ton eingedrückten Zeichen

man für p 2 die größte Quadratzahl wählt , die im Quadrat der Diagona¬
len enthalten ist .

c) Für dieselbe Aufgabe wird auf der Tafel auch noch die Lösung
0 ;42,13,20 GAR angegeben . Vergleiche die Genauigkeit der beiden Lö¬
sungen .

19 . a) Auf der babylonischen Keilschrifttafel* AO 6484 aus Uruk aus der
Zeit der Seleukiden (321- 63 v . Chr .) findet man für f/2 den sexagesi-
malen Wert 1 ;25 .
1 ) Auf wie viel Dezimalstellen stimmt dieser Wert mit dem von deinem

Taschenrechner angezeigten Wert überein ?
2) Man kann nur vermuten , dass die Babylonierdiese Näherung durch

zweimalige Anwendung der Formel von Aufgabe 46/14 gefunden
haben , und zwar beginnend mit pf = 1 ; der sich dabei ergebende
Näherungswert wird als p 2 genommen . Führe diese Rechnung
durch .

• b) Auf der altbabylonischen Keilschrifttafel * * YBC 7289 (Abbildung
49 . 1 ) steht auf der Diagonale eines Quadrats die Sexagesimalzahl
1 ;24,51,10.

* aufbewahrt im Louvre zu Paris in der Abteilung Antiquites Orientales
** aufbewahrt in der Yale Babylonian Collection in New Haven (USA)
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1 ) Auf wie viel Dezimalstel¬
len stimmt dieser Wert für
]fl mit dem von deinem
Taschenrechner hierfür an¬
gezeigten Wert überein ?

2) Wie die Babylonier diesen
recht genauen Wert gefun¬
den haben , wissen wir
nicht . Nahe hegend er¬
scheinen die beiden folgen¬
den Verfahren .
1 . Art : Man führt zuerst
das in a 2 beschriebene
Näherungs verfahren noch
einen Schritt weiter .
2 . Art : Man wendet zuerst
auf 1 ;25 das Iterationsver¬
fahren (I) von Seite 38 f.
einmal an .
Zeige , dass man jedes Mal
1 als Näherungswert
erhält . Rechnet man dann
diesen Bruch in eine Sexa-
gesimalzahl um * und bricht
dem Semikolon ab , so erhält
Zahl . Weise dies nach .

Abb . 49 . 1 Autographie der altbabylo¬
nischen Keilschrifttafel YBC 7289 (um
1700 v . Chr .) . Auf der Quadratseite links
oben liest man « < = 30 , auf der Diago¬
nale J « 7 <v f < als Näherungswert für
j/2 . Darunter steht die entsprechende
Länge der Diagonale .

nach der 3 . Sexagesimalstelle hinter
man die auf der Diagonale stehende

3) Berechne mit Hilfe dieses Näherungswerts die Länge der Diagona¬
le als Sexagesimalzahl , wenn die Quadratseite die Länge 30 hat .
(Abbildung 49 . 1 )

20 . Die Schallgeschwindigkeit in trockener Luft von 0 °C beträgt
c0 = 331,6 m/s . Sie nimmt mit steigender Temperatur zu , und zwar gilt bei

der Lufttemperatur t (in °C) : c = c0 1 +
1

273,2 K

a) Wie groß ist die Schallgeschwindigkeit bei 20 ° C bzw. 40 °C?
b) Bei welcher Temperatur beträgt die Schallgeschwindigkeit 325 m/s?

21 . Wenn eine schwingende Saite von der Länge l, dem Querschnitt q und der
Dichte q mit einer Kraft F gespannt ist , dann hat ihr Grund ton die Fre -

* Beispiel einer Umrechnung :

3
35

36
T
6Ö

5
6Ö

1

60
:

60

60
+ 3600

:
60

+
3600

60

216000
= 0 :05,08 ,
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quenz * v0 21 j q ■q
, der « - te Oberton die Frequenz

n + 1 - , n e IM .
q - Q

F

a) Eine Stahlsaite ( ß = 7,85 g/cm 3 ) von 1,00 m Länge und 0,50 mm 2
Querschnitt , die mit einer Kraft von 160 N gespannt ist , wird ange¬
zupft . Welche Frequenz hat der dabei erklingende Grundton ? Wie viele
Obertöne haben eine Frequenz unter 2 kHz ?

b) Die e-Saite einer Violine ist 32,5 cm lang ; sie ist 0,35 mm dick und aus
Stahl (g = 7,85 g/cm 3) . Mit welcher Kraft muss sie gespannt werden ,
damit sie richtig gestimmt ist? (Die Frequenz des Tones e" beträgt
660 Hz .)

c) Eine Kontrabass -Saite mit q = 7,9 g/cm 3 und q = 6,2 mm 2 ist mit
370 N gespannt und gibt beim Anstreichen den Ton 1E (so genanntes
Kontra -E) mit 41 Hz . Wie viel cm ist diese Saite lang ?

2 .3 Rechenregeln für Quadratwurzeln

Aus Definition 33 . 1 folgt unmittelbar , dass ( Vä) 2 — a gilt . Das Ziehen der
Quadratwurzel und anschließendes Quadrieren heben sich also auf . Gilt das
auch für die umgekehrte Reihenfolge dieser beiden Rechenschritte ? Dass dies
nicht zutrifft , zeigt folgendes

Beispiel: ( — 2) 2 = 4 ; j/4 = 2 ; also j/ ( — 2) 2 4= — 2 .

Wegen | — 2 \ = 2 gilt aber ]/ ( — 2) 2 = | — 2 | .

Das führt uns zu

Satz 50 . 1 : Für jede reelle Zahl a gilt Vä2 = \ a \ .

Beweis: Va2 ist nach Definition 33 . 1 die nicht negative Lösung der Gleichung
x 2 = a 2

. Diese Gleichung hat für a + 0 die beiden Lösungen a und — a .
Je nachdem , ob a > 0 oder a < 0 gilt , ist a oder — a die positive Lösung .
Für a = 0 ist x = 0 = l/Ö2 die einzige Lösung .
Somit gilt :

a > 0
a < 0

\j i ui ci —— 0

also l/ö 2 = \ a \ .

* frequentia (lat .) = die Häufigkeit ; Frequenz = Zahl der Schwingungen pro Sekunde , Einheit 1/s = 1 Hz
( 1 Hertz ) zu Ehren von Heinrich Hertz (1857- 1894) , dem Entdecker der elektromagnetischen Wellen
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Die vorausgehende Überlegung zeigt , dass man die Reihenfolge der beiden
Rechenschritte »Wurzelziehen « und »Quadrieren « im Allgemeinen nicht ver¬
tauschen darf . Kann man aber vielleicht das Wurzelziehen mit einer der vier
Grundrechenarten vertauschen ?

Beispiele :
1) 1/9 + 16 = j/25

j/9 + |/l6 = 3 +
1/9 + 16 * 1/9 + 1/16

2) 1/16 - 9 = l/7
l/l6 — 9 * l/l6 — l/9

l/l6 - l/9 = 4 - 3 = 1

3) 1/9 - 16 = 1/144
l/9 • l/i6 = 3 - 4

1/9 - 16 = 1/9 - 1/16

4) I/ 9 TT6 = l/ ^
l/9 ; l/l6 = 3 : 4

=> 1/9 : 16 = l/9 : ]/l6

Die Beispiele 1 und 2 beweisen, dass man die Reihenfolge von Wurzelziehen
und Addieren bzw . Subtrahieren nicht vertauschen darf . Die beiden anderen
Beispiele lassen jedoch vermuten , dass beim Multiplizieren und Dividieren die
Vertauschung zulässig ist .
Tatsächlich gilt

Satz 51 . 1 :

1) Für a 2: 0 und b A 0 gilt V a • b = Ya ' Yb .

2) Für a ^ 0 und b > 0 gilt Vu : b = Ya : Yb , oder =
o Yb

Beweis von 1 : Aus a A 0 und 5 ^ 0 folgt a - b ^ O ; alle drei Wurzeln sind
definiert .
Aus ( l/fl • Yb)2 = a ■b folgt , dass Ya ■Yb die nicht negative
Lösung der Gleichung x 2 = ab darstellt , also gleich Yäb ist .

Beweis von 2 : gib ]/b •
]/ | =

]
Tbgüt 1ß •

Yb - Ya , | | : Yb

Y
~
a

1Tb



52 2 Die Quadratwurzel

Die Regel 1 von Satz 51 . 1 lässt sich natürlich auch auf mehr als zwei Faktoren
ausdehnen . So gilt z . B .

1/ abc = 1/ a (bc) = ]fa ■Vbc = Va ■ Vb ■ ]/c .
Im Sonderfall von n gleichen Faktoren erhält man

Satz 52 . 1 : Für a ^ 0 und n e INI gilt: Va " = (Vä)" .

Als Anwendungen der bisher gefundenen Rechengesetze treten besonders
häufig folgende Fälle auf :
Teilweises Wurzelziehen (partielles Radizieren ) : Lässt sich aus dem Radikan¬
den ein quadratischer Faktor abspalten , so kann man aus diesem die Wurzel
ziehen .
Beispiele:

l/75 = l/25 • 3 = |/25 - 1/3 = 51/3

]/a 2 b 3 c 4 = ]/a 2 b 2 c 4 ■ b = ]/a 2 b 2 c 4 - ]/b = \ a \ ■ \ b \ ■ c 2Vb

l/2 a 2 — 4ab + 2b 2 = ]/l (a 2 — lab + b 2) = ]/2 (a — b )
2 = \ a — b \ ■]/2

Einen Faktor unter die Wurzel nehmen: Es handelt sich hier um die Umkehrung
des partiellen Radizierens .
Beispiele:

2 • l/7 = V2 2 ■j/7 = V2 27 ! = l/28

— 5 • l/3 = — V5 2 - 1/3 = — 1/5 2 • 3 = — 1/75

r- f | a | • 1fb = W - Vb = ]/a 2 b , falls a ^ 0
a • ]/ b = < __ _ ,_

l - \ a \ - Vb = - Va2 - Vb = - VcVb , falls u < 0

Beachte also , dass man nur nicht negative Faktoren durch eine Quadratwur¬
zel darstellen kann .

Rationalmachen des Nenners : Dabei geht es darum , Wurzeln , die im Nenner
eines Bruches auftreten , zu beseitigen .
Beispiele:

1 1 • 1/2 _ l/ 2 1/2 _ 1 ^
1/8 l/8 • 1/2 j/16 4 4
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1
_

1 - 1/2 1 - 1/2
.._ l - V

/2
_ lA t

1 + 1/2 ( 1 + 1/5) ( 1 - 1/5) 1 — (]/2 ) 2 - 1

l/3 l/3 (l/7 + 1/5) V3 - ]/l + V3 - V5

1/7 — l/5
~~

(1/7 — 1/5 ) 0/7 + 1/5 )
~~

7 - 5

= I^ 1 + IÜ5 = 1
(^ I + |^ )

1fb Vb ' Ya 1fab lfab

1fäf
~~

l/ö ^l/ö
~

lV
~

Aus a = b folgt , falls a und b nicht negativ sind , die Gleichung \/a = Yb ;
umgekehrt erhält man durch Quadrieren daraus wieder a = b . Also sind , falls
a ^ 0 und b + 0 , die beiden Gleichungen a = b und Ya = \/b äquivalent .
Gilt eine entsprechende Feststellung auch für Ungleichungen ?

Beispiele:
4 < 49 liefert j/4 < ]/49 ; richtig , weil 2 < 7 .

0 < 5 liefert j/Ö < ]/5 ; richtig , denn 0 < 2,23 . . .

2,25 > 0,36 liefert 1/5/25 > j/0,36 ; richtig , da 1,5 > 0,6.

Vermutlich gilt also

Satz 53. 1 : Monotoniegesetz des Radizierens

Für a ^ 0 und b ^ 0 gilt : a < b o Ya < Yb .

Beweis : 1) <= : Aus der Voraussetzung 1/ a < \fb und \/a + 0 folgt 1fb > 0 . Wir
multiplizieren die Ungleichung Ya < Yb mit 1fa bzw . Yb :

Ya < Vb H - 1/a Ya < Vb \ \ - fb

a ^ Yäb . Yäb < b .

Somit ist a ^ Yäb < b , also a < b .

2) => : Vorausgesetzt ist nun 0 V a < 6 . Die Annahme 1/a + \/
'
b hätte

nach 1 die Ungleichung a 2; b zur Folge , also einen Wider¬
spruch zur Voraussetzung .

Daher gilt : a < b => Ya < Yb .
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Aufgaben

1 . a) 1/2 • 1/8

d) l/lÖ • l/lÖOÖ

g) ]/IÖ - ]/l 4Ä

k) 1/04 - VÖA

n) l/f - l/f

2 . a) l/2 • l/3 • Yl

c) l/3 • l/5 • l/5 ■l/l2

e) VÖJ5 • ]/6 • l/ 24

g) vf - j/f - 1/1775

b) l/3 • l/l2

e) VYtf - VW

h) 1/0,625 • 1/TÖ3

1) 1//5 - /Ö4
o)

c) 1/45 • 1/20

f ) 1/ Ö4 • 1/0,001

i) 1/196Ö • l/Ojf

in) j/0,121 • l/44

p) YWs - V^ l

b) l/2 - 1/5 • 1/4Ö

d) ]/2Ö • l/043 • l/l5

f ) l/l ^2 • l/Ö4)2 ■ l/Ö4) 3
^

- l/Ö^

h ) ]/4 • ]/iä ■VW - VWs ■ i/Im

3 . a) 1/16 ■ 121 b) 1/625 - 49 - 100 c) 1/0,01 • 144 • 225

d) 1/0,36 • 2 4 • 5 2 e) 1/3 6 • 1,69 ■ 7 2 f) l/5 4 - 2 8 - ll 2

g) 1/ (2 • 3 2) • (5 6 • 2 3 ) h) 1/ (3 • 5 2 • 7) • 84 i) l/ (2 3 • 11 • 3 5) • 297 • 8

4 . Vereinfache durch teilweises Radizieren :

a) 1/32 b) 1/27 c) 1/18Ö d) ]/l76

e) j/216 0 ]/l25Ö g) l/9ÖÖÖ h) l/24

i)

5 . a)

I/ 4Ö4

/ /

1/2
b)

e) 1/324 : l/Ö4

k) 1/0,00625

l/48 / 27

l/3
C

1/243

f ) 1/0,294 : l/24

d)
l/l76

V275

g) 1/0,098 : 1/22,05

^ ^
1/18 1/27

* 3
l/75 l/32

b)
l/63 l/96

l/24 1/700

1/244 6 l/l6Ö 1/4Ö5

l/l92
~ '

i/54
d)

1/ 45O
'
TIE !

7 . Vereinfache :

a) l/öz4 b) Va 2 b 2 c) l/25m 10n 3 d) V21x s y 4

/ 32 b / 250m 3 2« 2
e) / a 2 25

1) / n 2 m 2 g)
/1,21m ; 2 w4

192

8 . a) (l/8 - 3j/l8 + 21/32 ) • l/2 b) (31/5 - l/2Ö + / 8Ö) ■ 2 ]ß
1 1

c) - l/6 (8l/l2 — 21/24 + l/75 ) d) - 1/15 (2/45 + 3 1/ I 35 - 3l/2Ö)
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9 . a) (]/3 + l/2 ) (l/3 - 1/2) b) (6/5 - 5/6 ) (5/6 - 6 ]ß )

c) (1/14 — / 3 ) (l/6 + 1/7 ) d) (51/11 - 2l/lÖ ) ( — 1/55 — 21/2)

10. a) [ (2/5 + V2) + 1/22] • [ (2 )/5 + )/2 ) - 1/22]

b) [ 21/15 + (4 ]/3 - 2/7 )] • [ 2/15 - (41/3 - 2/7 )]

11 . a) (5/2 + / 18 ) 2

b) (2/5 — l/l8 ) 2

c) (J/20 - 3/2 ) 2 + (3/5 + / 8) 2

d) (/32Ö — 2/70 ) 2 — (/24Ö — ö/lÖ )

/ 21 1
12 . Beispiel : — = — _

K2 V2 - V2 2 2

Mache bei den folgenden Quotienten den Nenner rational :

1 5 - 2 1/7 — 1
a) —j= b) - = c) - == d) j=—

1/3/5 V\ 9 / 7

, 2 ^ 6 + 10/1/2 ^ / 2 + 1/3 7/5 - 51/7
e)

31Ü1
0

5l/lJ
8) 1

Vs - V7

13 . Mache die Nenner rational .
1 ^ 5

a)
3 + 1/iö

b)
21/7 - /3

l/2 - l 1 - /15
'

/S + l
C

2/5 - 5/3

1/6 + 1/7

l/7 + 1/8
3/14 + / 7

14 . Beseitige die Wurzeln im Nenner .

a)

d)

b)

e)

2b 2

/ 8 a 2 b 5 c

1
Ya - Vb

c)
2a3

/ 6u4 6 3 c 3

f)
/ p + / g

/>/ ? + ? / ?

15 . Beispiel: (/2 ) 3 = (/2 ) 2 • Yl = 2/2 .

a) (l/2 ) 4 b) (l/2 ) 10 c) (/2 ) 11 d) (]/2 ) 15 e) (/2 ) 18

f) (/3 ) 3 g) (/ll ) 2 h) (l/7 ) 5 i) (/3 ) 8 k) (/5 ) 9
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16 . Beispiel: |/7 * = Vl 4 • 7 = 7 2 : l/7 = 49 ^ 7.

a) b) j/iU <0 1/5 * d) 1/8 1 e) l/ö 3

f) l/IT* g) l/3 ® h) 1/21 “ i) l/? 3 k) 1/2 ^ °

17 . a) {Vl ) 5 + (V8) 4 - 2 ]/^ b) ((3/5) 3 _ 3/5 ) . !/53

c) (1/7 4 + 4 (l/7 ) 3) ((l/7 ) 5 — 7 - 1/4^)
d) (41/3^ + (l/2 ) 5) : (8 (l/3 ) 7 + 91/2 7)

18 . Vereinfache :
a) (]/ä ) 3 b) (]Az) 4 c) ( lA/) 7

f) lAz 2 g) l/ö 3 h) 1A24
d) 0/ä ) 2" e) ( l/ a) 2m + 1

i) 1/ö 3 k) lAz ®

19 . Vereinfache :
a) ]Az2 + 2a6 + b 2

c) / z4 + 2z2 + 1

e) l/l2,lx 2 + 4,4xy + 0,4j>2

b) ]/2 «7
2 — 12m + 18

d) j/9z 4 - 6z2 + 1

f) / l + 2 | x | + x 2

20 . Nimm , soweit dies möglich ist , die Faktoren unter die Wurzel . Achte dabei
auf eventuell notwendige Fallunterscheidungen .
a) 31/2 b) l/7 • 5 c) ( - 2) 1/3 - x d) (7 - 3) l/5Ö

e) xl/y f) a 2 Vx g) 27>3 j/y h) (a — b ) Va + b

21 . Welche Größenbeziehung besteht zwischen folgenden Zahlenpaaren?
a) l/l7 und l/l6 b) 1^ 81 und 1/247

c) ]/a 2 + 2 und Va2 + 1 d) l/0,75 und |/f

e) l/ÖJ und (/ (Uff f) / f 7 und lA) ,457

• 22 . Es sei 0 < a < 1 und b > i . Welche Größenbeziehung besteht dann zwi¬
schen

a) lAz und a , b) Vb und b , c) l/ö 7 und ( j/ö )8 ,
d) ( ]/ö ) 3 und 1AA, e) 1/ a 3 b2 und Z>]AA , f ) l/öÄ > und aYab 2 !

23 . Welche Ungleichung besteht zwischen
a) 1/9 + 16 und j/9 + l/l6 , b) l/5 2 + 102 und Aö2 + / lö 2 ,
c) 1/625 - 49 und l/625 - 1/49 , d) 1/225 - 25 und l/225 - ^ 25 ?
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24 . a) Beweise: \fa + ]/b 'S: \/a + b . Wann gilt das Gleichheitszeichen ?

b) Beweise: 0 < a < b => // > — / ö < Vb — a . (Hinweis : Quadriere !)

25 . Zeige , dass die Zahlen x und y gleiche Quadrate haben . Warum sind
trotzdem die Zahlen selbst nicht gleich?

a) x = 3 — 2 ]/3 ; y = j/n - 12/3

b) x = ]/l4 — 81/T ; = l/6 — 2l/2

26 . Mit Hilfe von Quadratwurzeln kann man dieselbe Zahl auf sehr unter¬
schiedliche Art darstellen . Weise nach , dass die folgenden Gleichungen
richtig sind :

a) 1/3 - 21/2 = l/2 - l b) 2 + 1/5 = l/4l/5
“
+ 9

c) 1/9 + 2/14 = / 2 + 1/7 d) l/l/8 + 1/2 + 4 = / /F + 1/W
• 27 . Beispiele wie die von Aufgabe 26 lassen sich auf zwei Rechenregeln zu¬

rückführen , die in geometrischer Fassung schon bei Euklid (um 300
v . Chr .) in Buch X seiner Elemente , in algebraischer Form z . B . im arabi¬
schen Euklid -Kommentar des al -Nayrizi (f 922 ) und im indischen Bi-
dscha-ganita - »Samen der Rechenkunst « - von Bhäskara 11 (1115 - nach
1178 ) Vorkommen : Für 0 A a 5S b gilt

Za + Vb = / a + b + 2 \/ab und Yb — j/a = ]/a + b — 2 ]/ä /

a) Beweise diese Regeln .
b) Warum existiert ]/a + b — 2 Yob für beliebige positive Zahlen a und bl

(Hinweis : Aufgabe 45/6)
c) Bereits Abu Kamil (um 850- 930 ) berechnet in seinem al-kitab fi al-

dschabr wa - ’l-muqabala mit diesen Formeln j/8 + /l8 = /5Ö und
/ l8 — / 8 = 1/2 . Bestätige diese Ergebnisse 1) unter Verwendung der
obigen Formeln , 2) ohne Verwendung dieser Formeln .

d) Vereinfache die folgenden Terme mit Hilfe der obigen Formeln :

1) ]//3 + / 2 — l/l/3
“

— / / (arabisch , um 1100)

2) ( //
'40 + 6 + / /4 (T- 6 ) 2 (Luca Pacioli [um 1445 - 1517] ,

Summa , 1494)

3) (/l2 + / 6 + ]/l2 — l/ö
"

) 2 (Michael Stifel [ 1487 ?- 1567] ,
Arithmetica integra , 1544 )

28 . Überprüfe die folgenden Beispiele aus der altindischen Mathematik :

a) 1/1O + / 24 + / 4Ö + I/6Ö
“

= l/2 + l/3 + l/5

b) ]/l 6 + / 12Ö + / 72 + / 6Ö + / 48 + / 4Ö + 1/24 = j/6 + / 5 + |/3 + l/2



58 2 Die Quadratwurzel

* * 2 .4 Zur Geschichte der irrationalen Zahlen

Eine der größten Leistungen der griechischen Mathematik ist die Entdeckung der
Inkommensurabilität zweier Strecken , d . h . der Existenz von Streckenverhältnissen ,
die nicht mehr durch das Verhältnis zweier ganzer Zahlen ausgedrückt werden können .
Sie führte schließlich zum Begriff der irrationalen Zahl . Es überrascht , dass die Ägyp¬
ter , erst recht die Babylonier , die ja bereits um 1800 v . Chr . erhebliche mathematische
Kenntnisse besaßen - du wirst später davon noch mehr hören - , das Problem , ob es zu
zwei Strecken stets ein gemeinsames Maß gibt , überhaupt nicht erkannten . Es über¬
rascht noch mehr , dass die Griechen dieses Problem zu einer Zeit erkannten und auch
zu lösen verstanden , als ihre Mathematik noch in den Kinderschuhen steckte . Noch
erstaunlicher ist es , dass durch kein Dokument belegt ist , wann und durch wen diese
ungeheuere Entdeckung erfolgte , obwohl die Griechen die Tragweite dieser Entde¬
ckung erfassten .*
Der früheste Bericht von dieser Entdeckung ist die Stelle 147c des Dialogs Theätet , den
Platon (428 - 348 v . Chr .) im Jahre 368 v . Chr . verfasste , kurz nachdem sein Schüler ,
der Mathematiker Theaitetos (um 415 - 369 v . Chr .) , in einer Schlacht tödlich verwun¬
det worden war . In diesem Dialog , der im Jahre 399 v . Chr . , dem Todesjahr des Sokra¬
tes , spielt , zeigt ein alter Mathematiker , nämlich Theodoros von Kyrene (um 465 bis
um 385 v . Chr .) , dass die Seite eines Quadrats , dessen Inhalt eine der Nichtquadratzah¬
len von 3 bis 17 ist , irrational ist . Bei 17, so heißt es , »hielt er zufällig inne« . Von einem
Quadrat des Inhalts 2 wird nichts gesagt ! Also muss der Beweis für die Irrationalität
von V2 älter sein. Der in den meisten Codices als Nachtrag zu Buch X von Euklids
Elementen (um 300 v . Chr .) überlieferte arithmetische Beweis für die Irrationalität von
1/2 ist sprachlich weitaus schwerfälliger als die sonstige Diktion der Elemente; das weist
daraufhin , dass er aus alter Zeit stammt . Auf alle Fälle scheint V2. die erste Zahl zu
sein, deren Irrationalität arithmetisch und nicht nur geometrisch bewiesen wurde (sie¬
he Aufgabe 12/4) . Mit größter Wahrscheinlichkeit wurde aber die Irrationalität nicht
am Quadrat entdeckt , sondern am regelmäßigen Fünfeck bzw . am Pentagramm (Ab¬
bildung 9 . 1 ) , dem Erkennungszeichen des Geheimbundes der Pythagoreer (Aufgabe
13/11 ) .
Einstimmig sind spätantike Autoren der Meinung , dass der Philosoph * * Hippasos aus
Metapont/Unteritalien (2 . Viertel des 5 . Jh . s v . Chr .) , der noch ein unmittelbarer Schü¬
ler des Pythagoras (um 570- um 497 v . Chr .) sein könnte , die Entdeckung des Irratio¬
nalen an die Öffentlichkeit gebracht hat . Ansonsten wird von ihm noch berichtet , dass
er musikalische Experimente an Metallscheiben verschiedener Dicke und an mit Was¬
ser gefüllten Röhren ausgeführt und sich außerdem mit Proportionen und Mitteln
(siehe Aufgabe 45/6) beschäftigt habe . Aber zurück zum Irrationalen !
Iamblichos aus Chalkis/Koile -Syrien (um 250- um 330 n . Chr .) berichtet uns :
»Hippasos habe als Erster die aus 12 Fünfecken zusammengesetzte Kugel , d . h . die
Umkugel des Dodekaeders [Abbildung 59 . 1] , öffentlich beschrieben und sei deshalb
wie ein Gottloser im Meer umgekommen .«
Und an späteren Stellen lesen wir bei ihm:
»Einige sagen auch , ihm sei dies widerfahren , weil er das Geheimnis des Unaussprech¬
baren [siehe unten ] und des Inkommensurablen verraten habe .«

* Aristoteles (384- 322 v . Chr .) kommt z . B . nicht weniger als 26-mal in seinen Werken auf die Inkommensu¬
rabilität von Seite und Diagonale im Quadrat zu sprechen .

** (piXoGocpoq (philosophos ) ist eine Wortschöpfung der Pythagoreer und bedeutet Freund der Weisheit .
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Abb . 59 . 1 Das Dodekaeder ( = Zwölfflach) *
, ein von 12 regelmäßigen ebenen Fünf¬

ecken begrenzter Körper , links als Vollkörper , rechts als Hohlkörper , gezeichnet von
Leonardo da Vinci (1452 - 1519 ) für die 1509 erschienene Divina Proportione seines
Freundes Luca Pacioli (um 1445- 1517) .

»Denjenigen aber , welcher als erster die Natur des Kommensurablen und des Inkom¬
mensurablen solchen eröffnete , die nicht würdig waren an der Lehre teilzuhaben ,
sollen die Pythagoreer so tief verabscheut haben , dass sie ihn nicht nur aus der Lehr -
und Lebensgemeinschaft ausschlossen , sondern ihm [zu Lebzeiten] auch ein Grabmal
errichteten mit der Begründung , ihr einstiger Gefährte sei aus dem Leben unter den
Menschen ausgeschieden .«
Nirgends wird also berichtet , dass Hippasos der Entdecker des Irrationalen sei ; nur als
Verräter wird er dingfest gemacht . Man neigt jedoch heute dazu , ihn auch für den
Entdecker zu halten . Warum aber die ganze Aufregung über den Frevler und den
Verrat?
Um die Frage beantworten zu können müssen wir mehr über die Pythagoreer wis¬
sen . In seiner Metaphysik berichtet uns Aristoteles (384- 322 v . Chr .) , die Pythago¬
reer »sahen in den [natürlichen ] Zahlen die Eigenschaften und Verhältnisse der Har¬
monie [ . . . und da] die Zahlen das erste in der ganzen Natur , so nahmen sie auch an , die
Elemente der Zahlen seien die Elemente alles Seienden und die ganze Welt sei Harmo¬
nie und Zahl . [ . . . ] Alles führen sie auf die Zahlen zurück .« Anders ausgedrückt :
Pythagoras und seine Schüler waren der Meinung , dass irgend zwei Dinge dieser Welt
stets in einem Verhältnis zueinander stehen , das durch zwei natürliche Zahlen , d . h.
durch einen Bruch , ausgedrückt werden kann . Als Beispiel diene die Musik : Man
erhält die Oktave bzw. die Quint zu einem Ton , wenn man die ihn erzeugende Saite im
Verhältnis 2 : 1 bzw . 3 : 2 verkürzt :

Oktave 2 : 1 Quint 3 : 2

* öcoSexdsSpoc; (dodekäedros ) = zwölfsitzig , mit zwölf Grundlagen aus 5cb5£xct (dodeka ) = zwölf und f | §5pa
(he hedra) = der Sitz, die Grundlage. Das Fachwort 6co5eKae5pov (dodekäedron ) verwendetEuklid in Buch
XI seiner Elemente.
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Die Entdeckung , dass es Streckenverhält¬
nisse gibt , zu denen es keine (ganzzahli¬
gen) Zahlenverhältnisse gibt , musste not¬
gedrungen zu einer Krise unter den Py-
thagoreern führen ; denn sie zerstörte
die Grundlage ihrer Weltanschauung , ihr
»Alles ist Zahl « . Du kannst dir sicher vor¬
stellen , dass es vielen Mitgliedern des in
Süditalien auch politisch sehr einflussrei¬
chen Geheimbundes lieber gewesen wäre ,
wenn diese umwälzende Entdeckung ge¬
heim gehalten worden wäre . Die große
Empörung eines Teils der Anhänger über
den »Verrat « des Hippasos ist also ver¬
ständlich . Die Folge aber war , dass sich
die Pythagoreer in zwei Parteien spalte¬
ten , die ctKOUCTpaxiKoi (akusmatiköi ) ,
d . h . die Hörer , die ohne tiefere Einsicht
auf das Wort des Meisters schworen und
der alten Lehre anhingen , und die
puüripaTiKoi (mathematiköi ) , d . h . die
durch Lernen Einsicht erlangt Habenden ,
also die Gruppe um Hippasos , die durch
ihre geistige Schulung in der Lage waren
das Neue zu begreifen . * Bezeichnender¬
weise stellten sich die Mathematiköi bei
den Unruhen in Unteritalien um 445
v . Chr . auf die Seite des Volkes, die Akus -
matikoi dagegen auf die Seite des herrschenden Adels . Die wechselhaften Ereignisse
führten schließlich dazu , dass zuerst die Akusmatiköi und später die Mathematiköi
aus Unteritalien vertrieben wurden , sodass um 350 v . Chr . der pythagoreische Bund
jede Bedeutung verloren hatte .
Platon lernte 388/387 in Unteritalien bei Archytas von Tarent pythagoreisches
Gedankengut kennen . In seinem letzten Werk, den Nö/ioi (Nomoi ) - »Gesetze« - , das
erst nach seinem Tode bekannt wurde , zeigt sich, wie beeindruckt Platon von der
Entdeckung der irrationalen Verhältnisse war . Er spricht dort an der Stelle 819/820 von
einer »lächerlichen und schimpflichen Unwissenheit , die allen Menschen innewohnt «,
ehe sie davon erfahren haben , und bekennt : »Mich selbst ergriff durchaus Verwunde¬
rung , als ich spät [hier übertreibt er !] davon hörte . Es kam mir vor , als wäre so etwas
[nämlich ein solches Unwissen] bei den Menschen gar nicht möglich , sondern eher bei
einer Herde von Schweinen . Und ich schämte mich , nicht nur für mich selbst , sondern
für alle Griechen .« In diesen Worten kommt auch zum Ausdruck , dass sich die Kennt¬
nis von der Existenz irrationaler Verhältnisse noch nicht sehr verbreitet hatte . Und
Platon schließt seine Betrachtung über das Irrationale mit den Worten : » Das ist eins
von den Dingen , welches nicht zu wissen wir für eine große Schande erklärten ; es aber
zu kennen ist nichts besonders Rühmenswertes !«

Abb . 60 . 1 Aristoteles (384 Stagira /
Thrakien - 322 Chalkis/Euböa ) . Römi¬
sche Kopie nach einem um 325 v . Chr .
entstandenen griechischen Original .
Wien , Kunsthistorisches Museum

* dKOueiv (aküein ) = hören , vernehmen ; äKOixjjaa (akusma ) = das Gehörte , die Lehre .
|L(Xv)t | jrttTiKÖ^ (mathematikös ) = lernbegierig , gelehrig kommt von [lavödvsiv (manthänein ) = lernen , erler¬
nen , verstehen , einsehen und hängt zusammen mit |L<x$r)na (mäthema ) = das Gelernte , die Kenntnis , das
Wissen.
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Abb . 61 . 1 Rückseite zweier Tetradrachmen * aus Abdera ( 'Äß8r | pa) mit der links
oben beginnenden , im Uhrzeigersinn umlaufenden Umschrift ITY©ArOPH2
( = Pythagores ) , geprägt zwischen 430 und 420 v . Chr . , vermutlich Pythagoras dar¬
stellend . 0 = 2,4 cm ; links 13,98 g, * * rechts 13,08 g .

Die Entdeckung , dass die Diagonalen des Fünfecks und des Quadrats nicht durch den
griechischen Zahlbegriff erfasst werden können , dass sie aber andererseits als Strecken
exakt vorhanden sind , hatte weit reichende Folgen für die weitere Entwicklung der
griechischen Mathematik . Man wandte sich nämlich von der Arithmetik , der Lehre
von den Zahlen , ab und betrieb Mathematik als Geometrie . In ihr konnte , auch mit
Strecken irrationaler Länge , das von den griechischen Philosophen geforderte Ideal
der Exaktheit verwirklicht werden .
Einen großen Schritt weiter brachte Eudoxos von Knidos (um 400- 347 v . Chr .) die
Mathematik : Es gelingt ihm , eine geometrische Proportionenlehre auch für inkom¬
mensurable Streckenverhältnisse zu schaffen . Dabei führt er bewusst den Begriff der
Größe (peysOoi; [megethos ] ) in die Mathematik ein, was auf eine Erweiterung des
Zahlbegriffs bis hin zur reellen Zahl hinausläuft . Euklids Buch V der Elemente geht
praktisch auf Eudoxos zurück . Im recht schwierigen Buch X , das vermutlich von
Theaitetos stammt , wird die Theorie der irrationalen Größen geometrisch weiter

ausgebaut . Aber Eudoxos wurde erst 2000 Jahre später voll verstanden . In ihren Be¬
weisen schlagen sich die Griechen immer auf die sichere Seite: Sie bevorzugen geome¬
trische Beweise vor algebraischen Überlegungen , da irrationale Zahlen ihnen unvor¬
stellbar waren . Auch Diophant (um 250 n . Chr .) , der mit seinen Ägi &fir]xiKmv ßiß/Ja
(Arithmetikön biblia ) - »Bücher über die Zahlenlehre « - algebraisches Denken wieder
aufnimmt , vermeidet es stets durch entsprechende Wahl der Koeffizienten , dass solche
Zahlen als Lösungen einer Gleichung auftreten .
Erst den Arabern gelingt es , langsam die Algebra von ihrer geometrischen Verkleidung
zu befreien . Es ist insbesondere ein Verdienst al -Bagdadis (um 1100), dass er in
seinem Kommentar zu Buch X von Euklids Elementen, den Gerhard von Cremona
(1114 - 1187 ) übersetzt , Zahlenbeispiele mit Wurzeln vorführt . Es entwickelt sich eine

* Eine Tetradrachme ist ein silbernes Vier -Drachmen -Stück . Das Monatsgehalt eines Lehrers im 2 . Jh . v . Chr .
betrug etwa 12 Tetradrachmen .

** Diese Münze ist die erste in einer Reihe ähnlicher Prägungen , bei denen der für die Prägung zuständige
Jahresbeamte der Stadt Abdera seinen Namen mit einer berühmten Gestalt der griechischen Geschichte
oder Sagenwelt in Verbindung brachte . Der Beamte Pythagores wählte ein idealisiertes Portrait seines
berühmten Namensvetters , des Philosophen und Mathematikers Pythagoras .
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Kunst des Rechnens mit Wurzeln , wie du sie in
2 .3 gelernt hast . Leonardo von Pisa (um 1170
bis nach 1240 ) , der sein Wissen von den Arabern
bezog , ließ in seinem Uber abaci (1202 ) irratio¬
nale Zahlen sowohl als Lösungen wie auch als
Koeffizienten von Gleichungen zu (Aufgabe
79/3 und 82/4e , f ) . Allmählich wird das Rech¬
nen mit irrationalen Zahlen zu einer Selbstver¬
ständlichkeit . Schreibt doch um 1460 Frater
Fridericus Amann * (f 1465 ) in einem algebrai¬
schen Traktat des Codex latinus monacensis
14908 : »Wer mit den surdischen [d . h . irratio¬
nalen (siehe unten )] Zahlen , ihrem Addieren
und ihrem Subtrahieren , den Binomen [ . . .] und
den anderen irrationalen Größen nicht umzu¬
gehen weiß, der versteht in der Arithmetik
nichts Besonderes .« * * Dennoch sind diese sur¬
dischen Zahlen für ihn keine Zahlen . »Surdus
numerus non est numerus « schreibt er . Auch Michael Stifel (14877- 1567 ) diskutiert
diese Frage 1544 in seiner Arithmetica integra - »Die ganze Arithmetik « - , obwohl
er zu einem vertieften Verständnis der Irrationalzahl gelangt ist : » So , wie also eine
unendliche Zahl keine Zahl ist , so ist auch eine irrationale Zahl keine wahre Zahl ,
weil sie gewissermaßen unter einem Nebel der Unendlichkeit verborgen ist .« * * * Dieser
Nebel der Unendlichkeit sind wohl die unendlichen Dezimalzahlen , mit denen man
die irrationalen Zahlen darstellen kann . Erst dadurch , dass 1637 Rene Descartes
( 1596 - 1650 ) in seiner La Geometrie mit Hilfe des Strahlensatzes auch das Produkt
zweier Strecken a und b wieder als Strecke darstellt (Abbildung 62 .2) - bis dahin
wurde dieses Produkt immer als Fläche interpretiert - , gelingt eine Übertragung der
geometrisch wohl definierten Irrationalitäten in die Welt der Zahlen mit ihren Rechen¬
gesetzen . Der Durchbruch ist geschafft , die irrationalen Zahlen werden als Zahlen
anerkannt .

Abb . 62 .2 Das Produkt ab als Strecke nach Descartes

Dennoch blieb es dem 19 . Jh . Vorbehalten , die irrationalen Zahlen ohne jede geometri¬
sche Begründung auf algebraischem Wege einführen zu können . Von verschiedenen
Mathematikern wurden dazu verschiedene Verfahren vorgeschlagen , die alle auf das-

* Seit 1995 weiß man , dass die bisher dem Fridericus Gerhart (f 1463) zugeschriebenen Abhandlungen
von Fridericus Amann stammen und umgekehrt .

** Qui in surdis atque additis et diminutis et binomiis [ . . .] et lineis ceteris irrationalibus agere nescit , nihil in
Arismetrica egregii novit .

*** Sic igitur infinitus numerus , non est numerus : sic irrationalis numerus non est verus numerus , qui lateat
sub quadam infinitatis nebula .

Abb . 62 . 1 Vorderseite der Tetra¬
drachme von Abbildung 61 . 1 ,
links ; dargestellt ist ein Greif .



2 .4 Zur Geschichte der irrationalen Zahlen 63

selbe Ergebnis hinauslaufen . Wir nennen hier die Arbeiten Richard Dedekinds (1831
bis 1916 ) und Georg Cantors (1845 - 1918 ) , beide aus dem Jahre 1872 . Die Definition
der reellen Zahlen durch Intervallschachtelungen , die du kennen gelernt hast , geht auf
die Vorlesungen über die Natur der Irrationalzahlen von Paul Gustav Heinrich Bach¬
mann (1837 - 1920) aus dem Jahre 1892 zurück .

Abschließend wollen wir noch die Entstehung des Fachworts irrational verfolgen .
Nach der Entdeckung der Inkommensurabilität nannten die Pythagoreer ein Ver¬
hältnis aus zwei ganzen Zahlen , also unsere rationale Zahl , pprot ; (rhetos )
= aussprechbar , ein Verhältnis aber , das sich nicht durch ganze Zahlen ausdrücken
ließ, also unsere irrationale Zahl , ctpppxoc (ärrhetos ) = unaussprechbar . Theodoros
von Kyrene (um 465 - um 385) , der Lehrer Platons , verwendet stattdessen das Gegen¬
satzpaar CTÜ(i [texpo !; - amjppsxpoi; (symmetros - asymmetros ) , also gemeinsam messbar
- nicht gemeinsam messbar , bezogen auf die Einheit . Sein und Platons Schüler Theai -

tetos (um 415 - 369 v . Chr .) betrachtet Verbindungen wie Va + Vb und j/f a . Erstere

ergeben , wenn man sie quadriert , nicht immer eine rationale Zahl . So wird z . B .

(]/2 + V &) 2 = 2 + 8 + 2l/l6 = 18 , also eine rationale Zahl , aber fl/2 + ]/3 ) 2 =
= 2 + 3 + 2 ]/6 = 5 + 21/6 eine irrationale Zahl . Für Größen der letzteren Art be¬
nützt Theaitetos ein altes Wort , nämlich äXoyoq (älogos ) = sprachlos , stumm, unaus¬
sprechbar . Euklid (um 300 v . Chr .) übernimmt die Bezeichnung von Theaitetos , be¬
hält aber das Gegensatzpaar des Theodoros bei . Dadurch vermischen sich diese drei
Wörter in ihrer Bedeutung . Allmählich setzt sich jedoch bei den griechischen Mathe¬
matikern üLoyoq zur Bezeichnung irrationaler Größen durch .

Boethius (um 480 - 524?) übersetzt avppczpoq mit commensurabilis , der römische
Staatsmann und Gelehrte Cassiodorus (um 490- um 583) , der ebenso wie Boethius in
den Diensten Theoderichs des Grossen , des Ostgotenkönigs , stand , übersetzt das
Gegensatzpaar mit rationalis - irrationalis , womit wir bei unseren Fachwörtern sind .
Gerhard von Cremona (1114- 1187) benützt sie , als er den Euklid -Kommentar des
al -Nayrizi (t um 922) übersetzt . In Michael Stifels (1487 ?- 1567 ) Arithmetica integra
von 1544 sind sie feste Fachausdrücke . Das Wort irrational hatte aber lange Zeit
noch einen interessanten Konkurrenten .
Das griechische otLoyoq (älogos) = sprachlos , unaussprechbar wird bei al -Charizmi
(um 780 - nach 847) und anderen arabischen Mathematikern unerklärlicherweise
durch das arabische Wort asamm wiedergegeben , das nicht sprachlos , sondern taub
bedeutet . Als Gerhard von Cremona den Euklid -Kommentar des al -Bagdadi (um
1100 ) , den er dem des al -Nayrizi beifügt , und die Algebra des al -Charizmi übersetzt ,
wählt er für asamm die wortgetreue Entsprechung , nämlich surdus , das dann auch
Leonardo von Pisa (um 1170- nach 1240 ) gerne verwendet . Michael Stifel über¬
nimmt es und verdeutscht die numeri surdi gar zu surdische Zahlen \ Bis ins 18 . Jh . bleibt
surdus als mathematisches Fachwort lebendig . Im Englischen ist heute noch surd num -
ber als Fachbegriff für Irrationalzahl gebräuchlich .

Bei dieser Gelegenheit können wir dir jetzt auch den mathematischen Ursprung des
Worts Binomerklären . Die schon bei Theaitetos vorkommenden Summen a + Yb und
\fa + ]/b , bei denen die Wurzeln keine ganzen Zahlen ergeben , nannte Euklid in Buch
X seiner Elemente sk 8üo övopaxcov (ek dyo onomäton ) = aus zwei Namen , wofür
Gerhard von Cremona in seiner AL -NAYRizi-Übersetzung kurz binomium sagte . In
der weiteren Entwicklung (siehe Algebra 7 , Seite 187) wurde die Bedeutung von Binom
verallgemeinert zu »Summe aus zwei Summanden « .
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2 .5 Wurzelgleichungen

2 .5 . 1 Einfache Wurzelgleichungen

Eine Gleichung , bei welcher die Unbekannte unter einer Wurzel auftritt , be¬
zeichnet man als Wurzelgleichung .

Beispiele:

l ) Vx = 3 2) ^2x - 5 = 7

3) ]/4x + 5 = x + 2 4) ]/x 2 + 2 = 3x

5) }/x — 1 = Vlx -\- 3 6) \/2x + 8 — ]/5 + x = 1

Um eine solche Gleichung lösen zu können muss man zunächst alle Wurzeln ,
welche die Unbekannte enthalten , beseitigen . Dies geschieht durch Quadrie¬
ren der Gleichung . Dabei gilt : Jede Lösung der Ausgangsgleichung erfüllt
auch die durch Quadrieren entstehende Hilfsgleichung .
Denn wenn eine Gleichung 7j (x) — T2 (x) eine Lösung x 1 hat , d . h . , wenn
7i (x i ) = T2 (x i ) gilt , so folgt daraus auch ( 7j (xQ ) 2 = ( ^ (xQ ) 2

; also ist x 1
auch eine Lösung der Gleichung ( 7j (x) )

2 = (J 2 (x)) 2 .
Gehört aber umgekehrt auch jede Lösung der durch Quadrieren gewonnenen
Hilfsgleichung zur Lösungsmenge der Ausgangsgleichung ? Wenn ja , wäre das
Quadrieren eine Äquivalenzumformung . Um dies zu untersuchen betrachten
wir die obigen Beispiele.

1) ]fx = 3 . Durch Quadrieren erhält man x = 9 .
Probe : LS = ]/9 = 3 = RS ; also L = { 9 } .

2) ]/2x — 5 = 7 2x — 5 = 49
x = 27

Probe : LS = ^ 2 - 27 - 5 = j/49 = 7 = RS ; also L = { 27 } .

3) ]/4x 5 ~ x 2 4x 4” 5 = x 2 -f 4x 4- 4
x 2 = 1

Lösungen der Hilfsgleichung : x 1 = 1 ; x 2 = — 1 .

Probe mit x 1 : LS = ]/4 ■ 1 4- 5 = }/9 = 3 ; RS = l4 - 2 = 3 = LS.

Probe mit x2 : LS = l/4 - ( — 1 ) + 5 = j/l = 1 ; RS = - 1 + 2 = 1 = LS.
Ergebnis : L = { 1 ; — 1 } .

4) Vx2 + 2 = 3x => x 2 4- 2 = 9x 2
8x 2 = 2
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Lösungen der Hilfsgleichung : x t = b x i =

Probe mit x t : LS = |/ ® 2 + 2 = RS = 3 • ^ = ^ = LS .

Probe mit x2 : LS = ]/ ( — j ) 2 + 2 = ]/f = f ; RS = 3 • ( — ■j ) = — f =t= LS.

Ergebnis : L = {| } .

5) 1.4 ' - 1 = j/2x + 3 x - 1 = 2x + 3
x = — 4

Probe : LS = V — 4 — 1 , sinnlos ! RS = 4 • ( — 4) + 3 , sinnlos !

Ergebnis : L = { } .

6) l/2x + 8 - J/5 + x = 1
Die Rechnung gestaltet sich einfacher , wenn man vor dem Quadrieren
die Gleichung so umformt , dass eine der beiden Seiten nur aus einer
Wurzel besteht . Man spricht vom Isolieren der Wurzel .

]/2x + 8 - \/5 + x = 1

l4x + 8 = 1 + V5 + x => 2x + 8 = 1 + 2l/5 + x + 5 + x

Da immer noch eine Wurzel vorhanden ist , muss man noch einmal
quadrieren ; zuvor aber wird die Wurzel isoliert .

2x + 8 = 1 + 2l/5 + x + 5 + x

j/5 + x = jx + 1 => 5 + x = jx 2 + x + l
ix 2 = 4

x 2 = 16 .

Die wurzelfreie Hilfsgleichung hat die Lösungen x t = 4 ; x2 = — 4 .

Probe mit x + LS = l/2 • 4 + 8 — ]/5 + 4 = l/l6 — = 1 = RS .

Probe mit x 2 : LS = |/2 • ( — 4) + 8 — j/5 — 4 = l/Ö — l/l = — 1 + RS .
Ergebnis : L = { 4 } .

Bei den ersten drei Beispielen haben die Ausgangsgleichung und die aus
ihr durch Quadrieren gewonnene Hilfsgleichung jeweils dieselbe Lösungs¬
menge , nicht jedoch in den übrigen Beispielen ; dort besitzt die Hilfsgleichung
noch zusätzliche Lösungen ! In Beispiel 4 liegt das daran , dass die beiden
Gleichungen Vx2 + 2 = 3x und 1Fx2 + 2 = — 3x auf dieselbe Hilfsgleichung
x 2 + 2 = 9x 2 führen . In deren Lösungsmenge sind also die Lösungen von
zwei verschiedenen Ausgangsgleichungen enthalten . Entsprechendes gilt auch
im Beispiel 6 (vgl . Aufgabe 67/7) . Dagegen hat die Verschiedenheit der beiden
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Lösungsmengen bei Beispiel 5 eine andere Ursache : Die beim Quadrieren
entstehende Gleichung hat ganz IR als Definitionsmenge und besitzt dort die
Lösung x = — 4 . Die Wurzelgleichung ist jedoch nur auf D = [ 1 ; + co [ defi¬
niert und kann daher nicht — 4 als Lösung haben . Dass — 4 <£ D gilt , zeigt sich
bei der Probe am Auftreten sinnloser Terme.
Beachte also : Das Quadrieren einer Gleichung ist im Allgemeinen keine Äqui¬
valenzumformung . Zwar erfüllt jede Lösung der Ausgangsgleichung auch die
Hilfsgleichung , es kommt aber vor , dass die Hilfsgleichung noch zusätzliche
Lösungen besitzt . Das Quadrieren kann also eine »Gewinnumformung« sein.
Mit anderen Worten : Die Lösungsmenge der Ausgangsgleichung ist eine echte
oder unechte Teilmenge der Lösungsmenge der durch Quadrieren entstande¬
nen neuen Gleichung . Nachdem man deren Lösungen bestimmt hat , muss
man prüfen , ob sie auch der Ausgangsgleichung genügen . Das geschieht im
Allgemeinen durch eine Probe .
Es gibt allerdings einen einfachen Typ von Wurzelgleichungen , bei welchem das
Quadrieren die Lösungsmenge nicht ändert . Das sind Gleichungen der Form
VT(x) = c mit c ^ O (vgl . Beispiel 1) und 2)) . Durch Quadrieren entsteht nämlich die
Gleichung T (x) = c 2 mit c 2 jg 0 . Wenn x t eine Lösung dieser Gleichung ist , gilt
T(x v) = c 2

, also T (x x) S: 0 . Man kann daher auf beiden Seiten die Wurzel ziehen und
erhält ]/ T(x r ) = \ c | , also , wegen c ^ 0,1/ T(x t ) = c , sodass auch die Ausgangsglei¬
chung löst . Bei solchen Wurzelgleichungen kann man daher auf die Probe verzichten .

Aufgaben
1 . a) -c<NII + x = (1 c) l/2x + 3 - 1 = 0

d) ]/3x + 7 + 10 = 0 e) 1/8 — 3x = l/l4 f) ]/lx + 3 + 21/7 = 5

2 . a) |/2x “b 1 — X ~b 1 b) 3x + 2 — |/l2x + 5

c) 1/3 - 4* = 2* - 1 d) 1 + l/5x - 1 = x + 3,5

e) Ix = l/28x + 13 — 2 f) 4x + 1/25 - 16x - 2 = 0

3 . a) ]/4 3x = 3x + 2 b) x — 1 = j/l — 3x

c) l/l5x + 25 = 2x + 5 d) 2x = l/9 — 2x + 3

e) 4x = ]/ x + 5 + \ f » l/8x + 3 - 6x - 1/3 = 0

4 . a) ]/4x 2 - 7 = 3 b) 1/25 - x 2 = 6

c) V \ 1 - 2x 2 = 3 d) l/5x 2 — 1 = x

e) V6x 2 + 50 + 2 ]/2x = 0 f > l/5 + 3x 2 = xl/3

5 . a) 1/2* + 5 = 1/3 * + 3 b) l/x - 8 = 1/4 - 2x

c) 1/ 3 * + io = y x + 6 d) l/x 2 + 7 = l/2x 2 - 2

e) }J4x 2 + 9 = l/5x 2 + u f) l/6x 2 + 5 = 1/5 - 3x
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6 . a)
x

2.x "h 5
x — 1

2x + 2
b)

13 - x
3x + 1

x - 5
1 — x

/ 2 — x / x + 1
/ 3 + x / 3x + 2

d)
5x — 14
7 — 6x

4x + 6
8x ^ 73

7 . Bestimme die Lösungsmengen der folgenden drei Gleichungen und ver¬
gleiche die Lösungswege :

j/x 2 + 3x = 1 + l/x 2 + x ,
l/x 2 + 3x = — 1 + ]/x 2 + x

• 8 . a) l/x + 1 = 1 + l/x — 4

c) l/x + 1 = 3 + l/x — 5

e) l/x 2 + 15 = 5 — l/x 2 + 10

• 9 . a) l/x 2 + x = 1 + l/x 2 — x

c) l/2x 2 + x + l/2x 2 — x = 5

10. a) l/x 2 + 4x + 5 = 5 — ]/x 2 — 6x

l/x 2 + 3x = 1 — l/x 2 + x und

b) l/x - 3 - 3 = l/x - 12

d) l/x 2 + T + 2 = j/x 2 4- 17

f ) 1/12 - x 2 - 3 = ]/3 - x 2

b) l/x 2 — x = l/x 2 + x — l/2

d) l/2x 2 + x — l/2x 2 — x = 5

b) l/x 2 + 4x + 6 + l/x 2 — 2x = 3

* 11 . Am 2 . Juni 1461 schreibt der Benediktiner Frater Fridericus , eigentlich
Friedrich Amann , (f 1465) im Kloster St . Emmeram zu Regensburg die
erste Algebra in deutscher Sprache nieder , die sog . deutsche Algebra aus
dem Codex latinus monacensis 14908, und rechnet dabei die folgende von
al -Charizmi stammende Aufgabe vor (sie steht in Abbildung 68 . 1 ,
4 . Zeile von unten links bis 1 . Zeile oben rechts ) :
Gib mir ain censum vnd zuech dar von sin wurcz vnd von dem daz vber
belyb an dem censu zuech och vß dye wurcz dye czwo wurcz tue zesamen
daz 2 zal dar auß werden .

*
* census ist die wortgetreue lateinische Übersetzung des arabischen JL , mal . das Vermögen bedeutet . Meist

wird unter census das Quadrat der Unbekannten verstanden . In dieser Aufgabe zeigt sich aber , dass al -
Charizmi mit mal nicht immer das Quadrat , sondern gelegentlich die Unbekannte selbst bezeichnet . (Vgl .
auch die Fußnote zu Aufgabe 94/11 i) . Andernfalls würde die Aufgabe unnötig schwer .
»Dass >2 zal<daraus werden « , heißt bei al -Charizmi , »dass >2 Dirhem <daraus werden « . Al -Charizmi hat von
den Indern die Gewohnheit übernommen , reine Zahlen durch das Wort Dirhem zu kennzeichnen - so hießen
die von den Kalifen geprägten Silbermünzen (3,98 g) . Aryabhata (476- ? n . Chr .) nämlich hatte bekannten
Größen das Wort rupaka ( = mit Zeichen versehene Münze ) beigefügt , das bald durch ru abgekürzt wurde . Im

europäischen Mittelalter wurde al -Charizmis Dirhem durch drachme oder auch durch dragma wiedergege¬
ben , was in deutschen Handschriften mit ^ einem rfmit Schnörkel , ^ oder auch jpabgekürzt wurde . Schließ¬
lich wurden dragma und numerus synonym gebraucht . Letzteres übersetzt der Verfasser der deutschen Algebra
mit zal . Michael Stifel (14877- 1567) war der erste , der im Druck solche Zeichen wegließ und nur mehr die
Zahl alleine schrieb . - Das Wort dirhem ist eine Arabisierung des griechischen Worts öpaxpf | (drachme ) , dem
Namen einer alten Gewichts - und Rechnungseinheit . Man vermutet , dass dieses Wort vom Verbum öpaacreo -
9ai (drässesthai ) = fassen , umfassen abgeleitet wurde , weil man tatsächlich mit einer Hand sechs ößcTicncoi
(obeliskoi ) = Spießchen umfassen konnte , deren Gewicht eine Drachme ausmachte . Später nannte man ein
solches Spießchen ößo/ .ö^ (obolös ) ; es wog in Attika 0,728 g.
Bei Gerhard von Cremona (1114 - 1187) lautet die Aufgabe so : »Est census de quo radicem suam proieci
et addidi radici radicem eius quod remansit , et quod provenit fuit due dragme . Ergo hec radix census et
radix eius quod remansit fuit equale duabus dragmis .«
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Abb . 68 . 1 Folium 133v und 134r der 3 -seitigen deutschen Algebra , geschrieben am
Tag des hl . Erasmus ( = 2 . Juni ) des Jahres 1461 , in der Bruchstücke und eine einzige
Aufgabe aus al -Charizmis al-kitab al-muchtasar fi hisab al-dschabr wa - ’l-muqabala
auf Deutsch wiedergegeben sind . Der Text beginnt so : Machmet in dem puech algebra
vnd almalcobula hat gepruchet dise wort Census • radix ■numerus . *
Sammelhandschrift Codex latinus monacensis 14908 , Größe des Schriftblocks
9,7 cm x 5 ; 8 cm.

* *2 .5 .2 Wurzelgleichungen mit Parametern

Das Lösen von Wurzelgleichungen , in denen außer der Unbekannten auch
noch Parameter Vorkommen , erfordert im Allgemeinen Fallunterscheidun¬
gen . Bei der Untersuchung , ob eine Lösung der durch Quadrieren erhaltenen
Hilfsgleichung auch die Ausgangsgleichung erfüllt , ist vor allem auch zu be¬
achten , dass die auftretenden Radikanden nicht negativ sein dürfen .

Beispiel 1 :

]/x + a 2 = VlxTT => x + a 2 = 2x + 1
x = a 2 — 1

Probe : LS = ]/a 2 — 1 + a 2 = j/2 a 2 — 1

RS = ]/2 (a 2 - l ) + l = 1/2a 2 - 1

* Der gesamte von Frater Fridericus Amann geschriebene Text ist im Lösungsheft abgedruckt . Vergleiche
auch die Übersetzung Gerhard von Cremonas in unserer Algebra 7, Seite 10, und im zugehörigen Lö¬
sungsheft , Seite 4f .
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LS und RS sind jedoch nur definiert , wenn 2a 2 — 1 ^ 0 gilt , also
für \ a \ ^ Wl .

Ergebnis : x = a 2 — 1 , falls \ a \ ^ \ sonst L = { } .

Beispiel 2:

]/x + 8 a = 1fx + 2a => x + 8a = x + 4a ]/x + 4a 2

a ]/x = 2a — a2

Die Auflösung der letzten Gleichung nach ]fx ist nur für 0 möglich .
Also Fallunterscheidung :

a - 1= 0

0 • ]/x = 0 ; also L = [R/ , was auch für die Ausgangsgleichung
gilt .

]/x — 2 — a => x = (2 — ö)2

Probe : LS = V(2 — fl) 2 + 8fl = ]/4 + 4a + a 2 — ]/ (2 + fl) 2 — 12 + fl | —
f 2 + fl für fl ^ — 2

[ — (2 + a) für fl < — 2

RS = ]/ (2 - a) 2 + 2 a = 12 - a | + 2a =
2 + a für fl 5S 2
2 + 3a für a > 2

Für a 4= 0 lautet somit das Ergebnis :

L = {(2 — a) 2
} für 0 < | a | ^ 2 ; L = { } für | a \ > 2 .

Am Lösungsbaum lassen sich die verschiedenen Fälle übersichtlich dar¬
stellen (Abbildung 69 . 1 ) :

x = (2 — a)

Abb . 69 . 1 Lösungsbaum zu Beispiel 2
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Aufgaben
1 . Löse die folgenden Parametergleichungen :

a) ]/x + a 2 = a + 1 b) ]/x + a = a — 1

c) vx + a = V5a — x d) ]/x + a = ]/a 2 — x

e) ]/x 2 + a = ]/a — x f) Vx2 — a 2 — x + a

2 . a) Zeige, dass die Gleichung Vx + a + Vx — a = 2 a genau dann lösbar
ist , wenn die Bedingung a = 0 v a ^ 0,5 erfüllt ist . Wie lautet jeweils
die Lösung ?

b) Für welche Werte von a ist die Gleichung vx + a — \fx — a = 2a
lösbar und wie lautet die Lösung ?

Zu den Aufgaben 3 bis 5 :

Löse die Gleichung und zeichne einen Lösungsbaum .

3 . a) x 2 + 1 +
1

a a

, 4 . a) Vax 3 + 3 = j/3 + a 3 x

15. a) Vx + 2 a 2 = a + Vx + a2

b) x -\— —
a

1 1
* -

2 = -
a a

b) Vx2 + a — Vax 2 — 2 = 0

b) Vax 2 + x = Vax 2 — x + 1

^
yi1“ fjr*

s -f-

.y -
; i

7 ^
! •» ! 7

Abb . 70 . 1 Ausschnitt aus folium 64v des Codex Leipzig 1696 , vermutlich aus dem
Ende des 15 . Jh .s
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CoüeSlio QuAtta.

Cap . XIIII .
PROPOSITIO L

S i b H- DinA ? aequeturBinD .- A quad. J 1
A cxplicabiliseft de qualibet illarum duarum b vel d.

3N _ _ _ _ _ i N . i . vcli .

PROPOSTIO . IL

Si A cubusw J
D in A quad . /

C. GJ >

z .

tequetur BinDinc .
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J
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Fit jN . i . z . t>cl 3 .

PROPOSITIO . III .

s< Bin D in G -\
~+ Bin D in H /
—f- B in G in H f
- + DinG inH 3

in A1
Ausschnitt von Seite 128 aus den 1615 erschienenen Abhandlungen De aequationum
recognitione et emendatione tractatus duo des Frangois Viete (1540 - 1603) . Propositio I

ist der berühmte Satz von Vieta für eine Gleichung zweiten Grades .
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3 . 1 Was ist eine quadratische Gleichung?

Du hast bisher meist nur mit linearen Gleichungen zu tun gehabt , die man auf

die Form ax + b = 0 bringen kann . Für a 4= 0 ergibt sich - als einzige Lö¬
tz

sung . Gelegentlich sind dir aber auch schon Gleichungen wie z . B . x 2 = 4 oder
x (x — 2) = 0 begegnet . Sie sind einfache Sonderfälle so genannter quadrati¬
scher Gleichungen .

Definition 72 . 1 : Eine Gleichung der Form ax 2 + bx + c = 0 mit a 4= 0
heißt quadratische Gleichung für x oder auch Gleichung zweiten
Grades in x.

Wegen a + 0 kommt x 2 in dieser Gleichung auch wirklich vor , und zwar als
höchste Potenz der Unbekannten ; daher der Name quadratische Gleichung
bzw . Gleichung zweiten Grades . In Analogie dazu nennt man eine lineare
Gleichung auch Gleichung ersten Grades .
Bei einer quadratischen Gleichung sind folgende Bezeichnungen üblich :
ax 2 heißt quadratisches Glied, bx lineares Glied und c die Konstante * der
quadratischen Gleichung .
a , b und c sind die Koeffizienten der quadratischen Gleichung . Dividiert man
die Gleichung durch a , dann ergibt sich die Normalform der quadratischen

b c
Gleichung , nämlich x 2 4— x H— = 0 . Dafür schreibt man gerne auch
x 2 + px + q = 0 .

a a

* *Zur Geschichte der quadratischen Gleichung
Aus der frühen Zeit der ägyptischen Mathematik sind uns nur ganz einfache quadrati¬sche Gleichungen des Typs ax 2 = b überliefert (siehe Aufgabe 78/14) . Im berühmten
Papyrus Rhind wird überhaupt keine quadratische Gleichung behandelt .
Von den alten Babyloniern blieben uns hingegen aus der gleichen Zeit (ca . 20 .- 19 . Jh .
v . Chr .) viele Tontafeln in Keilschrift erhalten , die sich mit quadratischen Gleichungenmit einer Unbekannten beschäftigen (Aufgabe 97/24) , viel öfter aber mit Gleichungs¬
systemen mit zwei und mehr Unbekannten , wobei mindestens eine der auftretenden
Gleichungen quadratisch ist (siehe 3 .8) . Neben der Lösung ist auf vielen Tafeln auch
der Lösungsweg angegeben (siehe Seite 86) . Der geometrische Ursprung dieser Aufga¬
ben ist aus den verwendeten Bezeichnungen wie »Länge « , »Breite« und »Fläche « er¬
sichtlich . Die Babylonier haben sich aber sehr früh von dieser geometrischen Begriffs¬welt gelöst und verstehen unter diesen Wörtern , die bezeichnenderweise auch nicht
dekliniert werden , meist nur mehr - modern ausgedrückt - die Unbekannten x und yund ihr Produkt xy . Wie wäre es sonst verständlich , dass sie eine Fläche und eine Seite
* Das Wort Konstante hat 1692 Gottfried Wilhelm Leibniz (1646- 1716) in die Mathematik eingeführt .
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addierten und eine Zahl erhielten ! Sie haben bereits in früher Zeit eine Mathematik
geschaffen, die nur mit Zahlen umgeht , anders als im alten Indien oder Ägypten , wo
Mathematik im Gewände der Geometrie getrieben wurde . So sollen die ägyptischen
Harpedonapten * durch Spannen von Seilen geometrische Konstruktionen und auch
Beweise ausgeführt haben * * .
Dieses geometrische Wissen brachten sowohl Thales (um 625 um 547 v . Chr .) wie
auch Pythagoras (um 570- um 497 v . Chr .) von ihren ägyptischen Studienaufenthal¬
ten mit . Pythagoras - so berichtet uns der Volksredner Isokrates (436- 338 v . Chr .) -
soll dabei 525 anlässlich der Eroberung Ägyptens durch den Perserkönig Kambyses II .
(reg . 529- 522) nach Babylon verschleppt worden sein, wo er - dem Bericht des Neupla -
tonikers Iamblichos von Chalkis (um 250- um 330 n . Chr .) zufolge - 7 Jahre ver¬
brachte und dort in die Lehre von den Zahlen und der Musik eingeführt wurde . Die
Entdeckung der Pythagoreer , daß z . B . x 2 = 2 im Bereich der Brüche nicht exakt
lösbar ist , dass aber andererseits immer exakt eine Strecke konstruiert werden kann ,
sodass das darüber errichtete Quadrat den Flächeninhalt 2 hat , ließ die Griechen eine
»geometrische Algebra « * * * entwickeln , in der Flächen und Längen wie physikalische
Größen behandelt werden . Die Exoiyda (Stoicheia) - »Elemente « - und die Aeöofisva
(Dedomena ) , lateinisch Data - »Gegebenes« - Euklids (um 300 v . Chr .) bezeugen,
dass alle quadratischen Gleichungen mit positiven Lösungen - und nur solche waren
zugelassen - durch geometrische Konstruktionen exakt gelöst werden konnten .
Natürlich ist die babylonische Zahlenmathematik nicht verloren gegangen . Man über¬
ließ sie aber den Praktikern , d . h . den Land - und Himmelsvermessern . So soll der
berühm te Astronom Hipparch (Mitte des 2 . Jh .s v . Chr .) , arabischen Berichten zufol¬
ge , ein Lehrbuch über quadratische Gleichungen geschrieben haben . Mit Diophant
(um 250 n . Chr .) gelangte die alte babylonische Tradition des Rechnens mit Zahlen zu
neuer Blüte . In seinen ÄQiQuqxiK &v ßißXia (Arithmetikön biblia ) - »Bücher über die
Zahlenlehre « - finden sich viele Aufgaben von derselben Art wie auf den babyloni¬
schen Keilschrifttafeln .
Quadratische Gleichungen werden auch im letzten der »Neun Bücher arithmetischer
Technik« , dem Chiu Chang Suan Shu (China , 2 . Jh . v . Chr .) , gelöst , dem wir Aufgabe
98/25 entnommen haben .
Die Leistungen der Inder und Araber , von denen das mittelalterliche Europa das
Rechnen mit quadratischen Gleichungen lernte , schildern wir auf Seite 86ff.
Auch unsere Fachwörter haben ihre Geschichte .
Das griechische fooocnq (isosis) Diophants (um 250 n . Chr .) wurde zum lateinischen
aequatio , das Leonardo von Pisa (um 1170- nach 1240 ) in seinem Uber abaci (1202) als
Fachwort verwendet . Die Eindeutschung führt über Vorgleichung - 1518/21 Heinrich
Schreyber , genannt Grammateus (1492/967 - 1525 ) in seinem Rechenbüchlein -
schließlich zu Gleichung, belegt 1695 bei Henrich Horch in seinem Werk Anfangs-
Gründe einer Vernunfft - und Schrifft-übenden Zahl - und Buchstab-Rechenkunst / Deren
diese sonst Algebra heisset . Christian von Wolff (1679 - 1754) übernimmt das Wort
Gleichung in Die Anfangsgründe Aller Mathematischen Wissenschaften 1710 , wo sich
auch der Fachausdruck quadratische Gleichung findet .
Mit dem Wort gradus bezeichnet 1591 Franyois Viete (1540- 1603) in seiner In artem
analyticem Isagoge die Höhe einer Potenz . Vom Grad einer Gleichung spricht dann
1675 Jean Prestet (1652- 1690 ) in seinen Elemens des Mathematiques .

* = Seilverknüpfer , von äpnsSovri (harpedöne ) = Seil und airreiv (häptein ) = anknüpfen
** Clemens von Alexandria (150- 215) schreibt in seinen Stromateis (1,15 ) diese Behauptung Demokrit (um

460 - um 370 v . Chr .) zu .
*** Den Ausdruck führte 1886 der dänische Mathematiker Hieronymus Georg Zeuthen (1839- 1920) ein .

1925 entdeckte man in Bologna ein zwischen 1574 und 1587 geschriebenes Manuskript des Paolo
Bonasoni (f nach 1593) mit dem Titel Algebra geometrica .
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Aufgaben
1 . Entscheide , ob eine quadratische Gleichung vorliegt . Bringe sie gegebe¬

nenfalls auf eine Form ax 2 + bx + c = 0 mit positivem a und gib das
lineare Glied und die Konstante an .
a) 3 - x 2 = x
c) x (x — x 2 ) = 0
e) (0,5* + 4) 2 = 0

b) 3x 2 — 1 = x 2
d) (x — 1 ) (1 — x) = 3
f ) x 2 - 1 = (x - l ) 2

2 . Entscheide , für welche Unbekannte eine quadratische Gleichung vorliegt .
Gib jeweils das lineare Glied und die Konstante an .
a) x 2 y = — 1
c) xy + y 2 = 3x 2

e) a 3 b 2 — abx 2 + 2 = 0

b) x_y
2 = 3x + y 2

d) x 2 — xy 2 + y 3 = 1
f) (a + b) (a — b) = (a — b) 2

3 . Stelle die Normalform her .
a) 3x 2 — 6x + 15 = 0
c) — l,5x 2 + 4,5x = 2,1 x 2 — 8,1

e) (| - | x) 2 = (i - | x) 2

b) 1 — x 2 = 3x
d) ( 1 — 5x) 2 = 5x — 1

f) Yix = i/ö . Vi

3 .2 Spezialfälle von quadratischen Gleichungen

Einfache Spezialfälle der quadratischen Gleichung ax 2 + bx + c = 0 hegen
vor , wenn ein Koeffizient der quadratischen Gleichung null ist . a selbst kann
aber nicht null sein; denn sonst hätte man keine quadratische Gleichung .

3 .2 . 1 Die rein quadratische Gleichung

Wenn b = 0 ist , fehlt das lineare Glied bx in der quadratischen Gleichung .
Sie hat dann die Gestalt ax 2 + c = 0 . Eine Gleichung dieser Bauart heißt

£
rein quadratisch . Wegen a 4= 0 gewinnt man ihre Normalform zu x 2 + - = 0
bzw . x 2 + q = 0 .

a

Für q > 0 ist die linke Seite sicher positiv ; die Gleichung hat daher keine
Lösung . Für q = 0 ergibt sich die Gleichung x 2 = 0 . Sie hat die Lösung 0 .
Für q < 0 kann man mit Hilfe der 3 . binomischen Formel die linke Seite
faktorisieren . Wir zeigen es dir für q = — 49 :

x 2 - 49 = 0
x 2 - 7 2 = 0
(x + 7) (x — 7) = 0
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Wie wir wissen , kann ein Produkt nur null sein, wenn mindestens ein Faktor
null ist . Aus der letzten Zeile entsteht die Oder -Aussageform

x + 7 = 0vr - 7 = 0 bzw.
x = — 7 vi = 7 .
Wir erhalten also zwei Lösungen , nämlich x x = — 7 und x2 = 7 .
Selbstverständlich kann man die Methode des Faktorisierens auch anwenden ,
wenn — q keine Quadratzahl ist . Nehmen wir als Beispiel q = — 5 :

x 2 — 5 = 0

x 2 - (]/5 ) 2 = 0

(x + V5) (x - V5) = 0

x = — 1/5 v i = l/5 . Also x x = — 1/5 und x2 = ]f $ -

Merke : Die rein quadratische Gleichung x 2 + q = 0 hat entweder keine , ge¬
nau eine oder zwei Lösungen , je nachdem ob q > 0 , q = 0 oder q < 0
ist .

Die Lösungen der rein quadratischen Gleichung kann man aber statt durch
Faktorisieren auch durch Radizieren finden . Es gilt nämlich

Satz 75. 1 : Sind die beiden Seiten einer Gleichung nicht negativ und
radiziert man beide Seiten , so entsteht eine äquivalente Gleichung ;
kurz :

Für 7j A 0 und T2 A 0 gilt : 7j = F2 <=> L
7 7j = ]/t 2

Beweis:
1 ) Ist u eine Lösung der Gleichung 7j = T2 mit 7j (u) A 0 , dann gilt 7j (u) =
= T2 (u) , also auch wegen der Eindeutigkeit der Wurzel ]/ 7j (u ) = VT2 (u) .
Damit ist u auch eine Lösung der Gleichung ]/l \ = \!' t 2 . Es gehen also beim
Radizieren keine Lösungen verloren .

2) Ist nun umgekehrt v eine Lösung der Gleichung 1/
~
TX — dann gilt

YfJv ) = VrJv \ woraus sich wegen der Eindeutigkeit des Quadrats
7j (v) = T2 (v) ergibt . Das bedeutet aber , dass v auch eine Lösung der Glei¬
chung Tx = T2 ist . Es kann also beim Radizieren auch keine Lösung hinzu¬
gekommen sein.
Da somit beim Radizieren weder Lösungen hinzugekommen noch verloren
gegangen sind , stimmt die Lösungsmenge der Gleichung 7j = T2 mit der Lö¬

sungsmenge der Gleichung Yl \ = ]fr 2 überein . Radizieren ist also eine Äqui¬
valenzumformung .
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Wir wenden Satz 75 . 1 auf unsere beiden obigen Beispiele an :

X2 - 49 = 0 x 2 - 5 = 0

x 2 = 49 \\ ]T x 2 = 5 \ \ ]T

1* 1 = 7 \ x \ = Vs

IIX>1IIK x = — 1/5 v x = l/5 .

Du siehst , beim Radizieren von Quadraten entstehen Absolutbeträge , die sich
durch Fallunterscheidungen wieder beseitigen lassen . Betrachten wir dazu
allgemein die Gleichung

x 2 = d 2
| | ]T

\ x \ = \ d \ .
Weil zwei Zahlen mit gleichem Absolutbetrag entweder gleich oder entgegen¬
gesetzt gleich sind , bedeutet die letzte Gleichung dasselbe wie
x = d v x = — d .

Merke: | x | = | </ | <s > x = d v x = - d

Aufgaben
1 . a) x 2 = 169

d) x 2 - 0,0324 = 0
g) 144 .x 2 = 1225

2 . a) 2x 2 = 8

d) 28 - 63x 2 = 0

, 13 78x 2
g) T

“
^

b) x 2 - 1024 = 0
e) 16 = 0,64x 2
h) 22500 - 2025x 2 = 0
b) 0,5x 2 = 8

e) — = —
12 27
22 24x 2

' 3 11

c) x 2 = 6,25
f) 2,56x 2 - 40,96 = 0
i) 10,89x 2 = 0,1936
c) 5x 2 — 45 = 0

_ x 2 7
^ 35

~
125

~ °

0,125x 2 M
4

Beachte bei den folgenden Aufgaben die Definitionsmengen!

3 . a)

c)

4x — 1 x — 1
x + 1 4x + 1

x -)- 10 5x -(- 4
2x — 5 x + 7
3x + 2 7x + 3
x 4 1 2x 4“ 2
16x — 1 4x + 25
x + 4 2 — 9x

2x — 5 X
3x + 10 2x -f- 10

X ~h 10 5x — 4
2x + 5 x + 7
2x + 7 2x -{- 2
4x — 6 1,5 — X
3x + 2 llx + 8
2x — 3 5x — 9
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2x 2 — 5 „ 3x 2 + 5
4 . a) - -- + 2 =

6
7x 2 + 1 1 4x 2 — 2

b) 4
~

2
+ 3

c)

e)

1
3x 2 — 2 17x 2 — 7

x - 4
+

5 . a)

x 2 — 1 x + 1

4 =

= 0

x + 2

6x — 8
c) — - h 2x =

3x

x — 2

3x + 4

d)

0

b)

+ 2 = 0
10 - 2x 2

8 — 20x x + 6
+9x 2 — 4 3x — 2

= 1

1 4 „ „+ - r + 7 = 0
5x + 2 x — 1

— x
x + 1 x — 1

d) - r +
x — 1 X + 1 x 2 — 1 + 2

»6 . Führe die notwendigen Fallunterscheidungen durch .
, 2

a) ax 2 =

x 6
c) - = -

a x

b)
x
a

2 „ 2

— a 2 = 0

d) a 2 x 2 — a = b 2 x 2 — b

e) (3x — 2a) 2 — (2x — 3a) 2 = 4a 2 f)
(bx — ä) 2 2bx — a- - 1- = b

87 . Führe die notwendigen Fallunterscheidungen durch ,
a) x 2 + a = b b) ax 2 = b
c) (x + 2a) 2 + (2x - a) 2 = 5a d) (3x - 2a) 2 + 64 = (x — 6a) 2

1
e) a (x — b ) 2 + ax (x + 2b) = -

f) (ax + b ) 2 + (bx + a) 2 = 2a 2 + 2abx (x + 2)

8 . a) (x — 7) 2 = 9
d) (0,5x — 1,5) 2 = 2,25
g) (x - a) 2 = b 2

9. a)
x x- 1-

x — a x + a
= 2|

b) (x + 2i ) 2 = f
e) (x — 3) 2 = — 3
h) (x + a) 2 = (2x + a)

x — a x + a

c) (x + 2) 2 = 2
f) (3 — x) 2 = 3

2 (q4 + 1 )
a2 (x 2 — a2)

10 . Multipliziert man 3^ einer Zahl mit derselben Zahl, dann ergibt sich
40733 . Wie heißt die Zahl ?

11 . Länge und Breite eines Rechtecks verhalten sich wie 7 : 5 , der Flächenin¬
halt ist 2240. Wie breit ist das Rechteck ?
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12 . Zerlege die Zahl 11532 in zwei Faktoren , die sich wie 3 zu 4 verhalten.
13 . Zerlege die Zahl z in zwei Faktoren , die sich wie a : b verhalten.

(a , b , z 4= 0)
14 . Aufgabe6 aus dem PapyrusMoskau (18 . Jh . v . Chr . nach einer Vorlage des

19 . Jh .s v . Chr .) : Ein Rechteck hat den Flächeninhalt 12 . Für die Breite
nimm \ der Länge + \ der Länge . Bestimme seine Seiten .

15 . Al -Charizmi (um 780 - nach 847) löste in seiner Algebra folgende Auf¬
gaben :
a) Das zweite der 6 Probleme (siehe Seite 87) : Ich habe 10 in zwei Teile

geteilt . Multipliziere ich den ersten Teil mit sich selbst und das Erhalte¬
ne mit 2^, dann ergibt sich dasselbe , wie wenn ich 10 mit sich selbst
multipliziere . Wie groß sind die Teile?

b) Multipliziere eine Zahl mit sich selbst , nimm das Vierfache , und du
hast 20 . Wie groß ist die Zahl ?

c) Das dritte der 6 Probleme: Ich habe 10 in zwei Teile geteilt. Dann habe
ich den einen durch den anderen dividiert und 4 erhalten . Wie groß sind
die Teile?

Zu den Aufgaben 16 bis 19 : Leonhard Euler (1707 - 1783 ) veröffentlichte 1770
in Petersburg seine Vollständige Anleitung zur Algebra (bereits 1768 auf rus¬
sisch erschienen ) , der wir die folgenden Aufgaben entnommen haben . *

16 . Es wird eine Zahl gesucht, deren Hälfte , mit ihrem Drittel multipliziert, 24
gibt .

17 . Es wird eine Zahl von der Beschaffenheit gesucht, dass, wenn man zu
derselben 5 addiert und ebenso von ihr auch 5 subtrahiert , jene Summe
mit dieser Differenz multipliziert 96 beträgt .

• 18 . Von 3 Personen besitzt die erste so oft 7 Reichstaler wie die zweite 3 Reichs¬
taler hat ; und so oft die zweite 17 Reichstaler besitzt , hat die dritte 5 Reichs¬
taler . Wenn man aber das Geld der ersten mit dem Gelde der zweiten und
das Geld der zweiten mit dem Gelde der dritten und endlich das Geld der
dritten mit dem Gelde der ersten multipliziert , hierauf diese drei Produkte
addiert , so ist die Summe 3830| . Wie viel Geld hat nun jede gehabt ?

19 . Einige Kaufleutebestellen einen Faktor [ = Leiter einer Handelsniederlas¬
sung] und schicken ihn nach Archangel , um daselbst einen Handel abzu¬
schließen . Jeder von ihnen hat zehnmal so viel Reichstaler eingelegt , wie es
Personen sind . Nun gewinnt der Faktor an je 100 Reichstalern zweimal
so viel, wie die Anzahl der Personen ist . Wenn man dann den 100 . Teil des
ganzen Gewinns mit 2 § multipliziert , so kommt die Zahl der Gesellschaf¬
ter heraus . Wie viel sind ihrer gewesen?

2 . Teil , 1. Abschnitt , Kapitel 5, Aufgaben I , II , IV und V
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3 .2 .2 Die Konstante ist null

Ist die Konstante null,d . h . ,gilt c = 0 , dann hat die quadratische Gleichung die
Gestalt ax 2 + bx = 0 .
Man löst sie durch Faktorisieren :

ax 2 + bx = 0
x (ax + b) = 0
x = 0vax + b = 0

x = 0 v x = - (a =t= 0) .
a b

Wir erhalten also zwei Lösungen , nämlich x 1 = 0 und x 2 = - .a
Für b = 0 ergibt sich 0 als einzige Lösung .
Beim Gleichungstyp ax 2 + bx = 0 ist also 0 immer eine Lösung .
Diese Lösung ginge verloren , wenn jemand glaubte , er könne die Gleichung
ax 2 + bx = 0 dadurch vereinfachen , dass er durch die Variable x dividiert
und nur noch ax + b = 0 löst .

Merke: Durch einen Term darf man nur dividieren, wenn er nicht null ist .

Aufgaben
1 . a) x 2 — 5x = 0 b) 3x 2 + 8x = 0

d) 14x 2 + 3 ^x = 0 e) x 2 = x
c) 15x 2 = 18x
f) x 2 = ~ x

2 . a) 0,12x 2 + 2x = 3,08x

c) 3x 2 — V3x = x — ]/3x 2

e) ]/lÖx 2 + ]/5x = 0

b) V2x + 5x 2 = 0

d) \ x 2 + ]/ §x = — j ]/5x 2 + j ]/6x

f)
j/27
Vsx 2

3 . Aus dem liber abaci (1202 ) des Leonardo von Pisa (um 1170 - nach 1240) :

a) x (x + l/lÖ) = 9x 2 b) x (x + l/lÖ) = 9x

4 . Das erste der 6 Probleme des al -Charizmi aus seiner Algebra (siehe Seite
87) : Ich habe 10 in zwei Teile geteilt und den einen mit dem anderen multi¬
pliziert . Multipliziere ich aber den einen Teil mit sich selbst , dann erhalte
ich viermal so viel wie zuvor . Wie groß sind die Teile?
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5 . Al -Charizmi behandelt weitere Beispiele quadratischer Gleichungen . In
moderner Schreibweise lauten sie :

l . i
4 5

c) ix : • ix

Bestimme die Lösungen .

6 . a) x 2 — lax = 0 x = 0

d) a 2 x 2 — 2bx = 4 b 2 x 2 — ax

3 .3 Die quadratische Ergänzung

Quadratische Gleichungen vom Typ ax 2 + c = 0 und ax 2 + bx = 0 können
wir schon lösen . Was aber machen wir bei einer allgemeinen quadratischen
Gleichung ? Gelingt es , die linke Seite durch Probieren zu faktorisieren , dann
ist das Problem gelöst . Dazu

Beispiel 1 : Beispiel 2:
x 2 + 4x — 5 = 0 Ix 2 — 5x + 3 = 0
(x + 5) (x — 1 ) = 0
x + 5 = 0vx - l = 0
x = — 5 v x = 1 .

(2x — 3 ) (x — 1 ) = 0
2x — 3 = 0vx — 1 = 0
X = f V X = 1 .

Leider wird dieses Probier -Verfahren nur in den seltensten Fällen zum Ziel
führen . Wenn es gelingt , dann ist es aber auch das schnellste Verfahren . Wir
brauchen jedoch eine Methode , die immer zum Ziel führt .
Dazu formen wir die Gleichung schrittweise so um , dass eine rein quadra¬
tische Gleichung entsteht , die wir schon lösen können . Wir zeigen es dir an¬
hand einer Gleichung , die al -Charizmi (um 780 - nach 847 ) in seinem al-kitab
al-muchtasar fi hisab al-dschabr wa - ’l-muqabala - »Handbuch über das Rech¬
nen durch Wiederherstellen und Ausgleichen « - behandelt , und verfolgen
seinen Lösungsweg .

Beispiel 3 : \ x 2 + 5x = 28
1 . Schritt : Herstellen der Normalform
x 2 + lOx — 56 = 0
2 . Schritt: Ergänzen zum Quadrat
Wir fassen den Term x 2 + lOx als Anfang der linken Seite der 1 . binomi¬
schen Formel x 2 + lux + u 2 = (x + u)2 auf . Der Koeffizient von x muss
dann lu sein . Es gilt also lu = 10 und damit u = 5 . Wir ergänzen nun das
fehlende u 2

, d . h . 5 2
, und ziehen es gleich wieder ab , um die Konstante

nicht zu verändern :
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x 2 + lOx + 5 2 — 25 — 56 = 0 .
Die ersten drei Glieder ergeben ein Quadrat :
(x 2 + lOx + 5 2) — 81 = 0
(x + 5) 2 — 81 = 0 .
Das ist eine rein quadratische Gleichung für (x + 5) .
3 . Schritt: Lösen der rein quadratischen Gleichung
durch Faktorisieren oder

(x + 5) 2 - 9 2 = 0
[(x + 5) + 9] [ (x + 5) — 9] = 0
(x + 14) (x — 4) = 0
x = — 14 v x = 4 .

durch Radizieren

(x + 5) 2 = 81 | | lA
| x + 5 | = 9
x + 5 = — 9 v x + 5 = 9
x = — 14 v x = 4 .

Das vorgeführte Lösungsverfahren heißt Lösen durch quadratische Ergän¬
zung .
Als »quadratische Ergänzung « bezeichnet man aber nicht nur das Lösungs¬
verfahren , sondern auch den Term u 2

, mit dem man ergänzt .

Merke: Man halbiert den Koeffizienten des linearen Glieds, quadriert und
ergänzt .

Wie du schon weißt , hat die rein quadratische Gleichung zwei, eine oder gar
keine Lösung . Dasselbe gilt natürlich dann auch für jede quadratische Glei¬
chung , wenn wir sie in eine äquivalente rein quadratische Gleichung umfor¬
men können .
Al - Charizmi zeigt seinen Lesern mittels eines geometrischen Beweises (vgl . Abbildung
82 . 1 ) - er hatte ja noch keine Buchstabenrechnung - , dass die Methode der quadrati¬
schen Ergänzung richtig ist . Vielleicht helfen dir seine Gedanken auch zu einem besse¬
ren Verständnis dieses Verfahrens . Er schreibt : *
Wir gehen aus vom Quadrat ABCD , dessen Flächeninhalt gleich der gesuchten Qua¬
dratzahl x2 ist . Unser nächstes Anliegen ist es , ihm eine Fläche vom Inhalt 10-mal der
gesuchten Zahl , also lOx , hinzuzufügen . Zu diesem Zweck halbieren wir die 10 , das
ergibt 5 , und konstruieren an zwei Seiten des Quadrats ABCD zwei Rechtecke , näm¬
lich CBGH und DCFE , und zwar so , dass jeweils die Längsseite 5 misst - das ist die
Hälfte des Koeffizienten 10 von x - , wohingegen die Breite jeweils gleich der Quadrat¬
seite x ist . Dabei entsteht an der Ecke C ein Quadrat , nämlich FCHI . Dessen Inhalt ist
5 mit sich multipliziert : Diese 5 ist die Hälfte des Koeffizienten der Unbekannten x , die
wir an jeder Seite des Ausgangsquadrats als Strecken [BG] und [DE ] angefügt haben .
Jetzt können wir sagen , dass das erste Quadrat mit dem Inhalt x 2 und die zwei Recht¬
ecke an seinen Seiten , die zusammen lOx haben , insgesamt 56 ausmachen . Um nun
zum großen Quadrat AGIE vervollständigen zu können , fehlt uns nur mehr die Qua -

* Wir haben den Text nur wenig modernisieren und dem Beispiel 3 anpassen müssen . Natürlich gibt es bei al -
Charizmi noch keinen Buchstaben x ; auch »Koeffizient « drückt er umständlicher aus . Quadrate und Recht¬
ecke werden nur durch die Diagonalecken - wie bei Euklid - bezeichnet ; das Quadrat ABCD heißt also nur
AC usw . Seine Figur stimmt übrigens genau mit der Euklids aus Buch II der Elemente überein ; nur der
mathematische Inhalt dazu wird anders formuliert . So lautet der zugehörige Satz 4 bei Euklid : »Wird eine
Strecke beliebig geteilt , so ist ihr Quadrat gleich der Summe der Quadrate der beiden Teilstrecken , vermehrt
um ihr doppeltes Rechteck .« Teilen wir also [AE ] in D , so gilt

AE 2 = AD 2 + EÜE2 + 2 • AD • DE .
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dratzahl , die aus 5 mit sich multipliziert entsteht , also 25 . Diese addieren wir zu 56 und
haben damit zum großen Quadrat AGIE ergänzt . Als Summe erhalten wir 81 . Wir
ziehen die Wurzel , das ergibt 9 , und das ist die Seite des großen Quadrats . Ziehen wir
davon dasselbe ab , was wir vorher hinzugezählt haben , nämlich 5 , dann erhalten wir
als Rest 4 . Dies ist die Seite des Quadrats ABCD , die man gesucht hat .

A x D 5 E

x2

c

5x

5x 25

x 2 + lOx = 56
x 2 + 2 ■^ x = 56
x 2 + 2 ■ (5x) = 56
x 2 + 2 ■(5x) + 5 2 = 56 + 25
(x + 5) 2 = 81

G H I
Abb . 82 . 1 Die Zeichnung des al -Charizmi zum Beweis der quadratischen Ergän¬
zung

Aufgaben
1 . Löse durch Faktorisieren .

a) x 2 — 5x + 6 = 0
c) y 2 + y — 20 = o

b) z2 + 6z + 8 = 0
d) n 2 — 5/t — 24 — 0

2 . Ergänze zum Quadrat ,
a) x 2 + 4x b)
d) x 2 — 0,6x e)
g) x 2 + l,3x h)

x 2 — 8x
x 2 + l,8x
x 2 + fx

3 . Ergänze zum Quadrat .
a) x 2 + 3 \ x b) x 2 — 3jx

c) x 2 — 24x
f) x 2 — 0,5x
i) x 2 — fx

c) x 2 + 2yx

d) x 2 — 3ax

g) x 2 + 10 ]/7x

e)

h)

, a + b
x + -

T
~ *

x 2 - 7j/IÖx

f) x 2 - 3
2a - 3b

- x

i) x 2 — fl/l5 .X

4 . a) x 2 — 3x + 2 = 0
c) x 2 + 11 x + 28 = 0
e)* x (x + ]/l0 ) = 20

5 . a) x 2 + lOx + 30 = 0
c) u 2 + 7 = 8w

b) x 2 — 2x — 3 = 0
d) x 2 + 12x + 36 == 0
f) * x 2 - (20 + j/iÖ) x + 100 = 0
b) y 2 + 4y = 1
d) v 2 = 3 — 2v

aus dem Uber abaci (1202) des Leonardo von Pisa (um 1170- nach 1240)
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6 . a) 2x 2 — 28x + 98 = 0
c) — 5u 2 + 120m — 730 = 0

b) - 3z2 + 12z + 63 = 0
d) 8x 2 + 80x + 72 = 0

b) iz z - jz - l = 07 . a) 3x 2 + x — 2 = 0
c) 2 u 2 — 3u + 4 = 0 d) \ ,5y 2 + 2y - 7,5 = 0

b) x 2 + 4ax + a 2 = 08 . a) x 2 + 4A:x — 5A;2 = 0
c) x 2 — 2nx = 6m « + 9m 2 d) rx2 — 2r 2 x = rs — r 3

3 .4 Diskriminante und Lösungsformel

Wenn ein Mathematiker immer wieder gleichartige Aufgaben lösen muss ,
dann wird er dessen bald müde und er beginnt zu überlegen , ob sich nicht eine
Formel finden lässt , mit der er ein für alle Mal alle Aufgaben dieses Typs lösen
kann . Mit Hilfe der quadratischen Ergänzung entwickeln wir nun eine solche
Formel zur Lösung der quadratischen Gleichung .
ax 2 + bx + c = 0 , <2 + 0

1 . Schritt : Herstellen der Normalform

a a
2 . Schritt : Ergänzen zum Quadrat

0 <=>x 4— x +

3 . Schritt : Lösen der rein quadratischen Gleichung durch Faktorisieren
Die Faktorisierung lässt sich nur durchführen , wenn der Term b 2 — 4ac nicht
negativ ist . Ist er negativ , dann gibt es keine Lösung .

Ist er null , dann ist x = — die einzige Lösung .2a
Ist er positiv , dann gibt es zwei Lösungen , die wir durch Faktorisieren finden ,
da man in diesem Fall b 2 — 4ac als (|\/b 2 — 4ac ) 2 schreiben kann . Es gilt dann
also

Vb — 4ac

Vb 2 — 4ac ]/b 2 - 4ac
2a

b + Vb 2 — 4ac n b — ]/b 2 — 4ac
xH- -- = 0 v xH- --
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b + 1/ b 2 — 4ac
2a v v = —b — ]/b 2 — 4ac

2a
— b — Vb 2 — 4 ac — b + \/b 2 — 4 acx = - -- v x = - --

2a 2a

Für diese Oder -Aussageform schreibt man oft kurz unter Verwendung des
1631 von William Oughtred (1574 - 1660 ) in seinem Clavis mathematicae -
»Schlüssel der Mathematik « - eingeführten Zeichens ± , gelesen »plus oder
minus «

— b ± Vb 2 — 4ac
X =

2a '

Damit haben wir einen formelmäßigen Ausdruck für die beiden Lösungen der
allgemeinen quadratischen Gleichung , nämlich

b - Vb 2 - Aac b + Vb 2 - Aac
2a22a

oder kurz

— b± ]/b 2 — 4ac

Über die Existenz von Lösungen und
über ihre Anzahl entscheidet , wie wir
oben gesehen haben , der Term

b 2 — 4ac .
Der englische Mathematiker James
Joseph Sylvester (1814 - 1897 ) gab
ihm deshalb 1851 den Namen Diskri¬
minan te * . Wir kürzen diesen Aus¬
druck mit D ab . Wegen seiner Bedeu¬
tung merken wir uns

Definition 84 . 1 : D -= b 2 — Aac
heißt Diskriminante der
quadratischen Gleichung
ax 2 + bx + c = 0 .

* discriminare (lat .) = trennen , unterscheiden . Dis¬
kriminante ist eine der vielen Wortschöpfungen Abb . 84 . 1 James Joseph SYLVESTER
Sylvesters . (3 . 9 . 1814 London - 15 . 3 . 1897 ebd .)
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Wir fassen unsere Ergebnisse zusammen in

Satz 85 . 1 : Die quadratische Gleichung ax 2 + bx + c = 0 mit a 4= 0 hat

— b± ]/b 2 — 4ac
für D > 0 die Lösungen x 12 =

b
für D = 0 die Lösung x = — —

2a
für D < 0 keine Lösung .

Praktisches Vorgehen bei der Anwendung der Lösungsformel :
1 ) Treten in den Koeffizienten der Gleichung Nenner auf , so beseitigt man

diese durch Multiplikation der Gleichung mit dem Hauptnenner .
2) Ist der Koeffizient des quadratischen Glieds negativ , dann multipliziert

man die Gleichung mit — 1 .
3) Da D die entscheidende Rolle spielt , berechnet man nun D.

Ist D < 0 , so ist man fertig .

Ist D = 0 , so ist x = — ^ die einzige Lösung .2a ,—- b± ]/D
Ist D > 0 , so erhält man die Lösungen x 12 — - z- •

Beispiel 1 :
— 5x 2 + 8x + 21 = 0 | | • ( — 1 )
5x 2 — 8x — 21 = 0 Z> = ( — 8) 2 — 4 - 5 - ( — 21 ) =

= 64 + 420 =
= 484 ;

VD = 22 .
- ( - 8) ±22

Beispiel 2:
Iv2j . 10vJ . 10
6 X T Q A + 27

9x 2 + 12x + 4 = 0 D = 12 2 — 4 • 9 • 4 =
= 144 - 144 = 0 ;

Vd = o .
- 12 + 0

2 - 9
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Beispiel 3:
x 2 + x + 1 = 0 D = l 2 — 4 - 1 - 1 = 1 — 4 = — 3 .
Keine Lösung .

* *Zur Geschichte der Lösungsformel
Der Wunsch nach einer Lösungsformel für eine quadratische Gleichung ist so alt wie
die Gleichung selbst . Solange man aber nicht über eine algebraische Formelsprache
verfügte , konnte man den Lösungsweg nur in Worten angeben . Anhand der Aufgabe
1 der Keilschrifttafel BM 13901 (20. Jh . v. Chr .) zeigen wir dir dieses Vorgehen . Wir
stellen links den babylonischen Text, rechts die moderne algebraische Form unter
Verwendung allgemeiner positiver Koeffizienten B und C dar .

Die Fläche und die Seite meines Quadrats habe
ich addiert , und | ist es .
1 , den Koeffizienten , nimmst du .

Die Hälfte von 1 brichst du ab , es ist j .

j und i, multiplizierst du , es ist

i zu | fügst du hinzu , es ist 1 .

1 hat als Quadratwurzel 1 .

j , das du mit sich multipliziert hast , von
1 subtrahierst du , es ist j ;

und das ist die Quadratseite .

Die gegebene Gleichung hat die Normalform x 2 + x + ( — f ) = 0 , d . h . , a = 1 ,b = 1 = B und c = — f = — C. Mit unserer Formel erhalten wir als positive Lösung

— b + Vb 2 — 4ac

tui
Abb . 86 . 1 Autographie der Aufgabe 1
der Keilschrifttafel BM 13901 ,
aufbewahrt im British Museum
zu London

- B + |/B +

2 - 1

also das Ergebnis der Babylonier .

B + 2

x 2 + x = |
1 = B
B _ 1
2

~
2

4 4
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Nun gab es lange Zeit keine Null und erst recht keine negativen Zahlen , sodass diese
auch nicht als Koeffizienten auftreten konnten . Daher gab es auch nicht eine quadrati¬
sche Gleichung , sondern 5 verschiedene Typen . Und für jeden Typ musste ein eigenes
Lösungsverfahren angegeben werden (siehe unten ) . Wir können fast sicher sein, dass
Diophant (um 250 n . Chr .) über all diese Verfahren verfügte , wenn wir auch keinen
Beleg dafür haben ; denn jedes Mal , wenn bei ihm eine quadratische Gleichung vor¬
kommt , gibt er die Lösung richtig an .
Seine Arithmetik soll 13 Bücher umfasst haben , von denen uns nur 6 auf Griechisch
überliefert wurden . Vor wenigen Jahren fand man eine um 900 angefertigte arabische
Übersetzung von 4 weiteren Büchern . In den nun bekannten 10 Büchern findet man
keine Theorie der quadratischen Gleichungen . Wir können nur hoffen , dass sich die
letzten 3 Bücher auch noch finden !
Durch die Einführung der negativen Zahlen und auch der Null als Koeffizienten war
es den Indern möglich , alle Gleichungen auf eine Standardform zu bringen und zu
lösen . So verlangt Brahmagupta ( 598 - nach 665 ) , jede quadratische Gleichung - in
unserer Schreibweise - auf die Form ax 2 + bx = d zu bringen und dann gemäß

x =
^- - zu lösen . Mit unserem c = — d ist dies fast schon unsere Lösungs -

2a
formel . Es fehlt nur noch das + . Wir müssen sogar annehmen , dass bereits sein Vor¬
gänger Aryabhata I (um 476- ?) auf diese Art quadratische Gleichungen löste (siehe
Aufgabe 101/27) .
Leider übernahmen die Araber von den Indern nicht die negativen Zahlen - ein algebrai¬
scher Rückschritt ! - , sodass es bei ihnen auch keine Standardform mit Lösungsformel
gibt . Einen Überblick über alle möglichen Formen bringt al -Charizmi (um 780 - nach
847) gleich zu Beginn seines al-kitab al-muchtasarfi hisab al-dschabr wa- ’l-muqabala -
»Handbuch über das Rechnen durch Wiederherstellen und Ausgleichen « . Wir müssen
uns dabei erinnern (vgl . Abbildung 68 . 1 ) , dass er darin drei Begriffe verwendet :
- die Wurzel; darunter versteht man alles, was mit sich multipliziert werden kann ;
- das Vermögen ; darunter versteht man alles, was sich durch Multiplizieren der Wur¬

zel mit sich selbst ergibt ;
- die (reine) Zahl ; darunter versteht man alles, was ausgesprochen werden kann ohne

Beziehung zu Wurzel und Vermögen.
Und nun sagt al -Charizmi , dass zunächst je zwei von diesen dreien (oder Vielfache
davon ) untereinander gleich sein können , dass man aber auch jeweils zwei addieren und
der 3 . Art gleichsetzen könne . Dadurch entstehen 6 Typen von Gleichungen , die zur
Grundlage der abendländischen Gleichungslehre wurden . Deutet man »Wurzel« als
Unbekannte x , so wird »Vermögen« zu x2

, und es entstehen quadratische Gleichun¬
gen . * Mit positiven A , B und C können wir den arabischen Text modern umschreiben :
(Al ) Vermögen sind Wurzeln gleich. Ax 2 = Bx
(A2) Vermögen sind einer Zahl gleich. Ax 2 = C
(A3) Wurzeln sind einer Zahl gleich . Bx = C
(Bl ) Vermögen und Wurzeln sind einer Zahl gleich. Ax 2 + Bx = C
(B2 ) Vermögen und Zahl sind Wurzeln gleich . Ax 2 + C = Bx
(B3 ) Wurzeln und Zahl sind Vermögen gleich . Bx + C = Ax 2

Jede dieser 6 Typen führt al -Charizmi an einem Problem vor . Dabei bereiten die

* Natürlich kann man auch »Vermögen « als Unbekannte x wählen , was in vielen Aufgaben zweckmäßig ist .
Weil dies in den Übersetzungen aber fast nie getan wurde , entstanden viele Ungereimtheiten und Missver¬
ständnisse . Siehe z . B . Aufgabe 94/11 i .
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Abb . 88 . 1 Vorderseite der altbabylonischen Keilschrifttafel BM 13901 , ca.
12 cm x 20 cm groß
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Keilschrifttafel BM 13901
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einfachen Gleichungen (Al ) bis (A3 ) keine Schwierigkeiten . (A3) ist sogar linear (Auf¬
gabe 78/15c) . (Al ) wird linear , da man durch x dividieren kann ; denn null ist keine
Lösung bei al -Charizmi (Aufgabe 79/4) . Und (A2 ) ist eine rein quadratische Glei¬
chung , die man durch Wurzelziehen lösen konnte (Aufgabe 78/15 a) .
Auch für die Typen (Bl ) bis (B3 ) , die übrigens bereits von Euklid (siehe Aufgaben
98/26 und 110/25) und Diophant behandelt worden waren , stellt erjeweils ein Problem
(Aufgabe 100/28) , beschreibt den Lösungsweg in Worten und beweist ihn geometrisch
( !) . Übersetzt man den Lösungsweg in unsere Formelsprache , so entstehen drei ver¬
schiedene Ausdrücke als Lösungsformeln , die sich nicht zu einer Formel zusammen¬
fassen lassen , da man eben keine negativen Zahlen kannte (Aufgabe 100/29) . Al -
Charizmi erkennt aber , dass (B2) im Gegensatz zu (Bl ) und (B3 ) unter gewissen Um¬
ständen zwei Lösungen haben kann . Er gibt - natürlich wieder in Worten - die Bedin¬
gung für zwei und für eine einzige Lösung an und sogar dafür , dass »die gestellte
Aufgabe nichtig ist« - wir sagen heute stattdessen , dass sie keine Lösung hat (Aufgabe
100/29) .
Auch die Babylonier kannten bereits diese 3 Typen von quadratischen Gleichungen ,
vermieden aber durch geschickte Umformungen fast immer den Typ (B2 ) , weil sie sich
nicht vorstellen konnten , dass eine Größe zwei Werte annehmen sollte . * Interessanter¬
weise stimmen viele Aufgaben al -Charizmis mit alten babylonischen Aufgaben und
mit Aufgaben Diophants , dessen Werke er nicht kannte , überein , sodass wir auf eine
alte mathematische Tradition schließen dürfen .
Das Werk al -Charizmis wirkte zurück nach Indien (Aufgabe 100/30) und wurde fort¬
gesetzt von arabischen Mathematikern , vor allem von dem in Bagdad wirkenden al -
Karadschi (10 ./11 . Jh .) . Ins Abendland kamen die quadratischen Gleichungen , als der
Italiener Plato von Tivoli (lebte zwischen 1134 und 1145 in Barcelona ) den liber
embadorum - »Buch der Inhalte « - des in Barcelona wirkenden jüdischen Mathemati¬
kers Abraham bar Hijja , genannt Savasorda ( | 1136 ) , aus dem Hebräischen ins La¬
teinische übersetzte . Bald darauf wurde auch das Werk al -Charizmis durch Gerhard
von Cremona ( 1114- 1187) und durch Robert von Chester (um 1145) ins Lateinische
übersetzt . Seitdem werden seine Aufgaben als Standardaufgaben von den Mathemati¬
kern des Mittelalters fast wörtlich übernommen . Sie finden sich auch in deutschen
Handschriftendes 15 . Jh . s . Dabei wird das arabische JL (mal ) = Vermögen lateinisch
mit census (seltener mit substantia ) übersetzt , das j (dschidr ) = Wurzel mit radix .
Census wird als Fremdwort ins Deutsche übernommen , für radix sagt man wurcz .
Mathematisch blieb aber alles beim Alten , nämlich bei den 6 Gleichungstypen . Erst
Gielis van den Hoecke schaffte 1537 einen gewissen Durchbruch , indem er auch
abzuziehende Glieder in den quadratischen Gleichungen zulässt . Genauso verfährt
1544 Michael Stifel (14877- 1567 ) , der sie damit alle auf eine der 3 Formen bringt :
x2 = Bx + C , x2 = — Bx + C , x2 = Bx — C . (B und C positiv )
Nur x 2 = — Bx — C gibt es nicht bei ihm , da er , obwohl er sonst schon mit negativen
Zahlen arbeitet , sich solche noch nicht als Lösung einer quadratischen Gleichung
vorstellen kann . Es gelingt ihm , einen einzigen Lösungsweg anzugeben , dem er den
Merknamen AMASIAS gibt , zusammengesetzt aus den Anfangsbuchstaben seiner
* Beispielsweise kann man die Aufgabe »10 habe ich in zwei Teile geteilt , ihr Produkt ist 21 « nach babylonischer

Art als Gleichungssystem mit zwei Unbekannten zu x + y = 10 a xy = 21 ansetzen . Führt man nur eine
Unbekannte ein , so erhält man aus x (10 - x) = 21 die quadratische Gleichung (B2) x 2 + 21 = lOx . Neu bei
al -Charizmi ist eben , dass er solche Aufgaben als quadratische behandelt . Dann hat er aber zwei Lösungen
für x , nämlich 3 und 7 , was für die Babylonier unverständlich ist . Sie bekommen auch keine zwei ! Denn sie
benützen die Identität 4xy = (x + y) 2 — (x —y)2 und rechnen (x —y) 2 = 100 — 4 • 21 = 16, was , da es nur
positive Zahlen gibt , sofort auf x —y = 4 führt . Mit x + y = 10 ergibt sich x = 7 und y — 3 .
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r Sequfturmodus ifte extrahend/.
Primo * ji . namcvö rabicam incipe, eutn'

cp bimibiatom,
loco etua ponc illtue , quob in loco fuo (fr t,bomc
confumata fit tota operatio .

Secüdo « rriuUtplica .bimibtam illub pofitum, quabrate«
Tertio . Jibbe vel Subtrabe iujcta |tgm abbitotu,aut (tgnt

fubttractorum,erigenttani .
Quarto ^ nucnicnbö eff rabtje quabröta,c )r furnrna abbttt

oute tu* »vcl ep fuBtracttome tu» relicto-
Quinto .^ bbc aut Subtrabe turtafigni auteremplt tui

eplgentiam .
Modum extrahendi hunc tibi, mi boneLeĉ or/ormaui , ita

ut memorix tenadter hzrere poflit adminiculo didionis hu*
ius A m a s i a s .

Abb . 91 . 1 Die AMASIAS -Merkregel aus Michael Stifels Arithmetica integra von
1544 (folium 240 v) - Übersetzung im Lösungsheft

lateinischen Merkregel aus der Arithmetica integra - »Die ganze Arithmetik « - von
1544 (Abbildung 91 . 1 ) . Etwas modernisiert lautet sie für x 2 = ±Bx + C :

1 . Anfänge mit der Anzahl der Wurzeln,

halbiere sie und lass sie stehn .

2 . Multipliziere diese Hälfte mit sich.

3 . Addiere oder Subtrahiere , wie es das Vorzeichen
des konstanten Glieds C fordert .

4 . Itzo die Quadratwurzel zieh.
2

+ c

5 . Addiere oder Subtrahiere das zur Seite gestellte
B
2 ’ wie es das Vorzeichen von B verlangt .

^ B
+ C + -“ ~

2

Geronimo Cardano (1501 - 1576 ) hingegen erkennt in seinem Artis magnae , sive de
regulis algebraicis Uber unus ( 1545 ) - »Das eine Buch über die Große Kunst oder die
algebraischen Regeln« - als Lösungen auch negative Zahlen an . * Simon Stevin (1548
bis 1620 ) schließlich lässt sowohl negative Koeffizienten wie auch negative Lösungen in
seiner L ’Arithmetique (1585) zu . Damit ist der Abschluss erreicht : Es gibt nur eine Form
der quadratischen Gleichung und nur eine Lösungsformel .
* Stifel nannte die negativen Zahlen numeri absurdi oder auch numeri ficti (eingebildete Zahlen ) . Diesen

Ausdruck benützt auch Cardano . Wenngleich dieser in Kapitel I seiner Ars magna von wahren und eingebil¬
deten Lösungen einer quadratischen Gleichung spricht {x 2 + 4x — 21 hat die wahre Lösung 3 und die einge¬
bildete —7) , so führt er bei den in Kapitel V vorgerechneten Beispielen immer nur die wahre , d . h . die positive
Lösung auf .
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Aufgaben
1 . a) 2x 2 — 5x — 3 = 0

c) 3x 2 — 7x — 6 = 0
e) 4x 2 — 12x + 11 = 0
g) 16x 2 — 48x + 36 = 0

b) 5x 2 + 16x — 16 = 0
d) 40x 2 - 89x + 40 = 0
f) 4x 2 — 12x + 5 = 0
h) 14x 2 + 45x — 14 = 0

2 . Aus der Arithmetica Integra (1544 ) des Michael Stifel (14877- 1567 ) :
a) x 2 + 6x = 72
c) x2 = 725 — 4x
e) x 2 + 8x — 12 = 72
g) x 2 — 2x + 24 = 6x + 72
i) x 2 = 8x + 38
k) x 2 = 12x - 18
m) x 2 = 3x + 72

b) x 2 = 6x + 72
d) x2 = x + 35156
f) x 2 + 3x + 18 = 72
h) x 2 = 12x — 36
j) x 2 = 8x — 38
1) x 2 = 12 - 3x
n) x 2 = 6x + 36

3 . Aus dem Artis magnae , sive de regulis algebraicis liber unus (1545 ) des
Geronimo Cardano (1501- 1576 ) :
a) x 2 + 4x = 21
d) x 2 = lOx + 144
g) 6 = lOx + x 2

j) x 2 = ]/l2x + 20
m) x 2 + 16 = lOx

4 . a) x 2 — 2x + 1 = 0
c) 4x 2 + 8x + 1 = 0
e) 5x 2 — 5x + 1 = 0

5 . a) 0,5x 2 — 0,5x — 1 = 0
c) ^x 2 — f x + 2 = 0
e) 2,25x 2 — x + ^ = 0
g) i * 2 - fx + ^ = 0

b) x 2 = 4x + 21
e) 144 = 10x + x 2
h) lOx = x 2 + 6
k) x 2 = Vl2x + 9

c)
f)
i)
1) x 2 = | x + ll

x + 12 = Ix
x 2 = lOx + 6
x 2 = l/l2x + 22

b) x 2 — 2x — 1 = 0
d) 6x 2 — 2x — 1 = 0
f) 12x 2 + 48x + 47 = 0
b) 0,5x 2 + 3,25x + 1,5 = 0
d) 0,1 x 2 + §§x — 1 = 0
f ) fx 2
h) 0,36x 2 + 0,4x - ^ = 0

ff x + 0,5 = 0

6 . Runde die erhaltenen Lösungen auf Tausendstel .
a) x 2 - 37 = 0 b) x 2 - 6x - 11 = 0
c) x 2 + llx + 8 = 0
e) 2 ]/5x + 2 = 0

g) V3x 2 — 6x + 4 ]/3 = 0

d) 16x 2 — 112x + 63 = 0
f) 2 (/ 3x 2 - 12x + 5 ]/3 = 0

3 1/2
2?2

X _ Th) ]/2x 2 - = 0

i) x 2 - (4 + 2l/2 ) x + 6 + 4 )/2 = 0 j) 2x 2 + x ( l - 3j/3 ) + 3 - ]/3 = 0

k) l/8x 2 - 4 )/3x + 21/2 = 0 1) x 2 + }/3x - ]/5x - ]/l5 = 0
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HIERONYMI CAR
DANI , PRÄSTANTISSIMI MATHE -

UATICI , PHILOSOPH r> AC MBDI C 1,

ART IS MAGNA
SIVE DE REGVLIS ALGEBRAICIS ,Lib.unus. Qui &totiusoperisdeArithmcria, quod

OP VS PERFBCTVM
mfcripGr,e/IinonlineDedmus,

^ 53

HAbesinhoclibro,ftudio(eLe<flor,R«gutasAlgebraicasrftali,delaCof
läuocant)noutsadinumüonfbus>acdemonßrailonibiisabAuthorefta

bcupletatas.utpropauculisanteauulgötrüis.famfeptiiagmraeualerim.Ne«
cpfolum, ubitmusnumerusalteri,autdiioimi.uerumeriam,ubiduoduobus,
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Abb . 93 . 1 Titelseite der Ars magna des
Geronimo , auch Girolamo Cardano
(24 .9 . 1501 Pavia- 20 .9 . 1576 Rom ) , er¬
schienen 1545 in Nürnberg :
Des Hieronymus Cardanus , des außer¬
ordentlichsten Mathematikers , Philoso¬
phen und Arztes , eine Buch der Großen
Kunst oder über die algebraischen Re¬
geln, das auch der Reihe nach das zehnte
des gesamten Werks über die Arithmetik
ist , dem er den Titel VOLLKOMME¬
NES WERK gab . *

Die Umschrift um sein Bildnis lautet
TÖ |iSAAOV ÖTl YEVf | CTSTCtl £ iq TÖ CpEpTSpOV
xlösi

Halte das Zukünftige , das sich entwickeln
wird , für das Bessere!

7 . Gib vierstellige Näherungen für die Lösungen an , d . h . , berechne die Lö¬
sungen auf vier geltende Ziffern genau (führende Nullen zählen nicht !) .
a) x 2 - 7,9771 x + 7,0802 = 0 b) x 2 + 0,1010x - 0,2411 = 0

c) x 2 + Ttx — 7t 2 = 0 d) x 2 — l/3,14x + 1 — l/5 = 0
e) 3,14x 2 + 2,01x + 0,301 = 0 f) 1509x 2 + 1998x - 7487 = 0

g) 1,23 • 104x 2 - 2,34 • 10 5 x - 1 = 0
3

h) ]/2x 2 + (2 - 2V2 ) x -j— = - — 2 = 0
1/2

a) (x + 5) (2x — 7) = 9
c) (4x — l ) 2 + 2x = 0
e) ( llx - 7) 2 = (10 - 10x ) 2

g) (3x + 2) 2 — (2x + l ) (2x -

b) ( 1 - 3x ) (5x + 2) = 0
d) (2x + 3) (3 - 2x ) + 6x + 1 = 0
f) 4x 2 — x (5 + 3x ) = (6 — 2x ) 2 — 36

l ) + x = ll

* Text unter dem Bildnis :
Du findest in diesem Buch , lernbegieriger Leser , die algebraischen Regeln (die Italiener nennen sie die der
Coß ) , die vom Verfasser durch neue Hinzuerfindungen und Beweise so bereichert wurden , dass an Stelle der
recht wenigen vorher allgemein geläufigen schon siebzig herausgekommen sind . Und sie erklären nicht nur
das Problem , bei dem eine Zahl einer zweiten oder zwei einer , sondern auch das , bei dem zwei zweien oder drei
einer gleich gewesen sind . - Es erschien aber angebracht , dieses Buch deshalb gesondert herauszugeben ,
damit , wenn dieser sehr versteckte und völlig ungehobene Schatz der ganzen Arithmetik ans Licht gebracht
und wie in einem Theater allen zum Anschauen vor Augen geführt wird , die Leser angespornt werden , die
übrigen Bücher des »Vollkommenen Werks « , die bandweise erscheinen werden , umso begieriger aufzuneh¬
men und mit geringerem Widerwillen durchzuarbeiten .
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h) (3 + 5x) 2 - (3x - 2) 2 - (5 - 2x) (5 + 2x ) = 0
i) Aus dem liber abaci (1202 ) des Leonardo von Pisa (um 1170 bis nach

1240) : ( l + fx ) ( l + fx ) = 73

• 9 . a) (4x + l ) (6x — 5) (5x + 2) = (3x + 4) (10x — 17) (4x + 3) — 246
b) (8x - 7) (9x - 16) (7x - 6) = (14x - 13) (12x - ll ) (3x - 5) - 5
c) x (x — 2) (x + 5) + (x — 3) (x — 2) (8 — 3x) = 2x 2 (3 — x) + 208
d) (x — 4) 3 + (x + l ) 3 = (x — l ) (x — 2) (2x + 3) + 61
e) (2x + 3) 3 + (4x - 3) 3 = (2x + l ) (4x + 3) (9x - 25) + 853
f) (3x - 4) 3 - (6x - 7) 3 = (9x + 6) (7x - 12) (7 - 3x) + 620
g) (5x — 9) 3 — (7x — 5) 3 = 4x (14x — 25x 2) — 2x (59x 2 — 45)

6 18
10 . a) x H— = 5 b) x - = 3

x

16
d) 9x H- = 86= 8c) 3x —

x

4
6x + 1

= 5
2x + 5 4x — 4 3x — 4,5

2x — 7
1 7

+ - = - — h) 1 +
x — 12 4x + 12 2x — 6

5x + 1 5x — 8
3 7 5— x + x- 7 = x6x — 2 3x + 1 2

k) Aus dem liber abaci (1202 )
des Leonardo von Pisa :

1) Aus dem Codex latinus
monacensis 14908 (um 1460 ) :

60 „ 20— x = 5 + — 15 17
— + -

x + 2 x

11 . Zur Vertiefung rechnet al -Charizmi in seinem al-kitab al-muchtasar fi
hisab al -dschabr wa - ’l-muqabala u . a . die folgenden Aufgaben vor . Löse die
in moderner Schreibweise wiedergegebenen Gleichungen . Warum sind
nicht alle von dir gefundenen Lösungen auch Lösungen bei al -Charizmi ?
a) (10 — x ) 2 — x 2 = 40 b) (10 — x) 2 + x 2 + (10 — x) — x = 54

10 — x
10 — x

d) -
2 (10 - x)

+ 5x = 50

x (10 - x) cle) (10 — x ) 2 = 81x
10 - 2x
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g) (x - (ix + 3 )) 2 = x

. 12 . a)

c )

e )

g)

SO

7
x + 5 x — 6 x — 1

3 4 6
x — 2 X 1 LO

1 1

6 5 18
3x — 4 4x — 3 2x + 5

18 14 19
2x + 1 3x H- 2 4x -j- 3

8x + 7

h) = 2x7
1 + x

1 1
i)* (x — ix — jx — 4) 2 = x + 12 j) -

x + 1

5 6
b) - 7 +

d)

x — 4 x — 3 x — 6

7 9 40
+

x — 3 x + 5 x + 1

11 18
0 -- 7 +

26

h)

4x — 1 Ix — 3 3x + 4

7 26 57
+

+
lOx - 1

2x — 3 3x — 2 4x — 1

7x + 2
6x 2 — 13x — 5 3 x 2 4- 10x + 3 2x 2 + x — 15

x + 3 x — 1 x — 1
»13 . a) - -—I- —7 — - 7 + 1

x — 3 x + 4 x — 4

„ x + 5 x + 1 5
c) 7 3 x = rx — 3 x — 2 x — 4

x + 11 x + 13
b) — ^ +

x + 2 x + 3 x — 5 + 2

+ 2 x + 5 x + 7 x + 2
d) — 77 + — 77 = - + 1

x + 2 x + 3 x

• 14 . a) x 2 + 4ax + 3 a 2 = 0 b) m 2 x 2 — 5 mnx + 4n 2 = 0 , m + 0
c) x 2 + (p — q) x — pq = 0 d) x 2 + (1 — 2a 2) x — 2a 1 = 0
e) 4« 2x 2 — 4 (« 2 + uv) x + (u + v) 2 = 0 , u + 0

Sf) 2c2 x 1 — 2c 2 x — cdx — 3cd — 6dz = 0 , c + 0
5g ) 4x 2 — 4 (r + ä) x + r 2 + 2« — 1 = 0
Sh) x 2 + ax — 2öx — lab — 2 (a + 26 ) — 4 = 0
Si) (x + 2a) (x + 6 ) (x - a + b ) = (x - 6 ) 3 + b (x - a - b ) 2 + a (66x - a 2)
Sj ) (x + a) 3 — (x — a) 3 = a (2x + a) (2x — b) + 2a 3 + 5a 2 6 + 4a6 2

* Der Text al -Charizmis lautet : »Ein Vermögen , du nimmst ein Drittel davon weg und ein Viertel und 4
Dirhem [siehe Fußnote auf Seite 67] . Dann multiplizierst du den Rest mit sich selbst und das Vermögen ist
wiedergewonnen , vermehrt um 12 Dirhem .«
Setzt man Vermögen = x , so erhält man die obige Gleichung .
Cardano bringt diese Aufgabe als Quaestio I in Kapitel V seiner Ars magna (1545) und verweist auf
al -Charizmi als Autor : »Est numerus , ä cuius quadrato si abieceris | & £ ipsius quadrati , atque insuper 4 .
residuum autem in se duxeris , fiet productum aequale quadrato illius numeri , & etiam 12.«
Würde man numerus = x setzen , so erhielte man (x 2 — £ x 2 — Jx 2 — 4) 2 = x 2 + 12, eine unnötig schwere
Gleichung .
Diese Aufgabe ist ein schönes Beispiel dafür , dass mal = Vermögen nicht immer als Quadrat einer Zahl
gedeutet werden muss . Übrigens gibt sich Cardano mit der Lösung für das Quadrat der Zahl zufrieden , gibt
also die angeblich gesuchte Zahl gar nicht an .
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15 . Führe beim Lösen der folgenden Gleichungen die erforderlichen Fallun¬
terscheidungen durch !
a) x 2 + lax + 1 = 0 • b) x 2 — 4ax + 4a = 0

Sc) x 2 + abx + a 2 b = 0 d) x 2 + (2a + 4b) x + 5a 2 + 5b 2 = 0
. , „ 1 — me) mx — 2x - — = 0

„ x + a x
g) - +

m
■2a

x — a x + a
— 2 -— Z 4

• f) ax 2 +

1
- h)

ax 1
a + 2 a 2 — 4

1 2a

= 2x 2 + x

+
ax + b ax — b a 2 — b 2

16 . Wie muss man bei den folgenden Gleichungen k wählen um die angegebe¬
ne Zahl von Lösungen zu erhalten ?
a) 2x 2 + 6x + k = 0
b) 3x 2 + kx + 21 = 0
c) 6x 2 — 5 kx — k 2 = 0
d) x 2 — kx + 4 = 0
e) 2x 2 + kx — 4k 2x — 2k 3 = 0
f) x 2 — k (2k + 0,5)x — k 2 — 0

2 Lösungen
keine Lösung
1 Lösung
2 Lösungen
1 Lösung
1 Lösung

17 . a) Beweise:
1) Die Gleichung x 2 + px + q = 0 hat im Falle q < 0 stets zwei ver¬

schiedene Lösungen .
2) Die Gleichung ax 2 + bx + c — 0 besitzt , falls a und c entgegenge¬

setzte Vorzeichen haben , stets zwei verschiedene Lösungen .
b) Gilt von diesen Aussagen auch die Umkehrung ?

18 . Die Multiplikation einer Gleichung mit einem Faktor d =f= 0 stellt be¬
kanntlich eine Äquivalenzumformung dar . Zeige für den Fall der quadra¬
tischen Gleichung mit Hilfe der Lösungsformel , dass dabei die Lösungen
tatsächlich gleich bleiben .

19 . Wähle in den folgenden Gleichungen k so , dass die Differenz der Lösun -
gen den angegebenen Wert d hat .
a) 2x 2 — 5x + k = 0 , d = 1,5
b) 6x 2 + 13x + k = 0, d = i
c) x 2 + kx — 11 = 0 , d = 12
d) 9x 2 + k 2x + 2 = 0 , II
e) kx 2 + 15x + 12 = 0 , d = 3
f) kx 2 — 24x — 1 = 0 , d = 1,04

20 . Für welche Werte von k haben die folgenden Gleichungen ganzzahlige
Lösungen ?
a) x 2 + 2x + k 2 = 0
b) kx 2 — 20x + 15 = 0 , keN
c) k (x 2 + lOx) + 48 = 0 , k e Z
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21 . In der Gleichung x 2 — 8x + « = 0 soll die natürliche Zahl n so gewählt
werden , dass eine durch 3 teilbare ganzzahlige Lösung auftritt . Wie viele
Möglichkeiten gibt es?

22 . a) Begründe: Hat die quadratische Gleichung ax 2 + bx + c = 0 mit ra¬
tionalen Koeffizienten die irrationale Lösung r + s ]ft , wobei r und s
rational sind , dann hat sie auch die Lösung r — s ]/t .

b) Eine quadratische Gleichung mit rationalen Koeffizienten habe die

Lösung 3 — 2l/l7 . Wie lautet ihre Normalform ?
c) Die Gleichung 2x 2 — Ix + c = 0 , c rational, soll eine Lösung mit dem

irrationalen Bestandteil 31/5 haben . Bestimme c .
23 . Gilt der Satz aus Aufgabe 22 . a) auch für rationale Lösungen? Bearbeite

dazu :
a) Bestätige, dass 1 + l/4 Lösung der Gleichung x 2 — 7x + 12 = 0 ist . Ist

dann auch 1 — ]/4 Lösung ?

b) Bestätige , dass 3,5 + V\ Lösung der Gleichung x 2 — 7x + 12 = 0 ist .
Ist auch 3,5 — V\ Lösung ?

24 . Im BritischenMuseum zu London wird unter der Signatur BM 13901 eine
der ältesten babylonischen Keilschrifttafeln (ca . 1900 v . Chr .) aufbewahrt .
Sie enthält 24 Aufgaben , die auf quadratische Gleichungen mit einer
(Nr . 1 - 7,16 und 23) , mit zwei oder mehr Unbekannten führen . Offensicht¬
lich handelt es sich bei dieser Tafel um Übungsmaterial für den Mathema¬
tikunterricht ; denn die Aufgaben sind alle vorgerechnet (siehe Seite 86) .
Bestimmt wurde bei den folgenden Aufgaben jeweils die Seite eines Qua¬
drats . Suche sie !

1 ) Die Fläche und die Seite meines Quadrats habe ich addiert , und J ist
es . *

2) Die Seite meines Quadrats von der Fläche habe ich subtrahiert, und
870 ist es .

3) Ein Drittel der Fläche habe ich abgezogen , ein Drittel der Seite meines
Quadrats habe ich zur Fläche hinzugefügt , und §§ ist es .

4) Ein Drittel der Fläche habe ich subtrahiert, und die Fläche und die
Seite meines Quadrats habe ich addiert , und 286f ist es .

5) Die Fläche und die Seite meines Quadrats und den dritten Teil der
Seite meines Quadrats habe ich addiert , und §§ ist es .

6) Die Fläche und zweimal den dritten Teil der Seite meines Quadrats
habe ich addiert , und §§ ist es .

7) Elf Flächen und sieben Seiten meines Quadrats habe ich addiert , und
6| ist es .

* Natürlich kann man Flächen und Seiten nicht addieren . Die Babylonier benützen zwar noch die geometri¬
schen Ausdrücke , meinen damit aber immer nur die Maßzahlen der Fläche und der Seite .
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16) Ein Drittel der Seite meines Quadrats von der Fläche habe ich abgezo¬
gen , und Y2 ist es .

23) Eine Fläche . Die vier Seiten und die Fläche habe ich addiert , und ff ist
es .

25. Aus dem Buch IX des Chiu Chang Suan Shu (2 . Jh . v . Chr .) :
a) Aufgabe 12 : Jetzt habe man eine Tür , deren Flöhe und Breite man

nicht kennt . Beide sind kürzer als die unbekannte Länge einer Bambus¬
stange . Hält man diese horizontal , dann kommt man nicht hindurch ;
denn 4 Fuß ist sie zu lang . Hält man sie vertikal , dann kommt man um
2 Fuß nicht hindurch . Hält man sie aber schräg , dann kommt man
gerade hindurch . Frage : Wie groß sind Höhe , Breite und Diagonale ?
[ 1 Fuß « 23 cm]

b) Aufgabe 20: Jetzt hat man eine Stadt mit quadratischem Grundriss.
Die Seitenlänge kennt man nicht . In der Mitte jeder Seite ist ein offenes
Tor . Geht man aus dem Nordtor 20 Schritt hinaus , dann kommt man
an einen Baum . Geht man aus dem Südtor 14 Schritt hinaus , biegt
ab und geht dann nach Westen 1775 Schritt , dann erblickt man von
dort den Baum . Frage : Wie groß ist die Quadratseite der Stadt ?
[ 1 Schritt = 6Fuß « lim ]

26 . a) Euklid (um 300 v . Chr .) behandelt in
Buch II , Satz 11 seiner Elemente fol¬
gendes Problem : Eine gegebene Stre¬
cke so zu teilen , dass das Rechteck aus
der ganzen Strecke und dem einen Ab¬
schnitt gleich ist dem Quadrat über
dem anderen Abschnitt .
1 ) Berechne die Länge x desjenigen

Teils der Strecke a , über dem das
Quadrat errichtet wird . *

2) Zeige , dass stets x > \ a ist .
b) Zeige durch Berechnen von AD = x,

dass die von Euklid angegebene Kon¬
struktion richtig ist (Abbildung 98 . 1 ) .

c) Die stetige Teilung oder der goldene
Schnitt . Euklid nennt in Buch VI (De¬
finition 3) seiner Elemente eine Strecke
stetig geteilt , wenn sich die ganze Stre¬
cke zum größeren Abschnitt genauso
verhält wie der größere Abschnitt zum
kleineren . Zeige, dass die Aufgabe , eine
Strecke a stetig zu teilen , auf dieselbe

T Q- X

Abb . 98 . 1 T teilt [AB] so , daß
x 2 = a {a — x) .
k(C; CB) liefert D , k (A ; ÄD )
liefert T.

* Die quadratische Gleichung für x ist vom Typ (Bl ) . (Siehe Seite 87)
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Gleichung führt wie die , mit der das Problem von Euklids Satz II/11
aus Aufgabe a gelöst wird . *

d) Die stetige Teilung hat folgende interessante Eigenschaft: Trägt man
den kleineren Abschnitt auf dem größeren Abschnitt ab , so wird dieser
wieder nach dem goldenen Schnitt geteilt , wobei der frühere kleinere
Abschnitt die Rolle des größeren Abschnitts übernimmt . Man kann so
immer weiter fortfahren . Beweise die Behauptung .

* Wenn für 3 Größen a , b , c bzw . für 4 Größen a , b, c , d usw . zutrifft , dass a : b = b : c bzw . a : b = b : c =
= c : d usw . gilt , dann sagten Aristoteles (384 - 322 v . Chr .) und auch Euklid z . B . in Buch VIII seiner
Elemente , es bestehe eine aovexVQ dvaAoyia (syneches analogia ) , eine zusammenhängende ,fortlaufende , bestän¬
dige Verhältnisgleichung . Wörtlich übersetzte dies ins Lateinische Boethius (um 480- 524/5 ) mit proportiona -
litas continua , ins Deutsche der Bamberger Rechenmeister Wolffgang Schmid 1539 in seinem Das erst buch
der Geometria mit ein stäte unzertrente aufeinander volgendeproportz . Der Augsburger Wilhelm Holtzmann
(1532- 1576) , der seinen Namen zu Xylander gräzisierte , sprach 1562 in seiner Euklidübersetzung (Buch V,
Definition 10) von einer stetigen Proportion .
Offensichtlich stehen nach Euklids Definition 3 von Buch VI die ganze Strecke , der größere und der kleinere
Abschnitt in stetiger Proportion zueinander . Es nimmt daher wunder , dass Euklid für diese Teilung einer
Strecke nicht den oben angegebenen Fachausdruck benützte ; stattdessen sagt er , eine Strecke ö.kqov Kai
peoov Xöyov xEfie.iv (akron kai meson lögon temeln ) , was unter Umstellung der Adjektiva mit media et extrema
ratione secare im Mittelalter latinisiert und mit nach dem äußeren und mittleren Verhältnis schneiden in die
deutschen Lehrbücher des 18 . Jh .s einging . Immerhin nennt Xylander die Strecke schon recht kurz Pro -
portzlich zertailt . Erst Johann Friedrich Lorenz übersetzt 1781 Euklids Wendung mit nach stetiger Propor¬
tion geschnitten . Wann daraus die Kurzform stetig geteilt wurde , konnten wir nicht ermitteln .
Man darf annehmen , dass bereits die Pythagoreer Kenntnis von dieser Teilung hatten , die ein unent¬
behrliches Hilfsmittel zur Konstruktion der regulären Körper war . Luca Pacioli (um 1445- 1517) be¬
schäftigte sich mit diesen Körpern und gab wegen
der Wichtigkeit dieser Teilung seiner 1498 verfass¬
ten und 1509 gedruckten diesbezüglichen Schrift ,
für die sein Freund Leonardo da Vinci (1452 bis
1519) die Zeichnungen anfertigte , den Titel Divina
Proportione - »Göttliches Verhältnis « . Dieser Titel
mag zur späteren Mystifizierung beigetragen ha¬
ben . Pacioli selbst gibt fünf Gründe an , warum er
dieses Verhältnis göttlich nennt . Einer davon ist ,
dass es sich genauso wenig durch rationale Größen
ausdrücken läßt wie Gott durch Wörter . Ein ande¬
rer nimmt Bezug auf Platon (438 - 348 v . Chr .) , der
in Timaios (55c) das Dodekaeder , das sich ja ohne
dieses Verhältnis nicht konstruieren lässt , dem
Äther , der quinta essentia , d . h . in christlicher
Sicht der göttlichen Kraft zuordnet . Und wie Pa¬
cioli sieht auch 1569 der französische Mathemati¬
ker , Humanist und Philosoph Petrus Ramus
(1515- 1572) die bei dieser Teilung auftretenden 3
Teile als Sinnbild der Dreifaltigkeit , da sie eine »ge¬
einte Dreiheit und eine dreiartige Einheit « bilden .
Johannes Kepler (1571- 1630) spricht in einem
Brief vom 12. 5 . 1608 mit Hochachtung von dieser
proportio divina . Er sieht darin eine Idee des Schöp¬
fers , die er wegen der in Aufgabe d angesproche¬
nen Eigenschaft selbst für ein Sinnbild des Ewigen
hält . Die Teilung nennt er sectioproportionalis . Der
Ausdruck sectio divina , d . h . göttlicher Schnitt ,
stammt nicht von ihm , wie oft behauptet wird . 1619
schreibt er jedoch in seiner Harmonice mundi -

um 1850

»Weltharmonik « - , dass »die heutigen [Mathema - jffr fr LS
tiker ] sowohl den Schnitt wie auch die Proportion
göttlich nennen wegen ihrer wunderbaren Natur
und ihrer vielfältigen Besonderheiten « . Kepler Abb . 99 . 1 Martin OHM

sagt uns aber nicht , wer diesen Ausdruck geprägt ( 6 . 5 . 1792 Erlangen — 1 .4 . 1872 Berlin )
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27 . Der Inder Aryabhata I (um 476- ? n . Chr .) stellt in Vers 25 des Ganita -
pada - »Abschnitt über die Rechenkunst « - seines Werks Aryabhatiya die
folgende Aufgabe : Eine Summe A ist für einen Monat ausgeliehen und
erbringt dabei den Zins x . Dieser wird anschließend zum gleichen Zinsfuß
p für t Monate ausgeliehen . Der gesamte Zinsertrag hat den Wert B.
a) Wie groß ist der Zins xl Hinweis : Drücke p durch A und x aus .
b) Welchen Wert erhält man für x , wenn man die von einem späteren

Kommentator hinzugefügten Werte A = 100 , t = 16 und B = 16 ein¬
setzt?

28 . Al -Charizmi behandelt als Beispiele für die Gleichungstypen (Bl ) bis
(B3) (siehe Seite 87) die folgenden Probleme :
a) 4 . Problem : Ich habe | einer Sache , vermehrt um 1 Dirhem , mit j der

Sache , vermehrt um 1 Dirhem , multipliziert . Das Produkt ist 20 Dir¬
hem . Wie groß ist die Sache?

b) 5 . Problem : Ich habe 10 in zwei Teile geteilt, dann jeden Teil mit sich
multipliziert . Nachdem ich die entstandenen Produkte addiert hatte ,
ergaben sich 58 Dirhem . Wie groß sind die Teile?

c) 6 . Problem : Ich habe ^ einer Sache mit \ der Sache multipliziert , das
Produkt ist gleich der Sache und 24 Dirhem dazu . Wie groß ist die
Sache?

29 . Für die Normalform x 2 + px + q = 0 wird als Sonderfall von Satz 85 . 1

die Lösungsformel x 12 = — ~ +
richtig ist . *

— ) — q angegeben . Zeige , dass sie

30 . Aus dem Bidscha-ganita - »Samen der Rechenkunst « - des indischen
Mathematikers und Astronomen Bhaskara II (1115 - nach 1178) :

hat . Ebenso offen bleibt diese Frage bei Christian von Wolff (1679- 1754) , der die Bildung sectio divina in
seinen Anfangsgründen Aller Mathematischen Wissenschaften von 1710 (Band IV, Anmerkung 155) wie folgt
erklärt : »Man pfleget es auch divinam sectionem zu nennen/weil (wie aus dem Euclide zu sehen ) man viel aus
dieser Section demonstriret hat .« Im 18 . Jh . ist sectio divina dann zum stehenden Fachausdruck geworden .
1835 schreibt schließlich Martin Ohm (1792- 1872) in der 2 . Auflage seiner Die reine Elementar-Mathematik
recht vage : »Diese Zerteilung [ . . . ] nennt man wohl auch den goldenen Schnitt .« Wer ist »man «? Vielleicht
vermischten sich bei Ohm sectio divina mit regula aurea , wie die Regel vom Dreisatz früher genannt wurde .
Aber schon 1839 findet sich in Johann Friedrich Krolls Grundriß der Mathematik für Gymnasien die Latini -
sierung »sectio divina oder aurea « . Von da ab ist diese Wortschöpfung nicht mehr aufzuhalten .
Die Vorstellung , dass der goldene Schnitt ein in der ganzen Natur waltendes Ordnungsprinzip sei, demzufolge
zwei in einem derartigen Verhältnis stehende Teile ein besonders wohlgefälliges Ganzes ergäben , setzte erst
1854 Adolf Zeising (24 . 9 . 1810 BaIlenstedt - 27 . 4 . 1876 München ), ein anhaitischer Gymnasialprofessor , in
die Welt , und zwar in seinem Werk Neue Lehre von den Proportionen des menschlichen Körpers , aus einem
bisher unbekannt gebliebenen , die ganze Natur und Kunst durchdringenden morphologischen Grundgesetze
entwickelt . Es gibt nämlich in der gesamten Antike bis herauf ins 19 . Jh . keine einzige Quelle , die der stetigen
Teilung irgendeine ästhetische Bedeutung zuerkennen würde .

* Da al -Charizmi immer A = 1 setzte , kannst dü mit Hilfe dieser Formel die Lösungsformeln angeben , die er
- natürlich in Worten - für die drei Gleichungstypen (Bl ) bis (B3) aufstellte , ebenso seine Bedingung dafür ,
dass (B2 ) genau eine bzw . keine Lösung hat .
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a) § 139 : Der achte Teil einer Herde Alfen , quadriert, sprang lustig in
einem Walde herum , die 12 restlichen waren auf einem Hügel zu sehen ,
wo sie vergnügt schnatterten . Wie viele waren es im Ganzen ?

b) § 140 : Der fünfte Teil einer Herde weniger drei , quadriert, ging in eine
Höhle ; ein Affe war noch zu sehen . Wie viele waren es? - Warum ver¬
wirft Bhäskara II eine Lösung ?

31 . Aus Kapitel V der Ars magna (1545 ) des Geronimo Cardano (1501 bis
1576 ) :
a) Aufgabe II: Es waren einmal zwei Heerführer, von denen jeder 48 Du¬

katen an seine Soldaten austeilte . Einer hatte 2 Soldaten mehr als der
andere . Der , der weniger Soldaten hatte , gab jedem seiner Soldaten 4
Dukaten mehr , als der andere seinen Soldaten gab . Wie viele Soldaten
hatte jeder ?

b) Aufgabe III: Zwei Vereine , von denen einer 3 Mitglieder mehr als der
andere hatte , verteilten gleich viele Goldstücke an ihre Mitglieder ,
nämlich 93 und dazu noch so viele, wie beide Vereine Mitglieder hatten .
Auf jedes Mitglied des kleineren Vereins entfielen 6 Goldstücke mehr
als auf jedes Mitglied des größeren Vereins . Wie viele Mitglieder hatte
jeder Verein?

Die Aufgaben 32 bis 39 stammen aus
der Vollständigen Anleitung zur Al¬
gebra von Leonhard Euler (1707 bis
1783 ) aus dem Jahre 1770 . *

32 . Ich habe zwei Zahlen, die eine ist
um 6 größer als die andere , und
ihr Produkt macht 91 . Welches
sind diese Zahlen ?

33 . Suche eine Zahl, dass, wenn ich
von ihrem Quadrat 9 subtrahiere ,
so viel über 100 bleiben , als die
gesuchte Zahl weniger ist als 23 ;
welche Zahl ist es?

34 . Suche zwei Zahlen, von denen
eine doppelt so groß ist als die
andere , die so beschaffen sind ,
dass , wenn ich ihre Summe zu
ihrem Produkt addiere , 90 her¬
auskommt .

* Aufgaben I , II , IV, V, VII - X aus 2 . Teil, 1. Ab -
schnitt , Kapitel 6 . Siehe auch Seite 78 .

** ** *

Abb . 101 . 1 Leonhard Euler (15 . 4 . 1707
Basel- 18 . 9 . 1783 St . Petersburg ) - Kup¬
ferstich von Samuel Gottlob Kütner
(1747- 1828 ) nach dem Gemälde von
Joseph Friedrich August Darbes
(1747- 1810)
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35 . Jemand kauft ein Pferd für einige Reichstaler , verkauft es wieder für 119
Reichstaler und gewinnt daran so viel Prozent , wie das Pferd gekostet
hat . Nun ist die Frage , wie teuer dasselbe eingekauft worden ist .

36 . Jemand kauft einige Tücher für 180 Reichstaler . Wären der Tücher für
dasselbe Geld 3 Stück mehr gewesen , so wäre ihm das Stück um 3 Reichs¬
taler wohlfeiler gekommen . Wie viel Tücher sind es gewesen?

37 . Zwei Gesellschafter legen in ihr Geschäft zusammen 100 Reichstaler ein .
Der erste lässt sein Geld 3 Monate lang , der zweite aber 2 Monate lang
stehen , und es zieht jeder mit Kapital und Gewinn 99 Reichstaler ein .
Wie viel hat jeder eingelegt?

38 . Zwei Bäuerinnen tragen zusammen 100 Eier auf den Markt , die eine mehr
als die andere , und lösen doch beide gleich viel Geld . Nun sagt die erste zu
der andern : »Hätte ich deine Eier gehabt , so hätte ich 15 Kreuzer * gelöst .«
Darauf antwortete die andere : »Hätte ich deine Eier gehabt , so hätte ich
daraus 6| Kreuzer gelöst .« Wie viele hat jede gehabt ?

39. Zwei Schnittwarenhändler verkaufen etliche Ellen Zeug * *
, der zweite 3

Ellen mehr als der erste , und lösen zusammen 35 Reichstaler . Der erste
sagt zum zweiten : »Aus deinem Zeuge würde ich gelöst haben 24 Reichs¬
taler« , und es antwortet der zweite: »Ich aber hätte aus deinem 12j Reichs¬
taler gelöst .« Wie viele Ellen hat jeder gehabt ?

3.5 Der Satz von VlETA

Wendet man für D > 0 die Lösungsformel von Satz 85 . 1 auf x 2 + px + q = 0
an , dann ergibt sich

p + Vp 2 - 4q
2

- p - Vp 2 - 4q und x2 =

Addiert man bzw . multipliziert man diese Lösungen , dann gibt es eine Überra¬
schung :

p - 1/ p 2 ~ 4q — p + Vp 2 ~ 4q
2Xi + x2 = ~ P

( ~ P - Vp 2 - 4q)( ~ p + Vp 2 ~ 4q) p 2 - (p 2 - 4q) 4q
4 2

* Ursprünglich eine ab 1271 in Tirol geprägte Silbermünze mit einem charakteristischen Doppelkreuz , ab
dem 17 ./18 . Jh . auch als Kupfermünze weit verbreitet , 1871 aus dem Verkehr gezogen .** Zeug , aus dem althochdeutschen giziugi , bedeutet Stoff . Elle , altes Längenmaß , in Bayern 58,4 cm , in
Russland 71 cm .



3 .5 Der Satz von Vieta 103

Ist D = 0 , dann hat nach Satz 85. 1 die einzige Lösung den Wert — \ p . Diesen
Wert erhält man aber auch formal sowohl für x 1 wie auch für x2 , wenn man in

x lt2 = - für D null setzt . Wegen dieses formal doppelten Auftretens

von — \ p spricht man auch von einer Doppellösung der quadratischen Glei¬
chung . Mit M = x 2 = — \ p ergibt sich auch hier

Xi + x 2 = ( ~ ip ) + ( - jp ) = ~ P
x 1

- x 2 = ( - \ p) ( - \ p ) = \ p 2 = q wegen D = p 2 - 4q = 0 .

Damit haben wir für D ^ 0 einen Zusammenhang zwischen den Koeffizienten
einer in Normalform geschriebenen quadratischen Gleichung und ihren Lö¬
sungen gefunden . Wir merken uns :

Satz 103 . 1 : Sind x 1 und x 2 die Lösungen einer quadratischen Gleichung
in Normalform x 2 + px + q = 0 , dann gilt
x x + x2 = — p und x x

■ x2 = q .

Bemerkung : Für die allgemeine quadratische Gleichung ax 2 + bx + c = 0
mit den Lösungen xl und x 2 gilt dann :

b c
x i + x2 = - und x 1

■x 2 = - .a a
Von Fran 5ois Viete (1540 - 1603 ) stammt die 1615 postum veröffentlichte *
Umkehrung dieses Satzes :

Satz 103 .2 : Gelten für die Zahlen p , q , x 1 und x2 die Beziehungen
p = ~ (x 1 + x 2 ) und q = x t

■x2 , dann hat die quadratische Glei¬
chung x 2 + px + q = 0 die Zahlen x , und x2 als Lösungen .

* Der Bedeutung des Satzes wegen und um dir den Stil Vietes zu zeigen , bringen wir den Originaltext mit einer
Übersetzung und einer modernen Umschrift . Auf Seite 71 findest du ein Faksimile des Originals .

Text Vietes Übersetzung moderne Umschrift

Si B + D in A —A quad . aeque -
tur B in D .
A explicabilis est de qualibet illa -
rum duarum B vel D .

Propositio I .
Wenn

(B + D ) ' A - A 2 = B - D
ist , dann kann A jedes der beiden
B oder D sein .

Satz I . Satz I .
Wenn

{B + D ) • x - x 2 = B ■D ,
d . h ., wenn
x 2 — (B + D ) • x + B ■D = 0 ist ,
dann gilt
x = B v x = D .

[Beispiel ]
3N .- 1Q . aequetur 2.
fit IN 1. vel 2.

3N - 1Q = 2
bewirkt IN 1 oder 2.

3x —x 2 — 2, d . h .,
x 2 — 3x + 2 = 0
hat zur Folge
x = 1 v x = 2 .
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mmm

Abb . 104 . 1 Frangois Viete , latinisiert
zu Vieta (1540 Fontenay - le-
Comte/Vendee - 1603 Paris)

FRANCISCI
VIETAE

fontenaeensis ,
DE iE QV ATIONVM

RECOGNITIONE
E T

EMENDATIONE

T ^ ACTATVS DVO .
Quibtts nihil in hoc(jenenßmileaut ßctindum ,

hüte4uo haäenw vifem .

PARISIIS ,
ExTypographialoannisLa <̂ v e h a y in Monte

D. HiLnij. in Area Albretia.
c I o Ion xv .

f ^ triLEGlO RCC1S.

Abb . 104 .2 Titelblatt der »Zwei Ab¬
handlungen des Frangois Viete aus Fon -
tenay über die Prüfung und Vervoll¬
kommnung von Gleichungen , worüber
nichts in dieser Art Ähnliches oder Besse¬
res diesem von Ewigkeit her bis jetzt zu
Gesicht gekommen .«

Beweis: Setzt man x2 = — x 1 — p in x 1 x2 = q ein , so erhält man
x ^ — x x

— p ) = q o — x \ — px -t = q <s> x\ + px x + q = 0 ;
d . h . aber , dass x 1 Lösung der quadratischen Gleichung x 2 + px + q = 0 ist .
Ebenso weist man nach , dass x2 diese Gleichung löst .
Bemerkung 1 : Mit Hilfe dieses Satzes kann man zu zwei gegebenen Zahlen x1und x 2 sofort eine quadratische Gleichung in Normalform angeben , die genau
diese beiden Zahlen als Lösungen hat , nämlich x 2 — (xj + x2) x + x 1

■x 2 = 0 .
Bemerkung 2 : Die Methode , Lösungen einer quadratischenGleichung in Nor¬
malform mit ganzzahligen Koeffizienten durch Probieren zu finden , lässt sich
mit den Beziehungen von Viete vereinfachen . Als ganzzahlige Lösungen kom¬
men wegen x 1

• x 2 = q nur Teiler des konstanten Glieds q in Frage .

Auf Grund des einfachen Beweisesvon Satz 103 .2 erscheint Vietes Erkenntnis
als nicht sehr tief schürfend . Dem muss entgegengehalten werden , dass Viete
einen analogen Sachverhalt auch für Gleichungen höheren Grades entdeckt
hat , sodass unser Satz 103 .2 nur ein Sonderfall eines allgemeineren Satzes ist .
Zu Ehren Vietes werden daher die beiden letzten Sätze zusammengefasst zum
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Satz 105 . 1 : Satz von VlETA .
Bei einer quadratischen Gleichung in Normalform mit D 5: 0 gilt :
Die Summe der beiden Lösungen ist die Gegenzahl des Koeffizien¬
ten des linearen Glieds , und das Produkt der beiden Lösungen ist
das konstante Glied .
Umgekehrt gilt :
Nimmt man die Gegenzahl der Summe zweier Zahlen als Koeffi¬
zienten des linearen Glieds und das Produkt dieser Zahlen als kon¬
stantes Glied einer quadratischen Gleichung in Normalform , dann
sind diese Zahlen die Lösungen dieser Gleichung .

Beispiele :
1) Wie lautet eine quadratische Gleichung , deren Lösungen — 3 und 5

sind?
Nach Vieta ergeben sich die Koeffizienten der Normalform zu
p = — ( — 3 + 5) = — 2 und q = { — 3) • 5 = — 15 . Die zugehörige
Gleichung lautet also x 2 — 2x — 15 = 0 .

2) Wie lautet eine quadratische Gleichung , deren Lösungen \ — j |/5 und
j + ^ l/5 sind?
Nach Vieta ergeben sich die Koeffizienten der Normalform zu

P = - ( 2 - + i + il/5 ) = - 1 und

q = (i ~ i ^ 5 ) ‘ (i + il/5 ) = i - f = - 1 .
Die zugehörige Gleichung lautet also x2 — x — 1 = 0 .

3) Mit Hilfe des Satzes von Vieta sollen die Lösungen der Gleichung
x2 — 18jc + 17 = 0 erraten werden .
Nach Vieta muss das Produkt der beiden Lösungen 17 sein . Falls es
ganzzahlige Lösungen gibt , kommen nur x 1 = — 1 und x2 = — 17
oder Xy = 1 und x 2 = 17 in Frage . Die Summe der beiden Lösungen
ergibt dann — 18 bzw . 18 . Nun ist die Gegenzahl des Koeffizienten des
linearen Glieds 18 , also gleich dem Wert der zweiten Summe . Somit
besitzt die Gleichung x2 — 18x + 17 = 0 die ganzzahligen Lösungen
Xy = 1 und x2 = 17 .

4) Mit Hilfe des Satzes von Vieta sollen die Lösungen der Gleichung
3x2 + 3x — 18 = 0 erraten werden .
Um den Satz von Vieta anwenden zu können benötigen wir die Nor¬
malform der gegebenen Gleichung . Wir dividieren durch 3 und erhal¬
ten x 2 + x — 6 = 0 . Das Produkt der beiden Lösungen muss also — 6
sein . Dafür gibt es nur die folgenden ganzzahligen Möglichkeiten :

( — 1 ) • 6 , 1 - ( — 6) , ( - 2) - 3 und 2 - ( - 3) .
Die entsprechenden Summen sind 5 , — 5,1 und — 1 .
Weil die Gegenzahl des Koeffizienten des linearen Gliedes — 1 ist , sind
Xy — — 3 und x2 = 2 die Lösungen der Gleichung 3x 2 + 3x — 18 = 0 .
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Eine einfache Folgerung des Satzes von Vieta ist

Satz 106 .2 : Der Faktorisierungssatz.
Sind x , und x2 die Lösungen der Gleichung ax 2 + bx + c = 0 ,
dann gilt

ax 2 + bx + c = a (x — x x) (x — x2) .

Bemerkung : Weil (x — x, ) und (x — x2) linear sind , sagt man auch, der qua¬
dratische Term ax 2 + bx + c ist in Linearfaktoren zerlegt .

b cBeweis : Nach Vieta gilt: x 1 + x2 = — und x ,
■x 2 = - , also ist

a a
a (x — Xi) (x — x2) = ax 2 — a {x l + x2) x + ax l x2 =

= ax 2 — af - ] x + ö - - = ax 2 + bx + c .
\ aj a

Für eine Doppellösung x0 gilt

ax 2 + bx + c = a (x — x0) (x — x0) = a (x — x0) 2 .

Der Faktor (x — x0) tritt also doppelt auf , was erneut die Bezeichnung Dop¬
pellösung rechtfertigt .

Beispiele:
1) Der Term 3x2 + 5x — 2 soll in Linearfaktoren zerlegt werden . Dazu

lösen wir die zugehörige quadratische Gleichung 3x 2 + 5x — 2 = 0 .
Ihre Diskriminante ergibt sich zu D = 25 + 24 = 49 . Somit ist

- 5 + 7
x 1 2 = - t- , d . h . x 1 = — 2 und x2 = Nach dem Faktorisie -

6
rungssatz erhält man also
3x2 + 5x — 2 = 3 (x + 2) (x — | ) = (x + 2) (3x — 1 ) .

2) Der Term }/3x 2 — 6x + 3 ]/3 soll in Linearfaktoren zerlegt werden .
Dazu lösen wir die zugehörige quadratische Gleichung
l/3x 2 — 6x + 3 j/3 = 0 . Ihre Diskriminante ergibt sich zu
D = 36 - 36 = 0 .
Das ergibt die Doppellösung x0
rungssatz erhält man also

6
2l/3

l/3 . Nach dem Faktorisie -

l/3x 2 — 6x + 31/3 = l/3 (x — l/3 ) 2 .
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Aufgaben
1 . Wie lautet die Normalform einer quadratischen Gleichung mit folgenden

Lösungen ?
a) Xj = — 2 ; x 2 — 3
c) Xj = — 8 ; x 2 = — 1
e) x 1 = 1 ; x2 = 2,5
g) Xl = - 4,3 ; x2 = - 4,2
i) Xi = | ; x 2 = |

b) x t = 0 ; x2 = 5
d) Xjl = — 3 ; x2 = — 3
f) Xi = — 3,1 ; x2 = 7
h) x t = — j , x 2 = 7

2 . Welche quadratische Gleichung in Normalform hat folgende Lösungen ?

a) Xj = l/2 ; x2 = 4 b) x 1 = 1,5 ; x2 = 2 ]/3

c) x , = - 2,3 ; x2 = 1 + ]/7 d) x , = 2 - ]/2 ; x2 = 1 + l/2

e) x x = 3 + ]/5 ; x 2 = V3 + 5 f) x, = ]/3 - / 2 ; x 2 = ]/2 + ]/3

3 . Bestimme den fehlenden Koeffizienten und die zweite Lösung der Glei¬
chung x 2 + px + q = 0 , wenn gegeben ist :
a) p = 3 ; x x = 2 b) p = — 5 ; x 1 = 5 c) p = 2,5 ; x 1 = — 4
d) p = 9 ; Xi = — 4,5 e) p = 0 ; x x = 2,37 f) q = 6 ; Xj = 4
g) q = 3,5 ; x t = — 7 h) q = 6,25 ; x x = — 2,5 i) q = 0 ; Xi = 17

4 . Berechne mit Hilfe der gegebenen Lösung den unbekannten Koeffizienten
und die zweite Lösung der Gleichung .
a) 2x z — 4x + c = 0 ; x x = 1 b) 5x 2 + 4x + c = 0 ; x t = 0,2
c) 0,1 x 2 — x + c = 0 ; x t = — 7 d) 3x 2 + bx + 6 = 0 ; x x = 2
e) 12x 2 + 6x — 27 = 0 ; x t = 1,5 f) jx 2 + bx — \ = 0 ; x l = — |
g) ax 2 + 7x — 14 = 0 ; Xi = — 2 h) ax 2 — l,8x — 0,12 = 0 ; x 1 = — 0,6

5 . Bestimme zu dem gegebenen Koeffizienten der Gleichung
ax 2 + bx + c = 0 die beiden fehlenden so , dass die vorgeschriebenen Lö¬
sungen auftreten .
a) a = 2 ; x x = — 2 ; x2 = 5 b) a = f ; x t = — 7 ; x 2 = — 4
c) b = 3 ; Xj = — 4 ; x2 = 5 d) 6 = 31 ; x x = 1,7 ; x2 = 4,5
e) c = 2 ; x r = — 2 ; x2 = 2 f) c = — 8 ; Xj = — 2,8 ; x 2 = f

6 . Versuche mit Hilfe des Satzes von Vieta , die Lösungen der Gleichung zu
erraten .
a) x 2 — 8x + 15 = 0 b) x 2 + 2x — 15 = 0 c) x 2 — 2x — 15 = 0
d) x 2 + 8x + 15 = 0 e) x 2 + lOx — 11 = 0
g) 2x 2 + 26x + 44 = 0 h) ^x 2 — x — 12 = 0

f) x 2 — 9x + 14 = 0
i) 4X 2 + 3x — 16 = 0
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7 . Zerlege die folgenden Polynome zweiten Grades in Linearfaktoren ,
a) x 1 — 4 b) x 2 — 3x + 2 c) x 2 — 3x — 40
d) x 2 + 3,5x — 15 e) x 2 — 16,7x + 67 f) x 2 — 2x — 6
g) 5x 2 - 12x - 81 h) 30x 2 + 73x + 33 i) 25x 2 - 10 |/Tlx + 3

8 . Bestimme zwei Zahlen mit der Summe u und dem Produkt v .
a) u = 3 ; v = — 18 b) u = — 6 ; v = 5 c) « = 14 ; v = 49
d) u = 13,4 ; v = — 24 e) « = 8 ; v = 15,75 f) « = 6 ; v = 6

9 . Gib , ohne die Lösungen selbst zu berechnen , folgende Mittelwerte an :
a) das arithmetische Mittel der Lösungen von 2x 2 + 13x — 143 = 0 ;
b) das geometrische Mittel der Lösungen von 8x 2 — 29x + 18 = 0 ;
c) das harmonische Mittel der Lösungen von 9x 2 — 24x + 10 = 0 ;
d) das arithmetische Mittel der Lösungen von x 2 + x + 1 = 0 ( !) .

10 . Berechne das arithmetische Mittel*
a) aus den Lösungen der Gleichung x 2 + 9x + 0,91 = 0 und der Zahl 12;
b) aus den Lösungen der Gleichung 6x 2 — 45x + 53 = 0 und den Zahlen

f , 5 und l -
c) aus den Lösungen der Gleichungen x 2 — 7x — 13 = 0 und

3x 2 + x — 7 = 0 .
11 . Bestimme k so , dass das arithmetische Mittel*

a) aus 7 und den Lösungen der Gleichung 10x 2 + kx + 10 = 0 den Wert 3
hat ;

b) aus der kleinsten und der größten zweistelligen Zahl und den Lösungen
der Gleichung kx 2 — 2,75x — 1,5 = 0 gleich 30 ist ;

c) aus den Lösungen der Gleichungen kx 2 — 63x + 104 = 0 und
3x 2 — kx — 30 = 0 den Wert 2,5 hat .

: i2 . a) Kann man in der Gleichung x 2 + bx + 9 = 0 den Koeffizienten b so
wählen , dass zwei Lösungen mit vorgeschriebenem arithmetischem
Mittelwert m vorhanden sind ? Gib die Menge aller Mittelwerte an , für
welche die Aufgabe lösbar ist .

b) Wie ist die in a gestellte Frage bei der Gleichung x 2 + bx — 9 = 0 zu
beantworten ?

13 . Welcher quadratischen Gleichung in Normalform genügen die beiden
Zahlen , deren arithmetisches Mittel 4,5 und deren harmonisches Mittel 4
ist? Um welche Zahlen handelt es sich?

14 . Berechne mit Hilfe einer quadratischen Gleichung die beiden Zahlen, de¬
ren arithmetisches Mittel 10,5 und deren geometrisches Mittel 6 ]/3 ist .

1* Das arithmetische Mittel von n Zahlen x l , x 2, . . . ,x n ist definiert zu - (x : + x 2 + . . . + x„) .
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15 . Berechne die unbekannten Koeffizienten, wenn gelten soll:
a) Die Lösungen der Gleichung x 2 — 5x + q = 0 sollen sich um 3 unter¬

scheiden .
b) Die Lösungen von x 2 + px + 96 = 0 sollen sich wie 2 : 3 verhalten.
c) Die Lösungen von 0,2x 2 + bx + 3 = 0 sollen auch die Gleichung

x x + 2x 2 = 11 erfüllen .

16 . Bestimme diejenige quadratische Gleichung in Normalform , deren Lö¬
sungen folgende Bedingungen erfüllen :
a) x 1 + x 2 = 17 und x 2 — x t = 8
b) x x + x 2 = 24 und x2 : x x = 5 : 3
c) x2 — x x = 2 und x 1 : x 2 = 2 : 3

17. Welche Gleichung der Form x 2 + px + q = 0 erfüllt die Bedingung
a) p = 2q und hat als eine Lösung — 1 ;
b) 2p = q und hat als eine Lösung 2;
c) 3p = 2q — 5 und hat als eine Lösung 1 ?

18 . Wie lautet diejenige quadratische Gleichung in Normalform , deren Lö¬
sungen
a) die Kehrwerte der Lösungen von 6x 2 + x — 2 = 0 sind ,
b) die Quadrate der Lösungen von 2x 2 — 7x — 30 = 0 sind,
c) jeweils um 4 größer sind als das Sechsfache der entsprechendenLösun¬

gen von 3x 2 — 4x — 15 = 0?

19 . a) Was für eine Beziehung besteht zwischen den Lösungen einer Glei¬
chung der Form x 2 + px + 1 = 0 ?

b) Die Lösungen einer quadratischen Gleichung ax2 + bx + c = 0 sind
reziprok zueinander . Was kann man über die Koeffizienten a und c
dieser Gleichung sagen?

820 . Bestimmezur Gleichung x2 + 5x + 2 = 0 ohne Berechnungder Lösungen
eine zweite quadratische Gleichung y 2 + py + q = 0 so , dass zwischen
entsprechenden Lösungen der beiden Gleichungen folgender Zusammen¬
hang besteht :

a) y = x — 1

d) y = l
X + 1

b) y = x 2 + 3

. *
e) y = —ttx + 1

c) y = x 3 — 1
2x — 1io y =

X

21 . Bestimme bei den folgenden Gleichungen k so , dass zwei Lösungen vor¬
handen sind , die das angegebene Verhältnis besitzen ,
a) x 2 + 14x + k = 0 , 3 : 4 b) A:x 2 — 6x — 21 = 0 , 7 : ( — 5)
c) x 2 + kx + 18 = 0 , 2 : 1 d) x 2 + kx + 45k = 0 , ( — 2) : 3
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22 . Wie lautet die Normalform einer quadratischen Gleichung mit rationalen
Koeffizienten , die folgende irrationale Lösung hat ? Beachte Aufgabe
97/22 a.
a) ]/2 b) 1 - 1/3 c) 3,5 + l/l7 d) - 3 - 2/5

e) 0,6 - 1/Ö/7 f)
2 + 1/3

• g)
1 — 1/2

TT . h>1/3 + 2/6
1/12

23 . Bestimme in den folgenden Gleichungen den rationalen Koeffizienten k
so , dass eine Lösung der angegebenen Art existiert (r sei eine rationale
Zahl ) . Beachte Aufgabe 97/22 a.
a) x 2 + 6x + k = 0 ; r + Vl b) x 2 — 22x + k = 0 ; r — 41/TT

c) x 2 + kx — 16 = 0 ; r + 2l/5 d) x 2 + kx — 0,25 = 0 ; r + ]/0,5

e) kx 2 - lOx - 10 = 0 ; r - j/3 f) kx 2 + 16x + 120 = 0 ; r + 6 ]/6

24 . Eine quadratische Gleichung mit rationalen Koeffizienten habe als eine
Lösung 5 — 3l/2 . Bestimme unter Beachtung von Aufgabe 97/22 a eine
Gleichung y 2 + py + d = 0 , für deren Lösungen gilt :
a) y 1 = M + *2 und f 2 = * 1

' *2
1 1

b) = - 1- und y2 = x \ + xf
Xi x2

825 . Das Anlegen von Flächen - llupaßu/ .civ xcöv '/oipioiv (parabaleln tön
chorion ) - geht auf die Pythagoreer zurück . Im Wesentlichen handelt es
sich darum , die beiden Seiten eines Rechtecks zu bestimmen , dessen Flä¬
cheninhalt einer bestimmten Forderung unterworfen wird . Die Grundauf¬
gabe behandelt Euklid (um 300 v . Chr .) im 1 . Buch der Elemente als Satz
44 . Sie besteht darin , an eine gegebene Strecke b ein Rechteck so anzule¬
gen , dass sein Flächeninhalt einem vorgegebenen Wert c gleich wird . Sie
heißt daher Anlegen mit Gleichheit (itapaßoLf ) [parabole ] , lateinisch ae-
qualitas , zu Deutsch Parabel ) und führt auf die Gleichung bx = c , die sich
leicht durch Flächenverwandlung geometrisch lösen lässt , wie du im Geo¬
metrieunterricht lernst ; dabei denkt man sich c durch die Fläche eines
Quadrats dargestellt . *
Weitaus schwieriger hingegen sind die folgenden beiden Aufgaben , die
Euklid im 6 . Buch als Satz 28 und 29 behandelt . * * Mit diesen beiden
Sätzen konnte man dann auf geometrische Weise die quadratischen Glei¬
chungen vom Typ (Bl ) bis (B3) (siehe Seite 87) lösen ,
a) Anlegen mit Fehlen (sAAenj/n ; [elleipsis] , lateinisch defectus , zu

Deutsch Ellipse ; Abbildung 111 . 1 ) : An eine gegebene Strecke b ist ein
Rechteck gegebenen Flächeninhalts c so anzulegen , dass ein Quadrat

* Mehr darüber noch im Abschnitt 5.2.
** Euklid löst die Aufgabe weitaus allgemeiner ; er spricht nur von Parallelogrammen .
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D F C

A E b B A b E B

Abb . 111 . 1 Flächenanlegung eines Rechtecks AEFD mit Inhalt c an [AB] mit Feh¬
len : Das Quadrat EBCF fehlt zum Rechteck ABCD .

zum Rechteck gleicher Breite über ganz b fehlt . Zeige , dass die einer
Rechtecksseite gleiche Quadratseite und die andere Rechtecksseite die
Lösungen einer Gleichung vom Typ (B2) sind .

b) Konstruiere die Quadratseite, für die es nach Abbildung 111 . 1 zwei
Möglichkeiten gibt . Wähle b = 10 cm und c = 11 cm2 .

c) Anlegen mit Überschuss (örcepßoLq [hyperbole] , lateinisch excessus,
zu Deutsch Hyperbel , Abbildung 111 .2) : An eine gegebene Strecke b
ist ein Rechteck gegebenen Flächeninhalts c so anzulegen , dass als
überschießendes Stück ein Quadrat entsteht . Zeige , dass
1) die einer Rechtecksseite gleiche Quadratseite und die negativ ge¬

nommene andere Rechtecksseite die Lösungen einer quadratischen
Gleichung vom Typ (Bl ) sind ;

2) eine Rechtecksseite und die negativ genommene Quadratseite, die
der anderen Rechtecksseite gleich ist , die Lösungen einer Gleichung
vom Typ (B3) sind .

d) Konstruiere für b = 10 cm und c = 11 cm2
1) die Quadratseite gemäß c 1 ,
2) die Rechtecksseite gemäß c 2 .

D C F

c

A b BE

Abb . 111 .2 Flächenanlegung eines Rechtecks AEFD mit Inhalt c an [AB] mit Über¬
schuss : Das Quadrat BEFC schießt über das Rechteck ABCD hinaus .
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3 .6 Weitere Textaufgaben

1 . a) Gibt es zwei Zahlen , deren Summe denselben Wert hat wie ihr Produkt
und wie die Differenz ihrer Quadrate ?

b) Zwei Zahlen sind zu finden , deren Summe, Produkt und Summe der
Quadrate einander gleich ist .

2 . In einer Proportion , deren äußere Glieder 4 (a) und 10 (b ) sind , ist die
Summe der inneren Glieder 13 (c) . Wie heißen diese?

3 . Eine zweiziffrigeZahl verhält sich zu ihrer Quersumme wie die Quersum¬
me zu 3 . Vertauscht man in der gesuchten Zahl die beiden Ziffern , so
entsteht eine um 45 größere Zahl .

4 . Aus einer gewissen zweistelligen Zahl wird durch Umstellen ihrer Ziffern
eine neue Zahl gebildet . Die Summe der beiden Zahlen hat den Wert 165 ,
ihr Produkt den Wert 6786.

5 . Welche Zahl muss man von a subtrahierenund zu a addieren, sodass die
Summe der Quadrate der beiden Ergebnisse wieder a ergibt ? Für welche
a gibt es Lösungen ? Wann gibt es nur eine Lösung und wie heißt sie?
Welche Lösungen gibt es für a = 0,01 ?

6 . Man addiert zu einer Zahl 42 und man subtrahiert von derselben Zahl 42 .
Der Quotient Summe durch Differenz ergibt 12,5 % der Zahl . Wie heißt
sie?

7 . Bestimme zu a eine Zahl x so , dass das arithmetische Mittel der Zahlen
a + x , a — x , ax und - wieder a ist .x

8 . Aus einer dreistelligen Zahl (erste Zahl ) bildet man eine zweite Zahl , in¬
dem man die Einerziffer wegnimmt und vor die beiden anderen Ziffern
setzt . Vor die drei Ziffern der zweiten Zahl schreiben wir noch eine 1 und
erhalten so eine dritte Zahl . Wie heißen die drei Zahlen , wenn das Produkt
aus der ersten und zweiten den Wert 655 371 hat und die dritte Zahl um 946
größer als die erste ist?

9 . Die Wurzel aus einer zweistelligen Zahl ist um 2 kleinerals die Quersumme
der Zahl . Vertauscht man die beiden Ziffern , so ist die neue Zahl um 3
größer als das Quadrat ihrer Quersumme .

10 . Welches Vieleck hat 65 Diagonalen? Welches hat 4850 Diagonalen ?
11 . Bei einem Schachturnierspieltjeder gegenjeden . Wie viele Spieler nahmen

teil , wenn 253 Partien gespielt wurden ?
12 . Auf einem Blatt mit vielen Geraden zählt man 153 Schnittpunkte. Wie

viele Gerade sind es mindestens ?
13 . Auf einem Blatt sind eine Vielzahl von Punkten markiert . Man zeichnet

990 Gerade , die je zwei Punkte verbinden . Wie viele Punkte sind es min¬
destens ?
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14 . a) Wie viel Ecken hat ein Polygon , in welchem die Anzahl der Diagonalen
gleich der Eckenzahl ist?

b) Wie viele Telefonanschlüsse sind in einer Stadt vorhanden , wenn
499 500 gegenseitige Gesprächsverbindungen möglich sind?

15 . 289 Geldstücke lassen sich in zwei Quadrate ordnen. Auf der Seite des
einen Quadrates befinden sich 7 Geldstücke mehr als auf der des anderen .
Wie viel Stücke enthält die Seite des einen Quadrates ?

16 . In einem Garten sind 90 Bäume in mehreren Reihen so gepflanzt, dass die
Zahl der Bäume einer Reihe um 9 größer ist als die Anzahl der Baumrei¬
hen . Wie viel Reihen sind es , und wie viel Bäume stehen in einer Reihe ?

17 . In einer Familie ist der Sohn um 5 Jahre älter als die Tochter. Das Alter des
Vaters verhält sich zu dem des Sohnes wie das Alter des Sohnes zu dem¬
jenigen der Tochter . In drei Jahren wird der Vater dreimal so alt sein wie
Sohn und Tochter zusammen . Wie alt sind Vater , Sohn und Tochter heute ?

18 . Auf einem Konto lagen zu Beginn eines Jahres 800 € . Am Jahresende
wurden die Zinsen nicht abgehoben . Im darauf folgenden Jahr gewährte
die Bank einen um f % höheren Zinssatz . Beim Jahresabschluss ergab
sich mit den Zinsen ein Kontostand von 861,12 € . Wie hoch war demnach
der Zinsfuß im 1 . bzw . 2 . Jahr ?

19 . Jemand nimmt ein Darlehen von 3000 € zu 6 % auf und verpflichtet sich
es durch regelmäßig zu zahlende Raten von 120 € wiederzuerstatten . Mit
einer Rate wird jeweils zunächst der seit der letzten Zahlung angefallene
Zins beglichen ; der Rest dient zur Tilgung . Nach dem Einzahlen der 2 . Ra¬
te berechnet sich die Restschuld zu 2878,80 € .
Wie viel Monate beträgt demnach die Zeit zwischen 2 aufeinander fol¬
genden Ratenzahlungen ?

20 . Ein Zwischenhändlerbezieht eine Ware direkt von der Fabrik und gibt sie
an den Einzelhandel weiter . Dabei verlangt er einen Preis , der um einen
bestimmten Prozentsatz über seinem eigenen Einkaufspreis liegt . Der Ein¬
zelhändler veranschlagt bei der Berechnung des Endpreises eine doppelt
so hohe Gewinnspanne wie der Zwischenhändler . Dadurch steigt der Preis
der Ware auf ff des vom Zwischenhändler für sie bezahlten Betrages .
Wie viel Prozent betrug jeweils der Preisaufschlag ?

21 . In 600 cm3 Wasser schüttet man etwas Salz und verrührt . Da die Lösung
noch zu schwach ist , gibt man noch einmal 15g Salz dazu . Dadurch steigt
die Konzentration der Lösung um 2 \ % . Wie viel Gramm Salz wurden
zuerst in das Wasser geschüttet ?

22 . In einem Glas Wasser löst man einen Esslöffel voll Zucker. Durch die
Zugabe von weiteren 20 g Zucker erhöht sich die Konzentration der Lö¬
sung um 5 % . Da die Lösung nun aber zu konzentriert ist , verdünnt man
wieder mit 95 cm 3 Wasser . Nun beträgt der Zuckergehalt 8 % . Wie viel
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Wasser befand sich anfangs im Glas und wie viel Zucker wurde mit dem
Löffel dazugegeben ?
{Anmerkung : Sind x Gramm und y Gramm die gesuchten Größen , so
empfiehlt sich eine Vereinfachung des Gleichungssystems durch die Sub¬
stitution z = x + y .)

23 . Der Umfang eines rechtwinkligen Dreiecks, dessen kürzeste und längste
Seite sich um 8 cm unterscheiden , beträgt 3 dm . Berechne die Dreiecks¬
seiten .

24 . In einem rechtwinkligen Dreieck von 36 mm Höhe ist die Hypotenuse
78 mm lang . In welchem Verhältnis wird letztere durch den Höhenfuß¬
punkt geteilt?

25 . In einem rechtwinkligen Dreieck beträgt der Längenunterschied der Ka¬
theten 5 cm und derjenige der Hypotenusenabschnitte 7 cm . Berechne die
Seiten .

26 . In welchen rechtwinkligenDreiecken ist die Höhe um 5 mm länger als das
Doppelte des kleinen Hypotenusenabschnittes und um 30 mm kürzer als
der größere Hypotenusenabschnitt ?

27 . Ein rechtwinkligesDreieck mit 14 cm Umfang hat 7 cm2 Inhalt. Berechne
die Seiten .

28 . In einem Drachenviereck mit 2 rechten Winkeln sind die Diagonalen
48 mm und 60 mm lang . In welche Abschnitte wird die längere durch den
Diagonalenschnittpunkt zerlegt?

29. Welche Rechtecke haben folgende Eigenschaft:
Wird die erste Seite um die Hälfte der zweiten verlängert und die zweite um
die Hälfte der ersten verkürzt , so nimmt der Umfang um 8 cm und die
Fläche um 67 cm 2 zu .

30 . In einer Ecke eines eingezäunten rechteckigen Grundstücks wurde ein
rechteckiger Gemüsegarten von 120 m 2 angelegt . Zu seiner Abgrenzung
wurden noch einmal 23,5 m Maschendraht benötigt . Berechne Länge und
Breite .

31 . Zum Einzäunen eines rechteckigen Gartens von 540 m 2 Fläche , der auf
einer Seite von einer Hauswand begrenzt ist , waren 30 Pfosten notwendig .
Die Pfosten wurden in Abständen von je 3 m aufgestellt ; der erste und der
letzte Pfosten standen unmittelbar an der Hauswand . Berechne Länge und
Breite des Gartens .

32 . In einen Kreis vom Radius r wird eine Sehne der Länge fr eingezeichnet.
In welche Abschnitte zerlegt sie den zu ihr senkrechten Durchmesser ?

33 . In einem Kreis mit r = 7 cm ist durch einen Punkt P, der vom Mittelpunkt
4,2 cm entfernt ist , eine Sehne von 13 cm Länge gezogen . In welche Ab¬
schnitte wird die Sehne durch P zerlegt?
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34 . Durch zwei konzentrische Kreise mit den Radien ^ = 13 mm und
r2 = 37 mm soll eine Gerade so gelegt werden , dass die Kreise auf ihr
Sehnen ausschneiden , deren Längenunterschied 6 cm beträgt . Welchen
Abstand vom Mittelpunkt muss die Gerade haben ?

35 . Um die Punkte und M2 , deren Abstand 1 cm beträgt, sind Kreise mit
den Radien r1 = 2 cm und r2 = 1cm geschlagen . Senkrecht zur Verbin¬
dungsgeraden der beiden Mittelpunkte verläuft eine Sekante so , dass die
vom 1 . Kreis auf ihr ausgeschnittene Sehne durch die Schnittpunkte mit
dem 2 . Kreis in 3 gleiche Teile zerlegt wird . Welche Abstände hat die
Sekante von M x und M 2 ? Wie lang sind die ausgeschnittenen Sehnen ?

36 . 2 Punkte A und B haben einen Abstand von 7 cm . Um A wird ein Kreis
mit r = 5 cm geschlagen und durch B eine Sekante gezogen , auf welcher
der Kreis eine Sehne der Länge r ausschneidet . Welche Abstände haben
die Endpunkte der Sehne von B?

37 . Um welche Strecke x muss man den Durchmesser eines Kreises mit Ra¬
dius r verlängern , damit die vom Endpunkt aus an den Kreis gezogene
Tangentenstrecke die Länge a) x , b) nx , c) r , d) nr hat ?

38 . Eine Strecke der Länge 10 wird so geteilt, dass sich das kleinere Stück zum
größeren so verhält wie dieses zur ganzen Strecke . Wie lang ist das größere
Stück ? (Goldener Schnitt )

39 . Einem Kreis ist ein Drachenviereck so einbeschrieben, dass die Diago¬
nalen die Längen 15 und 17 haben . Wie groß ist der Radius ? In welche
Teilstücke zerlegt der Diagonalenschnittpunkt die Diagonalen ?

40 . Von einem Würfel schneidet man parallel zu einer Seitenflächezuerst eine
Scheibe von 2 cm Dicke ab und darauf durch einen senkrecht zum ersten
verlaufenden zweiten Schnitt noch einmal eine Scheibe von 1 cm Dicke . Es
ergibt sich ein Restkörper von 412 cm2 Oberfläche . Um wie viel cm3
wurde der Rauminhalt verkleinert ?

41 . Die Entfernung München- Köln beträgt in Luftlinie 460 km . Von Mün¬
chen fliegt ein Flugzeug nach Köln . Es legt in 1 Stunde 540 km zurück .
Ihm begegnet ein Flugzeug , das zur gleichen Zeit in Köln startete . Wäre
jedes der beiden Flugzeuge um 20 km/h schneller geflogen , so hätte die
Begegnung 1 j Minuten früher stattgefunden . Welche Geschwindigkeit hat
das zweite Flugzeug , und nach welcher Flugzeit erfolgte die Begegnung?

42 . Zwei Verkehrsflugzeuge , die im Gegenverkehrauf der Strecke Frankfurt -
London eingesetzt sind , starten gleichzeitig und fliegen normalerweise mit
gleicher Geschwindigkeit . An einem gewissen Tag wird jedoch von Lon¬
don aus eine Maschine eingesetzt , die eine um 60 km/h höhere Reisege¬
schwindigkeit entwickelt , während das in Frankfurt startende Flugzeug
wegen Gegenwind seine Normalgeschwindigkeit um 30 km/h unterschrei¬
tet . Die Flugzeuge begegnen sich 1 Minute früher als sonst und an einem
Ort , der vom gewöhnlichen Treffpunkt 26,25 km entfernt ist . Berechne die
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Geschwindigkeiten der Flugzeuge und den Luftweg von Frankfurt nach
London .

43. Ein Flugzeug konnte seine Flugzeit für eine 960 km lange Strecke um 10
Minuten verringern , indem es seine Geschwindigkeit um 24 km/h steiger¬
te . Wie groß war dann die Geschwindigkeit , und wie lange dauerte der
Flug ?

44. Ein die 24 km lange Seestrecke von A nach B fahrendes Schiff sollte laut
Fahrplan um 16 .30 Uhr in B eintreffen . Da sich die Abfahrt in A um 15
Minuten verzögerte , erhöhte das Schiff seine Geschwindigkeit um 4 km/h .
Es traf um 16 . 33 Uhr in B ein . Wie groß war seine Geschwindigkeit ? Wann
hätte es nach dem Fahrplan in A abfahren sollen?

45 . Auf den Schenkeln eines rechten Winkels bewegen sich zwei Körper mit
gleicher konstanter Geschwindigkeit vom Scheitel weg . Der erste startet
im Scheitel , der zweite 10 s später im Abstand 10 m vom Scheitel . 20 s nach
dem Start des ersten Körpers haben die beiden Körper eine Entfernung
von 20 m . Welche Geschwindigkeit haben sie?

46 . Zwei Schiffe , A und B, fahren Kurs NO bzw . NW mit konstanten Ge¬
schwindigkeiten . A ist 2 kn schneller als B . 1 sm ( = 1,852 km) hinter A
kreuzt B die Bahn von A . Eine halbe Stunde später beträgt ihre Entfer¬
nung 10 sm . Wie viele kn (1 kn = 1 sm/h ) betragen ihre Geschwindigkei¬
ten?

47 . Auf einer Strecke von 450 m macht das Vorderrad eines Wagens 120 Um¬
drehungen mehr als das Hinterrad ; das Vorderrad eines anderen Wagens,
dessen Räder je 0,5 m mehr Umfang haben , macht auf derselben Strecke
75 Umdrehungen mehr als sein Hinterrad . Welchen Umfang haben die
Räder des ersten Wagens?

48 . In einer Gasmenge, deren Volumen konstant gehalten wurde , stieg der
Druck um 160 hPa , während sich die Temperatur um 60 K erhöhte . Als
danach das Gas in Eiswasser auf 0 °C abgekühlt wurde , ging der Druck
wieder um 232 hPa zurück . Wie groß waren am Anfang Druck und Tem¬
peratur ?

49 . Ein 1 m langes Glasrohr (innerer Durchmesseretwa 3 mm) wird 52 cm tief
senkrecht in Petroleum (o = 0,8 g/cm 3) getaucht . Dann wird die obere
Öffnung luftdicht verschlossen und das Rohr aus der Flüssigkeit gehoben .
Welche Höhe hat die im Rohr zurückbleibende Flüssigkeitssäule , wenn
der äußere Luftdruck 1000 hPa beträgt ?

50 . Bei einem Luftdruck von 960 hPa wird ein einseitig verschlossenes Rohr
von 50 cm Länge (innen !) mit der Öffnung nach unten senkrecht in Wasser
getaucht . Die Rohröffnung befindet sich im Endzustand 2,5 m unter dem
Wasserspiegel . Wie weit ist dann das Wasser von unten her in das Rohr
eingedrungen ? (Luft - und Wassertemperatur sollen als gleich angenom¬
men werden ) .
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3 .7 Gleichungen, die sich auf quadratische Gleichungen
zurückführen lassen

Es gibt Gleichungen , die sich durch geeignete Umformungen auf quadratische
zurückführen lassen . Einige der wichtigsten Typen wollen wir im Folgenden
betrachten .

3 .7 . 1 Wurzelgleichungen

Wie in 2 .5 gezeigt , kann man Wurzelgleichungen durch das Verfahren » Isolie¬
ren - Quadrieren « lösen . In der Definitionsmenge der Wurzelgleichung ist
Quadrieren eine Äquivalenzumformung , wenn beide Seiten gleiches Vorzei¬
chen haben ; andernfalls muss man die Probe machen , weil womöglich die
Lösungsmenge vergrößert wurde . Kennt man die Definitionsmenge nicht ,
dann muss man die Probe auf alle Fälle machen .

Beispiel 1 :

5 ]/x - 1 - 2 ]/2x + 5 = l/3x - 5 ; D = [f ; + oo [

=> 25 (x — 1 ) + 4 (2x + 5) — 20l/ (x — l ) (2x + 5) = 3x — 5

- 20/2x 2 + 3x - 5 = - 30x

2l/2x 2 + 3x — 5 = 3x . Wir erkennen , x kann nicht negativ sein.
4 (2x 2 + 3x — 5) = 9x 2

x 2 — 12x + 20 = 0
x 1 = 10 ; x2 = 2

Probe :
x 1 = 10:
LS = 51/10 — 1 — 21/2 - 10 + 5 = 5 - 3 — 2 - 5
RS = 1/3 - 10 — 5 = 5
x2 = 2 :
LS = 5/2 - 1 - 21/2 - 2 + 5 = 5 - 1 — 2 - 3 =
RS = 1/3 ■2 - 5 = 1

Lösungsmenge L = { 10}

Beispiel 2 :
Aufgabe IX aus Kapitel V der Ars Magna (1545 ) des Geronimo Cardano
(1501 - 1576 ) :
Zerlege die Zahl 10 so in zwei Teile , dass der größere , vermindert um das
Doppelte seiner Wurzel , gleich ist dem kleineren , vermehrt um das Dop¬
pelte seiner Wurzel .

= 5
10 ist Lösung .

1 ) 2 ist keine
Lösung .
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Bezeichnen wir den größeren Teil mit x , dann muss gelten :

x - 2Vx = (10 - x) + 2 ]/10 - x ; D = [0 ; 10]

]/l0 — x = (x — 5) — l/x

=> 10 — x = (x — 5) 2 — 2 (x — 5) ]/x + x

2 (x — 5) Vx = (x — 5) 2 + 2x — 10

(x — 5) (2 ]/x — (x — 5) — 2) = 0

(x — 5) (2 ]/x — x + 3 ) = 0

x = 5 v 2 ]fx = x — 3 . Für x ^ 3 gilt weiter :
4x = x 2 — 6x + 9
x 2 — lOx + 9 = 0
(x — 9) (x — 1 ) = 0
x = 9

Beachte : x — 1 kann nicht null werden , da x ^ 3 gilt
Probe :

jCi = 5 : LS = 5 - 21/5
RS = (10 - 5) + 21/10 - 5 = 5 + 2 ]/5 ,

x 2 = 9 : LS = 9 - 2l/9 = 9 - 6 = 3

RS = (10 - 9) + 21/10 - 9 = 1 + 2 = 3

Die gesuchte Zerlegung lautet also : 10 = 9 + 1 .

5 ist keine Lösung .

9 ist Lösung .

Beispiel 3:

Vä + x — Va — x = 2 l/a — b ; D = [0 ; ä] für a ^ 0 ; für a < 0 ist die Glei¬
chung unsinnig . Wegen a — b ^ 0 muss b ^ a sein . Für xeD sind beide
Seiten nicht negativ und wir ändern die Lösungsmenge beim Quadrieren
nicht :

a + x + a — x — 2 ]/a 2 — x 2 = A (a — b)
2b — a = 1/ a 2 — x 2

Für a > 2b gibt es keine Lösung . Für 0 5S b ^ a iS 2b erhält man durch
Quadrieren der letzten Gleichung (Äquivalenzumformung !):
4Z>2 + a 2 — Aab = a 2 — x 2
x 2 = Ab (a — b)
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Die rechte Seite ist unter unseren Voraussetzungen sicher nicht negativ ,
also ergibt sich

| x | = 2 Vb (a - b )

Wegen x e D ist x ^ 0 , und es gilt schließlich

x = 21/ b {a — b ) .
Einen Überblick über die betrachteten Fälle gibt der Lösungsbaum :

keine Lösung

keine Lösung

keine Lösung

Manchmal ist es von Vorteil , eine Wurzel durch eine neue Variable zu ersetzen
und die Gleichung mit der neuen Variablen zu lösen . Eine solche Ersetzung
heißt Substitution * .

Beispiel 4:

2x — 5Vx — 12 = 0 Substitution : u — ]fx
2 u 2 — 5u — 12 = 0

5 ± 1/25 + 96 5 + 1/121 5 + 11

M = 4 V w = — f .

Um x zu erhalten machen wir die Substitution rückgängig . Die letzte
Zeile liefert die beiden Gleichungen
Vx = 4 v Yx = - f .
Die zweite ist widersprüchlich , die erste liefert x = 16 .
Also : L = { 16}

substituere (lat .) = an die Stelle einer Person oder Sache setzen
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Beispiel 5:

x — 1 x + 1 5
/ " 1 / , ^ — 0 Substitution : « =—/ X + 1 ^ x - 1 2

Ix — 1
x + 1

1 5 „u -\- — 0
u 2

2 u 2 — 5u + 2 = 0

u = 5 ± 1/25 — 16 5 + 3

u = 2 v u = j

1 . Fall :
x — 1
X + 1

= 2 2 . Fall :
x - 1 _ 1
x + 1 2

x — 1 = 4x + 4 4x - 4 = x + 1
— 5 = 3x 3x = 5
- f = x x = f

Weil vor dem Quadrieren jeweils beide Seiten positiv waren , können wir
auf die Probe verzichten ; es gilt also L = {f ; —

Aufgaben
1 . a) j/ll - 5x = 3 - x b) ]/3x + 7 + x = 7

2 . a) ]/4x - 15 = 3 - x b) j/2x + 3 = x + 1

3 . a) l/2x + 9 + x + 3 = 2 ^ 2x + 9 b) 3 • l/3x + 1 - 2x = 6 - l/3x + 1

4 . a) l/4x + 3 - 3 = 3x - 2j/3 + 4x

b) 2j/l9 + 5x - 2x + 4 ]/5x + 19 = j/5x + 19 + 22

• b) ]/x 2 — 3x + 3 = 4x + 7

b) l/3x 2 — 16x + 3 = 3x — 2

b) V2x + l + 2 = 3 - 2l/x + 9

b) 2 — 3 ]/x + 2 = 2l/2x + 3 - 3
9 . a) ]/x 1 + Vlx - 1 = l/3x + 10 b) j/5x - 1 - 2 ]/3 - x = Vx - 1

5 . a) l/5x 2 + 2x + 6 = x + 4

6 . a) ]/l2x 2 + 20x + 3 = 4x + 2

7 . a) ]/2x + 1 + 2 = 2 ]/x + 9 — 3

8 . a) ]/3x + 4 + 1/5 - 4x = 4
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10 . a) Vx + 2 + 2 ]fx - l/l3x + 3 = 0 b) l/x - 1 + j/2x - 5 - 2l/2 - x = 0

11 . a) ]/x + 4 + ]/3x - 5 = 3 b) ]/ \/x - l5 + l - x = 4

12 . a) l/7,5 + x - l/5 + 4x = 2,5 b) ]/3 + ]/3 - 2x + x = 2

13 . a) j/2x + 5 + l/x 2 + 3x + 3 = 2 b) j/V3x 2 + 5x - 1 - 0,5x = 0,5

14 . a) )/x 2 + 2 + l/7 — 6x + x = 1

b) ]/4x 2 — x + 2 — 0,2 • V5x 2 + 8x + 12 = 2 — 2x

Führe bei den folgenden Aufgaben die notwendigen Fallunterscheidungen durch.

• 15 . a) Vax 2 + 2x + 1 = 2x — 1 b) ]/2x 2 + 2ax + a 2 = x + 2a

c) V5x 2 + ax + 3 = 2x d) V x 2 + 4x + a = 3x + 2

• 16 . a) ]/l + a + 2x + l/1 + a — 2x = 2 b) l/1 + a + 2x — ]/l + a — 2x = 2

• 17 . a) ]/x + a2 = x — a b) Vax + a =b) Vax + a = ax — a= x —

• 18 . a) 1/ x + a + Vx + b = V2x + a + b

b) l/3 a — 2b — x + l/3 a — 2b + x = ]/l2 a — 8b + 2x

• 19 . a) ]/x + Vx + a = ]/2x

• b) ]/Va 2 x 2 + abx + 1) 2 — ax = Vax + b

20 . Angeregt durch die Practica Arithmeticaeet Mensurandi singularis - »Ein¬
zigartige Handhabung der Arithmetik und des Messens « - des Geronimo
Cardano (1501 - 1576 ) aus dem Jahre 1539 stellte Michael Stifel ( 1487 ?
bis 1567 ) in seiner Arithmetica Integra - »Die ganze Arithmetik « - 1544
folgende Aufgabe :
Ein Spieler gewinnt am 1 . Tag so viel, wie er hatte , am 2 . Tag die Quadrat¬
wurzel aus dem Ganzen und dazu noch 2 Gulden , am 3 . Tag das Quadrat
dessen , was er am 2 . Tag hatte , sodass er schließlich 5550 Gulden besaß .
Wie viel hatte er anfangs ?

21 . Aufgabe IV aus Kapitel V der Ars Magna ( 1545 ) des Geronimo Cardano
(1501- 1576 ) :
Addiert man zu einer Zahl das Doppelte ihrer Wurzel und dazu die dop¬
pelte Wurzel dieser Summe , dann erhält man 15 . Wie heißt diese Zahl ?

*

*

22 . a) x - 2l/x + 1 = 0 b) x + 5 ]/x = 14 c) 3l/x = - 2 - x

Ix 2 + 2x 2 — x
Ix 2 + 2x2 — x

* In der Originalaufgabe von Cardano steht 10 statt 15 . Wer Mut hat , rechne die Aufgabe mit diesem Wert .
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7
X "t" 1

+ 5
24 . a) 2

1 — x
+ 5 = 3

1 — x
b)

7 t
x

5

= 6

x + 1

25 . Aus dem über abaci (1202) des Leonardo von Pisa (um 1170 - nach 1240 ) :
a) x — (-j^ x + 4) = ]fx b) 3x + 4 ]/x 2 — 3x = 20

c) 3x + 4 ]fx 2 — 3x = x 2 + 4 d) x 2 = (/6xl/5x + lOx + 20

26 . Aus Lilavati - »Die Schöne « - von Bhaskara II (1115 - nach 1178 ) :
a) § 67 : Ardschuna , Prithas Sohn , im Kampf gereizt , schoss einen Köcher

Pfeile um Karna zu töten . Mit der Hälfte seiner Pfeile parierte er die
seines Gegners , mit dem Vierfachen der Wurzel seines Köcherinhalts
tötete er dessen Pferde , mit 6 Pfeilen Salya , und mit 3 Pfeilen zerstörte
er Schirm , Standarte und Bogen , mit einem schließlich trennte er den
Kopf seines Feindes vom Rumpf . Wie viele Pfeile ließ Ardschuna flie¬
gen ?

b) § 68 : Die Wurzel aus der Hälfte eines Bienenschwarms flog zu einem
Jasminbusch , § des Schwarms blieben im Stock . Ein Weibchen schließ¬
lich umschwirrte eine Lotosblume , in der ein Männchen gefangen saß ,
das vom Duft zur Nachtzeit angelockt worden war *

. Sag mir , wunder¬
schöne Frau , die Anzahl der Bienen !

c) § 69 : Eine Zahl , vermehrt um ihr Drittel und um das 18fache ihrer
Wurzel , ergibt 1200 . Wie heißt die Zahl ?

3 .7 .2 Die biquadratische Gleichung

Eine Gleichung der Form ax 4 + bx 2 + c = 0 mit a + 0 lässt sich
durch die Substitution u -= x 2 auf eine quadratische Gleichung der Form
au 2 + bu \ c = 0 zurückführen . Weil u 2 = (x 2) 2 ist , nennen wir und auch
andere Autoren eine solche Gleichung biquadratisch * * . Gleichungen dieser
Art lösten bereits die Babylonier im Zusammenhang mit Gleichungssystemen
(siehe 3 .8) . Die folgenden zwei Beispiele stammen aus Kapitel I der Ars magna
(1545 ) des Geronimo Cardano (1501- 1576 ) .

* Der Lotos öffnet sich nachts und schließt sich bei Tage .
** bis (lat .) = zweimal , auf doppelte Weise . - Bei Descartes (1596- 1650) findet man 1628/29 biquadratum

an Stelle von quadratumquadratum zur Bezeichnung der 4 . Potenz , bei Christian von Wolff (1679
bis 1754) in seinen Die Anfangsgründe Aller Mathematischen Wissenschaften 1710 den Ausdruck biquadrati¬
sche Aequation als Bezeichnung für eine allgemeine Gleichung 4 . Grades , also eine Gleichung der Form
ax x + bx 3 + cx 2 4- dx -f- e = 0, wie es auch heute noch bei manchen Autoren üblich ist . In der 2 . Auf¬
lage erfolgte dann die Eindeutschung biquadratische Gleichung .
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Beispiel 1 :

x4 + 12 = Ix 2 Substitution : u ■■= x 2

u 2 — lu + 12 = 0

w = i (7±l/T ) = i (7±l )
u = 3 v u = 4 .
Somit muss gelten
x 2 = 3 v x 2 = 4

| x | = l/3 v | x | = 2

x = — j/3 v x = l/3 vx = - 2vi = 2 .

Wir erhalten eine 4-elementige Lösungsmenge : { — 2 , — |/3 , l/3 , 2 } .

Beispiel 2:

x 4 + 3x 2 = 28 Substitution : u ■■= x 2

u 2 + 3u — 28 = 0

« = i ( — 3 ±1/121 ) = i ( — 3 ± 11)
u = — 7 v u = 4 .
Somit muss gelten
x 2 = — 7 v x 2 = 4
x 2 = — 7 v | x | = 2 .
Da die erste Gleichung widersprüchlich ist , erhalten wir eine 2-elemen -
tige Lösungsmenge , nämlich L = { } u { — 2 ; 2 } = { — 2 ; 2 } .

Mit einiger Übung kann man sich die Schreibarbeit der Substitution ersparen ,
wenn man gleich x 2 als neue Variable nimmt . Dann schreibt sich Beispiel 1 wie
folgt :

x 4 — 7x 2 + 12 = 0
(x 2) 2 — 7x 2 + 12 = 0

x 2 = i (7 + ]/l )
x 2 = 3 vx 2 = 4 , woraus man wie oben erhält

| x | = 1/3 v | x | = 2 , also L = { - 2, - l/3 , l/3 , 2 } .

Manchmal lassen sich auch Gleichungen höheren Grades durch eine geeignete
Substitution auf eine quadratische Gleichung zurückführen . Auch hierzu wie¬
der ein Beispiel von Geronimo Cardano , diesmal aus Kapitel VI seiner Ars
magna .
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Beispiel 3:
x 8 + x 4 = 12 Substitution : u — x4
u 2 + u — 12 = 0

u = H ~ 1 ± 1/49 ) = i ( — 1 ± 7)

u = — 4 v w = 3 .
Somit muss gelten
x 4 = — 4 v x 4 = 3 | | radizieren

x 2 = l/3 | | radizieren

| x | = |/i/3

X = — j/j/J V X = j/j/J .

Da x4 = - 4 eine widersprüchliche Gleichung ist , erhält man als Lö¬
sungsmenge { — l//3 , l/j/T } .

Aufgaben
1 . Aus der Arithmetica integra (1544) des Michael Stifel (14877- 1567 ) :

a) 2x 4 = 1450 - 8x 2 b) x 4 = 18x 2 + 648 c) x 4 - 4x 2 = 2205
d) (x 2 + 5) (x 2 - 5) = 2538 e) x 8 = 214651 701 - 20x 4
f) x 8 = 2000x 4 + 185076881 g) x 8 = 20000x 4 - 78461119

2 . Aus Kapitel I , YI und XXIV der Ars magna (1545) das Geronimo Carda -
no (1501 - 1576 ) :
a) x 4 + 12 = 7x 2 b) x 4 + 12 = 6x 2
d) x 4 + x 2 = 12 e) x4 + 2x 2 = 10

3 . a) x4 - 5x 2 + 4 = 0 b) x 4 - 4x 2 - 5 = 0
e) x 4 - 20x 2 = 125

c) x 4 = 2x 2 + 8

c) 4x 4 - 25x 2 + 36 = 0
f ) 12x4 — 81x 2 — 21 = 0

c) 2x 4 — llx 2 + 16 = 0

d) x 4 - 10x 2 + 9 = 0
4 . a) 3x 4 + 2x 2 + 1 = 0 b) 9x 4 + 64x 2 = - 7
5 . a) 2x 5 - 39x 3 - 245x = 0 b) 32x 4 - 82x 2 - 405 = 0
6 . Aus dem liber abaci (1202 ) des Leonardo von Pisa (um 1170 - nach 1240) :

(| x 2 + l ) (^x 2 + 2) = x 2 + 13

• 7 . a)
9x 4 — 325x 2 + 36

3x 2 + 17x — 6
b)

x 6 — 16x2

5x 4 - 19x 2 - 4

8 . a) Beweise: Wenn die drei Koeffizienten einer biquadratischenGleichung
dasselbe Vorzeichen haben , dann ist L = { } .

b) Ist der vorausgehende Satz über biquadratischeGleichungen umkehr¬
bar ? (Vgl . Aufgabe 2a und 4c .)
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* *3 .7 .3 Kubische Gleichungen
Eine Gleichung der Form ax 3 + bx 2 + cx + d = 0 mit a 4= 0 heißt kubische
Gleichung * oder Gleichung 3 . Grades . Wenn man eine Lösung einer kubischen
Gleichung schon kennt oder errät , dann lässt sich die kubische Gleichung auf
eine quadratische Gleichung zurückführen . Zum Nachweis folgen wir einem
Gedankengang , den Geronimo Cardano (1501- 1576 ) in Regel 6 von Kapitel
XXY seiner Ars magna 1545 anspricht und den Frangois Viete ( 1540 - 1603 ) in
seinem Tractatus de emendatione aequationum (erschienen 1615 ) erweitert .
Sei x0 eine Lösung der Gleichung ax 3 + bx 2 + cx + d = 0 , dann gilt
ax o + bxl + cx0 + d = 0 .
Dies verwenden wir nun um das auf der linken Seite der kubischen Gleichung
stehende Polynom 3 . Grades umzuformen :

ax 3 + bx 2 + cx + d =
= ax 3 + bx 2 + cx + d — 0 =
= ax 3 + bx 2 + cx + d — ax $ — bx % — cx0 — d —
= fl (x 3 — xl ) + b {x 2 — Xq ) + c (x — x0) .
Nun ist aber x 3 — Xq = (x — x0) (x 2 + xx 0 + Xq ) , sodass wir im zuletzt erhal¬
tenen Ausdruck x — x 0 ausklammern können . Wir erhalten

(x — x0) [fl (x 2 + xx 0 + Xq ) + b (x + x0) + c] =
= (x — x0) [ax 2 + (ax 0 + b) x + (öXq + bx 0) + c] =
= (x — x0) (Ax 2 + Bx + C) mit A — a

B ■■= ax 0 + b
C — AXg + bx 0 + c .

Man erkennt , wie man , ausgehend von a , schrittweise A , B und C aufbauen
kann :
A = a , B = Ax 0 + b , C = Bx 0 + c .
Wir halten das Ergebnis dieser Umformung fest in

Satz 125 . 1 : Ist x0 eine Lösung der kubischen Gleichung ax 3 + bx 2 +
+ cx + d = 0 , so lässt sich die linke Seite faktorisieren zu

ax 3 + bx2 + cx + d = (x — x0) ( 4̂x 2 + Bx + C)
mit A = fl , B = Ax 0 + b , C = Bx 0 + c .

* Eine Zahl der Form a 3 heißt bei Euklid (um 300 v . Chr .) Kußoq (kybos ) = Würfel , was wohl auf die Pytha -
goreer zurückgeht . Heron von Alexandria - von seinen Lebensdaten wissen wir nur , dass er eine Mondfins¬
ternis des Jahres 62 n . Chr . beschreibt - bezeichnet mit KÜßoq die 3 . Potenz . Bei Diophant (um 250 n . Chr .)
gewinnt Küßot; dann auch die Bedeutung »3 . Potenz der Unbekannten « , wofür die Araber <r ot5

"’
(kaaba )

sagen , was wieder nichts anderes als Würfel bedeutet . (So heißt heute noch das seit 703 unveränderte quader¬
förmige Gebäude [ 12 m x 10 m x 15 m] in Mekka , das Ziel der muslimischen Pilgerfahrten .) Als im 12. Jh .
die arabischen mathematischen Schriften ins Lateinische übertragen wurden , übersetzte man kaaba wortge¬
treu mit cubus . Im Mathematischen Lexicon von 1716 des Christian von Wolff (1679- 1754) erscheint der
Fachausdruck kubische Gleichung , der 1710 in den Anfangsgründen noch kubische Aequation lautete .
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Aus Satz 125 . 1 ergibt sich als wichtige
Folgerung : Eventuelle weitere Lösungen der kubischen Gleichung
ax 3 + hx2 + cx + d = 0 müssen Lösungen der quadratischen Gleichung
Ax2 + Bx + C = 0 sein.
Dazu

Beispiel 1 : 3x 3 — 7.x 2 — 23 .x + 30 = 0
Durch Probieren mit den Werten 0 , + 1 , ±2 usw . findet man , dass
die Zahl 2 eine Lösung ist . Also gilt A = 3 , .8 = 3 - 2 — 2 = 4 und C =
= 4 - 2 — 23 = — 15 . Eventuelle weitere Lösungen der Gleichung
3x 3 — 2x2 — 23x + 30 = 0 müssen also Lösungen der quadratischen
Gleichung 3x 2 + 4x — 15 = 0 sein . Wir erhalten
* = K - 4±l/T96 ) = £ ( — 4 + 14)
x = — 3vx = f .

Wer sich nicht die Ausdrücke für A , B und C merken will, erhält den quadrati¬
schen Faktor Ax 2 + Bx + C des kubischen Terms ax 3 + bx 2 + cx + d, indem
er letzteren durch x — x0 dividiert . Da der kubische Term ein Polynom und
auch x — x0 ein Polynom in x ist , nennt man eine solche Division Polynomdivi¬
sion . Wie sie praktisch abläuft , zeigen wir am Polynom von Beispiel 1 ; dabei ist
x0 = 2 .

Beispiel 2 : Die Polynomdivision
(3x3 - 2x 2 - 23x + 30) : (x - 2)
Wir beginnen mit der Division bei den Termen mit den höchsten Poten¬
zen von x , also mit 3x 3 : x = 3x 2 .
Das Ergebnis 3x 2 schreiben wir rechts vom Gleichheitszeichen als ersten
Summanden an und multiplizieren damit den Divisor x — 2 . Das erhalte¬
ne Produkt 3x 3 — 6x 2 ziehen wir vom Dividendenpolynom ab . Dieses
Verfahren setzen wir mit dem Restpolynom so lange fort , bis sich als Rest
null ergibt :

(3x 3 - 2x 2 - 23x + 30) : (x - 2) = 3x 2 + 4x - 15
— (3x 3 — 6x 2)

4x 2 — 23x + 30
— (4x 2 — 8x)

- 15x + 30
— ( — 15x + 30)

0

Beachte : Ergibt sich nicht 0 als Rest , so hast du entweder beim Probieren
einen Fehler gemacht und dein x0 ist gar keine Lösung , oder du hast
dich beim Dividieren verrechnet .
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Man komm t ohne Polynomdivision schneller zum quadratischen Faktor ,
wenn man vorher ein wenig kopfrechnet . Setzt man nämlich auf Grund der
obigen Überlegungen an
(3x 3 — 2x 2 — 23x + 30) = (x — 2) (Ax 2 + Bx + C)
und multipliziert in Gedanken aus , so erkennt man sofort , dass A = 3 und
C = — 15 sein müssen . Also kann man stattdessen gleich mit dem Ansatz
(3x 3 — 2x 2 — 23x + 30) = (x - 2) (3x 2 + Bx - 15)
beginnen . Vergleicht man die Koeffizienten der quadratischen Glieder auf
beiden Seiten - rechts muss man in Gedanken ausmultiplizieren - , so ergibt
sich — 2 = — 6 — 2 B , also B = 4 ,
und damit der quadratische Faktor wie oben zu 3x 2 + 4x — 15 .

Aufgaben
1 . Zur Polynomdivision

a) Fehlen bei den Polynomen Glieder , so rät Michael Stifel (1487 ?
bis 1567 ) in seiner Arithmetica Integra (1544) , die fehlenden Poten¬
zen mit dem Koeffizienten null zu versehen und sie im Polynom mit¬
zuführen , also die Division (x 3 + 1 ) : (x + 1 ) in der Form
(x 3 + 0x 2 + Ox + 1 ) : (x + 1 ) auszuführen . Mach es und verfahre
ebenso bei den folgenden Aufgaben .

b) (x 3 — 1 ) : (x — 1 ) c) (x 3 + 8 ) : (x + 2)
d) (8x 3 + 125) : (2x + 5) e) (16x4 - 81 ) : (2x - 3)

2 . Auf einer babylonischen Keilschrifttafel , deren einer Teil in London (BM
85200) und deren anderer in Berlin (VAT 6599) liegt , finden sich mehrere
kubische Gleichungen :
a) Aufgabe 5 : z 3 + z 2 = 252 b) Aufgabe 20 : z 3 + 7z 2 = 8

3 . Bei den Griechen findet sich die erste nicht geometrisch gelöste kubische
Gleichung bei Diophant (um 250 n . Chr .) in Buch VI seiner ÄgiSfirjuKärv
ßißMa bei der Behandlung des folgenden Problems (Nr . 17) :
Eine Quadratseite ist um 2 Längeneinheiten größer als die Kante eines
Würfels , dessen Volumenmaßzahl aber um 2 größer ist als die Flächen¬
maßzahl des Quadrats . Wie groß sind Quadratseite und Würfelkante ? -
Diophant bezeichnete die Würfelkantenlänge mit x — 1 . Verfahre ebenso !

4 . Bei Bhäskara II (1115 - nach 1178 ) findet sich im Bidscha -ganita (§ 137)
die Gleichung 12x + x 3 = 6x 2 + 35 .

5 . Christoff Rudolff (um 1500 Jauer/Schlesien - vor 1543 Wien ?) hat
1525 in seiner Behend und Hübsch Rechnung durch die kunstreichen regeln
Algebre so gemeinicklich die Coßgenennt werdeneinige kubische Gleichun¬
gen gelöst ohne den Lösungsweg anzugeben .
a) 63 + x 3 = 10x 2 b) 605 + \ x 2 = \ x 3 c) x 3 + 75x 2 + 1875x = 27250
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Zu den Aufgaben 6 bis 10 . Die größte Leistung auf dem Gebiet der kubischen
Gleichungen vollbrachte Geronimo Cardano (1501 - 1576 ) , der für sie eine
allgemeine Lösungsformel beweisen konnte (Näheres in Algebra 10) . Viele
Kapitel seiner Ars magna (1545) , der mit Ausna hm e von 8h die folgenden
Aufgaben entnommen sind , beschäftigen sich mit kubischen Gleichungen .
Wie damals üblich schreibt Cardano noch keine negativen Koeffizienten ,
sodass er den Lösungsgang für die dadurch verschiedenen möglichen Typen
vorführen muss . Cardano erkennt aber , dass eine , zwei oder drei Lösungen
auftreten können , wofür er auch Fallunterscheidungen angibt .
6 . a) x 3 + 6x = 20
7 . a) x 3 + 22\ x 2 = 98
8 . a) x 3 = 3x 2 + 20x + 6

c) x 3 + 21 x = 9x 2 + 5
e) x 3 + 6x 2 + x = 14
g) x 3 + 3x + 18 = 6x 2

b) x 3 + 16 = 12x c) x 3 = 19x + 30
b) x 3 + 48 = 10x 2 c) x 3 = 3x 2 + 16
b) x 3 + 6x 2 = 20x + 56
d) x 3 + 9 = 6x 2 + 24x
f) x 3 + 6x 2 + 12 = 31x
h) * 25 + 4x 2 + 2x 3 = 16x + 55

9 . a) x 6 + 3x 4 = 20 b) x 6 + 3x 4 + 10 = 15x2

10 . Bei den Gleichungen vom Typ x 3 = px + q und x 3 + q = px versagte ge¬
rade dann die von Cardano bewiesene Formel , wenn - wie wir heute
wissen - es 3 Lösungen gibt . Das ist der Fall , wie Cardano entdeckte ,
wenn (gp) 3 > (^q) 2 ist . Man nannte diesen Fall später casus irreducibilis ,
d . h . unzurückführbarer Fall . Im Kapitel XXV seiner Ars magna , das er
mit De Capitulis imperfectis et specialibus - »Über die unvollkommenen
und nur in Sonderfällen brauchbaren Regeln « - überschreibt , gibt er da¬
her besondere Verfahren zur Lösung solcher Gleichungen an . Ihm entneh¬
men wir mit Ausnahme von a) die folgenden Gleichungen * * ,
a) x 3 = 9x + 10 b) x 3 = 32x + 24 c) x 3 = 16x + 21
d) x 3 + 12 = 34x e) x 3 + 18 = 19x f) x 3 + 8 = 18x

11 . Von Framjois Viete (1540 - 1603 ) stammen aus dem
a) Responsum ad problema quod omnibus mathematicis totius orbis con-

struendumproposuit Adrianus Romanus von 1595 * * * : 3x — x 3 = j/2
b) Tractatus de aequationum recognitione (1615 gedruckt) :

1) 8x — x 3 = 7 2) 9x 2 — x 3 = 8

* Michael Stifel bringt diese Aufgabe in seiner Arithmetica integra 1544 auf Blatt 317 . Er hat sie Cardanos
Practica Arithmeticae von 1539 entnommen , in der sich jener auch schon mit kubischen Gleichungen
beschäftigt hatte . Stifel empfiehlt dieses Buch seinen Lesern wärmstens , rät ihnen aber , statt der umständ¬
lichen Bezeichnungen Cardanos seine viel bequemeren zu verwenden .

** Mit der in a wiedergegebenen Gleichung teilte Cardano seine Entdeckung des casus irreducibilis Tarta -
glia in einem Brief mit , den dieser am 4 . 8 . 1539 erhalten hat .

*** »Antwort auf das Problem , das Adriaen van Roomen [ 1561 - 1615] allen Mathematikern des ganzen
Erdkreises [ 1593] zur Lösung stellte « . Viete konnte die gestellte Gleichung 45 . Grades lösen .
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* *3 .7 .4 Reziproke Gleichungen
Abraham de Moivre (1667 - 1754)
stieß bei seinen Arbeiten zur Wahr¬
scheinlichkeitsrechnung auf einen be¬
sonderen Typ von Gleichungen , den
er 1711 in seiner Abhandlung De
mensura sortis - »Über ein Maß des
Zufalls « - beschrieb und für den er
1730 in seinen Miscellanea Analytica
- »Allerlei zur Analysis « - wichtige
Sätze herleitete . 1733 beschäftigte
sich Leonhard Euler (1707 - 1783 )
mit diesen Gleichungen und nannte
sie wegen einer wichtigen Eigen¬
schaft , die wir gleich beweisen wol¬
len , reziproke Gleichungen . Da sie ei¬
ner Verallgemeinerung fähig sind ,
fügt man heute noch » 1 . Art « bei.
Unter Benützung der von de Moivre
gegebenen Beschreibung legen wir
also fest

1736

Abb . 129 . 1 Abraham de Moivre
(26 . 5 . 1667 Vitry -le-Franfois bis
27 . 11 . 1754 London ) - Gemälde
von Joseph Highmore (1692- 1780)

Definition 139 . 1 : Eine Gleichung heißt reziproke Gleichung 1 . Art , wenn
die vom Anfang und vom Ende des Gleichungspolynoms gleich
weit entfernten Koeffizienten jeweils gleich sind .

Beispiele:
1 ) 3 .x 2 + 5x + 3 = 0 Der erste und der letzte Koeffizient sind gleich.
2) - ix 3 + 3x 2 + 3x — i = 0 | Der erste und der letzte Koeffi-

r zient sind gleich , ebenso der zweite
3) 5x — 3x — 2x — 3x + 5 = 0 J und der vorletzte.

Offensichtlich kann 0 nicht Lösung einer reziproken Gleichung sein , da der
letzte Koeffizient gleich dem ersten Koeffizienten und damit ungleich null ist .
Der folgende Satz macht nun den von Euler gegebenen Namen verständlich .

Satz 129 . 1 : Ist r Lösung einer reziproken Gleichung 1 . Art, so ist auch
1

der reziproke Wert — Lösung dieser Gleichung .
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Beweis: Der Beweis sei beispielhaft für eine Gleichung 4 . Grades vorgeführt.
Der allgemeine Beweis verläuft analog .
ax 4 + bx 3 + cx 2 + bx + a = 0 (mit a 4= 0) ist eine reziproke Gleichung 1 . Art
vom Grad 4 . Wenn r Lösung dieser Gleichung ist , dann gilt
ar 4 + br 3 + er 2 + br + a = 0 .
Da r 4= 0 ist , können wir r4 ausklammern und erhalten

Da r 4 nicht null werden kann , muss die Klammer null sein . In der Klammer
steht aber , von rechts nach links gelesen , der gegebene Gleichungsterm , in

1 1
den an Stelle von x der Wert — eingesetzt wurde . Also ist - Lösung , was zu
zeigen war .

r r

Wie findet man aber nun die Lösungsmenge einer reziproken Gleichung
1 . Art ? Auch hier wollen wir das Wesentliche wieder anhand von Beispielen
zeigen.

Beispiel 1 : Der Grad der reziproken Gleichung 1 . Art ist gerade .
6x 4 + 5x 3 — 38x 2 + 5x + 6 = 0
Da null keine Lösung ist , dürfen wir durch x 2 dividieren und erhalten

6x 2 + 5x — 38 + 5 - — K 6 = 0
x x

6 ( x 2
H— Tr ) + 5 ( x +

x
38 = 0

Joseph Louis de Lagrange
(1736 - 1813 ) schlug 1770 die
Substitution

1
x H— — z vor .x
Durch Quadrieren erhält man

1
x 2 + 2 4— =■ = z 2

, sodass die
x 2

letzte Gleichung übergeht in

6 (z2 — 2) + 5z — 38 = 0
6z2 + 5z — 50
z =

0
1
2 •

Machen wir die Substitution
wieder rückgängig , dann erhal¬
ten wir

Abb . 130 . 1 Joseph Louis de Lagrange
(25 . 1 .1736 Turin- 10 .4 . 1813 Paris)

VK ; =■
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1 10 15
x + - = - — vx + - = - ,x 3 x 2
was durch Multiplikation mit dem Hauptnenner auf zwei reziproke qua¬
dratische Gleichungen führt :
3x 2 + lOx + 3 = 0 v 2x 2 — 5x + 2 = 0
x = — 3vx = — j v x = \ v x = 2 .
Die gesuchte Lösungsmenge lautet somit L = { — 3 , — j , 2} .

Ist der Grad einer reziproken Gleichung 1 . Art ungerade , dann gilt

Satz 131 . 1 : Eine reziproke Gleichung 1 . Art ungeraden Grades hat stets
die Lösung — 1 .

Beweis : ax 3 + bx 2 + bx + a = 0 ist eine reziproke Gleichung 1 . Art vom Grad
3 . Setzt man — 1 ein , so erhält man — a + b — b + a = 0 , was zu zeigen war .
Der allgemeine Beweis verläuft analog .
In Satz 125 . 1 haben wir gezeigt, dass man eine kubische Gleichung faktorisieren
kann , wenn man eine Lösung kennt . Dieser Satz gilt allgemein , wenn der
Gleichungsterm ein Polynom ist . * Damit lässt sich eine reziproke Gleichung
1 . Art ungeraden Grades auf eine Gleichung kleineren Grades reduzieren . Dazu

Beispiel 2 : 12x 5 + 8x 4 — 45x 3 — 45x 2 + 8x + 12 = 0
Die Division durch (x — ( — 1 )) liefert
12x5 + 8x4 - 45x 3 - 45x2 + 8x + 12 =
= (x + l ) (12x4 — 4x 3 — 41x 2 — 4x + 12) ,
wie du leicht nachrechnen kannst . Setzen wir den 2 . Faktor null , so haben
wir in 12x4 — 4x 3 — 41x 2 — 4x + 12 = 0 wieder eine reziproke Glei¬
chung 1 . Art vor uns . Dieser Sachverhalt gilt allgemein , wie man bewei-

1
sen kann . Wie in Beispiel 1 substituiert man z --= x -1— und erhält
12z 2 - 4z - 65 = 0 o z = - fvz = f .

*

Daraus gewinnt man , indem man die Substitution rückgängig macht ,
schließlich die beiden quadratischen reziproken Gleichungen 1 . Art
6x2 + 13x + 6 = 0 v 2x2 — 5x + 2 = 0
mit { — § , — | } bzw . { j , 2 } als Lösungsmengen , sodass man nun die Lö¬
sungsmenge der Ausgangsgleichung 5 . Grades angeben kann zu
L = { — b — - f >b 2 } -

* Beweis : Dividiert man ein Polynom P (x) durch (x — x0) , so erhält man ein Polynom Q (x) und einen Rest R;
es gilt also P (x) = (x — x0) Q (x) + R . Den Rest R kann man aber leicht bestimmen . Setzt man nämlich an
Stelle von x den Wert x0 ein , so erhält man P (x0) = (x0 — x0) ß (x0) + R = 0 + R = R , d . h ., R ist der Wert
des Polynoms P (x) an der Stelle x0. Ist nun x0 eine Nullstelle des Polynoms , dann ist P (x0) = 0 , also auch
R = 0, und es gilt P (x ) = (x — x0) 2 (x) ; das Polynom ist faktorisiert .
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Die eingangs angekündigte Erweiterung des Begriffs der reziproken Glei¬
chung liefert

Definition 132 . 1 : Eine Gleichung heißt reziproke Gleichung 2 . Art , wenn
die vom Anfang und vom Ende des Gleichungspolynoms gleich
weit entfernten Koeffizienten dem Betrage nach jeweils gleich sind ,
aber verschiedenes Vorzeichen haben .

Folgerung : Ist der Grad einer reziproken Gleichung 2 . Art gerade , z . B . 2k , so
muss für den mittleren Koeffizienten ak gelten a k = — ak , d . h . , der mittlere
Koeffizient muss den Wert null haben .

Beispiele:
1) 3x 2 — 3 = 0 Der erste und der letzte Koeffizient

unterscheiden sich nur im Vorzeichen .
2) — £x 3 + 3x 2 — 3x + ^ = 0 3 Der erste und der letzte Koeffizient

> unterscheiden sich nur im Vorzeichen ,
3) 5 X4 _ 3 x 3 + 3 x — 5 = 0 J ebenso der zweite und der vorletzte.

Satz 129 . 1 gilt auch für reziproke Gleichungen 2 . Art , wie du selbst leicht
beweisen kannst (Aufgabe 133/1) . An Stelle von Satz 131 . 1 gilt

Satz 132 . 1 : Jede reziproke Gleichung 2 . Art hat die Lösung + 1 .

Von der Richtigkeit dieses Satzes kannst du dich durch Einsetzen in die obigen
Beispiele überzeugen ; der Beweis ist leicht (Aufgabe 133/2) .
Dividiert man eine reziproke Gleichung 2 . Art durch x — 1 , so erhält man
immer , wie man zeigen kann , eine reziproke Gleichung 1 . Art . Wir begnügen
uns zum Nachweis auch hier mit einem Beispiel , nämlich
Beispiel 3:

x 4 — 6x 3 + 6x — 1 = 0 ist eine reziproke Gleichung 2 . Art . Somit lässt
sich der links stehende Term durch x — 1 dividieren und man erhält die
Faktorisierung
(x — l ) (x 3 — 5x 2 — 5x — 1 ) = 0 .
Setzt man die Klammer null , so erhält man eine reziproke Gleichung
1 . Art vom Grad 3 . Diese hat — 1 als Lösung . Daher kann man das
Polynom in der Klammer durch x + 1 dividieren und erhält die Faktori¬
sierung
(x — 1 ) (x + 1 ) (x 2 + 6x + 1 ) = 0 .
Setzt man nun den 3 . Faktor null , so erhält man eine quadratische Glei¬
chung - sie ist reziprok von 1 . Art - mit den Lösungen 3 + j/8 . Die Aus¬
gangsgleichung x4 — 6x 3 + 6x — 1 = 0 hat also die Lösungsmenge
L = (3 - 1/8 , - 1 , 1 , 3 + 1/8 } .
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Aufgaben
1 . Beweise die Gültigkeit von Satz 129 . 1 für eine reziproke Gleichung 2 . Art .

Unterscheide dabei , ob sie geraden oder ungeraden Grades ist , und führe
den Beweis für eine Gleichung 3 . und für eine Gleichung 4 . Grades .

2 . Zeige , dass eine reziproke Gleichung 2 . Art stets 1 als Lösung besitzt.
Führe den Beweis für eine Gleichung 3 . und für eine Gleichung 4 . Grades .

3 . a) 12x 3 - 13x 2 - 13x + 1 = 0 b) x 3 — 5x 2 + 5x + 1 = 0

4 . a) 20x 4 + 19x 3 — 402x 2 + 19x + 20 = 0
b) 20x 4 - 189x 3 + 482x 2 - 189x + 20 = 0

5 . a) 18x4 + 51x 3 — 334x 2 + 51x + 18 = 0
b) 36x4 — 9x 3 -- 103x 2 — 9x + 36 = 0

6 . a) 7x 4 + 36x 3 -- 86x 2 + 36x + 7 = 0
b) 10x4 — 29x 3 + 20x 2 - 29x + 10 = 0

7 . a) x 4 - 2x 3 + 2x 2 — 2x + 1 = 0
b) 20x 4 + o\ XW+ 19x 2 + 16x + 20 = 0

8 . a) x4 + 2x 3 — 13x 2 + 2x + 1 = 0 b) x4 — 8x 3 + 9x 2 — 8x + 1 = 0

9 . a) 16x4 — 72x 3 + 113x 2 — 72x + 16 = 0
b) 2x 4 — 9x 3 + 15x 2 — 9x + 2 = 0

10 . Beweise für reziproke Gleichungen 1 . Art vom Grad 4 :
a) Die Lösungsmenge einer solchen Gleichung ist genau dann nicht leer ,

wenn die durch die Substitution z — x + ^ gewonnene Hilfsgleichung
mindestens eine Lösung hat , welche die Bedingung | z | ^ 2 erfüllt .

b) Eine Doppellösung tritt genau dann auf, wenn die Hilfsgleichung die
Lösung 2 oder — 2 hat . Wie heißt die zugehörige Doppellösung ?

c) Löst z 1 die Hilfsgleichung, so haben die zugehörigen Lösungen der
Ausgangsgleichung stets dasselbe Vorzeichen wie zu wenn | z , | > 2 ist .

11 . a) 12x 5 + 23x 4 - 135x 3 - 135x 2 + 23x + 12 = 0
b) 2x 5 — 7x 4 + 5x 3 + 5x 2 — 7x + 2 = 0
c) 2x 6 - 13x 5 + 34x4 - 46x 3 + 34x 2 - 13x + 2 = 0

12 . a) 3x 3 + Ix 2 — Ix — 3 = 0 b) x 3 — x 2 + x — 1 = 0

13 . a) 3x 4 - 10x 3 + lOx - 3 = 0 b) x4 - 10x 3 + lOx - 1 = 0
c) x4 - 1 = 0

14 . a) 12x 5 — 16x4 — 37x 3 + 37x 2 + 16x — 12 = 0
b) 5x 5 — 31x4 + 36x 3 — 36x 2 + 31x — 5 = 0 c) x 5 — 1 = 0

15 . a) x 6 — 4x 5 + 5x4 — 5x 2 + 4x — 1 = 0
b) 2x 8 — 5x 7 — 4x 6 + 15x 5 — 15x 3 + 4x 2 + 5x — 2 = 0
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* *3.8 Gleichungssysteme, die auf quadratische Gleichungen führen
Im letzten Jahr hast du lineare Gleichungssysteme mit mehreren Unbekann¬
ten kennen gelernt . Dabei kamen die Variablen nur in der 1 . Potenz vor und ,
ohne dass es dir vielleicht aufgefallen ist , auch nicht durch Multiplikation
miteinander verbunden . Tritt also ein Term der Form x 2

, y 2 oder xy auf , dann
handelt es sich um ein quadratisches und nicht mehr um ein lineares Glei¬
chungssystem . Besonders einfach sind solche Systeme , die aus einer linearen
und einer quadratischen Gleichung bestehen . Dass die Lösung solcher Syste¬
me erst mit Hilfe von quadratischen Gleichungen möglich ist , zeigt

Beispiel 1 :
Auf Seite I des Keilschrifttextes AO 8862, der um 2000 v . Chr . entstanden
ist und zu den ältesten babylonischen Texten gehört *

, steht :
Nisaba [ Schutzpatronin der Wissenschaften ] Länge , Breite . Länge und
Breite habe ich multipliziert und so die Fläche gemacht . Was die Länge
über die Breite hinausgeht , habe ich zur Fläche addiert , und es macht 183 .
Wiederum Länge und Breite addiert , gibt 27 . Länge , Breite und Fläche ist
was?
Der Text führt zu Beginn die beiden Unbekannten »Länge « und »Breite«
ein ; ihr Produkt heißt »Fläche « . Wählen wir x für »Länge « und y für
»Breite« , so erhalten wir das Gleichungssystem

I xy + (x — y) = 183
II x + y = 27 Nebenbedingung : x > y

Hier löst man am besten II z . B . nach
y auf und setzt y = 21 — x in I ein.
I ' x (27 - x) + (x - 27 + x) = 183

II ' y = 27 - x
I ' x 2 - 29x + 210 = 0

II ' y = 27 - x
I ' x = 14 v x = 15

II ' y = 27 - x
Die Lösungsmenge Lv kann in einem
x-y-Koordinatensystem (Abbildung
134 . 1 ) durch ein Parallelenpaar dar¬
gestellt werden , L]V durch eine Gera¬
de . Die Lösungsmenge L des Glei¬
chungssystems ergibt sich als Schnitt¬
menge Lv n L lv zu
L = { (14 j 13) , (15 | 12)} .

y = 27- x

( 15 | 12)

Abb. 134 . 1 Die Lösungsmenge
von Beispiel 1

gefunden in Larsa , aufbewahrt in Paris im Louvre in der Abteilung Antiquites Orientales . Es handelt sich um
ein vierseitiges , auf allen Seiten beschriebenes Prisma der Höhe 16,8 cm und der Basisseite 7,3 cm .
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Praktisch geht man so vor , dass man zu jedem aus I ' erhaltenen x -Wert
den zugehörigen y-Wert aus II ' errechnet :
x = 14 => y = 13 und x = 15 => y = 12 .
Die Lösungsmenge des Gleichungssystems besteht also aus 2 Paaren . Wir
erhalten somit zwei verschiedene Antworten auf die gestellte Frage :
Lösung 1 : Länge = 14 , Breite = 13 , Fläche = 182 ,
Lösung 2 : Länge = 15 , Breite = 12 , Fläche = 180 .
Die Nebenbedingung ist jedesmal erfüllt . Eine Probe ist nicht nötig , da
nur Äquivalenzumformungen vorgenommen wurden . - Auf der Keil¬
schrifttafel ist übrigens nur Lösung 2 angegeben .

Der hier eingeschlagene Lösungsweg führt bei jedem derartigen Gleichungs¬
system zum Ziel . Die lineare Gleichung wird nach einer der beiden Unbekann¬
ten aufgelöst und der gefundene Ausdruck in die quadratische Gleichung
eingesetzt . Man hat dann als neues äquivalentes System im Allgemeinen eine
quadratische Gleichung mit nur einer Unbekannten und die lineare Glei¬
chung . Je nachdem , ob die quadratische Gleichung zwei, eine oder keine Lö¬
sung hat , besteht die Lösungsmenge des Systems aus zwei, einem oder keinem
Zahlenpaar .
Besteht hingegen das System aus zwei quadratischen Gleichungen , dann kann
der Lösungsweg schließlich bis zu einer Gleichung 4 . Grades für eine Unbe¬
kannte führen , die du unter Umständen nicht lösen kannst . Sehr leicht lassen
sich dagegen Systeme lösen , in deren Gleichungen nur die Quadrate der Unbe¬
kannten Vorkommen . Dazu die folgenden beiden Beispiele.

Beispiel 2:
I 2x 2 - y 2 = - 7

II 6x 2 + ly 2 = 104

Durch die Substitution u — x 2
, v ~ y2

wird daraus ein lineares System:

I ' 2u — v = — 7
IF 6u + 2v = 104
I " u = 9

II " v = 25

Das Ausgangssystem ist also äquivalent
mit

I " x2 = 9
II " y 2 = 25
I " x = — 3 v x = 3

II " y = — 5 v y = 5 .

(-315 )

y

( 315 )

1 -

(- 31 - 5 )

1 X

(3 | —5 )

Abb . 135 . 1 Die Lösungsmenge
von Beispiel 2

Lv - Lw,
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Lv . lässt sich als Parallelenpaar zur y -Achse , L w , als Parallelenpaar zur
x-Achse graphisch darstellen (Abbildung 135 . 1 ) . Für L erhält man
L = Lv , n L lv . = {( - 31 - 5) , ( - 315) , (31 - 5) , (315)} .

Ebenso wie in Beispiel 2 geht man vor in

Beispiel 3:

I 3x 2 — 5y 2 = 20 I ' x 2 = 5
II 7x 2 + 9y 2 = 26

^
II ' y 2 = — 1

Da Lu , = { } , ist auch L = Lv n Lw = { } .
Zum Abschluss behandeln wir noch ein Gleichungssystem , das auf eine bi-
quadratische Gleichung führt . Es stammt von der altbabylonischen Keil¬
schrifttafel VAT 8390.

Beispiel 4:
Länge und Breite habe ich multipliziert , 600 ist die Fläche . Die Länge
habe ich mit sich selbst multipliziert . Das ergibt eine Fläche , die das
9 fache der Fläche ist , die man erhält , wenn man das , was die Länge über
die Breite hinausgeht , mit sich selbst multipliziert . Länge und Breite ist
was?
Bedeute x die »Länge « und y die »Breite« , dann erhält man
I xy = 600

II x 2 = 9 (x — y) 2

I ' y =
600
x

II ' 8x 4 - 10 800x 2 + 3 240 000 = 0
"7 6ÖÖ

II ' x 2 = 450 v x 2 = 900 -«> x = + 15 ]/2 v x = + 30
L = {( - 301 - 20) , ( - 15V2 | - 20 ]/2 ) , (15 ]/2 | 20j/2 ) , (30120)} .
Die Babylonier haben nur die Lösung (30120) angegeben , da für sie x und
y positiv waren und außerdem x > y gelten sollte .

Insgesamt hat man bisjetzt an die 650 Aufgaben von diesem Typ gefunden , bei
denen vor allem Gleichung II immer wieder verändert wird . Alle aber haben
die Lösung (30120) . Die 6,5 cm x 9,5 cm großen Täfelchen sind durchnumme¬
riert .

*

* Es handelt sich offenbar um einen Satz von Übungsaufgaben , der einst
* Da sie aus Raubgrabungen stammen , lassen sie sich nur schwer datieren . Man 'vermutet , dass sie mittelbaby¬lonisch sind , d . h . aus der Zeit der Kassiten stammen (ca . 1530- 1160 v . Chr .) . Sie enthalten fast keinen

Worttext mehr , sondern nur mehr mathematische Zeichen , stellen also eine Art babylonischer Zeichenal¬
gebra dar .
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aus mindestens 14 solcher Täfelchen bestand . Wir dürfen daraus wohl schlie¬
ßen , dass bereits die Babylonier erkannt hatten , dass Mathematik nur dadurch
gelernt werden kann , dass man viel übt . Für dich folgt daher eine Reihe von

Aufgaben
1 . a) x + y = 7

xy = 10

2 . a) xy = 9 + x
2x — y = 2

b) xy = 6
3x — y = 3

b) 2xy — x + 2y = 1
x + 2y = 0

c) x + 3 = 4 + y
xy = 2

c) 3x + 2y — 4xy = — 5
5x + 2y = 12

3. Seite I und Seite III des Keilschrifttextes AO 8862 liefern die Systeme
a) 2x + + xy = 15 b) x + y = xy

x + y = 1 x + y + xy = 9

4 . In Susa fand man folgende Keilschrifttexte aus altbabylonischer Zeit:
a) * ^x + ^y + jxy = 2 h) xy + x + y = 1

x + y = 5f tt (3x + 4y) + y = j
5 . Eine interessante Aufgabe enthält der altbabylonische Keilschrifttext* *

VAT 7528 , der , auf unser Maßsystem umgerechnet , lautet :
Gebaut wurde ein kleiner Kanal von 2160 m Länge und f m Tiefe . Sein
Querschnitt ist trapezförmig und misst oben 1 m , unten \ m . Ein Arbeiter
konnte täglich 6 m 3 Erde ausheben . Die Anzahl der Arbeiter zu der der
Arbeitstage addiert ergibt 29Wie viele Leute haben wie viele Tage gear¬
beitet ?

6 . YAT 8512, ebenfalls altbabylonisch , stellt folgendes Problem : Ein recht¬
winkliges Dreieck wird durch eine Parallele zu einer Kathete der Länge 30
in ein Dreieck und ein Trapez so zerlegt , dass die Trapezfläche um 420
größer ist als die Dreiecksfläche . Die Kathete zerfällt dabei in zwei Teile ;
der Teil , der zum Dreieck gehört , ist um 20 größer als derjenige , der zum
Trapez gehört . Wie groß sind diese beiden Teile , die beiden Flächen und
die parallele Strecke?

7 . Aus einer arabischen Handschrift aus der 1 . Hälfte des 11 . Jh . s : In einem
Quadrat ABCD der Seitenlänge 10 werden die Mittelparallele [EF ] zu
[AB] und von A aus eine Gerade so gezogen , dass diese die Mittelparallele
in S und die Seite [BC] in T schneidet . Wie groß sind TF und SF , wenn
die Fläche von ASTF sich zur Quadratfläche wie 2 : 25 verhält (F e BC)?

8 . Der Seite II des Keilschriftprismas AO 8862 entnehmen wir : Länge , Brei¬
te . Länge und Breite habe ich multipliziert und so die Fläche gemacht . Was
die Länge über die Breite hinausgeht , habe ich mit der Summe aus Länge

* SKT 362, Straßburger Keilschrift -Texte , aufbewahrt in Straßburg , Bibliotheque Nationale et Universitaire .
** aufbewahrt in Berlin , Staatliche Museen : Vorderasiatische Abteilung ; Tontafeln .
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und Breite multipliziert ; dazu habe ich meine Fläche addiert . Es macht
4400 . Dann habe ich Länge und Breite addiert , das ergibt 100 .

9 . Die Aufgaben 8 - 10 , 14 und 19 aus der altbabylonischen Keilschrifttafel
BM 13901 (siehe Seite 88f . und Aufgabe 97/24) :
a) x 2 + y 2 = 1300

x + y = 50

d) x 2 + y 2 = 1525
y = fx + 5

b) x 2 + y 2 = 1300 c) x 2 + y 2 = 21 ^
x — y = 10 y — x = — jx

e) x 2 + y 2 + (x — y) 2 = 1400
x + y = 50

10 . Aus der altbabylonischen Keilschrifttafel SKT 363 :
a) x 2 + y 2 = 1000 b) x 2 + y 2 = 2225 c) x 2 + y 2 = 3125

y = f * — 10

11 . a) x 2 — 3x + y = 2
x + 3y = 6

c) 3x + 2y = 3
2x 2 - y 2 = - l

y = i (x — 10) + 5 y = f (x — 20)

b) 2y 2 — 5x + 3y = 0
— 2x + ly = 5

d) 4x - 3y = 11
2x 2 + 3y2 = 11

12 . a) Aus dem Uber abaci (1202 ) des Leonardo von Pisa
(um 1170 - nach 1240 ) :

xyx + y = 10 a
x - y

b) ^ x 2 + iy 2 = 1

y - 1,8 9
x - 4 20

13 . a) x 2 — 2xy — y 2 = — 4

= V6 -

x — 5y = 6
14 . a) 2x 2 + xy + y 2 — 2x + y = 6

2x — 3y = 9
b) 41 x 2 - 24xy + 34y2 - 24x + 68y - 41 = 0

x — 2y — 5 = 0
15 . a) x 2 + 2y 2 = 9

3x 2 — y 2 = — 1

16 . a) Ix 2 - 2y 2 + 32 = 0
3x 2 + 5y 2 - 80 = 0

17 . a) llx 2 — ly 2 = 0
- 8x 2 + 5y2 = 0

Mache die Probe !

c) &x 2 - $y 2 = 1

y + 4 _ 3
x - 4

~
4

( ! ) b) x 2 — 2xy + y 2 + 4 = 0
x — 5y — 6 = 0

b) 2x 2 + 5y 2 = 47
5x 2 + 2y 2 = 23

b) 6x 2 + 2y 2 = 6
4x 2 - 3y 2 = 43

b) llx 2 - ly 2 = - 2
— 8x 2 + 5y2 = 0
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18 . a) x 2 + 3y 2 = 3
6x 2 — 2y 2 = 13

19 . a) 3x 2 - 5y 2 = 0
2x 2 — ly 2 = 11

• 20 . a) 2x 2 — 3x + 2y — 3 = 0
5x 2 — 0,5x + 3y — 7 = 0

c) (x - 2) 2 + {y - l ) 2 = 9
(x + 2) 2 + {y — 7) 2 = 25

21 . a) x 2 + 2x + 4y - 47 = 0
5x 2 — 25x + 6y — 18 = 0

c) y 2 + 2xy + 3y = 0
3y 2 — 3 xy — y = 30

b) 5x 2 + 9y 2 - 32,2 = 0
4x 2 - 3y2 + W = 0

b) 4x 2 — 3y 2 = 7
3x 2 + 5y 2 = 56

b) 2x + 5y + 2xy = 3
x — 3y — 4xy = 33

d) x + Ix 2 + 3y — 6y 2 = 28
x — x 2 — 2y + 3y 2 = — 20

b) 2x 2 + y 2 — 10x = 13
5x 2 — 2y 2 + 15x = 0

• d) (x — 2) 2 — iy + l ) 2 = - 24
3x 2 + y 2 — 12x + 2y = 87

22 . Die auf Seite 136 erwähnte Aufgabensammlung aus kassitischer Zeit be¬
findet sich fast vollständig in der Yale Babylonian Collection von New
Haven (USA ) . Die auf der Tafel YBC 4697 angegebenen Gleichungssyste¬
me löst man am besten mit der Substitution x -— u + v und y -= u — v .
Die erste Gleichung heißt immer xy = 600 , die zweite dagegen
a) ! (x + y) + 6d (x — y) 2 = 18 § ,
b) i (x + y) — 6d (x - k) 2 = 15 ,
c) i - U x + y ) + <k (x ~ y)2 = H -

23 . a) x 2 + y 2 = 10
x 2 y 2 = 9

c) x4 — 3x 2 + 2y 2 = 6
4x 2 — 5y 2 = - 16

24 . a) (x + l ) 2 + 3 (y + 3 ) 2 = 12
2 (x + l ) — 7 (y + 3) = — 1

Sb) 2 (2x — 3y + 7) 2 — 3 (4x — 2y + 5) 2 = 5
5 (2x - 3y + 7) 2 - 7 (4x - 2y + 5) 2 = 13

b) x 2 — 8y 2 = 23
4 (xy ) 2 = 25

d) x 4 - y 4 = 65
2x 2 + 3y2 = 30

1 1
25 . a) 3 • - - 2 • - = 4

x y
1 1

3 ■ —Tr + 8 ■ = 5
x 2 y 2

1 1
►b) \ % . - - i - — = 2

x 2 y

, 1 . 1
6 ■ —^—h 3

x 2 y 2 3

26 . a) Aufgabe 12 aus dem Keilschrifttext BM 13901 ergibt das System
x 2 + y 2 = 1300 a xy = 600 .
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b) Aufgabe 22 der Tafel YBC 4668 aus kassitischer Zeit ergibt
x
y = 2| a xy = 600 .

c) Aufgabe 25 der Tafel YBC 4668 aus kassitischer Zeit ergibt
x
y

2/x
Hk xy = 600 .

27 . In Susa fand man auf einer Keilschrifttafel den Text XIX , Problem D :
xy = 1200 a x - x 2 Vx2 + y 2 = 3200000 .

28. a) x + 2 = y — 1
j/3x + 2y = 2x

29 . a) Vx + y - Vx ^ y = 2

• b) ]/3x + y + ]/2x — y = ]/lx + 2y

b) 2 - 2x = (y + 4) 2

Vx2 Ty 2 = 7 - x

Vx2 — 6x — y 2 = ^y

]/j/4x 2 + y 2 + 4xy — 2x — 3 + x — y = l/3x ■

30 . Besteht ein Gleichungssystem mit zwei Variablen nur aus einer Gleichung ,
so ist es unterbestimmt . Stelle die Lösungsmengen der folgenden unterbe¬
stimmten Systeme graphisch dar .

x 2 + y 2 = 0
x —

a)
c)
e) x (x

y 2 = 0
- 2y) = 0

g) Vx2 + y = 1

b)
d)
f)

. h)

(x - 3 ) 2 + (y + 2) 2 = 0
(x + y) 2 = 4
y 2 — 3 xy + 2y = 0^

Tky 2 = 1

•31 . Die beiden folgenden ersten Aufgaben sind die Nr . 94 bzw . 96 aus Kapitel
LXVI der 1539 erschienenen Practica Arithmeticae des Geronimo Carda -
no ( 1501 - 1576 ) . Michael Stifel (14877 - 1567 ) bringt sie 1544 in seiner
Arithmetica integra und fügt als weitere Beispiele die beiden anderen Auf¬
gaben an . - Zur Lösung raten wir , zuerst xy zu berechnen .
a) (x — y) 2 = xy b) x + y = xy

x 2 + y 2 = 20 x 2 + y 2 + (x + y) = 20
c) x 2 + y 2 = 52

xy — x — y = 14
d) x 2 + y 2 = 52

xy + x + y = 34
32 . In Kapitel LXI seiner Practica Arithmeticae behandelt Cardano ein über¬

bestimmtes Gleichungssystem , für das Stifel bessere Zahlen wählt , damit
die Aufgabe aufgeht :
Zerlege 468 in zwei Summanden . Das Produkt aus dem größeren Teil und
dem Quadrat des kleineren Teils soll 5359375 ergeben , das Produkt aus
dem kleineren Teil und dem Quadrat des größeren hingegen 14706125 .
Wie heißen die Summanden ?
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Die folgenden Aufgaben ergeben Gleichungssystemefür 3 und mehr Unbekann¬
te . Sie stammen aus Kapitel LXVI der Practica Arithmeticae(1539 ) des Gero-
nimo Cardano (1501 - 1576) . Michael Stifel (14877- 1567 ) fand sie so interes¬
sant , dass er sie ganz am Ende seiner Arithmetica integra (1544) bringt . Ange¬
regt durch sie , fügt er gelegentlich ergänzende Aufgaben hinzu .
33 . Aufgabe 78: Zerlege 14 so in 3 Summanden, dass sie in stetigerProportion

zueinander stehen * und dass die Summe aus dem 2fachen des ersten ,
dem 3fachen des zweiten und dem 4fachen des dritten 36 ergibt .

HIERONIMI
CCARDAN1 MEDICI MEDIOLA

NENSIS , PRACTICA ARITH -
merice, & Menfurandifingulans.In qua

quepceter«Kascotfacatn̂retfa
paginat>anonftrabt4

A/iPW ^m ' trnvr ' CArdptAHtr -

Abb . 141 . 1 Titelblatt der Practica
Arithmeticae von 1539 des Geronimo
Cardano ( 1501 - 1576 ) * * und dessen

Unterschrift .

ARITHMETI
CA ' INTEGRA .

Authore Michaile Safelio.

Cum pnc& ione Philippi Mdanchthoni «.

Norimberg * apud Iohan . Petreiuni«
Anno Chrifti m. d. xliiii .

Cum gracia & priuilegio Carlarco
atcj Regio ad Scxcnnium .

/ V/w ^ .vv /
/üjrf

Abb . 141 .2 Titelblatt der Arithmetica
integra - »Die ganze Arithmetik « - (1544)
von Michael Stifel (1487 ? Esslingen bis
19 . 4 . 1567 Jena ) und dessen Unterschrift .
Ein Bildnis ist nicht überliefert . * * *

* 3 Größen a , b , c bzw . 4 Größen a , b , c , d stehen in stetiger Proportion zueinander oder verhalten sich
stetig , wenn a : b = b : c bzw . a : b = b : c = c : d gilt .

** Des Hieronimus C . Cardanus mailändischen Arztes , einzigartige Handhabung der Arithmetik und des
Messens . Was in ihr unter anderen enthalten ist , legt er auf der nächsten Seite dar .
Die Umschrift NEMO PROPHETA ACCEPTUS IN PATRIA um das Bildnis ist eine Anspielung auf
Matth . 13,57 , das im Deutschen zu »Der Prophet gilt nichts in seinem Vaterlande « verkürzt wird .

*** Auf dem Titelblatt liest man ferner : Mit einem Vorwort Philipp Melanchthons . Zu Nürnberg bei Johann
Petreius . Im Jahre Christi 1544 . Mit der Gunst und dem kaiserlichen und königlichen Privileg für einen
Zeitraum von sechs Jahren . Die Umschrift um das Flammenschwert lautet SERMO DEIIGNITUS ET
PENETRANTIOR QUOVIS GLADIO ANCIPITI , d . h . : Die Sprache Gottes ist feurig und durchdrin¬
gender als jedes zweischneidige Schwert . - Am Ende schreibt Stifel , dass er das Manuskript mehr als
ein Jahrfünft zurückgehalten habe ; es war also bereits 1539 fertig . - Die in der 1. und 2 . Auflage wie¬
dergegebene Unterschrift ist kein Autograph Stifels .
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34 . Michael Stifel verwandelt die vorstehende Aufgabe in :
Zerlege 182 so in 3 Summanden , dass sie in stetiger Proportion zueinander
stehen * . Bildet man dann die Summe der 3 möglichen Produkte aus je
zweien von ihnen , so erhält man 7644 . Wie heißen die Teile?

35 . Michael Stifel ergänzt die vorstehende Aufgabe durch :
Zerlege 78 in 3 Summanden , die sich stetig verhalten * und für die gilt :
Teilt man 78 durch jeweils einen der Summanden , so ist die Summe dieser
drei Quotienten 18jj . Wie groß sind die Summanden ?

• 36 . Aufgabe 110 : Das Produkt der Katheten eines rechtwinkligen Dreiecks
hat den Wert 10 ; die Katheten und die Hypotenuse verhalten sich stetig * .
Bestimme sie .

37 . Aufgabe 28 : Die Summe dreier Zahlen , die sich stetig verhalten *
, ist so

groß wie ihr Produkt . Teilt man 25 durch jeweils eine von ihnen , so ergibt
auch die Summe der drei Quotienten die Summe dieser drei Zahlen . Wie
groß sind sie?

38 . Von Michael Stifel stammt: Zerlege 76 in drei Summanden, die sich stetig
zueinander verhalten *

, sodass das Produkt aus dem mittleren Glied mit
der Summe der beiden äußeren Glieder 1248 ergibt . Wie groß sind die
Summanden ?

839 . Aufgabe 112 : Vier Zahlen verhalten sich stetig zueinander * . Ihr Produkt
hat den Wert 81 , das Produkt der beiden ersten den Wert 6 . Wie heißen sie?

§ 40 . Aufgabe 95 hat Stifel verbessert , sodass sie aufgeht . In Klammern stehen
die ursprünglichen Werte Cardanos :
Die Summe von vier Zahlen , die in stetiger Proportion zueinander ste¬
hen *

, hat den Wert 45 (10) ; die Summe ihrer Quadrate ist 765 (60) . Wie
groß sind sie?

* 3 Größen a , b , c bzw . 4 Größen a , b, c , d stehen in stetiger Proportion zueinander oder verhalten sich stetig ,
wenn a : b — b : c bzw . a : b — b : c = c : d gilt .



4 Quadratfunktion und Wurzelfunktion

NOVA SC1ENTIA INVENTA DA NICOLO TARTALEA . B*
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Titelblatt von Nova Scientia - »Neue Wissenschaft « die Niccolö Tartaglia (1499
bis 1557 ) im Jahre 1537 herausbrachte , weil Sultan Sulaiman II . der Prächtige
(reg . 1520- 1556 ) weiter zum Krieg gegen die Christenheit rüstete .
Das Buch handelt vorwiegend von der Schießkunst . Tartaglia beweist darin , dass
man am weitesten schießen könne , wenn das Geschütz 45 ° über den Horizont aufge¬richtet wird . Die im Titelbild dargestellte Flugbahn des Geschosses sieht wie eine
Parabel aus . Tartaglia wusste aber noch nicht , dass Geschosse sich wirklich auf einer
Parabel bewegen (Abbildung 159) . Erst Galileo Galilei (1564 - 1642 ) erbrachte rund
70 Jahre später den Beweis dafür (siehe Seite 174) .
Die beiden Wappen sind nicht sehr genau gezeichnet . Das linke ist das Wappen von
Franz Maria I . (1490- 1538 ) aus dem Hause della Rovere . Er war Herzog von
Urbino (1508- 1538 ) und Generalkapitän von Venedig, ferner Autor der Discorsi mili¬
tari . An ihn ist der Brief gerichtet , der das Werk einleitet . Das rechte Wappen ist das
seiner Ehefrau Eleonore (f 1570) aus dem Hause Gonzaga , das in Mantua regierte .
Der Wahlspruch aurum probatur igni , et Ingenium mathematicis - Gold wird
auf Echtheit geprüft durch das Feuer , der Geist durch die Mathematik - sei , so
Luca Pacioli (um 1445 - 1517) in seiner Divina Proportione (1498 , gedruckt 1509),unter den Gelehrten sprichwörtlich geworden um auszudrücken , dass »mathematische
Begabung hervorragend für jede andere Wissenschaft geeignet mache « .
Der Ausspruch der mathematischen Wissenschaften , die, durch Damen symbolisiert ,in einem Garten stehen , ist ein Distichon , das Vergils (70- 19 v . Chr .) rerum cognoscere
causas - das Wesen der Welt erkennen - (Georgica II , 490 - »Landleben «) aufgreift .

Die mathematischen Wissenschaften sprechen :
Ihr , die Ihr den Wunsch habt , die mannigfaltigen Ursachen der Dinge zu erkennen ,Lernet uns ; für alle ist hierher nur ein einziger Weg gangbar .
Spielt Tartaglia damit vielleicht auf den Spruch des Menaichmos (Mitte 4 . Jh .
v . Chr .) an - du ündest ihn auf der Titelseite dieses Buches - , dass es in der Mathematik
keinen Königsweg , sondern nur einen Weg für alle gibt ? *
Tartaglia selbst steht in diesem Garten , zu dem Euklid einlässt , umgeben von der
Musik , der Arithmetik , der Geometrie , der Perspektive und der Astronomie . Auf den
Spruchbändern sind noch die Architektur und die Astrologie entzifferbar , darüber
hinaus die verschiedenen Künste des Wahrsagens , so die durch das Los (sortilegio ) , die
durch Befragung der Seelen Verstorbener (necromantia ) , die durch Beschau des Opfer¬
feuers (pyromantia ), der Leber der Opfertiere (aruspitio ) , des Fluges der Wahrsagevö¬
gel (auspitio ) , die durch Beobachtung der Mäuse (myomanteia ) und schließlich die
Wahrsagung durch Beobachtung und Deutung von Wahrzeichen (augurio ) .
Der Zugang zur Philosophie ist nur möglich über Aristoteles und Platon , auf dessen
Band wir nemo huc geometriae expers ingrediatur
lesen, die lateinische Version jener Inschrift , die über dem Eingangstor seiner Akade¬
mie geschrieben stand * * :

ATEßMETPHTOE MHAEIE EIEITß

Kein der Mathematik Unkundiger trete hier ein
* Dem Distichon stellt Luca Pacioli in der Divina Proportione die Zeile »Corpora loquuntur « (Die Körper

sprechen ) voran .
** dyscojLexpq'rot; pqfieiq eioixco (ageometretos medeis eisitö ) - Die von Platon (428- 348 v . Chr .) um

385 v . Chr . gegründete Philosophenschule ist nach einem in der Nähe befindlichen Heiligtum des Helden
Akademos benannt . Geschlossen wurde sie 529 n . Chr . durch Kaiser Justinian (reg . 527- 565) . Die Inschrift
überlieferte uns Elias Philosophus (6 . Jh . n . Chr .) in seinen Ad Aristotelis Categorias commentaria . -
Nicolaus Copernicus (1473- 1543) wählte sie als Motto seines De revolutionibus orbium coelestium (1543) .
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4 . 1 Quadratfunktion und Normalparabel

Die Lösungen einer quadratischen Gleichung ax 2 + bx + c = 0 kann man als
die Nullstellen einer Funktion / mit dem Term f (x) = ax 2 + bx + c deuten .
Da f {x) ein quadratischer Term ist , heißt / quadratische Funktion . Die ein¬
fachste quadratische Funktion hat den Term f (x) = x 2

. Man gibt ihr einen
besonderen Namen :

Definition 145 . 1 : Die Funktion/ : x i—>■x 2
, Df = [R , heißt Quadratfunk¬

tion , ihr Graph heißt Normalparabel* .

Um die Normalparabel zeichnen zu können berechnen wir eine Wertetabelle :
- 3 - 2 - 1,5 - 1 - 0,5 - 0,3 0 0,3 0,5 1 1,5 2 3

y 9 4 2,25 1 0,25 0,09 0 0,09 0,25 1 2,25 4 9

Abbildung 145 . 1 gibt die Normalparabel wieder . Da man sie sehr oft zeichnen
muss , lohnt sich eine Zeichenschablone * * .

Wir stellen einige wichtige Eigenschaf¬
ten der Normalparabel zusammen :
1 . Die Normalparabel ist eine ge¬

krümmte Kurve , die sich nach oben
öffnet .
Sie ist symmetrisch zur y-Achse ,
da zu entgegengesetzten Abszissen
x und — x wegen ( — x)2 = x2
gleiche Ordinaten gehören . Die

i) jiap « ßo/ -f| (he parabole ) = die Nebeneinanderstel¬
lung , die Vergleichung, die Gleichheit . Das Wort wurde
bereits von den Pythagoreern benutzt (siehe Aufga¬
be 110/25 ) . Den Graphen der Funktion x h-> ax 1 be¬
zeichnte als erster Apollonios von Perge (um 262
bis um 190 v . Chr .) in seinen Kwvikö (Konikä ) - »Die
Kegelschnitte « - als Parabel (siehe 5.2) .
Das Adjektiv normal erscheint in Deutschland zu An¬
fang des 18 . Jh . s . Es geht zurück auf das lateinische
normalis , das zum Substantiv norma gehört . Dieses
bedeutete ursprünglich Winkelmaß , später dann aber
auch - so z . B . bei Cicero (106- 43 v . Chr .) - Richt¬
schnur , Regel , Vorschrift , sodass normalis im übertra¬
genen Sinn der Regel entsprechend bedeutet .
Das französische Wort echantillon (Probe , Muster ) gelangt an den Niederrhein und ergibt unter Einfluss des
mittelniederländischen scampen (behauen ) in Kleve 1477 sc (h) amplioen , im 16 . Jh . niederdeutsch schampe -
lün im Sinne von Vorbild, Muster , Modell . Unter dem Einfluss des Verbums schaben verliert es sein m . Die
Form Schabion ist 1783 in Berlin belegt .

Abb . 145 . 1 Die Normalparabel
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y-Achse heißt Symmetrieachse oder kurz Achse* der Normalparabel .
2 . Ausy = x 2 A 0 folgt , dass es keine Kurvenpunkte unter der x -Achse gibt .

Auf der x -Achse liegt nur der tiefste Kurvenpunkt (0 [ 0) . Er ist auch der
Schnittpunkt der Achse mit der Normalparabel und heißt Scheitel * * der
Normalparabel .

3 . Aus 0 ^ x x < x 2 folgt 0 < x2 — x x . Multipliziert man mit x 2 + x l5 dann
ergibt sich 0 < xf — x 2 und somit 0 fS x \ < x\ , d . h . , mit wachsenden posi¬
tiven Abszissen nehmen auch die entsprechenden Ordinaten zu . Die Kurve
steigt im 1 . Quadranten und fällt auf Grund ihrer Symmetrie im 2 . Qua¬
dranten .

4 . Wenn x beliebig groß wird , dann wird erst recht x 2 beliebig groß . Also
erstreckt sich die Normalparabel nach oben ins Unendliche . Die Werte¬
menge der Quadratfunktion ist demnach nicht nach oben beschränkt . Sie
besteht aus allen nicht negativen reellen Zahlen , weil man aus jeder nicht
negativen reellen Zahl die Wurzel ziehen kann , deren Quadrat wieder die
Zahl liefert (Abbildung 147 . 1 ) . Also gilt W = [Rq .

Aufgaben
1 . Zeichne den Graphen der Quadratfunktion in verschiedenen Koordina¬

tensystemen . Wähle als Einheiten auf den beiden Achsen
a) je 1 cm , b) je 5 cm.

2 . Zeichne den Graphen der Quadratfunktion in einem Koordinatensystem
mit verschiedenen Einheiten auf den Achsen , und zwar
a) auf der x -Achse 1 cm, auf der j -Achse 5 cm;
b) auf der x-Achse 5 cm, auf der y -Achse 1 cm.

3 . Begründe die Konstruktion von Punkten P der Normalparabel , die in
Abbildung 147 .2 vorgeführt ist .

* Den Fachbegriff Achse findet man bei Euklid (um 300 v . Chr .) als 6 ä ^cov (ho äxön ) lediglich in den
Definitionen 15 , 19 und 22 von Buch XI der Elemente für diejenige Gerade , um die sich ein Halbkreis , ein
Dreieck oder ein Parallelogramm drehen müssen , damit eine Halbkugel , ein Kegel oder ein Zylinder ent¬
steht . Das zugehörige lateinische axis wird durch Conradt von Megenburg 1349 in seiner Übersetzung der
De sphaera mundi des Johannes de Sacro Bosco (12007- 1256?) als achs wiedergegeben , das aus dem
althochdeutschen ahsa herkommt . Apollonios (um 262- um 190 v .Ohr .) benützt i&fsfj = Achse in unserem
Sinn .

** Archimedes (um 287 - 212 v . Chr .) nannte diesen Punkt f| Koptxpij (he koryphe ) = Spitze , Gipfel , Scheitel ,
was Johann Christoph Sturm (1635- 1703) mit Scheitelpunkt in seinem 1670 erschienenen Des Unvergleichli¬
chen Archimedes Kunst -Bücher , Teutscher Archimedes übersetzte .
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Abb . 147 . 1 Quadrieren und Radizieren Abb . 147 .2 Konstruktion von Punkten
mit Hilfe der Normalparabel der Normalparabel

4.2 Normalparabel und Gerade

Ein graphisches Verfahren zur Lösung der quadratischen Gleichung
ax 2 + bx + c = 0 mit a =1= 0 beruht auf der Umformung

_ b
ax + bx + c = 0 <t> ;»r = c

- x - .a a

Wir fassen die beiden Seiten als Ter¬
me von zwei Funktionen / und g auf ,
nämlich

/ (x ) = x 2

c
ag (x) = - - X

a
Der Graph von/ist die Normalpara¬
bel , der von g eine Gerade mit der

Steigung - und dem v-Achsenab -
a

schnitt — - . (Siehe Abbildung 147 . 3 .)
a

y ,
/ y = x 2

S 7 / ^
^

blL^ y = - x -
0

sA ^

^ i \
i \ V

^
/ l

/ 1
/ 1

/ 1
y 1 m

* 1 x 2 X

Abb . 147 .3 Graphische Lösung
der Gleichung ax 2 + bx + c = 0
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Für die Abszissen x x und x 2 der Schnittpunkte S x (x t | jq ) und S 2 {x2 \y2) gilt
b c

/ (x t ) = g (x i ) > also x i = - x i - und
a a
b c

R xl ) = g (x2) , alsO x\ = ~ ~ x2 ~ ~ -a a

Sie sind daher die Lösungen der quadratischen Gleichung ax 2 + bx + c = 0 .
Auf Grund dieser Überlegungen kann man quadratische Gleichungen also
auch graphisch näherungsweise lösen : Man zeichnet mit der Schablone die
Normalparabel und bringt sie mit der zugehörigen Geraden zum Schnitt .
Dabei treten die uns schon bekannten drei Fälle auf :
Parabel und Gerade haben zwei, einen oder keinen Punkt gemeinsam . Da¬
durch kommt zum Ausdruck , dass die quadratische Gleichung zwei, eine oder
keine Lösung hat . Abbildung 148 . 1 zeigt die drei Fälle .

y = 2x -= 2x -

Abb . 148 . 1 Zur Anzahl der Lösungen einer quadratischen Gleichung
x 1

II

— 2x — 3 = 0 x 2 — 2x + 1 = 0 x 2 — 2x + 2 = 0
x 2 = 2x + 3 x 2 = 2x — 1 x 2 = 2x — 2

Wir haben damit ein algebraisches Problem geometrisch gelöst . Umgekehrt
kann man aber auch geometrische Probleme algebraisch lösen . Als Beispiel
hierfür betrachten wir : Berechne die Schnittpunkte der Normalparabel mit
einer gegebenen Geraden . Die Koordinaten der Schnittpunkte müssen das
Gleichungssystem

1 y = * 2
erfüllen , das mit V x * ~ mx ~ { = 0

II y = mx + t II ' y = mx + t
äquivalent ist .
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Je nachdem , ob die Diskriminante D = m 2 + 4t der Gleichung I ' größer ,
gleich oder kleiner als null ist , gibt es zwei, einen oder keinen Schnittpunkt . Im
Fall D > 0 heißt die Gerade Sekante , im Fall D < 0 heißt sie Passante ; im Fall
D = 0 nennt man die Gerade Tangente * .
Wir sagen , die Tangente berührt die Parabel im Berührpunkt . Die Abszisse des
Berührpunkts ist Doppellösung der quadratischen Gleichung (siehe Seite
103) .
Verschiebt man eine Gerade parallel zu sich so weit , bis sie die Parabel berührt ,
dann kann man sich vorstellen , dass im Berührpunkt die beiden Schnittpunk¬
te zusammenfallen . Das macht die Bezeichnung Doppellösung verständlich
(Abbildung 149 . 1 ) .
Ist die gegebene Gerade parallel zu y-Achse , dann erhält man das einfachere
System
I y = x 2

II x = s ,
das die einzige Lösung (ä | ^2) hat (Abbildung 149 .2) .

y ,

/ / y = x 2

/ ff
/ \\

v V
/ /> V— Berührpunkt

/W
/ / V / x

V {/

Abb . 149 . 1 Zur Erklärung des
Begriffs »Doppellösung «

Abb . 149 .2 Schnitt mit einer Geraden
parallel zur Parabelachse

* secans (lat .) = schneidend ; tangens (lat .) = berührend .
Passante ist eine Analogiebildung zu den vorherigen Begriffen . Aus passus (lat .) = das Ausspreizen der Füße
beim Gehen wird das französische passer = vorübergehen , vorbeikommen , das wir in unserem passieren wie¬
derlinden .
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Ein Zahlenbeispiel soll dir zeigen , wie man im konkreten Fall vorgeht .

Beispiel :
Berechne die Schnittpunkte der Geraden y = x + 4 mit der Normalpara¬
bel .

I y = x 2

II y = x + 4
I ' x 2 — x — 4 = 0

II " y = x + 4
_

I ' x = 1 (1 - 1/17) v * = 1 (14 - /17 )
II " y = x + 4

_
x = 1 (1 - 1/17) => y = 1 ( 1 - / 17) 4- 4 = i (9 - j/17 )

x = 1 (1 + l/l7 ) => j = 1 (1 + l/l7 ) + 4 = 1 (9 + ]/l7 )
Das ergibt die Schnittpunkte
S 1 (i ( l - /i7 ) |

l (9 - l/l7 )) und S 2 (i (l + l/l7 ) li (9 + l/l7 )) .
Das graphische Lösungsverfahren (Abbildung 150 . 1 ) liefert dafür die
Näherungswerte S t ( — 1,612,4 ) und S 2 (2,616,6 ) . Die exakten Werte sind
nur algebraisch zu haben .

'
y = x + 4

Abb . 150 . 1 Schnittpunkte der Normalparabel mit der Geraden y = x 4- 4
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Aufgaben
1 . Löse zuerst graphisch und dann rechnerisch .

a) x 2 — 2x = 0 b) x 2 + 2x — 3 = 0
c) x 2 + 6x = — 11 d) 2x 2 + 24 = 16x

2 . Löse zuerst graphisch und dann rechnerisch .
a) x 2 — l,6x — 2,6 = 0 b) 3x 2 — 2x — 12 = 0
c) 0,25 .x;2 + 0,5x — 0,5 = 0 d) 6x 2 + 2x — 25 = 0
e) 8x 2 — 14x + l = 0 f) 0,1 x 2 + 0,32x + 0,12 = 0

3 . Berechne die Koordinaten der Schnittpunkte der Normalparabel mit der
Geraden
a) y = — 0,5x + 5 , b) y = 6x — 3 .

4 . Überprüfe , ob die Gerade Sekante , Tangente oder Passante der Normal¬
parabel ist , und berechne gegebenenfalls die gemeinsamen Punkte .
a) y = x — 1 b) y = — 4x — 4 c) y = 20x — 100
d) j = 100x — 20 e) y = 3x + 4 f) y = 2,5 .x — 1,5625

5 . Bestimme eine Gleichung der Tangente der Normalparabel , die die Stei¬
gung m hat ; berechne die Koordinaten des Berührpunkts .
a) m = 3 b) m = — 6 c) m = 0

6 . Wie lautet eine Gleichung der Geraden durch den Punkt (012) , die die
Normalparabel in S (3 [ ?) schneidet ? Gib auch den zweiten Schnittpunkt
an .

7. Die Gerade y = mx + t sei Tangente der Normalparabel .
a) Zeige ; Der Berührpunkt hat die Abszisse 0,5m und die Ordinate — t .
b) Konstruiere mit Hilfe von a) die Tangente an die Normalparabel in

einem gegebenen Parabelpunkt .
c) Konstruiere mit Hilfe von a) die Tangente an die Normalparabel von

einem Punkt der negativen y-Achse aus .

8 . Bestimme Gleichungen der Tangenten der Normalparabel , die durch den
Punkt P gehen , und berechne jeweils die Koordinaten des Berührpunkts ,
a) P (01 — 3) b) P (0 | — 10,24)

9 . Bestimme Gleichungen der Tangenten der Normalparabel , die durch den
Punkt P gehen , und berechne jeweils die Koordinaten des Berührpunkts ,
a) P (11 — 3) b) P ( - 3 | 8)
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4 .3 Die Wurzelfunktion

4 .3 . 1 Definition der Wurzelfunktion

Ordnet man jeder nicht negativen Zahl x ihre Quadratwurzel Yx zu , so hat
man eine Funktion ; sie heißt Quadratwurzelfunktion oder kurz Wurzelfunk¬
tion . Wir merken uns

Definition 152 . 1 :
Die Funktion / : xk |/x , Df = Rq heißt Wurzelfunktion .

Zum Zeichnen des Graphen der Wurzelfunktion berechnen wir eine Werteta¬
belle, auf Zehntel gerundet .

X 0 0,25 0,5 1 2 3 4 5 6 7 8 9

Yx 0 0,5 0,7 1 1,4 1,7 2 2,2 2,4 2,6 2,8 3

Abbildung 152 . 1 gibt den Graphen wieder .
Wegen 0 ^ x t < x 2 <=> ]/x [ < Yx

~

2 (vergleiche Seite 53) ist die Wurzelfunktion
echt monoton wachsend . Die Wertemenge der Wurzelfunktion ist [Rq . Wäre
die Wertemenge nämlich nach oben beschränkt , dann müsste es eine Zahl N
geben , sodass Yx < N für alle x e IRq gälte . Aus 1/ x < N folgt aber x < N 2 ,und das ist ein Widerspruch , weil x beliebig groß werden kann .

y

1

o 5 10 x
Abb . 152 . 1 Der Graph der Wurzelfunktion

Aufgaben
1 . Bestimme die maximale Definitionsmenge der folgenden Funktionsterme

und berechne eine Wertetabelle , sodass du die Graphen der zugehörigen
Funktionen zeichnen kannst .

b) — ]/ — x c) V\ x \ d) - l/M

c) ]/ — x 2
2 . Löse wie in Aufgabe 1 :

a) Yx2 b) — Yx2
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4 .3 .2 Die Umkehrfunktion

Eine Funktion f : x \- > y mit y = f (x) ordnet jeder Zahl x ihrer Definitions¬
menge D genau eine Zahl y ihrer Wertemenge W zu .

yX

Abb . 153 . 1 Veranschaulichung einer Funktion / : x i—> y

Abbildung 153 . 1 zeigt , dass dabei auch verschiedene x -Werte denselben y-
Wert als Funktionswert haben können . Zu einem solchen j -Wert gehört also
mehr als ein x -Wert . Kehrt man die Zuordnung um , dann erhält man keine
Funktion , weil die umgekehrte Zuordnung nicht eindeutig ist . Es gibt aber
Funktionen / bei denen die Umkehrung der Zuordnung wieder eindeutig
ist , also eine neue Funktion g ergibt , / heißt in einem solchen Fall umkehrbar ,
und g nennt man die Umkehrfunktion von / (Abbildung 153 . 2) .
Die Umkehrbarkeit einer Funktion bedeutet , dass ihr Graph von jeder Paral¬
lelen zur x -Achse höchstens einmal geschnitten wird ; denn jedes yeW darf
nur einem einzigen xe D zugeordnet sein . Die Umkehrfunktion g zur Funk¬
tion f : x \- > y entsteht dann einfach durch Umkehren der Abbildungsrichtung
g : y i—> x (Abbildung 154 . 1 ) . Die Definitionsmenge der Umkehrfunktion g ist
die Wertemenge W der ursprünglichen Funktion/ . Die Wertemenge von g ist
dann natürlich die Definitionsmenge D von f .

x y X y

Abb . 153 .2 Die Funktion/und ihre Umkehrfunktion g
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x = g ( y )
Abb. 154 . 1 Die Funktion/ : x t—> y , ihre Umkehrfunktiong : y i- > x und ihr gemein¬

samer Graph

Schreibt man den Funktionswert y der Funktion / : x i—» y in der Form fix ) ,
so hat die Funktion/die Funktionsgleichung y = fix ) . Hat/eine Umkehr¬
funktion g : y i—> x und bezeichnet man ihren Funktionswert mit g (y) , so gilt
die Gleichung x = g (y) . Die Gleichungen y = f (x) und x = g (y ) stellen den¬
selben Zusammenhang zwischen den Elementen der Mengen D und W dar .
Bei y = fix ) wird lediglich die Zuordnungsrichtung x i—>■y , bei x = giy ) die
Zuordnung y i—> x hervorgehoben . In beiden Fällen ergibt sich derselbe
Graph .
Bei der Schreibweise x = giy ) für die Umkehrfunktion g : y x ist j > die
unabhängige und x die abhängige Variable . Betrachtet man die Funktion g für
sich allein , so wird man wie üblich die unabhängige Variable mit x und die
abhängige mit y bezeichnen . Diese Änderung der Bezeichnungsweise führt zur

5 - —

Abb. 154 .2 Spiegeln an der Winkelhalbierenden y = x durch Vertauschen der Koor¬
dinaten
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Gleichung y = g (x) . Der zugehörige Graph entsteht aus dem Graphen von
x = g {y ) durch Spiegelung an der Winkelhalbierenden y — x (Abb . 154 .2) .
Wie man die unabhängige Variable bezeichnet , ist eine reine Äußerlichkeit ; sie
hat nichts mit der durch die Funktion gegebenen Zuordnung zu tun . Sie wirkt
sich nur auf die Zeichnung des Graphen aus : Beim Spiegeln an der Winkelhal¬
bierenden y = x wird die x-Koordinate zur y-Koordinate und umgekehrt die
y- Koordinate zur x-Koordinate , also werden die x- und y- Koordinaten ein¬
fach vertauscht .

Aufgaben
1 . Welche der durch die folgenden Tabellen definierten Funktionen xi —►y

sind umkehrbar ? Stelle gegebenenfalls die Umkehrfunktion y i- » x durch
ihren Graphen dar .

a)

c)

X - 2 0 3 X - 2 0 3

y 12 - 1
b) y \ 1 2 1

X - 2 - 1012 X
A\

1 2,7 - 0,5 4

y 3 1 1 3 o
2 1 2 2 J

d) 7] 0,25 1,25 - 0,25 - 1,25

2 . Durch die Gleichungen
a) 5x + 2y — 10 = 0 b) x — y — 1 = 0
c) x + y - 3 = 0 d) y — 5 = 0
wird jeweils auf der Menge der reellen Zahlen eine Funktion / : x i—>■y
erklärt . Welche dieser Funktionen sind umkehrbar ? Stelle gegebenenfalls
die Umkehrfunktion g sowohl in der Form g : y i—> x als auch in der Form

g : xny durch eine Gleichung dar und zeichne die Graphen .

3 . Welche der in Abbildung 155 . 1 angegebenen Graphen definieren umkehr¬
bare Funktionen ?

Abb . 155 . 1 Zu Aufgabe 3
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4 . Die Graphen der Abbildung 156 . 1 stellen umkehrbare Funktionen
f \ x i—►y dar . Begründe dies ! Übertrage sie vergrößert in dein Heft und
zeichne jeweils den Graphen der Umkehrfunktion g in der Form

b)

Zu Aufgabe 4Abb . 156 . 1 Zu Aufgabe 4

5 . Durch den Graphen in Abbildung 156 .2 wird eine nicht umkehrbare
Funktion xi - > j erklärt (Begründung !) . Der Graph kann jedoch so in
Teilstücke zerlegt werden , dass jedes für sich eine umkehrbare Funktion
definiert . Gib die einfachste derartige Zerlegung an .

Abb . 156 .2 Zu Aufgabe 5
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6. Kann man die Graphen a und b der Abbildung 157 . 1 in Teilstücke zerle¬
gen , welche umkehrbare Funktionen definieren (vgl . Aufgabe 5 )? Wie
könnte die Zerlegung gegebenenfalls vorgenommen werden ?

Abb . 157 . 1 Zu Aufgabe 6

4 .3 .3 Die Wurzelfunktion als Umkehrfunktion

Hat die Quadratfunktion xh * x 2 eine Umkehrfunktion ? Der Graph der Qua¬
dratfunktion ist die Normalparabel . Sie wird von allen Parallelen zur x-Achse ,
die oberhalb der x-Achse laufen , zweimal geschnitten . Also hat die Quadrat¬
funktion keine Umkehrfunktion . Schränkt man jedoch die Definitionsmenge
so ein , dass der Graph nur aus dem steigenden oder nur aus dem fallenden Teil
der Parabel besteht , dann kann man die Funktion umkehren . Jetzt trifft jede
Parallele zur x -Achse den Graphen höchstens einmal . So hat z . B . die Funk¬
tion x y- y x 2 mit der Definitionsmenge [P CJ eine Umkehrfunktion (Abbildung
157 .2) . Aus y = x 2 mit x ^ O folgt x = ify mit y A 0 . Die Funktion

Abb . 157 .2 Die Quadratfunktion mit Abb . 157 . 3 Die Wurzelfunktion als

eingeschränkter Definitionsmenge Umkehrfunktion der (eingeschränkten )
D = [Rq Quadratfunktion
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g : y i—►1fy ; ^ eK 0
+ ist also die Umkehrfunktion zu / : x i—* x 2

; x e [Rq . g ist
aber die Wurzelfunktion , die wir in 4 .3 . 1 kennen gelernt haben . Ihr Graph ist
demnach die halbe Normalparabel und kann auch mit der Schablone gezeich¬
net werden . Mit der unabhängigen Variablen x erhält man g:
x i—> Vx , x e [Rq und als Graphen die an der Winkelhalbierenden gespie¬
gelte Halbparabel (Abbildung 157 . 3 ) .

Aufgaben
1 . Spalte die Quadratfunktion/ : x i—» x 2 in zwei umkehrbare Teilfunktionen

/ i und f 2 auf und gib jeweils die Umkehrfunktion an .
2 . Gib die Umkehrfunktion der Wurzelfunktion / : ih |/x an .
3 . Bestimme die maximale Definitionsmenge und die zugehörige Wertemen¬

ge der Funktion / und zeichne den Graphen . Ermittle gegebenenfalls die
Umkehrfunktion .
a) / (*) = V\ x \ b) f {x) = V^ x c) fix ) = - V\ x \ d) fix ) = - V^ x

* *4 .3 .4 Graph der Wurzelfunktion und Gerade

Wie bei Normalparabel und Gerade kann man auch bei der Wurzelfunktion
die Lage des Graphen zu einer Geraden untersuchen . Die Schnittbedingung
liefert eine Wurzelgleichung der Bauart ]/x = mx + t . Sie kann eine Doppellö¬
sung (Tangente ) , eine oder zwei einfache Lösungen (Sekante ) oder keine Lö¬
sung (Passante ) haben .

Aufgaben
1 . Löse durch Rechnung und Zeichnung :

a) \fx = x b) Vx = — x c) \fx = \ x \
d) ]/ \ x \ = x e) ]/ \ x

~
\ = — x f) f \ f \ = \ x \

2 . Löse durch Rechnung und Zeichnung :
a) Vx = 2x — 6 b) Vx = \ x + j
c) Vx = ix + 1 d) Vx = — jx — j

3 . a) Löse durch Rechnung ]fx — ]fa = x — a .
b) Löse a durch Zeichnung für a = 0 ; 1 ; 4 .

4 . Bestimme t so , dass y = \ x + t Tangente an den Graphen der Wurzel¬
funktion x i—►]/x ist .
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r -

Eine der regelmäßig etwa alle 20 Minuten stattfindenden Eruptionen des Stromboli .
Dieser 926 m hohe Vulkankegel bildet die gleichnamige italienische Insel . Er ist einer
der tätigsten Vulkane Europas . Von seinen ständigen Eruptionen berichtet uns bereits
z . B . Pomponius Mela (1 . Jh . n . Chr .) in Buch 11/120 seiner um 40 n . Chr . entstandenen

De chorographia libri tres - »Drei Bücher Erdbeschreibung « wo er davon spricht ,
dass die Insel Strongyle - ExpoYYÜXri , die Runde , hieß sie nämlich in der Antike - mit

einem ewigen Feuer lodere .
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5 . 1 Die verschobene Normalparabel

5 . 1 . 1 Verschiebung in ^-Richtung

Die Funktionswerte der Funktion g : x h-> x 2 + t , xe fR unterscheiden sich
von den Funktionswerten der Funktion / : ii - > F,ielR für jedes x um den
Wert t .
Wählen wir z . B . t = 2 , dann erhalten wir folgende Tabelle :

X - 3 - 2 - 1 0 1 2 3

x2 9 4 1 0 1 4 9

x 2 + 2 11 6 3 2 3 6 11

Der Graph von g : x h-> x 2 + 2 entsteht aus der Normalparabel durch Ver¬
schieben um 2 in v- Richtung (Abbildung 160 . 1 a )) .
Allgemein gilt :

Der Graph von x i—> x 2 + t entsteht aus der Normalparabel durch Ver¬
schiebung um t in y -Richtung .

y = x 2 + 2

S ( 0121/2

b)

x 5 ( 0 | -2 )

Abb . 160 . 1 Verschiebung der Normalparabel in y- Richtung
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Beachte : Ist t negativ , dann wird die Normalparabel um 11 | nach unten ver¬
schoben (Abbildung 160 . 1b ) .

Bei der Verschiebung bleibt die r-Achse weiterhin Parabelachse , der neue
Scheitel ist (0 | t) , die neue Wertemenge [ / ; + oo [ .

Aufgaben
1 . Zeichne die Graphen zur Funktionsgleichung :

a) y = v 2 + 1 b) y = x 2 — 1
c) y = x 2 + 2,5 d) y = x 2 - 3,5 .

2 . Gib Scheitel und Wertemenge der Parabel an .
a) y = x 2 — 5 b) y = x 2 + 100
c) y = x 2 - 0,01 d) y = x 2 - 2 ]/2

3 . Zeichne den Graphen und bestimme die Nullstellen der zugehörigen
Funktion .
a) y = x 2 — 1 b) y = x 2 — 2,25
c) y = x 2 — 0,25 d) y = x 2 + 1,69
e) y = x 2 - f f) y = x 2 - lj

84. Zeichne die Graphen , die zu den folgenden Funktionsgleichungen gehö¬
ren . (Hinweis : Verwende die Umkehrfunktion !)
a) y = Vx — 1 b) y = ]/x + 2 c) y = — Vx + 1

5 . 1 .2 Verschiebung in x- Richtung

Den Zusammenhang der Funktionen/ : x 1—> x 2 und g : x 1—» (x — 3 ) 2 erkennt
man leicht durch Vergleich der Wertetabellen :

X - 3 - 2 - 1 0 1 2 3 4 5 6

x 2 9 4 1 0 1 4 9 16 25 36

(x - 3) 2 9 4 1 0 1 4 9

Die Werte von (x — 3) 2 stimmen mit den Werten von x 2 überein , stehen aber
unter den um 3 größeren x-Werten . Der Graph von g entsteht also aus der
Normalparabel durch Verschiebung um 3 in x -Richtung (Abbildung 162 . 1 a) .
Allgemein gilt :

Der Graph von xh (x - j ) 2 entsteht aus der Normalparabel durch
Verschiebung um 5 in x -Richtung .

Beachte : Ist s negativ , dann wird die Normalparabel um | .v ] nach links ver¬
schoben (Abbildung 162 . 1b) .

Die verschobene Parabel hat die Achse x = s und den Scheitel (.v 10 ) . Die
Wertemenge bleibt IR„ .
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y = ( x + 3

S ( 3 10 ) S (- 3 | 0
Abb . 162 . 1 Verschiebung der Normalparabel in x-Richtung

Aufgaben
1 . Zeichne den Graphen zur Funktionsgleichung :

a) y = (x - l ) 2 b) y = (x + l ) 2

c) y = (x - 2,5 ) 2 d) y = (x + J) 2

e) y = (2 - x ) 2 f) y = ( - x - 3 ) 2 .

2 . Gib den Scheitel und die Gleichung der Parabelachse an .
a) y = (x — 1,5) 2 b) y = (x + 100) 2

c) y = (x - 2 ]/3 ) 2 d) p = ( — 3 + x) 2

e) k = (3 - x ) 2 f) y = ( - 3 - x) 2

3 . Gib den Scheitel und die Gleichung der Achse an .
a) y = x 2 — 2x + 1 b) y = x 2 + 6x + 9
c) y = x 2 + 5x + 6,25 d) y = x 2 - ^ x + tö ^öö

• 4 . a) Erstelle Wertetabellen für die Funktionen f : x i—> Vx und
g : x h-> ]/x — 3 . Welcher Zusammenhang besteht zwischen den Wer¬
ten ? Wie erhält man also den Graphen von g aus dem von / ?

b) Zeichne den Graphen mit der Gleichung y = ]/x — s für .y = 1 bzw .
s = 2 .

5 . 1 .3 Zusammengesetzte Verschiebung

Eine beliebige Verschiebung lässt sich zusammensetzen aus einer Verschie¬
bung in x -Richtung und einer Verschiebung in p -Richtung , wie Abbildung
163 . 1 zeigt .
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S ( s 11 )

Abb . 163 . 1 Verschiebung der Normalparabel um s in x-Richtung und um t in
v- Richtung

Den Funktionsterm der verschobenen Parabel erhalten wir durch Kombina¬
tion der beiden uns schon bekannten Verschiebungen :

Normalparabel x i—> x 2

Verschiebung um s in x -Richtung x t- > (x — .s) 2

Verschiebung um t in Richtung x i- > (x — s) 2 + t

Abb . 163 .2 Schrittweise Verschiebung der Normalparabel um s = 3 nach rechts und
um t = 2 nach oben
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Allgemein gilt:

Der Graph von x i—> (x — s) z + t entsteht aus der Normalparabel durch
Verschiebung um s in x -Richtung und um t in ^ - Richtung .

Die verschobene Parabel hat die Achse x = s und den Scheitel S ( .v | 1) .
Die Wertemenge ist [ t ; + oo [ .
Wir können nun zeigen , dass jede Gleichung der Form y = x 2

34

+ px + q eine
verschobene Normalparabel darstellt . Mit Hilfe der quadratischen Ergän¬
zung stellen wir die Form her , aus der man die Verschiebung ablesen kann :

y = x 2 + px + q

y = x 2 + px +

Das ist eine Normalparabel , die um in x-Richtung und um

P 4q - pp- Richtung verschoben ist . Ihr Scheitel ist

Aufgaben
1 . Zeichne den Graphen zur Funktionsgleichung :

a) p = (x — l ) 2 + 3
c) y = (x + 3) 2 — 1

b) y = (x — 2) 2 — 5
d) y = (x + 2) 2 + 2,5 .

2 . Gib den Scheitel und die Gleichung der Parabelachse an.
a) y = (x — 1,7) 2 + 0,9 b) y = (x - ]/2 ) 2 + f
c) y = (x + 2V5) 2 + 2/5 d) y = (x - 1000 ) 2 - 5003

3 . Gib den Scheitel und die Gleichung der Parabelachse an .
a) y = x 2 — 2x — 1 b) y = x 2 — 6x + 10a) y = x 2 — 2x — 1
c) y = x 2 + 5x + i d) y = x 2 - j^X

4 . Eine verschobene Normalparabel enthält die Punkte A und B . Bestimme
ihre Gleichung , ihren Scheitel und ihre Achse .
a) A (211) ; B ( — 311 )
c) A (013) ; B (110)

b) A (0 | 0 ) ; B ( — 21 — 8)
d) A (213) ; B (214) ( !)
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5 . Wähle in der Funktionsgleichung y = (x — s)2 + t die Parameter s und t
so , dass der Graph der zugehörigen Funktion
a) den Scheitel ( — 419 ) hat;
b) die Gerade x = 2 als Achse hat und den Punkt Q ( — 0,514) enthält;
c) einen Scheitel hat, der sowohl auf der Geraden mit der Gleichung

y = 3x + 1 als auch auf der Geraden mit der Gleichung y = — 3x — 7
liegt .

• 6 . Zeichne den Graphen :
a) y = \ x 2 — 2 \ b) y = | (x - 2) 2 - l |
c) y = \ x 2 — 2 \ + 1 ä) y = (\ x \ - 2) 2 - l
e) j = | x 2 — 4x + 3 | f) y = x 2 — 4 | x | + 3

5 .2 Streckung der Normalparabel

Im Abschnitt 5 . 1 haben wir quadratische Funktionen betrachtet, bei denen
der Term x 2 den Koeffizienten 1 hatte . Bei der allgemeinen quadratischen
Funktion haben wir aber den quadratischen Term ax 2 mit a + 0 . Der zugehö¬
rige Graph heißt (allgemeine ) Parabel . Die Normalparabel ist der Sonderfall
für fl = 1 . Um zu untersuchen wie sich der Faktor a auf den Graphen aus¬
wirkt , vergleichen wir Funktionen vom Typ gfl : xn ax 2 mit / : x h x2

. Für
die Werte a = 2 , a = \ und a = — 2 erhalten wir folgende Wertetabellen :

Abb . 165 . 1 Formänderung der Parabeln durch den Faktor a bei x 2
, hier für

0 < a < 1
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X - 3 - 2 - 1 0 1 2 3

x 2 9 4 1 0 1 4 9

2x 2 18 8 2 0 2 8 18
I t 2
2 X 4,5 2 0,5 0 0,5 2 4,5

— 2x 2 - 18 - 8 - 2 0 - 2 - 8 - 18
Abbildung 165 . 1 zeigt , dass a die Gestalt der Parabel beeinflusst . Jede Or¬
dinate x 2 wird mit dem Faktor a zu ax 2 gestreckt . Ist a > 1 , dann ist die
Parabel schlanker als die Normalparabel , ist 0 < a < 1 , dann ist die Parabel
breiter als die Normalparabel . Bei negativem a ist die Form durch \ a \ fest¬
gelegt , die Parabel aber an der x -Achse gespiegelt .
Die Abbildung 166 . 1 zeigt Beispiele für den Einfluss von a auf die Form der
Parabel .

Abb . 166 . 1 Die Parabel y = ax 2 für « = — 2 ; j , 1 ; 2
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Zusammenfassend halten wir fest:

a > 0 : Parabel nach oben offen
a < 0 : Parabel nach unten offen
\ a \ = 1 : Normalparabel
\ a \ > 1 : schlanke Parabel
\ a \ < l : breite Parabel

Bei den Formänderungen durch den Faktor a bleiben der Scheitel (0 | 0) und
die Achse * = 0 der Parabel erhalten . Für a > 0 bleibt auch die Wertemenge
IR^ , während für a < 0 die Wertemenge (R0 ist .
Dem Augenschein nach haben die Parabeln y = x 2 und y = ax 2 für | a | 4= 1
verschiedene Form . Tatsächlich sind aber alle derartigen Parabeln zueinander
ähnlich ; man kann sie nämlich durch geeignete zentrische Streckungen in¬
einander überführen .
Wenden wir die zentrische Streckung mit dem Zentrum (010) und dem Streck¬
faktor m =t= 0 auf die Punkte P (p \p 2) der Normalparabel an , dann ergeben
sich die Bildpunkte P ' (mp \ mp 2 ) . Für diese Bildpunkte gilt x = mp und

1 1 1
v = mp 2 = — (mp ) 2 und damit y = — x 2

. Für m = - liegen also die Bild¬
en m a

punkte auf der Kurve mit der Gleichung y = ax 2
. Damit haben wir

Satz 167.1 : Alle Parabeln mit den Gleichungen y = ax 2
; a =f= 0 sind

zueinander ähnlich .

Abb . 167 . 1 Zentrische Streckung der Normalparabel mit Zentrum (010) und Streck¬
faktor m
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* *Zum Namen »Parabel «

Wie auf Seite 145 angemerkt , geht das
Fachwort Parabel auf Apollonios von
Perge (um 262- um 190 v . Chr .) zurück .
Er beweist in Buch 1,11 seiner acht Bü¬
cher über die Kegelschnitte - 1 bis IY sind
auf griechisch , V bis VII auf arabisch
überliefert , VIII ist verloren - folgende
interessante Eigenschaft , die bereits Me-
naichmos (Mitte 4 . Jh . v . Chr .) und Ar -
chimedes (um 287 - 212 v . Chr .) bekannt
war (siehe dazu Abbildung 168 . 1 ) :
Das von einem beliebigen Punkt P der Pa¬
rabel y = ax 2 auf die Parabelachse gefäll¬
te Lot schneidet auf dieser eine Strecke
[SQ] ab , sodass das Quadrat über dem I

Abb . 168 . 1 PQ a

flächengleich einem Rechteck ist , dessen
eine Seite dieser Achsenabschnitt [SQ] ist und dessen andere Seite die Länge - hat ,— 1 _ a
d . h . , daß stets PQ 2 = - • SQ gilt . (Vgl. Aufgabe 169/5.)
Wegen dieses Gleichseins ( = 7iapaßo/o ) [parabole ] ) der beiden Flächeninhalte gabApollonios der Kurve y = ax 2 den Namen Tiapußo/ .q , der zu parqbola latinisiert und
als Parabel eingedeutscht wurde .

Aufgaben
1 . Zeichne ins gleiche Koordinatensystem die Graphen von y = x 2

, y = 4x 2
und y = \ x 2 .

2 . Zeichne ins gleiche Koordinatensystem die Normalparabel y = x 2 und die
Graphen von y = — 3x 2

, y = — 0,1 x 2 und y = fx 2 .
3 . Ermittle zeichnerisch die Schnittpunkte der Parabel mit der Geraden und

prüfe die Ergebnisse durch Rechnung .
a) y = X 2

; y = 1 b) y = - } x 2
; y = - 3

c) y = 4x 2
; y = x + 1 d) y = — 3x 2

; y = — 6x + 3
4 . Lässt man eine Parabel um ihre Achse rotieren , so überstreicht sie eine

Fläche , die man als Paraboloid bezeichnet . Solche Flächen werden in der
Physik und Technik z . B . bei Flohlspiegeln verwendet . Ein derartiger Para¬
bolspiegel zeigt folgende Eigenschaft : Alle parallel zur Symmetrieachse
einfallenden Lichtstrahlen werden in einem Achsenpunkt , dem so genann¬
ten Brennpunkt , vereinigt . Seine Entfernung vom Scheitel heißt Brennwei¬
te . Hat ein Achsenschnitt des Spiegels (bei passender Wahl des Koordina -
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1 5

Abb. 169 . 1 Der parabolische Brenn¬
spiegel aus AlbrechtDürers (1471- 1528)
Underweysung der messung mit dem
zirckel vnd richtscheyt in Linien ebnen
vnnd gantzen corporen , Nürnberg 1525

tensystems ) die Gleichung y = ax 2
, so ist F der Brennpunkt . *

a) Wie groß ist die Brennweite eines Parabolspiegels , dessen Achsen¬
schnitt der Graph von y = jjx 2

, - 6 51 6 , ist (Längeneinheit
1 cm)?

b) Zeichne den Achsenschnitt eines Parabolspiegels von 2 cm Brennweite
und 8 cm Durchmesser . (Der Scheitel sei der Ursprung , die Spiegelach¬
se die y -Achse des Koordinatensystems .)
Im Brennpunkt befinde sich eine Lichtquelle . Zeichne den Verlauf der
reflektierten Lichtstrahlen .

5 . a) Beweise die von Apollonios angegebene Eigenschaft der Parabel (sie¬
he Seite 168) .

b) In Aufgabe 110/25 behandelten wir das Problem der Flächenanlegung .
Zeige , dass für den einfachsten Fall , nämlich an eine gegebene Strecke
der Länge b ein Rechteck so anzulegen , dass sein Flächeninhalt einen

1
vorgegebenen Wert c hat , die Parabel y = - x 2 gute Dienste tut . Weise

* Der Brennpunkt einer Parabel wird bei Apollonios in den Konika nirgends erwähnt , die Brennpunkte von
Hyperbel und Ellipse jedoch schon . Möglicherweise könnte er ihn in seiner verloren gegangenen Schrift Tlepi
roß nopioo (peri tu pyriu ) - »Über den Brennspiegel « - behandelt haben . Die uns bekannte früheste Er¬

wähnung dieses Punktes erfolgt bei Pappos (um 300 n . Chr .) , ohne dass er ihm einen Namen gibt . Es lässt sich

jedoch nicht belegen , ob die oben angegebene optische Eigenschaft dieses Punkts dem Altertum bekannt war ;
denn auch die Schrift TIepi nupeiwv (peri pyreion ) des Diokles (um 100 n . Chr .) , die angeblich parabolische
Brennspiegel behandelt haben soll , ist verloren gegangen . Der gar Archimedes (um 287- 212 v . Chr .) zuge¬
schriebene Bau von Brennspiegeln , mit denen er bei der Verteidigung von Syrakus 212 v . Chr . die römische
Flotte aus größerer Entfernung in Brand gesetzt habe , beruht auf einer etwa drei Jahrhunderte später ent¬
standenen Legende . Erstmals lesen wir von der optischen Eigenschaft des Brennpunktes bei Anthemios von
Tralleis (t 534) , der bei der Erbauung der berühmten Hagia Sophia Konstantinopels tätig war . Das Abend¬
land erhält von der Eigenschaft dieses Punktes erst Kenntnis durch die Gerhard von Cremona (1114- 1187)
zugeschriebene Übersetzung Uber de speculis comburentibus , der Abhandlung über die Brennspiegel nach Ke¬

gelschnitten des großen Physikers und Mathematikers Ibn al -Haitam , genannt Alhazen (um 965- 1039) , der
sich bei seinen Untersuchungen auf griechische Quellen stützte . Johannes Kepler ( 1571 - 1630) gibt schließ¬
lich 1604 diesem Punkt den lateinischen Namen focus ( = Feuerstätte , Opferherd ) . Die Eindeutschung Brenn¬
punkt fand durch das Mathematische Lexicon (1716) des Christian von Wolfe (1679- 1754) Verbreitung.
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dazu nach , dass y die gesuchte zweite Rechtecksseite ist , wenn c als
Inhalt eines Quadrats der Seitenlänge v gewählt wird .

Je ) Verwandle mit Hilfe einer geeigneten Parabel Quadrate mit den Flä¬
cheninhalten 1 ; 4 ; 9 ; 16 in flächengleiche Rechtecke , sodass eine Recht¬
ecksseite stets die Länge 4 hat .

Sd) Lege an eine Strecke der Länge 2 mit Hilfe einer geeigneten Parabel
Rechtecke so an , dass sie flächengleich sind mit Quadraten , deren
Seiten die Längen § bzw . 4 haben .

• 6 . Mit Hilfe der von Apollonios angegebenen Eigenschaft der Parabel (sie¬
he Seite 168) kann diese unter Verwendung des Höhen - oder Kathetensat -

1zes punktweise konstruiert werden , da y = ax 2 mit * 2 = - y äquivalent ist
a

(Abbildung 170 . 1 ) . Konstruiere folgende Parabeln punktweise :
a) y = 2x 2 b) y = \ x 2 c) y = Ax2 d) y = \ x 2

y = ax

Thaies¬
kreis

Abb . 170 . 1 Punktweise Konstruktion der Parabel y = ax 2 mit Hilfe des Kathetensat -

57 . Wie Omar al -Hayyam (10487- 1131 ) die kubische Gleichung x 3 + px = qfür positive p und q geometrisch löste :
a) Vorübung : Zeige, dass der im 1 . Quadranten gelegene Halbkreis mit

dem Mittelpun kt M (r 10) und dem Radius r die Gleichung
y = Vx (2r — x) hat.
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Hinweis : Berechne MP für einen beliebigen Punkt P (x | >>) auf dem
Halbkreis . Was muss sich für MP ergeben ?

b ) Al -Hayyam führt zunächst neue Koeffizienten ein ; er setzt

1 d
p ~ —

2 und q = ■■- j , mit a > 0 , und erhält die Gleichung
a a

| | ■ a 2 x mit x 4= 0
2 ^ 2a a

2a 2 x 4 + x 2 = dx
a 2 x4 = x (d — x)

II - x -

ii r
ax 2 = 1/ x (d — x)
Links steht der Funktionsterm der Parabel y = ax 2

, rechts der Funk¬
tionsterm des Halbkreises y = \/x (d — x) um M (\ d \ 0) mit Durchmes¬
ser d . Die Abszisse des von (010) verschiedenen Schnittpunkts dieser
beiden Graphen löst also die letzte Gleichung und damit die kubische

1
Gleichung x 3 + px = q (Abbildung 171 . 1 ) . Die Größen — und d erhält

man aus p und q mittels des Höhen - oder Kathetensatzes : y = ax 2

lässt sich nach Aufgabe 6 punktweise konstruieren . Löse nach diesem
Verfahren nach geeigneter Wahl der Einheit
1) x 3 + 6x = 20 , 2) x 3 + 3x = 4 , 3) 4x 3 + 7x — 24 .

Thaieskreis

(1/ q)2 = 1 - q

d O (\Tqf1
■P

Thaieskreis

1 x

Abb . 171 . 1 Geometrische Lösung der kubischen Gleichung x 3 + 4x = 10 nach
Omar al -Hayyam
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5 .3 Die allgemeine verschobene Parabel

Gegeben sei eine Parabel mit dem Scheitel S (s | t) , deren Form durch den
Formfaktor a festgelegt ist . Zur Bestimmung ihrer Gleichung gehen wir von
der Normalparabel y = x 2 aus und strecken sie mit dem Faktor a zur Parabel
y = ax 2

. Eine Verschiebung dieser Parabel um s in x- Richtung erreichen
wir , wenn wir x durch x — s ersetzen ; das ergibt die Parabel y = a (x — s) 2 .
Schließlich verschieben wir diese Parabel um t in v - Ricbtung und erhalten
y = a {x — s) 2 + t . Dieses Ergebnis fassen wir zusammen zum

Satz 172 . 1 : Eine Parabel mit dem Scheitel S (s | t) und dem Formfaktor
a -)= 0 , deren Achse parallel zur j '-Achsc ist , hat die Gleichung
y = a (x — s) 2 + t.
Diese Gleichung heißt Scheitelform der Parabelgleichung . *

Jetzt können wir zeigen , dass der Graph einer allgemeinen quadratischen
Funktion x i—* ax 2 + bx + c eine Parabel ist . Dazu bringen wir die Funk¬
tionsgleichung y = ax 2 + bx + c auf die Scheitelform einer Parabelgleichung .
Als Hilfsmittel verwenden wir die quadratische Ergänzung .

y = ax 2 + bx + c | | : a

y , b c- = x + - x + - | | quadratische Ergänzunga a a

X — X

b 2 + 4ac

b 2 + 4aca \ x +

b — b 2 + 4acDas ist die Gleichung einer Parabel mit dem Scheitel S ( -
und dem Formfaktor a . \

Satz 172 .2 : Der Graph der allgemeinen quadratischen Funktion
/ : rn ax 2 + bx + c , Df = \R , ist eine Parabel . Diese ist für a > 0
nach oben , für a < 0 nach unten offen.

* Pierre de Fermat ( 1601 - 1665) verwendet als erster die Scheitelform der Parabelgleichung im Sinne des
Apollonios (siehe Seite 168) , also in der Form x 2 — ay , in seiner spätestens 1636 vollendeten Adlocosplanoset solidos isagoge - »Einführung in die ebenen und körperlichen Örter « die erst 1679 im Druck erscheint ,sodass John Wallis (1616- 1703) mit seinem Tractatus de sectionibus conicis nova methodo expositis - »Ab¬
handlung über die nach einer neuen Methode dargestellten Kegelschnitte « - von 1655 der Ruhm der Erst¬
veröffentlichung zusteht .
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Aus der obigen Rechnung folgt weiter

Satz 173 . 1 : Die allgemeine quadratische Funktion/ : x i—> ax 1 + bx + c ,
Df = [R , hat für a > 0 die Wertemenge Wf = [ t ; + oo [ , für a < 0
die Wertemenge W£ = ] — oo ; t] , wobei t die Scheitelordinate
— b ^ + 4ac- des Graphen Gf von / ist . Gf hat die Symmetrieachse

b .
x = s , wobei s die Scheitelabszisse — — ist .2a

Aufgaben
1 . Bestimme Scheitel und Symmetrieachse und zeichne die Parabel .

a) y = — (x — l ) 2 + 3 b) y = ± (x - 2) 2 - 4
c) y = 2 (x - 2,5) 2 + 2,5 d) y = - 0,25 (x + 2) 2 + 1

2 . Bestimm e a und t so , dass die zugehörige Parabel y = ax 2 + t
a) S (? 14) als Scheitel hat und durch den Punkt P (31 — 2) läuft ;
b) ihren Scheitel auf der Gerade y = 0,5x — 4 hat und die x-Achse bei

x = 4 schneidet ;
c) die Geraden x = 2 und x = — 3 in den Punkten mit den Ordinaten

— 0,4 bzw . 2,6 schneidet .
3 . Zeichne den Graphen zur Funktionsgleichung :

a) y = | (x - 2,5) 2 - 6,25 | b) y = | - 0,5 (x + l ) 2 + 11 .

4 . y = a (x — s) 2 + t . Bestimme a , s und i aus folgenden Bedingungen :
a) Die Parabel entsteht aus der Normalparabel durch Verschiebung um 3

nach rechts und um 5 nach unten und eine anschließende Spiegelung an
der x -Achse .

b) Die Parabel entsteht aus der Normalparabel durch Verschiebung um 2
nach rechts und um 3 nach unten und eine anschließende Spiegelung an
der y-Achse .

c) Die Parabel entsteht aus der Normalparabel durch Streckung von
O (010) aus mit dem Streckfaktor m = 2 und eine anschließende Ver¬
schiebung um 2 nach links und um 2,5 nach unten .

d) Die Parabel entsteht aus der Normalparabel durch Streckung von
O (0 | 0) aus mit dem Streckfaktor m = — 0,5 und eine anschließende
Verschiebung um 3 nach rechts und um 4 nach oben .

5 . Gib Scheitel und Symmetrieachse der Parabel an .
a) y = — x 2 — 8 b) y = 3x 2 — x
c) y = 0,2x 2 — 3x + 1,25 d) y = — l,5x 2 + 9x — 13,5
e) y = fx 2 + ^ x — 6 f) y = 84x 2 — 126x + 47

g) y = x 2 + l/5x — 1 h) y = 1/fx 2 + 3x + 4
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6 . Zeichne den Graphen zur Funktionsgleichung :
a) y = x 2 — 4x + 1
c) y = x 2 — 2,4x — 3,56
e) y = 3x 2 + 24 x — 47
g) y = — 0,5x 2 + l,5x + 2,075

b) y = - x 2 - 7x — 11,25
d) y = — x 2 + x + 3,25
f) y = — fx 2 + 3x + ^j -
h) y = 0,25x 2 + l,4x + 1,96

8 . Zeichne den Graphen zur Funktionsgleichung :
a) y = | x 2 + 4x | b) y = | — x 2 + 2x |
c) >> = | - x 2 + 6x - 6 | d) y = | — 0,5x 2 + l,5x — 1,6251

9 . Bestimme die Funktionsgleichung einer Parabel , die durch die Punkte A,
B und C läuft .
a) A ( — 119) , B (111 ) , C (414) b) A (0 | 2) , B (21 - 2) , C ( - 2 | 0)
c) A (016) , B ( — 214) , C (3 | l,5 ) d) A ( - l | 2) , B (11 - 6) , C (2,5 | 9)

10 . Eine Parabel mit dem Scheitel S enthält den Punkt P. Bestimme die Funk¬
tionsgleichung .
a) S ( 31 — 1 ) , P (111 ) b) S (0,410,8) , P (21 — 12)
c) S (01 — 8) , P (10 j 2) d) S ( — 219) , P ( — 711 )

11 . Eine Parabel mit der Symmetrieachse x = s enthält die Punkte P und Q .
Bestimme die Funktionsgleichung .
a) ^ = 4 , P ( 11 — 9,5) , Q (51 — 1,5) b) j = - 5 , P ( - 7 | - 1 ) , Q ( - 2 | 3)

•12. Die Parabel y = 2x 2 — 6x + 4 wird
a) an der x-Achse b) an der y-Achse
c) am Ursprung (010) d) an der Geraden x = 1
e) an der Geraden y = 1 f) an der Geraden y = x
gespiegelt . Gib die Gleichung der gespiegelten Parabel an .

•13 . Zeichne den Graphen .
a) y = Ix 1 — \ 6x + 4 | b) y = 2x 2 — 6 \ x \ + 4
c) y = | 2x 2 — 6x | + 4 d) | j | = 2x 2 — 6x + 4

Die Wurfparabel . Bis in die Neuzeit hinein beherrschten die Vorstellungen des
griechischen Philosophen Aristoteles (384- 322 v . Chr .) die Lehre von der
Bewegung der Körper , denen zufolge die Bahn eines geworfenen Körpers sich

Abb . 174 . 1 Zeichnung Galileis im Brief vom 11 . Februar 1609 an einen Prinzen des
Hauses Medici
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aus Geraden - und Kreisstücken zu¬
sammensetzt . Erst Galileo Galilei
(1564- 1642 ) hat spätestens 1609 er¬
kannt , dass diese Bahn , falls man den
Luftwiderstand vernachlässigen darf ,
eine Parabel , die so genannte Wurf¬
parabel , ist (siehe Abbildung 174 . 1 ) .
Veröffentlicht hat diese Erkenntnis
1632 sein Schüler Fra Bonaventura
Cavalieri (15987 - 1647 ) in seinem
Werk Lo Specchio Ustorio overo Trat-
tato delle Settioni Coniche - »Der
Brennspiegel oder Abhandlung über
die Kegelschnitte « - , worüber sein
Meister sich wenig erfreut zeigte . Ga¬
lilei selbst bringt den Nachweis un¬
ter Verwendung seines lateinischen
Textes aus jenen frühen Jahren am
» 3 . Tag« seiner Discorsi e dimostra -
zioni matematiche , intorno a due nuo-
ve scienze attenenti alla mecanica ed i
movimenti locali - »Unterredungen
und mathematische Demonstratio¬
nen über zwei neue Wissenszweige ,
die Mechanik und die Fallgesetze be¬
treffend « - , die 1638 in Leiden er¬
schienen .

4? 'i

Abb . 175 . 1 Galileo Galilei (15 . 12.
1564 Pisa - 8 . 1 . 1642 Arcetri/Florenz ) -
Kupferstich von Ottavio Leoni (um
1587- 1630)

14 . Der aus dem waagrecht gehaltenen Ende eines Wasserschlauchsaustreten¬
de Strahl beschreibt bei Vernachlässigung des Luftwiderstands einen Pa¬
rabelbogen , dessen Achse zum Erdmittelpunkt gerichtet ist . Zeichne in ein
geeignetes Koordinatensystem die Bahn eines Wasserstrahls , der 1,5 m
über dem Boden waagrecht ausströmt und in einer (horizontal gemesse¬
nen ) Entfernung von 5 m den Boden erreicht . Der Erdboden ist dabei als
waagrechte Ebene angenommen .

15 . Ein Stein , der von einem Punkt P aus schräg nach oben geworfen wird,
fliegt bei Vernachlässigung des Luftwiderstands auf einem Parabelbogen ,
dessen Achse durch den Erdmittelpunkt geht .
a) Zeichne in ein geeignetes Koordinatensystem die Wurfbahn für den

Fall , dass sich P1,8 m über dem Boden befindet und der Stein nach 4 m
bzw . 8 m waagrechter Verschiebung eine Höhe von 4,2 m bzw . 5 m
über dem Boden erreicht hat . Der Boden sei waagrecht und eben .

b) Welche größte Höhe über dem Boden erreicht der Stein?
c) In welcher Entfernung (waagrecht gemessen) von der Abwurfstelle

schlägt der Stein auf dem Boden auf ?
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5 .4 Parabeln und Geraden

Nachdem wir jetzt wissen , wie die Gleichung einer allgemeinen Parabel lautet ,
können wir Schnittprobleme bei Parabeln und Geraden rechnerisch lösen .

5 .4 . 1 Parabel und x-Achse

Die Abszissen der Schnittpunkte einer Parabel und der x-Achse heißen auch
Nullstellen der Parabel bzw . der zugehörigen quadratischen Funktion . Man
erhält die Schnittpunkte als Lösungen des Gleichungssystems
I j = ax 2 + bx + c Parabelgleichung

II y = 0 Gleichung der x-Achse
Setzt man y = 0 in I ein , dann ergibt sich
I ' ax 2 + bx + c = 0

II ' y = 0
I ' ist eine quadratische Gleichung für die Nullstellen , die je nach dem Wert
ihrer Diskriminante D = b 2 — 4ac zwei, eine oder keine Lösung hat .
Im ersten Fall , D > 0 , gibt es zwei Schnittpunkte Ni und N 2 mit der x-Achse ;
die x-Achse ist Sekante .
Im zweiten Fall , D = 0 , gibt es einen Schnittpunkt S . Er hat die Koordinaten

b D
x = — — , y = — —- = 0 . S ist also nach Satz 173 . 1 der Scheitel der Parabel .2a 7 4a
Die x-Achse ist Tangente .
Im dritten Fall , D < 0 , treffen sich die Parabel und die x-Achse nicht ; die
x-Achse ist Passante .
Hat man die Nullstellen , dann kann man auch den Scheitel der Parabel leicht
finden . Es gilt nämlich

Satz 176 . 1 : Die Scheitelabszissexs ist das arithmetische Mittel der Null¬
stellen x l und x2 , d . h . , xs = ^ (x t + x2) .

Geometrisch bedeutet dieser Satz :
Der Scheitel liegt auf der Mittelsenkrechten der Schnittpunkte der Parabel mit
der x-Achse .

b 1Beweis: Nach Vieta (Satz 103 . 1 ) ist x t + x2 = - und damit - (x x + x2) =
b a 2

= — — • Das ist aber nach Satz 173 . 1 die Scheitelabszisse .2a

Satz 176 . 1 verhilft uns zu einer schnellen Bestimmung der Scheitelabszisse :
Weil sich die Abszissen bei einer Verschiebung in y- Richtung nicht ändern ,
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betrachten wir statt der Parabel y = ax 2 + bx + c die Parabel y = ax 2 + bx =

= x (ax + b ) mit den Nullstellen x y = 0 und x 2 = - . Das ergibt sofort die

Scheitelabszisse x s = - . Die Ordinate ergibt sich durch Einsetzen dieses
2a

Werts in die Gleichung y = ax 2 + bx + c .

Beispiel : Die Parabel y = { x 2 - 2x + 5 wird durch Verschiebung um 5 nach
unten zur Parabel y = \ x 2 - 2x = x (| x - 2) mit den Nullstellen x x = 0 und
x 2 = 8 . Für die Scheitelabszisse x s gilt x s = }x 2 = 4 . Die Scheitelordinate er¬

gibt sich zuj >s = | - 4 2 — 2 - 4 + 5 = l . Abbildung 177 . 1 veranschaulicht das
Auffinden des Scheitels .

4- x - 2x + 5

Abb . 177 . 1 Schnelle Bestimmung der Scheitelabszisse xs

Aufgaben
1 . Bestimme die Nullstellen der Parabeln .

a) y = ix 2 — 1 b) y — \ x 2 — 2x c) y = 5x 2 + 2x — 1,6
d) y = — x 2 + 2x + 3 e) j^ = 3x 2 — 4x + 2,5 f ) y = 2x 2 + 6x + 4,5

2 . Bestimme bei den Parabeln aus Aufgabe 1 jeweils den Scheitel.

3 . Wie lautet die Gleichung der Parabel , die die Koordinatenachsen in den
Punkten
a) A (0 | - 16) , B (210) und C ( — 4 ( 0) ,
b) A (0 | — 1 ) , B (510) und C ( — 110)
schneidet ?
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4 . Bestimme die Gleichung einer Parabel mit folgenden Eigenschaften:
a) Die Nullstellen haben die Entfernung 4, der Scheitel liegt bei (31 — 4) .
b) Die Nullstellen liegen bei — 3 und 5 , und die Parabel geht durch

(81 - 3 ) .

* * 5 .4 .2 Parabel und Gerade
So wie in 5 .4 . 1 erhält man die Schnittpunkte einer Parabel mit einer beliebigen
Geraden durch Lösen eines Gleichungssystems , dessen eine Gleichung die
Parabelgleichung , dessen andere die Geradengleichung ist . Im Allgemeinen
gilt :

I . y = ax 2 + bx + c Parabelgleichung
II . y = mx + t Geradengleichung
Setzt man y aus II in I ein , so erhält man eine quadratische Gleichung für die
Abszissen der Schnittpunkte . Je nach dem Wert der Diskriminante gibt es
zwei, einen oder keinen Schnittpunkt . Entsprechend heißt die Gerade Sekan¬
te , Tangente oder Passante .

Abb . 178 . 1 Mögliche Lagen von Parabel und Gerade
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Nun gibt es aber Geraden , die keine Tangenten an die Parabel sind , obwohl sie
auch nur einen einzigen Schnittpunkt mit der Parabel besitzen , nämlich die
Geraden , die zur Parabelachse parallel sind . Ihre Gleichung hat die Form
x = d.
Abbildung 178 . 1 zeigt überblicksartig die verschiedenen möglichen Lagen von
Parabel und Gerade .
Zur Vertiefung lösen wir die folgende interessante

Aufgabe : Bestimme die Gleichungen der Tangenten , die vom Punkt P (312£)
an die Parabel mit der Gleichung y = — ix 2 + ^x + f gelegt werden können ,
und berechne die Berührpunkte .
Lösung : Achsenparallele Tangenten gibt es nicht . Also müssen die gesuchten
Tangenten eine Gleichung der Form y = mx + t haben . Da sie durch P gehen ,
muss gelten
2\ = m ■ 3 + t
t = 2\ — 3 m .
Durch die Gleichung y = mx + 2^ — 3 m wird eine Gerade durch P mit der
Steigung m beschrieben . Wir schneiden sie nun mit der gegebenen Parabel :

I y = — ix 2 -hjx + |
II y = mx + 2i — 3 m .
Setzt man y aus II in I ein , so erhält man eine quadratische Gleichung für die
Abszissen der Schnittpunkte :
— ix 2 + 2 X + 1 = mx + 2j — 3m
x 2 + {Am — 2) x + (6 — 12m) = 0 (*)
Einen Berührpunkt erhält man , wenn diese Gleichung genau eine Lösung
hat , d . h . , wenn ihre Diskriminante null ist . Also muss gelten

{Am — 2) 2 — 4 (6 — 12m ) = 0
16m2 + 32 m — 20 = 0
4m 2 + 8 m — 5 = 0

- 8 - 12 - 8 + 12
m = - -- v m = - --

m t = — § und m 2 = i -

Es gibt somit durch P zwei Tangenten an die Parabel . Sie haben die Gleichun¬
gen

y = - | x + 9 | bzw . y = jx + 1 . (* * )

Man erhält nun die Koordinaten der Berührpunkte B , bzw . B 2 , indem man
die eine bzw . die andere Tangente mit der Parabel zum Schnitt bringt . Man
muss also zwei Gleichungssysteme lösen , deren erste Gleichung die Parabel¬
gleichung und deren zweite Gleichung die jeweilige Tangentengleichung ist .



180 5 Die allgemeine quadratische Funktion

Die beim Einsetzen von II in I dann entstehende quadratische Gleichung
haben wir oben aber bereits gefunden und mit ( *) bezeichnet . Da ihre Diskri -
minante null ist , hat (*) die einzige Lösung

y(4m - 2)
1 — 2m

Setzen wir m x bzw . m 2 an Stelle von m
ein , dann erhalten wir als Abszisse
des Berührpunkts B x bzw . B 2
x x = 6 bzw . x2 = 0
und aus den Tangentengleichungen
(* *) für die Ordinate des jeweiligen
Berührpunkts

x

jq = - 5i bzw . y2 = l .
Abbildung 180 . 1 zeigt die Parabel mit
den beiden durch P verlaufenden
Tangenten .

Abb . 180 . 1 Tangenten von P an die
Parabel

Aufgaben
1 . Wo schneiden sich die folgenden Pa¬

rabeln und Geraden ? Fertige eine
Zeichnung an .
a) y = x 2 — 5 und y = 2x — 2
b) y — 2x 2 — 4x + 1 und y = 1 — 2x
c) .y = — 0,5x 2 — 3x — 2 und y = — l,5x — 1
d) y = \ x 2 und x = 6
e) y = ix 2 + 2x + 5 und x = — 3

• 2 . Berechne die Schnittpunkte und die Länge der zugehörigen Parabelsehne .
a) y = | x 2 und 2y — x — 12 = 0
b) y = jfX 2 und 2x — — 14 = 0
c) y = — ~2 iX 2 und 6x + 5^ — 15 = 0
d) 8 (y + 1 ) = - (x - 2) 2 und x + 4j + 14 = 0
e) x 2 + 4x + 16y + 52 = 0 und 8x + 12^ + 31 = 0

3 . Der Scheitel einer Parabel , deren Achse zur ^ -Achse parallel ist , hat die
Abszisse 3 und liegt auf der Geraden mit der Gleichung y = 2x — 1 , die
von der Parabel außerdem noch in einem Punkt mit der Ordinate 9 ge¬
schnitten wird . Wie lautet die Gleichung dieser Parabel ?
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• 4. Die Gerade y = 2,5 wird vom Graphen einer Funktion 2 . Grades in zwei
symmetrisch zur y-Achse liegenden Punkten geschnitten . Dieselbe Para¬
bel schneidet die Gerade y = 0,75 .x — 0,5 in zwei Punkten mit den Ordina -
ten — 2 und f . Bestimme die Schnittpunkte der Parabel mit der ersten
Geraden .

5 . Im Parabelpunkt P soll die Tangente an die Parabel gelegt werden . Bestim¬
me ihre Gleichung .
a) y = gX

2
, P ( | 2) liegt im 2 . Quadranten ;

b) y = — t $ x 2
, P ( | — 8 ) liegt im 3 . Quadranten ;

c) y = - ^ x 2
, P (l \ ) .

6 . Im Parabelpunkt P soll die Tangente an die Parabel gelegt werden . Bestim¬
me ihre Gleichung und fertige eine Zeichnung an .
a) y = — 5x 2 + lOx — 7 , P (| | )
b) y = 84x 2 - 126x + 47 , P (01 )

•c) y = | x 2 — 3x + | , P ( | | )

7 . Lege vom Punkt P die Tangenten an die Parabel . Bestimme die Tangenten¬
gleichungen und die Koordinaten der Berührpunkte und fertige eine
Zeichnung an .
a) y = — | x 2 + | x + | , P (214| )
b) y — x 2 — 4x + 6| , P (0 | 0)
c) y = — x 2 — Ix — 11,25 , P ( — 211)
d) y = 3x 2 + 24x — 47 , P (01 — 50)
e) y = — 0,5x 2 + l,5x + 2,075 , P (116,2)
f) y = | x 2 — 3x — f , P (111 )

• 8 . a) Bestimme die Lösungen in Abhängigkeit von a für ]/x + a = \ x + 1 .

b) Zeichne in ein Koordinatensystem den Graphen von y = \ x + 1 und

die Graphen von y = ]/x + a für a = 0 ; 1 ; §; 2 und 3 . Interpretiere das
Ergebnis von a anhand dieser Zeichnung .

9 . a) Zeichne im Bereich 0 5S x ^ 1 (Einheit 10 cm) die Parabeln mit der
Gleichung y = / (x) = ax (1 — x) für a e { 0,5 ; 1 ; 2 ; 3,3 ; 4 } . Zeichne ins
gleiche Koordinatensystem die Gerade mit der Gleichung y = x.

b) Berechne der Reihe nach die ersten 5 Glieder der Zahlenfolge mit dem
Bildungsgesetz x„ + 1 = ax „ ( l — x„) = / (x„) . Wähle als Startwert
1 ) x0 = 0,2 und 2) x0 = 0,5 . Zeichne die Punkte P„ (x„ |/ (x„)) ein .

c) x * heißt Fixzahl , wenn x * = f (x *) gilt .
1

Zeige : Für a ^ 1 ist x * = 1 - eine Fixzahl .
a

d) x * * heißt Zahl mit der Periode 2 , wenn x * * = j \ f (x * * ) ) gilt .
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Zeige : Für 3 < a ^ 4 sind und

10 1
* 2 — ö ( 1 d- f

a a
Zahlen mit der Periode 2 , und es gilt

/ Oi ) = *2 und/ (x2) = x v
e) Definiert man analog x <k>als Zahl mit der Periode k für k > 2 und trägt

diese Zahlen x (k> gegen den Parameter a ab , dann ergibt sich nach
längeren Rechnungen (Computer !) ein Diagramm , das man auch Fei¬
genbaumdiagramm oder Bifurkationsdiagramm nennt . Es entstehen
der Reihe nach Punkte der Perioden 2 , 4 , 8, . . . , bis auf einmal das
Chaos ausbricht und die Folgen keine Gesetzmäßigkeit mehr erkennen
lassen .

**5 .4 .3 Parabel und Parabel

Die Koordinaten der Schnittpunkte zweier Parabeln ergeben sich als Lösun¬
gen des Gleichungssystems
I y — a x x 2 + b x x +

II y = a2 x 2 + b2 x + c2 .
Auch hier kann es zwei, eine oder keine Lösung geben , wie Abbildung 183 . 1
überblicksartig veranschaulicht . Zum Fall der sich berührenden Parabeln lö¬
sen wir folgende

Aufgabe : Um wie viel muss die Normalparabel in j ’- Richtung verschoben
werden , damit sie die Parabel y = — j x z + 4x — 6 berührt ?
Lösung:
I y = x 2 + t verschobene Normalparabel

II y = — \ x 2 + 4x — 6
I ' y = x 2 + t

II ' fx 2 — 4x + 6 + t = 0
Damit sich die beiden Parabeln berühren , darf Gleichung II ' nur eine einzige
Lösung haben ; ihre Diskriminante muss also null sein:
16 - 4 - | (6 + 0 = 0
16 — 36 — 6t = 0
t = - 3i
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0 Schnittpunkte2 Schnittpunkte

1 Schnittpunkt mit
verschiedenen Tangenten gemeinsamer Tangente

Abb . 183 . 1 Mögliche Schnittmengen von Parabeln

Die Normalparabel muss somit um 3f nach unten verschoben werden . Sie
berührt dann die andere Parabel in dem Punkt , dessen Abszisse sich aus der
letzten Gleichung II ' ergibt , wenn man dort t = — 3y setzt :

fx 2 - 4x + f = 0
9x 2 — 24x + 16 = 0
(3x - 4) 2 = 0
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Die Ordinate des Berührpunkts y
erhält man aus I ' zu y = — lf . , iw 10
Ergebnis : i y = x -

3
Die Parabeln y = x 2 — 3^ und \
y = — \ x 2 + 4x — 6 berühren sich \
im Punkt (1 ^ | - lf ) - \
Siehe Abbildung 184 . 1 . \

1 ■

1 / \ X
/ ( M 14 )r ' 3 9

/ y = - - X
1 y 2

2+ 4x - 6 \

Abb . 184 .1 Berührung zweier Parabeln

Aufgaben
1 . Bestimme durch Rechnung und durch Zeichnung die gemeinsamen Punk¬

te der Parabeln
y = x 2 + 2 und y = x 2 — 2x + 5 .

2 . Bestimme durch Rechnung und durch Zeichnung die gemeinsamen Punk¬
te der Parabeln
y = x 2 — 3x und y = — x 2 + x + 6 .

3 . Bestimme durch Rechnung und durch Zeichnung die gemeinsamen Punk¬
te der Parabeln
y = — x 2 + 4 und y = x 2 — 4x + 6 .

4 . Bestimme durch Rechnung und durch Zeichnung die gemeinsamen Punk¬
te der Parabeln
y = x 2 + 4x — 1 und y = 2x 2 + x + 3 .

• 5 . Zeige : Zwei Parabeln y = ax 2 + bx + c und y = Ax 2 + Bx + C, die ge¬
nau einen Schnittpunkt haben , der kein Berührpunkt ist , sind kongruent .

6 . A (016) , B (4,511,5) , C (6 | 5) , S (5,512,5 )
a) Bestimme eine Gleichung der Parabel p durch A , B und C . Zeichne die

Parabel p .
b) Gib eine Gleichung der Parabel q an , die nach unten geöffnet ist , den

Scheitel S hat und kongruent zur Normalparabel ist . Zeichne die Para¬
bel q .

c) Berechne die Schnittpunkte der beiden Parabeln .
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Gateway Arch in Saint Louis , Missouri , USA
Der 192 m hohe , in den Jahren 1959 bis 1965 aus rostfreiem Stahl und Beton nach
einem Entwurf des Finnen Eero Saarinen ( 1910 - 1961 ) errichtete Bogen erinnert als
Gateway to the West an den nach 1803 einsetzenden Siedlerstrom in den Westen der

USA und damit an die Bedeutung , die Saint Louis im 19 . Jh . hatte .
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6 . 1 Lösungsverfahren

Eine Ungleichung der Form ax 2 + bx + c > 0 mit a #= 0 heißt quadratische
Ungleichung . So ist z . B . x 2 — x — 2 > 0 eine quadratische Ungleichung . Zur
Lösung solcher Ungleichungen gibt es verschiedene Verfahren :

1) Methode der quadratischen Ergänzung
x 2 — x — 2 > 0
x 2 — x + (j ) 2 > 2 + 1
(x - i ) 2 > f
l -X - ll > 2

v x - ^ > f
x < — 1 v x > 2
L = ] — oo ; — l [ u ] 2 ; + oo [

2) Methode der Faktorisierung
x 2 — x — 2 > 0
Nach dem Faktorisierungssatz 106 . 1 brauchen wir zuerst die Lösungen der
zugehörigen quadratischen Gleichung x 2 — x — 2 = 0 . Wir erhalten
x 1 = — 1 und x 2 = 2 . Damit wird die Ungleichung zur Produktunglei¬
chung (x + l ) (x — 2) > 0 , die man graphisch lösen kann .
Aus Abbildung 186 . 1 liest man ab : L = ] — oo ; — 1 [ u ] 2 ; + oo [ .

x 1 - 0 + 11 +

x — 2
1
1 6

i +

(x + 1 ) (x — 2) + ö -
1
ö +1

- 1
h-
2

Abb. 186 . 1 Vorzeichenverteilung beim Term (x + l ) (x — 2)

3) Parabelmethode
x 2 — x — 2 > 0
Wir zeichnen die Parabel y = x 2 — x — 2 . Sie hat als Nullstellen die Lösun¬
gen der Gleichung x 2 — x - 2 = 0 , d . h . x x = - 1 und x2 = 2 . Gesucht sind
die x-Koordinaten der Parabelpunkte , für die y > 0 gilt . Das sind die Para¬
belpunkte , die oberhalb der x -Achse liegen . Weil die Parabel nach oben
offen ist , sind , wie Abbildung 187 . 1 zeigt , die ^ -Koordinaten positiv , wenn
x < — 1 bzw . x > 2 gilt . Also lesen wir die Lösungsmenge ab :
L = ] — oo ; — l [ u ] 2 ; + oo [ .

‘
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Abb . 187 . Lösung der Ungleichung x 2 — x - 2 > 0 mit der Parabelmethode

Die Parabelmethode ist meist der kürzeste Weg zur Lösung einer quadrati¬
schen Ungleichung . Man braucht nur die Nullstellen der zugehörigen quadra¬
tischen Gleichung und die Öffnung der Parabel , die man dem Vorzeichen des
Koeffizienten von x 2 entnimmt . Auf die Zeichnung kann man sogar verzich¬
ten .
Bei den Verfahren 2 und 3 haben wir angenommen , dass es Nullstellen gibt .
Wenn das nicht der Fall ist , dann liegt die Parabel entweder ganz über oder
ganz unter der x -Achse . Je nach der Art des Ungleichheitszeichens ist die
Lösungsmenge dann leer oder ganz IR , wie Abbildung 187 .2 veranschaulicht .

+ 1 > 0

x 2 - x + 1 < 0

Abb . 187 .2 Parabelmethode in Fällen ohne Nullstellen
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Aufgaben
1 . a) x 2 — x + 1 < 0

c) x 2 — 2x + 1 0

2 . a) — x 2 + 6x — 8 0
c) 4x 2 ^ 5x — 2

b) x 2 + x — 12 > 0
d) x 2 + 6x — 7 ^ 0
b) 2x 2 — x — 3 > 0
d) x 2 — 6 ^ 5x

3 . a) Welche Zahlen sind kleiner als ihr Quadrat?
b) Welche Zahlen sind kleiner als ihre Wurzel?
c) Welche Zahlen sind größer als ihre 3 . Potenz?

4 . Verwende die Parabelmethode zur Lösung der Produktungleichung
a) (x — 2) (x — 3 ) < 0
c) (2x — l ) (2x — 3) 2: 0

5 . a) (x — 2) (x — 3) < 4
c) x 2 < 4x — 1

6 . a) \ x 2 + 5x | < 14
7 . a) 0 < x 2 - 10 < x

b) (x — 3,14) (x + 3,14) > 0
d) (x - i ) (x + f ) > 0
b) x 2 — 3x < 8
d) — x 2 > x — 10
b) | 13x — x 2

| ^ 30
b) x 5S x 2 — lfSx — 1

8 . a)
lOx

x 2 + 4 ^ - 2 b)
19 „ 3x

x 2 + 1
< +

X 2 + 1

c)
Ix

- 1 - x 2 ^ 3,5 d)
2 1

X 2 1 + x 2

9 . Multipliziere mit dem Quadrat des Nenners:

X — 1
a) - — r < 0

x + 3

x — 1 x — 5
10 . a) - - < - -

x — 3 x — 7

b)

b)

> 1
2x - 1

3 — 2x
x 2 - 8x + 9

< 0

3 8- < -
2x 4” 1 x 4" 2

d)
x — 3
3x + 2

6 — x
> -

2 — x

11 . Für welche Werte von k hat die Gleichung 2 Lösungen?
a) x 2 — kx + k + 3 = 0 b) x 2 4- (k4 - 2) x4 - A; 4- 5 = 0
c) kx 2 + 2 (k — 3 ) x 4- 4 = 0

12 . Für welche Werte von k hat die Ungleichung keine Lösung?
a) kx 2 — 3x 4- 1 < 0 b) x 2 4- kx 4- k ^ 0

13 . Bestimme die Definitionsmenge und löse dann die Gleichung,
a) V(x - l ) (x + 2) = l/lO b) l/x 2 - 3x = ]/l0

1

1

1

1
1

1

2

6

Ii
ti
B
d
S<
rr
h ,
te
A

*
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c) \/2x 2 + 3x — 5 — x — 1 = 0 d) ]/x (x + 1 ) + j/ (x + l ) (x + 3) = 3K2

14 . Zerlege die Zahl 100 so in zwei Summanden , dass das Produkt größer als
c) 2500 ist .

b) | x 2 — x — 5 | > 1
d) \ x 2 — 1 [ > | x |

a) 2000, b) 1000 ,
15 . a) | x (x + 1 ) | < 6

c) | 0 — 5) 0 — l ) | ^ 2

2x
16 . a) - - < 1

x — 2

x — 4 x — 1

17 . a) | x - l | ^ | x 2 - l | b) | x (x + l ) | > | x 2 + l |
18 . Für welche natürlichen Zahlen n gilt

a) 1fn + n < 100 b) 0,1 « - 0,01 )4 + 1 ^ 0?

19 . Kennzeichne die Punktmenge, bei der die Koordinaten der Punkte der
angegebenen Ungleichung genügen .
a) y < x 2

c) y — 2x 2 + 2 > 0
b) y ^ x 2 — 2
c) 2y + 4x 2 — 5x + 1 A 0

20. Kennzeichne die Punktmenge, bei der die Koordinaten der Punkte der
angegebenen Ungleichung genügen .
a) x 2 < y < 1 - x 2

c) 0 < y < — 2x 2 + 9x — 7
b) x 2 — 3x < y < — x 2 + 4x — 5
d) 3x 2 — 2x < j < — 2x + 3

6 .2 Extremwertaufgaben

Im Geometrieunterricht hast du gelegentlich zum Abschluss einer Konstruk¬
tionsaufgabe in der so genannten Determination * untersucht , unter welchen
Bedingungen die Konstruktion überhaupt möglich ist oder unter welchen Be¬
dingungen sie mehr als eine Lösung hat . Bei der Aufgabe , ein Dreieck aus zwei
Seiten , etwa a und c , und einem Gegenwinkel , etwa a , zu konstruieren , erhält
man 2 Lösungen , nämlich AABCO und AABC 2 , wenn a so gewählt wird , dass
h a < a < c gilt (Abbildung 190 . 1 ) . Man sucht also gewissermaßen den kleins¬
ten und den größten Wert , zwischen denen sich a bewegen kann . Aus solchen
Abgrenzungsproblemen - das älteste finden wir bei Platon (428 - 348 v . Chr .) in

* determinatio (lat .) = Abgrenzung ist die lateinische Übersetzung des entsprechenden griechischen Fachbe¬
griffs Stoptapoi ; (diorismos ) . Erfunden haben soll , wie Proklos (410 - 485) berichtet , diesen Diorismos Leon ,
ein Zeitgenosse Platons , der als erster »Abgrenzungen dafür geben konnte , wann die Lösung einer gestellten
Aufgabe möglich ist und wann nicht «.
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— Q = C

Abb . 190 . 1 Es gibt 2 Lösungen , wenn ha < a < c

Menon (87a , b) sind die Extremwertaufgaben * entstanden , deren frühestes
uns erhaltenes Beispiel von Euklid (um 300 v . Chr .) stammt (Aufgabe 195/9) .
Aber erst Apollonios (um 262- um 190 v . Chr .) erkannte , dass solche Extrem¬
wertaufgaben , losgelöst von den geometrischen Abgrenzungsproblemen ,

»zu den Sachen gehören , die an und für sich einer Betrachtung würdig
erscheinen « ,

wie er im Vorwort zu Buch V seiner Konika schreibt , in dem er auch solche
»Sachen « angeht . Aber es vergingen mehr als 1800 Jahre , bis es dem Juristen
und Mathematiker Pierre de Fermat (1601- 1665 ) gegen 1629 gelang , in sei¬
nem Methodus addisquirendam maximam et minimam - »Methode zur Bestim¬
mung eines Maximums und eines Minimums « * * - ein allgemeines Verfahren
zum Lösen solcher Extremwertaufgaben zu entwickeln . Das erste Beispiel, das
er seinen Lesern darin vorführt , sei unser

Beispiel 1 :
Eine gegebene Strecke [AC ] soll
durch einen Punkt E so geteilt werden ,
dass der Flächeninhalt des Rechtecks ,
das man aus den beiden Teilen [AE]
und [EC] bilden kann , maximal wird
(Abbildung 190 .2) .

E Q- X

Abb. 190 .2 Zu Beispiel 1
* extremus (lat .) = der äußerste
:* maximus (lat .) = der größte ; minimus (lat .) = der kleinste
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Lösung : Wir bezeichnen die
Länge der Strecke [AC] mit a
und die des Teilstücks [AE]
mit x ; dann hat [EC ] die
Länge a — x . Der Inhalt der
Rechtecksfläche ergibt sich
in Abhängigkeit von x zu
x {a — x) . Gesucht ist nun
der Wert von x , für den
x (a — x) maximal wird . Um
ihn zu finden betrachten wir
die Funktion
/ : xh x (a — x) ,

Df = ] 0 ; u [ .
Formt man / (x) um zu
fix ) = — x 2 + ax ,
so erkennt man sofort , dass
der Graph von / ein Parabel¬
bogen ist , dessen Scheitel bei

liegt (Abbildung

191 .2) .
Weil die Parabel nach unten
offen ist und die Scheitelab -

a
2szisse - in Df liegt , ist die

aScheitelordmate — der größ¬

te Funktionswert von / .
Das gesuchte x hat also den

Wert und der Teilpunkt E

muss als Mittelpunkt der
Strecke [AC ] gewählt wer¬
den .

Machematica . 63

METHODUS
Ad difquirendam maximam Sc minimam .

5MNIS deinvcntioncmaximz&minimzdodtrina, duabuspofitioni-
§busignotisinnitirur, &hacunicapreceptionc; ftatuacurquilibctquariHo-'§ uisrerminuscflcA,fiveplanum,fivefolidum,autlongitudo, proutpro-f pofitoCitisfieripareft,&invenramaximaautminimainterminisfubA,graduudibetinuolutisiPonaturnirfusidemquiptiusdiecerminusA,-+ E, iterumqucinveniaturmaximaautminimainterminislubA&E, grauibusurlibetcocfficicntibus.Adzqucnrur, utloquiturDiophantus, duohomogcncamaxims

autminimzxqualia&demptiscommunibus(quoperaßohomogcncaomniaexparteaitcrutraabE, velipfiusgr.-.dibusafficiun'mr)applicenturomniaadE, veladelatio*
remipfiusgradum, donecaliquodexhomogeneis,expatteutravisaffetftioncfubE,omninolibcretur.

ElidanturdcindcuttimquehomogcncafubE,aucipfiusgradibüsquomodolibetin-volucaStreliquasquentur.Aütfiexundpartenihilfupercftzqucnturiane, quodco-dcmrecidit,ncgataadfirmatis. RelolutioUltimiifHusiqualitatisdabitvnlotcmA,quacognita, maximaautminimaexrepctitispriorisrcfolutionisveftigiisir.notcfcet.
Excmplumfubi;cimus

SitreftaAC,itadividendainE, ut rcctang.AEC, fitmaximum;JtcüaAC, di-caturB.

A_ | _ C

ponaturparalteraB,efleA,ergoreliquaeritB —A, &re&ang. fubfcgmentiseritB, inA—A‘ quoddcbctinucnirimaximum. PonaturrurfusparsalteraipfiusB,effcA, E,ergoreliquaeritB—A —E, &rcflang. fubfcgmentiseritB, inA,—A‘ -+ B,inE, ’E inA, —E, quoddcbctadiquarifuperiotircdlang. B, inA,—A1, demptiscommunibusB,inE,adxquabiturA,inE' -+ E‘ ,S omnibusperE, divifisB, adxquabitur‘A-+ E, clidaturE,B,squabitut’A,igiturB, bifatiameftdividenda, adiblutioncmpropofiti, nccpoteftgenetaliordarimcthodus.

De Tangentibus linearum curvarum ;

A DfnpcriorcmmethoduminvcntioncmTangentiüraaddatapunfta, inlincis
qnibufcumquccurvisrcducimus.

H4

Abb. 191 . 1 Erste Seite der erst 1679 in
Toulouse im Sammelband Varia Opera
Mathematica des Pierre de Fermat er¬
schienenen »Methode zur Bestimmung
eines Maximums und eines Minimums«

Abb. 191 .2 Graph von
/ : x 1—> x (a — x) , Df = ] 0 ; a [
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Fermats Aufgabe ist in verschiede¬
nen Einkleidungen bekannt , darun¬
ter auch der folgenden : Eine Zahl ist
so in zwei Summanden zu zerlegen ,
dass deren Produkt maximal wird .
Nach der obigen Lösung müssen die
beiden Summanden gleich sein , und
zwar gleich der Hälfte der gegebenen
Zahl .
Wir sind bei unserer Lösung einen
anderen Weg gegangen als Fermat .
Normalerweise verlangt nämlich das
Lösen von Extremwertaufgaben den
Einsatz höherer mathematischer Me¬
thoden , die Fermat gerade in dieser
Abhandlung entwickelt hat . Schon
das zweite Fhrmat ’scIic Beispiel
kannst du nicht mehr lösen , nämlich
einen Quader kleinsten Volumens zu
suchen , dessen Grundfläche das Qua¬
drat über [AE] und dessen Höhe
[EC] ist . Lösen aber kannst du all die
Extremwertaufgaben , bei denen die
Funktion , deren Extremum be¬
stimmt werden soll , quadratisch ist .
Du brauchst dazu nur den Scheitel
der zugehörigen Parabel zu berechnen ; die Scheitelabszisse ist dann die ge¬
suchte Extremaistelle , die Scheitelordinate ist das Extremum der Funktion . Ist
die Parabel nach unten offen, dann ist die Extremaistelle eine Maximalstelle
und das Extremum ein Maximum . Ist die Parabel nach oben geöffnet , dann
handelt es sich um eine Minimalstelle und um ein Minimum .

Schwieriger zu lösen als Beispiel 1 ist das nun folgende

Beispiel 2:
Ein Motorboot M mit der Geschwindigkeit 6 m/s und ein Surfer S mit
der Geschwindigkeit 2 m/s bewegen sich so , dass sich ihre Kurse senk¬
recht kreuzen . Zu Beginn unserer Betrachtung befindet sich das Motor¬
boot 50 m , der Surfer 10 m vor dem Kreuzungspunkt . Zu welchem Zeit¬
punkt ist ihre Entfernung am kleinsten ? Wie groß ist sie dann ? Wo befin¬
den sich in diesem Augenblick M und S1

Lösung : Wir rechnen ohne Benennungen , messen dabei alle Zeiten in
Sekunden und alle Längen in Metern . Ferner denken wir uns auf den See
ein Koordinatensystem gelegt , dessen Achsen die beiden Kurse sind (Ab¬
bildung 193 . 1 ) . Zum Zeitpunkt t befinden sich

Abb . 192 . 1 Pierre de Fermat
(17 .(?)8 . 1601 Beaumont -de-Lomagne
bis 12 . 1 . 1665 Castres )
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Abb . 193 . 1 Bewegung von Motorboot M und Surfer S im Koordinatensystem . Ge¬
zeichnet sind die Verhältnisse bei 4s , 8s und 9s .

das Motorboot an der Stelle x = — 50 + 6 ■ t , y = 0 ,
der Surfer an der Stelle y = — 10 + 2 - 1 , x = 0 .
Ihre Entfernung beträgt nach Pythagoras

e = l/ ( — 50 + 6t) 2 + ( - 10 + 2t) 2 = 1/40 12 - 640 1 + 2600 .

Gesucht ist emin, der kleinste Wert von e . Da die Wurzelfunktion echt
monoton steigend ist , nimmt die Wurzelfunktion ihren kleinsten Wert an ,
wenn der Radikand am kleinsten ist . Aus dem Graphen der Wurzelfunk¬
tion (Abbildung 152 . 1 ) entnimmt man diesen Sachverhalt unmittelbar .
Zum Auffinden von emin bestimmen wir also das Minimum der Radikan¬
denfunktion
r : 1 1—> 40t 2 — 640t + 2600 , Dr = IR^ ,
die als Summe zweier Quadrate nie negativ werden kann und deren
Graph eine nach oben offene Parabel ist , die ganz über der t-Achse
verläuft . Ihre Scheitelabszisse ist ihre Minimalstelle , deren Wert sich

nach Satz 173 . 1 zu — ^ _ g ergibt . Die Scheitelordinate 40 ■ 8 2 —
2 - 40

— 640 • 8 + 2600 = 40 ist das Minimum der Radikandenfunktion , und
damit erhält man emin = 2 ]/lÖ . Das Motorboot befindet sich dabei an der
Stelle x = — 50 + 6 • 8 = — 2 , d . h . noch 2 m vor der Kreuzungsstelle , der
Surfer an der Stelley = — 10 + 2 • 8 = 6 , d . h . bereits 6 m hinter der Kreu¬
zungsstelle .
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Aufgaben
1 . a) Die syrischeKönigin Dido floh 81 4 v . Chr . aus Tyros ins heutige Tune¬

sien . Dort bat sie König Iarbas - so berichtet uns Vergil (70- 19
v . Chr .) im 1 . Gesang seiner Aene 'is - , ihr so viel Land zu verkaufen , wie
eine Stierhaut umfassen könne . Nachdem Iarbas eingewilligt hatte ,
schnitt sie die Haut in sehr schmale Streifen , die sie aneinander fügte
und so auslegte , dass sie ein Rechteck größten Flächeninhalts um¬
spannten . Dieses war die Keimzelle der Stadt Karthago , deren Burg
den Namen Byrsa erhielt ; denn das griechische Wort ßüpcru (byrsa )
bedeutet Haut . Welche Seiten und welchen Flächeninhalt hatte Didos
Rechteck , wenn die Streifen aneinander gelegt die Länge 5 ergaben ?

b) Nimm an , die Stierhaut wäre ein Rechteck der Form 1,6 m x 2,1 m
und die Riemen hätten die Breite 2 mm besessen . Wie viel ha hätte
dann Didos Burganlage betragen ?

2 . Welche Lösung hat Aufgabe 1 , wenn Dido die Riemen hätte so auslegen
dürfen , dass das Rechteck auf einer Seite von der geradlinigen Küste be¬
grenzt wird , sie für diese Seite also keine Riemen verbrauchte ?

3 . Gegeben ist ein QuadratABCD mit der Kantenlänge a . Auf den Seiten sei
von jedem Eckpunkt aus im Umlaufssinn eine jeweils gleich große Strecke
abgetragen . Verbindet man die Endpunkte dieser Strecken , so entsteht ein
Viereck RSTU , das wieder ein Quadrat ist (Beweis!) . Wie groß muss die
abzutragende Strecke gewählt werden , damit der Flächeninhalt dieses
Quadrats minimal wird ? Wie groß ist er dann ?

4 . In einen Kreis vom Radius r ist ein Rechteck größten Flächeninhalts ein¬
zuzeichnen . Bestimme die Länge der Rechtecksseiten und den Inhalt .

5 . In einem Dreieck mit der Grundseite g und der zugehörigen Höhe h wird
die Parallele zu g gezogen , die die beiden anderen Seiten in zwei Punkten
schneidet . Fällt man von diesen die Lote auf g , so entsteht ein Rechteck .
Wie muss die Parallele gezogen werden , damit dieses Rechteck maximalen
Flächeninhalt hat ? Wie lang sind dann die Rechtecksseiten , und wie groß
ist sein Inhalt ?

6 . Ein Motorboot M mit der Geschwindigkeit 8 m/s und ein Ruderboot R
mit der Geschwindigkeit 1 m/s bewegen sich so , dass ihre Kurse sich senk¬
recht kreuzen . Zu Beginn unserer Betrachtung befindet sich das Motor¬
boot 90 m , das Ruderboot 15 m vor dem Kreuzungspunkt . Zu welchem
Zeitpunkt ist ihre Entfernung am kleinsten , und wie groß ist sie dann ? Wo
befinden sich in diesem Augenblick M und RI

7 . a) Auf der Strecke [AB] der Länge 8 liegt der Punkt C 3 Einheiten von A
entfernt . Gesucht ist ein Punkt P auf [AB] mit der Eigenschaft , dass
die Summe der Quadrate seiner Entfernungen von A , B und C minimal
wird . Wo liegt er?

b) Die Punkte A x bis A 7 liegen so auf einer Geraden , dass sie immer weiter
voneinander entfernt sind , und zwar 1 , 3 , 5 , 7 , 9 bzw . 11 Einheiten . Wo
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liegt nun der Punkt P mit der Eigenschaft , dass die Summe der Ent¬
fernungsquadrate ein Minimum ist?

8 . Aus dem Mittelalter sind nur sehr wenige Aufgaben über Minima und
Maxima überliefert . Eine davon findet man in der Geometria vel de trian -
gulis - »Geometrie oder über die Dreiecke « - des aus Norddeutschland
stammenden Jordanus Saxo , auch Jordanus Nemorarius (um 1180 bis
1237 ) , der 1222 zum Ordensgeneral der Dominikaner gewählt wurde . Sie
lautet :
Von allen Dreiecken , deren eine Ecke im Mittelpunkt eines Kreises liegt
und bei denen die Gegenseite zu dieser Ecke eine Kreissehne ist , ist das mit
größtem Flächeninhalt zu bestimmen .

9 . Bei der von Euklid (um 300 v . Chr .) in Buch VI , § 27 seiner Elemente
gestellten Aufgabe handelt es sich um folgendes Problem :
Über der Hälfte [MB] einer Strecke [AB] wird ein Parallelogramm
MBNP beliebiger Höhe h gezeichnet . Auf [AB] wird ein Punkt C beliebig
gewählt und durch ihn die Parallele zu BN gezogen , die den Diagonalen¬
strahl [BP in einem Punkt D schneidet . Nun lässt sich ein Parallelogramm
ACDE konstruieren . Wie muss C gewählt werden , damit der Inhalt dieses
Parallelogramms maximal wird ?
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* * Anhang

Lineare Interpolation

In der Praxis kommt es oft vor , dass man von einer Funktion nur einzelne
Werte kennt , die man eventuell durch Messung erhalten hat , dass man aber
Zwischenwerte braucht . Hat man den Funktionsterm , dann kann man diese
Zwischenwerte leicht berechnen . Wenn der Funktionsterm aber unbekannt ist
(oder so kompliziert ) , dass die Berechnung von Zwischenwerten sehr mühsam
wird ) , dann kann man das Verfahren der linearen Interpolation anwenden .
Man ersetzt dabei den Funktionsgraphen zwischen zwei bekannten Punkten ,
den Stützpunkten , durch eine Strecke und berechnet den Wert , den die zugehö¬
rige affine Funktion an der gewünschten Stelle hat . Diesen Wert nimmt man
als Näherungswert für den gesuchten Funktionswert . Je weniger gekrümmt
der Graph in der untersuchten Gegend ist , desto genauer wird dieser Nähe¬
rungswert sein . Liegen die beiden Stützpunkte sehr nahe beieinander , dann
verläuft der Graph der Funktion meist schon ziemlich geradlinig und der
Fehler wird klein sein . Liegt der gesuchte Wert zwischen den Stützstellen ,
dann spricht man von interpolieren *

, liegt er außerhalb , dann sagt man extra¬
polieren .
Rechnerische Durchführung der Interpolation :
(Mljh ) Lind (v 2 1 V'

2 ) seien die beiden Stützpunkte . Wir suchen / (x) . Ist (x \y)
der Punkt auf der Interpolationsgeraden , dann verwenden wir y als Nähe¬
rungswert für / (x) .
Mit A7 = y2 — yi , AZ = x 2 — x l5 Ay = y — y x und Ax = x — x ± gilt wegen
des Strahlensatzes (siehe Abbildung 196 . 1 ) :

— = -— . Damit berechnen wir
Ax AZ

( x | f ( x ))

und daraus

y = y i + fix )
y

l ^ ly, )

XX X

Abb . 196 . 1 Interpolation mit zwei Stützpunkten

* Das Wort interpolieren kommt aus dem Lateinischen und bedeutet zurechtstutzen oder verfälschen . Der erste ,
der es in dem obigen mathematischen Sinn gebraucht hat , war John Wallis (1616- 1703) .
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Beispiel :
Am Thermometer einer meteorologischen Station wurden im Laufe eines
Tages folgende Temperaturen abgelesen :

x = Uhrzeit t
in Std .

0 3 6 9 12 15 18 21 24

y = Temperatur 6
in °C 7,1 5,0 8,3 14,9 19,0 22,2 18,8 12,5 9,8

Wir wollen einen Näherungswert für die Temperatur um 10 Uhr durch
lineare Interpolation bestimmen . Als Stützpunkte verwenden wir die
nächstgelegenen bekannten Punkte (9114,9) und (12119,0 ) . Damit be¬
rechnen wir:
AT = 19,0 - 14,9 = 4,1
AZ = 12 - 9 = 3
Ax = 10 — 9 = 1 und damit

y = Ti + ^ • Ax = 14,9 + ^ • 1 * 14,9 + 1,4 = 16,3AZ 3

16,3 °C ist der Schätzwert für die Temperatur um 10 Uhr , der sich bei
linearer Interpolation ergibt . Der wirkliche Wert und damit auch der
Fehler sind allerdings weiterhin unbekannt !

Über den Fehler kann man sich informieren , wenn man den interpolierten
Wert mit dem wahren Wert vergleichen kann , wenn man z . B . die Interpolation
bei einer Funktion durchführt , deren Term bekannt ist .
Als Beispiel betrachten wir die Wurzelfunktion .
Wir berechnen mit den Stützpunkten (010) , ( 111 ) und (211/ 2) durch Interpola¬
tion Näherungswerte für l/ (L5 und für VÜ5 .

A7 = 1 - 0 = 1
AZ = 1 - 0 = 1
Ax = 0,5 — 0 = 0,5 und damit

y = y i +
AY
AX

■Ax = 0 + 0,5 = 0,5

l/ü ? : Af = 1/2 — 1 ss 0,41
AZ = 2 - 1 = 1
Ax = 1,5 — 1 = 0,5 und damit

y = y ! + ■ Ax = 1 + 0,41 ■ 0,5 = 1,2



198 Anhang : Lineare Interpolation

0,5 1,5
Abb. 198 . 1 Interpolation bei der Wurzelfunktion

Der absolute Fehler = »Näherungswert minus wahrer Wert« ist

im ersten Fall 0,5 — |/0,5 « — 0,2,
im zweiten Fall 1,2 — ]/l,5 « — 0,02.

absoluter Fehler .Der aussagekräftigere relative Fehler = - -- ist
wahrer Wert

im ersten Fall — 0,2 : j/0^5 « — 0,28 = — 28 % ,
im zweiten Fall — 0,02 : |/Ü5 « — 0,02 = — 2 % .
Im zweiten Fall ist der relative Fehler erheblich kleiner , weil die Kurve im
Interpolationsbereich nicht so stark gekrümmt ist .

Aufgaben
1 . Berechne mit der Tabelle des Beispiels von Seite 197 Näherungswerte für

die Temperatur um
a) lUhr h) 2 Uhr c) 18 . 30 Uhr .

2 . Berechne mit der Tabelle des Beispiels von Seite 197 Näherungswerte für
die Uhrzeit zwschen 3 Uhr und 15 Uhr , zu der die Temperatur folgende
Werte hatte :
a) 7 ° C b) 7,1 °C c) 10 °C.

3 . Unter der Deklination ö des Polarsternsverstehtman den Breitengrad des
Sterns auf der Himmelskugel . Wäre ö = 90 °

, dann stünde der Polarstern
genau am N -Pol der Himmelskugel . In einer Tabelle lesen wir die Deklina¬
tion des Polarsterns für verschiedene Jahre ab :

Jahr 1950 1960 1970 1980 1990

Deklination ö 89 °01,7' 89°04,7' 89°07,6' 89° 10,4 ' 89° 13,2 '

a) Berechne Näherungswerte für die Deklination im Jahr
1) 1988 2) 1965 3) 1977 .
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b) Berechne Näherungswerte für das Jahr , in dem die Deklination den
Wert
1) 89 ° 05 ' 2) 89° 10' 3) 89° 12,4 ' hat .

c) Berechne mittels Extrapolation Näherungswerte für die Deklination
im Jahr
1 ) 1940 (Tabellenwert 88° 58,7 ')
2) 2000 (Tabellenwert 89° 15,9 ')

4 . Als Zeitgleichung bezeichnetman in der Astronomie die Differenz »Wahre
Sonnenzeit « minus »Mittlere Sonnenzeit « , das ist also die Zeit , um die die
wahre Sonne sich »verfrüht « gegenüber dem Durchschnittswert , der sich
ergibt , wenn man eine gleichmäßig umlaufende Sonne annimmt .
Für die Zeitgleichung im Dezember 1988 findet man in einer Tabelle
( + ll m = 11min )
Datum 1 . 6 . 11 . 16 . 21 . 26 . 31 .

Zeitgleichung + U m + 9 m + 7m + 4m _l_ 2 m _ | m _ 2 m

a) Berechne Näherungswerte für die Zeitgleichung am
1 ) 5 . 12 .88 2) 22 . 12 .88 3) 24 . 12 . 88 .

b) An welchem Dezembertag wird die Zeitgleichung den Wert
1) + 10m 2) + 5 m 3) 0m

gehabt haben ?

5 . Berechne durch Interpolation (Extrapolation ) aus den Stützstellen 10 und
11 und den Werten j/lÖ « 3,1623 und ("TT « 3,3166 Näherungswerte für
a) l/IÖ ^5 b) V/ l (jj9 C) 1/10,95

d) l/T (U e) 1/10,05 f) 1/ 12 .

6 . Bestimme mit einem Taschenrechner die absoluten und die relativen Feh¬
ler , die bei den Näherungen von Aufgabe 5 auftreten . Erkläre die Unter¬
schiede anhand des Graphen der Wurzelfunktion .
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