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Kennzeichnung der in Bayern nicht allgemein verbindlichen Stoffgebiete

Fakultative Abschnitte sind durch zwei vorangestellte Sterne (¥x) gekenn-
zeichnet.

Kennzeichnung der Aufgaben

Rote Zahlen bezeichnen Aufgaben, die auf alle Fille bearbeitet werden sollen.

ebzw. Jusw. bezeichnen Aufgaben, die etwas mehr Ausdauer erfordern, weil
sie entweder schwieriger oder zeitraubender oder beides sind. Je mehr Punkte,
desto mehr Miihe!

Zitiert werden die Aufgaben unter der Seite und der Nummer. So bedeutet

21/10 die Aufgabe 10 auf Seite 21.

Nummerierung von Definitionen, Siitzen, Abbildungen und Tabellen
Die Zahl vor dem Punkt gibt die Seite an, die Zahl nach dem Punkt num-
meriert auf jeder Seite. Abb. 40.2 bedeutet beispielsweise die 2. Abbildung
auf Seite 40.




Vorwort

Algebra 9 soll in Fortsetzung der Binde Algebra 7 und 8 den Teil der Algebra
darstellen, der iiblicherweise in der 9. Jahrgangsstufe behandelt wird. Im Zen-
trum stehen zwei Themen:

(1) die Einfiihrung der reellen Zahlen und der Umgang mit ihnen, insbeson-
dere das Rechnen mit Quadratwurzeln;

(2) die Lésung von quadratischen Gleichungen und in diesem Zusa mmenhang
erste Bekanntschaft mit quadratischen Funktionen und ihren Graphen,
den Parabeln.

Beide Themen spielen in der Geschichte der Mathematik eine bedeutende

Rolle. Wie in den vorangegangenen Biichern ist auch hier wieder versucht

worden die historischen Beziige ausfiihrlich und gut lesbar darzustellen. In-

teressierte Schiiler finden auf diesen Seiten eine Vielzahl von Informationen
und Anregungen, die ihnen die Algebra vielleicht etwas spannender und weni-
ger blutleer erscheinen lassen.

Das Buch soll als Angebot verstanden werden und bietet daher an manchen

Stellen auch Ausblicke und Erweiterungen, die zur Bereicherung des Unter-
richts beitragen konnen, die aber nicht zum Pflichtstoff gehéren. Die entspre-
chenden Abschnitte sind durch ** gekennzeichnet.
Der Aufgabenteil ist wieder sehr reichhaltig und bietet Aufgaben von der
Pmueruhun;; bis zum echten mathematischen Problem. Auch hier soll der
Lehrer eine seiner Klasse und seinen Vorstellungen angemessene Auswahl
treffen konnen. Zur Erleichterung sind die Aufgaben gekennzeichnet: Rote
Zahlen bedeuten Aufgaben, die eigentlich jeder Schiiler bearbeiten sollte.
Die Kennzeichnung durch e, :, ... weist auf Aufgaben hin, die mithsamer
oder schwieriger sind als das, was iiblicherweise verlangt wird. Sie sind auch
als »Futter« fiir Schiiler gedacht, denen die »normale Kost« zu wenig abver-
langt. So soll das Buch sowohl fiir schwichere Schiiler o gentigend Er klirun gen
und einfache Beispiele als auch fiir interessiertere Schiiler die Méglichkeit zur
intensiveren Beschiftigung mit der Algebra bereithalten.

Miinchen, im Mai 1989 Die Verfasser




Zur Widmung auf der Titelseite

MENAICHMOS lebte um die Mitte des 4. Jh.s v. Chr., war ein Schiiler des Eupoxos und
Freund Pratons. Er schuf die ersten Ansdtze zur Kegelschnittlehre. Die Anekdote,
MENAICEMOS habe auf ALEXANDERs Frage, ob es keinen leichteren Zugang zur Mathe-
matik gebe, die auf der Titelseite zitierte Antwort gegeben, wurde von STOBAIOS (5. Jh.
1. Chr.) in seiner Anthologia uberliefert. Da sonst nirgends berichtet wird, dass ALEX-
ANDER neben ARISTOTELES noch einen besonderen Lehrer fiir Mathematik gehabt ha-
ben soll. halten einige sie fiir eine Nachbildung der Erzihlung, dass EUKLID diese
Antwort PToLemalos 1. (reg. 305-283 v.Chr.) auf dessen gleich lautende Frage ge-
geben habe. Andere hingegen nehmen an, dass die Menaichmos-Anekdote die ur-
spriingliche sei und spéter auf den beriihmteren EUKLID iibertragen worden sei.
Die Anekdote iiber EUKLID uiberlieferte uns der bedeutende Neuplatoniker PROKLOS
(410/411 Byzanz — 17.4.485 Athen) in seinem Kommentar zum I. Buch von Euklids
Elementen:

Koi vao 6 *Aoyumdng émpPardv xol 1@ 10T [Mrolepaie] pvnpovever w00
Edwheidov, wai pévrol xai gacty 6t ItoAepaiog fioeTo Tote adTov, £l Tig foTy
nepi yeopetolay 630g SUVTON®OTEQE TfiG OTOLYELDCEMS 6 8¢ Gmexpivarto, ur elval
Bucilxny dtoomov Eni vempeTeiav.

Denn Archimedes, der nach dem ersten Ptolemaios lebte, erwihnt Euklid und erzahlt
auch in der Tat, Ptolemaios habe ihn einmal gefragt, ob es nicht fiir die Mathematik
einen kiirzeren Weg gebe als die Lehre der Elemente. Er aber antwortete, es fithre kein
koniglicher Weg zur Mathematik.

NB: Wir haben bewusst das griechische geometria mit Mathematik iibersetzt; denn
bis ins 17. Jh. verwendete man das Wort Geometrie im Sinne von Mathematik.
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Pentagramm — Siegel Salomonis — Drudenful3
Gipsschnittstukkatur aus Marokko
Das magische Zeichen, das 5-mal A, das grofe griechische Alpha, enthilt und deswegen
auch Pentalpha heiBt, symbolisiert das Weltall, die Vollkommenheit und auch die
Gesundbheit. Es diente den PYTHAGOREERN (500-350 v. Chr.) und spiter den NEUPLA-
TONIKERN (3.—6. Jh. n. Chr.) als Zeichen ihres Bundes. — SALomo, K6nig von Israel und
Juda (um 965-926 v. Chr.), galt in den ersten Jahrhunderten unserer Zeitrechnung bis
ins Mittelalter hinein als groBer Zauberer; das Pentagramm wurde zu seinem Siegel.
Die Drude ist eine Hexe, ein weiblicher Nachtgeist, der fiir Alptriume und Magen-
dricken verantwortlich ist. Thr FuBabdruck, der DrudenfuB, ist, auf die Schwelle ge-
zeichnet, ein Abwehrsymbol gegen Druden, spiter ein allgemeines Bannzeichen gegen
Geister und den Teufel (siche GOETHE, Faust 1. Teil, Vers 1394fF.)




1 Die reellen Zahlen

1.1 Das Problem der Quadratverdoppelung

Der griechische Philosoph PLATON
(428348 v.Chr.) beschreibt in sei-
nem vor 389 v. Chr. verfassten Dialog
Menon (82b-85b) die Lehrmethode
seines berithmten Lehrers SOKRATES
(470-399 v. Chr.). Er schildert, wie
SOKRATES einem mathematisch unge-
bildeten Sklaven seines Freundes
MEeNoN dazu verhilft, die folgende
Aufgabe zu losen:
Zu einem gegebenen Quadrat soll
ein zweites Quadrat gefunden wer-
den. dessen Flicheninhalt doppelt
so grof} ist.
Der Sklave schliigt zundchst vor jede
Seite des gegebenen Quadrats (Abbil-
dung 10.2) zu verdoppeln, erkennt
dann aber, dass sich dabei der Fla-
cheninhalt vervierfacht (Abbildung
10.3). Das gesuchte Quadrat darf nur
halb so grof sein; man muss also die
Fliche des groBen Quadrates halbie-
ren. Die Losung, zu der SOKRATES den
Sklaven anleitet, beruht darauf, dass
von jedem der vier Teilquadrate die
Hilfte weggenommen wird, indem
man sie, wie Abbildung 10.4 zeigt,

r

Abb.10.1 PrartON, eigentlich ARISTO-
KLES (428 Athen oder Agina — 348 Athen)
K aiserzeitliche romische Kopie nach dem
Werk des SILANION, entstanden wohl bald
nach 348 v. Chr. Miinchen, Glyptothek

durch Diagonalen zerschneidet. ABCD ist dann das gesuchte Quadrat. Seine
Seite ist die Diagonale des gegebenen Quadrats.

—
l
|
|
|_
I

Abb. 10.2
gegebenes Quadrat

Abb.10.3 Quadrat mit
doppelter Seitenldnge

Abb.10.4 Quadrat mit
doppeltem Flicheninhalt




1.1 Das Problem der Quadratverdoppelung 11

Uns interessiert die Frage, wie lang die Seite des Losungsquadrats ist. Das
hangt naturlich von der GroBe des gegebenen Quadrats ab. Zur Verein-
fachung setzen wir voraus, dass es sich um das Einheitsquadrat handelt, also
um das Quadrat mit der Seitenldnge 1 (d.h. 1 Langeneinheit). Sein Flichen-
inhalt ist damit ebenfalls 1 (d.h. 1 Flidcheneinheit). Da somit das Losungs-
quadrat ABCD den Flacheninhalt 2 besitzt, muss fiir seine Seitenldnge x
gelten: ‘ee = D ikyrs x> = 0.
Um die Liange der Diagonale des Einheitsquadrats angeben zu kénnen
muss man also diese Gleichung 16sen. Man erkennt leicht, dass x eine Zahl
zwischen 1 und 2 sein muss, denn esist 1> < 2 und 2% > 2; alsomuss 1 < x < 2
gelten. Eine genauere Eingrenzung von x erhilt man, indem man die Qua-
drate von 1,1; 1,2; 1,3; ... berechnet; wegen 1.4*> =1,96 und 1,52 = 2,25 gilt:
1,4 < x < 1,5. Ebenso findet man mit Hilfe des Taschenrechners schnell die
Ergebnisse
141 <x <142
1,414 < x < 1,415
1,4142 < x < 1,4143.

Konnen wir auf diesem Wege den genauen Wert von x finden?
Sicherlich nicht! Denn wenn man einen Dezimalbruch mit einer, zwei, drei, . ..
Stellen nach dem Komma quadriert, erhédlt man eine Zahl mit zwei, vier, sechs,
... Stellen nach dem Komma, also niemals eine ganze Zahl.* Die Gleichung
x* = 2 kann somit keinen endlichen Dezimalbruch als Losung haben.
Neben den ganzen Zahlen und den endlichen Dezimalbriichen gehoren zu der
uns zur Verfligung stehenden Menge Q der rationalen Zahlen auch Briiche,
deren Dezimalentwicklung unendlich und periodisch ist. Das sind bekannt-
lich diejenigen Briiche, deren Nenner nach vollstindigem Kiirzen noch einen
von 2 und 5 verschiedenen Primfaktor enthalten. Gibt es unter ihnen eine
Losung von x? = 27
Angenommen, x = P mit P, q € IN wire eine solche Losung; dabei sei dieser
4
Bruch vollstindig gekiirzt. Da x keine ganze Zahl ist, muss ¢ > 1 gelten.
Durch Quadrieren erhilt man x* = ::::: Dieser Bruch kann aber keine
ganze Zahl sein; denn, da p und ¢ teilerfremd sind, ldsst er sich nicht kiirzen,
und wegen ¢ > 1 ist sein Nenner von 1 verschieden. Das hei3t aber: Es gibt
keinen Bruch, dessen Quadrat den Wert 2 hat.
Das Ergebnis unserer Uberlegungen lautet somit: Die Gleichung x? = 2 ist
mit rationalen Zahlen nicht l6sbar. Wir sind mit den uns zur Verfiigung ste-
henden Zahlen nicht in der Lage die Linge der Diagonale des Einheitsqua-
drats anzugeben. Man erkennt leicht, dass es neben x? = 2 noch viele andere,
ebenso einfache Gleichungen gibt, die in Q nicht I6sbar sind. Weitere Beispiele
findest du in den folgenden Aufgaben.

* Wir setzen dabei voraus, dass die letzte Stelle der zu quadrierenden Zahl jeweils nicht 0 ist.




12 I Die reellen Zahlen

Aufgaben

I. Zeige: Die folgenden Gleichungen haben keine rationalen Losungen.
a) x*’=3 b) x*=6 c) x2=8 d) x* =500
Die folgenden Gleichungen sind in ©Q 16sbar. Gib alle Losungen an.
ay x*=1 "'bh ¥*=4 ¢) x> =121 d) x%2=0625
e *=1 0O x*=2% g) x*=0,64 h) x2=0,0004

e 3. Beweise: Die Gleichung x? = n, n e N, ist genau dann in Q 18sbar, wenn »n
eine Quadratzahl ist.

[

4. Der folgende auf den Begriff »gerade Zahl« sich stiitzende Beweis fiir die
Unlosbarkeit der Gleichung x? = 2 in der Menge © wurde bereits von
ARISTOTELES (384322 v. Chr.) in seinen Analytica priora (1.23.41a. 23—
27) angedeutet und ist als Anhang zu Buch X der Elemente des EUKLID
(um 300 v.Chr.) iiberliefert.

Angenommen, der vollstindig gekiirzte Bruch E sel eine Losung der
Gleichung x? = 2. Dann gilt q

A ;
(f) =2 |
q

pE_:ZqZ

Daher ist p* und somit auch p eine gerade Zahl. Man kann deshalb
p = 2n setzen, mit ne IN.
(2n)* = 242 |z 2

9

2nt =g
Also ist auch ¢* und damit ¢ eine gerade Zahl.

Begrunde die angewandten Schliisse. Erklire, wieso die Annahme zu ei-
nem Widerspruch gefiihrt hat und somit falsch ist.

5. Der Beweis von Aufgabe 4, bei dem die Teilbarkeit durch den Primfaktor 2
die entscheidende Rolle spielt, lisst sich auch auf andere Primfaktoren
Ubertragen. Zeige nach dieser Methode, dass auch die folgenden Glei-
chungen in Q unlosbar sind: a) x> =7 b) x2=12 ¢) x2=15

6. Die Gleichung x* = % hat keine rationale Losung. Das kann man so be-
weisen: Aus x? = § erhilt man (3x)? = 2 - 3 (Multiplikation mit 32). Mit
der Substitution z = 3x wird daraus z? = 6, eine in Q unldsbare Glei-
chung (vgl. Aufgabe 1b).

Begriinde mit dieser Methode die Unldsbarkeit der Gleichungen
a) x? =1, b) x* =22, ¢) x2=10,.2, d) x*=125
in der Grundmenge ©Q.

: . ; P I .
¢ 7. Beweise: Die Gleichung x> ==, p,ge N, ist in Q genau dann l5sbar,

wenn p - g eine Quadratzahl ist. (Hinweis: Beachte die Aufgaben 6 und 3.)




1.1 Das Problem der Quadratverdoppelung 13

8. Gegeben ist ein Quadrat mit der Seitenldnge a, ae Q™.
a) Bestimme die Seitenlinge eines Quadrats, dessen Flicheninhalt
1) 4-mal, 2) 49-mal, 3) 2,25-mal, 4) £2-mal so groB ist.
b) Gibt es eine rationale Zahl, welche die Seitenldnge eines Quadrats mit
dem 1) 5fachen, 2) 16fachen, 3) 1,6fachen Fldacheninhalt angibt?

9. Kannst du mit Hilfe rationaler Zahlen angeben, wie lang die Seiten folgen-
der Figur sind?
a) Quadrat mit 1) 15m?, 2) 16 cm?, 3) 2,3 dm? Flidcheninhalt
b) Rechteck mit dem Seitenverhiltnis 2 : 3 und 1) 36 cm?, 2) 324 mm?,
3) 0,24 m? Flicheninhalt

10. Dem Problem der Quadratverdoppelung entspricht bei den Korpern das
der Wiurfelverdoppelung:
Zu einem gegebenen Wiirfel soll ein zweiter Wiirfel gefunden werden,
dessen Rauminhalt doppelt so grob ist.
Diese Aufgabe wird als delisches Problem bezeichnet aufgrund einer Er-
ziahlung des ERATOSTHENES (3. Jh. v.Chr.):
Als auf der Insel Delos die Pest wiitete, wandten sich die Bewohner Hilfe
suchend an Apollo. Sie erhielten den Auftrag, den wurfelformigen Altar
in seinem Heiligtum zu verdoppeln, aber dabei die Gestalt zu bewahren.
a) Zeige, dass die Kantenldnge x eines Wiirfels, dessen Volumen doppelt
so groB ist wie das des Einheitswiirfels, die Gleichung x® = 2 erfiillen
Muss.
eb) Begriinde nach der bei x* = 2 angewandten Methode, dass auch die
Gleichung x* = 2 in Q nicht lésbar ist.

e11. Die Tatsache, dass es Streckenpaa- 0
re gibt, deren Verhaltnis sich nicht T
durch eine rationale Zahl ausdrii-
cken ldsst, wurde zuerst von den
Griechen erkannt. Die PYTHAGO-
REER, deren Bundeszeichen das re-
gelmafBige Flnfeck war (vgl. Ab-
bildung 9.1), entdeckten gerade an
diesem Flinfeck, dass — ebenso wie
beim Quadrat — Seite und Diago-
nale kein rationales Verhéltnis ha-
ben.

Aus der Ahnlichkeit der Fiinfecke
ABCDE und AB'C'D'E’ in Ab-
bildung 13.1 folgt, dass das Ver-
haltnis von Seite und Diagonale in
beiden Fillen gleich ist. Abb.13.1 Das regelmiBige Fiinfeck
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Es gilt also

d d .
=—. (1)

5 &
a) Weise nach, dass sich d' und s" folgendermafBlen durch ¢ und s aus-
driicken lassen:
d=d-—s und s =25—-4d (2)
(Hinweis: Welche besondere Eigenschaft haben die Vierecke ABCB’,
ABA'E, C'E'CA’ und C'E'B'E?)
Begriinde sodann die Abschidtzung

s=d=<28s. (3)
b) Zeige mit Hilfe von (2), dass die Gleichung (1) durch die Substitution
e — ‘,:( folgende Form erhilt:
x—1
Tt e (4)

Welche Abschétzung fiir x ergibt sich aus (3)?

¢) Ausder Annahme, ein Bruch 2 mit teillerfremden natiirlichen Zahlen p

q
und ¢ sei Losung der Gleichung (4), ldsst sich folgende Gleichung
herleiten:
2
P
g = — 5
p+q 7 (3)

Fiihre die Herleitung aus.

d) Begriinde anhand der Gleichung (5), dass die in ¢ gemachte Annahme
falsch ist und dass demnach Seite und Diagonale des regelméBigen
Fiinfecks kein rationales Verhiltnis haben.

1.2 Irrationale Zahlen; Intervallschachtelungen

Wir mussten feststellen, dass die rationalen Zahlen schon zum Ldsen von
so einfachen Gleichungen wie x* = 2 nicht ausreichen. Dazu bendtigen wir
also neue, nicht rationale Zahlen.

Jede rationale Zahl lasst sich, wie wir wissen, als Dezimalzahl schreiben.
Sofern es sich nicht um eine ganze Zahl handelt, erhdlt man dabei entweder
eine endliche oder eine unendliche periodische Dezimalzahl.

Beispiele:
H=015; 2=1056; 23 = 1,318; Jee =001
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Natiirlich kann man sich auch Dezimalzahlen vorstellen, bei denen die Zif-
fernfolge hinter dem Komma unendlich und nicht periodisch ist, zum Beispiel
0,63633633363333... oder

5,18118811188811118888...,

wobei man sich die Ziffernfolge nach der leicht erkennbaren GesetzméBigkeit
endlos fortgesetzt denken muss. Dass man auch mit solchen Gebilden ebenso
rechnen kann wie mit den rationalen Zahlen, ist keineswegs selbstverstand-
lich. Darauf soll erst im ndchsten Abschnitt niher eingegangen werden.
Diese neuen nicht rationalen Zahlen werden in der mathematischen Fach-
sprache als irrationale® Zahlen bezeichnet. Es gilt also

nicht periodisch ist, heil3t irrationale Zahl.

Es ist nicht schwer, sich eine Vorstellung davon zu machen, wie die neuen
irrationalen Zahlen in die bekannten rationalen Zahlen einzuordnen sind. Als
Beispiel betrachten wir die irrationale Zahl z = 0,636336333 ... und verglei-
chen sie mit geeigneten rationalen Zahlen. Die Ziffer 0 vor dem Komma sagt
uns, dass z zwischen den ganzen Zahlen 0 und 1, also im Intervall [0; 1]
liegen soll:

0=z=1 dh zel[0:1]

Nimmt man die erste Stelle nach dem Komma hinzu, so ergibt sich die Ab-
schitzung
06 <z=<0,7 d.h. :ze[0,6;07].

Indem man so fortfihrt und jeweils eine weitere Ziffer der unendlichen Dezi-
malzahl beriicksichtigt, erhdlt man

0,63=<z=0,64 d.h. ze[0,63;0,64],
0,636 < z < 0,637 d.h. ze[0,636;0.637],
0,6363 = z £ 0,6364 d.h. ze[0,6363;0,6364],
0,63633 < z £ 0,63634 d.h. ze[0,63633;0,63634], usw.

Man erreicht so eine immer schiirfere Eingrenzung von z durch rationale Zah-

len. Die Folge der Intervalle fiir z muss man sich ohne Ende fortgesetzt denken.
l].EiE\1 0,64

0 06 11 07 1

Abb.15.1 Intervalle fir z = 0,636336333 ...

*

irrational = nicht rational. Zur Geschichte dieses Wortes siche Seite 63.
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Man erkennt leicht (Abbildung 15.1), dass diese Intervalle »ineinander ge-
schachtelt« sind, d. h., dass das jeweils nichste ganz im vorausgehenden ent-
haltenist. Die Langen dieser Intervalle sind der Reihe nach 1, 15, 166- to60s - - - :
sie nehmen schnell ab und werden beliebig klein, d. h., jede positive Zahl, auch
wenn sie noch so klein ist, wird von den Intervalllingen schlieBlich unterschrit-
ten. Fur eine solche Intervallfolge fithrt man eine passende Bezeichnung ein:

Definition 16.1: Eine Folge von unendlich vielen abgeschlossenen Inter-
vallen, ber welcher

(1) jedes Intervall in allen vorangehenden enthalten ist und

(2) die Intervallangen beliebig klein werden,

heil3t Intervallschachtelung. [

Das vorausgehende Beispiel zeigt, dass und wie man zu einer irrationalen Zahl
eine Intervallschachtelung angeben kann. Aber auch fur rationale Zahlen gibt
es Intervallschachtelungen. Das zeigen die folgenden

Beispiele:
1) $=10,6
Intervallschachtelung: [0;1], [0,6;0,7], [0,66;0,67], [0,666;0,667], ...
2) 15— 1,318
Intervallschachtelung:
(12200 FL, 35040, 04, 3154032 1, F 1 318:4 319011 318 1:4.3182] ...
3) 2.3 =2,30()
Intervallschachtelung: [2;3], [2,3;2.4], [2,30;2,31], [2.300;2,3017, ...

Man kann also fir alle Zahlen, gleichgiiltig ob rational oder irrational, Inter-
vallschachtelungen angeben. Wichtig ist, dass durch eine solche Schachtelung
die entsprechende Zahl eindeutig bestimmt ist. Es konnen ndamlich niemals
zwel verschiedene Zahlen allen Intervallen einer Intervallschachtelung ange-
horen. Denn ein Intervall, in dem zwei verschiedene Zahlen z, und z, liegen,
muss mindestens eine Linge |z, — z,| haben. Diese positive Zahl wird aber
bei einer Intervallschachtelung von den Intervalllingen schlieBlich unter-
schritten, da diese ja beliebig klein werden (Abbildung 16.1).

L

Abb.16.1 Die Intervalllingen werden kleiner als |z, — z,|.

Es gilt also

Satz 16.1: Jede rationale oder irrationale Zahl kann man durch eine
Intervallschachtelung eindeutig festlegen.

s
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Aufgaben
1. Entwickle die folgenden Zahlen in Dezimalbriche:
7 91 &5 8 9
a) 3s b) 53 ¢) o1 d) 15 €) is
L5 1 10 L 2.3 54
) 3 g8) 17 h) 947 i) %0 k) 360

(3]

[ 1]
(%]

e 6.

o7.

. Gib drei neue Beispiele fur unendliche nicht periodische Dezimalbriiche

an. Beschreibe jeweils die Regel, nach der die Ziffernfolge sich endlos
fortsetzen soll.

. Begriinde, dass die folgenden unendlichen Dezimalzahlen irrational sind.

(Hinweis: Untersuche das Auftreten der Ziffer 0. Gibt es beliebig lange

Abschnitte, die nur aus Nullen bestehen?)

a) x = 0,12345678910111213...; d.h., die Ziffernfolge nach dem Kom-
ma entsteht durch »Hintereinanderschreiben aller natiirlichen Zah-
len«.

b) y = 0,149162536496481100121...; d.h., die Ziffernfolge nach dem
Komma entsteht durch »Hintereinanderschreiben aller Quadratzah-
len«.

¢) z=0,126241207205040...; der k-te Abschnitt der Ziffernfolge nach
dem Komma ergibt sich hier durch die Berechnung des Produkts
1-2-3-... k, wofir man kurz k! schreibt, gelesen »k Fakultit«.

. Welche der folgenden Dezimalzahlen stellen irrationale Zahlen dar? (Die

Ziffernfolge soll sich nach der erkennbaren GesetzméaBigkeit endlos fort-
setzen.)

a) 0,367999. .. b) —1.343443444 ... «¢) 5,211221122211...
d) —7,727727727... e) 0,204080160... f) —4,32100000...

. Stelle fest, ob die angegebene Intervallfolge eine Intervallschachtelung ist.

a) [5:6],[5.6;5,7], [5.66; 5,671, [5.666; 5,667], ...

b) [0:2],[0,9;1,17, [0,99;1,01], [0,999;1,0017, ...

¢) [3:3,51, [3;3.,05], [3:3.005], [3:3.,0005], ...

d) [1:21:[2:2.11.[3:3.011. [4; 4.0017; ...

el 2 A 9 [~ 24 =199 P=2 111 = 1.999]. .
N [—1;2],[-0,1;0,2], [—0,01;0,02], [—0,001;0,002], ...

a) Gib eine Intervallschachtelung fiir die Zahl 0,9 an.

b) Begriinde, dass 1 die einzige Zahl ist, die in allen Intervallen dieser
Schachtelung liegt, und dass somit 0.9 =1 gilt.

¢) Begriinde entsprechend: 0,09 = 0,1; 0,009 = 0,01.

d) Schreibe als endlichen Dezimalbruch: 1,19; 0,409; —9.9.

e¢) Verwandle in unendliche Dezimalbriiche, ohne die Ziffer 0 als Periode
zu verwenden: 2,5; —0,89; 11; —2,011.

Bei den bisher betrachteten Beispielen von Intervallschachtelungen ent-

stand das jeweils ndchste Intervall durch Zehnteilung des vorausgehen-
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den. Manchmal werden auch andere Unterteilungsverfahren beniitzt.
a) Beschreibe die Regel, nach der die Intervallfolge [0; 1], [3:3]. [5:3].
[13:14], (2% 417 konstruiert ist. Stelle die ersten vier Intervalle auf

einer Zahlengeraden mit der Langeneinheit 9 cm dar.

b) Begriinde, dass die in a angegebene Intervallfolge eine Intervallschach-
telung ist. Welche Zahl wird durch sie festgelegt?

¢) Vom »Halbierungsverfahren« spricht man, wenn das jeweils nachste
Intervall eine der Hilften des vorausgehenden ist. Berechne die ersten
fiinf Intervalle einer Intervallschachtelung fiir die Zahl 3, indem du mit
[0; 1] beginnst und die weiteren Intervalle nach dem Halbierungsver-
fahren bestimmst,

8. Gib Intervalle der Lange 1; 0,1; 0,01 und 0,001 an, in denen eine positive
Losung der Gleichung
a) x* =3, b) x2 = 0,5, ¢) x? = 200, d) x2 =4
liegen miuBte.

9. Bestimme Intervalle mit den Langen 1; 0,1; 0,01 und 0,001, in denen die
Kantenlange eines Wiirfels liegen miisste, dessen Volumen n-mal so grof3
wie das des Einheitswiirfels ist.

a) n=2 b) n =10 ¢) n= 100

*%1.3. Rechnen mit Intervallschachtelungen

Wir haben schon erwidhnt, dass man auch mit den irrationalen Zahlen sinnvoll
rechnen kann. Das ist keineswegs selbstverstindlich. Schon bei der Frage, wie
mit thnen die verschiedenen Rechenarten auszufithren sind, stoBt man auf
Schwierigkeiten. Da es sich um unendliche Dezimalzahlen handelt, kann man
ja z. B. beim Addieren nicht wie bei endlichen Dezimalzahlen mit der letzten
Stelle beginnen. Bei den periodischen Dezimalzahlen umgeht man dieses Pro-
blem, indem man sie durch die entsprechenden gewohnlichen Briiche ersetzt,
z.B. 0,6 durch 3. Bei den unendlichen nicht periodischen Dezimalzahlen schei-
det diese Moglichkeit aus. Fiir das Rechnen mit ihnen benotigen wir andere
Hilfsmittel. Als solche eignen sich z. B. die Intervallschachtelungen. Mit ihnen
kann man die Rechenoperationen auch fiir irrationale Zahlen definieren und
die weitere Giiltigkeit der Rechengesetze nachweisen. Dies soll fur die Addi-
tion ndher erldutert werden. Zunichst betrachten wir ein Beispiel mit zwei
rationalen Summanden.

Beispiel 1:
a=%b=23=a+b=%2+23=%2+4+23= i
Intervallschachtelungen fiir @ und b haben wir bereits im vorausgehenden
Abschnitt angegeben (vgl. Seite 16). Aus deren ersten Intervallen erkennt
man, dass 0 = ¢ = 1 und 2 = b =< 3 gilt. Durch Addition dieser Unglei-
chungen erhélt man
2<a+b=4 d.h, a+be[2;4].
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Analog erhilt man aus den zweiten, dritten, vierten, ... Intervallen
0,6 +23<a+bh=07+24 d.h. a+be[2)9;3.1]
0,66 +230=<a+b=0,67+231 d.h. a+be[2,96;2,98]

0,666 +2300<a-+b=<0,667+2301 d.h. a+be[2,966;2968] usw.

Man erkennt leicht, dass die rechts stehenden Intervalle fiir a + b wieder
eine Intervallschachtelung bilden. Durch sie ist die Zahl a + b eindeutig
festgelegt. Aus der Dezimalentwicklung von a + b = 222 = 2,96 erkennt
man ebenfalls, dass a + b jedem Intervall dieser Schachtelung angehort.

Das vorausgehende Beispiel zeigt, wie man aus Intervallschachtelungen fiir
zwel Zahlen ¢ und b durch Addition entsprechender Intervallgrenzen wieder
eine Intervallschachtelung fiir die Summe «a + b erhilt. Der Vorteil dieser an
sich umstiindlichen Additionsmethode liegt darin, dass man sie auch auf irra-
tionale Summanden anwenden kann.

Beispiel 2:
z, = 0,636336333...; z,=5,181188111888...
Intervallschachtelung fiir z:
[0:1],[0,6;0,7],[0,63; 0,64], [0,636,0,637], [0,6363;0,6364], ...
Intervallschachtelung fiir z,:
[5:6], 154521, [ 518 5197, [5.181; 5,482, [5181 1 5,1812],". ..
Durch Addieren entsprechender Intervallgrenzen erhdlt man die Inter-
vallfolge
[5: 7], [5.7;5.9], [5.81;5.83], [5,817;5,819], [5,8174;5,8176], ...
Dies ist wieder eine Intervallschachtelung, durch welche die Summe
z, + z, bestimmt ist. [hre Dezimalentwicklung beginnt mit 5,817; man
kann durch fortgesetzte Intervalladdition beliebig viele weitere Dezima-
len berechnen.

Allgemein gilt: Zwei Zahlen a und b kann man addieren, indem man fiir sie
Intervallschachtelungen [ay; 4,], [a; 451, [as; As],... bzw. [by; B;].
[b,; B,], [bs; B3], ... aufstellt und aus den Intervallpaaren [a,; 4,1, [b,; B,],
n=1,2,3,..., die Intervalle [a, + b,; A, + B,] berechnet. Diese bilden wie-
der eine Intervallschachtelung, wie du anhand der Aufgabe 20/6 begriinden
kannst.

Da aus den Ungleichungen a, £ a = A, und b, =< b < B, die Doppelunglei-
chung a, + b, < a+ b < A, + B, folgt, liegt die Summe @ + b in jedem der
Intervalle [a, + b,; 4, + B,] und ist damit durch diese Intervallschachtelung
eindeutig bestimmt.

Da die bei Vertauschung der Summanden a und & erhaltenen Intervalle
[b,+a,; B,+ A,],n=1,2,3, ..., dieselbe Intervallschachtelung liefern, gilt
a+b = b+ a, d.h. das Kommutativgesetz der Addition fiir beliebige, also
auch fiir irrationale Zahlen. Ebenso kann man zeigen, dass auch die Gibrigen
Rechengesetze der Addition giiltig bleiben.
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Auch die Multiplikation von rationalen und irrationalen Zahlen kann man
mit Hilfe von Intervallschachtelungen durchfiihren. Es zeigt sich, dass auch
fur sie die bekannten Rechengesetze giiltig bleiben (vgl. die Aufgaben 20/7
bis 21/10).

Aufgaben

-2

Gib fiir a und b Intervallschachtelungen an und berechne daraus die ersten
fiinf Intervalle einer Schachtelung fiir @ + b. Gib die Dezimalentwicklung
von a + b an, soweit sie durch die berechneten Intervalle gesichert ist.
a)hr =10373373337. 0l umd =t

b) a = 2,0408016... und b = 1,505505550...

¢) a=2,039 und b= —1,808008000...
d) a=-—0771771177111... und b= —3,141144111444...

. Die Subtraktion zweier Zahlen ldsst sich nach der Regela — b = a + (— b)

auf die Addition zuriickfiihren. Berechne so die ersten fiinf Intervalle
einer Schachtelung fiir ¢ — b mit den Zahlen
a) von Aufgabe 1a, b) von Aufgabe 1d.

. a) Berechne die Summe der Irrationalzahlen z, = 0,151151115... und

z, = 2,626626662... Ist das Ergebnis wieder eine irrationale Zahl?
b) Gib zwel irrationale Zahlen an, deren Summe null ist.

4. a) Welche Zahl muss man zu 0,585585558 ... addieren um 1 zu erhalten?

e0.

7.

Ist die gesuchte Zahl rational oder irrational?

b) Welche Zahl muss man von 0,585585558... subtrahieren um
0,252252225... zu erhalten? Handelt es sich wieder um eine irrationale
Zahl?

. Beweise, dass die Summe aus einer rationalen und einer irrationalen Zahl

stets irrational ist. (Hinweis: Welche Folgerung fiir b ergibt sich aus

a+ b = ¢, wenn man annimmt, dass ¢ und ¢ rational sind?)

la,: A,] bzw. [b,; B,], n =1,2,3, ..., seien Intervallschachtelungen.

a) Beweise, dass fir jede natiirliche Zahl n gilt: Das Intervall
[a,+1+b,+4 4,41+ B, ,] liegt ganz in [a,+ b,; A, + B_].

b) Zeige, dass die Linge des Intervalls [a, + b,: A, + B, ] die Summe der
Langen von [a,; 4,] und [b,; B,] ist.
Begriinde damit, dass die Langen der Intervalle [a,+ b,; a, + B,] mit
wachsendem n beliebig klein werden.

a) Berechne mit den auf Seite 16 angegebenen Intervallschachtelungen
fira = 3 und b = 2,3 die Intervalle [a,* b,; A, - B,] fiirn =1 bisn = 4.
Priife, ob sie ineinander geschachtelt sind und ob die Zahl ¢ b in
jedem dieser Intervalle liegt.
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b) Berechne die Ldngen der in a bestimmten Intervalle.

¢) Sprechen die Ergebnisse von a und b dafiir, dass die Intervalle
[a,-b,; A,- B,] eine Intervallschachtelung fir a - b bilden?

8. a) Stelle fiir die beiden Irrationalzahlen @ = 1,505505550. .. und
b = 0,20406080. .. Intervallschachtelungen auf und berechne die Inter-
valle [a,- b,; A, B,] bisn =4.
b) Zeige, dass diese Intervalle ineinander geschachtelt sind, und berechne
thre Langen.

298
=

. Wenn [a,; 4,] und [b,; B,], n=1, 2,3, ..., Intervallschachtelungen mit
positiven Intervallgrenzen sind, dann bilden die Intervalle [a, - b,; 4,, - B,]
wieder eine Intervallschachtelung. Der nicht ganz einfache Beweis dafur
beruht auf den folgenden Schliissen. Erldutere sie!

a) Aus a, < A, und b, < B, folgt a,b, < A, B,; also ist [a,b,; 4,8,] ein
Intervall.

b) Ausa,=a..,undb <bh.. folgt g b, =< a,. by qyaUs Ay = Ay g
und B, = B, folgt 4,B, = 4,,,B,;,.
Daher gilt: [a, 30, sl vy Baaqll © [a;0,: 4,8.)

¢) Fir die Linge des Intervalls [a,b,; 4, B,] gilt:
A B —ab,=A,(B,—b,)+b,(A,—a,) <AB,—b,)+ B,(4,—a,)
Da mit wachsendem n die Werte der geklammerten Terme beliebig
klein werden, gilt dies auch fiir die Intervallinge.

10. Welche einfachere Form ergibt sich fiir die Abschitzung in Aufgabe 9e¢,
wenn die beiden Intervallschachtelungen nach der Zehnteilungsmethode
konstruiert sind und die ersten Intervalle die Linge 1 haben?

e11. a) Gibfiira = —%und b = — 3,6 Intervallschachtelungen an und berech-
ne daraus die ersten vier Intervalle fir das Produkt a - b.

b) Erklire, warum bei Intervallschachtelungen mit negativen Intervall-

grenzen die Intervalle der Produktschachtelung die Form

[A4,- B, a,-b,] haben.

1.4 Die Menge der reellen Zahlen

Die rationalen und die irrationalen Zahlen werden unter dem gemeinsamen
Namen reelle Zahlen* zusammengefasst.

=

Das Fachwort reell geht auf René DESCARTES (1596-1650) zuriick. Er unterteilte 1637 in seiner La Géoméirie
die Losungen von nicht linearen Gleichungen (wie z.B. ax® + bx + ¢ = 0) in wirkliche und nur denkbare.
Das franzdsische Wort fiir wirklich ist réel, das auf ein erst im Mittelalter auftauchendes lateinisches realis
zuriickgeht, das zu res = Sache gebildet worden war. Mit realis wird DESCARTES' réel 1649 in der lateinischen
Ubersetzung seiner La Géométrie wiedergegeben. Wann aus realis das deutsche Fachwort reell entstand,

konnten wir nicht feststellen. Nach 1831 ist es auf alle Fille bei Carl Friedrich Gauss (1777-1853) belegt.
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Man verwendet folgende Bezeichnungen:

Definition 22.1:
1%

= Menge der reellen Zahlen
R™ = Menge der positiven reellen Zahlen
R~ = Menge der negativen reellen Zahlen

IRy = Menge der nicht negativen reellen Zahlen

Fiir das Rechnen mit den reellen Zahlen gelten die schon bekannten Rechen-
gesetze, die wir in der folgenden Tabelle noch einmal zusammenstellen.

Fiir reelle Zahlen a, b, ¢ gelten folgende Rechengesetze:

Gesetze der Addition

Gesetze der Multiplikation

Bezeichnungen

(E,) a+beR

(E.) a-beR

Existenz der
Summe/des
Produkts

(K.)

a+b=b+a

(K.) ab=b-a

Kommutativ-
gesetz

(A4)

(a+b)+c=
=a+((b+0o)

(A) (@b):c=a(bo

Assoziativ-
gesetz

(N4)

a+0=a

(N)) a'1=a

Existenz des
neutralen
Flements

(1)

a+(—a)=0

1
(1) a-;: 1, falls a % 0

Existenz des
inversen
Elements

(D)

(a+b)yrec=a-c+b-c

Distributiv-
gesetz

a<bh = a+c<h+c

a<bh

==g-e<b-¢c
c>10)

Monotonie-
gesetz

a<b

=g =>hc
c<0

Umkehrung
der Monotonie

Jede reelle Zahl x lasst sich durch eine Intervallschachtelung darstellen. Da
deren Intervalle beliebig klein werden, ziehen sie sich auf der Zahlengeraden
auf einen Punkt zusammen, den wir ebenfalls mit x bezeichnen. Jeder reellen
Zahl ist somit eindeutig ein Punkt der Zahlengeraden zugeordnet.
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Es stellt sich nun die Frage:

Gehért umgekehrt auch zu jedem Punkt der Zahlengeraden eine Zahl?
Solange man nur die rationalen Zahlen zur Verfugung hatte, musste man
diese Frage verneinen! Zum Beispiel zeigt Abbildung 23.1 die Konstruktion
eines Punktes P der Zahlengeraden, zu dem keine rationale Zahl gehort.

L L —
T T i3

=1 0 g P 3

Abb. 23.1 Konstruktion eines »nicht rationalen Punktes«

Nach der Einfithrung der irrationalen Zahlen muss aber die oben gestellte
Frage anders beantwortet werden: Zu jedem Punkt P der Zahlengeraden ge-
hort eine reelle Zahl.

Dies kann man so begriinden:

Wir betrachten zunéchst die den ganzen Zahlen zugeordneten Punkte. Es kann sein,
dass P einer von ihnen ist; dann gehdrt zu P eine ganze Zahl. Andernfalls liegt P
zwischen zwei derartigen Punkten; wir bezeichnen sie mit nund # + 1, wobein € Z gilt.
Wir zerlegen nun [#; n + 1] in zehn gleiche Teile. Falls P einer der Teilpunkte ist, gehort

. : k. ; . ey
zu thm eine Zahl n + 0 mit k € {1,2,...,9}. Andernfalls liegt P zwischen zwei Teil-

punkten. Das von diesen begrenzte Intervall zerlegen wir wieder in zehn gleiche Teile
USW.

Es gibt nun zwei Mdglichkeiten:

Entweder: P fillt irgendwann mit einem Teilungspunkt zusammen; dann gehort zu ihm
eine Zahl mit einer endlichen Dezimaldarstellung.

Oder: P wird niemals ein Teilungspunkt; dann erhélt man eine Intervallschachtelung,
die sich auf den Punkt P zusammenzieht. Zu ihr, und damit zu P, gehort eine Zahl mit
einer unendlichen Dezimalentwicklung.

Somit gilt

Satz 23.1: Jeder reellen Zahl ist eindeutig ein Punkt der Zahlengeraden
zugeordnet und umgekehrt ist jedem Punkt der Zahlengeraden ein-
deutig eine reelle Zahl zugeordnet.

Aufgaben

Kennzeichne auf der Zahlengeraden die Zahlenmenge
. a) R™, b) R™, ¢) Ry .
Beschreibe die folgenden Zahlenmengen méoglichst einfach:
2. a) R*nZ b) Rf nZ ¢) R-uUR* d) R\Q
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1 Die reellen Zahlen

Bei den bisher betrachteten Inter-
vallschachtelungen haben wir je-
weils rationale Zahlen als Inter-
vallgrenzen beniitzt. Man kann
nva auch Intervallschachtelun-
gen bilden, bei denen die Inter-
vallgrenzen beliebige reelle Zah-
len sind. Kann man damit noch
einmal neue Zahlen erzeugen?
Mache dir den Sachverhalt an der
Zahlengeraden klar.

Begriinde die folgenden Aussa-

gen durch Widerspruchsbeweise:

a) Das Produkt einer von 0 ver-
schiedenen rationalen Zahl
mit einer irrationalen Zahl ist
irrational.

b) Der Kehrwert einer irrationa-
len Zahl ist irrational.

a) Gib eine rationale Zahl an,
die zwischen den irrationalen
Zahlen g = 0,414114111...
und b = 0.414414441. .. liegt.

b) Zu zwei verschiedenen reellen

1868

it Dbl r—

Abb. 24.1
Julius Wilhelm Richard DEDEKIND
(6.10.1831 Braunschweig-12.2.1916 ebd.)

b)

c)

Zahlen kann man immer rationale Zahlen angeben, die dazwischen
liegen. Begriinde diese Aussage.

Gib eine irrationale Zahl an, die

1) zwischen 1.5 und 1,6 2) zwischen %3 und 3§ liegt.

Gib eineirrationale Zahl an, die zwischen den Zahlen von Aufgabe5s a
liegt.

Zu zwel verschiedenen reellen Zahlen kann man immer eine irrationale
Zahl angeben, die dazwischen liegt. Begriindung!

Wenn bei einer Zahlenmenge M fir die Addition und die Multiplikation
die Rechengesetze E, K, A, N, I und D gelten, spricht man von einem
Zahlenkorper (M; +,-).*

a)

Du kennst nunmehr zwei verschiedene Zahlenkdrper. Welche sind
dies?

sb) Fiir die Menge der irrationalen Zahlen gilt:

(R\Q; +, -) ist kein Zahlenkorper. Welche Rechengesetze sind in die-
sem Fall nicht giiltig?

* Den Begriff Kirper priigte 1871 Richard Depexinp (1831-1916): seine Verwendung im heutigen Sinn (seit
1893) geht auf Heinrich WEBER (1842-1913) zuriick.
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1.5 Ein Vergleich der Zahlenmengen ©Q und R
**1.,5 Ein Vergleich der Zahlenmengen Q und R

In welchem Mafe hat sich durch die Einfithrung der irrationalen Zahlen unser
Zahlenvorrat vergroBert? Ist die Menge* der irrationalen Zahlen »groBer«
oder »kleiner« als Q7

Diese Frage ist nicht leicht zu beantworten, da ja beide Mengen unendlich
viele Elemente haben. Beim Vergleichen konnen wir uns auf die positiven
Zahlen beschrinken; da die negativen Zahlen die Gegenzahlen der positiven
sind, liefert bei ihnen ein Vergleich der rationalen mit den irrationalen dasselbe
Ergebnis.

Die Zahlen der Menge © * kann man nicht der Grofe nach geordnet aufzih-
len. Dennoch ist es moglich, sie in eine bestimmte Reihenfolge zu bringen und
dadurch abzuzihlen. Georg CANTOR (1845-1918) erfuhr dies bereits als Stu-
dent in einem Seminar bei seinem groBen Lehrer Karl WEIERSTRASS (1815 bis
1897) und erwihnte diese Moglichkeit im Brief vom 29.11.1873 an Richard
DEDEKIND (1831-1916). Vorgefiithrt hat es CANTOR aber erst in einem sehr
ausfithrlichen Brief vom 18.6.1886 an den Berliner Gymnasiallehrer
F. GoLpSCHEIDER. Veranschaulichen kann man dieses Abzdhlen durch ein
Verfahren, das auf Augustin Louis CAucHY (1789-1857) zuriickgeht und das
1. Diagonalverfahren heil3t. In Abbildung 25.1 ist es dargestellt.
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Abb. 251 Abzahlen der rationalen Zahlen nach dem 1. Diagonalverfahren

* Der Philosoph, Theologe und Mathematiker Bernard Borzano (1781-1848) verwendete das Wort Menge als
mathematischen Begriff in seiner um 1835 geschriebenen Grafienlehre, die erst 1975 verdffentlicht wurde, und
auch in den 1847 verfassten und 1851 gedruckten Paradoxien des Unendlichen. Georg CANTOR (1845-1918),
der diese Schrift sehr bewunderte, bentitzte das Wort Menge erst ab 1895; bis dahin sprach er von Mannigfal-
tigheit oder Inbegriff.




26 1 Die reellen Zahlen

Wir betrachten die Gitterpunkte im
1. Quadranten eines Koordinatensy-
stems und ordnen dem Punkt P (x| y)

mit x € N und y € N den Bruch X
v
Dann durchlaufen wir von + aus die
Gitterpunkte in der durch die rote Li-
nie angegebenen Weise und numme-
rieren dabei die Briiche. | ist also der
erste Bruch, 3 der zweite, ¢ der dritte
usw. (vgl. die roten Nummern in Ab-
bildung 25.1). # kénnen wir iiberge-
hen, da dieser Bruch wieder dieselbe
Zahl wie 1 darstellt. Auch § (= 3), 3
(=1), 5 (= 3) liefern keine neuen ra-
tionalen Zahlen; man erkennt, dass
alle kiirzbaren Briiche beim Numme-
rieren uUbergangen werden konnen ¢
(vgl. dazu Aufgabe 28/2). Wenn man um 1870
dieses Durchlaufen der Gitterpunkte - Lo
ohne Ende fortsetzt, wird jede Zahl —ﬁd’f’ﬁ' Cq/;r\—/t;:—
aus Q" genau einmal mit einer Num-
e ‘.\J?ISEh?nﬁ Wir h‘;?bl?l ddm]l .dlL Abb.26.1 Georg Ferdinand Ludwig
positiven rationalen Zahlen in f'.mle Philipp CANTOR (3. 3. 1845 Petersburg bis
blcstlmmtc Relhenf_olge gebracht; sie ¢4 {913 Halle)
sind durchnummeriert. Das Erstaun-
liche daran 1st. dass die naturlichen
Zahlen, die ja eine echte Teilmenge von Q" bilden, ausreichen um alle Zahlen
der Menge @ zu nummerieren. Man sagt dazu: »Die Mengen QF und N
sind von gleicher Michtigkeit.« Eine Menge, welche dieselbe Machtigkeit
wie IN hat, nennt man abzahlbar.* Damit kann man als Ergebnis des 1. Dia-
gonalverfahrens festhalten:

Satz 26.1: Die Menge Q * der positiven rationalen Zahlen ist abziihlhar.—‘

Nun betrachten wir alle positiven reellen Zahlen auf dem Zahlenstrahl
10; + oo[ und fiihren folgendes Gedankenexperiment aus: Ein Papierstreifen
von beliebiger Linge s wird in zwei Stiicke der Lédnge §s zerschnitten (Abbil-
dung 27.1). Mit einer der Hélften verdecken wir den Punkt 1 auf dem Zahlen-
strahl. 1 ist bei der von uns in Abbildung 25.1 eingefithrten Nummerierung die
erste rationale Zahl! Auch die tibrigen rationalen Punkte** werden sodann in

* Das Fachwort Michtigkeit hat CanTOR 1878 bei dem grofien Geometer Jakob STEINER (1796-1863) ent-
lehnt und auf seine heutige Bedeutung erweitert. Im gleichen Jahr verwendete er erstmals den Begriff
abzihlbar im oben angegebenen Sinn.

** Punkte der Zahlengeraden, denen eine rationale Zahl zugeordnet ist, nennen wir kurz »rationale Punkte«.




1.5 Ein Vergleich der Zahlenmengen © und R 247
g £

der durch die Nummerierung festgelegten Reihenfolge abgedeckt. indem man
immer wieder folgende Anweisung ausfiihrt: »Halbiere den verbliebenen Teil
des Streifens und verdecke mit einer Hilfte denjenigen Punkt des Zahlen-
strahls, welcher zu der ndchsten rationalen Zahl gehort.«

e g
i I Papierstreifen
|
.III ll
/ |
= [_1_1
— : r .
g T 2 3 A X
Al 5
2

Abb. 27.1 Die rationalen Punkte werden verdeckt.

Natiirlich werden durch das fortgesetzte Halbieren die Streifenstiicke immer
schmiler, aber zum Abdecken von Punkten, die ja die Breite null haben,
reichen sie immer wieder aus. Wir konnen auf diese Weise alle rationalen
Punkte des Zahlenstrahls (und nicht nur sie!) bedecken. Zu den nicht verdeck-
ten Punkten des Zahlenstrahls gehoren nur noch irrationale Zahlen. Da aber
die abgedeckten Teile des Zahlenstrahls zusammen hochstens die Lange s
haben und s zudem beliebig klein sein darf, bleibt fast der ganze Zahlenstrahl
unbedeckt. Man erkennt daraus, dass die Menge der rationalen Zahlen im
Vergleich zu derjenigen der irrationalen verschwindend klein ist! Durch die
Einfiihrung der irrationalen Zahlen hat sich also unser Zahlenvorrat ganz
gewaltig vergroBert.

[st dann vielleicht die Menge der reellen Zahlen nicht mehr abzidhlbar? Mit
dieser Frage beschaftigte sich Georg CANTOR, und er richtete sie auch in dem
oben erwiahnten Brief vom 29.11.1873 an Richard DEDEKIND. Dieser wusste
darauf keine Antwort, und CANTOR meinte am 2.12.1873, dass »sie kein be-
sonderes praktisches Interesse [...] hat und [...] nicht zu viel Miihe verdient.
Es wire nur schon, wenn sie beantwortet werden konnte.« Und schon am
7.12.1873 schickt CANTOR seinen Beweis dafiir, dass [R nicht abzahlbar ist, an
DEDEKIND. Am 8.12.1873 gratuliert DEDEKIND und schickt eine stark verein-
fachte Fassung des Beweises an CANTOR, der diese fast wortlich in seine im
Jahre 1874 erschienene Abhandlung tibernimmt. In Aufgabe 29/10 kannst du
selbst einen Beweis fithren fiir

Satz 27.1: Die Menge R der reellen Zahlen ist nicht mehr abzédhlbar.
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Aufgaben

ol.

2.

a) Wo liegen in Abbildung 25.1 die Gitterpunkte, denen die positiven

w2 ST,
Bruchzahlen mit — < 1 zugeordnet sind?
q
Gib 1n einer Zeichnung einen Weg an, auf dem man alle diese Punkte
durchlaufen und die verschiedenen Bruchzahlen nummerieren kann.
Fiihre dies bis zur Nummer 10 durch. p
b) Gib fiir die Gitterpunkte, denen die Briiche mit~ = 1 zugeordnet sind,
q
einen sie durchlaufenden Weg an und nummeriere die ersten zehn
Bruchzahlen in der damit festgelegten Reihenfolge.

a) Welche GesetzmiBigkeit erkennt man, wenn man bei den Briichen, die
in Abbildung 25.1 den Gitterpunkten einer bestimmten Diagonallinie
zugeordnet sind, die Summe aus Zihler und Nenner bildet?

b) Wie dndert sich diese Summe beim Ubergang zur néichsten Diagona-
len?

¢) Wie dndert sich die Summe aus Zahler und Nenner, wenn ein Bruch
gekiirzt wird?

ed) Begriinde nun, dass bei der in Abbildung 25.1 festgelegten Reihenfolge

3.

-

jedem kurzbaren Bruch einer mit gleichem Wert vorausgeht und somit
die entsprechende rationale Zahl bereits nummeriert ist.

Zeichne ein Koordinatensystem und betrachte alle Gitterpunkte der obe-
ren Halbebene, also die Punkte (x|y) mit xe Z und ye N, und ordne
X

jedem Punkt die Zahl — zu. Beweise die Abzihlbarkeit aller rationalen

)
Zahlen, indem du einen von (0] 1) ausgehenden Weg angibst, der alle Git-
terpunkte durchliuft. Wie lauten die ersten zehn rationalen Zahlen bei der
so erzeugten Anordnung?

Die folgenden Mengen sind abzidhlbar. Gib zum Beweis dafiir eine ent-
sprechende Zuordnung ihrer Elemente zu den natiirlichen Zahlen, also
eine Nummerierung an. Beschreibe diese Zuordnung als Funktion
ni— f(n),neN.

a) die Menge der geraden natiirlichen Zahlen

b) die Menge der ungeraden natiirlichen Zahlen

¢) die Menge N, d) die Menge Z

e) die Menge der Stammbriiche 1, ne N

f)* die Menge der Quadratzahlen n?, ne N

. Zwel Mengen heillen genau dann gleichmiichtig, wenn man ihre Elemente

eineindeutig einander zuordnen kann.
Begriinde folgende Aussagen:

* Dieses Beispiel findet sich bereits in den Discorsi (1638) des Galileo GALILEI (1564—1642)
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a) A=1{1,2,3,...,60} und B = {neN|77 < n < 138} sind gleichméichti-
ge Zahlenmengen.

b) Die Menge Paller zweistelligen Primzahlen und die Menge V' der durch
4 teilbaren zweistelligen Zahlen sind nicht gleichmachtig.

¢) Zweiendliche Mengen sind genau dann gleichméchtig, wenn sie diesel-
be Anzahl von Elementen haben.

6. Beweise die Gleichméchtigkeit der Mengen 4 und B:
a) A=0":B—107 b) A={xeQ|0<x<1}; B={yeQ|y>1}
oc) A={xeQ|0<x<1}; B=0Q"

7. Wenn man in Aufgabe 6 jeweils © durch R ersetzt, sind die neuen Mengen
A und B ebenfalls gleichmiéchtig. Begriinde dies.

8. Die von Bernard BoLzaNo (1781—1848) in seinen Paradoxien des Unendli-
chen (1847) klar herausgestellte Tatsache, dass bei unendlichen Mengen
eine echte Teilmenge dieselbe Michtigkeit wie die ganze Menge haben
kann, wird oft als eine Paradoxie* der Mengenlehre bezeichnet.

In welchen Teilaufgaben a) von Aufgabe 4, b) von Aufgabe 6
finden sich solche Paradoxien?

9. a) Begriinde mit Hilfe der in Ab-
bildung 30.1 angegebenen Zu-
ordnung P +— P’, dass die
Strecken [AB] und [CD]
gleichmichtige Punktmengen
sind.

b) In Abbildung 30.2 ist M der
Mittelpunkt der  Strecke
[AB], A das Spiegelbild von
A beziiglich g und Z der Mit-
telpunkt von [AB]. Beweise
mit Hilfe der Zuordnung
P. — P/, dass die Strecke [AB]
ohne ihre Endpunkte und die
Gerade g gleichmichtige
Punktmengen sind.

10. Georg CANTOR (1845-1918) ge-

lang 1873 der Nachweis, dass die 1839

]

Menge der reellen Zahlen tiberab- U 5’("&{5{}7/“& j%

e - - g 2 £ A
zihlbar, d.h. nicht mehr abzihl- e
bar ist. Einen Beweis dafiir

kannst du anhand der folgenden Abb. 29.1 Bernard BoLzaNO
Teilaufgaben erbringen. (5.10.1781 Prag—18.12.1848 ebd.)

* Die Paradoxie oder das Paradoxon = eine (echte oder scheinbare) Widersinnigkeit; paradox = widersinnig.
Zugrunde liegt das griechische Adjektiv napddoEog (parddoxos) = unerwartet.
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Abb. 30.1

a)

b)

d)

Zu Aufgabe 9a Abb. 30.2 Zu Aufgabe 9b

Wenn man von einer Teilmenge M von R xcig:n kann, dass sie tiber-
abzdahlbar ist, dann gilt das erst recht fiir R selbst. Erldutere dies.
(Nimm z.B. an, R wére abzahlbar!)

Die Zahlen der Menge M := {x e R|0 < x < 1} kann man in eindeuti-
ger Weise als unendliche Dezimalzahlen darstellen, wenn man dabei
Dezimalzahlen mit der Periode 0 verbietet. Wie lautet dann die
Schreibweise fiir folgende Zahlen? (Beachte Aufgabe 17/6.)

0,5; 0.71; 3. o0

Wir nehmen nun an, die Zahlenmenge M sei abzidhlbar. Dann kann
man ihre Elemente durchnummerieren; sie sollen der Reihe nach mit
X1, X5, X5. ... bezeichnet sein. Wir denken uns diese Zahlen als unend-
liche Dezimalzahlen untereinander geschrieben:

Xy = {}.\a\{ a,asa, ... (a;,b;, c;, ... bedeuten die einzelnen Ziffern
x, =0,bk,byb, ... der Dezimalzahldarstellung)
Y
Y3 —_— U, ('| {‘2\1'::\-&{‘4 10
usw. \
Nun bilden wir eine unendliche Dezimalzahl z = 0, z, z,z3z, ... nach

folgender Regel: Aus der Ziffernmenge {1, 2, ..., 8} wihlen wir
— fiir z, eine von a, verschiedene Ziffer,

fiir z, eine von b, verschiedene Ziffer,
— fiir z5 eine von ¢, verschiedene Ziffer usw.,
d.h., man wahlt allgemein eine Ziffer z; aus {1, 2, ..., 8}, welche von
der i-ten Dezimalen der Zahl x;, also von der auf der roten Diagonalli-
nie stehenden Ziffer verschieden ist.*
Begrunde, dass die so gewonnene Zahl z zwar zur Menge M gehort,
aber mit keiner der Zahlen x,, x,, x;, ... Gibereinstimmt.
Das Ergebnis von ¢ bedeutet, dass die Annahme, die Menge M sei
db.{dh]bdl falsch ist. Erldutere dies und folgere daraus auch die Nicht-
abzahlbarkeit von [R.

* Man bezeichnet die Auswahlregel fiir die Ziffern z; als 2. oder Cantor’sches Diagonalverfahren. CanNTOR hat
es 1890 entwickelt.
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Ein Bote bringt dem Schatzmeister des Perserkénigs DARIUS einen Sack Geldes von
tributpflichtigen Volkern. Der Schatzmeister hilt in seiner Linken eine Doppeltafel,
auf der wir TAAANTA H (= 100 Talente) entziffern kénnen. Auf ihr sind die Pos-
ten aufgeschrieben, die er nacheinander mit Hilfe von Rechensteinchen (= yngot
[pséphoi]) auf den Rechentisch (= afaxiov [abakion]) tibertragt. Dort lesen wir

M‘flﬁl&fg( T . also 1731 [Drachmen] 4 [oboloi]. Bei M = 10000, < = 3 Obolos und
T = 1Obolos liegen keine Steinchen. 1 Talent = 60 Minen = 6000 Drach-

men = 36000 Obolen. (Siche auch FuBnote auf Seite 67) — Nachzeichnung von der
rotfigurigen Dariusvase von Abbildung 32.1.




Abb. 32.1 Die Dariusvase aus dem Nationalmuseum von Neapel, Hohe 1,3 m, groBter

Umfang 2 m, vermutlich aus dem 4. Jh. v. Chr., gefunden in Canosa, dem alten Canu-

sium, in Apulien. In der oberen Reihe des Hauptkérpers nimmt Zeus mit anderen

Gottern Griechenland in Schutz. In der Mitte sitzt DARIUS 1. (reg. 522-486) auf dem

Thron, vor ihm steht ein Perser, der vor dem Krieg zu warnen scheint. Darunter die
Schatzmeisterszene von Abbildung 31.1.




2 Die Quadratwurzel

2.1 Definition der Quadratwurzel

Besitzt die in Q unlésbare Gleichung x? = 2 in der uns nun zur Verfiigung
stehenden groBeren Zahlenmenge R eine Losung?

Falls es eine positive Losung x, dieser Gleichung gibt, muss fiir sie gelten
(vgl. Seite 11):

g, =22 also x; e[1;2]
14 <x, =1,5 also x,e[1.4:1,5]
1,41 <x, <142 also x;,e[1,41;1,42]
1,414 < x, < 1,415 also x,e[1,414;1,415]

1,4142 < x, < 1,4143 also x,e[1,4142;1,4143] usw.

Man erhilt so eine Intervallschachtelung, welche die Zahl x, festlegt. Um zu
priifen, ob diese Zahl wirklich die Gleichung x* = 2 16st, berechnen wir die
entsprechende Intervallschachtelung fiir x7:

[1%22], [1,4% 1,52, [1,412%;1,42%], [1,4142;1,415%], ...

Da die Intervalle fiir x, gerade so gewihlt wurden, dass die Quadrate der
linken Grenzen kleiner als 2, die der rechten Grenzen grofer als 2 sind, liegt die
Zahl 2 in jedem Intervall der Schachtelung fiir x{. Diese stellt somit die Zahl 2
dar und es gilt tatsdchlich x7 = 2.

Gibt es noch andere Losungen der Gleichung x? = 2? Um dies zu entschei-
den nehmen wir an, x, sei eine von x, verschiedene Losung. Aus x; = 2 und
x3 = 2 folgt x{ — x3 = 0 und damit (x, — x,)(x, + x,) = 0. Da nach unserer
Annahme der 1. Faktor des links stehenden Produktes von null verschieden
ist, erhalten wir x, + x, = 0, also x, = — x,;. Damit ist gezeigt, dass auller x,
nur noch die Gegenzahl — x, als Losung in Frage kommt. Da tatsachlich
(—x,)* = xi =2 gilt, ist L = {x,; —x,} die Losungsmenge der Gleichung.
Ebenso wie bei x* = 2 lisst sich fiir jede Gleichung der Form x* = amita > 0
zeigen, dass sie in der Menge R der reellen Zahlen genau eine positive Losung
x, besitzt. Dazu kommt als negative Losung die Zahl x, = — x,. Die positive
Losung von x? = q, also diejenige positive Zahl, deren Quadrat gleich a 1st,
wird Quadratwurzel von a genannt und mit |/ @ bezeichnet. Auch im Fall der
Gleichung x* = 0 wird fur die einzige Losung x = 0 die Wurzelschreibweise
noch zugelassen, indem man vereinbart, dass |/ 0 = 0 gelten soll. Das ergibt die

Definition 33.1: Der Term }/¢ mit a = 0 bedeutet diejenige nicht negative
Zahl, deren Quadrat den Wert a hat.

Beachte also: [ ist nur fiir a = 0 definiert und es gilt

Va=0 und f l-"a-.]z —a.
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Beispiele:
d=20)635 =15; )k =q

|

ta ]
|

= 1,4142... (irrational); /10 = 3.1622 ... (irrational)

Das Zeichen L heiBt Wurzelzeichen; der unter dem Wurzelzeichen stehende
Term hei3t Radikand. Statt »die Wurzel aus a berechnen« sagt man auch »aus

a die Wurzel ziehen« oder »a radizieren«. |/ @ ist meist eine irrationale Zahl; nur
wenn « das Quadrat einer rationalen Zahl ist, »geht die Wurzel auf«, d. h. ist

auch |/a eine rationale Zahl. .
Die Gleichung x> = @ mit a > 0 hat die Zahl x; = |/a als positive Losung.
Fiir die negative Losung x, = — x; gilt daher: x, = —Va.

Satz 34.1: Die Gleichung x? = a mit a > 0 hat die Losungen
x; =Vaund x, = —Va.

#**7ur Geschichte von »Wurzel« und Wurzelzeichen

Stellt man sich eine Zahl als MaBzahl fiir den Inhalt eines Quadrats vor, so gibt die
Quadratwurzel aus dieser Zahl die Lange der Quadratseite an. Diese Vorstellung liegt
dem Wort nhevpa (pleurd) = Seite zugrunde, womit die Griechen, so z. B. EUKLID (um
300 v.Chr.) in Buch X seiner Elemente, die Quadratwurzel bezeichneten. Durch das
entsprechende lateinische Wort /atus driickten die Agrimensoren, die romischen Feld-
messer, die Quadratwurzel aus. NIKOMACHOS (um 160 n. Chr.) verwendet das griechi-
sche Wort pila (rhiza), das urspriinglich Wurzel einer Pflanze, im iibertragenen Sinn
Grundlage und Ursprung bedeutet, im mathematischen Sinn von Ausgangszahl.
Wortgetreu tibersetzt BOETHIUS (um 480—5247) es mit radix ins Lateinische.

Ob der Inder ARYABHATA I (um 476-? n.Chr.) durch das griechische piCa angeregt
wurde mit dem indischen Wort mizla, das ebenfalls Wurzel einer Pflanze bedeutet, die
Quadratwurzel aus einer Zahl zu bezeichnen, wird wohl immer ungeklirt bleiben miis-
sen. Interessanterweise iibernehmen die Araber, so auch AL-CHARIZMI (um 780 —nach
847) einerseits das griechische mAgvpd (pleura), wenn sie z. B. in ihren geometrischen
Beweisen die Quadratwurzel als Seite eines Quadrats darstellen — sie nennen sie dann
auch dil, das ist ihr Wort fiir Seite —, andererseits das indische miila, dem ihr arabisches
Wort &= (dschidr) entspricht, wenn sie die Quadratwurzel als Zahl auffassen. Leider
verwenden sie aber dschidr auch zur Bezeichnung der Unbekannten selbst, was aller-
hand Verwirrung stiftete und immer noch stiften kann. Denn noch heute verwendet
man in so manchen Lehrbiichern das Wort Wurzel im Sinne von »Quadratwurzel« und
im Sinne von »Losung einer Gleichung«. Wir wollen uns diesem Brauch aber nicht
anschliefien.

GERHARD VON CREMONA (1114-1187), der neben anderen arabischen Abhandlungen
auch das Werk ar-Cuarizmis iibersetzte, wahlte fiir dschidr die wortgetreue Entspre-
.chung radix, das wiederum folgerichtig mit Wurzel ins Deutsche libertragen wurde, so
um 1400 in der Geometria Culmensis und 1461 in der Deutschen Algebra, wo man liest
»wRadix ist die wurcz der zal« (Abbildung 68.1, Zeile 6 von folio 133v). In derselben
Handschrift wird das Wurzelziehen, das mittelalterliche radicem extrahere des JORDA-
NUS NEMORARIUS (T 1237) und des JOHANNES DE SAcro Bosco (1200-1256), mit »zuech
ausz dye wurcz« eingedeutscht. Das Fachwort radizieren erscheint erst 1836 in An-
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angsgriinde der reinen Mathematik fiir den Schulunterricht von Carl KoppE (1803 bis
Jangsg ;

1874), der dort auch das Wort Radikand fiir die »zu radizierende Zahl« pragt.

Ein besonderes Zeichen fiir die Quadratwurzel, nidmlich [, tritt zum ersten Mal bei
den Agyptern auf, z. B. im Papyrus Moskau (19.Jh. v.Chr.). Die Inder kiirzen ihr mula
einfach durch die Silbe mu ab. Die Araber kehren leider zu der vollen Wortalgebra
zuriick, sodass es erst im mittelalterlichen Italien wieder zu einem Zeichen fir die
Quadratwurzel kommt. Man kiirzt das Wort radix durch ein durchgestrichenes R, also
durch R ab, zum ersten Mal belegt bei LEONARDO VON P1sa (um 1170-nach 1240) in
seiner Practica geometriae von 1220. Geronimo CARDANO (1501-1576) und Niccolo
TARTAGLIA (1499—1557) verwenden es, in Deutschland Johannes WIDMANN VON EGER
(um 1460— nach 1500). Frangois VIETE (1540-1603) beniitzt stattdessen, seinem Lands-
mann Petrus Ramus (1515-1572) folgend, /., den Anfangsbuchstaben von latus.
Das heute tibliche Wurzelzeichen stammt aus Deutschland. Im vor 1486 geschriebenen
Algorithmus de Surdis des Codex Dresden C80 setzt der unbekannte Verfasser einen
Punkt in die Mitte vor die Zahl und erklirt: »In extraccione radicis quadrati alicuius
numeri preponatur numero unus punctus« (Zum Auszichen der Quadratwurzel aus
einer Zahl setzt man der Zahl einen Punkt voran). Bald wird dieser viereckig mit
Aufstrich, so im Codex Leipzig 1696 (vermutlich Ende des 15.Jh.s) und auch in der
um 1517 von Adam Ries (1492-1559) niedergeschriecbenen Algebra des INITIUS
ALGEBRAS (Codex Dresden C 349), dann erstmals im Druck 1525 in der Coff Christoff
RupoLFFs (um 1500—vor 1543), auch dort noch gelesen als »Punkt« (dies sogar noch
1551 in Johann ScHEYBLs [1494-1570] Algebra). In Michael StiFeLs (14877-1567)
Arithmetica integra — »Die ganze Arithmetik« — verlangert sich 1544 der Punkt zum
Abwirtsstrich (der in den Flgu:m schon das Ansatzstrichlein hat): Der Wurzelhaken
war geboren.

Es blieb aber bei allen Wurzelzeichen das Problem, ob z. B. |/a + b die Quadratwurzel
aus der Summe a+ b oder die Summe aus dem 1.Summanden /a und dem 2. Summan-
den b bedeuten 90]] Nahezu jeder Mathematiker hatte dafiir eigene Vorschriften. So
erscheinen bei dmcr(rdewnhul 1556 zum ersten Mal runde Klammern im Druck: im
General trattato di numeri, et misure —»Allgemeine Abhandlung tiber Zahlen und Ma-

Be« — des Niccolo TARTAGLIA steht R V. (R 24 piup v2) fUr |/ V24 + /12 . Dabei be-
deutet rrv. radix universalis = Gesamtwurzel, die 1572 Raffaele BoMBELLI (1526 bis
1572) in seiner L 'algebra als radix legata = gebundene Wurzel bezeichnet und durch
R.L ausdriickt. Das Ende der Bindung kennzeichnet ein etwas tiefer gestelltes gespie-
geltes L, also I, sodass bei ihm 14 + 6+ 2alsR.q.L4.p.R.q.6 | p.2 erscheint, wobel
R.q. radix quadrata bedeutet. Aus L und | diirfte unsere eckige Klammer entstanden
sein, In seinem Manuskript driickte BomBELLI 1557/60 die Bindung noch so wie andere
Mathematiker durch Unterstreichen aus. Durchgesetzt hat sich von all den Mé&glich-
keiten aber die Schreibweise von René DESCARTES (1596—1650) aus seiner La Géométrie
von 1637: Er fasste die zusammengehérigen Glieder durch Uberstreichen zusammen,
schrieb also |/ a + b. Verbindet man diesen Querstrich mit dem Wurzelhaken, so hat
man unser Wurzelzeichen, das sich aber sehr langsam verbreitete. SchlieBlich setzte
man den Querstrich auch da, wo er keinerlei Bedeutung hatte; denn bei
Va+ b war es ja elgt.nt lich nicht nétig, Va + b zu schreiben.

LEONARDO VON Pisa BX  Niccolo l:\RIJ\(TI IA R Adam Ries /
WIDMANN vON EGEr B Raffaele BomserLr #/27 ™Y Christoff RupoLrr /
Geronimo CARDANO R Dresdener Codex -2 4= /25  Michael STIFEL

\hb 35.1 \'Cl‘\ﬁ_hlbdenﬂ, Wurzelzeichen. W’L},Ln des Codex Leipzig 1696, s. -’\b!n 70.
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Aufgaben
. Gib die folgenden Zahlen in wurzelfreier Schreibweise an:
a) 1/1 b) 1/16 ¢) |/81 d) 1/36
e) |/ 100 f) /2500 g) L_.f’490000 h) |/ 1000000
) /196 k) /169 D /256 m) |/361
2. Ziehe die Wurzeln:
) /2 WY 9 VsE d) /56860
& /225 0 /529 g ]/0,0289 h) 1/0,000625
3. Berechne und vergleiche:

a) [,:*"'9 +16 und I/ /9 4 lx 16
h) /169 —25 und /169 — /25

Lrsm +49 und /576 + /49
d) /1681 — 1600 und /1681 — ;-""1600
e |/ 1+4+4 und If] +]/4+1
f) /49 +16—1 und L49¢|,16 /1
g) ifm und /196 — /36 +|/9
h) }/961 —25—36 und ]/961 —]/25—/36
Berechne:
a) |/1+3 b) |/1+3+5 ) Y1+3+5+7
d) /1+3+5+7+9 e [/1+3+5+7+9+11

. Beispiel: |/]/25 — 1 = |_..f5 —1= l4 = 2. Verfahre ebenso:

a) /)/16 b) |/)/81 ¢) |/)/625 d) V’l...f"if_ioim

e V1+1/9 0 /4 —_1}’"2'5" g) ;__,f[__.?-"ﬁﬁf)"_éi h) l L" 900 + &

Welche Zahlen diirfen bei den folgenden Wurzeltermen fiir die Variable
eingesetzt werden? Gib jeweils dlL Definitionsmenge des Terms an.

a) |/ 2a b) L-——u c) I;l—.—u d) |/ (S

e) /2|x| f) |/=3x| g) 1,-"’;-3 F 1 h) |/x% 1

) |/1-—x? k) 1/1x]—3 1) m) |/
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. Vereinfache:

+V8)(2-16)

a) (1+1/2)> b (3-V3)> o (2 v
(B3p—V3p)(V3p + 3p)

d (Va—2b)* e (BVx+5y)* D

. Fasse zusammen:

a) 3+5/2—7V2+15 b 2a—9a—5Va+12a
¢) —111/5+8)/3+2—6)/3+7V5

d) 5(1—V7+2V6)—3(3V6+5/T7—5)

e) (4/13 —15) (1 +81/13) —29(13 — 4)/13)

) 3m—Vn)>—@m+Vn)*+12ml/n

Bestimme die Losungsmenge der Gleichung:

a) x2=1225 b) 5x*—320=0 ¢) 16(x*+9) = 144
d) 2x*—4=0 e) 17x% + 61 = 350 f) 121 =49 —4x*

g) 0,2x2—=5=0 h) 3x2—2=3x2+1 i) 0,15=%x*4 x*

k) x2—)/3 =0 D x2+V5=V7 m) x*+)/5—/3=0
Welche Gleichung der Form x* = g hat die angegebene Zahl als Losung?

Wie lautet die Losungsmenge?

D —1 BT 90 & —Vi2 o~ D V05—V

/=

I3

. Wie lang ist die Diagonale eines Quadrats mit dem Flacheninhalt

a) 1m2, b) 8cm?, ¢) 9dm?, d) 450 mm?, e) 1,62a, f) 3km??

Bekanntlich ist /2 eine irrationale Zahl. Stelle bei den folgenden Termen
fest, ob sie rationale oder irrationale Zahlen darstellen.
@D 142 Wi ) 212 d (1+V2)+ (1 —-V2)

0 (/22 0 V2(1-V2) o (1+V2* b (1 +V2)(1-V2)

Bestimme die Losungsmenge:
e) 2V/x+5=3Vx+2 B 11—l =3 =l

g) 23Vx+7)=94+2Vx+5 h) (/x—17)-5—2Vx =3(11 +Vx)
i) 7—(@2Vx —7)-3=2Vx+4(7-2Vx)
Bei einem Fotoapparat wird bekanntlich das zur Bilderzeugung verwen-

dete Lichtbiindel durch eine meist kreisformige Blende begrenzt. Der
Blendendurchmesser d kann verdndert werden, die jeweilige Einstellung

wird durch die Blendenzahl % beschrieben; dabei bedeutet f/ die Brenn-
weite des Objektivs. ‘

a) Wie groB ist bei einem Apparat mit f = 50 mm der Blendendurchmes-
ser, wenn »Blende 8«, also die Blendenzahl 8, eingestellt ist?
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b) Auf der Objektivfassung eines bestimmten Fotoapparats sind sieben
Blendenzahlen angegeben, die kleinste davon heillt 2. Die iibrigen
Blendenzahlen sind so gewiihlt, dass beim Ubergang von einer zur
néchsten sich jeweils die Blendenfliche halbiert. Berechne die iibrigen
Blendenzahlen und gib die ersten beiden Ziffern ihrer Dezimalentwick-
lung an. (Damit erhélt man die auf der Blendenskala angegebenen
Zahlen!)

Hinweis: Beachte, dass die Blendenfliche zu d* proportional ist.

2.2 Berechnung von Quadratwurzeln

Wie findet man zu einer Zahl ¢ > 0 den Wert von [/ a ?

Bei den bisherigen Beispielen war das recht einfach; man konnte meist schnell
eine positive Zahl angeben, deren Quadrat die Zahl @ ergab. Schwieriger wird
diese Aufgabe schon, wenn a eine groBe, uns nicht geldufige Quadratzahl ist.

Wie findet man z. B., dass /33489 bzw. 1/157,7536 den Wert 187 bzw. 12,56
hat? Aber auch das sind noch Sonderfille. Im Allgemeinen ist ja der Radikand
a nicht das Quadrat einer rationalen Zahl; [/« ist dann irrational, und man
muss sich damit begntigen, einen hinreichend genauen Nidherungswert zu
bestimmen.

Dir 1st sicher schon bekannt, dass man solche Aufgaben bequem mit dem
Taschenrechner I6sen kann. Man muss lediglich den Radikanden « eingeben
und die Wurzeltaste {manchmal zwel Tasten) driicken und schon wird ein
(Nédherungs-)Wert von )/ a angezeigt. Wie ist das moglich? Sind die Wurzel-
werte schon im Taschenrechner gespeichert und miissen nur abgerufen wer-
den? Sicherlich nicht, wie du dir leicht klarmachen kannst! Die gesuchte Wur-
zel muss vielmehr jedes Mal neu berechnet werden. Dazu dient ein sehr schnell
ablaufendes Rechenprogramm, das mit dem Driicken der Wurzeltaste gestar-
tet wird. Fur das Berechnen von Quadratwurzeln gibt es verschiedene Verfah-
ren. Im Folgenden sollst du einige kennen lernen.

2.2.1 Intervallschachtelungsverfahren

Bei diesem schon bekannten Verfahren schlie§t man den Wurzelwert zwischen
zwel aufeinander folgende ganze Zahlen ein. Aus diesem Anfangsintervall ge-
winnt man durch Anwendung der Zehnteilungsmethode eine Intervallschach-
telung fir die gesuchte Wurzel. Der Rechenaufwand ist meist ziemlich groB.

2.2.2 Tterationsverfahren

Um zu einer Zahl ¢ > 0 die Quadratwurzel zu berechnen, beginnen wir mit
einem Schéilxwu'l Xp = 0 Dieser ist zu groB3 bzw. zu klein bzw. richtig, wenn
x{ > abzw. x{ < a bzw. x{ = a gilt. Den letzten Fall, in welchem die Bestim-

mung von Va zufallig schon gelungen ist, konnen wir im Folgenden auBer Acht
lassen.
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- _a > a ;
Wegen x? > a < x; > — bzw. x{ < a < x; < — kann man auch durch die
X4 Xq
. a - AL
Berechnung des Quotienten — entscheiden, ob der Schitzwert zu groB3 oder zu
X4
klein ist. In jedem Fall liegt aber der gesuchte Wurzelwert zwischen den Zahlen
a = - - ; ;
x, und —. Als néichsten Ndherungswert x, wihlen wir daher eine Zahl aus
X
1
diesem Intervall, und zwar den einfach zu berechnenden Mittelwert von x;,

a a
und —, also x, = [ x; +— ] : 2.

X X3
b
Ausgehend von x, kann man nun nach derselben Methode einen Néaherungs-
wert x5, dann x,, X5, ... berechnen. Allgemein erhalten wir den (n + 1)ten

Naherungswert x, ., aus x, nach der Formel

Xovq =Xt :2, nelN. (I)

Beispiel 1:
Gesucht ist |,,-"'341.
Wir beginnen (z. B.!) mit dem Schitzwert x; = 30.
Durch Anwendung von (I) erhilt man*:

% =060+%4h:2 < x = 29,016666
und weiter x; = 29,000004; x, = 29; x5 = 29;

Da 292 = 841, hat man mit x, bereits den richtigen Wert der Wurzel
gefunden!

Beispiel 2:

Gesucht ist |/6.

Mit dem Schitzwert x, = 2 erhilt man* nach ()

X, = 2,5; x5 =2,45; x, =2,4494897; x5 = x4 ().
Sobald zwei aufeinander folgende Niherungswerte iibereinstimmen, kann
man die Rechnung abbrechen; der nichste Schritt wire nur eine Wiederho-
lung des vorausgehenden und miisste wieder dasselbe Ergebnis liefern. Dass
dieses Ergebnis die gesuchte Wurzel ist, lisst sich leicht begriinden:
Mit x, . ; = x, folgt aus (I)

a
=i —|ia |25
X5
2 2 7
2% =% +d | —x;

X = d.

Da x, > 0 gilt, ist somit x, = |/ a.

* Die angegebenen Zahlenwerte wurden auf einem Taschenrechner mit achtstelliger Anzeige berechnet.




40 2 Die Quadratwurzel

Natiirlich gilt in Beispiel 2 die Gleichung xs; = x, nicht exakt, sondern
nur im Rahmen der Anzeigegenauigkeit des verwendeten Taschenrechners.
X4 = 2,4494897 ist deshalb nur der bestmégliche Nidherungswert, der mit die-
sem Rechner fiir die irrationale Zahl [/6 ermittelt werden kann. Dasselbe
Ergebnis erhdlt man, wenn man nach Eingabe von 6 die Wurzeltaste driickt.

Das Besondere an dem hier angewandten Rechenverfahren besteht darin, dass
zur Bestimmung der verschiedenen Naherungswerte immer wieder dieselbe
Regel, hier (I), beniitzt wird. Eine solche Berechnungsmethode bezeichnet
man als Iterationsverfahren.*

Ein Iterationsverfahren ist fiir das praktische Rechnen sehr vorteilhaft: Man
kann beim Taschenrechner immer wieder dieselbe Tastenfolge beniitzen. Die
[terationsregel (I) lasst sich, sobald ein Ndherungswert in der Anzeige steht,
z.B. mit folgender Tastenfolge ausfithren:

Croen) @[ @ (s O @2 O

Nach dem zweiten -Befehl wird der neue Nédherungswert angezeigt. Mit
ihm kann man, wie der Pfeil andeutet, das Verfahren wiederholen. Ein Itera-
tionsverfahren ldsst sich vor allem auf einem programmierbaren Rechner sehr
einfach durchfiihren. Die Abbildungen 40.1 und 40.2 zeigen ein Strukto-
gramm und ein Flussdiagramm fur Programme zur Berechnung von |/a nach
dem Iterationsverfahren (I). Bei den Taschenrechnern ist ein entsprechendes
Programm fest eingebaut.

a (Radikand)
o (Genauigkeit)
x (Startwert)

Fingabe: & (Radikand)
¢ (Genauigkeitsschranke)
' x (Startwert)

Solange |x* —a| > & tue

a
yi= (x + ) 22
X

X=1y

Ausgabe: [/a ~ x Va =~y

Abb. 40.1 Struktogramm zum Itera- Abb.40.2 Flussdiagramm fiir das Ite-
tionsverfahren (I) mit der Abbruchbedin-  rationsverfahren (I) mit der Abbruchbe-
gung |x2 —a|Ze dingung |x,,,—x,| < §

* iterare (lat.) = etwas noch einmal tun, wiederholen; iteratio (lat.) = die Wiederholung,
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Das [terationsverfahren (I) lisst sich auch geometrisch veranschaulichen. Wir
zeichnen dazu den Graphen der Iterationsfunktion, das ist in unserem Fall die
3 ; ; a L L i ;
Funktion mit der Gleichung y = (.r 2k ) :2, xeR™. Sie liefert zu jedem

X
Niherungswert x den ndchsten Nédherungswert y; d.h., setzt man x = Xx,, so
gilty = x, , ;. Umdann die Zahl yals x, , , wieder auf der x-Achse anzutragen
verwendet man die Gerade mit der Gleichung y = x. Der auf ihr liegende
Punkt mit der Ordinate y hat auch die Abszisse y, also x, . ; (Abbildung 41.1).

4

~(er8)

Abb.41.1 Graphische Erzeugung von x,,, aus x,
yA

/ T
‘y:[\:(+?j|.2 y=x

Abb.41.2 Graphische Darstellung des Iterationsverfahrens

Der rote Linienzug in Abbildung 41.2 zeigt, dass die Zahlen x,, x, x,, ... sich
von oben rasch der Abszisse des Schnittpunktes S der beiden Graphen nahern.
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Man kann zeigen, dass dies immer so ist (vgl. Aufgaben 44/4 und 45/7). Da S
die Koordinaten (//a|l/a) hat, strebt die Zahlenfolge x,, x5, x,, ... immer
monoton fallend gegen |/a (vgl. Aufgabe 45/5).

**2.2.3 Divisionsverfahren
Es gibt einen interessanten Algorithmus*, bei dem — dhnlich wie beim Intervallschach-
telungsverfahren — die einzelnen Ziffern der Dezimalentwicklung einer Wurzel nach-
einander berechnet werden, wobei aber der wesentliche Schritt bei der Bestimmung
einer Dezimalen im Ausfiihren einer Division besteht.
Zunichst eine einfache Voriiberlegung zur GréfBe von [ a. Es gilt

lsa<100 = 1 = Ia i sl ‘a hat 1 Stelle vor dem Komma
100 < a < 10000 = 10 <}/a <100, d.h., a hat 2 Stellen vor dem Komma

10*<a<10° = 102<Va<103 d.h., Va hat 3 Stellen vor dem Komma

Usw.

Daraus folgt: Die Zahl der Stellen, die bei der Dezimalbruchentwicklung von |/a mit
a > 1 vor dem Komma stehen, ergibt sich, indem man den Radikanden @ vom Komma
aus nach links in Zweiergruppen einteilt.

Beispiele: L,"fi._jﬂ!-G?-.g hat 2 Stellen vor dem Komma.
L;ﬁfm hat 3 Stellen vor dem Komma.

[,-""10%4169.824 hat 3 Stellen vor dem Komma.

Eine entsprechende Regel ldsst sich auch fiir Radikanden zwischen 0 und 1 aufstellen
(Aufgabe 46/10).
Zur Erklarung des Divisionsverfahrens betrachten wir zunichst das einfache

Beispiel 1: Berechnung von |/ 1369
Das Ergebnis ist eine Zahl mit 2 Stellen vor dem Komma, also |/13(69 = _ _
a) Bestimmung der ersten Ziffer
Man sucht die groBte Ziffer, deren Quadrat kleiner oder gleich 13 ist; Ergebnis
3
Begriindung: Der Radikand enthélt 13 Hunderter (1. Zifferngruppe von links),
liegt also zwischen 900 und 1600. Daher muss die Wurzel einen zwischen 30
und 40 hegenden Wert haben.
b) Bestimmung der nichsten Ziffer
Aus dem Ansatz /1369 =30 +r mit 0 <r < 10
folgt 1369 = (30 + r)?
1369 = 900 + 60r + r?
469 = (60 + r)r

* Algorithmus = Rechenverfahren. Das Wort Algorithmus entstand aus algorismus, einer Verballhornung des
Namens aL-CHARIZMI, der in Vergessenheit geraten war, sodass man unter algorismus die Lehre vom Rechnen
verstand. Erst 1849 hat der Ornientalist Joseph-Toussaint REmvaup den Ursprung dieses Wortes erkannt.
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Der ganzzahlige Teil von r ist die gesuchte Einerziffer. Um sie zu bestimmen
bringen wir die letzte Gleichung auf die Form 469 : (60 + r) = r. Da der Divi-
sor 60 + r zwischen 60 und 70 liegt, kann r nur 7 Ganze enthalten; denn
8- 60> 469 und 6 - 70 < 469.

Somit gilt: /1369 = 37, ...

¢) Bestimmung eventueller weiterer Stellen
Aus dem Ansatz V1369 =37 +s mit 0 =s<1

folgt 1369 = (37 + 5)?
1369 = 1369 + 74s + s*
0=(74+5)s

Wegen s = 0 folgt daraus s = 0.

Die hier durchgefithrte Rechnung lésst sich in einer sehr kurzen Niederschrift
darstellen; zu Beginn des Schrittes b sicht sie etwa so aus:

/13169 = 300,
9 (32=9)
469
60 - 3:2=06)

Die drei roten Kistchen miissen nun mit derselben Ziffer besetzt werden! Ein
Schitzwert fiir diese ergibt sich aus der Rechnung 46 : 6 ~ 7. Wegen 67 - 7 = 469
ist 7 die richtige Einerziffer. Die vollstindige Rechnung lautet damat
/1369 = 37,
-9
469
—469 677
0
Da der neue Rest 0 betrdgt, ist die Rechnung beendet.

Solange die bei diesem Divisionsverfahren auftretenden Reste positiv sind, kann man

die Rechnung fortsetzen und wie bei b die niichste Ziffer ermitteln. Dies gilt auch
beim Uberschreiten des Kommas. Dazu das

Beispiel 2: Berechnung von /40,9

Das Ergebnis hat 1 Stelle vor dem Komma: 409 =6, ...

Aus dem Ansatz l-"";-l-(},‘) =6+4+r mit 0=r<l1
folgt 40,9 = 36 + 12r + r*
49=(124r)r

Die gesuchte niichste Ziffer ist nun der ganzzahlige Teil von 10r. Wir fiihren
deshalb ' = 107 ein. Dazu multiplizieren wir beide Faktoren auf der rechten Seite
mit 10, die ganze Gleichung also mit 100:

490 = (1204 )1’
also 490: (120 +r") = r'.
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Als ganzzahliger Teil von * ergibt sich daraus nicht 4, sondern 3. Somit gilt:
/40,9 =6,3...

Ganz entsprechend verfihrt man bei der Bestimmung weiterer Ziffern. Die Kurz-
form der Rechnung sieht dann so aus:

/40,9 = 1/ 40,90 0000... = 6.395 ...
—36 (6% = 36)

490

369 1233 (6-2=12)

12100

~11721 1269-9|  (63:2=126=123+3)

679 00

—~63925 12785-5 (639-2 = 1278 = 1269 + 9)

39 75

Man rechnet so lange, bis die gewiinschte Genauigkeit erreicht ist.

** Zur Geschichte

Das angegebene Divisionsverfahren hat 1540 Reinerus GEMmMa Frisius (1508 -1555)
in seiner um 1536 geschriebenen Arithmeticae practicae methodus facilis veroffentlicht.

Aufgaben

1.

[

7

Bei der Berechnung von /31 nach dem Intervallschachtelungsverfahren
erhilt man [5; 6] als erstes und [5,5; 5.6] als zweites Intervall. Muss man
zur Bestimmung des nédchsten Intervalls die Quadrate aller Zwischenwerte
5,515 5,52; ...; 5,59 berechnen? Wie viele Quadrate sind bei geschicktem
Vorgehen hochstens notwendig? Wie hei3t das dritte Intervall fiir [/31?

- Das funfte Intervall der Schachtelung fiir /21,8 heiBt [4,6690; 4,6691].

Wie entscheidet man am einfachsten, ob der auf vier Stellen nach dem

Komma gerundete Wert von |/21.8 mit der linken oder mit der rechten
Intervallgrenze libereinstimmt?

Berechne nach dem Iterationsverfahren (I) die Naherungswerte x, bis x.
fiir

a) /13 und =3 b) V13 und x, =4,
¢) /6,32 und x, =2, d) /6,32 und x, =25,
e) /3987 und x, = 60, f) /095 und x,=1.
. Zeichne den Graphen der zur Berechnung von [8 gehorenden Iterations-
funktion x — | x + t : 2 1m Intervall 0 < x < 10 und veranschauliche

das Iterationsverfahren wie in Abbildung 41.2. Verwende dabei als (sehr
schlechten!) Anfangswert zuerst 10, dann 0,5.
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5. Beweise, dass die Gerade y = x die Kurve y=(x+—):2, x>0, im
Punkt S(/a|) a) schneidet.

$6. Die halbe Summe zweier Zahlen bezeichnet man als ihr arithmetisches
Mittel*: die Wurzel aus dem Produkt zweier positiver Zahlen heil3t geo-
metrisches Mittel*. Weise nach, dass das geometrische Mittel zweier Zah-
len stets kleiner oder gleich ihrem arithmetischen Mittel ist.

7. a) Bilde das geometrische Mittel der in der Formel des Iterationsverfah-

a _
rens (I) vorkommenden Zahlen x, und —. Zeige, dass fur

X
et e : 2 stets die Ungleichung x, , ; = Va gilt (n € N).
X,
ety : a— : S
b) Bestitige die Beziechung x,,, — x, = S und begriinde damit die
; 2x
Ungleichungen x, = x3 2 x4 = ... 3
: : 5 _ | 2uv i
¢) Die aus zwei positiven Zahlen u und v gebildete Zahl T bezeichnet
H (2]

man als harmonisches Mittel* von « und v.
Beweise, dass fiir die beim Iterationsverfahren (I) auftretenden Zahlen-
| a l o :

— ], ... gilt:
X3

a
paare | x; | — |, | X2
Xy

Xa

Das arithmetische Mittel der Zahlen eines Paars ist die erste Zahl des
nichsten Paars. Das harmonische Mittel der Zahlen eines Paars ist die
zweite Zahl des ndchsten Paars.

* ARCHYTAS, der als Staatsmann, Feldherr, pythagoreischer Philosoph und Mathematiker um 375 v. Chr. in
Tarent wirkte, sagt, dass es in der Musik drei Mittel gebe, und zwar die péon dgiduntikt (mese arithmetike),
das arithmetische Mittel, fiir das v — m = m — v gilt, die péon yeopetpin (mese geometrike), das geometri-
sche Mittel, fiir das u: m = m: v gilt, und schlieBlich die péon tmevavein (mese hypenantie), das kontrire
oder entgegengesetzte Mittel, das auch péom &ppovikn (mese harmoniké), harmonisches Mittel, genannt
wird und fiir das (z — m) : v = (m — v) ; v gilt. Hippasos (Mitte 5. Jh. v. Chr.) soll, anderen Berichten zufolge,

als erster den Ausdruck harmonisches Mittel gebraucht haben. Lést man jeweils nach m auf, dann erhilt man
3

; o U+ v 2
die bekannten Ausdriicke —— bzw. |/uv bzw. —
WU

Die Mittel ergeben sich aus Sonderfillen von Proportionen. Setzt man ndmlich in der arithmetischen Propor-
tion @ — b = ¢ — d bzw. in der geometrischen Proportion a : & = ¢: d die Innenglieder b und c gleich, dann
erhilt man mit den AuBengliedern # und v die oben angegebenen stetigen oder fortlaufenden Proportionen
(siehe Seite 99) u—m = m — v bzw. w:m = m:p. Allméhlich wurde es Brauch, eine solche dreigliedrige
stetige Proportion pesotng (mesotes) = Mittelheit zu nennen. EUKLID (um 300 v, Chr.) verwendet nur die
geometrische Proportion. In Buch VI, Satz 13 der Elemente nennt er |/uv mittlere proportionale Grdfle (ngcov
pévedoc dvikoyov [méson mégethos andlogon]), was JOHANNES DE SACRO Bosco (1200-1256) mit medium
proportionale tibersetzt. Johannes WIDMANN voN EGER (um 1460-nach 1500) bildet 1489 in seinem Re-
chenbuch dafiir eyn mittel zal und Johann ScHEYBL (1494-1570) in seiner Euklidiibersetzung Das sibend/acht
und newnt buch des hochberiimbten Mathematici Euclidis Megarensis von 1555 das mittel proportional zwaier
zalen oder kurz mittel. Den Ausdruck geometrisches Mittel hat anscheinend 1808 Georg Simon KLUGEL
(1739-1812) in seinem Mathematischen Wérterbuch geprigt. Bei Johannes KeEpLER (1571-1630) findet man
1615 meditwm arithmeticum in seiner Nova Stereometria doliorum vinariorim — »Neue Raummesskunst filr
Weinfisser« —, die Eindeutschung arithmetisches Mittel erst im 1. Viertel des 19. Jh.s.

{(Ubrigens verwechselt ScHEYBL wie so mancher andere den Mathematiker EUKLID [um 300 v.Chr.] mit
dem Philosophen EukLip von Megara [um 450—um 370 v. Chr.], einem Schiiler des SokraTES. Federigo
COMMANDING [1509-1575] weist 1572 in seiner Euklidiibersetzung auf diesen Irrtum hin.)
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8.

9.

10.

1.

12.

14.

2 Die Quadratwurzel
Wihle einen Startwert x, und berechne mit dem Iterationsverfahren (I)
die ersten vier geltenden*® Ziffern der Dezimalentwicklung von
a) /8170  b) |/1436 ¢ |/0,088855  d) |/0,000001234.
Wie viel Stellen vor dem Komma hat die Dezimalentwicklung der Wurzel
und wie heif3t die erste Ziffer?

a) /5 b) 1/37.64 ¢) /428 d) 1/3650809

e) |/82145 ) /82145  g) /821,45  h) /82,145
a) Welche Ungleichung fiir Va folgt aus

_ 1 1
1) 1>a=001: 2)0,01>a=0,0001; 3) T

b) Wo steht in der Dezimalentwicklung von 1) | 0,5; 2) //0,025;
3) 170,004 die erste von 0 verschiedene Ziffer und wie heiBt sie?

Wie muss bzw. kann der Anfang der Dezimalentwicklung der Wurzel

aussehen? (Die Punkte bedeuten weggelassene Ziffern.)

a) /0,7... 1) J0,006... o 012... d) |/0,0147...

Berechne nach dem Divisionsverfahren den ganzzahligen Teil der Wurzel.
a) /1000  b) /80656 ¢ |/338725  d) |/3387.25

. Berechne nach dem Divisionsverfahren den auf Hundertstel gerundeten

Wert von a) |/19,  b) |/187.5, ¢) /17,7241,  d) }/0,61%.

Auf der in Abbildung 48.1 gezeigten altbabylonischen Keilschrifttafel
VAT 6598 (um 1600 v. Chr.) wurde zur ndherungsweisen Berechnung von
Quadratwurzeln folgendes Verfahren angewandt, das auch HERON (um 62
n.Chr.) in seinem ITepi puétpwv — »Vermessungslehre« — angibt:

VpP+q~p+ ;; (p>0; p>+q=0)
Welcher Wert ergibt sich damit

a) fiir [f'fi aus der Zerlegung 3 =4 —1;

b) fiir l/? aus der Zerlegung 3 = 2,89 + 0.11;

¢) fiir [,é aus der Zerlegung 6 = 6,25 — 0,25;

d) fir [;""435 aus der Zerlegung 435 = 400 + 35;

e) fiir L/HS aus der Zerlegung 435 = 441 — 6;

f) fir I/-"rlﬂﬂl) aus der Zerlegung 1000 = 1024 — 24?7

Vergleiche das Ergebnis mit dem Nédherungswert des Taschenrechners.

* Die geltenden Ziffern werden von links nach rechts gezihlt. Die erste von 0 verschiedene Ziffer ist dabei die
erste geltende Ziffer.
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15. Welcher Niherungswert x, ergibt sich nach der Formel von Aufgabe 14

fiir |/, wenn man mit Hilfe eines Schétzwertes x; den Radikanden in der
Form a = x2 + (a — x}) darstellt? Vergleiche damit das entsprechende Er-
gebnis beim Iterationsverfahren (I).

16. Von HERON (um 62 n.Chr.) wird angenommen, dass er fir Wurzeln der
Form |/n* —1 mit ne N auch die Niherungsformel
— 1 1
1-" n-—1~n— -+ —  verwandte.
2n—1 2n—1)-2n+1)
a) Zeige, dass die von HERON angegebene Nédherung /'3 ~ 2¢ mit dieser
Formel gewonnen werden kann.
b) Welcher Niherungswert ergibt sich aus obiger Formel fur
1)/ 15, 2) |/ 63, 3) |/ 1207
¢) Vergleiche die HErRoNsche Néherung fiir |/3 mit der von ARCHIMEDES
(um 287-212 v.Chr.) stammenden Abschitzung
265 1351
o < /3 < .
153 780
Vergleiche die Ergebnisse jeweils auch mit den von deinem Taschenrechner
gelieferten Naherungswerten.
17. Die Babylonier rechneten bekanntlich im Sexagesimalsystem™, also im

Stellenwertsystem mit der Grundzahl 60. In den Ubersetzungen ihrer Keil-
schrifttexte werden Zahlen meist in der Form geschrieben, dass hinter die
Ganzen ein Strichpunkt und zwischen Einer, Sechziger, ... bzw. zwischen
Sechzigstel, 3600stel, ... jeweils ein Komma gesetzt wird. Zum Beispiel
bedeutet 4,20:25,08 die Zahl 4-60+ 20 + 25 + 3800-

a) Priife die aus einer babylonischen Wurzeltabelle stammende Gleichung
/038,24 = 0:48.

b) Gib den Wert von 1) |/3.45, 2) |/1;3345. 3) /11 13
im Sexagesimalsystem an.

21

a

18. Die Keilschrifttafel VAT 6598 (Abbildung 48.1) enthiilt folgende Aufga-

be: Ein Tor.  GAR und 2 Ellen Héhe, 2 Ellen Weite. Seine Diagonale ist

was?

a) Wie viel Ellen misst die Diagonale, wenn 1 GAR = 12 Ellen** gilt?

b) Auf der Tafel wird fir die Lidnge der Diagonale der Wert
0:41,15 GAR angegeben. Zeige, dass dies keine exakte Losung ist und
dass sie sich nach der Niherungsformel von Aufgabe 14 ergibt, wenn

* sexagesimus (lat.) = der sechzigste
%%

{ GAR bedeutet etwa 6 Meter, 1 babylonische Elle also etwa 5 dm.
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Abb.48.1 Ruickseite der altbabylonischen Keilschrifttafel VAT 6598, aufbewahrt in
Berlin, Staatliche Museen: Vorderasiatische Abteilung; Tontafeln, samt zugehoriger
Autographie (wortlich: Selbstgeschriebenes), d. h. handschriftlicher Ubertragung der
in den Ton eingedriickten Zeichen

19. a)

eb)

man fiir p* die groBte Quadratzahl wihlt, die im Quadrat der Diagona-
len enthalten ist.

Fir dieselbe Aufgabe wird auf der Tafel auch noch die Losung
0:42,13,20 GAR angegeben. Vergleiche die Genauigkeit der beiden L6-
sungen.

Auf der babylonischen Keilschrifttafel* AO 6484 aus Uruk aus der
Zeit der SELEUKIDEN (321-63 v. Chr.) findet man fiir /2 den sexagesi-
malen Wert 1;25.

1) Aufwie viel Dezimalstellen stimmt dieser Wert mit dem von deinem
Taschenrechner angezeigten Wert iiberein?

2) Man kann nur vermuten, dass die Babylonier diese Nédherung durch
zweimalige Anwendung der Formel von Aufgabe 46/14 gefunden
haben, und zwar beginnend mit p7 = 1; der sich dabei ergebende
Néherungswert wird als p, genommen. Fiihre diese Rechnung
durch.

Auf der altbabylonischen Keilschrifttafel** YBC 7289 (Abbildung
49.1) steht auf der Diagonale eines Quadrats die Sexagesimalzahl
1;24,51,10.

* aufbewahrt im Louvre zu Paris in der Abteilung Antiquités Orientales
** aufbewahrt in der Yale Babylonian Collection in New Haven (USA)
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1) Auf wie viel Dezimalstel-
len stimmt dieser Wert fur
)2 mit dem von deinem
Taschenrechner hierfiir an-
gezeigten Wert tiberein?

2) Wie die Babylonier diesen
recht genauen Wert gefun-
den haben, wissen wir
nicht. Nahe liegend er-
scheinen die beiden folgen-
den Verfahren.

1. Art: Man fihrt zuerst
das in a2 beschriecbene
Naherungsverfahren noch
einen Schritt weiter. S A TR o

2. ‘{!“'[: Man Wt‘,l‘jdE.:l Zusist - Abb.49.1 Autographie der altbabylo-
auf 1;25 das Iterationsver-  pjschen Keilschrifttafel YBC 7289 (um
fﬁli“'en (I) von Seite 38f. 1700 v.Chr.). Auf der Quadratseite links
einmal an. oben liest man <<{ = 30, auf der Diago-
Zeige, dass man jedes Mal nale 7171 als Niherungswert fiir

é{;‘; als Naherungswert 1f2 Darunter steht die entsprechende

erhalt. Rechnet man dann  Liange der Diagonale.

diesen Bruch in eine Sexa-

gesimalzahl um* und bricht nach der 3. Sexagesimalstelle hinter

dem Semikolon ab, so erhilt man die auf der Diagonale stehende

Zahl. Weise dies nach.

| B i 1 i

3) Berechne mit Hilfe dieses Naherungswerts die Linge der Diagona-
le als Sexagesimalzahl, wenn die Quadratseite die Linge 30 hat.
(Abbildung 49.1)

20. Die Schallgeschwindigkeit in trockener Luft von 0°C betragt
¢o = 331,6 m/s. Sie nimmt mit steigender Temperatur zu, und zwar gilt bei

/ 1
der Lufttemperatur ¢ (in °C); c= ¢ |/ 1 + === ¢-
er Lufttemperatur ¢ (1 )iic col/ 33K
a) Wie grol} ist die Schallgeschwindigkeit bei 20°C bzw. 40°C?
b) Bei welcher Temperatur betridgt die Schallgeschwindigkeit 325 m/s?

21. Wenn eine schwingende Saite von der Linge /, dem Querschnitt ¢ und der
Dichte ¢ mit einer Kraft F gespannt ist, dann hat ithr Grundton die Fre-

* Beispiel einer Umrechnung:

3 36 | { | 4
. L 6 - 60
T P R e W R T S

: = = = | = — =—+ + = 0;05,08, ...
35 60 60 60 60 60 60 3600 60 3600 216000




50 2 Die Quadratwurzel

P : :
quenz* v, = i , der n-te Oberton die Frequenz
9 LT q-o
n i F
= L/ , e N,
g0

a) Eine Stahlsaite (¢ = 7,85 g/cm”) von 1,00 m Linge und 0,50 mm?
Querschnitt, die mit einer Kraft von 160 N gespannt ist, wird ange-
zupft. Welche Frequenz hat der dabei erklingende Grundton? Wie viele
Obertone haben eine Frequenz unter 2 kHz?

b) Die e-Saite einer Violine ist 32,5 cm lang; sie ist 0,35 mm dick und aus
Stahl (¢ = 7,85 g/em?). Mit welcher Kraft muss sie gespannt werden,
damit sie richti 5e&tlmmt ist? (Die Frequenz des Tones e” betrégt
660 Hz.)

¢) Eine Kontrabass-Saite mit ¢ = 7,9 g/cm® und ¢ = 6,2 mm? ist mit
370 N gespannt und gibt beim Anstreichen den Ton ,E (so genanntes
Kontra-E) mit 41 Hz. Wie viel cm ist diese Saite lang?

g/
g

2.3 Rechenregeln fiir Quadratwurzeln

Aus Definition 33.1 folgt unmittelbar, dass (}/a)? = a gilt. Das Zichen der
Quadratwurzel und anschlieBendes Quadrieren heben sich also auf. Gilt das
auch fir die umgekehrte Reihenfolge dieser beiden Rechenschritte? Dass dies
nicht zutrifft, zeigt folgendes

Beispiel: (—2)* = 4; [:1 = 2; also |/(—2) + —
Wegen | — 2| = 2 gilt aber lf( - 2}_3 =|—2|.

Das fiihrt uns zu

Satz 50.1: Fiir jede reelle Zahl a gilt Va? = |a].

Beweis: |/ a? ist nach Definition 33.1 die nicht negative Losung der Gleichung
x* = a?. Diese Gleichung hat fiir a % 0 die beiden Losungen aund —a.
Je nachdem, ob a > 0 oder a < 0 gilt, ist @ oder — a die positive Losung.
Fiir @ = 0 ist x = 0 = }/0? die einzige Losung.
Somit gilt:
a fir a>0
Va? = < —a fir a<0
0 fiir a=0

also [ a? = |a|.

* frequentia (lat.) = die Hiufigkeit; Frequenz = Zahl der Schwingungen pro Sekunde, Einheit 1/s = 1 Hz
(1 Hertz) zu Ehren von Heinrich Herrz (1857-1894), dem Entdecker der elektromagnetischen Wellen
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Die vorausgehende Uberlegung zeigt, dass man die Reihenfolge der beiden
Rechenschritte »Wurzelziehen« und »Quadrieren« im Allgemeinen nicht ver-
tauschen darf. Kann man aber vielleicht das Wurzelziehen mit einer der vier
Grundrechenarten vertauschen?

Beispiele:
) V9+16=)25=>5

- }$L@+m¢rh+mﬁ
VO +V/16=3+4=7

2) V16 -9 =17

/16 — 9 =4—3=1

3) 1/9-16 = /144 = 12

/9116 =3-4 17}:*F916=F5¢16
/Y- plo=3-49=12

B e s = Pl
SIS = A }=$p9n6=L9ﬂ46

V9: V16 =3:4= i

E S ]

Die Beispiele 1 und 2 beweisen, dass man die Reihenfolge von Wurzelziehen
und Addieren bzw. Subtrahieren nicht vertauschen darf. Die beiden anderen
Beispiele lassen jedoch vermuten, dass beim Multiplizieren und Dividieren die
Vertauschung zulissig ist.

Tatsédchlich gilt

| Satz 51.1: '
1) Fira=0und 520 gilt Va-b= Va-Vb. _
2) Fiira=0und b> 0 gilt Va:b= Va:Vb, oder fg=£3_
S [}flb

Beweis von 1: Aus @ = 0 und b = 0 folgt a-b = 0; alle drei Wurzeln sind
definiert.
Aus (Va-Vb)2 =a-b folgt, dass lVa-Vb die nicht negative
Losung der Gleichung x? = ab darstellt, also gleich Vab ist.

= 1]a a
Beweis von 2: Nach 1 gilt |/5 - 1; - ] b b
I gl f

e 1 V/B
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Die Regel 1 von Satz 51.1 ldsst sich natlirlich auch auf mehr als zwei Faktoren
ausdehnen. So gilt z. B.

Vabe =Va(be) =Va-Vbe=Va-Vb-Ve.

Im Sonderfall von n gleichen Faktoren erhalt man

Satz 52.1: Fiir a > 0 und ne N gilt: Va" =(Va)".

Als Anwendungen der bisher gefundenen Rechengesetze treten besonders
hdufig folgende Fille auf:

Teilweises Wurzelziehen (partielles Radizieren): Lisst sich aus dem Radikan-
den ein quadratischer Faktor abspalten, so kann man aus diesem die Wurzel
ziehen.

Beispiele:

V75 =V25-3=V25-1/3 =53

/24 — 4ab + 2b% = L—"E’ (az —2ab + b?) = IZ [a —h)z = |a—b|- 12

Einen Faktor unter die Wurzel nehmen: Es handelt sich hier um die Umkehrung
des partiellen Radizierens.

Beispiele:

7 {mym:pww%:wﬁﬂ falls @ = 0
i Hlilae= e — —
= |a| : i"h = — [-"uz . l;-‘ h=— l.r"a“f}‘ falls a < 0

Beachte also, dass man nur nicht negative Faktoren durch eine Quadratwur-
zel darstellen kann.

Rationalmachen des Nenners: Dabei geht es darum, Wurzeln, die im Nenner
eines Bruches auftreten, zu beseitigen.

Beispiele:
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i GAIIRE Vo) VG
1+V2 (@A+¥2)a—-vz) 1—( 20 =]
_______ VB BN E) 0 L V3 e
Vi-Vs (/T-VS)T+V5) Ti—3
21 +115 1 .
= 5 =§(l21-4-l1‘3]

Vb Vb-Va Vab Vab

3

Va? Va’Va l-""'ffd' a-

Aus a = b folgt, falls ¢ und b nicht negativ sind, die Gleichung Va = [/ b;
umgekehrt erhilt man durch Quadrieren daraus wieder @ = b. Also sind, falls
a=0und b = 0, die beiden Gleichungen a = b und }/a = }/'b dquivalent.
Gilt eine entsprechende Feststellung auch fiir Ungleichungen?

Beispiele:
4 < 49 liefert /4 < 1/49; richtig, weil 2 < 7.
0<5 lefert lf] < I.-"'IS; richtig, denn 0 < 2,23 ...

2,25 > 0,36 liefert /2,25 > 1/0,36 ; richtig, da 1,5 > 0,6.

Vermutlich gilt also

Satz 53.1: Monotoniegesetz des Radizierens

Fira=0und b= 0gil: a<b<>Va<Vb.

|

Beweis: 1) <: Ausder Voraussetzung )/ a < Vb und Va = 0folgtV b > 0. Wir
multiplizieren die Ungleichung //a < Vb mit }/a bzw. |/b:

Va<Vb ||-Va Va<Vb ||-Vb
a= Vab . Vab < b.
Somit ist ¢ = Vab < b, also a < b.

2) =: Vorausgesetzt istnun 0 < a < b. Die Annahme [/ a = |/ b hatte
nach 1 die Ungleichung a = b zur Folge, also einen Wider-
spruch zur Voraussetzung.

Daher gilt: a<b = Va < Vb.
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Aufgaben
1.a) V2-V/8

&) /10 1/1000
g) /101144
k) 10,1 -1/0,4
n) /312
2.2) V21316
) V3-V5-V/5
&) 10,35 -V/6-V2,1
g 13 V5 /175

3. a) V/16-121

/12

d) 1/0,36-2%-52

g) V(@2-33: (5% 25

2 Die Quadratwurzel
b) /3112
e) /107 -)/10°
h) 1/0,625 - /103
D V2,5-1/09

0) Ix Y/ z;c

¢) 1/45-1/20

f) 10,1
i) 1/1960 - /0,1

-1/0,001
m) /0,121 - /4,9

p) /1432 - /113

b) V2-V/5-1/40
d) 1/20-1/0,03 - /15
f 1/1,2-1/0,02-/0,03 -/08

h) /3
b) 1/625 - 49 - 100
e) 1/35-1,69 72
h) V(3-5%-7) 84

4. Vereinfache durch teilweises Radizieren:

a) /32 b) 1/27

e) /216 f) /1250 g)
1/0,00625

i) Fﬁﬂj k) |

th

&
|
=
3

=~

Vereinfache:

a) | ab*
/ 32 b
)V :

8. a) LS—H18=—21

f) 110,294 :

b) Va?b?
[250m>
f) L,/ e

32) - 1/2

L)?vﬁmrﬁz—th4+pﬁﬂ d)

¢) /180
/9000

5
/243
V2,4

c)

g) 10,

€) —: —

/700 /54

o) V25m%3 )

b) (3V/5—V

. L{,—"’z‘z . l.-"ltj

g) L;'

it y
Sl- 15(2)

/7.5 -1/16.,8

/11
¢) 1/0,01-144 -225
) 1/5%-2%-112

i) V(2% 11-3%)-297-

d) /176

h) /2,5

/176
g
/275

098 :1/22.05

LIﬁU rdoi
/450 112025

/2735

J,"’1 21 up? w
192

20 + 1/80) - 21/5

45 +3)/135 —

31/20)
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9. 2) (IV3+V2)(V3-V2) b) (65— 51/6)(5/6—61/5)
o) (V14 —-V3) (V6 +V7) d) (5V/11 —21/10)(-V/55 —2V/2)
10. a) [(2V/5+V2)+V22] - [(2V/5+V2) —V/22]

11.

14.

. Beispiel: — = =

b) [2V/15+ (413 - 2V/7)] - [2V15 — (4V3 = 2V'7)]
a) (5/2+V/18)?

b) (215 —V/18)>

o (V20-3V2)*+(3V/5+V/8)

d) (1320 — 21/70)* — (/240 — 6/10)>

1 1932 02
8

iy

Mache bei den folgenden Quotienten den Nenner rational:

) 1 5 5 | 5] 8 3=
a = — C —— S T
3 /5 /19 7
i3 gl 6+ 101/1,2 V2413 TV5—5/17
) — H o g b
3V 11 51,2 [ 43 157
Mache die Nenner rational.
1 5 &
a) —— = = )
3+ 110 2V7—V3 Ve +17
V2 —1 =1 E5 V7 +V38
d) = & —— = n
V241 2lSi—5)3 314+ V7
Beseitige die Wurzeln im Nenner.
1 2b3 2a
a) —— e ¢) — =
IV a*b V8a2b’c V6a*b?c3
L] Fipha 5. 12tVa
VVa®b Va—Vb pVq+qlVp

. Beispiel: (V2)* = (V2)?-V2 =2)2.

a) (2 BE° 902" 902 o (2)*
D (3)° o (1) W @D H 03 K5
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16.

17.

I8.

19.

20).

21.

o 22.

23.

2 Die Quadratwurzel

Beispiel: /75 = V/7*-7 =72 1/7 = 49//7.

a) |/28 b) 1/3° ¢) 152 d) /82 e) /63
BTt 4 gy 52 Wiv2R P aD 1% v
a) (V2)3 + (V8)* —21/2° b) ((//5)* —3V5) V53

O (V7 +40/ D)/ D* —7-V4?)
d) (41,.--' 3_‘1; B ([_.."2 )5} . (8 “x)w 49 I-":'T)

Vereinfache:

a) (Vo> b (Va)* o (Vo) &) (Vo) e (Va)!

f) Va? g) Va® h) Va* ) Va® k) Va®
Vereinfache:

a) Va® + 2ab + b? b) V2m? —12m + 18

) Vz*+222 +1 d) /9z* —6z2+1

e) V12,1x% + 4.4xy + 0,417 f) V1+2)x|+ 22

Nimm, soweit dies moglich ist, die Faktoren unter die Wurzel. Achte dabei
auf eventuell notwendige Fallunterscheidungen.

a) 32 b) 1/7-5 Q) (—)VB=x" @ (1= 3)/5a

e) xVy f) a®V/x g) 2b3)/y h) (a—b)Va+b
Welche Grollenbeziehung besteht zwischen folgenden Zahlenpaaren?
a) /17 und V16 b) 1/381 und /247

¢) Va®+2und Va® +1 d) /0,75 und |/3

e) /0.1 und /0,01 f) /37 und /0,457

Es sei 0 < a <1 und b > 1. Welche GroBenbeziehung besteht dann zwi-

schen
a) V/a und a, b) /b und b, ¢) Va’ und (Va)B,

d) (Vb)? und Vb5, €) V@b und bl a®, f) Va?h und al/ab??

Welche Ungleichung besteht zwischen

a) /9 + 16 und /9 + /16, b) /52 + 102 und /52 + /102,

¢) /625 —49 und /625 — /49,  d) 1/225 — 25 und /225 — /252




24.

26.

o27.

28.

Lh
|

2.3 Rechenregeln fiir Quadratwurzeln

a) Beweise: [/a + L—""'b = L-":a + b. Wann gilt das Gleichheitszeichen?

b) Beweise: 0 <a<b = Iih — la < IE — a. (Hinweis: Quadriere!)

5. Zeige, dass die Zahlen x und y gleiche Quadrate haben. Warum sind

trotzdem die Zahlen selbst nicht éleich?
a) x =3—2)/3; y=1/21—-12)/3
b) x=]/14—8V3; y=16—2)2

Mit Hilfe von Quadratwurzeln kann man dieselbe Zahl auf sehr unter-
schiedliche Art darstellen. Weise nach, dass die folgenden Gleichungen
richtig sind:

a) |/3-2/2 =121 b)2+1<—|415+9
o) [/9+2V14 =V2417 d) V8 +V2+4=1V8 + /12
Beispiele wie die von Aufgabe 26 lassen sich auf zwei Rechenregeln zu-

riickfithren, die in geometrischer Fassung schon bei EukLID (um 300
v.Chr.) in Buch X seiner Elemente, in algebraischer Form z. B. im arabi-
schen Euklid-Kommentar des AL-NAYRIZI (T 922) und im indischen Bi-
dscha-ganita — »Samen der Rechenkunst« — von BHASKARA IT (1115-nach
1178) vorkommen: Fiir 0 = a < b gilt

Va+ Ih - VIu +b+2Vab und [h — |y = L,-"’a +b—2Vab

a) Beweise diese RL‘”L

b) Warum existiert |, fa+ h — 2V ab fiir beliebige positive Zahlen a und 5?
(Hinweis: Aufeabe 45/6)

¢) Bereits ABU KamiL (um 850-930) berechnet in seinem al-kitab fi al-
dschabr wa-l-mugabala mit diesen Formeln /8 + /18 = /50 und
/18 — |/ 8 = |/ 2. Bestiitige diese Ergebnisse 1) unter Verwendung der
obigen Formeln, 2) ohne Verwendung dieser Formeln.

d) Vereinfache die folgenden Terme mit Hilfe der obigen Formeln:
1) l/ -'[-"'3 + V2 — L..-’EL-"S — /2 (arabisch, um 1100)

2) (11 40 + 6 + 1"{[4{} —6)2  (Luca PacioLi [um 1445-1517],
Summa, 1494)

3) (L—--""iz +V6 +1/12—1/6)*>  (Michael Stirer [14877-1567],
Arithmetica integra, 1544)

Uberpriife die folgenden Beispiele aus der altindischen Mathematik:

a) y"’m + /24 + /40 + /60 = V2 +V3+V/5

b) 16+ V120 +1/72+ V60 + V48 + 140 +124 = V6 +V5+13+12
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*%2.4 Zur Geschichte der irrationalen Zahlen

Eine der groBten Leistungen der griechischen Mathematik ist die Entdeckung der
Inkommensurabilitit zweier Strecken, d.h. der Existenz von Streckenverhiltnissen,
die nicht mehr durch das Verhiiltnis zweier ganzer Zahlen ausgedriickt werden konnen.
Sie fiihrte schlieBlich zum Begriff der irrationalen Zahl. Es iiberrascht, dass die Agyp-
ter, erst recht die Babylonier, die ja bereits um 1800 v. Chr. erhebliche mathematische
Kenntnisse besaBBen — du wirst spiter davon noch mehr horen —, das Problem, ob es zu
zwel Strecken stets ein gemeinsames Mal3 gibt, Giberhaupt nicht erkannten. Es tiber-
rascht noch mehr, dass die Griechen dieses Problem zu einer Zeit erkannten und auch
zu 16sen verstanden, als ihre Mathematik noch in den Kinderschuhen steckte, Noch
erstaunlicher ist es, dass durch kein Dokument belegt ist, wann und durch wen diese
ungeheuere Entdeckung erfolgte, obwohl die Griechen die Tragweite dieser Entde-
ckung erfassten.*

Der fritheste Bericht von dieser Entdeckung ist die Stelle 147¢ des Dialogs Theqdtet. den
PLATON (428348 v. Chr.) im Jahre 368 v. Chr. verfasste, kurz nachdem sein Schiiler,
der Mathematiker THEAITETOS (um 415-369 v. Chr.), in einer Schlacht tédlich verwun-
det worden war. In diesem Dialog, derim Jahre 399 v. Chr., dem Todesjahr des SOKR A-
TES, spielt, zeigt ein alter Mathematiker, nimlich THEODOROS VON K YRENE (um 465 bis
um 385 v. Chr.), dass die Seite eines Quadrats, dessen Inhalt eine der Nichtquadratzah-
len von 3 bis 17 ist, irrational ist. Bei 17, so heilit es, »hielt er zuféllig inne«. Von einem
Quadrat des Inhalts 2 wird nichts gesagt! Also muss der Beweis fiir die Irrationalitit
von [ 2 dlter sein. Der in den meisten Codices als Nachtrag zu Buch X von EUKLIDS
Elementen (um 300 v. Chr.) iiberlieferte arithmetische Beweis fur die Irrationalitit von
}/2 ist sprachlich weitaus schwerfélliger als die sonstige Diktion der Elemente; das weist
darauf hin, dass er aus alter Zeit stammt. Auf alle Fille scheint |2 die erste Zahl zu
sein, deren Irrationalitit arithmetisch und nicht nur geometrisch bewiesen wurde (sie-
he Aufgabe 12/4). Mit groBter Wahrscheinlichkeit wurde aber die Irrationalitit nicht
am Quadrat entdeckt, sondern am regelméBigen Fiinfeck bzw. am Pentagramm (Ab-
bildung 9.1), dem Erkennungszeichen des Geheimbundes der PYTHAGOREER (Aufgabe
13/11).

Einstimmig sind spétantike Autoren der Meinung, dass der Philosoph** Hippasos aus
Metapont/Unteritalien (2. Viertel des 5. Th.s v. Chr.), der noch ein unmittelbarer Schii-
ler des PYTHAGORAS (um 570—um 497 v. Chr.) sein konnte, die Entdeckung des Irratio-
nalen an die Offentlichkeit gebracht hat. Ansonsten wird von ihm noch berichtet, dass
er musikalische Experimente an Metallscheiben verschiedener Dicke und an mit Was-
ser gefiillten Rohren ausgefithrt und sich aullerdem mit Proportionen und Mitteln
(siche Aufgabe 45/6) beschiftigt habe. Aber zurtick zum Irrationalen!

IamBLICHOS aus Chalkis/Koile-Syrien (um 250—um 330 n. Chr,) berichtet uns:
»HippAsos habe als Erster die aus 12 Fiinfecken zusammengesetzte Kugel, d.h. die
Umkugel des Dodekaeders [ Abbildung 59.1], 6ffentlich beschrieben und sei deshalb
wie ein Gofttloser im Meer umgekommen.«

Und an spateren Stellen lesen wir bei ithm:

»Einige sagen auch, ihm sei dies widerfahren, weil er das Geheimnis des Unaussprech-
baren [siche unten] und des Inkommensurablen verraten habe.«

=

* ARISTOTELES (384322 v. Chr.) kommt z. B. nicht weniger als 26-mal in seinen Werken auf die Inkommensu-
rabilitit von Seite und Diagonale im Quadrat zu sprechen.
#* piiocogog (philosophos) ist eine Wortschopfung der PyrHacoreer und bedeutet Freund der Weisheit.
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Abb. 59.1 Das Dodekaeder (= Zwolfflach)*, ein von 12 regelméBigen ebenen Fiinf-
ecken begrenzter Korper, links als Vollkorper, rechts als Hohlkérper, gezeichnet von
LEONARDO DA VINCI (1452-1519) fiir die 1509 erschienene Divina Proportione seines
Freundes Luca PacioLi (um 1445-1517).

»Denjenigen aber, welcher als erster die Natur des Kommensurablen und des Inkom-
mensurablen solchen erdffnete, die nicht wiirdig waren an der Lehre teilzuhaben,
sollen die Pythagoreer so tief verabscheut haben, dass sie ihn nicht nur aus der Lehr-
und Lebensgemeinschaft ausschlossen, sondern ihm [zu Lebzeiten] auch ein Grabmal
errichteten mit der Begriindung, ihr einstiger Gefihrte sei aus dem Leben unter den
Menschen ausgeschieden.«

Nirgends wird also berichtet, dass Hippasos der Entdecker des Irrationalen sei; nur als
Verriter wird er dingfest gemacht. Man neigt jedoch heute dazu, ihn auch fiir den
Entdecker zu halten. Warum aber die ganze Aufregung iiber den Frevler und den
Verrat?

Um die Frage beantworten zu kénnen miissen wir mehr iiber die PYTHAGOREER wis-
sen. In seiner Metaphysik berichtet uns ARISTOTELES (384-322 v.Chr.), die PYTHAGO-
REER »sahen in den [natiirlichen] Zahlen die Eigenschaften und Verhiltnisse der Har-
monie [ ... und da] die Zahlen das erste in der ganzen Natur, so nahmen sie auch an, die
Elemente der Zahlen seien die Elemente alles Seienden und die ganze Welt se1 Harmo-
nie und Zahl. [...] Alles fiihren sie auf die Zahlen zuriick.« Anders ausgedrickt:
PyTHAGORAS und seine Schiiler waren der Meinung, dass irgend zwei Dinge dieser Welt
stets in einem Verhéltnis zueinander stehen, das durch zwei natiirliche Zahlen, d.h.
durch einen Bruch, ausgedriickt werden kann. Als Beispiel diene die Musik: Man
erhiilt die Oktave bzw. die Quint zu einem Ton, wenn man die ihn erzeugende Saite im
Verhiltnis 2 :1 bzw. 3: 2 verkiirzt:

I | | e
f 1 r L

Oktave ! Quint 50
: — : |

[gS ]

* Swdentedpoc (dodekdedros) = zwolfsitzig, mit zwélf Grundlagen aus dhdexa (dodeka) = zwalf und 1) £dpa
(he hédra) = der Sitz, die Grundlage. Das Fachwort dodexaedpov (dodekiedron) verwendet EUKLID in Buch
X1 seiner Elemente.
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Die Entdeckung, dass es Streckenverhélt-
nisse gibt, zu denen es keine (ganzzahli-
gen) Zahlenverhiltnisse gibt, musste not-
gedrungen zu einer Krise unter den Py-
THAGOREERN fiithren; denn sie zerstorte
die Grundlage ithrer Weltanschauung, ihr
»Allesist Zahl«. Du kannst dir sicher vor-
stellen, dass es vielen Mitgliedern des in
Siiditalien auch politisch sehr einflussrei-
chen Geheimbundes lieber gewesen wiire,
wenn diese umwilzende Entdeckung ge-
heim gehalten worden wére. Die grofie
Empdrung eines Teils der Anhédnger tiber
den »Verrat« des Hippasos ist also ver-
stindlich. Die Folge aber war, dass sich
die PYTHAGOREER in zwei Parteien spalte-
ten, die dxovopatikol (akusmatikoi),
d.h. die Horer, die ohne tiefere Einsicht
auf das Wort des Meisters schworen und
der alten Lehre anhingen, und die
podnuatikot (mathematikoi), d.h. die
durch Lernen Einsicht erlangt Habenden,
also die Gruppe um Hippasos, die durch
ihre geistige Schulung in der Lage waren
das Neue zu begreifen.* Bezeichnender-
weise stellten sich die Mathematikoi bei
den Unruhen in Unteritalien um 445
v.Chr. auf die Seite des Volkes, die Akus-
matikoi dagegen auf die Seite des herrschenden Adels. Die wechselhaften Ereignisse
fiihrten schlieBlich dazu, dass zuerst die Akusmatikoi und spiter die Mathematikoi
aus Unteritalien vertrieben wurden, sodass um 350 v. Chr. der pythagoreische Bund
jede Bedeutung verloren hatte.

PLATON lernte 388/387 in Unteritalien bei ARCHYTAS VON TARENT pythagoreisches
Gedankengut kennen. In seinem letzten Werk, den Néuo: (Nomoi) — »Gesetze« —, das
erst nach seinem Tode bekannt wurde, zeigt sich, wie beeindruckt PLATON von der
Entdeckung der irrationalen Verhéltnisse war. Er spricht dort an der Stelle 819/820 von
einer »lidcherlichen und schimpflichen Unwissenheit, die allen Menschen innewohnt«,
che sie davon erfahren haben, und bekennt: »Mich selbst ergriff durchaus Verwunde-
rung, als ich spit [hier iibertreibt er!] davon horte. Es kam mir vor, als wire so etwas
[namlich ein solches Unwissen] bei den Menschen gar nicht méglich, sondern eher bei
einer Herde von Schweinen. Und ich schimte mich, nicht nur fiir mich selbst, sondern
fiir alle Griechen.« In diesen Worten kommt auch zum Ausdruck, dass sich die Kennt-
nis von der Existenz irrationaler Verhiltnisse noch nicht sehr verbreitet hatte. Und
PLATON schliel3t seine Betrachtung iiber das Irrationale mit den Worten: »Das ist eins
von den Dingen, welches nicht zu wissen wir fiir eine grofe Schande erklirten; es aber
zu kennen ist nichts besonders Rithmenswertes!«

Abb.60.1 ARISTOTELES (384 Stagira/
Thrakien — 322 Chalkis/Eubéa). Romi-
sche Kopie nach einem um 325 v. Chr.
entstandenen  griechischen  Original.
Wien, Kunsthistorisches Museum

* daxovelv (aktein) = hdren, vernehmen; Gxovopa (Akusma) = das Gehdrte, die Lehre.
padnpatikog (mathematikos) = lernbegierig, gelehrig kommt von pav3avewv (manthanein) = lernen, erler-
nen, verstehen, einsehen und hiingt zusammen mit padnpa (mathema) = das Gelernte, die Kenntnis, das
Wissen.
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Abb. 61.1 Riickseite zweier Tetradrachmen* aus Abdera (ABdnpa) mit der links
oben beginnenden, im Uhrzeigersinn umlaufenden Umschrift ITYOAT'OPHL
(= Pythagores), geprigt zwischen 430 und 420 v. Chr., vermutlich PYTHAGORAS dar-
stellend. @ = 2,4 cm; links 13,98 g, ** rechts 13,08 g.

Die Entdeckung, dass die Diagonalen des Fiinfecks und des Quadrats nicht durch den
griechischen Zahlbegriff erfasst werden konnen, dass sie aber andererseits als Strecken
exakt vorhanden sind, hatte weit reichende Folgen fiir die weitere Entwicklung der
griechischen Mathematik. Man wandte sich nidmlich von der Arithmetik, der Lehre
von den Zahlen, ab und betrieb Mathematik als Geometrie. In ihr konnte, auch mit
Strecken irrationaler Linge, das von den griechischen Philosophen geforderte Ideal
der Exaktheit verwirklicht werden.

Einen groBen Schritt weiter brachte Eupoxos voN KNipos (um 400 347 v.Chr.) die
Mathematik: Es gelingt ihm, eine geometrische Proportionenlehre auch fir inkom-
mensurable Streckenverhiiltnisse zu schaffen. Dabei fuhrt er bewusst den Begriff der
GroBe (uéyedoc [mégethos]) in die Mathematik ein, was auf eine Erweiterung des
Zahlbegriffs bis hin zur reellen Zahl hinauslduft. EUKLIDS Buch V der Elemente geht
praktisch auf Euboxos zuriick. Im recht schwierigen Buch X, das vermutlich von
THEAITETOS stammt, wird die Theorie der irrationalen GroBen geometrisch weiter
ausgebaut. Aber Eupoxos wurde erst 2000 Jahre spéter voll verstanden. In ihren Be-
weisen schlagen sich die Griechen immer auf die sichere Seite: Sie bevorzugen geome-
trische Beweise vor algebraischen Uberlegungen, da irrationale Zahlen ihnen unvor-
stellbar waren. Auch DIOPHANT (um 250 n. Chr.), der mit seinen Agi3untixdv fif Ao
(Arithmetikon biblia) — »Biicher iiber die Zahlenlehre« — algebraisches Denken wieder
aufnimmt, vermeidet es stets durch entsprechende Wahl der Koeffizienten, dass solche
Zahlen als Losungen einer Gleichung auftreten.

Erst den Arabern gelingt es, langsam die Algebra von ihrer geometrischen Verkleidung
zu befreien. Es ist insbesondere ein Verdienst aL-BAGDADIs (um 1100), dass er in
seinem Kommentar zu Buch X von EUKLIDs Elementen, den GERHARD VON CREMONA
(1114—1187) tibersetzt, Zahlenbeispiele mit Wurzeln vorfiihrt. Es entwickelt sich eine

* Eine Tetradrachme ist ein silbernes Vier-Drachmen-Stiick. Das Monatsgehalt eines Lehrersim 2. Jh. v. Chr.
betrug etwa 12 Tetradrachmen.

#* Diese Miinze ist die erste in einer Reihe dhnlicher Prigungen, bei denen der fiir die Pragung zustindige
Jahresbeamte der Stadt Abdera seinen Namen mit einer beriihmten Gestalt der griechischen Geschichte
oder Sagenwelt in Verbindung brachte. Der Beamte PYTHAGORES wiihlte ein idealisiertes Portrait seines
beriihmten Namensvetters, des Philosophen und Mathematikers PYTHAGORAS.
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Kunst des Rechnens mit Wurzeln, wie du sie in
2.3 gelernt hast. LEONARDO VON Pi1sa (um 1170
bis nach 1240), der sein Wissen von den Arabern
bezog, liel} in seinem [iber abaci (1202) irratio-
nale Zahlen sowohl als Lésungen wie auch als
Koeffizienten von Gleichungen zu (Aufgabe
79/3 und 82/4e, f). Allméhlich wird das Rech-
nen mit irrationalen Zahlen zu einer Selbstver-
stindlichkeit. Schreibt doch um 1460 Frater
FrIDERICUS AMANN® (T 1465) in einem algebrai-
schen Traktat des Codex [latinus monacensis
14908: »Wer mit den surdischen [d.h. irratio-
nalen (siche unten)] Zahlen, threm Addieren
und ihrem Subtrahieren, den Binomen [...Jund  App 621
den anderen irrationalen Gréllen nicht umzu-
gehen weill, der versteht in der Arithmetik
nichts Besonderes.«** Dennoch sind diese sur-
dischen Zahlen fiir thn keine Zahlen. »Surdus
numerus non est numerus« schreibt er. Auch Michael StiFeL (14877-1567) diskutiert
diese Frage 1544 in seiner Arithmetica integra — »Die ganze Arithmetik« —, obwohl
er zu einem vertieften Verstindnis der Irrationalzahl gelangt ist: »So, wie also eine
unendliche Zahl keine Zahl ist, so ist auch eine irrationale Zahl keine wahre Zahl,
weil sie gewissermalen unter einem Nebel der Unendlichkeit verborgen ist.«*** Dieser
Nebel der Unendlichkeit sind wohl die unendlichen Dezimalzahlen, mit denen man
die irrationalen Zahlen darstellen kann. Erst dadurch, dass 1637 René DESCARTES
(1596—-1650) 1in seiner La Géométrie mit Hilfe des Strahlensatzes auch das Produkt
zweiler Strecken a und b wieder als Strecke darstellt (Abbildung 62.2) — bis dahin
wurde dieses Produkt immer als Fliche interpretiert —, gelingt eine Ubertragung der
geometrisch wohl definierten Irrationalititen in die Welt der Zahlen mit ihren Rechen-
gesetzen. Der Durchbruch ist geschafft, die irrationalen Zahlen werden als Zahlen
anerkannt.

Vorderseite der Tetra-
drachme von Abbildung 61.1,
links; dargestellt ist ein Greif.

1 \ 0 \
Abb. 622 Das Produkt ab als Strecke nach DESCARTES

Dennoch blieb es dem 19.Jh. vorbehalten, die irrationalen Zahlen ohne jede geometri-

sche Begriindung auf algebraischem Wege einfithren zu kdnnen. Von verschiedenen

Mathematikern wurden dazu verschiedene Verfahren vorgeschlagen, die alle auf das-
* Seit 1995 weill man, dass die bisher dem FrIDERICUS GERHART (T 1463) zugeschricbenen Abhandlungen

von FRIDERICUS AMANN stammen und umgekehrt.

Qui in surdis atque additis et diminutis et binomiis [. ..] et lineis ceteris irrationalibus agere nescit, nihil in

Arismetrica egregii novit.

Sic igitur infinitus numerus, non est numerus: sic irrationalis numerus non est verus numerus, qui lateat

sub quadam infinitatis nebula.

EEd
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selbe Ergebnis hinauslaufen. Wir nennen hier die Arbeiten Richard DEDEKINDS (1831
bis 1916) und Georg CANTORs (1845-1918), beide aus dem Jahre 1872. Die Definition
der reellen Zahlen durch Intervallschachtelungen, die du kennen gelernt hast, geht auf
die Vorlesungen iiber die Natur der Irrationalzahlen von Paul Gustav Heinrich BACH-
MANN (1837-1920) aus dem Jahre 1892 zurtick.

AbschlieBend wollen wir noch die Entstehung des Fachworts irrational verfolgen.
Nach der Entdeckung der Inkommensurabilitit nannten dic PYTHAGOREER ein Ver-
hiltnis aus zwei ganzen Zahlen, also unsere rationale Zahl, pnrog (rhetds)
= aussprechbar, ein Verhiltnis aber, das sich nicht durch ganze Zahlen ausdriicken
lieB. also unsere irrationale Zahl, &ppnrog (arrhetos) = unaussprechbar. THEODOROS
voN K YRENE (um 465—-um 385), der Lehrer PLATONS, verwendet stattdessen das Gegen-
satzpaar GOUUETPOS — AOOUPETPOG (Symmetros — asymmetros), also gemeinsam messhar

nicht gemeinsam messbar, bezogen auf die Einheit. Sein und PLATONs Schiler THEAI-
TETOS (um 415-369 v. Chr.) betrachtet Verbindungen wie |/a + I/ b und [,r-"t" a. Erstere
ergeben, wenn man sie quadriert, nicht immer eine rationale Zahl. So wird z.B.
(V2 +18)2=2+8+2)/16 =18, also eine rationale Zahl, aber (V2+ Y3yt =
—24+3+21/6=5+26 ecine irrationale Zahl. Fiur GroBen der letzteren Art be-
niitzt THEAITETOS ein altes Wort, nimlich dlovyog (alogos) = sprachlos, stumm, unaus-
sprechbar. EUKLID (um 300 v.Chr.) ibernimmt die Bezeichnung von THEAITETOS, be-
hilt aber das Gegensatzpaar des THEODOROS bei. Dadurch vermischen sich diese drei
Worter in ihrer Bedeutung. Allmihlich setzt sich jedoch bei den griechischen Mathe-
matikern #Aoyog zur Bezeichnung irrationaler GroBen durch.

BoeTHIUS (um 480-5247) iibersetzt cOupetpog mit commensurabilis, der romische
Staatsmann und Gelehrte CASSIODORUS (um 490— um 583), der ebenso wie BOETHIUS in
den Diensten THEODERICHS DES GROSSEN, des Ostgotenkdnigs, stand, tibersetzt das
Gegensatzpaar mit rationalis — irrationalis, womit wir bei unseren Fachwortern sind.
GERHARD VON CREMONA (1114-1187) beniitzt sie, als er den Euklid-Kommentar des
AL-NAYRIZI (1 um 922) tibersetzt. In Michael STIFELs (14877 -1567) Arithmetica integra
von 1544 sind sie feste Fachausdriicke. Das Wort irrational hatte aber lange Zeit
noch einen interessanten Konkurrenten.

Das griechische @hoyog (dlogos) = sprachlos, unaussprechbar wird bei AL-CHARIZMI
(um 780 — nach 847) und anderen arabischen Mathematikern unerklirlicherweise
durch das arabische Wort asamm wiedergegeben, das nicht sprachlos, sondern taub
bedeutet. Als GERHARD voN CREMONA den Euklid-Kommentar des AL-BAGDADI (um
1100), den er dem des AL-NAyRiz1 beifiigt, und die Algebra des AL-CHARIZMI Ubersetzt,
wihlt er fiir asamm die wortgetreue Entsprechung, namlich surdus, das dann auch
LEONARDO VON Pisa (um 1170-nach 1240) gerne verwendet. Michael STIFEL tiber-
nimmt es und verdeutscht die numeri surdi gar zu surdische Zahlen! Bis ins 18. Jh. bleibt
surdus als mathematisches Fachwort lebendig. Im Englischen ist heute noch surd num-
ber als Fachbegriff fiir [rrationalzahl gebrauchlich.

Bei dieser Gelegenheit konnen wir dir jetzt auch den mathematischen Ursprung des
Worts Binom erkliren. Die schon bei THEAITETOS vorkommenden Summen a + /b und
Va + 1/ b, bei denen die Wurzeln keine ganzen Zahlen ergeben, nannte EUKLID in Buch
X seiner Elemente £&x 800 dvopdrov (ek dyo onomaton) = aus zwei Namen, woflr
GERHARD VON CREMONA in seiner AL-NAYRizI-Ubersetzung Kurz binomium sagte. In
der weiteren Entwicklung (siche Algebra 7, Seite 187) wurde die Bedeutung von Binom
verallgemeinert zu »Summe aus zwei Summanden«.
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2.5 Wurzelgleichungen

2.5.1 Einfache Wurzelgleichungen

Eine Gleichung, bei welcher die Unbekannte unter einer Wurzel auftritt, be-
zeichnet man als Wurzelgleichung.

Beispiele:
1) Vx =3 ) V2x—-5=17
3) Védx+5=x+2 4) V/x*+2=3x
5) Yx—1=V12x+3 6) V2x+8 —V5+x =1

Um eine solche Gleichung l6sen zu konnen muss man zunichst alle Wurzeln,
welche die Unbekannte enthalten, beseitigen. Dies geschieht durch Quadrie-
ren der Gleichung. Dabei gilt: Jede Losung der Ausgangsgleichung erfiillt
auch die durch Quadrieren entstehende Hilfsgleichung.

Denn wenn eine Gleichung 7; (x) = T,(x) eine Lésung x, hat, d.h., wenn
T, (x;) = T,(x,) gilt, so folgt daraus AUCH (T (\l))z (75 (g))2; also ist xy
auch eine Losung der Gleichung (7; (x))* = (75 (x))?

Gehort aber umgekehrt auch jede Losung der durch Quadrieren gewonnenen
Hilfsgleichung zur Losungsmenge der Ausgangsgleichung? Wenn ja, wire das
Quadrieren eine Aquivalenzumformung. Um dies zu untersuchen betrachten
wir die obigen Beispiele.

1) //x = 3. Durch Quadrieren erhilt man x = 9.
Probe: LS = /9 = 3 = RS; also L = {9}.

2) V2x—5=7 = 2x—5=49
]

Probe: LS = /227 — 5 = /49 =7 =RS; also L = {27}.

3) Vax+5=x42 = 4x+5=x24+4x+4
2

x" =1
Losungen der Hilfsgleichung: x; =1; x, = — 1.
Probe mit x;: LS = V4-1+5=)9=3RS=1+2=3=1LS.
Probe mit x,: LS = lf""4 (— -_} = |/ = 1: RS=—14+2=1=1S8.
Ergebnis: L = {1; —1}.
4) /x> +2 =3x = x2+2=9x2
Bx% =2
x2=1
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[

Losungen der Hilfsgleichung: x; = 3; x, = —
Probe mit x;: LS =}/ @)?+2=}/2=%3RS=3-4=3=1S.
Probe mit x,: LS = /(=22 +2 = /2=3RS=3-(—4)=—3+LS.

1
g

Ergebnis: L. = |

5) Vx—1=V2x+3 = x—1=2x+3
X = —
Probe: LS = |/ —4 — 1, sinnlos! RS = l-"'_2_-(—- 4) + 3, sinnlos!
Ergebnis: L = { }.

6) V2x+8 —V54+x =1
Die Rechnung gestaltet sich einfacher, wenn man vor dem Quadrieren
die Gleichung so umformt, dass eine der beiden Seiten nur aus einer
Wurzel besteht. Man spricht vom Isolieren der Wurzel.
V2x+8 —V5+x=1

DX B =14V50% = D2xt8=142V5+x+5+%

Da immer noch eine Wurzel vorhanden ist, muss man noch einmal
quadrieren; zuvor aber wird die Wurzel isoliert.

el Bl - 2105 Tl S i

V5+x=Lx+1 = 54+x=4x>+x+1

).
=4
=16,
Die wurzelfreie Hilfsgleichung hat die Losungen x; = 4; x, = —4.

Probe mit x;: LS = /2 - 41+8—V5+4=)16—-)9=1=RS.
(—4)+8—1/5—4=)/0—11=—1=+RS.

Y

Probe mit x,: LS =V
Ergebnis: L = {4}.

Bei den ersten drei Beispielen haben die Ausgangsgleichung und die aus
ihr durch Quadrieren gewonnene Hilfsgleichung jeweils dieselbe Losungs-
menge, nicht jedoch in den iibrigen Beispielen; dort besitzt die Hilfsgleichung
noch zusitzliche Losungen! In Beispiel 4 liegt das daran, dass die beiden
Gleichungen [/x2 + 2 = 3x und }/x? + 2 = — 3x auf dieselbe Hilfsgleichung
x? 42 = 9x? fithren. In deren Losungsmenge sind also die Losungen von
zwei verschiedenen Ausgangsgleichungen enthalten. Entsprechendes gilt auch
im Beispiel 6 (vgl. Aufgabe 67/7). Dagegen hat die Verschiedenheit der beiden
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Loésungsmengen bei Beispiel 5 eine andere Ursache: Die beim Quadrieren
entstehende Gleichung hat ganz R als Definitionsmenge und bcsnzl dort die
Losung x = — 4. Die Wurzelgleichung ist jedoch nur auf D = [1; + co[ defi-
niert und kann daher nicht — 4 als Lésung haben. Dass —4 ¢ D }_.,lll. zeigt sich
bei der Probe am Auftreten sinnloser Terme. g
Beachte also: Das Quadrieren einer Gleichung ist im Allgemeinen keine Aqui-
valenzumformung. Zwar erfiillt jede Losung der Ausgangsgleichung auch die
Hilfsgleichung, es kommt aber vor, dass die Hilfsgleichung noch zusitzliche
Losungen besitzt. Das Quadrieren kann also eine »Gewinnumformung« sein.
Mit anderen Worten: Die Lésungsmenge der Ausgangsgleichung ist eine echte
oder unechte Teilmenge der Losungsmenge der durch Quadrieren entstande-
nen neuen Gleichung. Nachdem man deren Losungen bestimmt hat, muss
man prifen, ob sie auch der Ausgangsgleichung geniigen. Das geschieht im
Allgemeinen durch eine Probe.

Es gibt allerdings einen einfachen Typ von Wurzelgleichungen, bei welchem das
Quddnum die Losungsmenge nicht dndert. Das sind Gleichungen der Form
V' T(x) = ¢ mit ¢ = 0 (vgl. Beispiel 1) und 2)). Durch Quadrieren entsteht ndmlich die
Gleichung T(x) = ¢ mit ¢*> = 0. Wenn x, eine Losung dieser Gleichung ist, gilt
T(x,) = c¢?, also T(x,) = 0. Man kann daher auf beiden Seiten die Wurzel ziechen und
erhilt ) T'(x,) = | ¢|, also, wegen ¢ = 0,1/ T(x,) = ¢, sodass x, auch die Ausgangsglei-
chung I6st. Bei solchen Wurzelgleichungen kann man daher auf die Probe verzichten.

Aufgaben
1. a) /2x =2 b) V1+x =0 ¢) V2x+3—-1=0
d) /3x+7+10=0 ) V8—3x=V14 0 V7x+3+2/7=5
2.a) V2x+1=x+1 b) 3x4+2=112x+5
¢) V3—4x=2x—1 A 14V5x—1=x335
e) Tx=)28x+13—2 f) 4x+V25—16x—2=0
3.a) V4+3x=3x+2 b) x—1=V1—3x
¢) V15x+25=2x+5 d) 2x=1/9—2x+3
e) dx =Vx+4141 f) l8\+~—6\—l°r:0
4. a) Vax2—17 = b) /25—x2 =6
¢) V17T—2x2 =3 d) V5x2—1 =x
e) V6x2+50+2)/2x=0 f) V5+3x%2=x)3
5. a) L-*"zx +5=13x+ b) Vx—8 =V4—2x
¢ V3x+10=V SLT(? d) V2 +7 =V2x2 -2

€) Vax2+9 =V5x+11 ) Vex*+5=15—3x
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— — - —

/% (x—1 ;H—\ /x—5
6. ﬂ) / — = e ) ’f’ = |f==
[ 2x+5 2% 2 3 1 —x
,2 —o [ x+1 / SA 14 fax +6
¢) =|/— d) |, e
3+r X 2 — 6x 8x—3
7. Bestimme die Losungsmengen der folgenden drei Gleichungen und ver-
gleiche die Losungswege:
l.-""_r_i +3x =1+ I x X2+ x - l.-"(xg +3x=1—Vx*+x und
Vx2+3x=—1+Vx>+x
o8.2) Vx+1=1+Vx—4 b) Vx—3—3=V}x—12
¢ Vx+1=3+Vx—35 d Vl+14+2=Vx>+17
ﬂ1h2+15=5—ﬁﬁ+10 0 2= 3= |3 %2
09.2) VaZ+x=1+Vx> b) Vx? —x=Vx2+x—1V2
c) ;_..--"2 X2 Exk 152 —x=35 d) l--""2x‘3 + x = Ll’x—z— b

o10.2) /x> +4x+5=5—Vx2—6x b) Vx2+4x+6+Vx>—2x=3

$11. Am 2. Juni 1461 schreibt der Benediktiner Frater FRIDERICUS, eigentlich
Friedrich AMANN, (T 1465) im Kloster St. Emmeram zu Regensburg die
erste Algebra in deutscher Sprache nieder, die sog. deutsche Algebra aus
dem Codex latinus monacensis 14908, und rechnet dabei die folgende von
AL-CHARIZMI stammende Aufgabe vor (sie steht in Abbildung 68.1,
4. Zeile von unten links bis 1. Zeile oben rechts):
Gib mir ain censum vnd zuech dar von sin wurcz vind von dem daz vber
belyb an dem censu zuech och vB dye wurcz dye czwo wurcz tue zesamen
daz 2 zal dar au3 werden.*

* census ist die wortgetreue lateinische Ubersetzung des arabischen Jle mal, das Vermigen bedeutet. Meist
wird unter census das Quadrat der Unbekannten verstanden. In dieser Aufgabe zeigt sich aber, dass AL-
CrHARIZMI mit mal nicht immer das Quadrat, sondern gelegentlich die Unbekannte selbst bezeichnet. (Vgl.
auch die FuBnote zu Aufgabe 94/11i). Andernfalls wiirde die Aufgabe unnétig schwer.

»Dass»?2 zal daraus werdens, heiBt bei AL-CHARIZMI, »dass »2 Dirhem« daraus werden«. AL-CHarizM hat von
den Indern die Gewohnheit iibernommen, reine Zahlen durch das Wort Dirhem zu kennzeichnen — so hiefien
die von den Kalifen geprigten Silbermiinzen (3,98 g). ArvapHaTA (476-7 n.Chr.) niamlich hatte bekannten
GréBen das Wort rupaka (= mit Zeichen versehene Miinze) beigefiigt, das bald durch ru abgekiirzt wurde. Im
europiischen Mittelalter wurde AL-CrarizwMis Dirhiem durch drachme oder auch durch dragma wiedergege-
ben, was in deutschen Handschriften mit S, einem ¢ mit Schnorkel, gﬂudu auch f;tb"LLulﬂ wurde. SchlieB-
lich wurden dragmaund numerus synonym gebraucht. Letzteres libersetzt der Verfasser der deutschen Algebra
mit zal. Michael STIFeL (14877-1567) war der erste, der im Druck solche Zeichen wegliell und nur mehr die
Zahl alleine schrieb. — Das Wort dirfiem ist eine Arabisierung des griechischen Worts dpayun (drachmé), dem
Namen einer alten Gewichts- und Rechnungseinheit. Man vermutet, dass dieses Wort vom Verbum dpasoeo-
a1 (drassesthai) = fassen, umfassen abgeleitet wurde, weil man tatsdchlich mit einer Hand sechs dfekiorol
(obeliskoi) = Spiefichen umfassen konnte, deren Gewicht eine Drachme ausmachte. Spater nannte man ein
solches SpieBchen dPokog (obolos); es wog in Attika 0,728 g.

Bei GERHARD voN CREMONA (1114-1187) lautet die Aufpabe so: »Est census de quo radicem suam proieci
et addidi radici radicem eius quod remansit, et quod provenit fuit due dragme. Ergo hec radix census et
radix eius quod remansit fuit equale duabus dragmis.«
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Abb. 68.1 Folium 133v und 134r der 3-seitigen deutschen Algebra, geschrieben am
Tag des hl. Erasmus (= 2. Juni) des Jahres 1461, in der Bruchstiicke und eine einzige
Aufgabe aus AL-CHARIZMIS al-kitab al-muchtasar fi hisab al-dschabr wa-"l-mugabala
auf Deutsch wiedergegeben sind. Der Text beginnt so: Machmet in dem puech algebra
vnd almalcobula hat gepruchet dise wort Census - radix - numerus.*
Sammelhandschrift Codex latinus monacensis 14908, Grolle des Schriftblocks
9.7cm X 5,8 cm.

*%2.5.2 Wurzelgleichungen mit Parametern

Das Losen von Wurzelgleichungen, in denen auBer der Unbekannten auch
noch Parameter vorkommen, erfordert im Allgemeinen Fallunterscheidun-
gen. Bei der Untersuchung, ob eine Losung der durch Quadrieren erhaltenen
Hilfsgleichung auch die Ausgangsgleichung erfiillt, ist vor allem auch zu be-
achten, dass die auftretenden Radikanden nicht negativ sein durfen.

Beispiel 1:

Vx+a?2 =V2x+1 = x+a®>=2x+1
x=a*—1
Probe: LS = l.-"'a.z 14a%= ljaz —_]
RS =)2(a>— 1) +1=12d> -1
* Der gesamte von Frater FrIDERICUS AMANN geschriebene Text ist im Losungsheft abgedruckt. Vergleiche

auch die Ubersetzung GERHARD VON CREMONAS in unserer Algebra 7, Seite 10, und im zugehdrigen L-
sungsheft, Seite 4f.
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LS und RS sind jedoch nur definiert, wenn 2a* — 1 = 0 gilt, also
fiir |a| = 4)/2.

Ergebnis: x = a* — 1, falls |a| = 11/2; sonst L = { }.
Beispiel 2:
Vx+8a=Vx+2a = x+8a=x+4a Vx + 4a?

alVx = 2a— a?

Die Auflosung der letzten Gleichung nach //x ist nur fiir @ + 0 moglich.
Also Fallunterscheidung:

a=0| 0-Vx =0; also L =Ry, was auch fiir die Ausgangsgleichung
gilt.

{E=|=U, Vx=2—a = x=2—a)?

Probe: LS = /(2 —a)>+8a=V4+4a+a*=VQ2+a)*=|2+al| =
_{ 24+ fir a=z-2

—(24a) fir a< -2

2L it a=2

RS=V(2—a)*+2a=|2—a|+2a=
Viz—z) ] il {—2—!—3& fir a>2
Fiir a # 0 lautet somit das Ergebnis:

L={2—-a)? fir 0<l|a|£2; L={} fir|a|>2.

Am Losungsbaum lassen sich die verschiedenen Fille Gibersichtlich dar-
stellen (Abbildung 69.1):

—
2

Abb. 69.1 Losungsbaum zu Beispiel Z
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Aufgaben
1. Lose die folgenden Parametergleichungen:
a) L.f'-_x +a?>=a+1 b) l":.l: +a=a—1
o) Vx+a=V5a—x d) Vx+a=Va®—x
e) Vx*+a=Va—x ) Vil—a’=x+a

2. a) Zeige, dass die Gleichung Vx+a+Vx—a=2a genau dann losbar
ist, wenn die Bedingung a = () v a = 0,5 erfullt ist. Wie lautet jeweils
die Losung?

b) Fiir welche Werte von ¢ ist die Gleichung Vx+a —Vx—a = 2a
losbar und wie lautet die Losung?

Zu den Aufgaben 3 bis 5:

Lose die Gleichung und zeichne einen Losungsbaum.

_— = T

/ 1 ; 1 e e s

3.4) |/x*+ s =Vx*—1+ 15 B Py s
a a a g

ed.2) Vax3+3 =3 +a’x b) Vx*+a—Vax2—2=0
5. a) L"j;'_—}- 2a% =a+ Lk + a? b) l-";(s,rz + x = I.--"'Ia,\'2 — =t

So6k 7 S o
B vt witvoMictina ad /78
e g i ol o,

,.31}2.1‘_ e

_\n.s!,“‘ a?&&«g ?’-‘.'l:;- --;.--n

1=
1€ i S f_?'___?____
g_f:'"fﬁf___ ® "'.f‘fﬁ
/ e ni R S
8 G s -~
17 —+ % &y = ji 55
T Tl = g
g s A
P Wl 17 s /'J’

Abb.70.1 Ausschnitt aus folium 64v des Codex Leipzig 1696, vermutlich aus dem
Ende des 15. Jh.s
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Colleltio Quarm.
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Ausschnitt von Seite 128 aus den 1615 erschienenen Abhandlungen De aequationum
recognitione et emendatione tractatus duo des Francois VIETE (1540-1603). Propositio |
ist der berithmte Satz von VIETA fur eine Gleichung zweiten Grades.




3 Die quadratische Gleichung

3.1 Was ist eine quadratische Gleichung?

Du hast bisher meist nur mit linearen Gleichungen zu tun gehabt, die man auf
: » s b _— 2
die Form ax + b = 0 bringen kann. Fiir @ + 0 ergibt sich — — als einzige L6-
a
sung. Gelegentlich sind dir aber auch schon Gleichungen wie z. B. x* = 4 oder
X(x — 2) = 0 begegnet. Sie sind einfache Sonderfélle so genannter quadrati-
scher Gleichungen.

Definition 72.1: Eine Gleichung der Form ax? + bx 4 ¢ = 0 mit a = 0
heilit quadratische Gleichung fiir x oder auch Gleichung zweiten
Grades in x.

Wegen a #+ 0 kommt x? in dieser Gleichung auch wirklich vor, und zwar als
hochste Potenz der Unbekannten; daher der Name quadratische Gleichung
bzw. Gleichung zweiten Grades. In Analogie dazu nennt man eine lineare
Gleichung auch Gleichung ersten Grades.

Bei einer quadratischen Gleichung sind folgende Bezeichnungen tiblich:
ax” heiBt quadratisches Glied, »x lineares Glied und ¢ die Konstante* der
quadratischen Gleichung.

a, b und ¢ sind die Koeffizienten der quadratischen Gleichung. Dividiert man
die Gleichung durch g, dann ergibt sich die Normalform der quadratischen

. : b ¢ : :
Gleichung, ndmlich x*+ —x+ — = 0. Dafiir schreibt man gerne auch
x*+px+qg=0. % &

“*Zur Geschichte der quadratischen Gleichung

Aus der frithen Zeit der dgyptischen Mathematik sind uns nur ganz einfache quadrati-
sche Gleichungen des Typs ax? = b iiberliefert (sieche Aufgabe 78/14). Im berithmten
Papyrus Rhind wird iiberhaupt keine quadratische Gleichung behandelt.

Von den alten Babyloniern blieben uns hingegen aus der gleichen Zeit (ca. 20.-19. Jh.
v. Chr.) viele Tontafeln in Keilschrift erhalten, die sich mit quadratischen Gleichungen
mit einer Unbekannten beschiftigen (Aufgabe 97/24), viel 6fter aber mit Gleich ungs-
systemen mit zwei und mehr Unbekannten, wobei mindestens eine der aufiretenden
Gleichungen quadratisch ist (siche 3.8). Neben der Losung ist auf vielen Tafeln auch
der Losungsweg angegeben (siehe Seite 86). Der geometrische Ursprung dieser Aufga-
ben ist aus den verwendeten Bezeichnungen wie »Linge«, »Breite« und »Fliche« er-
sichtlich. Die Babylonier haben sich aber sehr friih von dieser geometrischen Begriffs-
welt gelost und verstehen unter diesen Wértern, die bezeichnenderweise auch nicht
dekliniert werden, meist nur mehr — modern ausgedriickt — die Unbekannten x und y
und ihr Produkt xy. Wie wiire es sonst verstindlich, dass sie eine Fliiche und eine Seite

* Das Wort Konstante hat 1692 Gottfried Wilhelm Lemniz (1646-1716) in die Mathematik eingefiihrt.
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addierten und eine Zahl erhielten! Sie haben bereits in frither Zeit eine Mathematik
geschaffen, die nur mit Zahlen umgeht, anders als im alten Indien oder Agypten, wo
Mathematik im Gewande der Geometrie getrieben wurde. So sollen die dgyptischen
Harpedonapten* durch Spannen von Seilen geometrische Konstruktionen und auch
Beweise ausgefithrt haben™*.
Dieses geometrische Wissen brachten sowohl THALES (um 625-um 547 v.Chr.) wie
auch PYTHAGORAS (um 570-um 497 v.Chr.) von ihren dgyptischen Studienaufenthal-
ten mit. PYTHAGORAS — so berichtet uns der Volksredner ISOKRATES (436338 v. Chr.) -
soll dabei 525 anlisslich der Eroberung Agyptens durch den Perserkonig KaMBYSES 11.
(reg. 529-522) nach Babylon verschleppt worden sein, wo er —dem Bericht des Neupla-
tonikers IAMBLICHOS VON CHALKIS (um 250-um 330 n.Chr.) zufolge — 7 Jahre ver-
brachte und dort in die Lehre von den Zahlen und der Musik eingefiihrt wurde. Die
Entdeckung der PYTHAGOREER, daB z.B. x> = 2 im Bereich der Briiche nicht exakt
l6sbar ist. dass aber andererseits immer exakt eine Strecke konstruiert werden kann,
sodass das dariiber errichtete Quadrat den Flicheninhalt 2 hat, lieB die Griechen eine
»geometrische Algebra«*** entwickeln, in der Flichen und Léingen wie physikalische
GroBen behandelt werden. Die Ztoryeia (Stoicheia) — »Elemente« — und die dedopéva
(Dedomeéna), lateinisch Data — »Gegebenes« — EUKLIDs (um 300 v. Chr.) bezeugen,
dass alle quadratischen Gleichungen mit positiven Losungen — und nur solche waren
zugelassen — durch geometrische Konstruktionen exakt gelost werden konnten.
Natiirlich ist die babylonische Zahlenmathematik nicht verloren gegangen. Man uber-
lieB sie aber den Praktikern, d.h. den Land- und Himmelsvermessern. So soll der
berithmte Astronom HipPARCH (Mitte des 2. Jh.s v. Chr.), arabischen Berichten zufol-
ge, ein Lehrbuch iiber quadratische Gleichungen geschrieben haben. Mit DIOPHANT
(um 250 n. Chr.) gelangte die alte babylonische Tradition des Rechnens mit Zahlen zu
neuer Bliite. In seinen Apiduntikdv fifiix (Arithmetikon biblia) — »Biicher uber die
Zahlenlehre« — finden sich viele Aufgaben von derselben Art wie auf den babyloni-
schen Keilschrifttafeln.
Quadratische Gleichungen werden auch im letzten der »Neun Biicher arithmetischer
Technik«, dem Chiu Chang Suan Shu (China, 2.Jh. v.Chr.), gelost, dem wir Aufgabe
98/25 entnommen haben.
Die Leistungen der Inder und Araber, von denen das mittelalterliche Europa das
Rechnen mit quadratischen Gleichungen lernte, schildern wir auf Seite 86fF.
Auch unsere Fachworter haben ihre Geschichte.
Das griechische iowotg (isosis) DIOPHANTs (um 250 n. Chr.) wurde zum lateinischen
aequatio, das LEONARDO VON P1sA (um 1170-nach 1240) in seinem liber abaci (1202) als
Fachwort verwendet. Die Eindeutschung fiihrt {iber Vorgleichung — 1518 /21 Heinrich
SCHREYBER, genannt GRAMMATEUS (1492/967-1525) in seinem Rechenbiichlein
schlieBlich zu Gleichung, belegt 1695 bei Henrich HorcH in seinem Werk Anfangs-
Griinde einer Vernunfft- und Schrifft-iibenden Zahl- und Buchstab-Rechenkunst | Deren
diese sonst Algebra heisset. Christian VON WOLFF (1679-1754) iibernimmt das Wort
Gleichung in Die Anfangsgriinde Aller Mathematischen Wissenschaften 1710, wo sich
auch der Fachausdruck quadratische Gleichung findet.
Mit dem Wort gradus bezeichnet 1591 Frangois VIETE (1540-1603) in seiner In artem
analyticem Isagoge die Hohe einer Potenz. Vom Grad einer Gleichung spricht dann
1675 Jean PRESTET (1652-1690) in seinen Elémens des Mathematiques.
* — Seilverkniipfer, von &pnedovn (harpedone) = Seil und éntewv (haptein) = ankniipfen
#+ (P EMENS von Alexandria (150-215) schreibt in seinen Stromateis (I, 15) diese Behauptung DEMOKRIT (um
460~um 370 v. Chr.) zu.
=#* Den Ausdruck fithrte 1886 der déinische Mathematiker Hieronymus Georg ZeutHeN (1839-1920) ein.
1925 entdeckte man in Bologna ein zwischen 1574 und 1587 geschriebenes Manuskript des Paolo
Bonasoni (F nach 1593) mit dem Titel Algebra geomelrica.
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Aufgaben

1. Entscheide, ob eine quadratische Gleichung vorliegt. Bringe sie gegebe-
nenfalls auf eine Form ax? + bx + ¢ = 0 mit positivem « und gib das
lineare Glied und die Konstante an.

a) 3—x*=x b) 3x*—1 =x?
&) x(x—x2) =0 d) (x—1)(1—x)=3
e) (0.5x+4)*=0 ) x%2—1 =(x—=1)>

2. Entscheide, fiir welche Unbekannte eine quadratische Gleichung vorliegt.
Gib jeweils das lineare Glied und die Konstante an.

a) x*’y=—1 b) xy®=3x-+ y?
c) xy+ y*=3x% d) x> —xp?4p3=1
e) 2°b% —abx?+2=0 f) (a+b)(a—b)=(a—b)*
3. Stelle die Normalform her.
a) 3x2—6x+15=0 b) 1 —x%=3x
¢) —1,5x*+45x=2,7x*—8,1 d) (1 —5x)2=5x—1
2 £ 2 ) = e 1 y=
e) G—102=@3—-3x)2 of) V2x=16x2— —x+}/3
/2

3.2 Spezialfille von quadratischen Gleichungen

Einfache Spezialfille der quadratischen Gleichung ax?* + bx + ¢ = 0 liegen
vor, wenn ein Koeffizient der quadratischen Gleichung null ist. a selbst kann
aber nicht null sein; denn sonst hitte man keine quadratische Gleichung.

3.2.1 Die rein quadratische Gleichung

Wenn b = 0 ist, fehlt das lineare Glied bx in der quadratischen Gleichung.
Sie hat dann die Gestalt ax® + ¢ = 0. Eine Gleichung dieser Bauart heiBt

rein quadratisch. Wegen « % 0 gewinnt man ihre Normalform zu x* 4+ — = 0
bzw. x>+ ¢ = 0. a

Fiir ¢ > 0 ist die linke Seite sicher positiv; die Gleichung hat daher keine
Losung. Fiir ¢ = 0 ergibt sich die Gleichung x* = 0. Sie hat die Lésung 0.
Fiir ¢ < 0 kann man mit Hilfe der 3. binomischen Formel die linke Seite

faktorisieren. Wir zeigen es dir fiir ¢ = —49:
x2—49 =0
i —12=1

x+TNx—=7)=0
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Wie wir wissen, kann ein Produkt nur null sein, wenn mindestens ein Faktor
null ist. Aus der letzten Zeile entsteht die Oder-Aussageform

x+7=0vx—7=0 bzw.
x=—Jivx=7.

Wir erhalten also zwei Lésungen, namlich x, = —7 und x, = 7.
Selbstverstindlich kann man die Methode des Faktorisierens auch anwenden,
wenn — g keine Quadratzahl ist. Nehmen wir als Beispiel ¢ = —5:
x2—-5=0

x2—(/5)2=0

(x+ l-""IS_](:\' — V5 =0
== LS Vox = 15 : Also x == 15 und X, = I/5.
Merke: Die rein quadratische Gleichung x? + ¢ = 0 hat entweder keine, ge-

nau eine oder zwei Losungen, je nachdem ob g >0, g = 0 oderg <0
ist.

Die Losungen der rein quadratischen Gleichung kann man aber statt durch
Faktorisieren auch durch Radizieren finden. Es gilt ndmlich

Satz 75.1: Sind die beiden Seiten einer Gleichung nicht negativ und
radiziert man beide Seiten, so entsteht eine dquivalente Gleichung;
kurz:

Fir 7,20 und T,20 gilt T,=17, = VT, = VT,

Beweis:
1) Ist u eine Losung der Gleichung 7; = T; mit 7} («) = 0, dann gilt 7; (¥) =
= T, (u), also auch wegen der Eindeutigkeit der Wurzel VT () =V T,(w).

Damit ist u auch eine Losung der Gleichung |/ T; = |/ T;. Es gehen also beim
Radizieren keine Losungen verloren.

2) Ist nun umgekehrt v eine Losung der Gleichung [/ 7} = V' T,, dann gilt
/T, (v) =V T,(v), woraus sich wegen der Eindeutigkeit des Quadrats
T, (v) = T, (v) ergibt. Das bedeutet aber, dass v auch eine Losung der Glei-
chung T, = T, ist. Es kann also beim Radizieren auch keine L6sung hinzu-
gekommen sein.

Da somit beim Radizieren weder Losungen hinzugekommen noch verloren
gegangen sind, stimmt die Losungsmenge der Gleichung 7} = T, mit der Lo-

sungsmenge der Gleichung )/ T, = |/ T, tiberein. Radizieren ist also eine Aqui-
valenzumformung.
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Wir wenden Satz 75.1 auf unsere beiden obigen Beispiele an:

x?—49 =0 x2—5=0

x2=49 ||V X5 Y
= x| =13
x=—Jnue=1. x=—V5vx=V5.

Du siehst, beim Radizieren von Quadraten entstehen Absolutbetrige, die sich
durch Fallunterscheidungen wieder beseitigen lassen. Betrachten wir dazu
allgemein die Gleichung

x% = d>? | V4
x| = |4].

Weil zwei Zahlen mit gleichem Absolutbetrag entweder gleich oder entgegen-
gesetzt gleich sind, bedeutet die letzte Gleichung dasselbe wie

x=dv x=-—d.
Merke: lx|]=ld| = x=dvx=-d
Aufgaben
1.a) x? =169 b) x2—-1024 =0 ¢) x*>=46,25
d) x*—0,0324 =0 e) 16 =0,64x2 f) 2,56x* — 40,96 =0
g) 144x? = 1225 h) 22500 —2025x* =0 i) 10,89x% = 0,1936
2.3) 2x* =8 b) 0.5x> =38 ¢) 5x2—45=0
5= 1 e 7
d) 28 — Sl il P 5 A=
bavswr =) e = S
13 SR 22 A x- PO 7 e hy, A
T il U

Beachte bei den folgenden Aufgaben die Definitionsmengen!

4x —1 L X 1 b) 2x—5 % >
SR T S0 T e
x+10 Sx 44 x-H400  Sx—d
_\—r— G o S4in d) Xict .:_JL_ ;
2x—5 x=+7 2x+5 x+7
3Ix+2 Tx+3 2x+7 2x+2
o) — = of) S st

x+1 ) dx—6 1.5 —x
16x — 1 4x + 25 h) 3x-2 11x+ 8
- — —_ 1 —_
x+4 2 —9x 2x —3 5x—9

3. a)

¢)

g)




Ln

e 6.

10.

. a) o

3.2 Spezialfille

2x*—5 3x*+5
= —— L V= —
3 6

1 . 3
T =1

6x— 38

3x+4
c) -

+ 2x =
3 2

von quadratischen Gleichungen

Fiihre die notwendigen Fallunterscheidungen durch.

a) ax*=>52%

e) Bx—2a)*—2x—3a) =4a"

a) xi4=a=>b
¢) (x+2a)+(2x a)? =
e) a(x—b)* + ax(x+2b)

f) (ax+b)*+(bx+a)* =

.a) (x—7*=9

d).(0.5x— 1.5)* = 2.25
g)i(x—a)y=>b*

X X

=7
X+ i

X—d

Padn 150 1) (Adx =D
b) E L = | Xt —2
4 2 3
d 2 +2=10
)1o—zﬁ =
8—20x x+6
Maidad® =1
Ox<—4 Fx—2
b) 1 + +7 =
S e <
X+ — 1 4
eyttt tal Bl ey 7 40
x— 1 x+1 =11
x N2 5
b) ( ) —a* =0
(i

d) a’x*—a=0b*x*—b

bx—a)? 2bx—
n (bx ju) i hx — a

a” a

. Fithre die notwendigen Fallunterscheidungen durch.

b) ax?=b

Sa

d

2a% + 2abx(x + 2)

b) x+23)2=% ¢) (x+
e) (x—3)2=-3 a3
h) (x+ @)% =(2x+a)?
b) xta x—a f(az + I);
x—a x+4+a a*(x*—a°)

2)=

=h

d) Bx—2a)*+64 = (x— 6a)?

~

= _\'}" =

77

b b

Multipliziert man =5 einer Zahl mit {g derselben Zahl, dann ergibt sich

40733. Wie heifit die Zahl?

halt ist 2240. Wie breit ist das Rechteck?

. Linge und Breite eines Rechtecks verhalten sich wie 7 : 5, der Flachenin-
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12. Zerlege die Zahl 11532 in zwei Faktoren, die sich wie 3 zu 4 verhalten.

13. Zerlege die Zahl z in zwei Faktoren, die sich wie a:b verhalten.
(a,b,z +0)

14. Aufgabe 6 aus dem Papyrus Moskau (18.Jh. v. Chr. nach einer Vorlage des
19.Jh.s v.Chr.): Ein Rechteck hat den Flacheninhalt 12. Fiir die Breite
nimm 3 der Liange +  der Lidnge. Bestimme seine Seiten.

15. AL-CHARIZMI (um 780—nach 847) loste in seiner Algebra folgende Auf-
gaben:

a) Das zweite der 6 Probleme (siche Seite 87): Ich habe 10 in zwei Teile
geteilt. Multipliziere ich den ersten Teil mit sich selbst und das Erhalte-
ne mit 23, dann ergibt sich dasselbe, wie wenn ich 10 mit sich selbst
multipliziere. Wie groB} sind die Teile?

b) Multipliziere eine Zahl mit sich selbst, nimm das Vierfache, und du
hast 20. Wie groB ist die Zahl?

¢) Das dritte der 6 Probleme: Ich habe 10 in zwei Teile geteilt. Dann habe
ich den einen durch den anderen dividiert und 4 erhalten. Wie grof3 sind
die Teile?

Zu den Aufgaben 16 bis 19: Leonhard EULER (1707-1783) veroffentlichte 1770
in Petersburg seine Vollstindige Anleitung zur Algebra (bereits 1768 auf rus-
sisch erschienen), der wir die folgenden Aufgaben entnommen haben.*

16. Es wird eine Zahl gesucht, deren Hilfte, mit ihrem Drittel multipliziert, 24
gibt.

17. Es wird eine Zahl von der Beschaffenheit gesucht, dass, wenn man zu
derselben 5 addiert und ebenso von ihr auch 5 subtrahiert, jene Summe
mit dieser Differenz multipliziert 96 betrigt.

o 18. Von 3 Personen besitzt die erste so oft 7 Reichstaler wie die zweite 3 Reichs-
taler hat; und so oft die zweite 17 Reichstaler besitzt, hat die dritte 5 Reichs-
taler. Wenn man aber das Geld der ersten mit dem Gelde der zweiten und
das Geld der zweiten mit dem Gelde der dritten und endlich das Geld der
dritten mit dem Gelde der ersten multipliziert, hierauf diese drei Produkte
addiert, so ist die Summe 3830%. Wie viel Geld hat nun jede gehabt?

19. Einige Kaufleute bestellen einen Faktor [ = Leiter einer Handelsniederlas-
sung] und schicken ithn nach Archangel, um daselbst einen Handel abzu-
schlieffen. Jeder von ihnen hat zehnmal so viel Reichstaler eingelegt, wie es
Personen sind. Nun gewinnt der Faktor an je 100 Reichstalern zweimal
so viel, wie die Anzahl der Personen ist. Wenn man dann den 100. Teil des
ganzen Gewinns mit 2 2 multipliziert, so kommt die Zahl der Gesellschaf-
ter heraus. Wie viel sind ihrer gewesen?

* 2. Teil, 1. Abschnitt, Kapitel 5, Aufgaben I, I1, IV und V
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3.2.2 Die Konstante ist null

Ist die Konstante null,d. h.,gilt ¢ = 0, dann hat die quadratische Gleichung die
Gestalt ax* + bx = 0.

Man 10st sie durch Faktorisieren:

ax:+bx=0

x(ax+b)=0

x=0vax+b=0

b
x=0vx=—— (a+0).
da
: Tt 2 b
Wir erhalten also zwei Losungen, nimlich x; = 0 und x, = ——.
o

Fiir b = 0 ergibt sich 0 als einzige Losung.

Beim Gleichungstyp ax? + bx = 0 ist also 0 immer eine Losung.

Diese Lésung ginge verloren, wenn jemand glaubte, er konne die Gleichung
ax?+ bx = 0 dadurch vereinfachen, dass er durch die Variable x dividiert
und nur noch ax + b = 0 1ost.

Merke: Durch einen Term darf man nur dividieren, wenn er nicht null ist.

Aufgaben
1. a) x2—5x=0 b) 3x*+8x =0 Gtz =18x%
d) 14x*+33x=0 g) xi=x ix=—%
2. a) 0,12x2 4 2x = 3,08 b) V2x+ 5x> =0
¢) 3x2—)3x=x—}/3x? d) 2x®+/2x=—415x*+11/6x
— /15 /27
e) V10x“+V5x=0 ) — l X = I e
15 /5

3. Aus dem [liber abaci (1202) des LEONARDO VON Pi1sA (um 1170-nach 1240):
a) x(x+1/10) = 9x2 b) x(x +1/10) = 9x

4. Das erste der 6 Probleme des AL-CHARIZMI aus seiner Algebra (siche Seite
87): Ich habe 10 in zwei Teile geteilt und den einen mit dem anderen multi-
pliziert. Multipliziere ich aber den einen Teil mit sich selbst, dann erhalte
ich viermal so viel wie zuvor. Wie groB} sind die Teile?




80 3 Die quadratische Gleichung

5. AL-CHarizwmi behandelt weitere Beispiele quadratischer Gleichungen. In
moderner Schreibweise lauten sie:

a) %;12:%1 b)i§\3=§'\
xc—4x
€) $x-tx=1x d) e 4x
Bestimme die Losungen.
2 5 a—>b .
6. a) x“—2ax =10 b) x*+ 5 A 0
2 a-—+ b g 3 5
¢) ax” = 5% d) a°x° —2bx =4b*x* —ax

3.3 Die quadratische Erginzung

Quadratische Gleichungen vom Typ ax? + ¢ = 0 und ax? + bx = 0 koénnen
wir schon losen. Was aber machen wir bei einer allgemeinen quadratischen
Gleichung? Gelingt es, die linke Seite durch Probieren zu faktorisieren, dann
ist das Problem gelost. Dazu

Beispiel 1: Beispiel 2:
x*4+4x—5=0 2x2—5x+3=0
(x+3)(x—-1)=0 2x—3)(x—1)=0
x+5=0vx—1=0 2x—3=0vx—1=0
x==Svx=1. y=F Ve =

Leider wird dieses Probier-Verfahren nur in den seltensten Féllen zum Ziel
fithren. Wenn es gelingt, dann ist es aber auch das schnellste Verfahren. Wir
brauchen jedoch eine Methode, die immer zum Ziel fihrt.

Dazu formen wir die Gleichung schrittweise so um, dass eine rein quadra-
tische Gleichung entsteht, die wir schon l6sen kénnen. Wir zeigen es dir an-
hand einer Gleichung, die AL-CHARIZMI (um 780—nach 847) in seinem al-kitab
al-muchtasar fi hisab al-dschabr wa-'l-mugabala — »Handbuch tiber das Rech-
nen durch Wiederherstellen und Ausgleichen« — behandelt, und verfolgen
seinen Losungsweg.

Beispiel 3: 1x% 4 5x =28
1. Schritt: Herstellen der Normalform
x*+10x—56=0

2. Schritt: Erginzen zum Quadrat

Wir fassen den Term x? + 10x als Anfang der linken Seite der 1. binomi-
schen Formel x? + 2ux + u? = (x + u)? auf. Der Koeffizient von x muss
dann 2u sein. Es gilt also 2u = 10 und damit u = 5. Wir ergiinzen nun das
fehlende »%, d.h. 52, und ziehen es gleich wieder ab, um die Konstante
nicht zu verdndern:
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x24+10x + 52 —25—56=0.

Die ersten drei Glieder ergeben ein Quadrat:

(x> 4+ 10x+5%)—81=0

(x+5)>—81=0.

Das ist eine rein quadratische Gleichung fur (x + 5).
3. Schritt: Losen der rein quadratischen Gleichung

durch Faktorisieren oder durch Radizieren

(x4 5)2—92=0 (x+52=81 ||V
[(x+5+9][(x+5)—-9]=0 |lx+5]=9
(x+14)(x—4)=0 xX+5=—9vx+5=9
x=—14v x=4. x=—14vx=4.

Das vorgefiithrte Losungsverfahren heiBt Losen durch quadratische Ergan-
zung.

Als »quadratische Ergéinzung« bezeichnet man aber nicht nur das Losungs-
verfahren, sondern auch den Term »*, mit dem man ergénzt.

Merke: Man halbiert den Koeffizienten des linearen Glieds, quadriert und
erganzt.

Wie du schon weiBt, hat die rein quadratische Gleichung zwei, eine oder gar

keine Losung. Dasselbe gilt natiirlich dann auch fiir jede quadratische Glei-

chung, wenn wir sie in eine dquivalente rein quadratische Gleichung umfor-

men konnen.

AL-CHARIZMI zeigt seinen Lesern mittels eines geometrischen Beweises (vgl. Abbildung
82.1) — er hatte ja noch keine Buchstabenrechnung —, dass die Methode der quadrati-
schen Ergiinzung richtig ist. Vielleicht helfen dir seine Gedanken auch zu einem besse-
ren Verstindnis dieses Verfahrens. Er schreibt:®

Wir gehen aus vom Quadrat ABCD, dessen Flacheninhalt gleich der gesuchten Qua-
dratzahl x2 ist. Unser nichstes Anliegen ist es, ihm eine Fliche vom Inhalt 10-mal der
gesuchten Zahl, also 10x, hinzuzufiigen. Zu diesem Zweck halbieren wir die 10, das
ergibt 5, und konstruieren an zwei Seiten des Quadrats ABCD zwei Rechtecke. nam-
lich CBGH und DCFE, und zwar so, dass jeweils die Lingsseite S misst — das ist die
Hilfte des KoefTizienten 10 von x —, wohingegen die Breite jeweils gleich der Quadrat-
seite x ist. Dabei entsteht an der Ecke C ein Quadrat, ndmlich FCHI. Dessen Inhalt ist
5 mit sich multipliziert: Diese 5 ist die Hilfte des Koeffizienten der Unbekannten x, die
wir an jeder Seite des Ausgangsquadrats als Strecken [BG] und [ DE] angefiigt haben.
Jetzt kdnnen wir sagen, dass das erste Quadrat mit dem Inhalt x* und die zwei Recht-
ecke an seinen Seiten, die zusammen 10 x haben, insgesamt 56 ausmachen. Um nun
zum groBen Quadrat AGIE vervollstindigen zu konnen, fehlt uns nur mehr die Qua-

* Wir haben den Text nur wenig modernisieren und dem Beispiel 3 anpassen miissen. Natiirlich gibt es bei aL-
Crarizmi noch keinen Buchstaben x: auch »Koeffizient« driickt er umstindlicher aus. Quadrate und Recht-
ecke werden nur durch die Diagonalecken — wie bei EUKLID — bezeichnet; das Quadrat ABCD heilit also nur
AC usw. Seine Figur stimmt itbrigens genau mit der EUKLIDs aus Buch II der Elemente liberein; nur der
mathematische Inhalt dazu wird anders formuliert. So lautet der zugehérige Satz 4 bei EUKLID: »Wird eine
Strecke beliebig geteilt, so ist ihr Quadrat gleich der Summe der Quadrate der beiden Teilstrecken, vermehrt
um ihr doppeltes Rechteck.« Teilen wir also [AE] in D, so gilt

AE? = AD?+DE2?+ 2 AD-DE.
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dratzahl, die aus 5 mit sich multipliziert entsteht, also 25. Diese addieren wir zu 56 und
haben damit zum groBen Quadrat AGIE ergénzt. Als Summe erhalten wir 81. Wir
zichen die Wurzel, das ergibt 9, und das ist die Seite des groBen Quadrats. Ziehen wir
davon dasselbe ab, was wir vorher hinzugezihlt haben, namlich 5, dann erhalten wir
als Rest 4. Dies ist die Seite des Quadrats ABCD, die man gesucht hat.

A X e s
- ~
7 x4+ 10x = 56
: g 7! x2 42105 = 56
x2 4+ 2-(5x) =56
B C . x*+2-(5x) +88 =56 + 25
(x+ 5)2 = 81
5 X 25
b H I
Abb. 82.1 Die Zeichnung des AL-CHARIZMI zum Beweis der quadratischen Ergin-
zung
Aufgaben

1. Lose durch Faktorisieren.

a) x?—5x+6=0
¢) y*+y—20=0
. Ergiinze zum Quadrat.
a) x2 4 4x
d) x*—0.,6x
o) x> +173x
3. Ergénze zum Quadrat.
a) x?+3ix

I~

d) it =3ux
g) x>+ 101/ 7x

4.2) x> —3x+4+2=0
c) x4+ 11x+28 =0
e)*x(x +/10) = 20

5.a) x24+10x4+30=0
¢) u?+7=8u

b) z2+6z4+8=0
d) u>—5p—24 -0

b) x*—8x ¢) x2—04x
e) x>+1,8x f) x*—10.5x
h) x? +3x i) x%—3%x
b) x* —3ix ¢) x*+2ix

1+ b : 2a — 3¢
&) x> : 5k B x2—3- __':_"__2 e
h) x2— 7/10x ) x2—£)/15x

b) x> —2x—3=0

d) x*+12x+36=0

* x> — (20 +1/10)x + 100 = 0
b) y*+4y=1

d) v =3—2v

* aus dem fiber abaci (1202) des LEONARDO vonN Pisa (um 1170-nach 1240)
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6.a) 2x2—28x1+98=0 b) —3z°+12z4+63=0

¢) —Su*+120u—730=0 d) 8x24+80x+72=0
7.a) 3x*+x—2=0 b) 1z2—4z—-1=0

¢) 2u*—3u+4=0 d) 1,502 +2y—75=0
8.a8) x?+4kx—5k2=10 b) x> +4ax+a*>=10

¢) x? —2nx = 6mn + 9m?* d) rx>—2r*x=rs—r’

3.4 Diskriminante und Losungsformel

Wenn ein Mathematiker immer wieder gleichartige Aufgaben l6sen muss,
dann wird er dessen bald miide und er beginnt zu {iberlegen, ob sich nicht eine
Formel finden lisst, mit der er ein fiir alle Mal alle Aufgaben dieses Typs losen
kann. Mit Hilfe der quadratischen Ergidnzung entwickeln wir nun eine solche
Formel zur Lésung der quadratischen Gleichung.

ax*+bx+c=0, a+0

1. Schritt: Herstellen der Normalform

— e
e
a a

=0

2. Schritt: Erginzen zum Quadrat

2y b 5 e T e 5 b\?> b%*—Adac 0
Nt =l e R N e Tl ety L -
a 2a da- iy 2a 4q°

3. Schritt: Losen der rein quadratischen Gleichung durch Faktorisieren
Die Faktorisierung lisst sich nur durchfithren, wenn der Term 6* — 4 ac nicht
negativ ist. Ist er negativ, dann gibt es keine Losung.

) L
Ist er null, dann ist x = — _— die einzige Losung.
£

[st er positiv, dann gibt es zwei Losungen, die wir durch Faktorisieren finden,
da man in diesem Fall b2 — 4acals (J/ b% — 4ac)? schreiben kann. Es gilt dann
also

b\ _ (Vb—4ac\? _
e 2a 2a ¥
b L-":h2 - 4dac il oD l—-"":!.':'“’ —4dac .
{(1 g 2{1) = Dar :| L(l 5 2(1) TS Pl J =Y

b—Vb?—4ac
— il x—;hj L2 kol

bl b2 — 4qc
X+ -

2a 2a
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b+ V/b*—dac b—Vb*—4ac
X =— ~ v X = ——
2a 2a
—b—V/b%—4ac —b+Vb*—4ac
X — et B e e R <l B
2a 2a

Fiur diese Oder-Aussageform schreibt man oft kurz unter Verwendung des
1631 von William OUGHTRED (1574-1660) in seinem Clavis mathematicae -
»Schlissel der Mathematik« — eingefiihrten Zeichens 4, gelesen »plus oder
Minus«

_ —btVb*—dac
= 2a '

o

Damit haben wir einen formelmaBigen Ausdruck fiir die beiden Losungen der
allgemeinen quadratischen Gleichung, niamlich

= Vb? — dac d —b+Vb*—4qac
= o und x, = — 2
oder kurz
=i Vb% — dac ‘
E . 2 0a '

Uber die Existenz von Losungen und
tiber ihre Anzahl entscheidet, wie wir
oben gesehen haben, der Term

b? —4ac.

Der englische Mathematiker James
Joseph SYLVESTER (1814-1897) gab
thm deshalb 1851 den Namen Diskri-
minante*. Wir kiirzen diesen Aus-
druck mit D ab. Wegen seiner Bedeu-
tung merken wir uns

Definition 84.1: D :=b? — 4dac
hei3t Diskriminante der
quadratischen Gleichung
ax: +bx+c=0.

* discriminare (lat.) = trennen, unterscheiden. Dis- St i
kriminante ist eine der vielen Wortschépfungen Abb.84.1 James Joseph SYLVESTER

SYLVESTERS. (3.9.1814 London-15.3.1897 ebd.)
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Wir fassen unsere Ergebnisse zusammen in

Satz 85.1: Die quadratische Gleichung ax* + bx + ¢ = 0 mit @ + 0 hat

—b+ L»"Jﬁz_— dac

2a

fir D > 0 die Losungen x, , =

b
2a '

fiir D = 0 die Losung x = —

fiir D < 0 keine Losung.

Praktisches Vorgehen bei der Anwendung der Losungsformel:

1) Treten in den Koeffizienten der Gleichung Nenner auf, so beseitigt man
diese durch Multiplikation der Gleichung mit dem Hauptnenner.

2) Ist der Koeffizient des quadratischen Glieds negativ, dann multipliziert
man die Gleichung mit —1.

3) Da D die entscheidende Rolle spielt, berechnet man nun D.
Ist D < 0, so ist man fertig.

f
Ist D=0, soist x =— 2? die einzige Losung.
a s
—b+ VD
Ist D > 0, so erhidlt man die Losungen x; , = — 2 l :
a
Beispiel 1:
—5x*+4+8x+21=0 |[[-(=1)
5x*—8x—21=0 D=(—8)>—4-5-(=-21)=
=64 + 420 =
= 484;
YD =22.
—(—8) 22
Y
= 203
A= ;‘ X5 = 3
Beispiel 2:
S 440X 4400 ||
9x?+12x+4=0 W27 =t 0d =
= 144 — 144 = 0;
VD =0.
490
X1,2 TN
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Beispiel 3:
24+ x+1=0 D=12—4-1-1 =1—4=—3.
Keine Losung.

**Zur Geschichte der Losungsformel

Der Wunsch nach einer Losungsformel fiir eine quadratische Gleichung ist so alt wie
die Gleichung selbst. Solange man aber nicht tiber eine algebraische Formelsprache
verflgte, konnte man den Losungsweg nur in Worten angeben. Anhand der Aufeabe
1 der Keilschrifttafel BM 13901 (20.Jh. v.Chr.) zeigen wir dir dieses Vorgehen. Wir
stellen links den babylonischen Text, rechts die moderne algebraische Form unter
Verwendung allgemeiner positiver Koeffizienten B und C dar.

Die Fliche und die Seite meines Quadrats habe
ich addiert, und 3 ist es. x“4+x=2
i

1, den Koeffizienten, nimmst du. = B
e : s B
Die Hélfte von 1 brichst du ab, es ist 4. s
1 1 e el B\* _1
5 und § multiplizierst du, es ist 1. T
LN b = B e
e e Te s 15 - = — = —
4 Zu 3 fiigst du hinzu, es ist 1. (2 + g
.l B ‘
1 hat als Quadratwurzel 1. L; 5 =
3, das du mit sich mu]llphzmt hast, von 17B\2 B 1
1 subtrahierst du, es ist 1: [/( J +iC—— =
2 > )
: e, : B B
und das ist die Quadratseite. = lf(?—) + C — 5
\ 2 2

Die gegebene Gleichung hat die Normalform x? + x ¢(—J,) =0, d.h, a=1,

b=1=PBund ¢ = —3 = — C. Mit unserer Formel erhalten wir als positive Losung

—b —|—I b2 — dac

A, »Fﬁ / «HETEL
o ( Bad Lf(’g) 5 (-) ) 4??%%%5? jﬂ'@@ﬁi«ﬁ'ﬁ#ﬂ%

2\ ATET 14 v AT <t
?l_ 2 mi )
=17 T Abb. 86.1 Autographie der Aufgabe 1
(ks ' 2 der Keilschrifttafel BM 13901,

aufbewahrt im British Museum
also das Ergebnis der Babylonier. zu London
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Nun gab es lange Zeit keine Null und erst recht keine negativen Zahlen, sodass diese
auch nicht als Koeffizienten auftreten konnten. Daher gab es auch nicht eine quadrati-
sche Gleichung, sondern 5 verschiedene Typen. Und fiir jeden Typ musste ein eigenes
Losungsverfahren angegeben werden (siche unten). Wir konnen fast sicher sein, dass
DioPHANT (um 250 n.Chr.) iiber all diese Verfahren verfiigte, wenn wir auch keinen
Beleg dafiir haben; denn jedes Mal, wenn bei ihm eine quadratische Gleichung vor-
kommt, gibt er die Losung richtig an.
Seine Arithmetik soll 13 Biicher umfasst haben, von denen uns nur 6 auf Griechisch
{iberliefert wurden. Vor wenigen Jahren fand man eine um 900 angefertigte arabische
Ubersetzung von 4 weiteren Biichern. In den nun bekannten 10 Biichern findet man
keine Theorie der quadratischen Gleichungen. Wir konnen nur hoffen, dass sich die
letzten 3 Biicher auch noch finden!
Durch die Einfithrung der negativen Zahlen und auch der Null als Koeffizienten war
es den Indern moglich, alle Gleichungen auf eine Standardform zu bringen und zu
I6sen. So verlangt BRAHMAGUPTA (598 — nach 665), jede quadratische Gleichung — in
unserer Schreibweise — auf die Form ax?+ bx = d zu bringen und dann gemiB
Vdad + b*—b

2a

formel. Es fehlt nur noch das +. Wir miissen sogar annehmen, dass bereits sein Vor-
giinger ARYABHATA I (um 476-7) auf diese Art quadratische Gleichungen 9ste (siche
Aufgabe 101/27).
Leider iibernahmen die Araber von den Indern nicht die negativen Zahlen - ein algebrai-
scher Riickschritt! —, sodass es bei thnen auch keine Standardform mit Losungsformel
gibt. Einen Uberblick iiber alle moglichen Formen bringt AL-CHARIZMI (um 780 —nach
847) gleich zu Beginn seines al-kitab al-muchtasar fi hisab al-dschabr wa-"l-muqabala
»Handbuch iiber das Rechnen durch Wiederherstellen und Ausgleichen«. Wir miissen
uns dabei erinnern (vgl. Abbildung 68.1), dass er darin drei Begriffe verwendet:

die Wurzel; darunter versteht man alles, was mit sich multipliziert werden kann;

das Vermdgen; darunter versteht man alles, was sich durch Multiplizieren der Wur-

zel mit sich selbst ergibt;

die (reine) Zahl; darunter versteht man alles, was ausgesprochen werden kann ohne

Beziehung zu Wurzel und Vermogen.
Und nun sagt AL-CHARIZMI, dass zunédchst je zwei von diesen dreien (oder Vielfache
davon) untereinander gleich sein kénnen, dass man aber auch jeweils zwei addieren und
der 3. Art gleichsetzen konne. Dadurch entstehen 6 Typen von Gleichungen, die zur
Grundlage der abendldndischen Gleichungslehre wurden. Deutet man »Wurzel« als
Unbekannte x, so wird »Vermdgen« zu x>, und es entstehen quadratische Gleichun-
gen.* Mit positiven 4, B und C kénnen wir den arabischen Text modern umschreiben:

X zu losen. Mit unserem ¢ = — d ist dies fast schon unsere Lésungs-

(A1) Vermogen sind Wurzeln gleich. Ax®— Bx
(A2) Vermogen sind einer Zahl gleich. Ax? = C

(A3) Wurzeln sind einer Zahl gleich. Bx=C

(B1) Vermogen und Wurzeln sind einer Zahl gleich. Ax*+ By =C
(B2) Vermogen und Zahl sind Wurzeln gleich. Ax?+ C = Bx
(B3) Wurzeln und Zahl sind Vermdégen gleich. Bx+ C = Ax?

Jede dieser 6 Typen fithrt AL-CHARIZMI an einem Problem vor. Dabei bereiten die

* Natiirlich kann man auch »Vermégen« als Unbekannte x wihlen, was in vielen Aufgaben zweckmibig ist.
Weil dies in den Ubersetzungen aber fast nie getan wurde, entstanden viele Ungereimtheiten und Missver-
stindnisse. Siehe z. B. Aufgabe 94/11i.
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Abb.88.1 Vorderseite der altbabylonischen Keilschrifttafel BM 13901, ca.
12 cm x 20 cm groB3
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einfachen Gleichungen (A1) bis (A3) keine Schwierigkeiten. (A3) ist sogar linear (Auf-
gabe 78/15¢). (A1) wird linear, da man durch x dividieren kann: denn null ist keine
Losung bei AL-CHARIZMI (Aufgabe 79/4). Und (A2) ist eine rein quadratische Glei-
chung, die man durch Wurzelziehen 16sen konnte (Aufgabe 78/15a).
Auch fiir die Typen (B1) bis (B3), die iibrigens bereits von EUKLID (siche Aufgaben
98/26 und 110/25) und DioPHANT behandelt worden waren, stellt er jeweils ein Problem
{A ufgabe 100/28), beschreibt den Losungsweg in Worten und beweist ihn geometrisch
(!). Ubersetzt man den Lésungsweg in unsere Formelsprache, so entstehen drei ver-
schiedene Ausdriicke als Losungsformeln, die sich nicht zu einer Formel zusammen-
fassen lassen, da man eben keine negativen Zahlen kannte (Aufgabe 100/29). AL-
CHarizMI erkennt aber, dass (B2) im Gegensatz zu (B1) und (B3) unter gewissen Um-
standen zwel Losungen haben kann. Er gibt — natiirlich wieder in Worten — die Bedin-
gung fiir zwei und fiir eine einzige Lésung an und sogar dafiir, dass »die gestellte
Aufgabe nichtig ist« — wir sagen heute stattdessen, dass sie keine Losung hat (Aufgabe
100/29).
Auch die Babylonier kannten bereits diese 3 Typen von quadratischen Gleichungen,
vermieden aber durch geschickte Umformungen fast immer den Typ (B2), weil sie sich
nicht vorstellen konnten, dass eine Grofe zwei Werte annehmen sollte.* Interessanter-
weise stimmen viele Aufgaben aL-CHARIZMIS mit alten babylonischen Aufgaben und
mit Aufgaben DioPHANTSs, dessen Werke er nicht kannte, tiberein, sodass wir auf eine
alte mathematische Tradition schlieBen diirfen.
Das Werk AL-CHARIZMIs wirkte zuriick nach Indien (Aufgabe 100/30) und wurde fort-
gesetzt von arabischen Mathematikern, vor allem von dem in Bagdad wirkenden AL-
KARADSCHI (10./11.Th.). Ins Abendland kamen die quadratischen Gleichungen, als der
[taliener PLATO vON TivoLi (lebte zwischen 1134 und 1145 in Barcelona) den liber
embadorum — »Buch der Inhalte« — des in Barcelona wirkenden jiidischen Mathemati-
kers ABRAHAM BAR Hiisa, genannt SAVASORDA (T 1136), aus dem Hebriischen ins La-
teinische iibersetzte. Bald darauf wurde auch das Werk AL-CHARIZMIS durch GERHARD
VON CREMONA (1114-1187) und durch ROBERT VON CHESTER (um 1145) ins Lateinische
ubersetzt. Seitdem werden seine Aufgaben als Standardaufgaben von den Mathemati-
kern des Mittelalters fast wortlich {ibernommen. Sie finden sich auch in deutschen
Handschriften des 15.Jh.s. Dabei wird das arabische Jl. (mal) = Vermdgen lateinisch
mit census (seltener mit .suhsmmm) libersetzt, das 9w (dschidr) = Wurzel mit radix.
Census wird als Fremdwort ins Deutsche libernommen, fiir radix sagt man wurcz.
Mathematisch blieb aber alles beim Alten. nimlich bei den 6 Gleichungstypen. Erst
Gielis vaN DEN HOECKE schaffte 1537 einen gewissen Durchbruch, indem er auch
abzuziehende Glieder in den quadratischen Gleichungen zulisst. Genauso verfihrt
1544 Michael STIFEL (14877-1567), der sie damit alle auf eine der 3 Formen bringt:
x*=Bx+C, x*=—Bx+C, x*=Bx—C. (Bund C positiv)
Nur x* = — Bx — C gibt es nicht bei ihm, da er, obwohl er sonst schon mit negativen
Zahlen arbeitet, sich solche noch nicht als Losung einer quadratischen Gleichung

vorstellen kann. Es gelingt ihm, einen einzigen Losungsweg anzugeben, dem er den
Merknamen AMASIAS gibt, zusammengesetzt aus den Anfangsbuchstaben seiner

*

Beispielsweise kann man die Aufgabe »10 habe ich in zwei Tu]cun,m[: ihr Produkt ist 21« nach babylonischer
Art als Gleichungssystem mit zwei Unbekannten zu x + y= 10 A xy = 21 ansetzen. Fithrt man nur eine
Unbekannte ein, so erhélt man aus x(10 — x) = 21 die t[l!dilld]i‘\(_,hl. Gleichung (B2) x% + 21 = 10x. Neu bei
AL-CHARIZMI ist eben, dass er solche Aufgaben als quadratische behandelt. Dann hat er aber zwei L Gsungen
fiir x, ndmlich 3 und 7. was fiir die Bz 1hxlumu unverstandlich ist. Sie b\,]\u[nml.n auch keine zwei! Denn sie
beniitzen die Identitit 4xy = (x + ) — (x — 3)? und rechnen (x - —3)* =100 —4 - 21 = 16, was, da es nur
positive Zahlen gibt, sofort auf x — y = 4 fihrt. Mit x + y = 10 ergibt r;ig‘.h x=7und y=3.
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P Sequitur modus ifte extrahendi,

Primo. B numerd radicumt incipe, eumcy dimidiatum,
loco eitis pone dimidiums illivs ,quod in loco uo fFet,donce
confumata fit tota operatio.

Seciido, MMultiplicadimidinm illud pofitum, quadrate.

Tertio. Adde vel Subtrahe iuxta figni additort,aut figni
fubtractorum,erigentiani.

Quarto, Jnuenienda eff radir quadrata,exr fumma aditi
onis tux.vel er (uBtractionis tux veliceo-

Quinto, Bdd¢ aut Subtrabe ivrea figni auterempli tui
erigentiam.,

Modum extrahendi hunc tibi, mi bone Lector,formaui, ita
ut memoriz tenaciter hzrere poflit adminiculo dictonis hus
ius AMASIAS.

Abb.91.1 Die A.‘\’lﬁd:}_[;’-\S—;\dcrkrcgcl aus Michael STIFELS Arithmetica integra von
1544 (folium 240v) — Ubersetzung im Losungsheft

lateinischen Merkregel aus der Arithmetica integra — »Die ganze Arithmetik« — von
1544 (Abbildung 91.1). Etwas modernisiert lautet sie fir x2=4BxtC:

1. Anfange mit der Anzahl der Wurzeln,

halbiere sie und lass sie stehn.

). Multipliziere diese Hélfte mit sich.

b2
R
b | Oy
2 \‘1-_-/
r (5]

3. Addiere oder Subtrahiere, wie es das Vorzeichen
des konstanten Glieds C fordert.

T

. Itzo die Quadratwurzel zieh.

a3
— 3|
IR

|-

o

L ]

. Addiere oder Subtrahiere das zur Seite gestellte 1(8)_ LC A B

'?. wie es das Vorzeichen von B verlangt.
Geronimo CARDANO (1501-1576) hingegen erkennt in seinem Artis magnae, sive de
regulis algebraicis liber unus (1545) — »Das eine Buch iiber die GroBe Kunst oder die
algebraischen Regeln« —als Losungen auch negative Zahlen an.® Simon STEVIN (1548
bis 1620) schlieBlich lisst sowohl negative Koeffizienten wie auch negative Losungenin
seiner L'Arithmetigue (1585) zu. Damit ist der Abschluss erreicht: Es gibt nur eine Form
der quadratischen Gleichung und nur eine Losungsformel.

* STIFEL nannte die negativen Zahlen numeri absurdi oder auch numeri ficti (eingebildete Zahlen). Diesen
Ausdruck beniitzt auch Carpano. Wenngleich dieser in Kapitel I seiner Ars magna von wahren und eingebil-
deten Ldsungen einer quadratischen Gleichung spricht (x? + 4x = 21 hat die wahre Losung 3 und die einge-
bildete — 7), so fiihrt er bei den in Kapitel V vorgerechneten Beispielen immer nur die wahre, d. h. die positive
Lasung auf.
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Aufgaben

l.a) 2x% —5x—3=0 b) 5x24+16x—16=0
¢) Ix)—Tx—6=0 d) 40x* —89x+40=0
e) 4x* —12x+11=0 f) 4x2—12x+5=0
g) 16x2 —48x+36=0 h) 14x? +45x—14 =0

2. Aus der Arithmetica integra (1544) des Michael STIFEL (14877-1567):
a) x2+6x=72 b) x2=6x+ 72
¢) x2=725—4x d) %% =x 135156
e) x?+8x—12="72 f) x>+3x+18=72
g) x*—2x+24=6x+72 h) x*=12x—36
Mt — 8138 )ox*=8x—138
k) x? =12x—18 Dt =92 —3x
m) x* =3x+ 72 n) xZ=~6x+36

3. Aus dem Artis magnae, sive de regulis algebraicis liber unus (1545) des

Geronimo CARDANO (1501-1576):

a) x2+4x=21 b) x* =4x+ 21 ¢) x>+ 12 =17x
d) x? = 10x + 144 e) 144 =10x + x? fyLa? =10%+6
g) 6=10x 4 x? h) 10x = x2+6 ) 2= V2% 22
D2 =112x+20 k) x> =)12x+9 D x2=2%x+ 11

m) x* + 16 = 10x

.a) x*—2x+1=0 b) x*—2x—1=0
¢) 4x*+8x+1=0 d) 6x?—2x—1=0
e) 5x*—5x+1=0 f) 12x%2+48x+47=0

.a) 0,5x*—0,5x—1=0 b) 0,5x2+3,25x+1,5=0
©) ix2—-Ix42=0 d 0,1x2+$x—1=0
&) 225x* —x+3=10 ) 3x*—3§x+05=0
g) $x2—%$x+42=0 h) 0,36x%+0,4x — 12 =0

. Runde die erhaltenen Losungen auf Tausendstel.
a) x2—37=0 b) x*—6x—11=0
¢) x>+ 11x+8=0 d) 16x* —112x+63 =0
e) x2—2)/5x+2=0 ) 2/3x*—12x+5/3=0
g) V3x*—6x+4)3 =0 h) V2x*———x—-—==0

212 2

) X2~ (4+2V2)x+6+4/2=0j) 2x2+x(1—3/3)+3-V3=0

k) V/8x2 —4)/3x+21/2 =0 D x24+V3x—15x—=115=0




3.4 Diskriminante und Losungsformel 93

: Abb. 93.1 Titelseite der Ars magna des

HIERONYMI CAR Geronimo, auch Girolamo CARDANO
DANI, PRESTANTISSIMI MATHE (24.9.1501 Pavia—20.9.1576 Rom), er-
ETL S DL e schienen 1545 in Niirnberg:

ARTIS MAGNAZ,

SIVE DE REGVLIS ALGEBRAICIS, Des HieronyMUS CARDANUS, des auBer-
Lib.unus. Qui& totius operis de Arichmetica, quod = Lo bt i s o L g

OPVS PERFECTV M ordentlichsten Mdl:hem..mkem, Phlioso—

inferiplireltin ordine Decimus, phen und Arztes, eine Buch der GroBen

Kunst oder liber die algebraischen Re-
geln, das auch der Reihe nach das zehnte
des gesamten Werks {iber die Arithmetik
ist, dem er den Titel VOLLKOMME-
NES WERK gab.*

Die Umschrift um sein Bildnis lautet

TO HEALOV OTL YEVT|GETUL E1G TO QEPTEPOV
Tidel

Halte das Zukiinftige, das sich entwickeln
" T Abesinboclibro, fbudiol Ledtor, Regulas Algeheaicas ¢ Teali, dela Col fein 48 i e R
(] uul::ﬂ:c.‘-‘\l'loﬂll" I\;iuu?ncliomkou.a:g:lmznﬁhrr:ﬂ:mg:f:argurlmrsa V\'lld._ flir ddb 835‘5\’31 e!

Tocupleracas,ut pro pauculis antea inilgd trivisdam fcpeuaginta araferine. MNes
afolim , ubinnus nuements aleer, aue duo wni,uerem etiam,ubi dio dusbus,
auttres uni gquales fserint, nodum explicant. Huneabe librumides feors
fim edere placuitym hoe abltrofifime, & plané inexhaulto rofius Arithmetd
coe thelaura (n lucem eriio , & quafl in theatro quodam omnibus 3d fpectan
dum expalito, Ledtores incitareter, ue reliquos Operds Perfeci libros, qui pee
Tomos edensur,ranto auiding ampledtannrac minore faftidio perdifeanc.

7. Gib vierstellige Naherungen fiir die Losungen an, d.h., berechne die Lo-
sungen auf vier geltende Ziffern genau (fiihrende Nullen zdhlen nicht!).

a) x2—79771x+ 7,0802 =0 b) x*+0,1010x —0,2411 =0
¢) x2+nx—n*=0 d) x2—V314x+1-V5=0
e) 3,14x%*+2,01x+0,301 =0 f) 1509x% + 1998x — 7487 =0
g) 1.23-10%x2 —234-10°x—1 =0
h) V2x2+ (2 —2V/2)x + ,% —2=0
)2

8.a) (x+52x—7)=9 b) (1 —-3x)(5x+2)=0
¢c) dx—1)*+2x=0 d 2x+3)3—-2x)+6x+1=0
e) (11x—7)% = (10 — 10x)? f) 4x% —x(5+3x)=(6—2x)>—36
g) Bx+2)*—2x+1)2x—1)+x =11

* Text unter dem Bildnis:

Du findest in diesem Buch. lernbegieriger Leser, die algebraischen Regeln (die Italiener nennen sie die der
ColB). die vom Verfasser durch neue Hinzuerfindungen und Beweise so bereichert wurden, dass an Stelle der
recht wenigen vorher allgemein geldufigen schon siebzig herausgekommen sind. Und sie erkliren nicht nur
das Problem, bei dem eine Zahl einer zweiten oder zwel einer, sondern auch das, bei dem zwei zweien oder drei
einer gleich gewesen sind. — Es erschien aber angebracht, dieses Buch deshalb gesondert herauszugeben,
damit, wenn dieser sehr versteckte und vollig ungehobene Schatz der ganzen Arithmetik ans Licht gebracht
und wie in einem Theater allen zum Anschauen vor Augen gefithrt wird, die Leser angespornt werden, die
iibrigen Biicher des »Vollkommenen Werks«, die bandweise erscheinen werden, umso begieriger aufzunch-
men und mit geringerem Widerwillen durchzuarbeiten.
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B+5x)2—3Bx—2)2—-(5-2)05+2x)=0
Aus dem liber abaci (1202) des LEONARDO VON Pisa (um 1170 bis nach
1240): (1 +2x)(1 +32x) =73

(4x + 1)(6x — 5)(5x +2) = Bx + 4)(10x — 17)(4x + 3) — 246
(8x — 1)(9x — 16)(Tx — 6) = (14). = 13)12% = H)Bx =5} =5

x(x=2)(x+5) + (x — 3)(x — 2)(8 — 3x) = 2x2(3 — x) + 208

Gc—4P L (xF1) = c—1)x —2)Ox+ 3)+ 61
(2x+3)> + (4x —3)* = 2x + 1)(4x + 3)(9x — 25) + 853
Bx —4)>—(6x— 73 = (9x + 6)(7x — 12)(7 — 3x) + 620
(5x—9)% = (Tx = 5)% = 4x(14x — 25x%) — 2x(59x2% — 45)

€ 18
_r+3-=5 b) x — =
X X
16 45 :
e ) ri = 3s
X X
6 5 8 4 =
— + =i Hh —— —— =3
2x+5 4x—4 6x 11 3Ix—4.5
3 2l i il 1 25
R g Mt st e ey
13 40 3 7 s}
E e, 1 —={) i - . =
JoeRle e — 8 6x—2 3x+1 ")
Aus dem liber abaci (1202) ) Aus dem Codex latinus
des LEONARDO VON PIsA: monacensis 14908 (um 1460):
60 20 15 17
=0 +- - =17
x+2 o Xk t3

Zur Vertiefung rechnet AL-CHARIZMI in seinem al-kitab al-muchtasar fi
hisab al-dschabr wa-"l-mugabala u. a. die folgenden Aufgaben vor. Lose die
in moderner Schreibweise wiedergegebenen Gleichungen. Warum sind
nicht alle von dir gefundenen Lésungen auch Losungen bei AL-CHARIZMI?

a) (10 — x)% — x? =40 b) (10 —x)*+x*+(10—x)—x= 54
10 — x x Sx
ey 2..1. = 5 50
W, P=g gt otnets Vo
(10— x
e) (10— x)? = 81x Pl o
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g) (x—Gx+3)?=x h) o =i
3 : ! 1+ x
: | 1 |
Pty —dr—d) =g 12 j = ——— ==
; X x + 1 6
R 8 3 Sl 6
. a =— = ) : — =
¥ Y O ST EOI RS RN Vi
) 3 4 6 a) 7 . 9 40
C -+ - — — o
X —2 x—3 T — X x—3 X+ 5 x+1
4 X
CardB pg e Sh el et L
3x—4 4x-—-3 i L 4x —1 Tx— 3 3Ix+4
) 18 MM h) 7 i 26N ae 57
B oyl 3vho Ants Bx—3 =9 A
\ 8x + 7 10x — 1 Jx-=0
:l) _2__7 + 3 e = - e
6x*—13x—5 3x*+10x+3 2x“+x—15
x+3 x—1 x—1 x+ 11 x+13 4
138 s | 1 b SEREr R L)
- 4 _r—3+.\‘+4 ..\'—-4+ ) x+ 2 x+3 x—35
x+5 x +1 5 x=+5 x+7 x+2
e e D g o Gh B 3
)_r—3 x—2 .\"—4+ ).\:+2+.\'—:3 X i
old.2) x> +4ax+3a>=0 b) m?2x?2—Smnx+4n’=0,m=%=0
¢) X2+ (p—qgx—pg=10 d) 2l =2a)x—2ag-=0

e) dux*:— A +u)x+u+v)>=0,u+0
8f) 2¢2x?—2¢’x—cdx—3cd—6d*=0,¢c+0
HY) 4x> —4(r+)x+r*+2rs—1=0
¢h) x24+ax—2bx—2ab—2(a+2b)—4=0
$8i) (x+2a)(x+b)x—a+b)=(x—b)>+b(x—a—b)*+ a(6bx — a*)
$) (x+a)?—(x—a)?=a@x+a)(2x—b)+ 24>+ 5a*b + 4ab’

* Der Text aL-CHarIzMIs lautet: »Ein Vermogen, du nimmst ein Drittel davon weg und ein Viertel und 4
Dirhem [siche FuBnote auf Seite 67]. Dann multiplizierst du den Rest mit sich selbst und das Vermdgen ist
wiedergewonnen, vermehrt um 12 Dirhem.«

Setzt man Vermogen = x, so erhiilt man die obige Gleichung.

CarDANO bringt diese Aufgabe als Quaestio | in Kapitel V seiner Ars magna (1545) und verweist auf
AL-CHARIZMI als Autor: »Est numerus, 4 cuius quadrato si abieceris £ & § ipsius quadrati, atque insuper 4.
residuum autem in se duxeris, fiet productum aequale quadrato illius numeri, & etiam 12«

Wiirde man numerus = x setzen, so erhielte man (x* — $x* — $x*—4)* = x>+ 12, cine unndétig schwere
Gleichung.

Diese Aufgabe ist ¢in schones Beispiel dafiir, dass mal = Vermdgen nicht immer als Quadrat einer Zahl
gedeutet werden muss. Ubrigens gibt sich CaArDANO mit der Lisung fiir das Quadrat der Zahl zufrieden, gibt
also die angeblich gesuchte Zahl gar nicht an.
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15. Fithre beim Losen der folgenden Gleichungen die erforderlichen Fallun-
terscheidungen durch!

a) x24+2ax+1=0 e bh) x2—dax+4a=0
$¢) x> +abx+a’b=0 d) x>+ (2a+4b)x + 5a> + 5b2 =
2 1—m ax 1
e) mx*—2x———— —() % — — =2x24+x
) ; m? s)fa ik a2 a*—4 g
X —|— a x — 2(: 1 1 2a
+ = 21 h Sii =
8 X—a X —I— a :: =t ax+b  ax—b ag*—b2

16. Wie muss man bei den folgenden Gleichungen k wihlen um die angegebe-
ne Zahl von Losungen zu erhalten?

a) 2x*+6x+k=0 2 Losungen
b) 3x2+kx+27=0 keine Losung
¢) 6x*—Skx—k*=0 1 Losung

d) x?—kx+4=0 2 Losungen
e) 2x*+kx—4k*x—2k3 =0 1 Losung

f) x2—kk+05)x—k*=0 1 Losung

17. a) Beweise:
1) Die Gleichung x* + px + g = 0 hat im Falle ¢ < 0 stets zwei ver-
schiedene Ldsungen.
2) Die Gleichung ax? 4+ bx + ¢ = 0 besitzt, falls ¢ und ¢ entgegenge-
setzte Vorzeichen haben, stets zwei verschiedene Losungen.
b) Gilt von diesen Aussagen auch die Umkehrung?

18. Die Mullrpllkalmn einer Gleichung mit einem Faktor d = 0 stellt be-
kanntlich eine Aquwdknzumfnrmuna dar. Zeige fiir den Fall der quadra-
tischen Gleichung mit Hilfe der Loqurstormei dass dabei die Losungen
tatsachlich gleich bleiben.

19. Wiihle in den folgenden Gleichungen & so, dass die Differenz der Losun-
gen den angegebenen Wert 4 hat.

a) 2x2—5x+ k=0, d=:1.5
b) 6x%+13x+ k=0, d=2

¢) x’+kx—11=0, d=12
d) 9x® +k?x+2=0, d=1]
e) kx24+15x+12=0, d=3

f) kx*—24x—1=0, d=1,04

20. Fir welche Werte von k haben die folgenden Gleichungen ganzzahlige
Losungen?
a) x2+2x+k%2=0
b) kx*—20x+15=0,keN
¢) k(x> +10x)+48 =0, keZ




21.

22.

23.

24.
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In der Gleichung x* — 8x + n = 0 soll die naturliche Zahl »n so gewihlt
werden, dass eine durch 3 teilbare ganzzahlige Losung auftritt. Wie viele
Moglichkeiten gibt es?

a) Begriinde: Hat die quadratische Gleichung ax? + bx + ¢ = 0 mit ra-
tionalen Koeffizienten die irrationale Losung r + s lf wobei r und s
rational sind, dann hat sie auch die Lésung r — s)/1.

b) Eine quadratische Gleichung mit rationalen Koeffizienten habe die
Losung 3 — 2)/17. Wie lautet ihre Normalform?

¢) Die Gleichung 2x> — 7x + ¢ = 0, ¢ rational, soll eine Lésung mit dem
irrationalen Bestandteil 3)/5 haben. Bestimme c.

Gilt der Satz aus Aufgabe 22. a) auch fiir rationale Lésungen? Bearbeite

dazu:

a) Bestatige, dass 1 + /4 Losung der Gleichung x* — 7x + 12 = 0 ist. Ist
dann auch 1 — /4 Lésung?

b) Bestitige, dass 3,5 + [/ Losung der Gleichung x* — 7x + 12 = 0 ist.
Ist auch 3,5 — /3 Losung?

Im Britischen Museum zu London wird unter der Signatur BM 13901 eine
der dltesten babylonischen Keilschrifttafeln (ca. 1900 v. Chr.) aufbewahrt.
Sie enthdlt 24 Aufgaben, die auf quadratische Gleichungen mit einer
(Nr. 1-7, 16 und 23), mit zwei oder mehr Unbekannten fithren. Offensicht-
lich handelt es sich bei dieser Tafel um Ubungsmaterial fiir den Mathema-
tikunterricht; denn die Aufgaben sind alle vorgerechnet (siehe Seite 86).
Bestimmt wurde bei den folgenden Aufgaben jeweils die Seite eines Qua-
drats. Suche sie!
1) Die Fliche und die Seite meines Quadrats habe ich addiert, und 3§ ist
és*
2) Die Seite meines Quadrats von der Fliache habe ich subtrahiert, und
870 ist es.
3) Ein Drittel der Flache habe ich abgezogen, ein Drittel der Seite meines
Quadrats habe ich zur Fliche hinzugefiigt, und 22 ist es.
4) Ein Drittel der Fliche habe ich subtrahiert, und die Fliche und die
Seite meines Quadrats habe ich addiert, und 286% ist es.
5) Die Fliche und die Seite meines Quadrats und den dritten Teil der
Seite meines Quadrats habe ich addiert, und 23 ist es.
6) Die Fliche und zweimal den dritten Teil der Seite meines Quadrats
habe ich addiert, und 23 ist es.
7) Elf Flichen und sieben Seiten meines Quadrats habe ich addiert, und
6L ist es.

* Natiirlich kann man Flidchen und Seiten nicht addieren. Die Babylonier beniitzen zwar noch die geometri-
schen Ausdriicke, meinen damit aber immer nur die Malizahlen der Fliche und der Seite.
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16) Ein Drittel der Seite meines Quadrats von der Fliche habe ich abgezo-

gen, und {5 ist es.

23) Eine Fliche. Die vier Seiten und die Fliche habe ich addiert, und 33 ist

CS.

25. Aus dem Buch IX des Chiu Chang Suan Shu (2.Jh. v.Chr.):

a)

b)

26. a)

b)

Aufgabe 12: Jetzt habe man eine Tiir, deren Hohe und Breite man
nicht kennt. Beide sind kiirzer als die unbekannte Linge einer Bambus-
stange. Halt man diese horizontal, dann kommt man nicht hindurch:;
denn 4 FuB ist sie zu lang. Hilt man sie vertikal, dann kommt man um
2 FuB} nicht hindurch. Hélt man sie aber schriig, dann kommt man
gerade hindurch. Frage: Wie grof3 sind Hohe, Breite und Diagonale?
[1 FuB =~ 23 cm]

Aufgabe 20: Jetzt hat man eine Stadt mit quadratischem Grundriss.
Die Seitenlange kennt man nicht. In der Mitte jeder Seite ist ein offenes
Tor. Geht man aus dem Nordtor 20 Schritt hinaus, dann kommt man
an einen Baum. Geht man aus dem Siidtor 14 Schritt hinaus, biegt
ab und geht dann nach Westen 1775 Schritt, dann erblickt man von
dort den Baum. Frage: Wie groB ist die Quadratseite der Stadt?

[1 Schritt = 6 FuBl ~ 13 m]

EUKLID (um 300 v.Chr.) behandelt in
Buch II, Satz 11 seiner Elemente fol-
gendes Problem: Eine gegebene Stre-
cke so zu teilen, dass das Rechteck aus
der ganzen Strecke und dem einen Ab-
schnitt gleich ist dem Quadrat tiber X
dem anderen Abschnitt.
1) Berechne die Linge x desjenigen
Teils der Strecke a, iiber dem das A
Quadrat errichtet wird.* a A
2) Zeige, dass stets x > 1 a ist.

Zeige durch Berechnen von AD = x, |
dass die von EUKLID angegebene Kon- s |
struktion richtig ist (Abbildung 98.1). .'
Die stetige Teilung oder der goldene /
Schnitt. EUKLID nennt in Buch VI (De- /
finition 3) seiner Elemente eine Strecke /

stetig geteilt, wenn sich die ganze Stre-

cke zum gréBeren Abschnitt genauso

verhalt wie der groBBere Abschnitt zum  Abb.98.1 T teilt [AB] so, daB

kleineren. Zeige, dass die Aufgabe, eine x* = a(a — x).

Strecke a stetig zu teilen, auf dieselbe k(C; CB) liefert D, k(A; AD)
liefert T.

* Die quadratische Gleichung fiir x ist vom Typ (B1). (Siehe Seite 87)
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- Gleichung fiihrt wie die, mit der das Problem von EukriDs Satz 11/11
aus Aufgabe a geldst wird.*
it d) Die stetige Teilung hat folgende interessante Eigenschaft: Trigt man

den kleineren Abschnitt auf dem grofBeren Abschnitt ab, so wird dieser
wieder nach dem goldenen Schnitt geteilt, wobei der friithere kleinere
Abschnitt die Rolle des grofieren Abschnitts iibernimmt. Man kann so

a immer weiter fortfahren. Beweise die Behauptung.
[ * Wenn fiir 3 Grollen a, b, ¢ bzw. fiir 4 GroBen a, b, ¢, d usw. zutrifft, dass a:b=b:ebzw. a:b=bh:¢ =
L = ¢:d usw. gilt, dann sagten ARISTOTELES (384322 v.Chr.) und auch Eukrip z.B. in Buch VIII seiner
n Elemente, es bestehe eine avveytic dvaedoyin (synechés analogia), eine zusammenhdngende, fortlaufende, bestdn-
n “?J‘rf' i"'r’r'a'r-?'fffrzf'.vg."w'c'r'i'rm;:. Waortlich tibersetzte dies ins J_lmein'tschr::‘Bm-.'n_uLéS {um 480 .524'.5} mit proportiona-
5 fr!::.'-'_r'r»:frnrrrf, ins Deutsche der Bumbcrgu_r Rechenmeister Wolffgang ScHmin 1539 in seinem Das erst buch
- der Geometriamit ein stdte unzertrente auffeinander volgende proportz. Der Augsburger Wilhelm HoLrzMaNN
(1532-1576), der seinen Namen zu XYLANDER grizisierte, sprach 1562 in seiner Euklidiibersetzung (Buch V,
Definition 10) von einer stetigen Proportion.
b Offensichtlich stehen nach Eukrips Definition 3 von Buch VI die ganze Strecke, der groBere und der kleinere
5 Abschnitt in stetiger Proportion zueinander. Es nimmt daher wunder, dass EukLip fiir diese Teilung einer
q Strecke nicht den oben angegebenen Fachausdruck beniitzte; stattdessen sagt er, cine Strecke dipov rai

pégov Adyoy tepeiv (akron kai méson logon temein), was unter Umstellung der Adjektiva mit media ef extrema

: ratione secare im Mittelalter latinisiert und mit nach dem duferen und mittleren Verhdltnis schneiden in die

n deutschen Lehrbiicher des 18.Jh.s einging. Immerhin nennt XyLANDER die Strecke schon recht kurz Pro-
porizlich zertailt. Erst Johann Friedrich LoreNZ Gbersetzt 1781 EukLiDs Wendung mit nach stetiger Propor-
tion geschnitten. Wann daraus die Kurzform stetig geteilt wurde, konnten wir nicht ermitteln.
Man darf annehmen, dass bereits die PyrHacoreer Kenntnis von dieser Teilung hatten, die ein unent-
behrliches Hilfsmittel zur Konstruktion der reguldren Korper war. Luca Pacionr (um 1445-1517) be-
schiftigte sich mit diesen Korpern und gab wegen
der Wichtigkeit dieser Teilung seiner 1498 verfass-
ten und 1509 gedruckten diesbeziiglichen Schrift,
fiir die sein Freund LEoNARDO DA Vinct (1452 bis
1519) die Zeichnungen anfertigte, den Titel Divina
Praportione — »Gottliches Verhiltnis«. Dieser Titel
mag zur spiteren Mystifizierung beigetragen ha-
ben. Paciowri selbst gibt fiinf Griinde an, warum er
dieses Verhdltnis gottlich nennt. Einer davon ist,
dass es sich genauso wenig durch rationale Grolen
ausdriicken liBt wie Gott durch Waorter. Ein ande-
rer nimmt Bezug auf PraTon (438348 v. Chr.), der
in Timaios (55¢) das Dodekaeder, das sich ja ohne
dieses Verhiiltnis nicht konstruieren lisst, dem
Ather, der quinta essentia, d.h. in christlicher

\ Sicht der gottlichen Kraft zuordnet. Und wie Pa-

| cioLi sicht auch 1569 der franzosische Mathemati-

ker, Humanist und Philosoph Petrus Ramus

(1515-1572) die bei dieser Teilung aufiretenden 3

| Teile als Sinnbild der Dreifaltigkeit, da sie eine »ge-
einte Dreiheit und eine dreiartige Einheit« bilden.
Johannes KepLer (1571-1630) spricht in einem
Brief vom 12.5.1608 mit Hochachtung von dieser
proportio diving. Er sicht darin eine Idee des Schop-
fers, die er wegen der in Aufgabe d angesproche-
nen Eigenschaft selbst fiir ein Sinnbild des Ewigen
hilt. Die Teilung nennt er sectio proportionalis. Der :

3 .Jl\‘usd:'ucl\:‘.\c-c-_n'n _;.r'ilfﬂ'm.'... d._h. gi?ulichcrll.‘iu]mitt. um 1850

: stammt nicht von ihm, wie oft behauptet wird. 1619 ;
sch_rctht er _|c_dm:]1 in seiner .’!:.'r.fum.urr nundi q_-; M %m/
»Weltharmonik« —, dass »die heutigen [ Mathema-

) tiker] sowohl den Schnitt wie auch die Proportion

gottlich nennen wegen threr wunderbaren Natur :

und ihrer \'in:lt"ii]tig-cn Besonderheiten«. KEPLER Abb.99.1 Martin OHM

sagt uns aber nicht, wer diesen Ausdruck gepragt (6.5.1792 Erlangen — 1.4.1872 Berlin)
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27. Der Inder ARYABHATA I (um 476-? n. Chr.) stellt in Vers 25 des Ganita-
pada —»Abschnitt liber die Rechenkunst« — seines Werks Aryabhatiya die
folgende Aufgabe: Eine Summe A4 ist fiir einen Monat ausgeliehen und
erbringt dabei den Zins x. Dieser wird anschlieBend zum gleichen Zinsful3
p fiir t Monate ausgelichen. Der gesamte Zinsertrag hat den Wert B.

a) Wie grof} ist der Zins x? Hinweis: Driicke p durch 4 und x aus.

b) Welchen Wert erhdlt man fiir x, wenn man die von einem spéiteren
Kommentator hinzugefiigten Werte 4 = 100, t = 16 und B = 16 ein-
setzt?

28. AL-CHARIZMI behandelt als Beispiele fiir die Gleichungstypen (B1) bis

(B3) (siehe Seite 87) die folgenden Probleme:

a) 4. Problem: Ich habe 3 einer Sache, vermehrt um 1 Dirhem, mit 4 der
Sache, vermehrt um 1 Dirhem, multipliziert. Das Produkt ist 20 Dir-
hem. Wie groB ist die Sache?

b) 5. Problem: Ich habe 10 in zwei Teile geteilt, dann jeden Teil mit sich
multipliziert. Nachdem ich die entstandenen Produkte addiert hatte,
ergaben sich 58 Dirhem. Wie grof sind die Teile?

¢) 6. Problem: Ich habe § einer Sache mit 1 der Sache multipliziert, das
Produkt ist gleich der Sache und 24 Dirhem dazu. Wie grof ist die
Sache?

29. Fiir die Normalform x* + px + g = - 0 wird als Sonderfall von Satz 85.1
oo : e s :
die Losungsformel x, , = — + : — g angegeben. Zeige, dass sie

/4
2
richtig ist.* 3

-2

30. Aus dem Bidscha-ganita — »Samen der Rechenkunst« — des indischen
Mathematikers und Astronomen BHASKARA II (1115-nach 1178):

hat. Ebenso offen bleibt diese Frage bei Christian von WoLFF (1679-1754), der die Bildung sectio divina in
seinen Anfangsgriinden Aller Mathematischen Wissenschaften von 1710 (Band IV, A nmerkung 155) wie folgt
erklirt: »Man pfleget es auch divinam sectionem zu nennen/weil (wie aus dem Euclide zu sehen) man viel aus
dieser Section demonstriret hat.« Im 18. Jh. ist sectio divina dann zum stehenden Fachausdruck geworden.
18335 schreibt schlieBlich Martin OHMm (1792-1872) in der 2. Auflage seiner Die reine Elementar-Mathematik
recht vage: »Diese Zerteilung [ ...] nennt man wohl auch den goldenen Schnitt.« Wer ist »man«? Vielleicht
vermischten sich bei OnM sectio diving mit regula aurea, wie die Regel vom Dreisatz frither genannt wurde.
Aber schon 1839 findet sich in Johann Friedrich KroLLs Grundrifi der Mathematik fiir Gymnasien die Latini-
sierung »sectio divina oder aurea«. Von da ab ist diese Wortschépfung nicht mehr aufzuhalten.

Die Vorstellung, dass der goldene Schnitt ein in der ganzen Natur waltendes Ordnungsprinzip sei, demzufolge
zwel in einem derartigen Verhiltnis stehende Teile ein besonders wohlgefilliges Ganzes ergiben, setzte erst
1854 Adolf ZEiSiNG (24.9.1810 Ballenstedt—27.4.1876 Miinchen), ein anhaltischer Gymnasialprofessor, in
die Welt, und zwar in seinem Werk Newe Lehre von den Proportionen des menschlichen Korpers, aus einem
bisher unbekannt geblichenen, die ganze Natur und Kunst durchdringenden Jmnp.l'rp.:u;g.lwhc n Grundgeseize
entwickelt. Es gibt nimlich in der gesamten Antike bis herauf ins 19. Jh. keine einzige Quelle, die der stetigen
Teilung irgendeine dsthetische Bedeutung zuerkennen wiirde.

* Da aL-CHarizmiimmer A = 1 setzte, kannst du mit Hilfe dieser Formel die Losungsformeln angeben, die er
natirlich in Worten — fiir die drei Gleichungstypen (B1) bis (B3) aufstellte, ebenso seine Bedingung dafiir,
dass (B2) genau eine bzw. keine Losung hat.
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a) §139: Der achte Teil einer Herde Affen, quadriert, sprang lustig in
einem Walde herum, die 12 restlichen waren auf einem Hiigel zu sehen,
wo sie vergniigt schnatterten. Wie viele waren es im Ganzen?

b) §140: Der fiinfte Teil einer Herde weniger drei, quadriert, ging in eine
Ho6hle: ein Affe war noch zu sehen. Wie viele waren es? — Warum ver-
wirft BHASKARA II eine Losung?

31. Aus Kapitel V der Ars magna (1545) des Geronimo CARDANO (1501 bis

1576):

a) Aufgabe II: Es waren einmal zwei Heerfiihrer, von denen jeder 48 Du-
katen an seine Soldaten austeilte. Einer hatte 2 Soldaten mehr als der
andere. Der, der weniger Soldaten hatte, gab jedem seiner Soldaten 4
Dukaten mehr, als der andere seinen Soldaten gab. Wie viele Soldaten
hatte jeder?

b) Aufgabe III: Zwei Vereine, von denen einer 3 Mitglieder mehr als der
andere hatte, verteilten gleich viele Goldstiicke an ihre Mitglieder,
namlich 93 und dazu noch so viele, wie beide Vereine Mitglieder hatten.
Auf jedes Mitglied des kleineren Vereins entfielen 6 Goldstiicke mehr
als auf jedes Mitglied des groBeren Vereins. Wie viele Mitglieder hatte
jeder Verein?

Die Aufgaben 32 bis 39 stammen aus
der Volistandigen Anleitung zur Al-
gebra von Leonhard EULER (1707 bis
1783) aus dem Jahre 1770.*

32. Ich habe zwei Zahlen, die eine ist
um 6 gréBer als die andere, und
ihr Produkt macht 91. Welches
sind diese Zahlen?

%)
e

Suche eine Zahl, dass, wenn ich
von threm Quadrat 9 subtrahiere,
so viel tiber 100 bleiben, als die
gesuchte Zahl weniger 1st als 23;
welche Zahl ist es?

34. Suche zwei Zahlen, von denen . iB
eine doppelt so grof3 ist als die 1780
andere, die so beschaffen sind,
dass, wenn ich ihre Summe zu M
111 » = F . iara L =
:::::gn;]']ﬂ‘_mm Addicte SOV BRI 0L | contund Byiren (15, 44707
Basel -18.9.1783 St. Petersburg) — Kup-
ferstich von Samuel Gottlob KUTNER
(1747-1828) nach dem Gemilde von
* Aufgaben I, IL IV, V, VII-X aus 2. Teil, 1. Ab- Joseph  Friedrich August DARBES
schnitt, Kapitel 6. — Siehe auch Seite 78. (1747-1810)
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35. Jemand kauft ein Pferd flir einige Reichstaler, verkauft es wieder fiir 119
Reichstaler und gewinnt daran so viel Prozent, wie das Pferd gekostet
hat. Nun ist die Frage, wie teuer dasselbe eingekauft worden ist.

36. Jemand kauft einige Ttcher fiir 180 Reichstaler. Wiren der Tiicher fiir
dasselbe Geld 3 Stiick mehr gewesen, so wiire ihm das Stiick um 3 Reichs-

taler wohlfeiler gekommen. Wie viel Tiicher sind es gewesen?

37. Zwei Gesellschafter legen in ihr Geschift zusammen 100 Reichstaler ein.
Der erste ldsst sein Geld 3 Monate lang, der zweite aber 2 Monate lang
stehen, und es zieht jeder mit Kapital und Gewinn 99 Reichstaler ein.
Wie viel hat jeder eingelegt?

38. Zwei Biuerinnen tragen zusammen 100 Eier auf den Markt, die eine mehr
als die andere, und l6sen doch beide gleich viel Geld. Nun sagt die erste zu
der andern: »Hitte ich deine Eier gehabt, so hiitte ich 15 Kreuzer* gelost.«
Darauf antwortete die andere: »Hitte ich deine Eier gehabt, so hitte ich
daraus 63 Kreuzer gelost.« Wie viele hat jede gehabt?

39. Zwei Schnittwarenhéndler verkaufen etliche Ellen Zeug**, der zweite 3
Ellen mehr als der erste, und 16sen zusammen 35 Reichstaler. Der erste
sagt zum zweiten: »Aus deinem Zeuge wiirde ich geldst haben 24 Reichs-
taler«, und es antwortet der zweite: »Ich aber hiitte aus deinem 12—;— Reichs-
taler gelost.« Wie viele Ellen hat jeder gehabt?

3.5 Der Satz von VIETA

Wendet man fir D > 0 die Losungsformel von Satz 85.1auf x> + px + ¢ = 0
an, dann ergibt sich

—p—Vp?— dg —p+Vp*P—4g
Xy = = und x, = T :

Addiert man bzw. multipliziert man diese Losungen, dann gibt es eine Uberra-
schung:

—p—Vp*—4q—p+Vp®—4
x1 {-- _\,'2. = _p ! ____-fr._j_ .!'r ; i q al _;)

s Vp? — 4g)(—p —!—_L-'_";_JB - [{h % pz —(p® —4q) _4q

* Urspriinglich eine ab 1271 in Tirol gepriigte Silbermiinze mit einem charakteristischen Doppelkreuz, ab
dem 17./18.Th. auch als Kupfermiinze weit verbreitet, 1871 aus dem Verkehr gezogen.
** Zeug, aus dem althochdeutschen giziugi, bedeutet Stoff. Elle, altes LingenmaB, in Bayern 58,4 ¢m, in
Russland 71 em.
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Ist D = 0, dann hat nach Satz 85.1 die einzige Losung den Wert — 3p. Diesen
Wert erhdlt man aber auch formal sowohl fiir x, wie auch fiir x,, wenn man in

—pD . : :
o : 5 — fiir D null setzt. Wegen dieses formal doppelten Auftretens
von — 3p spricht man auch von einer Doppellésung der quadratischen Glei-
chung. Mit x, = x, = —3p ergibt sich auch hier

X +x,=(—3p)+(—3p)=—p
X, Xy =(—3p)(—3p) = 3p° = g wegen D = p* —4q = 0.

Damit haben wir fiir D = 0 einen Zusammenhang zwischen den Koeffizienten
einer in Normalform geschriebenen quadratischen Gleichung und ihren Lo-
sungen gefunden. Wir merken uns:

Satz 103.1: Sind x, und x, die Lésungen einer quadratischen Gleichung
in Normalform x* + px + ¢ = 0, dann gilt
X;+x,=—pund x; ‘: x; =g.

L

Bemerkung: Fiir die allgemeine quadratische Gleichung ax* + bx+c¢ =10
mit den Losungen x; und x, gilt dann:
b ¢
Xy dXy=—— und XXy =—-
d o
Von Frangois VIETE (1540-1603) stammt die 1615 postum verdffentlichte*
Umkehrung dieses Satzes:

Satz 103.2: Gelten fiir die Zahlen p, g, x; und x, die Beziechungen
p=—(x; +x,) und g = x, * x,, dann hat die quadratische Glei-
chung x* + px + g = 0 die Zahlen x, und x, als Ldsungen.

* Der Bedeutung des Satzes wegen und um dir den Stil VIETES zu zeigen, bringen wir den Originaltext mit einer
Ubersetzung und einer modernen Umschrift. Auf Seite 71 findest du ein Faksimile des Originals.

Text VIETEs Ubersetzung moderne Umschrift
Propositio [. Satz I. Satz I.

Si B+ Din A — 4 quad. aeque-  Wenn Wenn

tur B in D. (B+D)-A—A>=B-D (B+D):x—x*=EB-D,

A explicabilis est de qualibet illa-

ist, dann kann A jedes der beiden d.h., wenn
rum duarum B vel D.

B oder D sein. x>—(B+D)-x+B-D=0ist,
dann gilt
x=Byvx=1D0.
[Beispiel] -
3N.-1Q. aequetur 2. IN-1Q=2 Ix—x*=2d.h,
fit AN 1. vel 2. bewirkt 1N 1 oder 2. x2—3x42=0

hat zur Folge

==




104 3 e quadratische Gleichung

FRANCISC]
VIETAE
FONTENAEENSIS.
DE AQVATIONVM
RECOGNITIONE

EMENDATIONE

4 {

2 Abb. 104.2 Titelblatt der »Zwei Ab-
handlungen des Frangois VIETE aus Fon-
tenay iiber die Priifung und Vervoll-
kommnung von Gleichungen, woriiber

Abb.104.1 Frangois VIETE, latinisiert nichts in dieser Art Ahnliches oder Besse-

ZU VIETA (1540 Fontenay-le- res diesem von Ewigkeit her bis jetzt zu
Comte/Vendée—1603 Paris) Gesicht gekommen.«
Beweis: Setzt man x, = —x, — p in x, x, = ¢ ein, so erhélt man

2
X(=x,—p)=q < —xt—px,=q = x2+px,+g=0;
d.h. aber, dass x, Losung der quadratischen Gleichung x? + px + g = 0 ist.
Ebenso weist man nach, dass x, diese Gleichung 16st.

Bemerkung 1: Mit Hilfe dieses Satzes kann man zu zwei gegebenen Zahlen x,
und x, sofort eine quadratische Gleichung in Normalform angeben, die genau
diese beiden Zahlen als Losungen hat, ndmlich x> — (x; + x,)x + x, - x, = 0.
Bemerkung 2: Die Methode, Losungen einer quadratischen Gleichung in Nor-
malform mit ganzzahligen Koeffizienten durch Probieren zu finden, ldsst sich
mit den Beziehungen von VIETE vereinfachen. Als ganzzahlige Lésungen kom-
men wegen x, - x, = ¢ nur Teiler des konstanten Glieds ¢ in Frage.

Auf Grund des einfachen Beweises von Satz 103.2 erscheint VigTes Erkenntnis
als nicht sehr tief schiirfend. Dem muss entgegengehalten werden, dass VIETE
einen analogen Sachverhalt auch fiir Gleichungen héheren Grades entdeckt
hat, sodass unser Satz 103.2 nur ein Sonderfall eines allgemeineren Satzes ist.
Zu Ehren VIETEs werden daher die beiden letzten Satze zusammengefasst zum
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Satz 105.1; Satz von VIETA.

Bei einer quadratischen Gleichung in Normalform mit D = 0 gilt:
Die Summe der beiden Losungen ist die Gegenzahl des Koeflizien-
ten des linearen Glieds, und das Produkt der beiden Lésungen ist
das konstante Glied.

Umgekehrt gilt:

Nimmt man die Gegenzahl der Summe zweier Zahlen als Koeffi-
zienten des linearen Glieds und das Produkt dieser Zahlen als kon-
stantes Glied einer quadratischen Gleichung in Normalform, dann
sind diese Zahlen die Losungen dieser Gleichung.

Beispiele:

1)

2)

4)

Wie lautet eine quadratische Gleichung, deren Losungen —3 und 5
sind?

Nach Viera ergeben sich die Koeflizienten der Normalform zu
p=—(—345=—2 und g=(—3):-5=—15. Die zugehdrige
Gleichung lautet also x* —2x — 15 = 0.

Wie lautet eine quadratische Gleichung, deren Losungen £ — 4}/5 und
L+ 1)/5 sind?

Nach VIETA ergeben sich die Koeflizienten der Normalform zu

p=— (‘1}__5_[:ﬁ —|—-§—|——él"'5 =—1 und

Die zugehorige Gleichung lautet also x> —x —1 = 0.

Mit Hilfe des Satzes von VIETA sollen die Losungen der Gleichung
x* —18x + 17 = 0 erraten werden.

Nach ViETA muss das Produkt der beiden Losungen 17 sein. Falls es
ganzzahlige Losungen gibt, kommen nur x; = —1 und x, = — 17
oder x; =1 und x, = 17 in Frage. Die Summe der beiden Losungen
ergibt dann — 18 bzw. 18. Nun ist die Gegenzahl des Koeffizienten des
linearen Glieds 18, also gleich dem Wert der zweiten Summe. Somit
besitzt die Gleichung x* — 18x + 17 = 0 die ganzzahligen Lésungen
To— landix; =17

Mit Hilfe des Satzes von VIETA sollen die Losungen der Gleichung
3x% 4+ 3x — 18 = 0 erraten werden.

Um den Satz von VIETA anwenden zu konnen benotigen wir die Nor-
malform der gegebenen Gleichung. Wir dividieren durch 3 und erhal-
ten x? + x — 6 = 0. Das Produkt der beiden L6sungen muss also — 6
sein. Dafur gibt es nur die folgenden ganzzahligen Moglichkeiten:
(— )6t i i —6) ) S a2 = 5.

Die entsprechenden Summen sind 5, —5, 1 und —1.

Weil die Gegenzahl des Koeffizienten des linearen Gliedes — 1 ist, sind
x,; = — 3und x, = 2 die Losungen der Gleichung 3x* + 3x — 18 = 0.
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Eine einfache Folgerung des Satzes von VIETA ist

Satz 106.2: Der Faktorisierungssatz.
Sind x; und x, die Losungen der Gleichung ax? 4 bx + ¢ = 0,
dann gilt

ax®* +bx +c=a(x —x,)(x — x,).

Bemerkung: Weil (x — x,) und (x — x,) linear sind, sagt man auch. der gua-
. i \ 2 s g
dratische Term ax* + bx + c ist in Linearfaktoren zerlegt.
b

] ! & !
Beweis: Nach VIETA gilt: x, + x, = —— und x,:x, =, also ist
o a

a(x —x,)(x—x,) = ax® —a(x; +x;)x + ax,; x, =

: b ¢ 5
—ax-—al ——\|x+ta —=ax*+bxte.
a a

'

Fiir eine Doppellésung x, gilt
ax?+bx+c = a(x — xg) (x — x5) = a(x — x)>.

Der Faktor (x — x,) tritt also doppelt auf, was erneut die Bezeichnung Dop-
pellosung rechtfertigt.

Beispiele:
1) Der Term 3x> + 5x — 2 soll in Linearfaktoren zerlegt werden. Dazu
l6sen wir die zugehorige quadratische Gleichung 3x% + 5x — 2 = 0.
[hre Diskriminante ergibt sich zu D = 25 + 24 = 49, Somit ist
—5+47
6
rungssatz erhilt man also

B Sy i 3l L DY (e ) =((x+2)(Bx—1).

2) Der Term |/3x* — 6x + 3)/3 soll in Linearfaktoren zerlegt werden.
Dazu losen wir die zugehorige quadratische Gleichung

Xi 4= , d.h. x; =—2 und x, =1. Nach dem Faktorisie-

//3x% — 6x + 31/3 = 0. Ihre Diskriminante ergibt sich zu
D=36—36=0.
6

Das ergibt die Doppellosung x, = s /3. Nach dem Faktorisie-
rungssatz erhilt man also 23

Y3x2 —6x+31/3 =)3(x—V3)%
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Aufgaben

n

Wie lautet die Normalform einer quadratischen Gleichung mit folgenden
Losungen?

a) x,=—2,x,=3 b) x;, =0;x;=35

¢) x;=—8 x,=-—1 d) x, /-3 x,=-3
e) xy=1;x,=2,5 B oxs=—3lax =7
g) x; =—43; x, =—4.2 h) x, =—3%;x, =%

-
3 St Ly
IJ X1 =6 X2=3

Welche quadratische Gleichung in Normalform hat folgende Losungen?
a) x; = 1/2: X = b) x, = 1,5 x, = 2/3

©) x;==23x=1+V7 d) x,=2—-V2x, = 1+12

& x =3+V5x=V3+5 0D x=V3-VZx,=V2+V3

. Bestimme den fehlenden Koeffizienten und die zweite Losung der Glei-

chung x? + px + ¢ = 0, wenn gegeben ist:

a) p=3;x, =2 b) p=—5;x, =5 ¢) p=25x, =—4
d) p=%xy==—45 € p=0x;=237 f) g=06,x,=4
) g=35x,=—7 h)g=625;x,=—25 1) g=0;x;=17

. Berechne mit Hilfe der gegebenen Losung den unbekannten Koeffizienten

und die zweite Losung der Gleichung.

a) 2x*—4x+c=0;x; =1 b) 5x*+4x+e¢=0; x; =0,2

) 01x2—x+e=0,x;,=—17 d) 3x2+bx+6=0;x, =2

e 12x24bx—27=0;x,=1,5 ) Ix2+bx—31=0;x,=—3

g) ax’+Tx—14=0;x;,=—2 h) ax*—1,8x—0,12=10; x, =—0,6
. Bestimme zu dem gegebenen Koeffizienten der Gleichung

ax* 4+ bx + ¢ = 0 die beiden fehlenden so, dass die vorgeschriebenen Lo-
sungen auftreten.

a) a=72 %, ——2: % — b) a=3%x; =T x,——4
e) b=3;x,=—4;x;, =5 d) b=31; x; =1,7; x, = 4,5
&) e=2y x =Dy, =17 ) c=—8;x;,=—2,8; x, =%
. Versuche mit Hilfe des Satzes von VIETA, die Losungen der Gleichung zu

erraten.

a) x> —8x+15=0 b) x24+2x—15=0 ¢) *=2%x—15=0
d) x248x+15=0 & x2+10x—11=0 ) x>2—9x+14=0
g) 2x*+26x+44=0 h) x> —x—12=0 ) 2x2+3x—16=0
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7. Zerlege die folgenden Polynome zweiten Grades in Linearfaktoren.

4y xt—4 b) x2—3x+2 et —3x—40
d) x7435%x—15 e) x> —16,7x+ 67 B xt—2x—16
g) 5x>—12x— 81 h) 30x? + 73x + 33 ) 25x2 —10)11x+3

. Bestimme zwei Zahlen mit der Summe « und dem Produkt v.

a) u=3; v=—18 b) u=—6;,v=>5 ¢) u=14; v =49
d) u=134, v=—-24 e) u=28; v=1575 D= 06:9—10

. Gib, ohne die Losungen selbst zu berechnen, folgende Mittelwerte an:

10.

11.

sl2.

14

.

"

a) das arithmetische Mittel der Losungen von 2x2 4 13x — 143 = 0;

b) das geometrische Mittel der Losungen von 8x° — 29x + 18 = 0;

¢) das harmonische Mittel der Losungen von 9x2 — 24x + 10 = 0;

d) das arithmetische Mittel der Lésungen von x2 + x+1 =0 (!).

Berechne das arithmetische Mittel*

a) aus den Lésungen der Gleichung x? 4+ 9x 4 0,91 = 0 und der Zahl 12;

b) 21,15; den Losungen der Gleichung 6x? — 45x + 53 = 0 und den Zahlen
2, Sund Z;

¢) aus den Losungen der Gleichungen x* — 7x — 13 = 0 und
3x2+x—7=0.

Bestimme k so, dass das arithmetische Mittel*

a) aus7und den Losungen der Gleichung 10x* + kx + 10 = 0 den Wert 3
hat;

b) ausder kleinsten und der grofBten zweistelligen Zahl und den Lésungen
der Gleichung kx* —2,75x — 1,5 = 0 gleich 30 ist;

¢) aus den Losungen der Gleichungen kx? — 63x + 104 = 0 und
3x? —kx — 30 = 0 den Wert 2,5 hat.

a) Kann man in der Gleichung x* 4+ bx + 9 = 0 den Koeffizienten b so
wihlen, dass zwei Losungen mit vorgeschriebenem arithmetischem
Mittelwert m vorhanden sind? Gib die Menge aller Mittelwerte an, fiir
welche die Aufgabe losbar ist.

b) Wie ist die in a gestellte Frage bei der Gleichung x* + bx — 9 = 0 zu
beantworten?

Welcher quadratischen Gleichung in Normalform geniigen die beiden
Zahlen, deren arithmetisches Mittel 4,5 und deren harmonisches Mittel 4
ist? Um welche Zahlen handelt es sich?

Berechne mit Hilfe einer quadratischen Gleichung die beiden Zahlen, de-

ren arithmetisches Mittel 10,5 und deren geometrisches Mittel 6)/3 ist.

* Das arithmetische Mittel von n Zahlen x,, x,, ..., x, ist definiert zu — (x; + x; + ... +x,).
n 3
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Berechne die unbekannten Koeffizienten, wenn gelten soll:

a) Die Losungen der Gleichung x* — 5x + ¢ = 0 sollen sich um 3 unter-
scheiden.

b) Die Losungen von x* + px + 96 = 0 sollen sich wie 2: 3 verhalten.

¢) Die Losungen von 0,2x* + bx+ 3 =0 sollen auch die Gleichung
x; + 2x, = 11 erfiillen.

Bestimme diejenige quadratische Gleichung in Normalform, deren Lo-

sungen folgende Bedingungen erfiillen:

a) x, +x,=17 und x,—x; =8

b) x; +x, =24 und x,:x; =

€) Xo—%, =2 und X;ixp;=

wn

=3
=3

I~

Welche Gleichung der Form x? + px + ¢ = 0 erfiillt die Bedingung

a) p = 2q und hat als eine Losung —1;

b) 2p = ¢ und hat als eine Losung 2;

¢) 3p = 2g — 5 und hat als eine Losung 1?

Wie lautet diejenige quadratische Gleichung in Normalform, deren Lo-

sungen

a) die Kehrwerte der Losungen von 6x” + x — 2 = 0 sind,

b) die Quadrate der Losungen von 2x* — 7x — 30 = 0 sind,

¢) jeweils um 4 groBer sind als das Sechsfache der entsprechenden Losun-
gen von 3x* —4x—15=0?

a) Was fiir eine Beziehung besteht zwischen den Losungen einer Glei-
chung der Form x®> +px+1=07?

b) Die Losungen einer quadratischen Gleichung ax>+ bx + ¢ =0 sind
reziprok zueinander. Was kann man iiber die Koeffizienten ¢ und ¢
dieser Gleichung sagen?

Bestimme zur Gleichung x? + 5x + 2 = 0 ohne Berechnung der Losungen

eine zweite quadratische Gleichung y*+ py + ¢ = 0 so, dass zwischen

entsprechenden Losungen der beiden Gleichungen folgender Zusammen-
hang besteht:

a) y=x—1 b) y=x*+3 ¢) y=x>—1

1 . " :
d y= Y, g) y= ] ef) v = =

Bestimme bei den folgenden Gleichungen k so, dass zwei Losungen vor-
handen sind, die das angegebene Verhiltnis besitzen.

a) x4+ 14x+ k=0, 3:4 b) kx?—6x—21=0, 7:(—5)

¢) x2+kx+18=0, 2:1 d) x2+kx+45k=0, (—2):3
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22.

24.

e25.
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Wie lautet die Normalform einer quadratischen Gleichung mit rationalen
Koeffizienten, die folgende irrationale Losung hat? Beachte Aufgabe
97/22a.

g

a) /2 b) 113 &) 5+ VAT sy —3—2V5
§0e=ViT p ! o oy V3H2/6
3 2 /12

. Bestimme in den folgenden Gleichungen den rationalen Koeffizienten k&

so, dass eine Losung der angegebenen Art existiert (r sei eine rationale
Zahl). Beachte Aufgabe 97/22a.

a) x> +6x+k=0; r+17 b) x*—22x+k=0; r—4)/11

¢) x2+kx—16=0; r+2)/5 d) x2+kx—025=0; r+1/0,5
e) kx?—10x—10=0; r—V/3 f) kx?4+16x+120=0; r+ 616

Eine quadratische Gleichung mit rationalen Koeffizienten habe als eine
Losung 5 — 3]/ 2. Bestimme unter Beachtung von Aufgabe 97/22a eine
Gleichung y% + py + g = 0, fir deren Losungen gilt:

a) yy=x;+x, und y,=1x;"x,

{"y :
b) yy=—+— und y,=x]+x3
i s Vs

Das Anlegen von Flachen — Ilopufaieiv tov yopiov (parabalein ton
chorion) — geht auf die PYTHAGOREER zuriick. Im Wesentlichen handelt es
sich darum, die beiden Seiten eines Rechtecks zu bestimmen, dessen Fli-
cheninhalt einer bestimmten Forderung unterworfen wird. Die Grundauf-
gabe behandelt EukLID (um 300 v.Chr.) im 1. Buch der Elemente als Satz
44. Sie besteht darin, an eine gegebene Strecke b ein Rechteck so anzule-
gen, dass sein Flacheninhalt einem vorgegebenen Wert ¢ gleich wird. Sie
heil3t daher Anlegen mit Gleichheit (topafolin [parabolg], lateinisch ae-
qualitas, zu Deutsch Parabel) und fithrt auf die Gleichung bx = ¢, die sich
leicht durch Flachenverwandlung geometrisch 16sen lidsst, wie du im Geo-
metrieunterricht lernst; dabei denkt man sich ¢ durch die Fliche eines
Quadrats dargestellt.*
Weitaus schwieriger hingegen sind die folgenden beiden Aufgaben, die
EukLID im 6. Buch als Satz 28 und 29 behandelt.** Mit diesen beiden
Sitzen konnte man dann auf geometrische Weise die quadratischen Glei-
chungen vom Typ (B1) bis (B3) (siehe Seite 87) losen.
a) Anlegen mit Fehlen (EArewyic [elleipsis], lateinisch defectus, zu
Deutsch Ellipse; Abbildung 111.1): An eine gegebene Strecke b ist ein
Rechteck gegebenen Fliacheninhalts ¢ so anzulegen, dass ein Quadrat

* Mehr dariiber noch im Abschnitt 5.2.

** Eukiip last die Aufgabe weitaus allgemeiner; er spricht nur von Parallelogrammen.
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-
o

D

|

A

E b g o ' b E 1

Abb.111.1 Flichenanlegung eines Rechtecks AEFD mit Inhalt ¢ an [AB] mit Feh-

b)

c)

d)

len: Das Quadrat EBCF fehlt zum Rechteck ABCD.

zum Rechteck gleicher Breite iiber ganz b fehlt. Zeige, dass die einer

Rechtecksseite gleiche Quadratseite und die andere Rechtecksseite die

Losungen einer Gleichung vom Typ (B2) sind.

Konstruiere die Quadratseite, fiir die es nach Abbildung 111.1 zwei

Moéglichkeiten gibt. Wihle » = 10 cm und ¢ = 11 cm?.

Anlegen mit Uberschuss (bmepBoin [hyperbole], lateinisch excessus,

zu Deutsch Hyperbel; Abbildung 111.2): An eine gegebene Strecke b

ist ein Rechteck gegebenen Flicheninhalts ¢ so anzulegen, dass als

iiberschieBendes Stiick ein Quadrat entsteht. Zeige, dass

1) die einer Rechtecksseite gleiche Quadratseite und die negativ ge-
nommene andere Rechtecksseite die Losungen einer quadratischen
Gleichung vom Typ (B1) sind;

2) eine Rechtecksseite und die negativ genommene Quadratseite, die
der anderen Rechtecksseite gleich ist, die Losungen einer Gleichung
vom Typ (B3) sind.

Konstruiere fiir # = 10 cm und ¢ = 11 cm?

1) die Quadratseite gemaB c 1,

2) die Rechtecksseite gemil c 2.

(]

A b N E

Abb.111.2 Flichenanlegung eines Rechtecks AEFD mit Inhalt ¢ an [AB] mit Uber-

schuss: Das Quadrat BEFC schieBt {iber das Rechteck ABCD hinaus.
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3.6 Weitere Textaufgaben

. a) Gibtes zwei Zahlen, deren Summe denselben Wert hat wie ihr Produkt

und wie die Differenz ihrer Quadrate?
b) Zwei Zahlen sind zu finden, deren Summe, Produkt und Summe der
Quadrate einander gleich ist.

. In einer Proportion, deren duBere Glieder 4 (a) und 10 (b) sind, ist die

Summe der inneren Glieder 13 (¢). Wie heillen diese?

. Eine zweiziffrige Zahl verhilt sich zu ihrer Quersumme wie die Quersum-

me zu 3. Vertauscht man in der gesuchten Zahl die beiden Ziffern. so
entsteht eine um 45 groBere Zahl.

. Aus einer gewissen zweistelligen Zahl wird durch Umstellen ihrer Ziffern

eine neue Zahl gebildet. Die Summe der beiden Zahlen hat den Wert 1635,
ithr Produkt den Wert 6786.

5. Welche Zahl muss man von a subtrahieren und zu a addieren, sodass die

6.

o

10.
11.

12.

Summe der Quadrate der beiden Ergebnisse wieder a ergibt? Fiir welche
a gibt es Losungen? Wann gibt es nur eine Losung und wie heilt sie?
Welche Losungen gibt es fiir ¢ = 0,017

Man addiert zu einer Zahl 42 und man subtrahiert von derselben Zahl 42.
Der Quotient Summe durch Differenz ergibt 12,5 % der Zahl. Wie heiBt
sie?

Bestimme zu « eine Zahl x so, dass das arithmetische Mittel der Zahlen

Bl :
a4+ x, a—x, ax und — wieder a ist.
X

- Aus einer dreistelligen Zahl (erste Zahl) bildet man eine zweite Zahl, in-

dem man die Einerziffer wegnimmt und vor die beiden anderen Ziffern
setzt. Vor die drei Ziffern der zweiten Zahl schreiben wir noch eine 1 und
erhalten so eine dritte Zahl. Wie heiBen die drei Zahlen. wenn das Produkt
aus der ersten und zweiten den Wert 655371 hat und die dritte Zahl um 946
grofler als die erste ist?

. Die Wurzel aus einer zweistelligen Zahl ist um 2 kleiner als die Quersumme

der Zahl. Vertauscht man die beiden Ziffern, so ist die neue Zahl um 3
groBer als das Quadrat ihrer Quersumme.

Welches Vieleck hat 65 Diagonalen? Welches hat 4850 Diagonalen?

Bei einem Schachturnier spielt jeder gegen jeden. Wie viele Spieler nahmen
teil, wenn 253 Partien gespielt wurden?

Auf einem Blatt mit vielen Geraden zihlt man 153 Schnittpunkte. Wie
viele Gerade sind es mindestens?

. Auf einem Blatt sind eine Vielzahl von Punkten markiert. Man zeichnet

990 Gerade, die je zwei Punkte verbinden. Wie viele Punkte sind es min-
destens?
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14. a) Wie viel Ecken hat ein Polygon, in welchem die Anzahl der Diagonalen
gleich der Eckenzahl ist?
b) Wie viele Telefonanschliisse sind in einer Stadt vorhanden, wenn
499 500 gegenseitige Gesprichsverbindungen moglich sind?

15. 289 Geldstiicke lassen sich in zwel Quadrate ordnen. Auf der Seite des
einen Quadrates befinden sich 7 Geldstiicke mehr als auf der des anderen.
Wie viel Sticke enthélt die Seite des einen Quadrates?

16. In einem Garten sind 90 Biume in mehreren Reihen so gepflanzt, dass die
Zahl der Baume einer Reihe um 9 grof3er ist als die Anzahl der Baumrei-
hen. Wie viel Reihen sind es, und wie viel Baume stehen 1n einer Reihe?

17. Ineiner Familie ist der Sohn um 5 Jahre dlter als die Tochter. Das Alter des
Vaters verhilt sich zu dem des Sohnes wie das Alter des Sohnes zu dem-
jenigen der Tochter. In drei Jahren wird der Vater dreimal so alt sein wie
Sohn und Tochter zusammen. Wie alt sind Vater, Sohn und Tochter heute?

18. Auf einem Konto lagen zu Beginn eines Jahres 800€. Am Jahresende
wurden die Zinsen nicht abgehoben. Im darauf folgenden Jahr gewdhrte
die Bank einen um } % hoheren Zinssatz. Beim Jahresabschluss ergab
sich mit den Zinsen ein Kontostand von 861,12 €. Wie hoch war demnach
der Zinsfull im 1. bzw. 2. Jahr?

19. Jemand nimmt ein Darlehen von 3000 € zu 6 % auf und verpflichtet sich
es durch regelméllig zu zahlende Raten von 120 € wiederzuerstatten. Mit
einer Rate wird jeweils zunéchst der seit der letzten Zahlung angefallene
Zins beglichen: der Rest dient zur Tilgung. Nach dem Einzahlen der 2. Ra-
te berechnet sich die Restschuld zu 2878,80 €.

Wie viel Monate betriagt demnach die Zeit zwischen 2 aufeinander fol-
genden Ratenzahlungen?

20. Ein Zwischenhindler bezieht eine Ware direkt von der Fabrik und gibt sie
an den Einzelhandel weiter. Dabei verlangt er einen Preis, der um einen
bestimmten Prozentsatz liber seinem eigenen Einkaufspreis liegt. Der Ein-
zelhdndler veranschlagt bei der Berechnung des Endpreises eine doppelt
so hohe Gewinnspanne wie der Zwischenhindler. Dadurch steigt der Preis
der Ware auf 32 des vom Zwischenhindler fiir sie bezahlten Betrages.
Wie viel Prozent betrug jeweils der Preisaufschlag?

21. In 600 cm?® Wasser schiittet man etwas Salz und verrithrt. Da die Losung
noch zu schwach ist, gibt man noch einmal 15 g Salz dazu. Dadurch steigt
die Konzentration der Losung um 25 %. Wie viel Gramm Salz wurden

zuerst in das Wasser geschiittet?

22. In einem Glas Wasser 16st man einen Essléffel voll Zucker. Durch die
Zugabe von weiteren 20 g Zucker erhoht sich die Konzentration der Lo-
sung um 5 %. Da die Lésung nun aber zu konzentriert ist, verdiinnt man
wieder mit 95 cm® Wasser. Nun betrdgt der Zuckergehalt 8 %. Wie viel
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Wasser befand sich anfangs im Glas und wie viel Zucker wurde mit dem
Loffel dazugegeben?
(Anmerkung: Sind x Gramm und y Gramm die gesuchten GroBen, so
empfiehlt sich eine Vereinfachung des Gleichungssystems durch die Sub-
stitution z = x + y.)

. Der Umfang eines rechtwinkligen Dreiecks, dessen kiirzeste und ldngste

Seite sich um 8 cm unterscheiden, betrdgt 3 dm. Berechne die Dreiecks-
seiten.

In einem rechtwinkligen Dreieck von 36 mm Hohe ist die Hypotenuse
78 mm lang. In welchem Verhiltnis wird letztere durch den Hohenful3-
punkt geteilt?

. In emmem rechtwinkligen Dreieck betridgt der Langenunterschied der Ka-

theten 5 cm und derjenige der Hypotenusenabschnitte 7 cm. Berechne die
Seiten.

In welchen rechtwinkligen Dreiecken ist die Héhe um 5 mm ldnger als das
Doppelte des kleinen Hypotenusenabschnittes und um 30 mm kiirzer als
der groBere Hypotenusenabschnitt?

Ein rechtwinkliges Dreieck mit 14 cm Umfang hat 7 cm? Inhalt. Berechne
die Seiten.

In einem Drachenviereck mit 2 rechten Winkeln sind die Diagonalen
48 mm und 60 mm lang. In welche Abschnitte wird die lingere durch den
Diagonalenschnittpunkt zerlegt?

Welche Rechtecke haben folgende Eigenschaft:

Wird die erste Seite um die Hilfte der zweiten verldngert und die zweite um
die Héilfte der ersten verkiirzt, so nimmt der Umfang um 8 cm und die
Fliche um 67 cm? zu.

In einer Ecke eines eingezdunten rechteckigen Grundstiicks wurde ein
rechteckiger Gemiisegarten von 120 m? angelegt. Zu seiner Abgrenzung
wurden noch einmal 23,5 m Maschendraht benotigt. Berechne Lange und
Breite.

Zum Einzdunen eines rechteckigen Gartens von 540 m? Fliche, der auf
einer Seite von einer Hauswand begrenzt ist, waren 30 Pfosten notwendig.
Die Pfosten wurden in Abstdnden von je 3 m aufgestellt; der erste und der
letzte Pfosten standen unmittelbar an der Hauswand. Berechne Lénge und
Breite des Gartens.

. In einen Kreis vom Radius r wird eine Sehne der Linge 2r eingezeichnet.
(= (4] =]

In welche Abschnitte zerlegt sie den zu ihr senkrechten Durchmesser?

In einem Kreis mit » = 7 cm ist durch einen Punkt P, der vom Mittelpunkt
4,2 cm entfernt ist, eine Sehne von 13 cm Linge gezogen. In welche Ab-
schnitte wird die Sehne durch P zerlegt?
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Durch zwei konzentrische Kreise mit den Radien r, =13 mm und
r, = 37 mm soll eine Gerade so gelegt werden, dass die Kreise auf ihr
Sehnen ausschneiden, deren Lingenunterschied 6 cm betragt. Welchen
Abstand vom Mittelpunkt muss die Gerade haben?

Um die Punkte M, und M,, deren Abstand 1 cm betrigt, sind Kreise mit
den Radien r; = 2 cm und r, = 1 cm geschlagen. Senkrecht zur Verbin-
dungsgeraden der beiden Mittelpunkte verlduft eine Sekante so, dass die
vom 1. Kreis auf ihr ausgeschnittene Sehne durch die Schnittpunkte mit
dem 2. Kreis in 3 gleiche Teile zerlegt wird. Welche Abstinde hat die
Sekante von M, und M,? Wie lang sind die ausgeschnittenen Sehnen?

2 Punkte A und B haben einen Abstand von 7cm. Um A wird ein Kreis
mit » = 5 cm geschlagen und durch B eine Sekante gezogen, auf welcher
der Kreis eine Sehne der Liange r ausschneidet. Welche Abstinde haben
die Endpunkte der Sehne von B?

Um welche Strecke x muss man den Durchmesser eines Kreises mit Ra-
dius » verlingern, damit die vom Endpunkt aus an den Kreis gezogene
Tangentenstrecke die Linge a)x, b)nx, . e)E. d)ar hat?
Eine Strecke der Linge 10 wird so geteilt, dass sich das kleinere Stiick zum
groBeren so verhélt wie dieses zur ganzen Strecke. Wie lang ist das groBere
Stick? (Goldener Schnitt)

. Einem Kreis ist ein Drachenviereck so einbeschrieben, dass die Diago-

nalen die Liangen 15 und 17 haben. Wie groB ist der Radius? In welche
Teilstiicke zerlegt der Diagonalenschnittpunkt die Diagonalen?

Von einem Wiirfel schneidet man parallel zu einer Seitenfliche zuerst eine
Scheibe von 2 cm Dicke ab und darauf durch einen senkrecht zum ersten
verlaufenden zweiten Schnitt noch einmal eine Scheibe von 1 cm Dicke. Es
ergibt sich ein Restkorper von 412 cm? Oberfliche. Um wie viel cm?
wurde der Rauminhalt verkleinert?

Die Entfernung Miinchen—Koln betrdgt in Luftlinie 460 km. Von Miin-

chen fliegt ein Flugzeug nach Koln. Es legt in 1 Stunde 540 km zuriick.
Thm begegnet ein Flugzeug, das zur gleichen Zeit in Koln startete. Wire

jedes der beiden Flugzeuge um 20 km/h schneller geflogen, so hitte die

Begegnung 1 Minuten frither stattgefunden. Welche Geschwindigkeit hat
das zweite Flugzeug, und nach welcher Flugzeit erfolgte die Begegnung?

Zwei Verkehrsflugzeuge, die im Gegenverkehr auf der Strecke Frankfurt—
London eingesetzt sind, starten gleichzeitig und fliegen normalerweise mit
gleicher Geschwindigkeit. An einem gewissen Tag wird jedoch von Lon-
don aus eine Maschine eingesetzt, die eine um 60 km/h héhere Reisege-
schwindigkeit entwickelt, wihrend das in Frankfurt startende Flugzeug
wegen Gegenwind seine Normalgeschwindigkeit um 30 km/h unterschrei-
tet. Die Flugzeuge begegnen sich 1 Minute friiher als sonst und an einem
Ort, der vom gewdéhnlichen Treffpunkt 26,25 km entfernt ist. Berechne die
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Geschwindigkeiten der Flugzeuge und den Luftweg von Frankfurt nach
London.

Ein Flugzeug konnte seine Flugzeit fiir eine 960 km lange Strecke um 10
Minuten verringern, indem es seine Geschwindigkeit um 24 km/h steiger-
te. Wie groll war dann die Geschwindigkeit, und wie lange dauerte der
Flug?

Ein die 24 km lange Seestrecke von A nach B fahrendes Schiff sollte laut
Fahrplan um 16.30 Uhr in B eintreffen. Da sich die Abfahrt in A um 15
Minuten verzogerte, erhohte das Schiff seine Geschwindigkeit um 4 km/h.
Es traf um 16.33 Uhr in B ein. Wie grol3 war seine Geschwindigkeit? Wann
hétte es nach dem Fahrplan in A abfahren sollen?

Auf den Schenkeln eines rechten Winkels bewegen sich zwei Kérper mit
gleicher konstanter Geschwindigkeit vom Scheitel weg. Der erste startet
im Scheitel, der zweite 10 s spéter im Abstand 10 m vom Scheitel. 20 s nach
dem Start des ersten Korpers haben die beiden Korper eine Entfernung
von 20 m. Welche Geschwindigkeit haben sie?

Zwei Schiffe, 4 und B, fahren Kurs NO bzw. NW mit konstanten Ge-
schwindigkeiten. A ist 2 kn schneller als B. 1sm (= 1,852 km) hinter 4
kreuzt B die Bahn von A. Eine halbe Stunde spiter betriigt ihre Entfer-
nung 10 sm. Wie viele kn (1 kn = 1 sm/h) betragen ihre Geschwindigkei-
ten?

Auf einer Strecke von 450 m macht das Vorderrad eines Wagens 120 Um-
drehungen mehr als das Hinterrad; das Vorderrad eines anderen Wagens,
dessen Rider je 0,5 m mehr Umfang haben, macht auf derselben Strecke
75 Umdrehungen mehr als sein Hinterrad. Welchen Umfang haben die
Réder des ersten Wagens?

In einer Gasmenge, deren Volumen konstant gehalten wurde, stieg der
Druck um 160 hPa, wihrend sich die Temperatur um 60 K erhohte. Als
danach das Gas in Eiswasser auf 0°C abgekiihlt wurde, ging der Druck
wieder um 232 hPa zuriick. Wie grol waren am Anfang Druck und Tem-
peratur?

Ein 1 m langes Glasrohr (innerer Durchmesser etwa 3 mm) wird 52 cm tief
senkrecht in Petroleum (g = 0.8 g/cm?®) getaucht. Dann wird die obere
Offnung luftdicht verschlossen und das Rohr aus der Fliissigkeit gehoben.
Welche Hohe hat die im Rohr zuriickbleibende Fliissigkeitssdule, wenn
der duBere Luftdruck 1000 hPa betridgt?

. Bei einem Luftdruck von 960 hPa wird ein einseitig verschlossenes Rohr
von 50 cm Linge (innen!) mit der Offnung nach unten senkrecht in Wasser
getaucht. Die Rohroffnung befindet sich im Endzustand 2,5 m unter dem
Wasserspiegel. Wie weit ist dann das Wasser von unten her in das Rohr
eingedrungen? (Luft- und Wassertemperatur sollen als gleich angenom-
men werden).
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3.7 Gleichungen, die sich auf quadratische Gleichungen
zuriickfiihren lassen

Es gibt Gleichungen, die sich durch geeignete Umformungen auf quadratische
zuriickfithren lassen. Einige der wichtigsten Typen wollen wir im Folgenden
betrachten.

3.7.1 Wurzelgleichungen

Wie in 2.5 gezeigt, kann man Wurzelgleichungen durch das Verfahren »Isolie-
ren — Quadrieren« losen. In der Definitionsmenge der Wurzelgleichung ist
Quadrieren eine Aquivalenzumformung, wenn beide Seiten gleiches Vorzei-
chen haben; andernfalls muss man die Probe machen, weil womdéglich die
Losungsmenge vergroBert wurde. Kennt man die Definitionsmenge nicht,
dann muss man die Probe auf alle Falle machen.

Beispiel 1:
5/x—1—212x+5=V3x—35; D = [3; +oof
= 25(x —1)-+4Qx+5 =201/ x—=1)2x +5) =3x~5

— 201 2%2 +3x—5=—30x

2)/2x*+3x—5=3x. Wir erkennen, x kann nicht negativ sein.

4(2x% +3x—5) = 9x?
x2—12x+20=0

x; =10; x5 =2
Probe:

x; =10:

LS =5/10—1—-2V2-10+5=5-3—-2-5=5 =
= 10 ist Losung.

RS =)/3-10—5=35
M=z
LS =ﬂh_1—mq¢;5=5w—zq=—i}:$2mkmm
i e S R Losung.

Losungsmenge L = {10}

Beispiel 2:
Aufegabe IX aus Kapitel V der Ars Magna (1545) des Geronimo CARDANO
(1501-1576):
Zerlege die Zahl 10 so in zwel Teile, dass der grof3ere, vermindert um das
Doppelte seiner Wurzel, gleich ist dem kleineren, vermehrt um das Dop-
pelte seiner Wurzel.
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Bezeichnen wir den groBeren Teil mit x, dann muss gelten:
x—2Vx =(10—-x)+2)/10—x; D =[0:10]

V10 —x = (x—5)—Vx

= 10—x=(x—52-2(x—5Vx+x

2(x = 5)V/x = (x — 5)2 +2x — 10
(x—5CVx—-(x—=5—=2)=0

x—5QVx—x+3)=0

e

=y

2V/x = x—3. Fiir x = 3 gilt weiter:
dx =% 6Gx 19

x—10x4+9=0

(x=NEx—-1)=0

x=9

o

b

Beachte: x — 1 kann nicht null werden, da x = 3 gilt.
Probe:
Xy = 518 =525

; } = 5 ist keine Losung.
RS = (10 — 5) +2)/10 — 5 = 5+ 2)/5

X, =9: LS =9-2/9=9—_6=3

- } = 9 ist Losung.
RS =(10-9)+2)/10-9=14+2=3

Die gesuchte Zerlegung lautet also: 10 =9 + 1.

Beispiel 3:

Va+x—Va—x=2Va—b; D =[0;a] fira = 0; fiir a < 0 ist die Glei-
chung unsinnig. Wegen @ — b = 0 muss b £ a sein. Fiir x € D sind beide
Seiten nicht negativ und wir éndern die Losungsmenge beim Quadrieren
nicht:

a+x+a—x—2Va*—x?=4(a—b)

2b—a=Va?— x?

Fiir a > 2b gibt es keine Losung. Fiir 0 £ b < a < 2b erhiilt man durch
Quadrieren der letzten Gleichung (Aquivalenzumformung!):

4b% + g? —4gh = q* — x*
x? =4b(a— b)
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Die rechte Seite ist unter unseren Voraussetzungen sicher nicht negativ,
also ergibt sich
|x| =2Vb(a—b)

Wegen x € D ist x = 0, und es gilt schlieBlich
x=2)b(a—b).
Einen Uberblick iiber die betrachteten Fille gibt der Losungsbaum:

e llie— keine Losung
\\
\\\(/
= et
\\\\(3\ ; Eho. = keine Losung
\*\_\.‘;;--"'
\\\ =
~Na : ;
X 4 b keine Losung
= 0z 2
\-.
-
@
& >
\\‘*‘/5
=

Manchmal ist es von Vorteil, eine Wurzel durch eine neue Variable zu ersetzen
und die Gleichung mit der neuen Variablen zu lésen. Eine solche Ersetzung
heil3t Substitution*.

Beispiel 4:

x—35 L-':_\' —12=10 Substitution: u:=)/x

U -—5Su—12=10

2 2
[ ]

N = - =

4 4 .

54125496 S5+V121 5+ 11

u=4vu=—3.

Um x zu erhalten machen wir die Substitution riickgangig. Die letzte
Zeile liefert die beiden Gleichungen

I = Vx =—2.

Die zweite ist widerspriichlich, die erste liefert x = 16.
Also: L = {16}

* substituere (lat.) = an die Stelle einer Person oder Sache setzen
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Beispiel 5:

x —1 R , fx—1
' S| lve ——=0 Substitution: wu:= |/ :
x+1 x — 1 2 x+1
1 5
B —= =)
.2
2u —5u+2=0
al 5+1/25—16 543
U= 4 =
u=2vu=1
1. Fall: |/ : =2 2 Fall: |/ . I_ - 1
x+1 / x+1 2
x—1=4x+4 dx —d =i
—5=13x Sl
i x =3

Weil vor dem Quadrieren jeweils beide Seiten positiv waren, kénnen wir

auf die Probe verzichten; es gilt also L = {3; —3}.

Aufgaben
l.a) Y11 —5x =3 —x b) V3x+T7+x=7
2.a) V4x—15=3—x b) V2x+3 =x+1
3.2) V2x+94+x+3=2)V2x4+9 b) 3-V3x+1—-2x=6—)3x+1

4.

Ln

e 00 a9 &

a) V4x+3—3=3x—2)3 +4x

b) 2V/19 + 5x —2x +4)/5x +19 = V/5x + 19 + 22

.a) V5x2+2x+6=x+4 ob) VX2 —3x+3=4x+7

. 8) V12x2 4+20x +3 = 4x+2 b) V/3x* —16x+3 = 3x —2
AV FT 4 2=2V%F9 3" B Vex+1+2=3-9/%50
.a) V3ax+4+)5—4x=4 b) 2—3)/x+2=2/2x+3-3
L) Wx— 1 +12%—1 = V3%+40 b) /55 —1—213—% =Vx—1
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10. a) Vx+2 + 21--'x ~V13x13=0 b) Vx—1+V2x—5—212—2=0

11. a) |/ \+4+l 3Ix—5=73 b) /Vx—15+1—x=4

12. a) 17,5+ x— 5+ 4x = 2,5 b) I/3+V3—2x+x=

(]

13.8) /2x+5+V/x2+3x+3=2 b) V3x>+5x—1—1-05x=0,5
14.a) |/x2+2+V7—6x+x=1

b) V/4x®? —x+2—02-V/5x2+8x+12 =2 —2x

Fiihre bei den folgenden Aufgaben die notwendigen Fallunterscheidungen durch.

o15. a) Vax?® + 2x+1=2x—1 b) V2x%+2ax+a® =x+2a

¢) V/5x% +ax+3=2x d) /x2+4x+a=3x+2
e16. 2) | M a2 Ll ra—2v=2 b) V1tatIx —V1ta—2x—2
$17. a) Vx+a®=x—a b) Vax+a=ax—a

e18. a) Vx+a+Vx+b=V2x+a+b
b) V3a—2b—x+V3a—2b+x =V12a—8b + 2x
e19.3) |/x+Vx+a=)2x
eb) l_.f":i.’;:'.r-?‘,rz +abx+b:—ax =Vax+b

20. Angeregt durch die Practica Arithmeticae et Mensurandi singularis — »Ein-

zigartige Handhabung der Arithmetik und des Messens« — des Geronimo
CARDANO (1501-1576) aus dem Jahre 1539 stellte Michael STIFEL (14877
bis 1567) in seiner Arithmetica integra — »Die ganze Arithmetik« — 1544
folgende Aufgabe:
Ein Spieler gewinnt am 1. Tag so viel, wie er hatte, am 2. Tag die Quadrat-
wurzel aus dem Ganzen und dazu noch 2 Gulden, am 3. Tag das Quadrat
dessen, was er am 2. Tag hatte, sodass er schlieBlich 5550 Gulden besal3.
Wie viel hatte er anfangs?

21. Aufgabe IV aus Kapitel V der Ars Magna (1545) des Geronimo CARDANO
(1501-1576):
Addiert man zu einer Zahl das Doppelte ihrer Wurzel und dazu die dop-
pelte Wurzel dieser Summe, dann erhélt man 15. Wie heiB3t diese Zahl?*

2.2) x—2V/x+1=0 b)x+5/x=14 o 3Wx=-2—x
=2 : G el
X +1 5 |"i ."I?‘ +2\ I e,

5 b | s WO e SR = 5 | R SR R

= 3)1/ x+1 i l/\“+1 }L 32 jl/?_‘-:z—i—z_\’

* In der Originalaufgabe von CARDANO steht 10 statt 15. Wer Mut hat, rechne die Aufgabe mit diesem Wert.
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J

+1 .
-
A

- [

=i % V

24. a) 2 L = +5-3 V b) —
X /

Y 1=x
ol S
x=+1

25. Ausdem liber abaci(1202) des LEONARDO VON PisA (um 1170—nach 1240):
a) x—(Sx+4)=Vx b) 3x+4)/x2—3x =20
¢) 3x+4)x*—3x=x2+4 d) x2 =16x)/5x + 10x + 20

26. Aus Lilavati — »Die Schone« — von BHASKARA II (1115—nach 1178):

a) §67: Ardschuna, Prithas Sohn, im Kampf gereizt, schoss einen Kdcher
Pfeile um Karna zu toten. Mit der Hélfte seiner Pfeile parierte er die
seines Gegners, mit dem Vierfachen der Wurzel seines Kocherinhalts
totete er dessen Pferde, mit 6 Pfeilen Salya, und mit 3 Pfeilen zerstdrte
er Schirm, Standarte und Bogen, mit einem schlieBlich trennte er den
Kopf seines Feindes vom Rumpf. Wie viele Pfeile lieB Ardschuna flie-
gen?

b) § 68: Die Wurzel aus der Hilfte eines Bienenschwarms flog zu einem
Jasminbusch. § des Schwarms blieben im Stock. Ein Weibchen schlieB3-
lich umschwirrte eine Lotosblume, in der ein Minnchen gefangen saB,
das vom Duft zur Nachtzeit angelockt worden war*. Sag mir, wunder-
schone Frau, die Anzahl der Bienen!

¢) §69: Eine Zahl, vermehrt um ihr Drittel und um das 18fache ihrer
Waurzel, ergibt 1200. Wie heilit die Zahl?

3.7.2 Die biquadratische Gleichung

Eine Gleichung der Form ax*+bx?+c¢=0 mit a+0 ldsst sich
durch die Substitution u:=x? auf eine quadratische Gleichung der Form
au® + bu + ¢ = 0 zuriickfithren. Weil 2 = (x?)? ist, nennen wir und auch
andere Autoren eine solche Gleichung biquadratisch**, Gleichungen dieser
Art losten bereits die Babylonier im Zusammenhang mit Gleichungssystemen
(siehe 3.8). Die folgenden zwei Beispiele stammen aus Kapitel I der Ars magna
(1545) des Geronimo CARDANO (1501-1576).

* Der Lotos 6ffnet sich nachts und schlieBt sich bei Tage.

** bis (lat.) = zweimal, auf doppelte Weise. — Bei DescarTes (1596-1650) findet man 1628/29 biguadratum
an Stelle von gquadratumguadratum zur Bezeichnung der 4. Potenz, bei Christian von Workr (1679
bis 1754) in seinen Die Anfangsgriinde Aller Mathematischen Wissenschaften 1710 den Ausdruck biguadrati-
sche Aequation als Bezeichnung fiir eine allgemeine Gleichung 4. Grades, also eine Gleichung der Form
ax® + bx* + ex? + dx + e = 0, wie es auch heute noch bei manchen Autoren iiblich ist. In der 2. Auf-
lage erfolgte dann die Eindeutschung biquadratische Gleichung.
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Beispiel 1:
4412 =7x? Substitution: = x?
'~-7u+12:0
=474V 1)—~,[7+1}

ke

u=3vu=

Somit muss gelten
=3 vx =4

Beispiel 2:

*+3x* =28 Substitution: u:= x?
u?+3u—28=0
u=34(=3+1121)=L(-3+11)
u=—7vu=4,

Somit muss gelten
=—T v x2=4

x2=—Tv|x|=2
Da die erste Gleichung \x-'iclerspriichlich ist, erhultcn wir eine 2-elemen-
tige Losungsmenge, ndmlich L = { } u{—2;2} = {—2; 2}.

Mit einiger Uhung kann man sich die Schreibarbeit der Substitution ersparen,
wenn man gleich x? als neue Variable nimmt. Dann schreibt sich Beispiel 1 wie
folgt:

- Ix?+12=0
(x3)?—=7x*+12=0
x2 =4 ?+l 1)
X — 3l =4, woraus man wie oben erhalt
1x| = V/3 =20 alkon L={—2,—V3,1/3,2

Manchmal lassen sich auch Gleichungen héheren Grades durch eine geeignete
Substitution auf eine quadratische Gleichung zuriickfithren. Auch hierzu wie-
der ein Beispiel von Geronimo CARDANO, diesmal aus Kapitel VI seiner Ars
magna.
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Beispiel 3:

X Lt =17 Substitution: = x*
w+u—12=0

u=3(—1£V49) =3(-117)
u=—d v y=3,

Somit muss gelten

xt=—4vx*t=3 || radizieren
x* —13 || radizieren
[xl=]13

x=—WW3vx=)V3.
Da x* = —4 eine mdt,xspluc,hlu,h(, Gleichung ist, erhilt man als Lo-

sungsmenge | -|,.."'L Qv 1 3L

Aufgaben

1. Aus der Arithmetica integra (1544) des Michael StiFeL (14877-1567):
a) 2x*=1450 —8x* b) x*=18x*+ 648 c) x*—4x%=2205
d) (x2+ 5)(x? —5) = 2538 e) x® = 214651701 — 20x*
f) x®=2000x*+ 185076881 g) x® =20000x* — 78461119

2. Aus Kapitel I, VI und XXIV der Ars magna (1545) das Geronimo CARDA-
NO (1501-1576):
a) x*+12 = 7x3 b) x*+12 = 6x2 c) x*=2x>+8
d) x*+x*=12 e) x*+2x2=10

3.2) x*—5x24+4=0 b) x*—4x2—5=0 ¢) 4x*—25x2+36=0

(
d) x*—10x2+9=0 e x*—20x%2= IZﬁ ) 12x*—81x*—21 =0

4.a) 3x*+2x>+1=0 b) 9x*+64x2=—-7 ¢) 2x*—11x2+16=0

5.a) 2x° —39x* —245x =0 b) 32x* —82x*—405=10
6. Aus dem liber abaci (1202) des LEONARDO VON P1sA (um 1170-nach 1240):
(53{2 +1D)Ex2+2) =x2+13
9x* — 325x% 4 36 x® — 16x?
) —0 B
3Ix*+17x—6 Sx*—19x*—4
8. a) Beweise: Wenn die drei Koeffizienten einer biquadratischen Gleichung

dasselbe Vorzeichen haben, dann ist L = { }.

b) Ist der vorausgehende Satz liber biquadratische Gleichungen umkehr-
bar? (Vgl. Aufgabe 2a und 4c¢.)
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#*3.7.3 Kubische Gleichungen

Eine Gleichung der Form ax® + bx? + ¢x + d = 0 mit a # 0 heifit kubische
Gleichung* oder Gleichung 3. Grades. Wenn man eine LOosung einer kubischen
g g g

Gleichung schon kennt oder errit, dann ldsst sich die kubische Gleichung auf
eine quadratische Gleichung zuriickfithren. Zum Nachweis folgen wir einem
Gedankengang, den Geronimo CARDANO (1501-1576) in Regel 6 von Kapitel
XXV seiner Ars magna 1545 anspricht und den Frangois VIETE (1540-1603) in
seinem Tractatus de emendatione aequationum (erschienen 1615) erweitert.
Sei x,, eine Losung der Gleichung ax® + bx? + cx + d = 0, dann gilt
axg +bxi +cxo+d=0.
Dies verwenden wir nun um das auf der linken Seite der kubischen Gleichung
stehende Polynom 3. Grades umzuformen:
ax®+bx* +ex+d=
=ax? +bx?+ex+d—0=
= ax3 +-bx* fex+d—axi) —bxz—cxy—d=
= a(x® —xJ) + b(x? — xF) + c(x— xp).

- 2 3 2 1 ; x s
Nun ist aber x* — x3 = (x — x,) (x* + xx, + x7), sodass wir im zuletzt erhal-
tenen Ausdruck x — x, ausklammern konnen. Wir erhalten

L i) alint] 2 ! ,
(x —xg)[a(x®+ xxo+ x5) + b(x + x0) + ] =
= (x — xp)[ax? + (axy, + b) x + (ax§ + bxy) + ] =
=(x—x)(Ax*+Bx+C) mit A:=a
B:=ax,+ b
C =agxi+bx;-+c.

Man erkennt, wie man, ausgehend von a, schrittweise 4, B und C aufbauen
kann:
A=a, B=Ax,+b, C=Bx;+c.
Wir halten das Ergebnis dieser Umformung fest in

Satz 125.1: Ist x, eine Losung der kubischen Gleichung ax® + bhx?* +
cx +d =0, so ldsst sich die linke Seite faktorisieren zu

ax®*+bx*+cx+d=(x—x,)(Ax*+ Bx + C)
mit A =a, B=Axy+ b, C = Bxy+c.

* Eine Zahl der Form a® heilt bei EukLip (um 300 v. Chr.) k0fog (kybos) = Wiirfel, was wohl auf die Py THA-
GOREER zuriickgeht. HERON von Alexandria — von seinen Lebensdaten wissen wir nur, dass er eine Mondfins-
ternis des Jahres 62 n. Chr. beschreibt — bezeichnet mit xtpoc die 3. Potenz. Bei DiopHANT (um 250 n. Chr.)
gewinnt k6foc dann auch die Bedeutung »3. Potenz der Unbekannten«, wofiir die Araber <3 (kaaba)

sagen, was wieder nichts anderes als Wiirfel bedeutet. (So heiBit heute noch das seit 703 unverinderte quader

formige Gebdude [12m x 10 m x 15 m] in Mekka, das Ziel der muslimischen Pilgerfahrten.) Als im 12.Jh.
dic arabischen mathematischen Schriften ins Lateinische tibertragen wurden, {ibersetzte man kaaba wortge-
treu mit cubus. Im Mathematischen Lexicon von 1716 des Christian voN WoLFF (1679-1754) erscheint der

Fachausdruck kubische Gleichung, der 1710 in den Anfangsgriinden noch kubische Aequation lautete.
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Aus Satz 125.1 ergibt sich als wichtige

Folgerung Eventuelle weitere Losungen der kubischen Gleichung

ax® + bx* + cx+d=0 miissen Losungen der quadratischen Gleichung
Ax* + Bx + C = 0 sein.

Dazu

Beispiel 1: 3x° —2x%2 —23x+30=0

Durch Probieren mit den Werten 0, + 1. + 2 usw. findet man. dass
die Zahl 2 eine Lmung ist. Alsogilt A =3,B=32—2=4und C =
=4:-2—-23 -15. Eventuelle weitere Losungen der Gleichung

3x3 — 2x? — 23\ + 30 = 0 miissen also Losungen der quadratischen
Gleichung 3x% + 4x — 15 = 0 sein. Wir erhalten

x=4(—4+1/196) = L(—4+14)

x=—3vx=3

Wer sich nicht d1e Ausdriicke fiir 4, Bund C merken m!l erhdlt den quadrati-
schen Faktor 4x? 4+ Bx + Cdes kubischen Terms ax® + bx? + ¢x + d, indem
er letzteren durch x — x,, dividiert. Da der kubische Term ein Polynom und
auch x — x, ein Polynom in x ist, nennt man eine solche Division Polynomdivi-
sion. Wie sie praktisch ablduft, zeigen wir am Polynom von Beispiel 1; dabei ist
Npl=2
Beispiel 2: Die Polynomdivision
(Bx®—2x% — 23x + 30) : (x =2)
Wir beginnen mit der Division bei den Termen mit den héchsten Poten-
zen von x, also mit 3x? : x = 3x?
Das Ergebnis 3x? schreiben wir rechts vom Gleichheitszeichen als ersten
Summanden an und multiplizieren damit den Divisor x — 2. Das erhalte-
ne Produkt 3x? — 6x? ziehen wir vom Dividendenpolynom ab. Dieses
Verfahren setzen wir mit dem Restpolynom so lange fort, bis sich als Rest
null ergibt:

(3x% — 222 — 23x+ 30): (x — 2) = 3% + 4x — 15

—(3x — 6.\'?)
4x*—23x+ 30
— (4x* — 8x)
—15x 430
—(—15x+ 30)

0

Beachte: Ergibt sich nicht 0 als Rest, so hast du entweder beim Probieren
einen Fehler gemacht und dein x,, ist gar keine Losung, oder du hast
dich beim Dividieren verrechnet.
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Man kommt ohne Polynomdivision schneller zum quadratischen Faktor,
wenn man vorher ein wenig kopfrechnet. Setzt man ndmlich auf Grund der
obigen Uberlegungen an

(3x3 —2x2—23x+30) = (x — 2)(Ax*+ Bx+C)

und multipliziert in Gedanken aus, so erkennt man sofort, dass 4 = 3 und
C = —15 sein mussen. Also kann man stattdessen gleich mit dem Ansatz
(Bx¥—2x2—-23x+30)=(x—2)(3x*+ Bx—15)

beginnen. Vergleicht man die Koeffizienten der quadratischen Glieder auf
beiden Seiten — rechts muss man in Gedanken ausmultiplizieren —, so ergibt
sich —2=—6—2B, also B=4,

und damit der quadratische Faktor wie oben zu 3 x* +4x — 15.

Aufgaben

1. Zur Polynomdivision
a) Fehlen bei den Polynomen Glieder, so rat Michael StiFEL (14877
bis 1567) in seiner Arithmetica integra (1544), die fehlenden Poten-
zen mit dem Koeffizienten null zu versehen und sie im Polynom mit-
zufithren, also die Division (x*4+1):(x+1) in der Form
(x*4+0x>4+0x+1):(x+1) auszufithren. Mach es und verfahre
ebenso bei den folgenden Aufgaben.

b) (x*—1):(x—1) ¢) (x*+8):(x+2)
d) (8x*+125):(2x+95) e) (16x*—81):(2x—13)

2. Auf einer babylonischen Keilschrifttafel, deren einer Teil in London (BM
85200) und deren anderer in Berlin (VAT 6599) liegt, finden sich mehrere
kubische Gleichungen:

a) Aufgabe 5; z® + 22 = 252 b) Aufgabe 20: z>+7z2 =38

3. Bei den Griechen findet sich die erste nicht geometrisch geloste kubische
Gleichung bei DIOPHANT (um 250 n. Chr.) in Buch VI seiner Agi3unticay
Pifiix bei der Behandlung des folgenden Problems (Nr. 17):

Eine Quadratseite ist um 2 Lingeneinheiten grofer als die Kante eines
Wiirfels, dessen VolumenmaBzahl aber um 2 gréBer ist als die Fldachen-
maBzahl des Quadrats. Wie grol} sind Quadratseite und Wirfelkante?

DiopHANT bezeichnete die Wiirfelkantenlange mit x — 1. Verfahre ebenso!

4. Bei BHASKARA II (1115—-nach 1178) findet sich im Bidscha-ganita (§ 137)
die Gleichung 12x + x* = 6x* + 35.

5. Christoff RupoLrr (um 1500 Jauer/Schlesien — vor 1543 Wien?) hat
1525 in seiner Behend und Hubsch Rechnung durch die kunstreichen regeln
Algebre so gemeinicklich die Cofs genennt werden einige kubische Gleichun-
gen gelost ohne den Losungsweg anzugeben.

a) 63 +x3=10x? b) 605+ 3x*=3x ¢) x>+ 75x* +1875x = 27250
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Zu den Aufgaben 6 bis 10. Die groBte Leistung auf dem Gebiet der kubischen
Gleichungen vollbrachte Geronimo CARDANO (1501-1576), der fur sie eine
allgemeine Losungsformel beweisen konnte (Nidheres in Algebra 10). Viele
Kapitel seiner Ars magna (1545), der mit Ausnahme von 8h die folgenden
Aufgaben entnommen sind, beschéftigen sich mit kubischen Gleichungen.
Wie damals tiblich schreibt CARDANO noch keine negativen Koeffizienten,
sodass er den Losungsgang fiir die dadurch verschiedenen moglichen Typen
vorfithren muss. CARDANO erkennt aber, dass eine, zwei oder drei Losungen
auftreten konnen, wofiir er auch Fallunterscheidungen angibt.

6.
7.
8.

9.
10.

11.

-

*%

k%

a) x°+6x=20 b) x3+16 =12x ¢) x> =19x+ 30
a) x>+ 224x% =98 b) x4+ 48 = 10x? ¢) x*=3x2+16

a) x> =3x24+20x+6 b) x>+ 6x%2=20x+ 56

¢) x>’ +21x=9x?>+5 d) x>+9=06x%+24x

e) x> +6x2+x=14 ) x34+6x24+12=31x

g) x> +3x+18 =6x2 h)* 254+ 4x2 4+ 2x% = 16x + 55

a) x®4+3x*=20 b) x°+4 3x* 410 = 15x2

Bei den Gleichungen vom Typ x° = px + g und x* + ¢ = px versagte ge-
rade dann die von CARDANO bewiesene Formel, wenn — wie wir heute
wissen — es 3 Losungen gibt. Das ist der Fall, wie CARDANO entdeckte,
wenn (3p)° > (3¢)* ist. Man nannte diesen Fall spiter casus irreducibilis,
d.h. unzuriickfithrbarer Fall. Im Kapitel XXV seiner Ars magna, das er
mit De Capitulis imperfectis et specialibus — »Uber die unvollkommenen
und nur in Sonderféllen brauchbaren Regeln« — {iberschreibt, gibt er da-
her besondere Verfahren zur Losung solcher Gleichungen an. Ihm entneh-
men wir mit Ausnahme von a) die folgenden Gleichungen**.

a) x> =9x+10 b) x° =32x+24 ¢) x*=16x+21

d) x*+12 =34x e) x>+ 18 = 19x f) »>4+8=18x

Von Francgois VIETE (1540-1603) stammen aus dem

a) Responsum ad problema quod omnibus mathematicis totius orbis con-
struendum proposuit ADRIANUS ROMANUS von 1595%**: 3x — x3 = |/2

b) Tractatus de aequationum recognitione (1615 gedruckt):
1) 8x—x*=7 2) 9x* —x>=8§

Michael STiFeL bringt diese Aufgabe in seiner Arithmerica integra 1544 auf Blatt 317. Er hat sie CARDANOS

Practica Arithmeticae von 1539 entnommen, in der sich jener auch schon mit kubischen Gleichungen
beschiftigt hatte. STiFEL empfiehlt dieses Buch seinen Lesern wiirmstens, rit ihnen aber, statt der umstind-
lichen Bezeichnungen CARDANOS seine viel bequemeren zu verwenden.

Mit der in a wiedergegebenen Gleichung teilte Carpano seine Entdeckung des casus irreducibilis TArRTA-
GLIA in einem Brief mit, den dieser am 4.8.1539 erhalten hat.

»Antwort auf das Problem, das ADRIAEN vaN RooMEN [1561-1615] allen Mathematikern des ganzen
Erdkreises [1593] zur Losung stelltew. ViETe konnte die gestellte Gleichung 45. Grades 16sen.
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**3.7.4 Reziproke Gleichungen

Abraham pE Morvre (1667-1754)
stie} bei seinen Arbeiten zur Wahr-
scheinlichkeitsrechnung auf einen be-
sonderen Typ von Gleichungen, den
er 1711 in seiner Abhandlung De
mensura sortis — »Uber ein MaB des
Zufalls« — beschrieb und fiir den er
1730 in seinen Miscellanea Analytica

»Allerlei zur Analysis« — wichtige
Sdtze herleitete. 1733 beschiftigte
sich Leonhard EurLer (1707-1783)
mit diesen Gleichungen und nannte
sie wegen einer wichtigen Eigen-
schaft, die wir gleich beweisen wol-
len, reziproke Gleichungen. Da sie ei-
ner Verallgemeinerung fahig sind,
fligt man heute noch »1. Art« bei. %
Unter Beniitzung der von bE MOIVRE 1736

gegebenen Beschreibung legen wir c@ o
Sov = = . . ’ £
also fest 'v/L{ = ""'/zf e

Abb.129.1 Abraham DE MOIVRE
(26.5.1667 Vitry-le-Frangois bis
27.11.1754 London) — Gemalde
von Joseph HIGHMORE (1692-1780)

Definition 139.1: Eine Gleichung heil3t reziproke Gleichung 1. Art, wenn
die vom Anfang und vom Ende des Gleichungspolynoms gleich
weit entfernten Koeffizienten jeweils gleich sind.

Beispiele:
1) 3x2+5x+3 =0 Der erste und der letzte Koeffizient sind gleich.
2) —dx343x243x—L=0 Der erste und der letzte Koeffi-

. : . s zient sind gleich, ebenso der zweite
3) 5x* =3x°—2x*—-3x+5=0 ) ynd der vorletzte.

Offensichtlich kann 0 nicht Losung einer reziproken Gleichung sein, da der
letzte Koeffizient gleich dem ersten Koeffizienten und damit ungleich null ist.
Der folgende Satz macht nun den von EULER gegebenen Namen verstidndlich.

Satz 129.1: Ist r Losung einer reziproken Gleichung 1. Art, so ist auch

; e . :
der reziproke Wert — Losung dieser Gleichung.
5
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Beweis: Der Beweis sei beispielhaft fiir eine Gleichung 4. Grades vorgefiihrt.
Der allgemeine Beweis verlduft analog.

ax* 4+ bx> + ¢x? + bx + a = 0 (mit a =+ 0) ist eine reziproke Gleichung 1. Art
vom Grad 4. Wenn r Losung dieser Gleichung ist, dann gilt

ar* +bri+cr:+br+a=0.

Da r + 0 ist, konnen wir r* ausklammern und erhalten

foeB o3 o o))

Da r* nicht null werden kann, muss die Klammer null sein. In der Klammer
steht aber, von rechts nach links gelesen, der gegebene Gleichungsterm, in
1 el
den an Stelle von x der Wert — eingesetzt wurde. Also ist — Losung, was zu
zeigen war. ! !
Wie findet man aber nun die Losungsmenge einer reziproken Gleichung
1. Art? Auch hier wollen wir das Wesentliche wieder anhand von Beispielen
zeigen.
Beispiel 1: Der Grad der reziproken Gleichung 1. Art ist gerade.
6x* 4+ 5x° —38x2 + Sx+6=0
Da null keine Losung ist, diirfen wir durch x? dividieren und erhalten
1

1
6x% +5x—38+5 =~ +6 = =0
X X

T 1
()(.r“'-l— ) +5<.r+ ) —38=0
X X

Joseph Louis de LAGRANGE
(1736-1813) schlug 1770 die

Substitution
1

X+ =17 NOT:
X

Durch Quadrieren erhilt man
) 1 -
x*+2+— =z% sodass die

letzte Gleichung iibergeht in

6(z>—2)+5z—38=0
6z245z—50=0
z=—3vz=3,

Machen wir die Substitution
wieder riickgiangig, dann erhal- Abb. 130.1 Joseph Louis de LAGRANGE
ten wir (25.1.1736 Turin—10.4.1813 Paris)
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1 10 1 5
X =——VX+—=
X 5 X 2

was durch Multiplikation mit dem Hauptnenner auf zwei reziproke qua-
dratische Gleichungen fiihrt:

3x24+10x+3=0 v 2x2—5x+2=0

x==3vx=—1 v x=Llvx=2
Die gesuchte Losungsmenge lautet somit L = {—3, —3, 3, 2}.

Ist der Grad einer reziproken Gleichung 1. Art ungerade, dann gilt

Satz 131.1: Eine reziproke Gleichung 1. Art ungeraden Grades hat stets
die Losung —1.

Beweis: ax> + bx? + bx + a = Oist eine reziproke Gleichung 1. Art vom Grad
3. Setzt man —1 ein, so erhidlt man —a + b — b+ a = 0, was zu zeigen war.
Der allgemeine Beweis verlduft analog.

In Satz 125.1 haben wir gezeigt, dass man eine kubische Gleichung faktorisieren
kann, wenn man eine Losung kennt. Dieser Satz gilt allgemein, wenn der
Gleichungsterm ein Polynom ist.* Damit lasst sich eine reziproke Gleichung
1. Art ungeraden Grades auf eine Gleichung kleineren Grades reduzieren. Dazu

Beispiel 2: 12x° + 8x* —45x° —45x* +8x+12=0
Die Division durch (x — (—1)) liefert
12x° + 80 —d5x> — 45y L 8x 12 =
= )12 —dxd = A2 —dx +12),
wie du leicht nachrechnen kannst. Setzen wir den 2. Faktor null, so haben
wir in 12x* —4x® —41x* —4x+ 12 =0 wieder eine reziproke Glei-
chung 1. Art vor uns. Dieser Sachverhalt gilt allgemein, wie man bewei-
sen kann. Wie in Beispiel 1 substituiert man z:= x + l. und erhélt
1k G =0 = s~ = A
Daraus gewinnt man, indem man die Substitution riickgingig macht,
schlieBlich die beiden quadratischen reziproken Gleichungen 1. Art
6x2 +13x+6=0 v 2x*—5x+2=0

mit { — 3, — 2! bzw. {1, 2} als Losungsmengen, sodass man nun die Lo-
sungsmenge der Ausgangsgleichung 5. Grades angeben kann zu

for e e R B

<= T

* Beweis: Dividiert man ein Polynom P(x) durch (x — x;), so erhiilt man ein Polynom ¢ {(x) und einen Rest R;
es gilt also P(x) = (x — x,) @ (x) + R. Den Rest R kann man aber leicht bestimmen. Setzt man namlich an
Stelle von x den Wert x, ein, so erhilt man P(x,) = (x5 — x3) Q(xg) + R =0+ R = R, d.h., Rist der Werl
des Polynoms P(x) an der Stelle x;. Ist nun x, eine Nullstelle des Polynoms, dann ist P(x;) = 0, also auch
R =0, und es gilt P(x) = (x — x3) @ (x); das Polynom ist faktorisiert.
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Die eingangs angekiindigte Erweiterung des Begriffs der reziproken Glei-
chung liefert

Definition 132.1: Eine Gleichung heil3t reziproke Gleichung 2. Art, wenn
die vom Anfang und vom Ende des Gleichungspolynoms gleich
weit entfernten Koeffizienten dem Betrage nach jeweils gleich sind,
aber verschiedenes Vorzeichen haben.

Folgerung: Ist der Grad einer reziproken Gleichung 2. Art gerade, z. B. 2k, so
muss fir den mittleren Koeffizienten a, gelten a, = —a,, d.h., der mittlere
Koeflizient muss den Wert null haben.

Beispiele:
1) 3x2—3=0 Der erste und der letzte Koeffizient
unterscheiden sich nur im Vorzeichen.
2) — x> +3x2—-3x+1=0 Der erste und der letzte Koeffizient
unterscheiden sich nur im Vorzeichen,
3ExF— 3043w —5=10 ebenso der zweite und der vorletzte.

Satz 129.1 gilt auch fiir reziproke Gleichungen 2. Art, wie du selbst leicht
beweisen kannst (Aufgabe 133/1). An Stelle von Satz 131.1 gilt

|

Von der Richtigkeit dieses Satzes kannst du dich durch Einsetzen in die obigen
Beispiele iiberzeugen; der Beweis ist leicht (Aufgabe 133/2).

Satz 132.1: Jede renpmka Glem]an . Art hat die Losung +1.

Dividiert man eine reziproke Gleichung 2. Art durch x — 1, so erhélt man
immer, wie man zeigen kann, eine lL/ipl‘Oi\ﬂ Gleichung 1. Art Wir begniigen
uns zum Nachweis auch hier mit einem Beispiel, néimlich

Beispiel 3:

*—6x7 4+ 6x — 1 =0 ist eine reziproke Gleichung 2. Art. Somit lisst
sich der links stehende Term durch x — 1 dividieren und man erhilt die
Faktorisierung
(x=1)(x* — 5% —5x — 1) =
Setzt man die Klammer null, so erhélt man eine reziproke Gleichung
1. Art vom Grad 3. Diese hat —1 als Losung. Daher kann man das
Polynom in der Klammer durch x + 1 dividieren und erhilt die Faktori-
sierung

x—1Dx+D(x24+6x+1)=
Setzt man nun den 3. Faktor null, so erhélt man eine quadratische Glei-
chung — sie ist reziprok von 1. Art — mit den L3sungen 3 + }/8. Die Aus-
gangsgleichung x* — 6x3 +6x—1=0 hat also die Losungsmenge
L=d3—V8 —1, 1, 318}




3.7 Gleichungen, die sich auf quadratische Gleichungen zuriickfiihren lassen 133

Aufgaben

1.

Beweise die Giiltigkeit von Satz 129.1 fiir eine reziproke Gleichung 2. Art.
Unterscheide dabei, ob sie geraden oder ungeraden Grades ist, und fihre
den Beweis fiir eine Gleichung 3. und fiir eine Gleichung 4. Grades.

. Zeige, dass eine reziproke Gleichung 2. Art stets 1 als Losung besitzt.

Fiihre den Beweis fiir eine Gleichung 3. und fiir eine Gleichung 4. Grades.

3.a) 12x3 —13x2—13x+1=0 b) x* —5x+5x+1=0
4. a) 20x* +19x* —402x? +19x+20 =0

b) 20x* — 189x> + 482x% — 189x +20 =0

.a) 18x* +51x® —334x2+51x+18=0

b) 36x* —9x3—103x*—9x+36=0

a) 7x*+36x>—86x2+36x+7=0
b) 10x* —29x3 4+20x> —29x+10=0

.a) x*—2x34+2x2—2x+1=0

b) 20x* + 16x> +19x% +16x+20=0

8.a) x*+2x3>—13x>+2x+1=0b) x*—8x°+9x*—8x+1=0

10.

11.

.a) 16x*—T12x3+113x2 —T2x+16 =0

b) 2x*—9x3+15x2—-9x+2=0

Beweise fiir reziproke Gleichungen 1. Art vom Grad 4:

a) Die Losungsmenge einer solchen Gleichung ist genau dann nicht leer,
wenn die durch die Substitution z := x + 1 gewonnene Hilfsgleichung
mindestens eine Losung hat, welche die Bedingung |z| = 2 erfillt.

b) Eine Doppellosung tritt genau dann auf, wenn die Hilfsgleichung die
Losung 2 oder — 2 hat. Wie heiB3t die zugehorige Doppell6sung?

¢) Lost z, die Hilfsgleichung, so haben die zugehorigen Lésungen der
Ausgangsgleichung stets dasselbe Vorzeichen wie z,, wenn |z, | > 2 1ist.

a) 12x° +23x* —135x® —135x* + 23x + 12 =0

b) 2x3 —Tx* +5x3+5x2—Tx+2=0

¢) 2x% —13x° + 34x* —46x3 +34x* —13x+2=0

12.a) 3x34+7x2—7x—-3=0 b) x?—x2+x—1=0

13.a) 3x*—10x*4+10x—3=0 b) x*—10x°+10x—1=0
¢) x*—1=0

14. a) 12x° — 16x* —37x3+37x2+16x—12=0

13,

b) 5x5—31x*+36x3—36x2+31x—5=0 ¢ x*—1=0

a) x°—4x>+5x*—5x*+4x—1=0
b) 2x8 —5x7 —4x° +15x>—15x> +4x> +5x -2 =0
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**3.8 Gleichungssysteme, die auf quadratische Gleichungen fiihren

Im letzten Jahr hast du lineare Gleichungssysteme mit mehreren Unbekann-
ten kennen gelernt. Dabei kamen die Variablen nur in der 1. Potenz vor und,
ohne dass es dir vielleicht aufgefallen ist, auch nicht durch Multiplikation
miteinander verbunden. Tritt also ein Term der Form x?, y? oder xy auf, dann
handelt es sich um ein quadratisches und nicht mehr um ein lineares Glei-
chungssystem. Besonders einfach sind solche Systeme, die aus einer linearen
und einer quadratischen Gleichung bestehen. Dass die Losung solcher Syste-
me erst mit Hilfe von quadratischen Gleichungen maglich ist, zeigt

Beispiel 1:
Auf Seite I des Keilschrifttextes AO 8862, der um 2000 v. Chr. entstanden
1st und zu den iltesten babylonischen Texten gehort*, steht:
NISABA [Schutzpatronin der Wissenschaften] Lange, Breite. Linge und
Breite habe ich multipliziert und so die Fliche gemacht. Was die Linge
uber die Breite hinausgeht, habe ich zur Fliche addiert, und es macht 183.
Wiederum Liange und Breite addiert, gibt 27. Linge, Breite und Fliche ist
was?
Der Text fiihrt zu Beginn die beiden Unbekannten »Linge« und »Breite«
ein; ihr Produkt heiBt »Fliche«. Wihlen wir x fiir »Linge« und y fiir
»Breite«, so erhalten wir das Gleichungssystem

[ xy+ (x—y) =183 .
V) Nebenbedingung: x > y

I x+y=27

Hier 16st man am besten I1 z. B. nach

y auf und setzt y = 27 — x in [ ein. v
I' x27T—x)+(x— 27+ x) = 183 1
[I' y=27—x

[' x2—29x+210=10 +
[I' y=27—x
=14 v =5 T
' y=27—x

Die Losungsmenge L, kann in einem
x-y-Koordinatensystem (Abbildung
134.1) durch ein Parallelenpaar dar- } : -
gestellt werden, Ly durch eine Gera- 5 i
de. Die Losungsmenge L des Glei- x =1 | | x=15
chungssystems ergibt sich als Schnitt-

menge L, N Ly zu Abb. 134.1 Die Losungsmenge
L = {(14]13), (15]12)}. von Beispiel 1

* gefunden in Larsa, aufbewahrt in Paris im Louvre in der Abteilung Antiquités Orientales. Es handelt sich um
ein vierseitiges, auf allen Seiten beschriebenes Prisma der Héhe 16,8 ¢cm und der Basisseite 7.3 cm.
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Praktisch geht man so vor, dass man zu jedem aus I’ erhaltenen x-Wert
den zugehorigen y-Wert aus II' errechnet:

x =14 = p=13 and x=15 =1p=12.

Die Lsungsmenge des Gleichungssystems besteht also aus 2 Paaren. Wir
erhalten somit zwei verschiedene Antworten auf die gestellte Frage:
Losung 1: Linge = 14, Breite = 13, Flache = 132,

Losung 2: Linge = 15, Breite = 12, Fliache = 180.

Die Nebenbedingung ist jedesmal erfiillt. Eine Probe ist nicht notig, da
nur Aquivalenzumformungen vorgenommen wurden. — Auf der Keil-
schrifttafel ist iibrigens nur Losung 2 angegeben.

Der hier eingeschlagene Losungsweg fiihrt bei jedem derartigen Gleichungs-
system zum Ziel. Die lineare Gleichung wird nach einer der beiden Unbekann-
ten aufgelost und der gefundene Ausdruck in die quadratische Gleichung
eingesetzt. Man hat dann als neues dquivalentes System im Allgemeinen eine
quadratische Gleichung mit nur einer Unbekannten und die lineare Glei-
chung. Je nachdem, ob die quadratische Gleichung zwei, eine oder keine Lo-
sung hat, besteht die Losungsmenge des Systems aus zwei, einem oder keinem
Zahlenpaar.

Besteht hingegen das System aus zwei quadratischen Gleichungen, dann kann
der Losungsweg schlieBlich bis zu einer Gleichung 4. Grades fiir eine Unbe-
kannte fithren, die du unter Umstdnden nicht l6sen kannst. Sehr leicht lassen
sich dagegen Systeme 16sen, in deren Gleichungen nur die Quadrate der Unbe-
kannten vorkommen. Dazu die folgenden beiden Beispiele.

Beispiel 2:

¥
[ 2x2—y2=—-7
- {Hige i K-t (1|58}
II 6x°+ 2_1-‘2 = 104 g Eci ] it lnpnes e mn Mgz iny
Durch die Substitution u:= x2, v:= y*
wird daraus ein lineares System:
[' 2u—v=-7
[1" 6u+ 2v =104 :
pit=19 _ 1
=%
Das Ausgangssystem ist also dquivalent
mit
=3 = 3
{H’ _\_2 == 9 _____ L e e ke e e e e
IR rac=25 _ o
: Abb. 135.1 Die Losungsmenge
" x=—3 v x=3 von Beispiel 2
[I" y==8§8 w p=2. Ly ----- Ly
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Ly lasst sich als Parallelenpaar zur y-Achse, L,;.. als Parallelenpaar zur
x-Achse graphisch darstellen (Abbildung 135.1). Fiir L erhilt man
L=L.nLy ={(—3]-5),(—3]5,3|-5), (35)}.

Ebenso wie in Beispiel 2 geht man vor in

Beispiel 3:
[ 3x2 —5p% =20 [ 2 s
3 i e ’ s
II 7x*+9y2 =26 B ey
Da Ly ={}istauchL=L.nLy = {1

Zum Abschluss behandeln wir noch ein Gleichungssystem, das auf eine bi-
quadratische Gleichung fiihrt. Es stammt von der altbabylonischen Keil-
schrifttafel VAT 8390.

Beispiel 4:
Lange und Breite habe ich multipliziert, 600 ist die Fliche. Die Linge
habe ich mit sich selbst multipliziert. Das ergibt eine Fliche, die das
9fache der Fliche ist, die man erhélt, wenn man das, was die Léange iiber
die Breite hinausgeht, mit sich selbst multipliziert. Léinge und Breite ist
was?

Bedeute x die »Linge« und y die »Breite«, dann erhilt man

[ xy=600
I x%2= 9(x — y)'!
600
[ y=—
X
I_I 8x* —10800x2 + 3240000 = 0
, 600
! jr=s
e

II' x> =450 v x>=900 = x=+15/2 v x=+30
L = {(—30] —20), (—15)/2| —201/2), (15//2]|201/2), (30|20)} .

Die Babylonier haben nur die Losung (30|20) angegeben, da fiir sie x und
y positiv waren und auBlerdem x > y gelten sollte.

[nsgesamt hat man bis jetzt an die 650 Aufgaben von diesem Typ gefunden, beli
denen vor allem Gleichung II immer wieder verindert wird. Alle aber haben
die Losung (30/20). Die 6,5 cm % 9,5 ¢cm groBen Tifelchen sind durchnumme-
riert.* Es handelt sich offenbar um einen Satz von Ubungsaufgaben, der einst

* Da sie aus Raubgrabungen stammen, lassen sie sich nur schwer datieren. Man vermutet, dass sie mittelbaby-
lonisch sind, d.h. aus der Zeit der KAssiTeEN stammen (ca. 1530-1160 v.Chr.). Sie enthalten fast keinen
Worttext mehr, sondern nur mehr mathematische Zeichen. stellen also eine Art babylonischer Zeichenal-
gebra dar.
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aus mindestens 14 solcher Téifelchen bestand. Wir diirfen daraus wohl schlie-
Ben, dass bereits die Babylonier erkannt hatten, dass Mathematik nur dadurch
gelernt werden kann, dass man viel tibt. Fiir dich folgt daher eine Rethe von

Aufgaben
xy =10 3Ix—y=3 xy =2
2.a) xy=9+x b) 2xy—x+2y=1 ¢) 3x+2y—4xy=-—95
2x—y=2 x+2y=0 Sx+2y=12
3. Seite I und Seite III des Keilschrifttextes AO 8862 liefern die Systeme
a) s3x+3y+xy=15 b) x+y=xy
Xry= i X+y+xy= 9
4. In Susa fand man folgende Keilschrifttexte aus altbabylonischer Zeit:
a)* tx+ 3y +5xy =2 b) xy+x+y=1
Xekp =53 L@x+4y) +y=1%

5. Eine interessante Aufgabe enthilt der altbabylonische Keilschrifttext**
VAT 7528, der, auf unser Malsystem umgerechnet, lautet:
Gebaut wurde ein kleiner Kanal von 2160 m Linge und 3 m Tiefe. Sein
Querschnitt ist trapezformig und misst oben 1 m, unten & m. Ein Arbeiter
konnte tiglich 6 m® Erde ausheben. Die Anzahl der Arbeiter zu der der
Arbeitstage addiert ergibt 29 5. Wie viele Leute haben wie viele Tage gear-
beitet?

6. VAT 8512, ebenfalls altbabylonisch, stellt folgendes Problem: Ein recht-
winkliges Dreieck wird durch eine Parallele zu einer Kathete der Lange 30
in ein Dreieck und ein Trapez so zerlegt, dass die Trapezfliche um 420
grofer ist als die Dreiecksfliche. Die Kathete zerfillt dabei in zwei Teile;
der Teil, der zum Dreieck gehort, ist um 20 groBer als derjenige, der zum
Trapez gehort. Wie groB sind diese beiden Teile, die beiden Flachen und
die parallele Strecke?

7. Aus einer arabischen Handschrift aus der 1. Halfte des 11. Jh.s: In einem
Quadrat ABCD der Seitenldnge 10 werden die Mittelparallele [EF] zu
[AB] und von A aus eine Gerade so gezogen, dass diese die Mittelparallele
in S und die Seite [BC] in T schneidet. Wie groB sind TF und SF, wenn
die Fliache von ASTF sich zur Quadratfliche wie 2 : 25 verhilt (F € BC)?

8. Der Seite II des Keilschriftprismas AO 8862 entnehmen wir: Lange, Brei-
te. Lange und Breite habe ich multipliziert und so die Flache gemacht. Was
die Lange tiber die Breite hinausgeht, habe ich mit der Summe aus Linge

* SKT 362, StraBburger Keilschrift-Texte, aufbewahrt in StraBburg, Bibliotheque Nationale et Universitaire.
** aufbewahrt in Berlin, Staatliche Museen: Vorderasiatische Abteilung; Tontafeln.
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und Breite multipliziert; dazu habe ich meine Fliche addiert. Es macht
4400. Dann habe ich Linge und Breite addiert, das ergibt 100.

9. Die Aufgaben 8-10, 14 und 19 aus der altbabylonischen Keilschrifttafel
BM 13901 (siche Seite 88f. und Aufgabe 97/24):
a) x2+ y?* =1300 b) x*+ y? = 1300 c) x* 4 y* =213
x+y=150 x—p=10 yp—x=—1x
d) x*+y*=1525 e) x*+y*+ (x—y)% = 1400
y=%x+5 x+y=250
10. Aus der altbabylonischen Keilschrifttafel SKT 363:
a) x*+ y* =1000 b) x* + y% = 2225 €)% -Lys = 3125
y=%x—10 y=%(x—-10)+5 y=%(x—-20)+5
11. a) x? —3x+y =2 b) 2y? —5x+3y=0
x+3y=06 — 2%+ Iy=5
¢) 3x+2y=3 d) 4x—3y =11
2x2 —y2 =—7 2x%+3y2=11
12. a) Aus dem /iber abaci (1202) des LEONARDO VON Pisa
(um 1170—nach 1240):
R — D = /8. Mache die Probe!
=
b) Fsx? - dy?=1 ¢) fx2—4y*=1
y—18 9 y+4 3
x—4 20 x—4 4
13.3) x2— 2%y —p>=—4 (Mb) x2—=2xy+y*+4=0
x—35y=6 x—3y—6=0
14.2) 2x> +xy+y*—2x+y=6
2x—3y=9
b) 41x* —24xy + 34y? —24x+ 68y —41 =0
x—=2y—5=0
15.a) x*+2y*=9 b) 2x* + 5y* =47
3x2—yp? =—1 5x*+2y* =23
16. a) 7x>—2y*+32=0 b) 6x%+2y2=6
3x>+5y2—80=0 4x* —3y2 =43
17.a) 1ix>=Ty* =0 b 11x? Tyt =0

—8x?+5°=0 —8x2 4 5y2 =0
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18.a) x> +3y*>=3 b) 5%249y%2—32,2 =0
6x* —2y* =13 4x> —3y2+ 123 =0
19.a) 3x2—-5y2=0 b) 4x2—3p2 =17
Dpd— Tyt —11 Ix% 4 Sy? =56
020.2a) 2x*—3x+2y—3=0 b) 2x+5y+2xy =3
5x2—0,5x+3y—7=0 x—3y—4xy =33
) x—2*+@p—-1%*=9 d) x+2x>+3y—6y*=28
(x+2)2+(p—7)*=25 x—x2—-2y+3y*=-20
21.a) x24+2x+4y—47=0 b) 2x* +y* —10x =13
5x2 —25x+6y—18=10 5x2—-2y*+15x =
¢) y +2xy+3y=0 od) (x—2)2—(y+1)2=-24
32 —=3xy—y =30 3>+ —12x 2y =87

22. Die auf Seite 136 erwidhnte Aufgabensammlung aus kassitischer Zeit be-
findet sich fast vollstindig in der Yale Babylonian Collection von New
Haven (USA). Die auf der Tafel YBC 4697 angegebenen Gleichungssyste-
me l6st man am besten mit der Substitution x:=u + v und y:=u — v.
Die erste Gleichung heilit immer xy = 600, die zweite dagegen
a) ix+y)+&5x—y>=18%,

b) {(x+y)—&HKx—y)?F =15,
¢) s g(x+»+sx—y)° =33

23.a) x> +3y*=10 b) x2— 8y =23
X2yt =9 4(xy)> =25
¢) x*—3x24+2y2=6 d) x*—yp* =065
4x* — 5y* = —16 2x% +3y? =30
24. a) (x+1)243(y+3)>=12
V41 — T (£ 3) = —1
8b) 2(2x—3y+7?>—3(4x—2y+5*=5
S(2x — 3y +7)2 — T(4x — 2y + 5)% = 13
1 1 1
L e Bdg e
X } X Jir
Rl e g D
Sl s oy Bt 13

26. a) Aufgabe 12 aus dem Keilschrifttext BM 13901 ergibt das System
x2 492 =1300 A xy=600.
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b) Aufgabe 22 der Tafel YBC 4668 aus kassitischer Zeit ergibt

% o A ] -
+3 (.E — ) =28 A xy=600.
y P X

¢) Aufgabe 25 der Tafel YBC 4668 aus kassitischer Zeit ergibt

% 2 g i
Y S\ %

27. In Susa fand man auf einer Keilschrifttafel den Text XIX. Problem D:
=1200 A x-x2)/x*+ p* =3200000.

28.a) x+2=yp—1 b) 2—-2x=(y+4)?
V3x + 2 = 2x Va2 +y2=T—x
29.2) Vx+y—Vx— = V/x2 —6x -2 =1y

$b) V3x+y+12x—y=VTx+2y

fL4r2 4 y 2y 411 —2x—-34+x—y=V} 3x—1

30. Besteht ein Gleichungssystem mit zwei Variablen nur aus einer Gleichung,
so 1st es unterbestimmt. Stelle die Losungsmengen der folgenden l.ll'llf:lbt,-
stimmten Systeme graphisch dar.

a) x*+y*=0 b) (x— 3) +(+2*%*=0
¢) x2—y*=0 d) (x+p)* =4

e) x(x—2y)=0 f) H— 3xy —1—2} =0

o2) Vx?+y=1 oh) V/x? +1/y?

«31. Die beiden folgenden ersten Aufgaben sind die Nr. 94 bzw. 96 aus Kapitel
LXVIder 1539 erschienenen Practica Arithmeticae des Geronimo CARDA-
NO (1501-1576). Michael StiFeL (14877-1567) bringt sie 1544 in seiner
Arithmetica integra und fiigt als weitere Beispiele die beiden anderen Auf-
gaben an. — Zur Losung raten wir, zuerst xy zu berechnen.

a) (x—yp)*=xy b) x+y=xy
x24+y* =20 X2 +y2+(x+y) =20
©) x*+y*=52 d) x*+y*=152
xy—x—y=14 xy+x+y=34

32. In Kapitel LXI seiner Practica Arithmeticae behandelt CARDANO ein iiber-

bestimmtes Gleichungssystem., fiir das STIFEL bessere Zahlen wihlt, damit
die Aufgabe aufgeht:
Zerlege 468 in zwei Summanden. Das Produkt aus dem grofBeren Teil und
dem Quadrat des kleineren Teils soll 5359375 ergeben, das Produkt aus
dem kleineren Teil und dem Quadrat des groBeren hingegen 14706125.
Wie heillen die Summanden?
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Die folgenden Aufgaben ergeben Gleichungssysteme fiir 3 und mehr Unbekann-
te. Sie stammen aus Kapitel LXVI der Practica Arithmeticae (1539) des Gero-
nimo CARDANO (1501-1576). Michael StiFeL (14877—1567) fand sie so interes-
sant, dass er siec ganz am Ende seiner Arithmetica integra (1544) bringt. Ange-
regt durch sie, fiigt er gelegentlich ergédnzende Aufgaben hinzu.

33. Aufeabe 78: Zerlege 14 so in 3 Summanden, dass sie in stetiger Proportion

zueinander stehen* und dass die Summe aus dem 2fachen des ersten,
dem 3fachen des zweiten und dem 4fachen des dritten 36 ergibt.

| HIERONIMI ARITHMETI |

C.CARDANI MEDIGI MEDIOLA CA INTEGRA.
NENSIS,PRACTICA ARITH
metice, & Menfurandifingolans. In qua Authore Michacle Scifelio.
que preter aliagcotinennum rerfa

pagina bemonfirabic,

Cum prafatione Philippi Melanchthonis.

Norimhergz apud Iohan. Petreium,
Anno Chrifti m, o, x 11111,

Cum gratia & priuilegio Cxfarco
arcp Regio ad Scxennium,

: — — — — e

rFitud o%.nmr (Ardansr M HJ;‘W /ﬁ-,/r/

Abb.141.1 Titelblatt der Practica Abb.141.2 Titelblatt der Arithmetica

Arithmeticae von 1539 des Geronimo integra—»Die ganze Arithmetik« — (1544)

CARDANO (1501-1576)** und dessen von Michael STIFEL (14877 Esslingen bis

Unterschrift. 19.4.1567 Jena) und dessen Unterschrift.
Ein Bildnis ist nicht iiberliefert.***

+ 3 GroBen a. b. ¢ bzw. 4 GroBen a, b, ¢, d stehen in stetiger Proportion zueinander oder verhalten sich

stetig, wenna:h=b:cbaw. atb=0b:c=c:id gilt.

Des Hieronimus €. Carpanus mailindischen Arztes, einzigartige Handhabung der Arithmetik und des

Messens. Was in ihr unter anderen enthalten ist, legt er auf der niichsten Seite dar.

Die Umschrift NEMO PROPHETA ACCEPTUS IN PATRIA um das Bildnis ist eine Anspielung auf

Matth. 13,57, das im Deutschen zu »Der Prophet gilt nichts in scinem Vaterlande« verkiirzt wird.

#x% A nfdem Titelblatt liest man ferner: Mit einem Vorwort Philipp MELANCHTHONS. Zu Nilrnberg bei Johann
Perrews. Im Jahre Christi 1544, Mit der Gunst und dem Kkaiserlichen und kéniglichen Privileg fiir einen
Zeitraum von sechs Jahren. Die Umschrift um das Flammenschwert lautet SERMO DEI IGNITUS ET
PENETRANTIOR QUOVIS GLADIO ANCIPITI, d.h.: Die Sprache Gottes ist feurig und durchdrin-
gender als jedes zweischneidige Schwert. — Am Ende schreibt StireL, dass er das Manuskript mehr als
ein Jahrfinft zuriickgehalten habe; es war also bereits 1539 fertig. — Die in der 1. und 2. Auflage wie-
dergegebene Unterschrift ist kein Autograph STIFELs.

#3%
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34.

9%
n

*

3 Die quadratische Gleichung

Michael STIFEL verwandelt die vorstehende Aufgabe in:

Zerlege 182 so in 3 Summanden, dass sie in stetiger Proportion zueinander
stechen*. Bildet man dann die Summe der 3 méoglichen Produkte aus je
zweien von ithnen, so erhélt man 7644. Wie heil3en die Teile?

. Michael STIFeL ergidnzt die vorstehende Aufgabe durch:

Zerlege 78 in 3 Summanden, die sich stetig verhalten* und fiir die gilt:
Teilt man 78 durch jeweils einen der Summanden, so ist die Summe dieser
drei Quotienten 183. Wie groB3 sind die Summanden?

. Aufgabe 110: Das Produkt der Katheten eines rechtwinkligen Dreiecks

hat den Wert 10; die Katheten und die Hypotenuse verhalten sich stetig*.
Bestimme sie.

Aufgabe 28: Die Summe dreier Zahlen, die sich stetig verhalten*, ist so
grold wie ithr Produkt. Teilt man 25 durch jeweils eine von ihnen, so ergibt
auch die Summe der drei Quotienten die Summe dieser drei Zahlen. Wie
grol} sind sie?

. Von Michael STIFEL stammt: Zerlege 76 in drei Summanden, die sich stetig

zueinander verhalten®, sodass das Produkt aus dem mittleren Glied mit
der Summe der beiden duBeren Glieder 1248 ergibt. Wie groB3 sind die
Summanden?

. Aufgabe 112: Vier Zahlen verhalten sich stetig zueinander*. Ihr Produkt

hat den Wert 81, das Produkt der beiden ersten den Wert 6. Wie heiBen sie?

. Aufgabe 95 hat STIFEL verbessert, sodass sie aufgeht. In Klammern stehen

die urspringlichen Werte CARDANOS:

Die Summe von vier Zahlen, die in stetiger Proportion zueinander ste-
hen*, hat den Wert 45 (10); die Summe ihrer Quadrate ist 765 (60). Wie
grol} sind sie?

3 GrolBen a, b, ¢ bzw. 4 GrélBen a, b, ¢, d stehen in stetiger Proportion zueinander oder verhalten sich stetig,
wenna:b=b:cbhzw.a:b=b:c=c:dgilt.
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NOVA SCIENTIA INVENTA DA NICOLO TARTALEA.B,
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Titelblatt von Nova Scientia — »Neue \‘\r"it:%cnsclmi’lff. , die Niccold TARTAGLIA (1499
bis 1557) im Jahre 1537 herausbrachte, weil Sultan SULAIMAN II. DER PRACHTIGE
(reg. 1520-1556) weiter zum Krieg gL‘:_L en die Christenheit riistete.
Das Buch handelt vorwiegend von der SchieBkunst. TARTAGLIA beweist darin. dass
man am weitesten schiefen konne, wenn das Geschiitz 45° iiber den Horizont aufge-
richtet wird. Die im Titelbild dargestellte Flugbahn des Geschosses sieht wie eine
Parabel aus. TARTAGLIA wusste aber noch nicht, dass Geschosse sich wirklich auf einer
Parabel bewegen (Abbildung 159). Erst Galileo GALILEI (1564—1642) erbrachte rund
70 Jahre spiter den Beweis dafiir (siche Seite 174).
Die beiden Wappen sind nicht sehr genau gezeichnet. Das linke ist das Wappen von
FrRANZ MARIA L. (1490-1538) aus dem Hause DELLA ROVERE. Er war Herzog von
Urbino (1508-1538) und Generalkapitdn von Venedig, ferner Autor der Discorsi mili-
tari. An ihn ist der Brief gerichtet, der das Werk einleitet. Das rechte Wappen ist das
seiner Ehefrau ELEONORE (1 1570) aus dem Hause GONZAGA, das in Mantua regierte.
Der Wahlspruch AURUM PROBATUR IGNI, ET INGENIUM MATHEMATICIS — Lmld wird
auf Echtheit gepriift durch das Feuer, der Geist durch die Mathematik — sei. so
Luca PacioLl (um 1445-1517) in seiner Divina Proportione (1498, gedruckt 1509),
unter den Gelehrten sprichwortlich geworden um auszudriicken, dass »mathematische
Begabung hervorragend fiir jede andere Wissenschaft geeignet mache«.
Der Ausspruch der mathematischen Wissenschaften, die, durch Damen symbolisiert,
in einem Garten stehen, ist ein Distichon, das VERGILs (70-19 v. Chr.) rerum cognoscere
causas — das Wesen der Welt erkennen — (Georgica 11, 490 — »Landleben«) aufgreift.
Die mathematischen Wissenschaften sprechen:
Ihr, die Ihr den Wunsch habt, die mannigfaltigen Ursachen der Dinge zu erkennen,
Lernet uns; fir alle ist hierher nur ein einziger Weg gangbar.

Spielt TARTAGLIA damit vielleicht auf den Spruch des MENAicHMOs (Mitte 4. Jh.
v.Chr.) an - du findest ihn auf der Titelseite dieses Buches —, dass es in der Mathematik
keinen Konigsweg, sondern nur einen Weg fiir alle gibt?*
TARTAGLIA selbst steht in diesem Garten, zu dem EUKLID einlisst. umgeben von der
Musik, der Arithmetik, der Geometrie, der Perspektive und der Astronomie. Auf den
Spruchbéindern sind noch die Architektur und die Astrologie entzifferbar, dariiber
hinaus die verschiedenen Kiinste des Wahrsagens, so die durch das Los (sortilegio), die
durch Befragung der Seelen Verstorbener (necromantia), die durch Beschau des Opfer-
feuers (pyromantia), der Leber der Opfertiere (aruspitio), des Fluges der Wahrsz 1gevVo-
gel (auspitio), die durch Beobachtung der Méuse (myomanteia) und schlieBlich die
Wahrsagung durch Beobachtung und Deutung von Wahtzeichen (augurio).
Der Zugang zur Philosophie ist nur méglich iiber ARISTOTELES und PLATON, auf dessen
Band wir NEMO HUC GEOMETRIAE EXPERS INGREDIATUR
lesen, die lateinische Version jener Inschrift, die iiber dem Eingangstor seiner Akade-
mie geschrieben stand **;

AT'EQMETPHTOZ MHAEIE EIZEITQ

Kein der Mathematik Unkundiger trete hier ein

* Dem Distichon stellt Luca PacioLt in der Diving Proportione die Zeile »Corpora loquuntur« (Die Korper
sprechen) voran.

** dyeopgtpnrog undeic eicite (ageométretos medeis eisito) — Die von PLATON (428-348 v.Chr.) um
385 v.Chr. gegriindete I’I‘Luhnphuml.uh ist nach einem in der Nihe befindlichen Heiligtum des Helden
AKADEMOS benannt. Geschlossen wurde sie 529 n. Chr. durch Kaiser JUSTINIAN (reg. 527-565). Die Inschrift
fiberlieferte uns ELias PHiLosopHUS (6. Jh. n.C hr.) in seinen 4dd Arisrotelis ("”{.Lr"” Tas commeniarida.
Nicolaus CoPERNICUS (1473-1543) wiihlte sie als Motto seines De revolutionibus orbium coelestium (1543).
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4.1 Quadratfunktion und Normalparabel

Die Losungen einer quadratischen Gleichung ax? + bx + ¢ = 0 kann man als
die Nullstellen einer Funktion f mit dem Term f(x) = ax? + bx + ¢ deuten.
Da f(x) ein quadratischer Term ist, hei3t / quadratische Funktion. Die ein-
fachste quadratische Funktion hat den Term f(x) = x*. Man gibt ihr einen
besonderen Namen:
Definition 145.1: Die Funktion /: x — x?, D, = R, heiit Quadratfunk-
tion, ihr Graph hei3t Normalparabel®.

Um die Normalparabel zeichnen zu kénnen berechnen wir eine Wertetabelle:
p

X |—3 — 2 =5 e S B EE) 0,3 0,5 1 1,5 e

y | 9 4= 02025, (.25 20100 R RI0SE0 25 Sl DB s 0

Abbildung 145.1 gibt die Normalparabel wieder. Da man sie sehr oft zeichnen
muss, lohnt sich eine Zeichenschablone™**.

Wir stellen einige wichtige Eigenschaf-

ten der Normalparabel zusammen: 4
1. Die Normalparabel ist eine ge- 10

krimmte Kurve, die sich nach oben

offnet.

Sie ist symmetrisch zur y-Achse,

da zu entgegengesetzten Abszissen

x und —x wegen (—x)?=x>

gleiche Ordinaten gehoren. Die I

5 |

*

| napuPoin (he parabolg) = die Nebeneinanderstel-
lung, die Vergleichung, die Gleichheit. Das Wort wurde
bereits von den PYTHAGOREERN benutzt (siche Aufga- i
be 110/25). Den Graphen der Funktion x — ax?* be-

zeichnete als erster APOLLONIOS VON PERGE (um 262

bis um 190 v. Chr.) in seinen Kewixd (Konika) —»Die

Kegelschnitte« — als Parabel (siche 5.2). 1
Das Adjektiv normal erscheint in Deutschland zu An- ;

fang des 18. Jh.s. Es geht zuriick auf das lateinische J
normalis, das zum Substantiv norma gehort. Dieses -1 1
bedeutete urspriinglich Winkelmaf, spiater dann aber

auch — so z. B. bei Cicero (106-43 v.Chr.) — Richi- Abb.145.1 Di
sehnur, Regel, Vorsehrift, sodass nermalis im tibertra-

genen Sinn der Regel entsprechend bedeutet.

X

Normalparabel

o

** Das franzosische Wort échantillon (Probe, Muster) gelangt an den Niederrhein und ergibt unter Einfluss des
mittelniederlindischen scampen (behauen) in Kleve 1477 se(h Jamplioen, im 16. Jh. niederdeutsch schampe-
fign im Sinne von Vorbild, Muster, Modell. Unter dem Einfluss des Verbums schaben verliert es sein m. Die
Form Schablon ist 1783 in Berlin belegt
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p-Achse heillt Symmetrieachse oder kurz Achse* der Normalparabel.

2. Ausy = x? = 0 folgt, dass es keine Kurvenpunkte unter der x-Achse gibt.
Auf der x-Achse liegt nur der tiefste Kurvenpunkt (0]|0). Er ist auch der
Schnittpunkt der Achse mit der Normalparabel und heiBBt Scheitel** der
Normalparabel.

3. Aus 0 = x; < x, folgt 0 < x, — x;. Multipliziert man mit x, + x,, dann
ergibt sich 0 < x7 — x{ und somit 0 < x7 < x2, d.h., mit wachsenden posi-
tiven Abszissen nehmen auch die entsprechenden Ordinaten zu. Die Kurve
steigt im 1. Quadranten und fillt auf Grund ihrer Symmetrie im 2. Qua-
dranten.

Wenn x beliebig groB3 wird, dann wird erst recht x? beliebig grof. Also
erstreckt sich die Normalparabel nach oben ins Unendliche. Die Werte-
menge der Quadratfunktion ist demnach nicht nach oben beschrinkt. Sie
besteht aus allen nicht negativen reellen Zahlen, weil man aus jeder nicht
negativen reellen Zahl die Wurzel ziehen kann, deren Quadrat wieder die
Zahl liefert (Abbildung 147.1). Also gilt W= R, .

Aufgaben

1. Zeichne den Graphen der Quadratfunktion in verschiedenen Koordina-
tensystemen. Wihle als Einheiten auf den beiden Achsen
a) je 1cm, b) je 5Scm.

2. Zeichne den Graphen der Quadratfunktion in einem Koordinatensystem
mit verschiedenen Einheiten auf den Achsen, und zwar

a) auf der x-Achse 1 cm, auf der y-Achse 5 cm;
b) auf der x-Achse 5 cm, auf der y-Achse 1 cm.

3. Begriinde die Konstruktion von Punkten P der Normalparabel, die in
Abbildung 147.2 vorgefiihrt ist.

* Den Fachbegriff Achse findet man bei EUKLID (um 300 v.Chr.) als 6 ifov (ho @xon) lediglich in den
Definitionen 15, 19 und 22 von Buch XI der Elemente fiir diejenige Gerade, um die sich ein Halbkreis, ein
Dreieck oder ein Parallelogramm drehen miissen, damit eine Halbkugel, ein Kegel oder ein Zylinder ent-
steht. Das zugehorige lateinische axis wird durch CoNRADT VON MEGENBURG 1349 in seiner Ubersetzung der
De sphaera mundi des JOHANNES DE SACRO Bosco (12007-12567) als achs wiedergegeben, das aus dem
althochdeutschen ahsa herkommt. ApoLLoNiOS (um 262—um 190 v. Chr.) beniitzt GEwv = 4chse in unserem
Sinn.

** ARCHIMEDES (um 287-212 v. Chr.) nannte diesen Punkt | kopugt] (he koryphe) = Spitze. Gipfel, Scheirel,

was Johann Christoph STURM (1635-1703) mit Scheitelpunkt in seinem 1670 erschienenen Des Unvergleichii-

chen Archimedes Kunst-Biicher, Teutscher Archimedes iibersetzte.
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Yy
y A
!
X
_—l.'"y? 1 Ks 'l."yz X
Abb.147.1 Quadrieren und Radizieren =~ Abb.147.2 Konstruktion von Punkten
mit Hilfe der Normalparabel der Normalparabel

4.2 Normalparabel und Gerade

Fin graphisches Verfahren zur Losung der quadratischen Gleichung
ax? + bx + ¢ = 0 mit @ % 0 beruht auf der Umformung

b c
axl+bx+c=0<=x*=——x—-. YA
a a

Wir fassen die beiden Seiten als Ter-
me von zwei Funktionen fund g auf,

namlich
fl =
: b ¢
A o 31

Der Graph von fist die Normalpara-
bel, der von g eine Gerade mit der

. b
Steigung — — und dem y-Achsenab- X1
t

schnitt — —. (Siche Abbildung 147.3.) Abb. 147.3  Graphische Losung
d der Gleichung ax* +bx+c=10
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Fur die Abszissen x, und x, der Schnittpunkte S, (x,|y,) und S, (x,

¥,) gilt

, v b &
J(x1) =g(xy), also x{=—-x;—— und
a d
, 5 b ¢
J(x;) = g(x;), also x;3=——x,— .
a a

Sie sind daher die Losungen der quadratischen Gleichung ax? + bx + ¢ = 0.
Auf Grund dieser Uberlegungen kann man qudrcnu-,Lhe Gleichungen dI\O
auch graphisch niherungsweise 16sen: Man zeichnet mit der Schablone die
Normalparabel und bringt sie mit der zugehérigen Geraden zum Schnitt.
Dabei treten die uns schon bekannten drei Fille auf:

Parabel und Gerade haben zwei, einen oder keinen Punkt gemeinsam. Da-
durch kommt zum Ausdruck, dass die quadratische Gleichung zwei, eine oder
keine Losung hat. Abbildung 148.1 zeigt die drei Fille.

Abb.148.1 Zur Anzahl der Losungen einer quadmuwiun Gleichung
x?—2x—3=0 x*—2x+1=0 x2—2x4+2=0
Xr=2x 43 2= 2y —1 xe=x—7

Wir haben damit ein algebraisches Problem geometrisch gelost. Umgekehrt
kann man aber auch geometrische Probleme algebraisch 16sen. Als Beispiel
hierfur betrachten wir: Berechne die Schnittpunkte der Normalparabel mit
einer gegebenen Geraden. Die Koordinaten der Schnittpunkte miissen das
Gleichungssystem

e R S
L erfiillen, das mit USarim il

dquivalent ist.
[l y=mx+1 II' y=mx+1¢
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Je nachdem, ob die Diskriminante D = m? + 4t der Gleichung 1" groBer,
gleich oder kleiner als null ist, gibt es zwei, einen oder keinen %(,hmltpunkl Im
: all D > 0 heiBt die Gerade Sekante, im Fall D < 0 heiBt sie Passante; im Fall
— (0 nennt man die Gerade Tangente™.

Wn sagen, die Tangente beriihrt die Parabel im Beriihrpunkt. Die Abszisse des
Beriithrpunkts ist anpel]mung der quadratischen Gleichung (siche Seite
103).

Verschiebt man eine Gerade parallel zu sich so weit, bis sie die Parabel bertihrt,
dann kann man sich vorstellen, dass im Bertthrpunkt die beiden Schnittpunk-
te zusammenfallen. Das macht die Bezeichnung Doppelldsung versténdlich
(Abbildung 149.1).

[st die gegebene Gerade parallel zu y-Achse, dann erhilt man das einfachere
System

By =4
I x—

das die einzige Losung (s|s?) hat (Abbildung 149.2).

Y
y
y=x2
X=5
X
Abb. 149.1 Zur Erklirung des Abb.149.2 Schnitt mit einer Geraden
Begriffs »Doppellosung« parallel zur Parabelachse

secans (lat.) = schneidend; tangens (lat.) = berithrend.

Passante ist eine Analogiebildung zu den vorherigen Begriffen. Aus passus (lat.) = das Ausspreizen der Fiifie
beim Gehen wird das franzosische passer = voritbergehen, vorbeikommen, das wir in unserem passieren wie-
derfinden.
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Ein Zahlenbeispiel soll dir zeigen, wie man im konkreten Fall vorgeht.

Beispiel:
Berechne die Schnittpunkte der Geraden y = x + 4 mit der Normalpara-
bel.

=t

II y=x+4

P el

1" y=x+4

' x=L@-V17) v x=3101+V1D)
1" y=x+4

x=31-V17) = y=2d - V1D +4=1(9-117)

x=3(1+V17) = y =401 +V1T) + 4 =19 + V17)
Das ergibt die Schnittpunkte
S;GU—VIDI3O - V17) und S,E1 +VIDIEO +1V17).

Das graphische Losungsverfahren (Abbildung 150.1) liefert dafiir die
Naherungswerte S, (—1,6/2.4) und S, (2,66,6). Die exakten Werte sind
nur algebraisch zu haben.

y i

y =x?

Abb.150.1 Schnittpunkte der Normalparabel mit der Geraden y=x+4
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Aufgaben

1. Lose zuerst graphisch und dann rechnerisch.
a) x*?—2x=10 b) x?4+2x—3=0
¢) x*+6x=—11 d) 2x*+24 = 16x

2. Lose zuerst graphisch und dann rechnerisch.
a) x*—1,6x—26=0 b) 3x2—-2x—12=0
¢) 0,25x*4+0,5x—0,5=0 d) 6x>+2x—25=0
e) 8x*—14x+1=0 f) 0,1x*+40,32x+0,12=0

Berechne die Koordinaten der Schnittpunkte der Normalparabel mit der
Geraden

a) y=—0,5x43, b) y=6x—3.

. Uberpriife, ob die Gerade Sekante, Tangente oder Passante der Normal-

parabel ist, und berechne gegebenenfalls die gemeinsamen Punkte.
a) y=x—1 by y=—4x—4 ¢) y=20x—100
d) y=100x—20 e) y=3x+4 f) y=2,5x—1,5625

. Bestimme eine Gleichung der Tangente der Normalparabel, die die Stei-

gung m hat; berechne die Koordinaten des Berithrpunkts.
a) m=3 b) m=—6 ¢c) m=0

. Wie lautet eine Gleichung der Geraden durch den Punkt (0]2), die die

Normalparabel in S(3|?) schneidet? Gib auch den zweiten Schnittpunkt

an.

Die Gerade y = mx + t sei Tangente der Normalparabel.

a) Zeige: Der Berithrpunkt hat die Abszisse 0,5m und die Ordinate — 1.

b) Konstruiere mit Hilfe von a) die Tangente an die Normalparabel in
einem gegebenen Parabelpunkt.

¢) Konstruiere mit Hilfe von a) die Tangente an die Normalparabel von
einem Punkt der negativen y-Achse aus.

. Bestimme Gleichungen der Tangenten der Normalparabel, die durch den

Punkt P gehen, und berechne jeweils die Koordinaten des Bertihrpunkts.
a) P(0]|—3) b) P(0] —10,24)

. Bestimme Gleichungen der Tangenten der Normalparabel, die durch den

Punkt P gehen, und berechne jeweils die Koordinaten des Beriihrpunkts.
a) Bl =3) b) P(—3|8)
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4.3 Die Wurzelfunktion

4.3.1 Definition der Wurzelfunktion

Ordnet man jeder nicht negativen Zahl x ihre Quadratwurzel }/x zu. so hat
man eine Funktion; sie heiBt Quadratwurzelfunktion oder kurz Wurzelfunk-
tion. Wir merken uns

Definition 152.1:
Die Funktion f: x — [/x, D, =R, heillt Wurzelfunktion.

Zum Zeichnen des Graphen der Wurzelfunktion berechnen wir eine Werteta-
belle, auf Zehntel gerundet.

Lad
I
L
o)
~J
(5]
O

x ‘o 0,05 0.5 e At 120

V x ‘ 0: 205 07 ' bd 4.7 2222 96 08 3

Abbildung 152.1 gibt den Graphen wieder.

Wegen 0 < x; < x, < |/ x; < |/ x, (vergleiche Seite 53) ist die Wurzelfunktion
(:th monoton wachsend. Die Wertemenge der Wurzelfunktion ist Rq. Wire
die Wertemenge ‘namlich nach oben hLbL]]hiIlkl dann misste es eine thl N

geben, sodass |/x < N fiir alle xe Ry gilte. Aus [/x < N folgt aber x < N2,
und das ist ein Widerspruch, weil x h:.lublg grol wudm kann.

YA

Abb.152.1 Der Graph der Wurzelfunktion

Aufgaben

1. Bestimme die maximale Definitionsmenge der folgenden Funktionsterme
und berechne eine Wertetabelle, sodass du die Graphen der zugehorigen
l~unk110nen zeichnen karmxl

e b) —V—x ¢) V]x| d) — Vx|

2. Lose wie in Aufgabe 1:
3) l\l b} o Ir"LJ C} ! i Xg




Ln
(5

4.3 Die Wurzelfunktion 1

4.3.2 Die Umkehrfunktion

Eine Funktion £: x > y mit y = f(x) ordnet jeder Zahl x ihrer Definitions-
menge D genau eine Zahl y threr Wertemenge W zu.

¥ Ay
X3 f
[de=d
f
¥
LY f
X1

Abb.153.1 Veranschaulichung einer Funktion f: x - y

Abbildung 153.1 zeigt, dass dabei auch verschiedene x-Werte denselben y-
Wert als Funktionswert haben konnen. Zu einem solchen y-Wert gehort also
mehr als ein x-Wert. Kehrt man die Zuordnung um, dann erhélt man keine
Funktion, weil die umgekehrte Zuordnung nicht eindeutig ist. Es gibt aber
Funktionen f, bei denen die Umkehrung der Zuordnung wieder eindeutig
ist, also eine neue Funktion g ergibt. / heilt in einem solchen Fall umkehrbar,
und ¢ nennt man die Umkehrfunktion von f (Abbildung 153.2).

Die Umkehrbarkeit einer Funktion bedeutet, dass ihr Graph von jeder Paral-
lelen zur x-Achse hochstens einmal geschnitten wird; denn jedes y € W darf
nur einem einzigen x € D zugeordnet sein. Die Umkehrfunktion g zur Funk-
tion f: x — yentsteht dann einfach durch Umkehren der Abbildungsrichtung
g: y = x (Abbildung 154.1). Die Definitionsmenge der Umkehrfunktion g ist
die Wertemenge W der urspriinglichen Funktion f. Die Wertemenge von g ist
dann natirlich die Definitionsmenge D von /.

X y K‘ Ay
:(3 X;‘-
§ Yy g -y
X3 Xy
f [ g Y2
X X1

Abb.153.2 Die Funktion f und ihre Umkehrfunktion g
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b |

-:r.:fl:x]

I

x=0a(y) X

Abb.154.1 Die Funktion f: x + y, ihre Umkehrfunktion g: y + x und ihr gemein-
samer Graph

Schreibt man den Funktionswert y der Funktion f: x — y in der Form f(x),
so hat die Funktion f die Funktionsgleichung y = f(x). Hat f eine Umkehr-
funktion g: y +— x und bezeichnet man ihren Funktionswert mit g(y), so gilt
die Gleichung x = g(y). Die Gleichungen y = f(x) und x = g(y) stellen den-
selben Zusammenhang zwischen den Elementen der Mengen D und W dar.
Bei y = f(x) wird lediglich die Zuordnungsrichtung x — y, bei x = g(y) die
Zuordnung y +— x hervorgehoben. In beiden Fillen ergibt sich derselbe
Graph.

Bei der Schreibweise x = g(y) fiir die Umkehrfunktion g: y — x ist y die
unabhéngige und x die abhédngige Variable. Betrachtet man die Funktion g fiir
sich allein, so wird man wie {iblich die unabhidngige Variable mit x und die
abhingige mit y bezeichnen. Diese Anderung der Bezeichnungsweise fithrt zur

Y |

Abb.154.2  Spiegeln an der Winkelhalbierenden y = x durch Vertauschen der Koor-
dinaten
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Gleichung y = g(x). Der zugehérige Graph entsteht aus dem Graphen von
x = g(y) durch Spiegelung an der Winkelhalbierenden y = x (Abb. 154.2).
Wie man die unabhingige Variable bezeichnet, ist eine reine AuBerlichkeit; sie
hat nichts mit der durch die Funktion gegebenen Zuordnung zu tun. Sie wirkt
sich nur auf die Zeichnung des Graphen aus: Beim Spiegeln an der Winkelhal-
bierenden y = x wird die x-Koordinate zur y-Koordinate und umgekehrt die
y-Koordinate zur x-Koordinate, also werden die x- und y-Koordinaten ein-
fach vertauscht.

Aufgaben

1. Welche der durch die folgenden Tabellen definierten Funktionen x +— y
sind umkehrbar? Stelle gegebenenfalls die Umkehrfunktion y +— x durch
ihren Graphen dar.

x|—=2 0 3 b x| =2 10 3
B D -4 ) 5F 1 2 4
x|-2 -1 0 1 2 X 1 Pl —0,5 -
e ke s i
¥y 5 1 5 5 3 ¥ U-,._s 1,25 — (}.25 == ]...2:3
2. Durch die Gleichungen
a) Sx+2y—10=20 b) x—y—1=0
¢) x+y—3=0 d) y—5=0

wird jeweils auf der Menge der reellen Zahlen eine Funktion f: x >y
erklirt. Welche dieser Funktionen sind umkehrbar? Stelle gegebenenfalls
die Umkehrfunktion g sowohlin der Form g: y — x als auch in der Form
g: x - y durch eine Gleichung dar und zeichne die Graphen.

3. Welche der in Abbildung 155.1 angegebenen Graphen definieren umkehr-
bare Funktionen?

a) y | b) Y

S

-—-’/
:-c."

c) YA d) ¥

Nall o

Abb.155.1 Zu Aufgabe 3
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4. Die Graphen der Abbildung 156.1 stellen umkehrbare Funktionen
f: x = y dar. Begriinde dies! Ubertrage sie vergroBert in dein Heft und
zeichne jeweils den Graphen der Umkehrfunktion ¢ in der Form

g x> ). i
¥
a) b)
i |
-
‘| 4
. : 1 ';{_ / 1
[ / . D 1 X
c) |
YA
| d) y
i 4
1 ; 1 - 1iefs
1 X . .
0 ! 1 3 X

Abb.156.1 Zu Aufgabe 4

5. Durch den Graphen in Abbildung 156.2 wird eine nicht umkehrbare
Funktion x — y erkldrt (Begriindung!). Der Graph kann jedoch so in
Teilstiicke zerlegt werden, dass jedes fiir sich eine umkehrbare Funktion
definiert. Gib die einfachste derartige Zerlegung an.

Abb.156.2 Zu Aufgabe 5
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6. Kann man die Graphen a und b der Abbildung 157.1 in Teilstlicke zerle-
gen, welche umkehrbare Funktionen definieren (vgl. Aufgabe 5)? Wie
konnte die Zerlegung gegebenenfalls vorgenommen werden?

a) yA b) yi

I i/\
1 v 1 X

Abb.157.1 Zu Aufgabe 6

b

4.3.3 Die Wurzelfunktion als Umkehrfunktion

Hat die Quadratfunktion x + x”eine U mkehrfunktion? Der Graph der Qua-
dratfunktion ist die Normalparabel. Sie wird von allen Parallelen zur x-Achse,
die oberhalb der x-Achse laufen, zweimal geschnitten. Also hat die Quadrat-
funktion keine Umkehrfunktion. Schrinkt man jedoch die Definitionsmenge
so ein, dass der Graph nur aus dem steigenden oder nur aus dem fallenden Teil
der Parabel besteht. dann kann man die Funktion umkehren. Jetzt trifft jede
Parallele zur x-Achse den Graphen hochstens einmal. So hat z.B. die Funk-
tion x — x2 mit der Definitionsmenge R eine Umkehrfunktion (Abbildung
157.2). Aus y=x? mit x=0 folgt x=}y mit y=0. Die Funktion

yy

y A
‘Ju":. }(‘-
y=xlixe R
Y= !."'rx
‘| it I
1 -

1 1 1 X
Abb. 157.2 Die Quadratfunktion mit Abb.157.3 Die Wurzelfunktion als
eingeschrinkter Definitionsmenge Umkehrfunktion der (eingeschrinkten)

D =R, Quadratfunktion
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g:y = Vy; yeRy ist also die Umkehrfunktion zu f: x - x2; xe R . g ist
aber die Wurzelfunktion, die wir in 4.3.1 kennen gelernt haben. Thr Graph ist
demnach die halbe Normalparabel und kann auch mit der Schablone gezeich-
net werden. Mit der unabhidngigen Variablen x erhilt man g
x + }/x, xe R§ und als Graphen die an der Winkelhalbierenden gespie-
gelte Halbparabel (Abbildung 157.3).

Aufgaben

I. Spalte die Quadratfunktion f: x + x?in zwei umkehrbare Teilfunktionen
J1 und £, auf und gib jeweils die Umkehrfunktion an.

]

. Gib die Umkehrfunktion der Wurzelfunktion f: x + }/x an.

7%}

. Bestimme die maximale Definitionsmenge und die zugehdrige Wertemen-
ge der Funktion f'und zeichne den Graphen. Ermittle gegebenenfalls die
Umkehrfunktion.

a) f(x)=V|x| b)f(xX)=V—x ¢ fX)=—V|x| & f(x)=-V—x

**4.3.4 Graph der Wurzelfunktion und Gerade

Wie bei Normalparabel und Gerade kann man auch bei der Wurzelfunktion
die Lage des Graphen zu einer Geraden untersuchen. Die Schnittbedingung
liefert eine Wurzelgleichung der Bauart |/x = mx + t. Sie kann eine Doppello-
sung (Tangente), eine oder zwei einfache Losungen (Sekante) oder keine Lo-
sung (Passante) haben.

Aufgaben

1. Lose durch Rechnung und Zeichnung:

a) Vx=x b) V/x = —x ©) Vx =|x|

d) Vx| = x & Vix|=—x D) Vix| =|x|
2. Lose durch Rechnung und Zeichnung:

a) Yx =2x—6 b) Vx =3x+3

¢) Vx=4x+1 d) Vx=—4x—1

3. a) Lose durch Rechnung J/'x —Va = x —a.

b) Ldse a durch Zeichnung fiir a = 0; 4; 1; 4.

4. Bestimme ¢ so, dass y = 3 x + ¢ Tangente an den Graphen der Wurzel-
funktion x — }/ x ist.
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Eine der regelmiBig etwa alle 20 Minuten stattfindenden Eruptionen des Stromboli.

Dieser 926 m hohe Vulkankegel bildet die gleichnamige italienische [nsel. Er ist einer

der titigsten Vulkane Europas. Von seinen stiandigen Eruptionen berichtet uns bereits

z.B. Pomponius MELA (1.Jh. n. Chr.) in Buch 11/120 seiner um 40 n. Chr. entstandenen

De chorographia libri tres — »Drei Biicher Erd beschreibung« —, wo er davon spricht,

dass die Insel Strongyle — ZtpoyyOin, die Runde, hiel sie ndmlich in der Antike — mit
einem ewigen Feuer lodere.
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5.1 Die verschobene Normalparabel

5.1.1 Verschiebung in y-Richtung

Die Funktionswerte der Funktion g: x — x* + ¢, x € [R unterscheiden sich
von den Funktionswerten der Funktion f: x +— x2%, x € R fiir jedes x um den

Wert 1.
Wihlen wir z. B. 1 = 2, dann erhalten wir folgende Tabelle:

X -3 -2 -1 0 1 2 3

% 9 4 1 0 1 4 9 i
X% 42 11 6 3 2 3 6 11

Der Graph von g: x — x* + 2 entsteht aus der Normalparabel durch Ver-
schieben um 2 in y-Richtung (Abbildung 160.1 a)).

Allgemein gilt:

Der Graph von x +— x* + 7 entsteht aus der Normalparabel durch Ver-
schiebung um ¢ in y-Richtung.

a) b)

Abb.160.1 Verschiebung der Normalparabel in y-Richtung
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Beachte: Ist t negativ, dann wird die Normalparabel um || nach unten ver-
schoben (Abbildung 160.1b).

Bei der Verschiebung bleibt die y-Achse weiterhin Parabelachse, der neue

Scheitel ist (0] ¢). die neue Wertemenge [#; + oof.

Aufgaben
1. Zeichne die Graphen zur Funktionsgleichung:
a) y=x>+1 b) y=x?—1
c) y=x>+25 d) y=x2—35.
2. Gib Scheitel und Wertemenge der Parabel an.
a) y=x>—5 b) y=x?+ 100
¢) y=x2—0,,01 d) y=x2-2J2
3. Zeichne den Graphen und bestimme die Nullstellen der zugehorigen
Funktion.
a) y=x>—1 b) y=x%—225
¢) y=x*—0,25 d) y=x2+1,69
&) y=x*—72 f) y=x2—11

24. Zeichne die Graphen, die zu den folgenden Funktionsgleichungen geho-
ren. (Hinweis: Verwende die Umkehrfunktion!)

a) y= =1 b) y = Vx+2 c) y=— Vx + 1
5.1.2 Verschiebung in x-Richtung

Den Zusammenhang der Funktionen f: x x2und g: x — (x — 3)? erkennt
man leicht durch Vergleich der Wertetabellen:

x -3 -2 -1 0 1 2 3 4 5 6
X~ 9 4 {3450 1 4 9 R i e
(x —3)? i Loy ol ) 4 1 0 1 4 B

Die Werte von (x — 3)? stimmen mit den Werten von x? Uberein, stehen aber
unter den um 3 groBeren x-Werten. Der Graph von g entsteht also aus der
Normalparabel durch Verschiebung um 3 in x-Richtung (Abbildung 162.1a).
Allgemein gilt:

Der Graph von x — (x — 5)% entsteht aus der Normalparabel durch
Verschiebung um s in x-Richtung.

Beachte: Ist s negativ, dann wird die Normalparabel um |s5| nach links ver-
schoben (Abbildung 162.1b).

Die verschobene Parabel hat die Achse x = s und den Scheitel (s]|0). Die

Wertemenge bleibt R .
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a) b)
y y
: y=x* .- \
III II. |II
\ [y W \
! |l- 'III
\"l. lla" "-II
|IIII II|III ||II
\ /
\ /

[
ol __L_Lfﬂ

. :\/

-
=

1 SRR X : ] %
Abb.162.1 Verschiebung der Normalparabel in x-Richtung
Aufgaben
1. Zeichne den Graphen zur Funktionsgleichung:
2) y=(x—1) b) y=(x+1)?
¢) y=(x—2,5)? d) y=(x+72)?
e) y=02—x)? ) y=(—x—23)>.
2. Gib den Scheitel und die Gleichung der Parabelachse an.
a) y=(x—1,5)" b) y = (x + 100)?
©) y=(x—2V/3) d) y=(—3+x)?
e) y=(3—x)° f) p=(—=3—x)?
3.

Gib den Scheitel und die Gleichung der Achse an.

a) y=x>—2x+1 b) y=x2+6x+9
¢) y=x>+5x+6,25 d) y=x*—dx+ 1660
¢4. a) Erstelle Wertetabellen fiir die Funktionen £ xi— V/x und
g: x > [/x — 3. Welcher Zusammenhang besteht zwischen den Wer-
ten? Wie erhilt man also den Graphen von g aus dem von f?

b) Zeichne den Graphen mit der Gleichung y = }/x — s fiir s =1 bzw.

)

8§ = 4,

5.1.3 Zusammengesetzte Verschiebung

Eine beliebige Verschiebung lasst sich zusammensetzen aus einer Verschie-
bung in x-Richtung und einer Verschiebung in y-Richtung, wie Abbildung
163.1 zeigt.




5.1 Die verschobene Normalparabel

Verschiebung der Normalparabel um s in x-Richtung und um ¢ in

Abb. 163.1
y-Richtung

Den Funktionsterm der verschobenen Parabel erhalten wir durch Kombina-
tion der beiden uns schon bekannten Verschiebungen:

Normalparabel X — x2

Verschiebung um s in x-Richtung x — (x—s)?

Verschiebung um ¢ in y-Richtung X (x—5)7%+1

X

— 3 nach rechts und

Schrittweise Verschiebung der Normalparabel um s

Abb. 163.2
um ¢ = 2 nach oben
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Allgemein gilt:

Verschiebung um s in x-Richtung und um ¢ in y-Richtung.

LDer Graph von x > (x — 5)* + 7 entsteht aus der Normalparabel durch

Die verschobene Parabel hat die Achse x = s und den Scheitel S(s|7).

Die Wertemenge ist [#; + co[.

Wir kénnen nun zeigen, dass jede Gleichung der Form y = x2 + px + ¢ eine
verschobene Normalparabel darstellt. Mit Hilfe der quadratischen Ergén-
zung stellen wir die Form her, aus der man die Verschiebung ablesen kann:

y=x*+px+gq

o S "
pi= = e [ (R '

Ry e 0l 2 4q—p?
Yy = (.\-1—2) —.L——4
4q — p* .

: - ; By ;
Das ist eine Normalparabel, die um —’; in x-Richtung und um g in
pldqg—p?
= ; :

L

y-Richtung verschoben ist. Ihr Scheitel ist (

Aufgaben
I. Zeichne den Graphen zur Funktionsgleichung:
a) y=(x—1)"+%3 B Y= =) —5
¢) y={(x+3)*—1 d) y=(x+22+25.
2. Gib den Scheitel und die Gleichung der Parabelachse an.
a) y=(x—1,7)2+0,9 b) y=(x—)/2)2+3
¢) y=(x+2V/52+2/5 d) y = (x — 1000)2 — 5003
3. Gib den Scheitel und die Gleichung der Parabelachse an.
a) y=2xt—2x—1 b) y=x*—6x+10
¢) y=x*+5x+1 d) y=x*—#x

4. Eine verschobene Normalparabel enthilt die Punkte A und B. Bestimme
ihre Gleichung, ihren Scheitel und ihre Achse.
a) A2|1); B(—3|1) b) A(0]|0); B(—2|—8)
¢) A(0]3); B(1]0) d) A(2|3); B(2|4) ()
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5. Wiihle in der Funktionsgleichung y = (x — 5)* + ¢ die Parameter s und ¢
so. dass der Graph der zugehorigen Funktion
a) den Scheitel (—4|9) hat;
b) die Gerade x = 2 als Achse hat und den Punkt Q(—0,5/4) enthilt;
¢) einen Scheitel hat, der sowohl auf der Geraden mit der Gleichung
y = 3x + 1 als auch auf der Geraden mit der Gleichung y = —3x —7
liegt.

$6. Zeichne den Graphen:

a) y=|x*=2| b) y=I(x—2)>—1]
C) ‘l'ZIJL'Z—2|+*1 d) J-':(_|,Y|—2]3—]
e) -1":].7\:2 4 4_\_'_3| f) _L':J\‘2—4|,\f|-~|---3

5.2 Streckung der Normalparabel

Im Abschnitt 5.1 haben wir quadratische Funktionen betrachtet, bei denen
der Term x2 den Koeffizienten 1 hatte. Bei der allgemeinen quadratischen
Funktion haben wir aber den quadratischen Term ax” mit a + 0. Der zugehd-
rige Graph heiBt (allgemeine) Parabel. Die Normalparabel ist der Sonderfall
fiir « = 1. Um zu untersuchen wie sich der Faktor ¢ auf den Graphen aus-
wirkt, vergleichen wir Funktionen vom Typ g, : x > ax?® mit f: x x?2. Fiir

die Werte ¢ = 2, a = & und a = — 2 erhalten wir folgende Wertetabellen:

yi

Abb.165.1 Forminderung der Parabeln durch den Faktor 4 bei x?, hier fiir
D<a<l
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X =300 820 ) =1 0 1 2 3
5 9 4 1 0 1 4 9
Do 18 - 0 2 8 18
Sx? JISE ) a5 U0 g5 " 2 4,5
Sopiale=ig w RFEE, 5 —p —g  —1g -

Abbildung 165.1 zeigt, dass a die Gestalt der Parabel beeinflusst. Jede Or-
dinate x* wird mit dem Faktor a zu ax? gestreckt. Ist @ > 1, dann ist die
Parabel schlanker als die Normalparabel, ist 0 < @ < 1, dann ist die Parabel
breiter als die Normalparabel. Bei negativem « ist die Form durch |a| fest-
gelegt, die Parabel aber an der x-Achse gespiegelt.

Die Abbildung 166.1 zeigt Beispiele fiir den Einfluss von a auf die Form der
Parabel.

yA

Abb.166.1 Die Parabel y = ax? fiir a = —2:

=
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Zusammenfassend halten wir fest:

( a>0: Parabel nach oben offen
' a < 0: Parabel nach unten offen
lal = 1: Normalparabel
lal=1: schlanke Parabel

| la]<1: breite Parabel |

Bei den Forminderungen durch den Faktor a bleiben der Scheitel (0/0) und
die Achse x = 0 der Parabel erhalten. Fiir @ > 0 bleibt auch die Wertemenge
Ry, wihrend fiir a < 0 die Wertemenge [Rq ist.

Dem Augenschein nach haben die Parabeln y = x* und y = ax? fiir [a| = 1
verschiedene Form. Tatsdchlich sind aber alle derartigen Parabeln zueinander
4hnlich: man kann sie ndmlich durch geeignete zentrische Streckungen in-
einander iiberfiithren.

Wenden wir die zentrische Streckung mit dem Zentrum (0|0) und dem Streck-
faktor m #+ 0 auf die Punkte P(p|p?) der Normalparabel an, dann ergeben
sich die Bildpunkte P’(mp|mp?). Fiir diese Bildpunkte gilt x = mp und

1 : 1 i S
y =mp* = — (mp)* und damit y = — x?. Fir m = — liegen also die Bild-
m m a

punkte auf der Kurve mit der Gleichung y = ax*. Damit haben wir

Satz 167.1: Alle Parabeln mit den Gleichungen y = ax?; a + 0 sind
zueinander ahnlich.

Y

Abb.167.1 Zentrische Streckung der Normalparabel mit Zentrum (0|0) und Streck-
faktor m




**Zum Namen »Parabel« |
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Wie auf Seite 145 angemerkt, geht das
Fachwort Parabel auf APOLLONIOS von
Perge (um 262-um 190 v.Chr.) zuriick.
Er beweist in Buch I,11 seiner acht Bii-
cher iiber die Kegelschnitte — I bis IV sind
auf griechisch, V bis VII auf arabisch
uberliefert, VIII ist verloren — folgende
interessante Eigenschaft, die bereits M-

NAICHMOS (Mitte 4.Jh. v.Chr.) und ARr-
CHIMEDES (um 287-212 v.Chr.) bekannt
war (siche dazu Abbildung 168.1); . il
Das von einem beliebigen Punkt P der Pa- Abb.168.1 PQ?=--SQ
rabel y = ax? auf die Parabelachse gefill- ¢

te Lot schneidet auf dieser eine Strecke

)

[SQ] ab, sodass das Quadrat iiber dem Lot fliichengleich einem Rechteck ist. dessen

. ; i i
eine Seite dieser Achsenabschnitt [SQ] ist und dessen andere Seite die Linge — hat,

d.h.

-, 1 — i
, dal} stets PQ* = — - SQ gilt. (Vgl. Aufgabe 1 69/5.)
a

(e

Wegen dieses Gleichseins (= napaBoin [parabolé]) der beiden Flicheninhalte gab
APOLLONIOS der Kurve y = ax? den Namen napaforn, der zu parabola latinisiert und
als Parabel eingedeutscht wurde.

Aufgaben

1.

Zeichne ins gleiche Koordinatensystem die Graphen von y = x2, y = 4?2
und y = $x2.

2. Zeichne ins gleiche Koordinatensystem die Normalparabel y = x?und die
Graphen von y = —3x?, y = —0,1x? und y = 2x2.

3. Ermittle zeichnerisch die Schnittpunkte der Parabel mit der Geraden und
prufe die Ergebnisse durch Rechnung.
a)y=x% y=1 b) y=—3x% 3p=-—3
¢) y=4dx*; y=x11 d) y=—3x* y=—6x1+3

. Lasst man eine Parabel um ihre Achse rotieren, so {iberstreicht sie eine
Fliche, die man als Paraboloid bezeichnet. Solche Flichen werden in der
Physik und Technik z. B. bei Hohlspiegeln verwendet. Ein derartiger Para-
bolspiegel zeigt folgende Eigenschaft: Alle parallel zur Symmetrieachse
einfallenden Lichtstrahlen werden in einem Achsenpunkt, dem so genann-
ten Brennpunkt, vereinigt. Seine Entfernung vom Scheitel heif3t Brennwei-
te. Hat ein Achsenschnitt des Spiegels (bei passender Wahl des Koordina-
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Abb.169.1 Der parabolische Brenn-
spiegel aus Albrecht DURERs (1471-1528)
Underweysung der messung mit dem
zirckel vnd richtscheyt in Linien ebnen
vand gantzen corporen, Niirnberg 1525

: - om i 1
tensystems) die Gleichung y = ax?, soist F( 0 1 der Brennpunkt.*
a

a) Wie groB ist die Brennweite eines Parabolspiegels, dessen Achsen-
schnitt der Graph von y = {5x? —6 < x =<6, ist (Lingeneinheit
1cm)?

b) Zeichne den Achsenschnitt eines Parabolspiegels von 2 cm Brennweite
und 8 cm Durchmesser. (Der Scheitel sei der Ursprung, die Spiegelach-
se die y-Achse des Koordinatensystems.)

Im Brennpunkt befinde sich eine Lichtquelle. Zeichne den Verlauf der
reflektierten Lichtstrahlen.

5. a) Beweise die von APOLLONIOS angegebene Eigenschaft der Parabel (sie-
he Seite 168).

b) In Aufgabe 110/25 behandelten wir das Problem der Flidchenanlegung.

Zeige, dass fiir den einfachsten Fall, nimlich an eine gegebene Strecke

der Linge b ein Rechteck so anzulegen, dass sein Flicheninhalt einen

: . 1 : e
vorgegebenen Wert ¢ hat, die Parabel y = ; x“ gute Dienste tut. Weise
7

* Der Brennpunkt einer Parabel wird bei ApoLLONIOS in den Konika nirgends erwiihnt, die Brennpunkte von
Hyperbe! und Ellipse jedoch schon. Méglicherweise kinnte er ihn in seiner verloren gegangenen Schrift fepi
zofl mpiov (peri tu pyriu) — »Uber den Brennspiegel« — behandelt haben. Die uns bekannte fritheste Er-
withnung dieses Punktes erfolgt bei Pappos (um 300 n. Chr.), ohne dass er ihm einen Namen gibt. Es lisst sich
jedoch nicht belegen, ob die oben angegebene optische Eigenschaft dieses Punkts dem Altertum bekannt war;
denn auch die Schrift Hepi aupeicv (peri pyreion) des DIoKLES (um 100 n. Chr.), die angeblich parabelische
Brennspiegel behandelt haben soll, ist verloren gegangen. Der gar ARCHIMEDES (um 287-212 v. Chr.) zuge-
schriebene Bau von Brennspiegeln, mit denen er bei der Verteidigung von Syrakus 212 v. Chr. die romische
Flotte aus groBerer Entfernung in Brand gesetzt habe, beruht auf einer etwa drei Jahrhunderte spiter ent-
standenen Legende. Erstmals lesen wir von der optischen Eigenschaft des Brennpunkies bei ANTHEMIOS von
Tralleis (t 534), der bei der Erbauung der beriihmten Hagia Sophia Konstantinopels téitig war. Das Abend-
land erhiilt von der Eigenschaft dieses Punktes erst Kenntnis durch die GERHARD vON CREMONA (1114-1187)
zugeschriecbene Uhcr::cl;:ung liber de speculis comburentibus, der Abhandiung tiber die Brennspiegel nach Ke-
gelschnitien des groBen Physikers und Mathematikers IBN AL-HAITAM, genannt ALHAZEN (um 965-1039), der
sich bei seinen Untersuchungen auf griechische Quellen stiitzte. Johannes KEPLER (1571-1630) gibt schliefi-
lich 1604 diesemn Punkt den lateinischen Namen focus ( = Feuerstitte, Opferherd). Die Eindeutschung Brenn-
punkt fand durch das Mathematische Lexicon (1716) des Christian voN WoLFr (1679-1754) Verbreitung,
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dazu nach, dass y die gesuchte zweite Rechtecksseite ist, wenn ¢ als
Inhalt eines Quadrats der Seitenldnge x gewihlt wird.

8c) Verwandle mit Hilfe einer geeigneten Parabel Quadrate mit den Fli-
cheninhalten 1; 4; 9; 16 in flichengleiche Rechtecke, sodass eine Recht-
ecksseite stets die Lange 4 hat.

8d) Lege an eine Strecke der Linge 2 mit Hilfe einer geeigneten Parabel
Rechtecke so an, dass sie flichengleich sind mit Quadraten, deren
Seiten die Lingen 2 bzw. 4 haben.

56. Mit Hilfe der von ApoLLONIOS angegebenen Eigenschaft der Parabel (sie-
he Seite 168) kann diese unter Verwendung des Hohen- oder Kathetensat-

zes punktweise konstruiert werden, da y = ax? mit x? = — y dquivalent ist

d
(Abbildung 170.1). Konstruiere folgende Parabeln punktweise:
A=t b) y=1ix? e d) y'=1x2
¥4

Abb.170.1 Punktweise Konstruktion der Parabel y = ax? mit Hilfe des Kathetensat-
1
ZES X* = —y
a
. . . ) - -
$7. \f‘f’m On_ulir AL-HAvyam (1048?-1131) die kubische Gleichung x3 + DX — 0
fur positive p und ¢ geometrisch 16ste:
a) Voribung: Zeige, dass der im 1. Quadranten gelegene Halbkreis mit
dem Mittelpunkt M(r|0) und dem Radius r die Gleichung
y =V x(2r — x) hat.
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Hinweis: Berechne MP fiir einen beliebigen Punkt P(x|y) auf dem
Halbkreis. Was muss sich fiir MP ergeben?
b) Ar-Hayyam fithrt zundchst neue Koeffizienten ein; er setzt

d sk S s
p=:— und g=: —, mit @ > 0, und erhdlt die Gleichung
a a
. 1 d 5 '
Xk —a=— |-a*x mit x=+0
a* a*
a?x* £ x* =dx [ =22
a’x*=x(d—x) IR

ax? =Vx(d—x)

Links steht der Funktionsterm der Parabel y = ax?, rechts der Funk-
tionsterm des Halbkreises y = |/ x(d — x) um M (3d|0) mit Durchmes-
ser d. Die Abszisse des von (0]0) verschiedenen Schnittpunkts dieser
beiden Graphen 16st also die letzte Gleichung und damit die kubische

: : e 1 N
Gleichung x* + px = g (Abbildung 171.1). Die GréBen — und d erhalt
a

man aus p und g mittels des Hohen- oder Kathetensatzes: y = @t
liisst sich nach Aufgabe 6 punktweise konstruieren. Lose nach diesem
Verfahren nach geeigneter Wahl der Einheit

D x>+ 6x =20, 2) x>+ 3x=4, 3) 4x>+7x =24

Thaleskreis

(Vg =1-9q

1 n 1 B
I g=—-d<= (/9" =p-d

Thaleskreis

A d "

Abb.171.1 Geometrische Losung der kubischen Gleichung x° +4x = 10 nach
Omar AL-HAYyAM
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5.3 Die allgemeine verschobene Parabel

Gegeben sei eine Parabel mit dem Scheitel S(s|¢), deren Form durch den
Formfaktor ¢ ﬂ,btﬂeiegt ISt. Zur Bestimmung ihrer Gleichung gehen wir von
der "\Jormdlpdmbel y = x” aus und strecken sie mit dem Faktor a zur Parabel
y = ax*. Eine VCFHthEbU[‘IU dieser Parabel um s in x-Richtung erreichen
wir, wenn wir x durch x — s ersetzen: das ergibt die Parabel y = a(x — 5)°.
SchlieBlich xenah}cb(_n wir diese Parabel um ¢ in 1~RIChlLll]" und erhalten
y = a(x —s5)* + t. Dieses Ergebnis fassen wir zusammen zum

Satz 172.1: Eine Parabel mit dem Scheitel S (s|¢) und dem Formfaktor
;# 0, deren Achse parallel zur y-Achse ist, hat die Gleichung
— (=)t
Dleie Gleichung heilit Scheitelform der Parabelgleichung. *

Jetzt konnen wir zmu,n dass der Graph einer allgemeinen quadratischen
Funktion x — ax~* +b\ + ¢ eine Parabel ist. Dazu bringen wir die Funk-
tionsgleichung y = ax? + bx + ¢ auf die Scheitelform einer Parabelgleichung.
Als Hilfsmittel verwenden wir die quadratische Ergidnzung.

y=ax®+bx+c | :a
) At ¢ i .

=x“4+—-x+ || quadratische Erginzung
[} e (4}
b Tt b + BiNES k2 = c

=X+ —x — —
a a 2a 4a?  a
% b\*  —b*44dac
== %+ ar = |- a
a 2a 4a°

4 b )? e b?% + 4ac
y=alx+ —] -
‘ 2a 4a
; : : : : ., —b% +4ac
Das ist die Gleichung einer Parabel mit dem Scheitel S [ — = =
2a a
|

und dem Formfaktor a.

Satz l?2 22 Du" Gmph der allgemeinen quadratischen Funktion
fi x> ax® + bx+ ¢, D, = R, ist eine Parabel. Diese ist fiir a > 0
nach oben, fiir ¢ < 0 nach unten offen.

* Pierre de FErMAT (1601-1665) verwendet als erster die Scheitelform der Par: ibelgleichung im Sinne des
APOLLONIOS (siche Seite 168), also in der Form x? = gy, in seiner spitestens 1636 vollendeten Ad locos planos
et solidos isagoge — »Einfiihrung in die ebenen und korperlichen Ortere ., die erst 1679 im Druck erscheint,
sodass John Wavuis (1616-1703) mit seinem Tractatus de sectionibus conicis nova methodo e X positis — nAb-
ildllLi]l]llL iiber die nach einer neuen Methode d: irgestellten [-l\-u.‘_‘]»;g]]mu.;_ « —von 1655 der Ruhm der Erst-
verdffentlichung zusteht.
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Aus der obigen Rechnung folgt weiter

| Satz 173.1: Die allgemeine quadratische Funktion f: x — ax® + bx + ¢, |
D, = R, hat fiir a > 0 die Wertemenge W = [t; + oo, fira<0

die Wertemenge W, =]—oc0;], wobei ¢ die Scheitelordinate
—b? 4 4dac { e e > , .
5] des Graphen G, von f ist. G, hat die Symmetrieachse
a '
’ LA LN y b .
x= s, wobei s die Scheitelabszisse — 5 ist.
i |

Aufgaben
1. Bestimme Scheitel und Symmetrieachse und zeichne die Parabel.
a) y=—(x—1)*+3 b) y=3(x—2)?*—4
¢) y=2(x—2,5)°+25 d) y=—025(x+2)*+1

2. Bestimme @ und ¢ so, dass die zugehdrige Parabel y = ax? + ¢
a) S(?|4) als Scheitel hat und durch den Punkt P (3| —2) lauft;
b) ihren Scheitel auf der Gerade y = 0,5x — 4 hat und die x-Achse bei
x = 4 schneidet;
¢) die Geraden x = 2 und x = —3 in den Punkten mit den Ordinaten
— 0.4 bzw. 2,6 schneidet.

3. Zeichne den Graphen zur Funktionsgleichung:
a) M= H\ = 215}2 == (],25| h) y = | _(]\5(\ L 1)2 s 1 |

4. y = a(x —s)* + t. Bestimme a, s und ¢ aus folgenden Bedingungen:

a) Die Parabel entsteht aus der Normalparabel durch Verschiebung um 3
nach rechts und um 5 nach unten und eine anschlieBende Spiegelung an
der x-Achse.

b) Die Parabel entsteht aus der Normalparabel durch Verschiebung um 2
nach rechts und um 3 nach unten und eine anschlieBende Spiegelung an
der y-Achse.

¢) Die Parabel entsteht aus der Normalparabel durch Streckung von
0(0]0) aus mit dem Streckfaktor m = 2 und eine anschlieBende Ver-
schiebung um 2 nach links und um 2,5 nach unten.

d) Die Parabel entsteht aus der Normalparabel durch Streckung von
0(0]0) aus mit dem Streckfaktor m = —0,5 und eine anschlieBende
Verschiebung um 3 nach rechts und um 4 nach oben.

5. Gib Scheitel und Symmetrieachse der Parabel an.

a) y=—x*—38 b) y=3x%—x
o = 0.2x2 —3x-125 d) y=—15x2+9x—135
e) y=2x>+3%x—6 f) y=84x%—126x+ 47

g) y=x*+)5x—1 h) y = l'%.\'“’ +3x+4
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6. Zeichne den Graphen zur Funktionsgleichung:

a) y=x>—4x+1 b) y=—x?—T7x—11.25
¢) y=x>—24x—356 d) y=—x"Fx13725
e) y=3x*+24x—47 f) y=—3x*+3x+ L%

g) y=—05x*+1,5x+2075 h) y=0.25x>+14x+ 196
8. Zeichne den Graphen zur Funktionsgleichung:
a) y = |x%4x] b) y=|—x%4+2x|
c) y=|—x*+6x—6| d) y=|-0,5x*+1,5x —1,625]
9. Bestimme die Funktionsgleichung einer Parabel, die durch die Punkte A.
B und C liuft.
a) A(—1]9), B(1|1), C4|4) b) A(0]|2), B(2]|—2), C(—2]|0)
¢) A(0]6), B(—2[4), C(3|1,5 d) A(—1]2), B(1|—6), C(2,5]9)
10. Eine Parabel mit dem Scheitel S enthilt den Punkt P. Bestimme die Funk-
tionsgleichung.
a) S(3|—1), P(1]1) b) S(0,4]/0.8), P(2] —12)
¢) S(0| —8), P(10]2) d) S(—=2(9), P(=7]1)
11. Eine Parabel mit der Symmetrieachse x = s enthilt die Punkte P und Q.
Bestimme die Funktionsgleichung.
a) s=4, P(1|—9,5), Q(5]=1,5) b) s=—5,P(—7|—1), Q(—=2|3)
e12. Die Parabel y = 2x? — 6x + 4 wird

a) an der x-Achse b) an der y-Achse
¢) am Ursprung (0]0) d) an der Geraden x = 1
e) an der Geraden y = 1 f) an der Geraden y = x

gespiegelt. Gib die Gleichung der gespiegelten Parabel an.
e13. Zeichne den Graphen.
a) y=2x*—[6x+4| b) pi=2x>—6]x|+4
¢) y=|2x>—6x|+4 d) |y|=2x*—6x+4
Die Wurfparabel. Bis in die Neuzeit hinein beherrschten die Vorstellungen des
griechischen Philosophen ArisToTELES (384-322 v.Chr.) die Lehre von der
Bewegung der Korper, denen zufolge die Bahn eines geworfenen Korpers sich

c e_ 7 4 Ga 2

Abb.174.1 Zeichnung GALILEIs im Brief vom 11. Februar 1609 an einen Prinzen des
Hauses MEDbIcCI
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aus Geraden- und Kreisstiicken zu-
sammensetzt. Erst Galileo GALILEI
(1564—1642) hat spatestens 1609 er-
kannt, dass diese Bahn, falls man den
Luftwiderstand vernachlissigen darf,
eine Parabel, die so genannte Wurf-
parabel, ist (siche Abbildung 174.1).
Veroffentlicht hat diese Erkenntnis
1632 sein Schiiler Fra Bonaventura
CAVALIERI (15987-1647) in seinem
Werk Lo Specchio Ustorio overo Trat-
tato delle Settioni Coniche — »Der
Brennspiegel oder Abhandlung tuber
die Kegelschnitte« —, woriiber sein
Meister sich wenig erfreut zeigte. GA-
LILEI selbst bringt den Nachweis un-
ter Verwendung seines lateinischen
Textes aus jenen frithen Jahren am

»3. Tag« seiner Discorsi e dimostra- 1624
zioni matematiche, intorno a due nuo-

ve scienze attenenti alla mecanica ed i

movimenti locali — »Unterredungen {Z

und mathematische Demonstratio-

nen {iber zwei neue Wissenszweige, aph (754  Galileo Gauwer (15.12.
die Mechanik und die Fallgesetze be- 1564 Pisa—8.1.1642 Arcetri/Florenz)
l"ci?e”d“ —, die 1638 in Leiden er- Kupferstich von Ottavio LEoNI (um
schienen. 1587-1630)

14. Der aus dem waagrecht gehaltenen Ende eines Wasserschlauchs austreten-
de Strahl beschreibt bei Vernachlissigung des Luftwiderstands einen Pa-
rabelbogen, dessen Achse zum Erdmittelpunkt gerichtet ist. Zeichne in ein
geeignetes Koordinatensystem die Bahn eines Wasserstrahls, der 1,5m
iiber dem Boden waagrecht ausstromt und in einer (horizontal gemesse-
nen) Entfernung von 5 m den Boden erreicht. Der Erdboden ist dabei als
waagrechte Ebene angenommen.

15. Ein Stein, der von einem Punkt P aus schrig nach oben geworfen wird,
fliegt bei Vernachlissigung des Luftwiderstands auf einem Parabelbogen.,
dessen Achse durch den Erdmittelpunkt geht.

a) Zeichne in ein geeignetes Koordinatensystem die Wurfbahn fir den
Fall. dass sich P 1.8 m iiber dem Boden befindet und der Stein nach 4 m
bzw. 8 m waagrechter Verschicbung eine Hohe von 4,2 m bzw. 5m
iiber dem Boden erreicht hat. Der Boden sei waagrecht und eben.

b) Welche gréBte Hohe iiber dem Boden erreicht der Stein?

¢) In welcher Entfernung (waagrecht gemessen) von der Abwurfstelle
schligt der Stein auf dem Boden auf?
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5.4 Parabeln und Geraden

Nachdem wir jetzt wissen, wie die Gleichung einer allgemeinen Parabel lautet,
kénnen wir Schnittprobleme bei Parabeln und Geraden rechnerisch 1sen.

5.4.1 Parabel und x-Achse
Die Abszissen der Schnittpunkte einer Parabel und der x-Achse heiBen auch

Nullstellen der Parabel bzw. der zugehérigen quadratischen Funktion. Man
erhilt die Schnittpunkte als Losungen des Gleichungssystems

[ y=ax?+bx+c Parabelgleichung
I =10 Gleichung der x-Achse

Setzt man y = 0 in I ein, dann ergibt sich

I' ax*+bx+¢c=0
[ y=0Q

[" ist eine quadratische Gleichung fiir die Nullstellen, die je nach dem Wert
ihrer Diskriminante D = b*> — 4ac zwei, eine oder keine Losung hat.

[m ersten Fall, D > 0, gibt es zwei Schnittpunkte N, und N, mit der x-Achse;
die x-Achse ist Sekante.

Im zweiten Fall, D = 0, gibt es einen Schnittpunkt S. Er hat die Koordinaten

b D 1 :
ket e e 0. S ist also nach Satz 173.1 der Scheitel der Parabel.
2a a

Die x-Achse ist Tangente.

Im dritten Fall, D < 0, treffen sich die Parabel und die x-Achse nicht: die
x-Achse ist Passante.

Hat man die Nullstellen, dann kann man auch den Scheitel der Parabel leicht
finden. Es gilt ndmlich

Satz 176.1: Die Scheitelabszisse x_ ist das arithmetische Mittel der Null-
stellen »; und' x,, d.h., x; = 3(x; + x,).

Geometrisch bedeutet dieser Satz;
Der Scheitel liegt auf der Mittelsenkrechten der Schnittpunkte der Parabel mit
der x-Achse.

: ; ! Y b sl
Beweis: Nach VIETA (Satz 103.1) ist x; + x, = — — und damit % (x; + x,) =
cl
b ] ; : i
= Das ist aber nach Satz 173.1 die Scheitelabszisse.
2

Satz 176.1 verhilft uns zu einer schnellen Bestimmung der Scheitelabszisse:
Weil sich die Abszissen bei einer Verschiebung in y-Richtung nicht dndern,
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betrachten wir statt der Parabel y = ax* + bx + ¢ die Parabel y = ax* +bx =
b

— x(ax + b) mit den Nullstellen x; = O und x, = ——. Das ergibt sofort die
; a
) . . . . — " .
Scheitelabszisse x, = — = Die Ordinate ergibt sich durch Einsetzen dieses
' ~d

Werts in die Gleichung y = ax* + bx + c.

Beispiel: Die Parabel y = jx* — 2x + 5 wird durch Verschiebung um 5 nach
unten zur Parabel y = x> — 2x = x(4x — 2) mit den Nullstellen x; = 0 und
x, = 8. Fiir die Scheitelabszisse x, gilt x, = 1x, = 4. Die Scheitelordinate er-
gibt sich zu y, =1 -4*—2-4+ 5 = 1. Abbildung 177.1 veranschaulicht das
Auffinden des Scheitels.

V|

3 |

Abb.177.1 Schnelle Bestimmung der Scheitelabszisse x,

Aufgaben
1. Bestimme die Nullstellen der Parabeln.
a) y=zx*—1 b) y = 3x?—2x ¢) y=5x*+2x—1.6
d) y=—x>+2x+3 e p= 3x2—4x+25 1) y=2x>+6x+45

2. Bestimme bei den Parabeln aus Aufgabe 1 jeweils den Scheitel.
3. Wie lautet die Gleichung der Parabel, die die Koordinatenachsen in den
Punkten
a) A0|—16), B(2|0) und C(—4|0),
b) A(0|—1), B(5|0) und C(—1]0)
schneidet?
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4. Bestimme die Gleichung einer Parabel mit folgenden Eigenschaften:
a) Die Nullstellen haben die Entfernung 4, der Scheitel liegt bei (3| —4).

b) Die Nullstellen liegen bei —3 und 5, und die Parabel geht durch
(8] —3).

**5.4.2 Parabel und Gerade

So wie in 5.4.1 erhélt man die Schnittpunkte einer Parabel m]lum,rlm,]n.blgum
Geraden durch Losen eines (_J|EEI(.11LII‘NT%H\ stems, dessen eine Gleichung die
Parabelgleichung, dessen andere die (_JLIddLI'l”ILi(_hLll'l” ist. Im Allgununcn

ailt:
. y=ax +bx+ec Parabelgleichung
[I.y=mx+1t Geradengleichung

Setzt man y aus Il in [ ein, so erhilt man eine quadratische Gleichung fiir die
Abszissen der Schnittpunkte. Je nach dem Wert der Diskriminante gibt es
zwei, einen oder keinen Schnittpunkt. Entsprechend heift die Gerade Sekan-
te, Tangente oder Passante.

b | Vi
/’/
//
7~ X
"
y y i
,//
> 5 X ¥
A Abb.178.1 Mdogliche Lagen von Parabel und Gerade
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Nun gibt es aber Geraden, die keine Tangenten an die Parabel sind, obwohl sie
auch nur einen einzigen Schnittpunkt mit der Parabel besitzen, nimlich die
Geraden, die zur Pdmbelaahau parallel sind. Ihre Gleichung hat die Form
o=

Abbildung 178.1 zeigt iberblicksartig die verschiedenen moglichen Lagen von
Parabel und Gerade.

Zur Vertiefung losen wir die folgende interessante

1ten, du vom Punkt P(3]|25)
v + 7 gelegt werden konnr,n.

Aufgabe: Bestimme die Gleichungen du Tange
an die Parabel mit der Gleichung y = —x?
und berechne die Berithrpunkte.

Lésung: Achsenparallele Tangenten gibt es nicht. Also miissen die gesuchten
Tangenten eine Gleichung der Form y = mx + t haben. Da sie durch P gehen,
muss gelten

n
1
2X

Durch die Gleichung y = mx + 23 — 3m wird eine Gerade durch P mit der
Steigung m beschrieben. Wir schneiden sie nun mit der gegebenen Parabel:
(=} (= =l =
I y=—ix2+ix+3
I1 y=mx+2%—3m.
Setzt man y aus Il in I ein, so erhédlt man eine quadratische Gleichung fiir die
Abszissen der Schnittpunkte:
—Ix? 4 dx 43 =mx+25—3m
x2 + (dm—2)x+ (6 — lzm} = () ()
Einen Berihrpunkt erhilt man, wenn diese Gleichung genau eine Ldsung
hat, d.h., wenn ihre Diskriminante null 1st. Also muss “LllLIl
(4m —2)* —4(6—12m) =0
16m? + Qm —20=10

4m* +8m—5=10
—8—12 —8+12
m = — Vo M= —
8 8
m;=—2 und m;=3.

Es gibt somit durch P zwei Tangenten an die Parabel. Sie haben die Gleichun-
gen

y=—3x+93 bzw. y=4%x+3. %)

Man erhélt nun die Koordinaten der Beriihrpunkte B, bzw. B,, indem man
die eine bzw. die andere Tangente mit der Parabel /um Schnitt bringt. Man
muss also zwei Gleichungssysteme losen, deren erste Gleichung die Parabel-
gleichung und deren zweite Gleichung die jeweilige Tangentengleichung ist.
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Die beim Einsetzen von II in I dann entstehende quadratische Gleichung

haben wir oben aber bereits gefunden und mit (*) bezei
minante null ist, hat (*) die einzige Losung

— (dm —2) " v
= 5 =1—2m.
Setzen wir m, bzw. m, an Stelle von m S
ein, dann erhalten wir als Abszisse
des Beriihrpunkts B, bzw. B,
X3 =6 bzw. x,=0 .

und aus den Tangentengleichungen

chnet. Da ihre Diskri-

(**) fiir die Ordinate des jeweiligen

1
Berithrpunkts
yy=—5;z bzw. y, =3,
Abbildung 180.1 zeigt die Parabel mit
den beiden durch P verlaufenden
Tangenten.
Aufgaben Abb. 180.1
1. Wo schneiden sich die folgenden Pa-
rabeln und Geraden? Fertige eine
Zeichnung an.
a) y=x*—5 uand y=2x—2
b) y=2x>—4x+1 und y=1-2x
¢) y=—05x*—-3x—2 und y=-—1,5x—1
d) y=3%x* und x=6
e) y=4x>+2x+5 und x=-3
o2. Berechne die Schnittpunkte und die Linge der zugehdrigen Parabelsehne.
a) y=3x> und 2y—x—12=0
b) y=3:%" und 2x—T7y—14=0
¢) y=—55x> und 6x+5y—15=0
d) 8(y +1)=—(x—2)> und x+4y+14=0
e) x?+4x+16y+52=0 und 8x+ 12p+ 31

Tangenten von P an die
Parabel

=0

- Der Scheitel einer Parabel, deren Achse zur y-Achse parallel ist, hat die
Abszisse 3 und liegt auf der Geraden mit der Gleichung y = 2x — 1, die
von der Parabel aullerdem noch in einem Punkt mit der Ordinate 9 ge-
schnitten wird. Wie lautet die Gleichung dieser Parabel?
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. Die Gerade y = 2,5 wird vom Graphen einer Funktion 2. Grades in zwei
symmetrisch zur p-Achse liegenden Punkten geschnitten. Dieselbe Para-
bel schneidet die Gerade y = 0,75x — 0.5 in zwei Punkten mit den Ordina-
ten —2 und §. Bestimme die Schnittpunkte der Parabel mit der ersten
Geraden.

. Im Parabelpunkt P soll die Tangente an die Parabel gelegt werden. Bestim-

me ihre Gleichung.

a) y= 1x2, P( |2) liegt im 2. Quadranten;

b) y = —15x%, P( |—38) liegt im 3. Quadranten;
o) y=—18x2 P(] ).

. Im Parabelpunkt P soll die Tangente an die Parabel gelegt werden. Bestim-

me ihre Gleichung und fertige eine Zeichnung an.
a) y=—5x2+10x—7, PG| )
b) y = 84x*—126x+47, P(0] )

oc) y=13x*—3x+3 P( [

7. Lege vom Punkt P die Tangenten an die Parabel. Bestimme die Tangenten-
gleichungen und die Koordinaten der Berithrpunkte und fertige eine
Zeichnung an.

a) y=—1ix*+ix+3, P(2|4)

b) y=x?—4x+65, P(0]0)

¢) y=—x*>—Tx—11,25, P(-2|1)

d) y=3x>+24x—47, P(0|—50)

e) y=—0,5x*+1,5x+2,075, P(1]6,2)
N y=23x*-3x—3, PU[1)

8. a) Bestimme die Losungen in Abhingigkeit von a fur [/ x + a = ix+1.

b) Zeichne in ein Koordinatensystem den Graphen von y = 2x+ 1 und

die Graphen von y = //x + a fiir @ = 0; 1;2; 2 und 3. Interpretiere das
Ergebnis von a anhand dieser Zeichnung.

E‘). a) Zeichne im Bereich 0 < x <1 (Einheit 10 cm) die Parabeln mit der

Gleichung y = f(x) = ax(1 — x) fiir a € {0,5;1; 2; 3,3; 4}. Zeichne ins
gleiche Koordinatensystem die Gerade mit der Gleichung y = x.

b) Berechne der Reihe nach die ersten 5 Glieder der Zahlenfolge mit dem
Bildungsgesetz x,., = ax,(1 —x,) = f(x,). Wihle als Startwert
1) x, = 0,2 und 2) x, = 0,5. Zeichne die Punkte P, (x,|f(x,)) ein.

¢) x* heiBt Fixzahl, wenn x* = f(x*) gilt.

Zeige: Fira=1ist x*=1— —eine Fixzahl.
a

d) x** heiBlt Zahl mit der Periode 2, wenn x** = f(f(x™**)) gilt.
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Zeige: Pir 3<g=<4 sind x;==(1+

T
= = [,./I e |
L a / (IS )
1 R T | . :
Xai= o 1+ -+ |/1—-—— ) Zahlen mit der Periode 2, und es gilt
o a (4]

J(xy) = x, und f(x,) = x;.

e) Definiert man analog x* als Zahl mit der Periode & fiir k > 2 und trigt
diese Zahlen x*® gegen den Parameter @ ab, dann ergibt sich nach
lingeren Rechnungen (Computer!) ein Diagramm, das man auch Fei-
genbaumdiagramm oder Bifurkationsdiagramm nennt. Es entstehen
der Reihe nach Punkte der Perioden 2,4, 8, ..., bis auf einmal das
Chaos ausbricht und die Folgen keine GesetzmiBigkeit mehr erkennen
lassen.

**5.4.3 Parabel und Parabel

Die Koordinaten der Schnittpunkte zweier Parabeln ergeben sich als Losun-
gen des Gleichungssystems

Il y=ax>+byx+c;

I y=a,x*+b,x+c,.
Auch hier kann es zwei, eine oder keine Losung geben, wie Abbildung 183.1
uberblicksartig veranschaulicht. Zum Fall der sich beriihrenden Parabeln 16-
sen wir folgende

Aufgabe: Um wie viel muss die Normalparabel in y-Richtung verschoben

werden, damit sie die Parabel y = — 3 x* + 4.x — 6 beriihrt?
Lésung:

I y=x*+1 verschobene Normalparabel

I y=—3x*+4x—6

I' y= X2 cl=2

I’ 3x2 —4x+6+¢=0

Damit sich die beiden Parabeln beriihren, darf Gleichung II' nur eine einzige
Losung haben; ithre Diskriminante muss also null sein:

16—4-2(6+0=0
16 —36—6t=0
t = —33.




5.4 Parabeln und Geraden

YA y |

\

2 Schnittpunkte 0 Schnittpunkte

}n’

X

1 Schnittpunkt mit
verschiedenen Tangenten gemeinsamer Tangente
Abb. 183.1

Mogliche Schnittmengen von Parabeln

Die Normalparabel muss somit um 33 nach unten verschoben werden. Sie
berithrt dann die andere Parabel in dem Punkt, dessen Abszisse sich aus der
letzten Gleichung I1' ergibt, wenn man dort ¢ = — 35 setzt:
3x2—4x+5=0

9x* —24x+16=0

Bx—42*=0

y=4.
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Die Ordinate des Beriihrpunkts Y
erhilt man aus I’ zu y = — 13,

Ergebnis:

Die Parabeln y = x*> — 31 und

y = —1x? 4+ 4x — 6 beriihren sich

im Punkt (131 —13).

Siehe Abbildung 184.1.
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Abb.184.1 Beriithrung zweier Parabeln

Aufgaben

>

1. Bestimme durch Rechnung und durch Zeichnung die gemeinsamen Punk-

te der Parabeln
y=x*+2 und y=x*-—2x+5.

2. Bestimme durch Rechnung und durch Zeichnung die gemeinsamen Punk-

te der Parabeln

y=%*—3x und p=—x>4+x+6,

3. Bestimme durch Rechnung und durch Zeichnung die gemeinsamen Punk-
te der Parabeln
y=—x*+4 und y=x2—4x+6.

4.

te der Parabeln
y=x*+4x—1

2x~

S 5,
+bx+cund y

und y =

o5. Zeige: Zwei Parabeln p = ax’

Bestimme durch Rechnung und durch Zeichnung die gemeinsamen Punk-

= Ax% 4+ Bx+ C, die ge-

nau einen Schnittpunkt haben, der kein Buuhlpunkt 1st, sind konmumt

6. A(06), B(4,51,5), C(6]5), S(5.5]2.5)

a) Bestimme eine Gleichung der Parabel p durch A, B und C. Zeichne die
Parabel p.
b) Gib eine Gleichung der Parabel ¢ an, die nach unten gedffnet ist, den
Scheitel S hat und kongruent zur Normalparabel ist. Zeichne die Para-
bel g.
¢) Berechne die Schnittpunkte der beiden Parabeln.




Gateway Arch in Saint Louis, Missouri, USA
Der 192 m hohe, in den Jahren 1959 bis 1965 aus rostfreiem Stahl und Beton nach
einem Entwurf des Finnen Eero SAARINEN (1910-1961) errichtete Bogen erinnert als
Gateway to the West an den nach 1803 einsetzenden Siedlerstrom in den Westen der
USA und damit an die Bedeutung, die Saint Louis im 19.Jh. hatte.




6 Quadratische Ungleichungen

6.1 Losungsverfahren

Eine Ungleichung der Form ax? + bx + ¢ > 0 mit @ + 0 heiBt quadratische
Ungleichung. So ist z. B. x* — x — 2 > 0 eine quadratische Ungleichung. Zur
Losung solcher Ungleichungen gibt es verschiedene Verfahren:

1) Methode der quadratischen Erginzung

X2 —x—2=0
x*—x+@H?*>2+41
(x—3)*>%

x—41>3

X — % < - v x—1>3

2) Methode der Faktorisierung
A

x—x—2>0
Nach dem Faktorisierungssatz 106.1 brauchen wir zuerst die Ldsungen der
zugehorigen quadratischen Gleichung x* — x —2 = 0. Wir erhalten
x; =—1 und x, = 2. Damit wird die Ungleichung zur Produktunglei-
chung (x 4+ 1)(x — 2) > 0, die man graphisch l6sen kann.
Aus Abbildung 186.1 liest man ab: L = ]—oo; —1[ U ]2; 4+ oo[.

x+1 = 0 1= A
x—2 =5 = 0
|
(x+1) (x—2) - 0 — 0
i = f N
—1 2

Abb.186.1 Vorzeichenverteilung beim Term (x + 1)(x — 2)

3) Parabelmethode
XF—x—2>0

Wir zeichnen die Parabel y = x* — x — 2. Sie hat als Nullstellen die Lésun-
gen der Gleichung x> — x —2 = 0,d.h.x, = — 1 und x, = 2. Gesucht sind
die x-Koordinaten der Parabelpunkte, fiir die y > 0 gilt. Das sind die Para-
belpunkte, die oberhalb der x-Achse liegen. Weil die Parabel nach oben
offen ist, sind, wie Abbildung 187.1 zeigt, die y-Koordinaten positiv, wenn
x < —1 bzw. x > 2 gilt. Also lesen wir die Losungsmenge ab:
L=]—00;—1[uw]2; +oof.
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Y
+ 1 -
-1\ 0 X
Abb. 187. Ldsung der Ungleichung x* — x — 2 > 0 mit der Parabelmethode

Die Parabelmethode ist meist der kiirzeste Weg zur Losung einer quadrati-
schen Ungleichung. Man braucht nur die Nullstellen der zugehorigen quadra-
tischen Gleichung und die Offnung der Parabel, die man dem Vorzeichen des
Koeffizienten von x? entnimmt. Auf die Zeichnung kann man sogar verzich-
ten.

Bei den Verfahren 2 und 3 haben wir angenommen, dass es Nullstellen gibt.
Wenn das nicht der Fall ist, dann liegt die Parabel entweder ganz tiber oder
ganz unter der x-Achse. Je nach der Art des Ungleichheitszeichens ist die
Losungsmenge dann leer oder ganz R, wie Abbildung 187.2 veranschaulicht.

YA
y=xt-x+1
xf-x+1>0
P\ L=R
1 X

Abb. 187.2 Parabelmethode in Fillen ohne Nullstellen
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6 Quadratische Ungleichungen

Aufgaben
l.a) x>—x+1<0 b) x*+x—-12>0
Q) x2—2x+1=0 d) x*+6x—-T7=0
2.a) —x*+6x—8=0 b) 2x2—x—-3>0
e) dx- = 5x—2 d) x2—6<5x
3. a) Welche Zahlen sind kleiner als ithr Quadrat?

b) Welche Zahlen sind kleiner als ithre Wurzel?
¢) Welche Zahlen sind gréBer als ihre 3. Potenz?

4. Verwende die Parabelmethode zur Losung der Produktungleichung:
a) (x—2)(x—3)<0 b) (x—3,14)(x+ 3.14) > 0
¢) Cx—1)2x—-3)=0 d x—Hx+%>0

5.a) (x—2)(x—3)<4 b) x*—3x<38
e) x*<dx—1 d —x*>x—10

6. a) |x*+5x| <14 b) [13x—x*| <30

7.a) 0< x> —10<x b) x=x*—-1=x—1

8. a) 10x b b) L 1 i 3x

ARl ) = = -2 - — < s L
x‘+4 = x2+1 x= 4 1
Tx 2 1
c =409 d) — > =
) D ) x“ 14+x°
9. Multipliziere mit dem Quadrat des Nenners:
= By 2
a =
x+3 2x—1~
x—1 X—35 3—2x
10. a) < b) — <0
x—3 Xx—7 x“—8x+9
3 8 x—3 6—x
c) < - d) >
2x+1 x+2 3x+2 2 —x

12.

13.

. Fiir welche Werte von k hat die Gleichung 2 Lésungen?

a) x2—kx+k+3=0 b) x>+ (k+2)x+k+5=0
¢) kx®+2(k—Nx+4=0

Fiir welche Werte von k hat die Ungleichung keine Losung?

a) kx?—3x+1<0 b) x> +kx+k=0

Bestimme die Definitionsmenge und lose dann die Gleichung.

a) Vix—1)(x+2) =110 b) J/x2 —3x =1/10

ti

d
q<
r
h,
1€
A
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Q) V2x2+3x—5—x—1=0 d) Vx(x+1)+V(x+1)(x+3) =312

14. Zerlege die Zahl 100 so in zwei Summanden, dass das Produkt grofer als

a) 2000, b) 1000, ¢) 2500 ist.
15.8) | x(x+ 1) <6 b) [x2—x—35|>1
Q) [(x—5)x—1)]=2 &) |2 —1]> x|
5. B [kl o
.a) |——
x—2 x—1 6
x+4 X
> 2 s
e D =
17. a) [x—1] = |x* —1| b) [x(x+1)| > [x* +1]

18. Fir welche natiirlichen Zahlen n gilt
a) Vn+n< 100 b) 0,1n —0,01)Yn+1 = 0?
19. Kennzeichne die Punktmenge, bei der die Koordinaten der Punkte der
angegebenen Ungleichung geniigen.
@) =t b) y=x2-2
¢) y—2x24+2>0 ¢) 2y+4x*—5x+1=<0

20

Kennzeichne die Punktmenge, bei der die Koordinaten der Punkte der
angegebenen Ungleichung gentigen.

a) x* < g x? b) x> —3x<y<—x>+4x-5

c) 0=y ==2%"1 0957 d) 3x*—2x<y<-—2x+3

6.2 Extremwertaufgaben

Im Geometrieunterricht hast du gelegentlich zum Abschluss einer Konstruk-
tionsaufgabe in der so genannten Determination™® untersucht, unter welchen
Bedingungen die Konstruktion tiberhaupt méglich ist oder unter welchen Be-
dingungen sie mehr als eine Losung hat. Bei der Aufgabe, ein Dreieck aus zwei
Seiten, etwa @ und ¢, und einem Gegenwinkel, etwa «, zu konstruieren, erhélt
man 2 Losungen, ndmlich AABC, und AABC,, wenn a so gewiihlt wird, dass
h,<a < c gilt (Abbildung 190.1). Man sucht also gewissermallen den kleins-
ten und den groBten Wert, zwischen denen sich ¢ bewegen kann. Aus solchen
Abgrenzungsproblemen —das ilteste finden wir bei PLATON (428—348 v. Chr.) in

* determinatio (lat.) = Abgrenzung ist die lateinische Ubersetzung des entsprechenden griechischen Fachbe-
griffs Sropropog (diorismas). Erfunden haben soll, wie PROKLOS (410-485) berichtet, diesen Diorismos LEoN,
ein Zeitgenosse PLATONS, der als erster »Abgrenzungen dafiir geben konnte, wann die Lésung einer gestellten
Aufgabe méglich ist und wann nicht«.
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Abb.190.1 Es gibt 2 Losungen, wenn 1, < a < ¢

Menon (87a, b) —, sind die Extremwertaufgaben* entstanden, deren frithestes
uns erhaltenes Beispiel von EUKLID (um 300 v. Chr.) stammt (Aufgabe 195/9).
Aber erst APOLLONIOS (um 262—um 190 v. Chr.) erkannte, dass solche Extrem-
wertaufgaben, losgeldst von den geometrischen Abgrenzungsproblemen,
»zu den Sachen gehoren, die an und fiir sich einer Betrachtung wiirdig
erscheinen,
wie er im Vorwort zu Buch V seiner Konika schreibt, in dem er auch solche
»Sachen« angeht. Aber es vergingen mehr als 1800 Jahre, bis es dem Juristen
und Mathematiker Pierre de FERMAT (1601-1665) gegen 1629 gelang, in sei-
nem Methodus ad disquirendam maximam et minimam —»Methode zur Bestim-
mung eines Maximums und eines Minimums«** — ein allgemeines Verfahren
zum Losen solcher Extremwertaufgaben zu entwickeln. Das erste Beispiel, das
er seinen Lesern darin vorfithrt, sel unser

Beispiel 1:

Eine gegebene Strecke [AC] soll ; : s J
durch einen Punkt E so geteilt werden,

dass der Fliacheninhalt des Rechtecks,

das man aus den beiden Teilen [AE]

und [EC] bilden kann, maximal wird

(Abbildung 190.2). Abb.190.2  Zu Beispiel 1

* extremus (lat.) = der aulierste
** maximus (lat.) = der grobBte; minimus (lat.) = der kleinste
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Lisung: Wir bezeichnen die
Lange der Strecke [AC] mit a
und die des Teilstiicks [AE]
mit x; dann hat [EC] die .
Linge a — x. Der Inhalt der |
Rechtecksfliche ergibt sich ; M E
in Abhidngigkeit von x zu
x(a — x). Gesucht ist nun
der Wert von x, fiir den
x(a — x) maximal wird. Um
thn zu finden betrachten wir
die Funktion

Mathemarica. 63

& et

o o

QDTS

Ad difquirendam maximam & minimam.

f:x > x(a— x),

D, = 10; al.
Formt man f(x) um zu
f(x) = —x%+ ax,

so erkennt man sofort, dass
der Graph von [ ein Parabel-
bogen 1st, dessen Scheitel bel

(Ff ) liegt (Abbildung

21 4
| : v inventionem Tangemibm ad dara pundta in lineis

191.2). [ g T
Weil die Parabel nach unten 3
offen ist und die Scheitelab- Abb.191.1 Erste Seite der erst 1679 in

3 a . : . _ Toulouse im Sammelband Varia Opera
szisse 5 1n D, liegt, ist die Muathematica des Pierre de FERMAT er-

= a2 schienenen »Methode zur Bestimmung

Scheitelordinate T der groB3- eines Maximums und eines Minimums«
te Funktionswert von f.
Das gesuchte x hat also den

R e . y
Wert = und der Teilpunkt E . j u?]
muss als Mittelpunkt der . 2 ikt
Strecke [AC] gewihlt wer- % T

den.

3 |

mi::——-

Abb.191.2 Graph von
fix— x(a—x), D, = ]0;al
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FerMATs Aufgabe ist in verschiede-
nen Einkleidungen bekannt, darun-
ter auch der folgenden: Eine Zahl ist
so in zwel Summanden zu zerlegen,
dass deren Produkt maximal wird.
Nach der obigen Losung miussen die
beiden Summanden gleich sein, und
zwar gleich der Hilfte der gegebenen
Zahl.

Wir sind bet unserer Losung einen
anderen Weg gegangen als FERMAT.
Normalerweise verlangt namlich das
Lasen von Extremwertaufgaben den
Einsatz hoherer mathematischer Me-
thoden, die FERMAT gerade in dieser
Abhandlung entwickelt hat. Schon
das zweite FERMAT'sche Beispiel
kannst du nicht mehr 16sen, nimlich
einen Quader kleinsten Volumens zu
suchen, dessen Grundfliche das Qua-
drat iber [AE] und dessen Hohe
[EC]ist. Losen aber kannst du all die
Extremwertaufgaben, bei denen die
Funktion, deren Extremum be-
stimmt werden soll, quadratisch ist.
Du brauchst dazu nur den Scheitel

Wﬂé
Abb. 192.1 Pierre de FERMAT
(17.(7)8.1601 Beaumont-de-Lomagne
bis 12.1.1665 Castres)

der zugehorigen Parabel zu berechnen; die Scheitelabszisse ist dann die ge-
suchte Extremalstelle, die Scheitelordinate ist das Extremum der Funktion. Ist
die Parabel nach unten offen, dann ist die Extremalstelle eine Maximalstelle
und das Extremum ein Maximum. Ist die Parabel nach oben gedffnet, dann
handelt es sich um eine Minimalstelle und um ein Minimum.

Schwieriger zu l0sen als Beispiel 1 ist das nun folgende

Beispiel 2:

Ein Motorboot M mit der Geschwindigkeit 6 m/s und ein Surfer .S mit
der Geschwindigkeit 2 m/s bewegen sich so, dass sich ihre Kurse senk-
recht kreuzen. Zu Beginn unserer Betrachtung befindet sich das Motor-
boot 50 m, der Surfer 10 m vor dem Kreuzungspunkt. Zu welchem Zeit-
punkt ist ithre Entfernung am kleinsten? Wie grof ist sie dann? Wo befin-
den sich in diesem Augenblick M und S?

Losung: Wir rechnen ohne Benennungen, messen dabei alle Zeiten in
Sekunden und alle Lingen in Metern. Ferner denken wir uns auf den See
ein Koordinatensystem gelegt, dessen Achsen die beiden Kurse sind (Ab-
bildung 193.1). Zum Zeitpunkt ¢ befinden sich
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Abb.193.1 Bewegung von Motorboot M und Surfer S im Koordinatensystem. Ge-
zeichnet sind die Verhiltnisse bei 4s, 8s und 9s.

das Motorboot an der Stelle x=-—-50+6-¢t, y=0,
der Surfer an der Stelle p==10425 1 =0
[hre Entfernung betrdgt nach Pythagoras

e =V(—=50+60)%+(—10+ 202 = /4012 — 6401 + 2600 .

Gesucht ist e, der kleinste Wert von e. Da die Wurzelfunktion echt
monoton steigend ist, nimmt die Wurzelfunktion ihren kleinsten Wert an,
wenn der Radikand am kleinsten ist. Aus dem Graphen der Wurzelfunk-
tion (Abbildung 152.1) entnimmt man diesen Sachverhalt unmittelbar.
Zum Auffinden von e,;  bestimmen wir also das Minimum der Radikan-
denfunktion

r:t— 40t2 — 640t + 2600, D, =Ry,

die als Summe zweier Quadrate nie negativ werden kann und deren
Graph eine nach oben offene Parabel ist, die ganz tiber der 7-Achse
verlduft. Thre Scheitelabszisse ist ihre Minimalstelle, deren Wert sich

— 640

nach Satz 173.1 zu — A 8 ergibt. Die Scheitelordinate 40 - 8% —

— 640 - 8 + 2600 = 40 15t das Mimimum der Radikandenfunktion, und

2

damiterhélt mane,;, = 2}/ 10. Das Motorboot befindet sich dabei an der
Stellex = —50+ 6 -8 = — 2, d. h. noch 2 m vor der Kreuzungsstelle, der
Surfer ander Stelley = — 10 4 2 - 8 = 6, d. h. bereits 6 m hinter der Kreu-
zungsstelle.

min
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Aufgaben

1.

!"J

(ad

a) Die syrische Konigin Dipo floh 814 v. Chr. aus Tyros ins heutige Tune-
sien. Dort bat sie Konig IARBAS — so berichtet uns VERGIL (70-19
v.Chr.)im 1. Gesang seiner Aeneis—, ihr so viel Land zu verkaufen, wie
eine Stierhaut umfassen konne. Nachdem IARBAS eingewilligt hatte,
schnitt sie die Haut in sehr schmale Streifen, die sie aneinander fiigte
und so auslegte, dass sie ein Rechteck groBten Flicheninhalts um-
spannten. Dieses war die Keimzelle der Stadt Karthago, deren Burg
den Namen Byrsa erhielt; denn das griechische Wort Bupoa (byrsa)
bedeutet Haut. Welche Seiten und welchen Flicheninhalt hatte Dipos
Rechteck, wenn die Streifen aneinander gelegt die Lange s ergaben?

b) Nimm an, die Stierhaut wére ein Rechteck der Form 1,6 m x 2,1 m
und die Riemen hiétten die Breite 2 mm besessen. Wie viel ha hitte
dann Dipos Burganlage betragen?

Welche Losung hat Aufgabe 1, wenn DIDO die Riemen hatte so auslegen

diirfen, dass das Rechteck auf einer Seite von der geradlinigen Kiisie be-

grenzt wird, sie fiir diese Seite also keine Riemen verbrauchte?

. Gegeben ist ein Quadrat ABCD mit der Kantenldnge a. Auf den Seiten sei

von jedem Eckpunkt aus im Umlaufssinn eine jeweils gleich grof3e Strecke
abgetragen. Verbindet man die Endpunkte dieser Strecken, so entsteht ein
Viereck RSTU. das wieder ein Quadrat ist (Beweis!). Wie grol muss die
abzutragende Strecke gewihlt werden, damit der Fliacheninhalt dieses
Quadrats minimal wird? Wie grof ist er dann?

. In einen Kreis vom Radius r ist ein Rechteck grofiten Flicheninhalts ein-

zuzeichnen. Bestimme die Liange der Rechtecksseiten und den Inhalt.

. In einem Dreieck mit der Grundseite g und der zugehorigen Hoéhe £ wird

die Parallele zu g gezogen, die die beiden anderen Seiten in zwei Punkten
schneidet. Fillt man von diesen die Lote auf g, so entsteht ein Rechteck.
Wie muss die Parallele gezogen werden, damit dieses Rechteck maximalen
Flidcheninhalt hat? Wie lang sind dann die Rechtecksseiten, und wie grol3
ist sein Inhalt?

. Ein Motorboot M mit der Geschwindigkeit 8 m/s und ein Ruderboot R

mit der Geschwindigkeit 1 m/s bewegen sich so, dass ithre Kurse sich senk-
recht kreuzen. Zu Beginn unserer Betrachtung befindet sich das Motor-
boot 90 m, das Ruderboot 15 m vor dem Kreuzungspunkt. Zu welchem
Zeitpunkt ist ihre Entfernung am kleinsten, und wie groB3 ist sie dann? Wo
befinden sich in diesem Augenblick M und R?

. a) Aufder Strecke [AB] der Linge 8 liegt der Punkt C 3 Einheiten von A

entfernt. Gesucht ist ein Punkt P auf [AB] mit der Eigenschaft, dass
die Summe der Quadrate seiner Entfernungen von A, B und C minimal
wird. Wo hLegt er?

b) Die Punkte A, bis A, liegen so auf einer Geraden, dass sie immer weiter
voneinander entfernt sind, und zwar 1, 3, 5. 7. 9 bzw. 11 Einheiten. Wo
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liegt nun der Punkt P mit der Eigenschaft, dass die Summe der Ent-
fernungsquadrate ein Minimum ist?

8. Aus dem Mittelalter sind nur sehr wenige Aufgaben iiber Minima und
Maxima tiberliefert. Eine davon findet man in der Geometria vel de trian-
gulis — »Geometrie oder iiber die Dreiecke« — des aus Norddeutschland
stammenden JORDANUS SAx0, auch JORDANUS NEMORARIUS (um 1180 bis
1237), der 1222 zum Ordensgeneral der Dominikaner gewihlt wurde. Sie
lautet:

Von allen Dreiecken, deren eine Ecke im Mittelpunkt eines Kreises liegt
und bei denen die Gegenseite zu dieser Ecke eine Kreissehne ist, ist das mit
grofitem Flicheninhalt zu bestimmen.

9. Bei der von EUkLID (um 300 v.Chr.) in Buch VI, § 27 seiner Elemente
gestellten Aufgabe handelt es sich um folgendes Problem:
Uber der Hilfte [MB] einer Strecke [AB] wird ein Parallelogramm
MBNP beliebiger Hohe / gezeichnet. Auf [AB] wird ein Punkt C beliebig
gewihlt und durch ihn die Parallele zu BN gezogen, die den Diagonalen-
strahl [ BP in einem Punkt D schneidet. Nun lésst sich ein Parallelogramm
ACDE konstruieren. Wie muss C gewiihlt werden, damit der Inhalt dieses
Parallelogramms maximal wird?




196

** Anhang

Lineare Interpolation

In der Praxis kommt es oft vor, dass man von einer Funktion nur einzelne
Werte kennt, die man eventuell durch Messung erhalten hat, dass man aber
Zwischenwerte braucht. Hat man den Funktionsterm, dann kann man diese
Zwischenwerte leicht berechnen. Wenn der Funktionsterm aber unbekannt ist
(oder so kompliziert), dass die Berechnung von Zwischenwerten sehr mithsam
wird), dann kann man das Verfahren der linearen Interpolation anwenden.
Man ersetzt dabei den Funktionsgraphen zwischen zwei bekannten Punkten,
den Stiitzpunkten, durch eine Strecke und berechnet den Wert, den die zugeho-
rige affine Funktion an der gewiinschten Stelle hat. Diesen Wert nimmt man
als Ndherungswert fiir den gesuchten Funktionswert. Je weniger gekriimmt
der Graph in der untersuchten Gegend ist, desto genauer wird dieser Ndhe-
rungswert sein. Liegen die beiden Stiitzpunkte sehr nahe beieinander, dann
verlauft der Graph der Funktion meist schon ziemlich geradlinig und der
Fehler wird klein sein. Liegt der gesuchte Wert zwischen den Stiitzstellen,
dann spricht man von interpolieren®, liegt er auBBerhalb, dann sagt man extra-
polieren.

Rechnerische Durchfithrung der Interpolation:

(x,|y,) und (x,]|y,) seien die beiden Stiitzpunkte. Wir suchen f(x). Ist (x|y)
der Punkt auf der Interpolationsgeraden, dann verwenden wir y als Nihe-
rungswert fur f(x).

Mit AY =y, —y;, AX =x; —x;, Ay =y —y, und Ax = x — x, gilt wegen
des Strahlensatzes (sieche Abbildung 196.1):

Ay  A¥ Bl dae :
— = ——  Damit berechnen w
Ax AX S A
AY £
Ay = A =
AX e B | i =y
und daraus - I
‘ AN
l_kl-i-axﬂx flx)
y
b Ax ——— ]
~ ——— A} —F - 1 1
X X X 4

Abb.196.1 Interpolation mit zwei Stiitzpunkten

* Das Wort interpolieren kommt aus dem Lateinischen und bedeutet zurechtstuizen oder verfdlschen. Der erste,
der es in dem obigen mathematischen Sinn gebraucht hat, war John WaLLis (1616-1703).
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Beispiel:
Am Thermometer einer meteorologischen Station wurden im Laufe eines
Tages folgende Temperaturen abgelesen:

x = Uhrzeit ¢
in Std.

|0 3 6 9 12 4y 18, 21 24

y = Temperatur 0

heC ‘?.I 5,00 8.3 14,9 19.0 222 1881125 9.8

Wir wollen einen Nidherungswert fiir die Temperatur um 10 Uhr durch
lineare Interpolation bestimmen. Als Stiitzpunkte verwenden wir die
nichstgelegenen bekannten Punkte (9]14,9) und (12]19,0). Damit be-
rechnen wir:
AY =19,0—-149 = 4.1
AX=12—-9=3
Ax =10—9 =1 und damit

AY

g 4,1
- Ax=149 + Ty 1~149+1.4=16,3

i e

16,3°C ist der Schitzwert fir die Temperatur um 10 Uhr, der sich bel
linearer Interpolation ergibt. Der wirkliche Wert und damit auch der
Fehler sind allerdings weiterhin unbekannt!

Uber den Fehler kann man sich informieren, wenn man den interpolierten
Wert mit dem wahren Wert vergleichen kann, wenn man z. B. die Interpolation
bei einer Funktion durchfithrt, deren Term bekannt ist.

Als Beispiel betrachten wir die Wurzelfunktion.

Wir berechnen mit den Stiitzpunkten (0]0), (1|1) und (2| |/2) durch Interpola-
tion Naherungswerte fiir /0,5 und fur /1,5.

yo,s: AY=1-0=1

A¥X=1—0=1
Ax=05—-0=0,5 und damit
AY
y =y, AX Ax=0105=0
1,5: AY=)2—-1=x041
AX =2—1 =/
Ax=15—1=0,5 und damit
AY -
y=p+-—=-"Ax=1+041-0,5=1,.2

AX
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0 2 X
D5 15

Abb. 198.1 Interpolation bei der Wurzelfunktion

Der absolute Fehler = »Niherungswert minus wahrer Wert« ist

im ersten Fall 0.5 — /0.5 =~ —0.2.

im zweiten Fall 1.2 — 1.5 ~ —0.02.

absoluter Fehler .

Der aussagekraftigere relative Fehler = 15t
wahrer Wert

im ersten Fall —0.2:1/0.5 ~ —028 = —28%.

im zweiten Fall —0.02:11.5 =~ —0.02 = —2%.

Im zweiten Fall ist der relative Fehler erheblich kleiner, weil die Kurve im

Interpolationsbereich nicht so stark gekriimmt ist.

Aufgaben

1.

Berechne mit der Tabelle des Beispiels von Seite 197 Niherungswerte fiir
die Temperatur um
a) 1 Uhr b) 2 Uhr ¢) 18.30 Uhr.

. Berechne mit der Tabelle des Beispiels von Seite 197 Niherungswerte fur

die Uhrzeit zwschen 3 Uhr und 15 Uhr, zu der die Temperatur folgende
Werte hatte:

a) 7°C b) 7.1°C c) 10°C.

. Unter der Deklination d des Polarsterns versteht man den Breitengrad des

Sterns auf der Himmelskugel. Wire 6 = 90°, dann stiinde der Polarstern
genau am N-Pol der Himmelskugel. In einer Tabelle lesen wir die Deklina-
tion des Polarsterns fiir verschiedene Jahre ab:

Jahr ‘ 1950 1960 1970 1980 1990

Deklination o

89°01,7" 89°04,7" 89°07,6" 89°10,4" 89°13,2

a) Berechne Niherungswerte fiir die Deklination im Jahr
1) 1988 2) 1965 31977,
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b) Berechne Naherungswerte fiir das Jahr, in dem die Deklination den
Wert
1) 89°05 2) 89710 3) 89°12,4" hat.

¢) Berechne mittels Extrapolation Naherungswerte fiir die Deklination
im Jahr
1) 1940 (Tabellenwert 88°58.7')
2) 2000 (Tabellenwert 89°15.9)

. Als Zeitgleichung bezeichnet man in der Astronomie die Differenz »Wahre

Sonnenzeit« minus »Mittlere Sonnenzeity, das ist also die Zeit, um die die
wahre Sonne sich »verfritht« gegeniiber dem Durchschnittswert, der sich
ergibt, wenn man eine gleichméBig umlaufende Sonne annimmt.

Fir die Zeitgleichung im Dezember 1988 findet man in einer Tabelle
(+11™ = 11 min)

Datum ‘ 1 6. 1ler 165 0ne2 e 260 SO0
Zeitgleichung ‘ =D e D L T R i R 3
a) Berechne Niaherungswerte fiir die Zeitgleichung am

1) 5.12.88 2) 22.12.88 3) 24.12.88.
b) An welchem Dezembertag wird die Zeitgleichung den Wert

1) +10™ 2) +57 N

gehabt haben?

Berechne durch Interpolation (Extrapolation) aus den Stiitzstellen 10 und
11 und den Werten /10 =~ 3,1623 und [/ 11 ~ 3,3166 Naherungswerte fiir

a) /10,5 b) 1/10.9 ¢) 110,95
d) 1/10.1 e) 1/10,05 ) V12

. Bestimme mit einem Taschenrechner die absoluten und die relativen Feh-

ler, die bei den Niherungen von Aufgabe 5 auftreten. Erkldre die Unter-
schiede anhand des Graphen der Wurzelfunktion.
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