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Aufgaben zu 1 . 1

13/ 1 . a) D = Q \ {2,3}
d) Z> = 0 \ {0}

b) D = Q \ { - 0,1 } c) D = Q \ {2}

2 . a) D = Q \ { 3 }
d) D = Q \ { — 40}

b) D — Q \ { 2} c) D = Q \ { — 1 }

3. a) D = 0 \ {4,5}
d) D = Q \ { — 306 }

b) D = Q \ { — 4,5} c) D = 0 \ { 6 }

4. a) D = Q \ {1 ; 3 } b) D = Q \ { — 2 ; 4}
c) Z) = Q \ { - 6 ; | }
d) D = Q \ { 0; ü }

5 . a) D = <Q \ { — 2; — 1 ; 0}
c) £> = Q \ { — 1 ; — 0,1 ; 0}

b) Z) = 0 \ { - f ; f ; f }

6 . a) Z> = 0 \ { — 1 ; 0}
c) D = Q \ { —2; — 1 }

b) Z> = 0 \ { 0 ; | }
d) D = Q \ { - & 0}

7 . a) Z) = <Q>\ { — 3 ; + 3 }
c) D = 0 \ { — 0,2; 0,2}

b) -D = Q \ { — 1 ; + 1 }
d) D = Q \ { - i ; i }

8 . a) D = Q \ { — f ; 3
c) D = Q

b) D = Q \ { — 2 ; 2}
d) D = Q \ { — 1 ; 0 ; 1 }

9 . a) D = Q \ { l } b) D = Q \ { — 2} c) Z) = Q \ { - 3 }
A) D = Q \ { - 1}

10 . a) D = Q \ { — 1 ; 0} b) D = Q \ {0 ; 0,2} c) / ) = Q \ { 50}

11 . a) Z> = Q \ { — 6 ; 6} b) D = Q \ { 1 . _ ! • 1)65 5s 6 /

12 . a) D = 0 \ { — 10 ; 10} b) D

13‘ a) b>
(x — lj

~
(x + 2)

Q \ { - A ; ts}
l

c) -
x (3x + 1 )

Aufgaben zu 1 .2

15/1 . a) 37 • 663 = 481 • 51 = 24531 gleich
b) 912 • 73 = 66576 48 - 1377 = 66096 ungleich
c) 107 - 1333 = 142631 43 - 3417 = 146931 ungleich
d) 16 2 • (48 2 + 297) = 172 • 48 2 = 665 856 gleich



15/2. a) 9x = 7 • 18 x = 14; ff
b) 20x = 3 • 16 x = 2,4; ff
c) 6x + 21 = 9 • 5 x = 4 ; ^
d) 27x = 7x x = 0 ; 0

3. a) 3x = 25 x — 2̂ '
, ff

b) 18x = 45 x = f ; ^
c) 15x — 20 = 25 x = 3 ; ff
d) 18 — 14x = — 3 x = f ; - f

4. Wenn die Zähler gleich sind .

5 . Wenn die Nenner gleich sind , wenn die Zähler null (und die Nenner ungleich
null) sind .

6. Zähler = 0; f = §

7 . a) x3 + 2x 2 + x = x 3 + 2x 2 + x äquivalent
b) (x + 1 ) (x — l ) 2 = (x + 1 ) (x — l ) 2 äquivalent
c) x 2 — 9 = (x + 3) (x — 3) äquivalent
d) 2x 3 — 8x 2 — 8x + 32 4= 2x 3 — 32x nicht äquivalent

Aufgaben zu 1 .3
51
68

18a 3 + 2 a2

18/1 . a)

e)

h)

k)

b)
- 42a

c)
17x

- 1056 ' ' 13x

10c2 d2 + 5 cd3

d)
Ipq 2

2c? 6a2

24« -

f)

6«m4
6c + 3 d g)

— (9 a2 — v2)
— 9u2 + 6uv — v2

28m 2 — 14m 4 — 4«2 + 2n2 m2

— la 2 + Sab + b2

35x 2 + 28xj — 120x — 96j
15x2 -I- 17xj ; + 4y2

— 3 + 2 ab

2. a) —; 29

3 .

4.

e)

a)

a)

b)

c)

a)

Sir

b)

80 uv2

- 35

u + 4v

1024
16

10a — Sb

b)

f)

16 (ab )2

b)

0

- ab
d)

3x 2j 3

(3 + z)2

- 2b

14a2 + 9 ab + b2

c)
3q - 4p

d)
9 - 49n2

- 1 3 + 7n
2a 2 — ab — b2 * 8a 3 — 2ab 2 + 4a 2 6 — b3

4a 2 — b2 ’ 4a 2 — b2 ’ 4a 2 — b2

q3 + 2q2 — q — 2 3p2 q — 3p2 lp 2 q + lp 2 -

pq 2 - p
’

pq 2 ~ p
45m4« — 60m 3«2 + 20m2 «3

3pq 2
4a2

3pq

27m2 — 36m« + 12«2
3m — 2«

pq - P
54m2 — 24«2

27m2 — 36m« + 12« 2 ’

3a - 24b

- b2

q2 - 2q + l

pq 2 ~ P

21m2 — 36m« + 12« 2 ’

a2 + 2 ab + b2
27m 2 — 36m« + 12«2

x2 — 2xy + y2

a2 — b2 b) x 2 - y2 c)
10a 2 — lab — 12b2

25 a2 — 16b2

4
* bis 2 . Auflage: Zähler = 2a2 + ab — 2a — b



d)

g)

19/6. a)

d)

7 . a)

d)

g)

j)

8. a)
e)

g)

9 . a)
f)

20/10 . a)

c)

e)

g)

11 . a)

12 . a)

13. a)

8p 2 - Upq + 3 q2
e)

3r 2 + 5 rs + 2s2
f)

-f~ Sa -\- 3

4p 2 — 9 q2 9r 2 — 4s 2 a 2 — 1

— 2x 2 — 3x + 9
h)

— 30x — 8x 2 — 25

9 — x 2 4x 2 - 25

a 2 - b2
b)

x 2 - >2
c)

2a 2 + ab — 6 b2

a 2 — 2ab + b2 x 2 + 2xy + y 2 a 2 + 4ab + 4b 2

P 2 - 2pq - 3 q2
e)

lOar — 15r — 14as + 21s
f)

6x 2 — 17x + 5

p 2 - 6pq + 9q 2 4a 2 - 12a + 9 9x 2 - 6x + 1

4x 2 - 45x + 81
b)

2a 2 + 23a + 56
c)

3a 2 — 38a + 99

x 2 — 16x + 63 a 2 + 5a — 24 a 2 - 4a - 45

6z 2 + 11z — 2
e)

12a 2 - 62a + 36
f)

18x 2 + 9x — 20

z 2 — 5z — 14 42a 2 - 10a - 12 21x 2 + 13x — 20

88x 2 - 105x + 27
h)

24 u2 + 61a — 8
i)

49r 4 + 14r 2 — 15

16x 2 — 46x + 15 40a 2 — 53a + 6 56r 4 + 19r 2 — 15

24a 4 + 35a 2 - 49
k)

16a 2 — 50ab — 21 b2
1)

63x 2 — 10xy — 25y 2

48a 4 - 2a 2 - 35 56a 2 — 5lab — 21b 2 36x 2 — Ixy — 15j 2

llx - 7 b) — 5x

x 2 + 'Ix + 1 f) —

I . Z . : 14s 2 — Ist ; 2 . Z . :
Nenner — 56s 2 — 8st

- 3 c) 16x 2 - 4x 3

x 2 + 25

: 28s 2 — 4sr + 21s — 3 t;
42s — 6 1

d) 60z 2 + 125z + 10

x = 0
V - i

14r 2

b) x =

39rs + 27 s2

0 c) x = 0

- 9b 4
10pr — 15ps — 6qr + 9qs

4a 4 + 13a 2 /)2 + 4a 3 b + 9ab 3 ■

8 a 3 — 12a 2 b + 18 ab 2 — 21b 3

49 x 4 — 119x 2y 2 + 72y 4

35x 2 u — 21 x 2 z — 40y 2 u + 24y 2 z

16x 4 — 24x 2y + 9y 2

92a 2 jc2 - 69 a 2y - 140 bx 2 + 105 by

b)

d)

f)

d) x = 0 e) x = |

10x 2 + Ixy - 12y 2

35mx — 28 my — 20 «x + 16ny

30ap — 36aq — 45 bp + 54bq
24 ap — 3 6bp — 30aq + 45 bq

4x 4j 2 — 6x 3j 3 — l &x 2y + 21xy 2

14x 5j 3 — 63x 3
,y

2 — 8xV 4 + 36x 2 j>3

: - 2a^ + b2
1- b3 b)

3
4

2v

b)
- 4a
3 b

2z
b) T

i 2 + 2ab + b2

a 3 + b3

c) 9 (x + 1 )

C) 7

a 2 — ab
c> lÄ-TU

a 2 + ab
4a * — b *

d) — 2p

1
d) 7

5



b) 1 : y 3 c) z : 4

3p 2 q2 r

20/ 14. d) 2 (u - v)

11

4 u — v 1p — 4q
c) — y (5x — 2y )4 (4« — v)

b) «10 c) 1

3 a 3

2x — 3y

\ lr 3 s

4p + 5 q

5y

a — b

10« 4- 12ab
5a — 6b

d) - 2

1 - 3 b
2a + 5b

15p + 10#
2x + 1

8 4“ 5a 24« — 32
c) - 40

8 - 5 «

x + y

1000

b) « - 3b

p + q

3 « + 4

7 « 4- 2
d) 1 - x5

4m 4- 3 « 4a - 3 2u + w
2m + 1 u + 2w

a) u + v — w

3m 4- 2n

a) 5« — 106

« — 3b x — 3 v
a — 5b p - 3q r + 5s

6



e)

m)

23/30 . a)

a + lb
a + \ 4b

5p + Iq
5p — 6q

z (9x + 2y)
xy (5x — 3y)

2x 2 — 9y2

la 2 - Ab2

f)

j)

n)

b)

p - 9q
p - 6q

3 u + 2v
8 v — u

3z (x + 2y)
y (x ~ 2y)

2au + b2

3a 2 u + 5b

g)

k)

5 r — 3s
Ar — s

8a : — 3y
6x — ly

c)
5a + 3c
3b - 5c

h)

d)

2x + 5y
3x + 4y

a (8a — 1b)
b (6a + 5 b)

6x + 5y
2 u — 3v

Aufgaben zu 1 .4

25/1 . a) ja b) nein

2 .

3.

a) x = 5

56 9
a) 192 ’ 192

b
12

c) ja

b) x = 7,5
2 - 34

12

26/4.

e)

g)

a)

c)

e)

g)

h)

0

5 u
3w - 3

Ibd

0

h)

d) nein

c) x = 4
— a 2

c)

e) ja

2a
3

2a

Aq 21 p
12pq

’ 12pq

xy - y

2u2 — 2u
3m — 3 ’

2ac
MeV ’ 14c¥

c2 — d2

ac + ad + bc + bd ’ ac + ad + bc + bd

Ax2 3x2 + 15

2^2

f) ja

d) x 4= + 1,5

^ d)
15

3V
x

3V

10 (x 2 — 1 )
’ 10 (x 2 — 1 )

a2 + 2ab + b2
. . 15 — 3x

24x 3 - 12x2 ’ 24x 3 ■

3z + 2 — 2z2
12x2

3z2 + 6z

b)

d)

f)

2x + 6
6x 2 - 24 ’ 6x 2 — 24

3b ac + 3c
3a2 - 21 ’ 3a2 - 21

1
z3 — 2z2 — 4z + 8

’ z3 — 2z2 — 4z + 8

pq 2 - pq + q2 - q p 2 q + p 2 - pq - p _
p 2 q (q2 - 1)

’
p 2 q (q2 - l ) ’

p 2 q {q2 - \ )

2ax 2 + 2a bx 2y — by 2cy2

rf — 9m 2 n
n 2 — 3mn

«4 — 9 m2 n2

2P
2

2y2 (x4 - 1 )
’ 2y2 (x4 - 1 )

’ 2y2 (x4 - 1 )

6a 2 b2 (2a + 3b) Aa2 b 3b (Aa2 - 9b2 ) 2a (2a + 3b)2

6ab (2a + 3b) 2 ’ 6ab (2a + 3b) 2 ’ 6ab (2a + 3b) 2 ’ 6ab (2a + 3b)2

5. a) HN = 4a2 (4a2 - 9) = 16a4 - 36a2 b) HN = 5x 3j 2 - 5xj 2

c) HN = 18 (4m2 - n2) = 72m2 - 18«2 d) HN = 4 (x + 5) (x - 7) = 4x 2
- 8x - 140

e) HN = 4 (a + 3b) (x 2 + 1) (x 2 - 1 ) = 4ax 4 + 12bx4 - 4a - 12b
f) HN = (m 2 - 81 «2 ) (25m 2 - m 2) = 106n2 m 2 - m4 - 2025m4



10a 2 b + 5ab 2 2 a2 — ab 6ab — 3b2
26/6 - a) 4a 2 - b2 ; 4ä 2 ^ 2 ’ 4a2 - b 2 ’

zum Vergleich HN = 3 (4a 2 — b 2) (2a + b)

3x 2 + 24x 2x 2 + 8x — 4x — x 2
^ x 2 + 12x + 32 ’ x 2 + 12x + 32 ’ x2 + 12x + 32 ’

zum Vergleich HN = 3 (x + 4) (x + 8) x2

294x — 588 — 245x — 490 - 4x 2 + 8x
C) 196x2 - 784 ’ 196x2 - 784 ’ 196x2 - 784 ’

zum Vergleich HN = 392 • (x + 2)2 (x — 2)2

Zu 1 .5 . Text von Seite 29f . und Abbildung 30. 1
Du sollst [dir] merken , dass ein jeglicher Bruch geschrieben und ausgesprochen
wird durch zweierlei Zahlen , und wird die erste Zahl oben hingesetzt und heißt
der Zähler ; denn durch diese Zahl wird gezählt , wie viele Teile man hat . Und
wird unter diese Zahl quer ein Strichlein gemacht und unter das Strichlein die
andere Zahl geschrieben ; diese heißt der Nenner , weil sie nennt , welche Teile das
sind oder welchen Namen die Teile haben , die durch die obere Zahl , d . h . den
Zähler , gezählt worden sind .

Aufgaben zu 2. 1

36/1.
2a

a) —
X

f) 3a - b

2. a) 2

3. a) la - 3b

37/3. b) 3x — 8y

4. a) 1

b) 1b

g) x + 5y

c) 2a — 3b d) — x — y e) 0

3 (a + b)
h) a — b

i) £ ±Z
x — y

b) - 33 c)
8 r - 23 j

3s
d) 4a T 5b e)

x + 2y
x — 2y

b)

c) 3 u + 8v

2a - 3
2a + 3

d 8r - 3s

c) 2 x — y d) A \p — Alq

Aufgaben zu 2 .2

39/1. a)
a
2

b)

2. a)
3a + 76

ab

3 . a)
24n - 35

28m

7
36 ^

b)

b)

c)
3a — 5b

16
3a

- 71m
39 vw

c)

15

11 « — 6m

d)
9p + 22 q

42

c)

8mn

lb 2 + 3a2

d) 196z

a2 b
d)

x2 - j 2

xy

8



39/4 . a)

c)

5 . a)

2b 3 + 2 b + a3

6a 2 b

28x 2y — 4x 2 — 1
4x4

a + b

, > (* + ^)2
6- a) —

»
-

ab

7 . a)

8- *

4ab
C )

_ 2a2
_

a2 - *2

o , ß2 +
9 - a ) T . 2a — b

b)

b)

b)

b)

b)

b)

d)

a2 — b

4a2 + 3b2
~

4%a2 tf r

2m2 + 3n2

12m2n3

a

(c - d)2

cd

2 (x2 + y 2)
x + y

1 — 4a -{- 2b -f- ab
36 (4a - l )

x 2 — 2xy — y2

1 - jc 3

c ) - —
X

x2 — y2

c)

c)

c)

c)

(m — n)2

4mu

2m (m + v)

(u — v)
1
xy

4ab
a2 — b 2

d)

d)

w2 + u2 v2

(x + y)2

, , 2x
^ _ y2

10. a)

40/11 . a)

12 . a)

d)

5 a2 — 16b2

6 a2 — ab — 15 b2

- 116 ab
36a 2 - 49b2

2a ~ b + 4c
9

la ~ \ 9b

b)
52m2 — 50d2

24m 2 + 38uv — lv 2

b) 1

b)
- 15m — 2n

23
c)

115p — 42q + 120
630

144

13. a) -
a

b)
1 — 3 n — m

d)

3 mn

— lx 3
y

2 — 3 xy
3 — 6 y

3 — 14x 3

42x 3j 4

c)
9 a2 + 45 b 2 + 5 ab — 15a 2 b

15a2 b2

y , . „ . „ 6x + y — 6
14 . a) 77 _ ,TT > bis 2 . Auflage:

15 . a)

16. a)

17. a)

18. a)

19 . a)

6 (a + b)

32np — 91mq — 4«#
49m2 — 16m2

- 49q2 ~ 8p2

b)
29

3pq {4p - Iq )
2 (8a 2 — 12a — 7)
(4a + 7) (4a - 7)

— b (b + x)
a (a + b) (a — b)

1 — 3x

b)

b)

b)

b)

b)

6 (a + b) 84 (5a — 3)

16ax — llaj — bx + 2by
(x - 2y) (2x - y)

y2 — 3z2 + 3yz
3y2 z (8z2 + ly )

45 x2 + 31x + 5
5 (3x - l ) (3x + l )

5 m — 8m
10m (5m — 2 m)

z + 40
2(6x — l )2 22(5z + 2)2



3a (ö — 3a )40/20 . a)
z (13z — y )2

Wst — 2s + 28

b (9a — b) (9 a + b)

9r 2 + \ \ 2s 2
21 . a)

( t + 2) ( t - 2f

x (x + 1 )

4 (r + 4s ) 2 (r — 4s)

30 + 2)22 . a)
2 ( l - x ) (x - 3)
— a — 3

20 - 1 ) 0 + 3)

m23 . a)
2 (t -j- 3

x (x 2 — 2x + 4)

2 (m — 2n)

5 (2y + 3)24 . a)
(4y 2 + 9) (2y — 3)

(a 2 — b2 )2
41/25 . a)

(4a + 5 b) 2 (4a — 5b)

2 (2b 3 + 2a 2 b — a 3)

a 2 b2

(3y — 2x ) (4x 2 + 9y 2 + 6xy )26 . a)
ab (a — 2b )2

— 12m 3 — 13 m 2 — 4m + 4

6xy (2x + 3y)
- 125tr + 225 uv 2

27 . a)
m (9m — 4) uv (u — 25v 2)

28 . a) 1

29 . a) 1
9 - 25x

a 2 + b2 + 4ab 2 (2a - 3b) 2 (3p — 4a )30 . a)
2a + 3b 3p + 4q

4a - b x + 3y
4a + b 4x + 5y 2 (a — 1 )

(a + b) (a — b)31 . a)
15 (3 « — 2m )

2x

(a + b) (a + b — c) (a — b + c)

3 (2* - 3) ' 2 (5y — 4)

45a 2 — 28b 2 — 168ab 3a 2 + 4b 2 - 7ab33 . a)
0,6 (3a + 2b ) (3a — 2b)

5 bx + 4by — 9 ax

30 (3 a - 4b )

y (1 — u — v)42/34 . a) 12 (x — 2y) (x + 2y )

2
4 (u + 2v)2

4a 2 + b2 + 14ab35 . a)
3 (x — 7)

a4 — 2a 3 — 2a + 1

12ab (2a + b)

1 + 2x 2 - 2x 3
36 . a)

a4 — 1

— b (a + b)

1 - x4

36 — 33x — 5x 2 9x + 3xj — 2y38 . a)
(9a 2 - b2) 3b - 2a 2 (x — 9) 2y (9x 2 - y 2)

10



42/39 . a)
- 1

b)
~ 3y

41 . a) 0

43/44,

(x - l ) 2 '
(3y + 2z)2

2a + 5b

40. a)
4%ab (a — 3b)

b) 2a — 5b

4a 2 — b 1 — 8ab

48.

50.

52.

54.

56

12ab (2a — 3b)

p 3 + q3
3 3p - r

4x 2 - 1

y (4x 3 — xy2 — y 3)
(2.x — y) 2 (2x + y)2

10a2

(a — b) (a + b)2

b (b + 2a)
(a + b) (a + 2b) (a + 3b)

57. a) 0 b) 0

42.

45. 0

(9a 2 - 16Z>2 )2

x (2x — 2y — 3a + 2b)
(3a — 2b) (x2 — y2)

46.
(x — 3 ) 2 (x + 4)2

v 2

49.

51 .

53.

55.

x 3 + y 3

b (a2 + 4ab + 3b2)
(a — b) 2 (a + b)2

60ab

1 - 4x 2

b)
3b - 2a

43.

3b + 2a

- 1
a 1

47 . 1

c)

d)

a2 (b — c) + b2 (c — a) + c 2 (a — b) _ ab (a — b) + ac (c — a) + bc (b — c)

(a — b) (a — c) (b - c) (a - b) (a - c) (b - c)

ab (a2 — b 2) + ac (c2 — a 2) + bc (b 2 — c2)
(a — b) (a — c) (b — c)

Aufgaben zu 2 .3

45/1 . a)

2. a)

3 . a)

4 . a)

b2

5
21

49a2 x2

169b2y2

35ac
3b

5 . a) 1

6 . a) (a — b)2

e) - (a + b)2

b) 1

121 bc
b)

b)

b)

84 ad

15 n
11 m

42m 2

11

b) - 2

b) (a + b)2

f) a2 — b2

c)

c)

14p2

lJq2
1

8xz

c)
uw

20 xy 2

3

20x
IT

c) a2 — b2

d)

d)

d)

d)

d) -

d) -

14
15

10m3

9 n2

6a 3 bd2

5c2

13 u2 v~
3̂

~

bl
2

(a - b)2

11



45/7. a)

8. a)

9. a)

6 (1 - 3z)
z — 3

2
3x (x — 2)
3b (la — b)

10 . a) - 1

46/12 . a) x + 4

„ , (x + y)2
13 - a> ^ 2TX“

b)

b)

b)

b)

4 (2m — 3) c)
6 ( 1 - u)

5 u

3 • (5m — n) (2m + 1 )
« (5m + n)

6 (a + b)
(2x — y)2

1

d)
— 3a
2b2

b) -

(2x - 3) (4x + 3)
1 c) 6

15. a)

16 . a)

17 . a)

18. a)

19. a)

xy
p + q

pq

(a + b)2

ab

b2 — a2

- (2fl - 3 b)2

6ab

u2 + v2

49 - 25z4
b) ■ -

?
—

b) 2n — m

1

11 . a) (5x — 3)2

14 . a)

b)
(a - b)2

(a + b)2

1 + x
8 u

b) -
v

b)

b)

b)

ab

(fl + b)2

a 2 b2

\ bx 2 - 1225 y2

196xy
s (3r — 2s)

- (a - b)2

ab

(14y - 15x)2

441 x 2y2

d) ^

20. a)

21 . a)

c)

22. a)

c)

47/23 . a)

24. a)

c) (3y - 4x ) (3y + 2x)

(42y — 5jc) (27x + 4y)
18

(3c - 2d)2

16c2 - 9cP

P ~ 5q
4 (p 4 5 ^)

145a4 + 320 bA - 400fl2 /»:

144a2 /»2

30a4 + 33b 4- - 64a2 /»2

72a2 /»2

— x 2 + xy — y2

b)

d)

b)

b)

d)

18r2

(2q - lp ) (20q2 - 2 \p 2)
10pq2

25a2

36 (a — 3b)2

25 a2

36 (a — 3b)2

100a4 + 225b4

144a2 /»2

- 91p4 ! mp 2 q2 - 900g4
b)

225p2 q2

xy (x + y)
4 (2m + n) (2« + tri)

3mn

b)

b)

— (2j» + x)
x

34xy
4x 2 — 9y2

12



47/25 . a)
(1 + z + z2 )2

b)
(x 2 + 2x + 3) (x2 + 2x — 3)

X
_ . / /,,a3

26 . a) 0

c)

b)
(bx ) 3 — (ayy

abx 2y2

(x 3 - 2x 2 r + 3xr 2 - 4r 3) (r2 + 2rx + 3x 2)

d)
(a 3x 3 + 6a 2 bxy 2 — 26b3y 3) ■ (b 3y3 + 6 ab 2 x 2y — 36a 3 x 3)

27 . a) 0

36a 3b3 x 3y3

b) 0 c) 0

_ , a , a
28. a = b + g ; e = d = -

b g
a a a (b + g) a2

« + e — — H— — — :- — -— — d • e
b g bg bg

Übersetzung von Abbildung 49 . 1 :
Über das Teilen von Brüchen .
Ich führe die Regel über das Teilen auf die Regel über das Multiplizieren von
Brüchen zurück , und zwar folgendermaßen :
Ich vertausche die Terme des Teilers miteinander , d . h . den Zähler setze ich unter
den Bruchstrich und den Nenner setze ich über den Bruchstrich . Ist dies

geschehen , so bleibt nichts anderes zu tun übrig , als dass du nach der oben

angegebenen Multiplikationsregel verfährst .
Sei’s nun , ich will \ durch f teilen . Dann sieht das Beispiel zur Regel so aus :

j - f . macht | als Quotienten .
So ist es auch , wenn ich f durch j teilen möchte . Das Beispiel sieht dann so aus :

| j . und das ergibt den Quotienten f bzw . I5 .
Und genauso geht es mit anderen .
Und ich weiß , wie bequem das Zurückführen der Teilungsregel vor sich geht und
wie oft es das Gedächtnis entlastet , besonders bei der Durchführung von

Beispielen , die der Algebra gemäß berechnet werden müssen .

Aufgaben zu 2 .4

1
49/1 . a) 5

b) 25
c)

y
d) 98

2. a)
3
2

b)
2a~
b

c)
5
4

d)
21 x
125y

3 . a)
1

3 a3 b) 2x2y c)
4u2

21vw
d) 9 b3

50/4 . a)
16x2

b)
162

c)
4q d)

15 bc
25yz 245 125p 2 2a

5. a)
15a 2 v4 w

b)
32m 2 n3
TC . .4 . 3

13



50/6 . a) —
6

8 . a) (a - 3Z>)2

3 (5a - 2b)

b) - -
m

b)

5 r
7- a) 47

5 (x + y)2 9 . a)
6 (m + 5)3

m — 5

10 . a)

11 . a) -

4 (c + 7)

9 (p + 2q) (r + 3)

12 . a)
(x + l ) (l - y)
(x - 1 ) (1 + y)

bc
13 . a) —

a

14 . a)
MX

b) -
ac

b)

15 . a) 1 b) z2

x (x — 3)16. a)

17. a)

b)
4 (w + 3)

b) -

3 (2m + 5v)

(9s - l )2

9s + 1

» 4
c) ab

c) —
MX

6

3 (* + jQ
28xj ^(x — j )

b) — f (2m + 1 )

2 (a — fr)

b) -

b)

16
34

1
3 (x + 5)2

b) 39ab 4x 2 d)
Sa2 (x + y)
9 b2 (a + b)

51/18 . a)
la z + 8c3

28 a2 c2

19 . a) — -
r

20. a)

21 . a)

22. a)

23. a)

24. a)

9a
8c

1
16

b)

b)

30m — ln 2

3 mw4

(i - p) q
2

3 q — 8p
7

H4q ~ lp )

c)

c)

6x — 5x 2yz 2 — 16yz4

ly rz

21a + 25fr — 3x — 12
3 (x — 4)

16ad (13bd + 4ac ) x2 + 2x + 4
b) — T7+T7,— — \— c)

5 (3 bd — 4ac) 2 (1 - x) (x + 2)2

(x 2y 2 + 1 ) (xy - 1 )
y 3

ad + bc
cd

a 2 + b2 + 4a2 b
ab (a — b) (a + b)

b)

b)

b)

(x 2j 2 + 1 ) (xy + 1 )
/

4x 2 — 3y2

6xy
5rt (2r — 5t) — 5t — 3r

\ 5rt (2r — 5t)

c) bis 2 . Auflage :
(2x ~

j 7 3faV
X 6xy (4x 2 + 9j

2
)

14



Aufgaben zu 2 .5

53/1 . a) -
c

a2
b) ¥

f)

2 . a)

3 . a)

d)

g)
ac

b

a
6x

ac + b
cd

acd + bd
acd — c2

c) 1

h) ab

b

a
¥

b)
14ab 2

15xy
c) d)

4. a) 3 a + 2b

B , b (a + b)5 . a) -
a

6. a) a

54/7 . a) a

x + 1
x + 2

X "i" 1

8 . a)

d)

b)

e)

ad
bd — c

6 + a
3b

b) 3a — 2x

b — a
b)

b)

b)

b)

b

x - y
x + y

2x
x2 + 1

x + 2

x 2 + X + 1
e)

2x + 3

x 2 -f- x 4“ 1
x 3 + x 2 + 2x + 1

d)

0

20p 2 r
49sy2

^ ac + b
c) -

T.ac — b

15a
^ 25 b - 4c

c) !

a — b
a + b

x + y
x - y
4a2 + 9b2

12ab

2x + 3
3x + 5

% a
e) F

j) «3

20a3p
21 qx 3

0 x 3 + x2 + 2x + l
' + x 3 + 3x2 + 2x + 1

Aufgaben zu 3 . 1

58/1. a) 1 b) i c) keine Lösung d) |

2 . a) A b) - 7 «Oft d) 6

59/3. a) | b) 4 c) keine Lösung

4. a) - f b) 2 c) 4,92

5 . a) 5 b) sfe c) keine Lösung

6. a) 18 b) keine Lösung c) keine Lösung

7 . a) - 7 b) 19,5 c) - i d) *

8. a) U b) 30 c) i d) 25

15



59/9. a) 3 b) - 3 c) f
d) keine Lösung e) keine Lösung f) 2,8

10 . a) 3 b) 7 c) 4 11 . a) 4 b) 3 c) 8

d) 9 e) f f) 2 d) 6 e) W f) 5

60/12. a) keine Lösung b) - 1

13 . a) 4 b) 4 c) 2 d) 3

14 . a) {0 ; 3 } b) { 0; ! } c) { 0 ; 1 } d) { 0 ; ! }

15 . a) 2 b) 5 c) 4 d) 7

16 . a) {0 ; 23 } b) { 0 ; 453} c) { 0 ; 199} d) {0 ; ¥ }

17. a) 0 b) Ä c) keine Lösung d) - l

18. a) - Ti b) A c> m
d) e) 6 f) i

19. a) 0 b) {0:; - 4} c) 0 20. a) { 0 ; ü } b) 0

61/21. a) - 3 b) {0 ; 3 }

22. a) keine Lösung b) { - ! ; + 1}

23. a) ¥ b) - 2 24. a) 13 b) 13

25. a) { l ; 1} b) 1 26. a) { -- 3 ; + 3 } b) 4

27. keine Lösung 28. keine Lösung 29. 52

Aufgaben zu 3.2

63/1. - 3

2. a) I b) 1 c) i d) ¥

3 . a) - 2 b) I C) L = { } d) ^

4. a) 1 b) 3

5 . a) i b) L = { } c) 1 d) L =

6. a) 5 b) - 1 c) 4 d) ü

7. a) b) f c) ¥

16



63/8. a) f b) L = { } c) L = Q \ { | ; 7 } d) 7

64/9. a) ~ 2 b) I c) — 4 d) !

10 . a) 0 b) L = { }

11 . a) 2 b) 5 c) - 18

12 . a) L = { } b) 2 c) - 3 d) L = Q \ { - 2 ; + 3 }

13. a) 1 b) 0 c) 5 d) i

14 . a) Ä b) - 1

65/15. 2 16. 7 17 . a) - f b) L = { }

18 . a) 0 b) L = { - 2 ; + 2} 19 . - ff 20. L = 0 \ { — f ; + f }

21 . a) 3 b) - 8 22. a) ff b) 6

23. a) 9 b) W 24. a) - f b) - ff

25. 3 26. 7

66/27. - 7 28. | 29. - 1 30. 1

31 . - 3 32. Q \ { 0}

33. 4 und 2 34. 314 und 111 35 . x = 5

36. Sie ist heute 15 Jahre alt . 37. Er reicht 12 Std .

67/38 . In 30 Tagen . 39. Es dauert ^ Std . , also genau 2 Std . und 24 min.

40. Es würde 15 min dauern .

42. Der Inhalt reicht für 12 Tage.

41 . Es dauert 20 Std.

68/43 . Sie brauchen noch 3 Tage . 44. Noch weitere 15 Tage .

45. Sie würden es zusammen in ff Std . schaffen.

46. a) 7 b) 6 c) 5 d) 1)
bc — ad

2)
bc — ad

c — d
e)

bc — ad
a — b + c — d

47. a) ff b) M cl M
30 d) ff

17



68/48 . a) ff b) §§ c) ft

69/49 . a) 1) 72 und 168 2) 84 und 156 3) 165 und 75
b) 48 und 20 c) 60 und 40 d) 45

Aufgaben :zu 3 .3

72/1. a) 2 : 3 b) 1 : 14 c) 25 : 2 d) 10 : 21
e) 8 : 5 f) 1 : 1 g) ( - - 10) : 53 h) 1 : 4

2. a) 12 b) ^ c) 3 d) 0
e) - 2 f) 1 g) —1 h) 0

3. a) x = 18 , y ■■= 27 b) X = 6 , >• == - 10 c) x = — 7 , = 21
d) x = l,y =: - 21 e) X — i 1, y = 5 f) x = 20 , j = 14

4. a) 9 b) - 15 c) 6
5 d) 145,8 729_ 5

5 . Wende Satz 70 . 1 an !

73/6 . a) Wende Satz 70 . 1 an!

7 . a) x = 57 b) a : 3 = 3 c) a : b = c : d
d) a : b = c : d e) a : 5 = 1 : 2 f) a : 3 = 8 : 11
g) x = 2a — 3 b

8 . a = 35 ° und ß = 55 °

9 . a) 24 und 28 b) 15 und 20 c) 12 und 16 d) 14

74/10 . 125 : m = 200 : 250 <*> m = 156 |
125 : z = 200 : 80 z = 50
125 : w = 200 : 4 o w = 2,5
125 : a = 200 : 600 a = 375
125 : z = 200 : 1 <*» z = f
125 : w = 200 : f o w = {f

Antwort : Für den Teig braucht man dann 156,25 g Mehl , 50 g Zucker und 2,5
EL Weißwein , für den Belag 375 g Äpfel , f g Zucker und jf EL Wasser .

18



Aufgaben zu 4. 1

80/1 . a) 1 — a2 b) a + 3b — 2c c) a + 2a2

d) 4m 2 — 1 e) 6p — q S) la — 5b + 4c

3a - 2b
2. a) a 4= 0 :

a
a = 0 : Q

c) uv 4= 0 : 3 u

uv = 0 : O

3. a) 1 — a4

4 . a) b * 0 ;

b) b + - 1 : 2b — 2

b = — 1 : Q

d) b + 0 - „ bc
- a + 0 : —

a
v fl = 0 - ■c + 0 : { }

c = 0 : Q

b) P * - 9 ;

c) a&c =1= 0 ;

b) m 4= — \ n \ 4m 2 — n2

a 4= 0 : 6
~a = 0 : <Q

— * 0 : ip
^ p — 0 : Q

(bc — a 2) c
- a 4= c :

' a = c -
b (c — ä)

— a2 = bc:
* bc - { }

5 . a) | (4a + 2b)

d) c = 0 : Q

c 4= 0 ;

b) — 2m — n

d — 4c

c) a 4= 0 : 5a + 3 b
a = 0 : O

" ^ + 0 :

V = 0 : { }

6. a) ^ 4= 1 : p - 1

/ > = 1 : Q

c) a = 0 : { }

a 4= 0 -

b) m 4= n : — 1
m = n : Q

d) a 4= } :
(2a — l )2

7 . a) ab + 0 ;

8 . a) \ p

- a = - 1 : Q
1' a 4= — 1 : —
a

- a 4= — b : a
' a — — b \ O

« = { }

b) \ m \ 4= 1 ; - m =)= 3 : 2m + 2
m = 3 : Q

b) a 4= — b : 2
a = — b : Q

19



c) a + 2b :
3 a + b
2b — a

a = 2b —— a = 0 : Q
fl 4 0 : { }

80/9 . a) i + 0 : 2r — s

s = 0 : Q>

10. a) a 4 — b : b — a

a = - b : O

c) b = 0 : Q
6 + 0 ^ - a = 0 : { }

2a — b
a 4 0 : — -

2a

d) m + 1 : 1 — m
m = 1 : 0

b) b + 0 - a 4 3 :
' a = 3 :

d) 1 — m2

11 . a) m 4= 0 : 8 b) n + 0 : ^ (n — 3)

8a2 + 4ab + 2b 2

a + 3

b) p = 2q : Q

p 4= 2q -- r + 0 : p - 2q

= 0 : { }

12 . a) 2a + - b :

2a = — bz.

2 a + b

- a + 0 : { }
' a = 0 : Q

b) 3p + — 5 q : (3p - 5 q)2

81/13 . a) ab 4 0 :
a2 4 b2

b) 2 \ m \ 4 \ n \ :

3p 4 5q

3p = — 5q —— p — 0 : Q
* 0 : { }

2m + n x2

2m — n .

Aufgaben zu 4.2

82/1 . a) D = Q \ {0} b) £> = Q \ { l } c) D = Q \ {b}

b 4 0 a 4 0 .
a
b

b * 0 — fl 4 0 :
fl 4 b

b
b 40 — fl 4 0 :

a + b
b

a = 0 : { } fl = 0 : { } = 0 : { }

Z> - 0 ^ a 4 0 : { } b - 0 ^ — ü -1= 0 : { } i - 0 ^ fl 4 0 : { }
= 0 : D = 0 : D ^ fl = 0 : D

2.

83/3.

a) D = 0 \ { — 1 }
1 4 a

a 4 1 : --— -
1 — a

a = 1 : { }

a) D = Q \ { — a; a]
a = 0 v a = 1 : D
a 4 0 a a 4 1 : { }

b) D = Q \ {0} c) D = Q \ {0}
a + — b : 1 a 4 0 : — a
a = — b : D

b) D = 0 \ { — a; a}
a 4 — fl 4 — 2 : 0

\ ß = - 2 : Q \ { — 2 ; 2}
a = 0 : { }



83/4 . a) Z> = 0 \ {a}

a =1= b ;. b * 0 : —
b

"b = 0 : { }

b) D = Q \ {a}
a 4= 2b c—— a 4= fr : {

= fr : Z>

5 . a) D = Q \ { — a ; a)
a = 0 : D
a 4= 0 : { }

b) D = Q \ { - 2 b; 2b}
a + b 4= 0 ^~— b 4= + i : i

= ±i { }
a + fr = 0 : D

6. a) a = 0 : D =

a 4= 0 : D =

P; L = { }
1

2a [
’

) 3 a

b) b + 0 ; Z> = 0 \ {a ; fr}
a 4= b — a 4= 0 : a + fr

a = 0 : { }
a = b : D

7. a) (a,fr ) * (0,0 ) : a = 0 , fr * 0 : Z> = 0 \ { 0} , L = { - 1 }
a + 0,b = 0 : D = O \ { 0} , L = { - 1 }

« 4= 0 , 6 4= 0 : £> = Q \ ^ - ^

8 . a) Z) = Q>\ { — a ; a}
Ö + 0 : { }
b = 0 : D

b) £ = 0 \ { - fr ; fr}

a 4= + fr : Z, — { - 1 }
a = ±b : L = { }

fl + ° Afl + ±l : ^
1 . .

fl = o Vfl = + — : { }

b) D = ® \ { — a ; a}
* 4= - 1 \ — a = 0 : { }

' fl 4= 0 ; fr + — i :
ab

lTfr
' b = - $ : { }

fr = - 1 = - a = 0 : Z)
"a 4= 0 : { }

9. a 4= 0 : D = 0 \ { - -ja ; ia }
a 4= 2 : a

10 . fl = 0 : D = Q , L = { }

ö 4= 0 : Z> = Q \ < — - i ; L
a fl

1
2a

11 . Z) = Q \ { - i * ; i *}

fr4 = (k

\ = - 2v6 = 2 : { }
* = 0 : { }

1
fr 4= — 2 a fr 4= 2 : — -

b

12 . a = 0 : Z> = 0 \ {0} , L = { }

a 4= 0 : Z) = Q

a 4= — -jAa4 = 2 : 4a
fl = - i V a = i : { }

21



83/13. a + b : D = O \ {0 }
b = 0 : D
b =1= 0 . a — — b :

a 4= — b ;
D

« = ° : { }
a 4= 0 : a

14 . a =|= 0 : D = <Q \ { — a; -| a ; a} 15 . a 4= 0 : D = Q>\ { — a \ 0 ; a}
a = i : D L = { - 3a}
a + 1 : { }

16. D = G>\ { — a (a + 1 ) ; — 2a , — a]
L = { }

17 . a + OAc + O : D = Q \ { — c — a, — a , — c , c — a]
a = — c : — a
a 4= — c ^-— a = c : { }

a2

3

+ c2
a + c : -

a + c

Aufgaben zu 5 . 1

X 1 2 3 4 5 6 7 8 9 10

a) y 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

b) y 1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

c) y 1 4 9 16 25 36 49 64 81 100

d) y 1 2 3 4 5 6 7 8 9 10

2. Die Zuordnung ist in jedem Fall eindeutig ; D = N .

a) fix ) = ~ b) fix ) = ^ c) fix ) = x 1 d) f (x) = *

3 . a) kein Fixelement b) 1 ist Fixelement
c) 1 ist Fixelement d) jedes x e D ist Fixelement

4. a) 1 2 3 4 5 6 7 8 9 10 11

n 12 13 14 15 16 17 18 19 20 21 22

m 5 6 6 6 6 7 7 8 8 8 8

22



90/5 .

n 23 24 25 26 27 28 29 30

m 9 9 9 9 9 9 10 10

a) Eindeutige Zuordnung; D = Menge aller Dreiecke; W = { 180 °}
b) Eindeutige Zuordnung ; D = Menge aller Dreiecke ; W = {360° }
c) Eindeutige Zuordnung ; D = Menge aller Vierecke ; W = {360 °}
d ) Eindeutige Zuordnung ; D = Menge aller Vierecke ; W = { 360 °

}

e) n i—> (n — 2) • 180 °
, eindeutige Zuordnung ;

D = N \ { 1 , 2} ; W = { 180 °
, 360°

, 540°
, . . . } .

f) n i- + n ■ 180 ° — (n — 2) • 180 °
, also n h * 360°

, eindeutige Zuordnung ;
D = N \ { 1 , 2} ; W = {360°

} .

6.

7.

91/8.

X 15 16 17 18 19 20 21 22 23 24 25

y 3 2 17 2 19 2 3 2 23 2 5

X - 4 - 3 - 2 - 1 0 1 2 3 4

a) f (x) - 5 - 3 - 1 1 3 5 7 9 11

b ) f {x )
5

17
2
5

3
5 - 1 - 1 0 1

5
1
5

3
17

c ) fix )
4~ 5

3— 4
2
3

12 0 12 2
3

3
4

4
5

d ) fix ) - 32 16 - 8 4 - 2 4 - 8 16 - 32

- k -3 - 2 - 1 0 1 2 3 4

9 . a) JF = O 0 b) 1E = Q c) W = [2 ; + co [
d) W = Q e) W = Q + f) W = ] 0; 1 ]

10 . a) y = 180 ° - 2a; £> = ] 0 °
; 90° [ ; tE = ] 0 °

; 180 ° [
b) y * = 2cc ; i ) = ] 0 °

; 90° [ ; PE = ] 0 °
; 180 o [

X 1 2 3 4 5

a) ggTix ; 2x) 1 2 3 4 5

b) kgV ix ; 2x) 2 4 6 8 10

c) ggT (2 ; x) 1 2 1 2 1

d) kgV (2 ; x) 2 2 6 4 10
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Wertemengen :
a) W = N ; jedes x e D ist Fixelement
b) W = Menge der pos . geraden Zahlen; es gibt kein Fixelement
c) W = ( 1 ; 2 } , denn

C2 , falls x eine gerade Zahl

[ 1 , falls x eine ungerade Zahl ; 1 und 2 sind Fixelemente
d) W = Menge der pos . geraden Zahlen, denn

i x , falls x eine gerade Zahl

[ 2x , falls x eine ungerade Zahl ; jede gerade Zahl ist Fixelement

91/12 . a)
1 2

2 3 4 5 6 7

9 10

9 10
- / ( * )

b)
10 • • •

10 • • • Hx )

3 - 4 9 10

10 • • •

10 • • •

10 • ■ •
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91/13 . a) Funktion
d) Funktion

b) keine Funktion
e) Funktion

c) keine Funktion
f) keine Funktion

S X
14 . a) s = v t => y = 15x b) t = - => y = —

v 15

U ( V \ u (
92/15 . a) 7 = — z . B . / = — b) R = — z . B .' ’ R \ 100 Qj I \

Aufgaben zu 5.2

y ,

G . 3 <►D . E

2 ■

1 -
A

B - 3 -2 - i o 1 2 3 4 ■*'

-1 -

I • -2 -

F * - 3 -►c • H

K
* - 4 -

2. a)

c) / / / mit Rand
d) \ \ \ ohne Rand

220 V
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100/3 .

4.

e) f) g) h)

g) / //mit Rand h) \ \ \ ohne Rand

a) Die Punkte des 1 . Quadranten liegen rechts von der y-Achse und oberhalb der
x-Achse ; daher gilt x > 0 und y > 0 .

b) M 2 = { (x \ y) \x < 0 Ay > 0 } , M 3 = {(x | y) \x < 0 a y < 0 } ,
MA = { (x | y) | x > 0 a y < 0 } .

a) B (31 — 1 ) , C (312) , D ( — 2 | 2)
b) [AB ] = { (x | j ) | — 2 g x ^ 3aj = — 1 }

[BC] = { (x | j ) | x = 3A - l ^ y ^ 2}
[CD ] = { {x \ y) \ - 2 ^ x g 3 a y = 2}
[DA] = { (x | j ) | x = - 2 a - 1 ^ j ) ^ 2}

c) I = { (x | j ) | — 2 < x < 3 A — 1 < y < 2}
d) B (4 | - 1 ) , C (415) , D ( — 2 | 5) ; [AB] = { (x | y) \ - 2 ^ x ^ 4aj = - 1 } ,

[BC] = { {x \ y) \x = 4 a - 1 g y g 5 } , [CD ] = { (x | y) \ - 2 ^ x ^ 4aj ; = 5 } ,
[DA] = { (xl ^ lx = - 2A - l ^ y ^ 5} ;
I = { (x | >/) | — 2 < x < 4 a — 1 < < 5 } .



100/5 . a) b)

6 x

X - -1

101/6 . Wertetabellen :

X 0 + 1 + 2 ±3 ±4 i 5

a ) y 0 1 2 3 4 5

b) y 2 1 0 - 1 - 2 - 3

c) y 0 1
5

4-
5

9
5

16
5 5

e ) y 0 1~ 2
4— 3

9
4

16
5

25““ 6

d)

f)

x

y

y

- 5 - 4 - 3 - 2 - 1

- 4,9 - 3,6 - 2,5 - 1,6 - 0,9 - 0,4 - 0,1

2 3 4 5

0 - 0,1 - 0,4 - 0,9
4 1 8.
3 2 5
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101/7 . f {n )
7 +

x

x x

8 9 10 n

18 h 6 h 18 h 6 h 18 h 6 h 18 h 6 h 18 1
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102/10 . a) c) fix )

10

9

8

7

6

5

4

3

2

0 1

a) : *

x x

x x

H- 1- 1- h
2 3 4 5

c) x

b) d)

fix )

10 x

9

7

6

5

4

X

x

3

2 - - X x

1

0
H- 1- 1- 1- h
1 2 3 4 5



102/11. a) Alle Punkte einer Parallelen g zur j -Achse haben dieselbe Abszisse x 0 . Falls
x0 eD , gehört dazu genau ein Wert y0 = f (x0 ) und (x0 \ y0 ) ist der einzige
Punkt des Graphen von / auf g . Falls x0 <$ D , gibt es auf g keinen Punkt des
Graphen .

b) Es kann bei einer Funktion/mehrere Stellen x u x 2 , xn mit demselben
Funktionswert y0 geben . Die Graphenpunkte (x ; | j 0) , / = 1,2, . . . , « , liegen
dann auf der Geraden y = y0 , einer Parallelen zur x-Achse .

12 . Aussage A : Die Kurve ist Graph einer Funktion .

Teilaufgabe a) b) c) d) e) g) h)

Wahrheitswert von A f w f w f f w w

13 . a) Ja ; D = { - 2 ; - 1 ; 0 ; 5 } , W = { - 3 ; 0 ; 7 } .
b) Nein , denn zu x = 3 gibt es zwei verschiedene Punkte.

a) und g)

103/15. a) Es gilt z > p t, insbesondere also z + p t für i = 1 , 2 , . . . , n . Wenn z eine
Primzahl ist , hat man somit eine neue Primzahl gefunden .

b) z — 1 = PiP 2 ■ ■■■ ■p„ ist durch jedes p{ (i = \ ,2 , ri) teilbar . Daher bleibt
beim Teilen von z durch p t stets der Rest 1 . Also ist p t kein Teiler von z
(z = 1,2, . . . , «) .

c) Wenn z eine Primzahl ist, ist diese nach a von p 1 }p 2 , . . . ,p n verschiedenund
die Annahme damit falsch .
Wenn z keine Primzahl ist , besteht seine Primfaktorenzerlegung nach b aus
lauter von p u p 2 , - - -,p „ verschiedenen Primzahlen , sodass auch in diesem
Fall die Annahme falsch ist .
Also gibt es unendlich viele Primzahlen .
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Aufgaben zu 5.3

107/1. a) nein b) ja ; a = 1,25; y = l,25x
c) ja; a = 7 ; ^ = 7x d) nein

2 . a)

b)

c)

d)

X 012 3 7 10
y = 2x

y 0 2 4 6 14 20 '

X - 2,5 0 1 1,5 4,5
y 0,5 0 - 0,2 - 0,3 - 0,9 ’ j = — 0,2x

X - 6 - 4 - i 0 1,5 2,2 5,5
y 9 6 0,5 0 - 2,25 - 3,3 - 8,25

X - 4 - 2,2 - 1,6 0,8 2 6,4
y =

y - 2,5 - 1 | - 1 0,5 1,25 4

y = ~ l,5x

a 0,5 • ( — f )3. a) 0,5 ■( — 1 ) ist wahr .

Es gilt AOSjRj ^ ARiS 2 R 2 = AR 2 S 3R 3 s AR 3 S4R 4 = AR 4S 5R 5 (sws) ,
daher a0 = a x = a2 = a3 = a4 .
Also liegen O , R x , R2 , R 3 , R4 , R 5 auf derselben Geraden .
Wegen R 5 ( — 11 — 0,5) = P ist das die Gerade OP.
Wegen R 3 ( — 0,61 — 0,3 ) = Q liegt Q auf OP.

b) 0,8 • 1 = 0,8 a 0,8 • lj = 1,4 ist wahr.
Es gilt AOS 1R 1 = ARiS 2 R 2 = . . . = AR 6 S 7R 7 (sws) , daher a0 = = . . . =
= « 6 -

Also liegen O , R 1 ; R 2 , . . . , R 7 auf derselben Geraden . Wegen R4 (l | 0,8 ) = P
ist das die Gerade OP. Wegen R 7 (J | 1,4) = Q liegt Q auf OP.

Zeichnung s . S . 34



107/4.



a) y = — 0,5x
d) y = - x

b) y = — 5x
e) y ~ i x

c) y = i *
f) y = Ix

6 . a) a = 1,5 ; y 2 = — 1,5
c) a = 1,6 ; y 2 = - 4

b) a = - 0,4 ; jy 2 = - 0,8
d) a = - f ; = - I 9

7 . a) Q (4,51 — 3)
d) P (2,81 — 1,2)

8 . a) y = 2,5x

b) P ( — 1,251 — 1,5) c) Q ( — fl — 2)

b) y = l,5x c) y = jx v y = jx

9 . a) in 1 Min . m3 = 83 3- 1 Wasser , in 1 Tag 120 m3
, in 1 Woche 840 m 3 ;

b) in 4f Min . = 4 Min . 48 Sek . ;
c) in 40,5 h.

10 . a) y = 0,4x b) z = 8x
c) (z = a 2 ■y a y = a2

• x) => z = (a 1 - a2) • x

km
11 . a) j = 80 - t

h
b) b = 0,082 ■s

km

c) 6 = 0,082 — - 80 ^ - 1 = 6,56 ^ - 1
km h h
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’ f„-' JA' f '-v»M|T,.

•V -

1U^J .1 >>\ ä f >*T5

7 500 € • 4 • T r I ISO 210 _jgg _109/12 . a) Z —
26000 ’ Z in € | 150 175 250

lf) Z = ^ ' P ' T
^ ist 1) direkt proportional zu K' 36000 2) direkt propotional zu p

3) direkt proportional zu T.

Aufgaben zu 5 .4

113/1. Lineare Funk.ionen werden in a), c), . ) und 0 beschrieben.

= 0,5 -x

3. Die Menge der Graphen
besteht aus den Parallelen

durch die Punkte

36



113/4. Man erhält alle Geraden
durch den Punkt P (0 | 1 )
mit rationaler Steigung a;
die y-Achse gehört nicht
dazu.

y = 0 - X + 1

y = x

ö = 5
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113/7. a) a = 0,25 b) a = — 1 c) a = 0 d) a = — 2,4 e) a = 0,6 f) a = 2

8 . a) a = 2 ; y = 2x — 3
c) a = | ; j> = fx + 2
e) a = l,2 ; y = l,2x — 0,8

b) a = — i ; j = — 0,25x
d) fl = 0 ; y = - 1,5
f) a = - f ; J = - fx + 1

114/9. a) y = | x ;
X - 3 0 2 1,2 6
y - 3,5 0 2\ 1,4 7

b) y = — 3,5x + 3,5 ;
X - 3 1 3 7 11
y 14 0 - 7 - 21 - 35

X - 13 - 3,45 0 1,89 3,14
y 2,125 2,125 2,125 2,125 2,125

10 . a) Ja ; y = 8x — 10 b) ja ; y = — 0,lx + 2,8

38
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114/11. a) y — — 2
b) y = — x — 1
c) y = — jx + 2,7
d) y = l,5x — 4,5
e) 7 = 0,6x — 3

12 . a) g : y
b) g '

- y
c) g "

- y
d) g "' : y = fx



115/13. a) r = ] - i ; + oo [ b) T = ] - oo ; 1,2]
c) r = ] 0 ; 4,5 [ (T = ] - oo ; 0 [ , T = { } , r = ] 4,5 ; + oo [)

14. a) y = 1,1 x + 2,9 b) 8 km

15 . a) 0,15 € • 324 + 80 € = 128,60 €
b) y = 0,15x + 80
c) Für Strecken über 360 km ist das 2 . Angebot günstiger .

16 . a) (12 • 35 + 850) g = 1270g b) m = 12 — • h + 850gcm

c) m = 0,79 — • 12 cm2 • h + 850 g = 9,48 — • A + 850 g;cnr cm
150

m = 1 kg für h = cm « 15,8 cm.

cm
17 . a) / = 0,08 — • m + 16 cm; wmax = 800 g.

B cm
b) d = 80 cm — / = — 0,08 — ■m + 64 cm;

<7 = 10 cm => m = 675 g.

Aufgaben zu 5 .5
10

118/1. a) nein b) ja , a = — 10; y = -

c) nein

a) j =
6 x 2 3 1 - 1 - 2
x ’

y 3 2 6 — 6 - 3

b) y = 0,75 3 x 0,25 1,2 - 0,625 2,7 1— 600

X 4x ’
y - 3 - 0,625 1,2 5~ 18 450

c) y =
16 x - 5 3i - 2 32

41 lli 2,88 6|
X

5 - 3,2 - 4,8 - 8 20,5 1,44 5f 2,4



(- 510,2 )

nO 1

/ (2I - 3 )

5 . a) Fall 1 : b * 0

Aus OP 0 = OPq = a

PÖP = F^ = \ b \
£ PP0O = P'PqO = 90°

folgt AOP 0P = AOPqP ' (sws)

Daher gilt PO = P 'O (1)
und a = a' (2) .

Wegen (2) liegen P, O und
P ' auf einer Geraden und
nach ( 1) ist O der
Mittelpunkt von [PP '] .



Fall 2 : b = 0 .
Dann gilt P = P0 , P ' = P [ ; daher liegen P, O und P ' auf einer Geraden
(x-Achse) . Wegen OP = OP ' = a ist O Mittelpunkt von [PP '] .

c cb) Ist P (a | Z>) ein Punkt des Graphen der indir. Prop . y = — , so gilt b = - und

Qdamit auch — b — - . Also ist auch P ' ( — a \ — b) ein Punkt des Graphen der
— a

• >• cmdir . Prop . y = — .

Nach a liegen P und P ' punktsymmetrisch bezüglich O . Daher wird beim
Spiegeln an O der Graph einer indir . Prop . auf sich abgebildet , d . h . er ist
punktsymmetrisch bezüglich O .

c) Ja ; denn der Graph ist eine Gerade durch O , die beim Spiegeln an O auf sich
abgebildet wird .

2
119/6. a) P (x | y) hat das Spiegelbild P' (x '

| y ') mit x ' = x , y ' = — y . Aus y = - folgtx
y

./ B
' = A'

0

b) P (x \y) hat das Spiegelbild P" (x "
|j ") mit x " =

2

— x , y" = y . Aus y = — folgtx

2Der gespiegelte Graph gehört in beiden Fällen zur Funktion / * : x i—>



119/7. a) Es gilt AOP 0P s AOP (,F (sws ) .
Wegen a = a ' gilt dann auch ß = ß '

, d . h . vv , halbiert POP ' .

Wegen OP = OP ' ist APP 'O gleichschenklig mit Basis [PP '] und seine

Symmetrieachse . Somit liegen P und P' symmetrisch zu

a a
b) Ist P (ulv) ein Punkt des Graphen der mdir . Prop . y = — , also v = so gut

x u

auch u = d . h . , P ' (v j u) ist ebenfalls ein Punkt des Graphen dieser
v

indirekten Proportionalität .

c) l . Weg : Wie bei a zeigt man , dass P (u \v) und P " ( — u | — u) symmetrisch zu w2
liegen . Analog zu b folgt daraus die Symmetrie des Graphen einer
indir . Prop . bezüglich w2 -

2 . Weg: Die Spiegelung an w2 lässt sich aus der Spiegelung an w t und der

Punktspiegelung an O zusammensetzen :

S (O) o S (wß) = (S (w2) ° S (wj ) o S (wß) = S (w2)
Sowohl bei S (Wj) als auch bei S (O) wird der Graph einer indir . Prop .
auf sich abgebildet (vgl . Aufg . 5 und 7b ) .

8. a) Ein Punkt P des Graphen hat die Koordinaten P I x . Sein Abstand von

der x -Achse ist also
1

= — . Er nähert sich beliebig dem Wert 0 (ohne ihn
| x |

zu erreichen ) , wenn man für x immer größere positive oder immer kleinere
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negative Zahlen einsetzt . Mit wachsendem | x | nähert sich also der Graph
immer mehr der x-Achsc , und zwar „nach rechts hin von oben , nach links von
unten “ .
Der Abstand des Graphenpunktes P von der y-Achse ist | x | . Er nähert sich
beliebig dem Wert 0 , wenn man x selbst immer näher bei 0 (aber 4= 0) wählt .
Mit abnehmendem | x | nähert sich also der Graph immer mehr der y-Achse ,
und zwar „von rechts her nach oben , von links nach unten “ .

b) 1) x > 200 2) y > 200

119/9. Grundlinie g , Höhe h ; A = g ■h , also g ■h = 12 cm2
, somit h = 12 cm2

g
g (in cm) 3 4 6 8 10

h (in cm) 4 3 2 1,5 1,2
12 cm2

h = - ist die Gleichung einer mdir . Prop . mit D
g

120/10. a) 25 dm • q = 20 dm3 => q = 0,8 dm2 = 80 cm2 ,
b) 25 cm2 • / = 20000 cm3 => / = 800 cm = 8 m.

11 . Verkehrsflugzeug: Geschwindigkeit v , Flugzeit l ^ h = fh ;
k .ni

Sportflugzeug : Geschwindigkeit v — 150 — , Flugzeit 1 h 35 Min . = | | h .

Es gilt : r • | h = I ü — 150
km
li

, q , km
ifh => v = 712,5 —

h
. km

Flugstrecke : ^ = 712,5 - f h = 890,625 km « 891 km .h

12 . Der Preis für 1 Fot Brot ist direkt proportional zum Weizenpreis. Daher gilt

x = H
1 Pf 1 Pf- -— : 14 = — -— : 30
9 Lot x Lot
Das 1 -Pf- Brot muss dann 4/ Lot schwer sein.

Aufgaben zu 6. 1

Zahlenpaar (0 | 0) (21 — 5) (413) (314) (Oli) ( - iio ) ( ~ m (±10)

Lösung ? nein nein ja nein ja ja nein nein

2 . (118) , (5120) , ( - 7 | - 16) , (i | 6) , ( - f | 0) , (0 | 5) , (1,2 | 8,6 ) , (& | 5,7 )

3 . Tripel (0 | 0 | 0) (41315) (41513 ) (51413) ( - 2 | 5 | - 12)

Lösung ? nein ja ja nein ja

Tripel ( - 2 | - 12 | 5) (211215 ) (2 | 12 | - 9)

Lösung ? ja nein ja
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124/4. (01010 ) , (0111 — 6) , (1 | 1 | 1 ) , ( - 241 - 11 - 13 ) , (51 - 2,5150) , (ilil - f ) , ß | - f | 6i ) ,

(Älil - D -

5 . a) z . B . (1 | 2 | 3 | 9 -j ) b) z . B . (11 — 2 | 3 | 12) c) z . B . (11112 | 7)

d) z . B . ( — 11 — 11 — 21 — 3)

6. (1J010) , (0 | 110) , (0 | 0 | 1)

7 . ( - 2 | - 2 | - 2)

8. a) (110) b) (3 | - 1 | 0,5)

9 . Im Falle der Lösbarkeit genügt es für den Schüler , wenigstens eine spezielle Lösung

zu finden . Die folgende Tabelle enthält die vollständigen Lösungsmengen .

a) b) c) d)

L für G = Z { } { 3} { } { }

L für G = 0 { 3 } { 3 } { } | (x | y) | xeQ /\ y =
^ j

e)

L für G = Z {(x | y) | x = — 3 + 11Laj = — 2 + 7k a keZ } *

L für G = Q j (x | j;) | xeC { =
^

1

* Aus Ix — 1 ly = 1 o 11y = Ix — 1 folgt , dass Ix — 1 ein ganzzahliges Vielfaches

von 11 sein muss ; dies gilt für x 0 = — 3 und damit auch für xt = — 3 + k ■ \ l,k eZ
lx k - \

(und nur für diese x-Werte !) . Dazu gehört yk =
11

= - 2 + 1k.
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Aufgaben zu 6.2

2. (.v [0) liegt auf der x-Achse,
(01 1) auf der y-Achse .

3 . Es muss c = 0 gelten .

4 . a) Ja; dazu gehören die Punkte
zwischen A und B.

b) Nein ; es gibt keine Punkte der
Geraden im 3 . Quadranten.

c) Nein ; es gibt keine Geraden¬
punkte in dem doppelt schraf¬
fierten Gebiet (einschließlich
Rand) .

d) Ja; dazu gehören die Geraden¬
punkte links oberhalb von C
bzw . rechts unterhalb von D.
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127/5. x = 1 hat die Lösungsmenge /
L 1 = { 1 } .
x + 0 • y = 1 hat die Lösungsmenge
L2 = {00 ) 0 = 1 a je 0 } . h

g veranschaulicht die Lösungsmenge
der Gleichung a: + 0 • y = l ,
h die Lösungsmenge der Gleichung 1 '

0 • x + y = 2 .

9

0 1 x

6. Die Gleichung ist äquivalent zu
a) x + 1 = 0 (d . h . x + 0 • y + 1 = 0)
b) 2x — 3y + 4 = 0

7 . a) { (x \y \ z) \x e ® a y e Q a z = — x — y}
b) {(x \ y \z) \x = — 3j + 7z + 8aj 6Ü Azei
c) {x \ y \z) \x = y + 2z a y e Q> a ze Q}

f 8x + 6]
d) jO 0 ) O e O A k = ——

|

e) {O | y) | jc = — 0,4y + 2,9 a y e Q}

128/8. a) für 2 Unbekannte b) für 3 Unbekannte

9 . a) { (x \ y) \x + l/ \ y = 4x - 5 }
b) { (x \y) \x = y Ay + ~ j } = {Ol y) \ x + - Ä a y = 8*}
c) {00 ) 0 + 1 f\ y = x 1 }
d) {00 ) 0 e Q a y = 2x — 1 }

Aufgaben zu 6 .3

131/1. a) I x — 2y = — 3
II 2x - 4y = — 5

c) I 2x + 4y = 1
II x - 2y = l

III 5x + y = ll

b) I 5 jc + 3y - 8z = 10
II 2x — y = 7

III y - z = 0

d) I w + x = 0
II w + x + y = 0

III w + x + y + z = 0
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131/2 . a) linear b) nicht linear c) linear
d) nicht linear (aber lin . System für | x | und | y |)

3. L = L 1 r \ L 2 = { (21 — 114)}

4. L = { (112) , (213 )}

5 . a) {(111 ) } b) { (312)} c) {(flf )}
d) { (0 | 0 | - 2)} e) { ( - 11217)} f) { (210 | - 2)}

6 . a) {(014)} b) { (0 | 4) , (4 | 0) } c) {(012) , (01 - 2)}
d) { (0 )2) , (0 | - 2) , (210) , ( - 2 | 0) } e) {(11 - 1 )} f) { ( - 4 | - i ) , (f | $)}

7 . Länge x , Breite y => y = fx a x • y = 12 ; L = { (4 | 3) } , da x > 0 , y > 0 .

132/8. a) { (112) } b) { ( - 21 - 2) } c) { (2 | - 1 )} d) {(0,51 — 3)}
e) { (0,510,5)} f) {( 1 ( 3)}

9 . Hans ist x Jahre , Otto y Jahre alt .
I x — 3 = 5 • ( y — 3)

II x + 3 = 2 • ( y + 3)

I ' x — 5y = — 12
II ' x - 2y = 3

L = { (1315)}
Hans ist 13 ,
Otto 5 Jahre alt .

10 . I 3x + 5y = — 1
II 5x - 3y = - 13

11 . I ( lOx + y) + (x + y) = 50
II lOy + x = lOx + y — 9

T llx + 2y = 50
II ' 9x — 9y = 9

L = { (413 ) } ;
die Zahl heißt 43 .

zu Aufgabe 10 . zu Aufgabe 11 .



132/12 .

a) L = { (213)} ; die Geraden a u a2 , a 3 schneiden sich in S (213) .

b) L = { } , da b l \\ b 3 a b 3 + b 3 .

c) L = { } , da c 1 | | c 2 acj =|= c2 . c 3 = c ^ !) .

Aufgaben zu 6 .4

I' x + %y = l r = i - i
II' h-I1IIa\1X ir = ii

I" x + j y = l r = r
II" 1 G/iII1 ir = ir + r - ( - 4)
I", x + f y = 1 i " , = j „

II ", y = j II '" = !!" • ( - * )

r "x = j lw-ft
—i+HW

ii „" y = i
L = mm
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I' x —He M= 7 I ' = i - 4
II ' 4x + ly -= 28 II ' = ii

I" x — y - = 7 I" = r
II " 65

3 y = 0 II " = ir + r - ( - 4)

I" ' X —XX v -
3 y - = 7 I" ' = r

II '" y = 0 II '/ / TTft 3— 11 65

j/rtj' X = 7 y in Y" eingesetzt (bzw . I"" = I '" + II '" • -£ )
II""’y = 0 ir "" = II " '

L = { (7 | 0)}

144/2. a) I * = I , II* = 11 - 1 - 4 (B) ; L = { (2 | 1 )} .
b) I* = I • 0,2 (A) , II* = 1 - 11 - 4 (B) ; L = { (2 | - 2,5 ) } .

3 . a) { (1 | 2) } b) { } c) { (71 - 2) } d) { (x | y) | xeO a y = 4 - fx }

4 . a) { ( - 31 - 5 ) } b) { } c) { (010) } d) { (9310)}

5 . a) I ' 656x = 1435 , II ' 656j = 697; L = { (ff | {f )} .
b) Das Additionsverfahren liefert „0 = 0“

, da die beiden Gleichungen äquivalent
sind ; es gilt I = II ■f , das System besitzt unendlich viele Lösungen .

L = < (x | j;) | xeQ a y = —~
6X

>

6. a) Det . = - 25 ; L = { (4 | - 3) } b) Det . = 0 ; L = { }
c) Det . = 9,6; L = { (0,5 | - 4)}
d) Det . = 0 ; L = { (x | y) | x e O a j = — j {x}

145/7. { (6 | f)}

10 - { (41 - S)}

i3 . mm

8- { (fl *)}

11 . { (210)}

14 - { (411)}

9. { (20 | 3 )}

12. { (2,511,4)}

15 . {(0,7515,5)} 16. { }

17 . a) x — y = 0
x + 2y = 6
A (212)

b) x — 2y = 0 c) x — y = — 3
x + 2y = 6 x + 2y = 6
B (311,5 ) C (013)

18. a) ( - 1 | 2)
c) (4115 )

b) kein Schnittpunkt, g x \\ g2 a #=g2
-

d) (2,34 | - 7,2)

19 . {x + y = l Ax + y = l0 ; L = { (4 | 6) } .
Die Breite beträgt 4 , die Länge 6 Handbreiten .



145/20. Eine Elle grüner Seide koste x Pfund , 1 Elle schwarzer Seide y Pfund .
7x + 3y = 72 a 2x + 4y = 52 ; L = {(6 | 10) } .

21 . x + y = 100 a | + 3y = 100 ; L = {(80 | 20)} .

Die Summanden der 1 . Summe sind 80 und 20, die der zweiten 40 und 60 .

Aufgaben zu 6.5

148/1. { (711118 )} 2 . { ( 11 — 113)} 3 . { (4 | 0 | - 5 )}

4. { } 5. {(2 [ — 711) } 6. {(0 (0110 )}

7 . {(x | j | z) | xe O a y = — 4x + 5 a z = 23x — 22} 8. { }

9 . { (01010) } 10 . {(x | y | z) | xe O a y = x a z = x]

11 . { (x \y \z) \xe O a y = — 2x a z = 3x — 1 } 12 . { }

13 . { ( — 513)} 14 . { }

149/15. {(11 - 2 | 01 - 1 )} 16 . {(210,5121 — 0,5 )} 17 . {(0 | 11 - 2)}

18 . { (x | y | z | w) | x = 2 waj = w + 2az = 3w — 1 aweQ }

19 . a) { (1515125 ) } b) { (45137,5122,5)}

20 . j4 = 11 , 5 = 4 , C = 5

21 . x Elähne , y Hennen, z Küken; x , y , zeN
I x + y + z = l 00

II 5x + 3j + iz = 100

I' x + y + z = 100
II ' 14x + 8y = 200 (ir = 11 - 3 — 1)
II ' 7x + 4y = 100 o 7x = 100 — 4y

& 7x = 4 - (25 - y) (*)

Aus (* ) folgt : x muss ein Vielfaches von 4 sein,
25 — y muss ein Vielfaches von 7 sein .

Damit findet man folgende Tripel :

X 4 8 12

y 18 11 4

Z 78 81 84

Die Probe zeigt , dass es sich um 3 Lösungen handelt ; bereits CHANG Ch ’iuchien
gibt alle drei Lösungen an .
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149/22. Es seien x Ochsen, y Schweine, z Kälber und w Geißen.
Dann muss gelten :
I . x + y + z + w = 100

II . 4x + f y + jz + iw = 100
mit x , y , z , w e M (d . h . jede Art von Tieren soll tatsächlich dabei sein !) .
Dieses System hat eine Vielzahl von Lösungen . Um sie zu finden , leitet man aus I,
II eine einfachere Gleichung mit nur 3 Variablen her , z . B .
4 • II — I : 15x + 5y + z = 300

x = 20 — 5y + z
15 (*)

Man erkennt aus ( * ) , dass x 5/ 19 gelten muss und dass z ein Vielfaches von 5
und 5y + z ein Vielfaches von 15 sein muss . Tatsächlich existieren zu jedem
x e (1 , 2, . . . , 19} Lösungen . Einige Beispiele:
Fall x = 1 : ( *) <̂ > 5y + z = 285 ( 1 )
Beim Lösen von ( 1 ) ist 51 z und w > 0 zu beachten . Man erhält :
z 5 10 15 20 25 30 35 40 45 50

y 56 55 54 53 52 51 50 49 48 47

W 38 34 30 26 22 18 14 10 6 2
w ist jeweils so gewählt , dass I erfüllt ist . Man zeigt leicht , dass die 10 Werte¬
quadrupel auch II erfüllen . Es genügt , dies etwa für ( 1156 | 5138) zu zeigen , und
dann nachzuweisen , dass der Term 4x + §y + \ z + beim Übergang zum
nächsten Quadrupel sich nicht ändert .
Da Ax = 0 , Ay = — 1 , Az = 5 , Aw = — 4 ist tatsächlich
4 • Ax + \ ■Ay + \ Az + ^ • Aw = 0.
Fall x = 14 : (* ) o 5y + z = 90 (2)
(2) liefert folgende Werte für y , z , w :
z 5 10 15 20 25 30 75 80

y 17 16 15 14 13 12 3 2

W 64 60 56 52 48 44 8 4
Wie oben zeigt man leicht , dass alle 16 Quadrupel Lösungen sind .
Fall x = 19 : ( *) <=> 5y + z = 15 (3)
(3) liefert die beiden Lösungen (1911110170 ) und (191215174 ) .
Zu den verschiedenen x -Werten gibt es also unterschiedliche Anzahlen n (x) von
Lösungen , und zwar gilt:

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

n (x) 10 10 11 11 12 12 13 13 14 14 15 15 16 16 14 11 8 5 2
Die Aufgabe hat also 222 Lösungen !

Adam Ries gibt als Lösung an : 12 Ochsen , 20 Schweine , 20 Kälber und 48 Geißen .
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Aufgaben zu 6.6

152/1 . {(516)}

5 . { ( — 815 ! 1 )}

7 . mi )}

153/9. {(314)}

13 . { (25 | 18)}

2 - {(1218)} 3. {(10115 )} 4. {

6 . { (x \y \z) \ x + ÖAy = - 2xAz = - 3x}

8- { (fl ! )}

10 . {(5 | 0)} 11 . {(11 - 1 )} 12 . {

14 . { (Hili )} 15 - {( — 317111 )}

Aufgaben zu 6.7 . 1

153/1 . Erste Zahl 3 , zweite 5 .

3 . Erste Zahl 3 , zweite 1 .

5. Die Zahl heißt 24.

2 . Erste Zahl zweite — f .

4 . Erste Zahl 18 , zweite 63 .

154/6. Die Zahl heißt 364. 7. Die Zahl heißt 447.

8. Die Zahl heißt 45 . (Quersumme muss 9 sein !)

9. Die Zahl heißt 385. (Alternierende Quersumme muss 0 sein !)

10 . Neue Zahlen: 7436 und 4367 ; ursprüngliche Zahl: 436; angehängte Ziffer : 7 .

11 . % 12 . 13 . Erste Zahl zweite } .

14. x = \ y = 2^y ; somit ist = 37; y = 111 ; x = 259.

15.
10x + y
10y + x

8
3

10y + x - l
A -

y
= 13 => x = 7 , y = 2 . Die Zahl heißt 72 .

16. Die Einerziffer muss 5 , die Zehnerziffer (wegen der Größe der Quersumme!) 7
heißen . Mit x , y als Tausender - bzw . Hunderterziffer gilt dann :

x + y = 14 a ( IOOOx + lOOj + 75) + (5700 + 10y + x) = 12661 => x = 6 , y = 8 .
Die Zahl heißt 6875.

17 . 324 18 . Erste Zahl 6 , zweite 3 .

155/19. x 2 — y2 = 93 => (x — y) (x + y) = 1 - 93 v (x — y) (x + y) = 3 - 31
1 . Fall : x - y = 1 a x + j = 93 => = { (47 | 46)}
2 . Fall : x - j; = 3 a x + y = 31 L 2 = {(17 | 14)}

20. x + ^ = z + 20aj + z = x + 30az + x = }' + 40; L = { (30125135 )} .
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Aufgaben zu 6.7 .2

155/21 . 90 Personen; anfangs 47 im 1 . und 43 im 2 . Raum.

22. 20 und 25 Schüler

23. Zu Beginn 14 Damen und 21 Herren

24. Gewinn 120000 € ; davon 72000 € für Karl , 48000 € für Otto .

25 . Einlagen: x € von Kunze, y € von Link
x — 22500 x

2x = 3y + 5000 a -
y - 13 500 y

Einlagen : Kunze 25000 € , Link 15000 € ; Grundkapital 40000 € .
Gewinne : Kunze 2 500 € , Link 1500 € .

26. 45 Kisten waren auf dem kleinen, 60 auf dem großen Wagen.

156/27. Im 1 . Fass waren 441, im 2 . Fass 52 1 Petroleum.

28. Es sind 25 Hühner und 10 Kühe.
33x

29. x + y + z = 100 a 40x + 12y + 1z = 1000 => y = 60 - (*)

Wegen x , y , z e N hat (* ) nur die Lösung x = 5 , y = 27; dazu z = 68 .
Somit sind es 5 Bücher zu 40 € , 27 zu 12 € und 68 zu 7 € .

30. Anteile der 4 Personen : x Dr . , y Dr . , z Dr . , 9900 Dr . — (x + y + z) Dr .
I . 9900 — (x + y + z) = (x + y + z) + 300 1

II . z = x + y + 300 L = { (10501120012550)}
III . y = fx J
1050 Dr . erhält die 1 . , 1200 Dr . die 2 . , 2550 Dr . die 3 . und 5100 Dr . die 4 . Person .

Aufgaben zu 6 .7 .3

156/31 . Die 1 . Sorte kostet 8 € /kg , die 2 . Sorte 12 € /kg.

32. Man muss 7,5 kg von der 1 . und 2,5 kg von der 2 . Sorte mischen.

33. Es waren 150 g Wasser und 37,5 g Salz , also 187,5 g einer 20 % igen Salzlösung.

34. Es waren 200 g der 1 . und 300 g der 2 . Lösung.

35. Die Dichte der 1 . Lösung ist 1,05 g/cm3
, die der 2 . Lösung 1,12 g/cm3 .



157/36. Mit x kg Sauerstoff , y kg Stickstoff gilt :
I x + y = 0,00129 • 50 ■40 • 25

II + y
0,00143 0,00125

= 50 - 40 - 25
L = {(15f | 48ü )}

Es sind etwa 15,9 kg Sauerstoff und 48,6 kg Stickstoff .

37. Der Feingehalt der 1 . Sorte ist 350, der der 2 . Sorte 600.

38. Es waren 2,7 g Legierung vom Feingehalt 820.

39. x M(inen) Gold , y M Kupfer, z M Zinn, (60 — (x + y + z)) M Eisen.
x + ^ = 40ax + z = 45aj + z = 24 ; £ = {(30,519,5114,5 )} .
Man braucht 30,5 M Gold , 9,5 M Kupfer , 14,5 M Zinn und 5,5 M Eisen .

Aufgaben zu 6.7 .4

157/40. Klaus legt in 1 Stunde 4,8 km, Heinz 4,2 km zurück.

41 . Geschwindigkeit des Schleppzugs 14,5 km/h , Geschwindigkeit der Donau
5,5 km/h .

158/42. Geschwindigkeit des Schwimmers 0,9 m/s , Geschwindigkeit des Flusses 1,6 m/s .

43 . Geschwindigkeit des Flugzeugs 330m/s ( = 1188 km/h) , Geschwindigkeit des
Windes 10 m/s .
Die Schallmauer wurde nicht durchbrochen .

44. Geschwindigkeit des Lastwagens 90 km/h , Geschwindigkeit des Personenwagens
120 km/h .

45 . Klaus fahrt mit 25 km/h, Otto mit 21 km/h.

46 . Geschwindigkeit des schnelleren Läufers 7,35 m/s , die des anderen 6,65 m/s .

47 . Klaus läuft 9 m/s , Peter 8 m/s . Der Treffpunkt ist 320 m vom Startpunkt entfernt .

48. Das kleinere Rad hat 12 , das größere 20 Zähne.

441 441
159/49. Umfang des Treibrads : xm I - = 112

y
3 7

Umfang des Laufrads : y m II 3x = ly <=> - = 0
y x

1 1
Lineares System für — und - ! x = 5,25 ; y = 2,25.

* y

Auf 10,5 km macht das Treibrad 2000 Umdrehungen .
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Aufgaben zu 6.7 .5

159/50. a) a = ß = 63 °
, y = 54 °

. b) a = ß = 7,2 °
, y = 165,6° .

51 . a = 45 °
, ß = 54 °

, y = 81 ° .

52. Umfangswinkel 36 °
, Zentriwinkel 72 ° .

53. a = 81 °
, ß = 132 °

, y = 99 °
, <5 = 48 ° .

54 . Die Basis ist 7,5 cm, die Schenkel sind 12,5 cm lang.

55. Länge 30 cm , Breite 21 cm.

56. Die parallelen Seiten sind 5,6 cm und 8 cm lang.

57 . b = 40 cm, d = 44 cm.

58. a = 8 cm, b = 6 cm, c = 12 cm, = 14 cm.

59. Die 1 . Seite ist 4 cm , die 2 . Seite 3 cm lang .

160/60. Länge des Rechtecks 10 cm, Breite 7 cm.

61 . Die Rechtecksseiten sind 2 dm und 8 dm lang .

62. Die Seiten des ursprünglichen Rechtecks sind 6,5 cm und 7,8 cm lang.

Aufgaben zu 6.7 .6

160/63. A hat x Gulden , B y Gulden; x + ^ = 15 a ^ + v = 15 .

A hat 10yy Gulden , B 12 ,x Gulden .

64. 1 kg Zucker kostet 1,20 € , 1 kg Mehl 1,30 € .

65 . Kapital 4600 € , Rückzahlungsrate 920 € .

66. 1 . Kapital 13000 € , 2 . Kapital 11000 € .

67. Einkaufspreis 248 € /t , Verkaufspreis 310 € /t .

68. Monatlicher Grundpreis 2,10 € ; Arbeitspreis zuletzt 0,15 € /kWh .

161/69. l . Dose : 136 g netto ; 11 ^ % Tara ;
2 . Dose : 544 g netto ; 5 § % Tara .

70. Es sind 81 cm3 Kohle und 18 cm3 Granit .
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161/71. Der Vater ist 35 Jahre , der Sohn 8 Jahre alt .

72. Hans ist 7 Jahre , Otto 17 Jahre alt .

73 . Heute sei Mary x Jahre , Ann y Jahre alt . Die Angaben des 2 . Satzes beziehen sich
auf drei verschiedene Zeitpunkte ; sie mögen t 1 Jahre vor , bzw . t 2 Jahre nach bzw . t3
Jahre vor der Gegenwart liegen . Dann gilt :

I x + y = 48
II x — 2 (y — tj)

III x - n = i ( y + t2)
IV y + t2 = 3 (x — t3)
V x - t3 = 3 ( y - t 3)

x = 30 , y = 18 , = 3 , t2 = 36 , t3 = 12

Heute ist Mary 30 Jahre und Ann 18 Jahre alt .

74. Aus den Angaben folgt nur y = 2x — 20 mit x < y , wenn x und y das Alter der
Schwestern in Jahren bedeuten . Man kann weiter folgern , dass beide über 20 Jahre
alt sein müssen . Ganzzahlige Lösungen : (21J 22), (22 | 24) , (23126 ), . . . , (35150 ) , . . .

75. Mit Telefonnummer x und Alter y Jahre erhält man lOOx + y = 6362832. Wegen
x,yeN und y < 100 folgt daraus x = 63628 und y = 32 .

162/76. Mit Tagesnummer x , Monatsnummer y und Jahreszahl z erhält man
x + lOOy + 10000z = 19760417.
Wegen x rg 31 , y S 12 und x , y , z e N folgt daraus x = 17 , y — 4, z = 1976 .

77. Karl hatte sich um 3 m , Fritz um 7 m verschätzt . Die richtige Entfernung ist 82 m .

78. Es fließen stündlich 150000 m 3 Wasser zu . Eine Turbine benötigt pro Stunde
40000 m 3 Wasser .

79 . Die stündliche Fördermenge einer Pumpe sei das x-fache , der stündliche
Verbrauch das y-fache des Fassungsvermögens . Dann gilt :

2 + 1 ' X — l ' J = 5 A § + 4x — 2y = f = > x = f , y = ^ .

Der Behälter wäre nach (f •' iyr) h = 2 h 40 Min . leer .
Eine Pumpe braucht (1 : f ) h = 2^ h zum Füllen des Speichers .

80. Eine Garbe aus guter bzw. mittelmäßigerbzw. schlechterErnte lieferteinen Ertrag
von 9j Tou bzw . 4\ Tou bzw . 2f Tou .

163/81. Pro Stunde fertigt die 1 . Arbeiterin 6 Stück , die zweite 7 Stück .

82. Die Stichweite der 1 . Naht ist 2 mm, die der zweiten 2,5 mm.

83. Auf einer Längsseite stehen 22, auf einer Breitseite 15 Pfosten .

84. Bei der 1 . Planung seien x Längs- und y Querreihen vorgesehen. Dann gilt:

42 126— = - a (x + 1 ) • (y + 2) = xy + 32 => x = 6 , y = 18 .
x y
Endgültig werden (6 + 1 ) • (18 + 2) Bäume , also 140 Bäume , gepflanzt .
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163/85 . x + y + Ti = 2 {x + z + y + z)
x + z + 73 = 3 (y + z + x + y)
y + z + 73 = 4 (x + y + x + z)
x = j ; y = z = ^

Der erste Reisende besitzt \ Gulden , der zweite 6j Gulden , der dritte 16^ Gulden .

164/ Vitruv : De architectura libri decem - Aus der Vorrede zu Buch IX

9 . Archimedis vero cum multa miranda inventa et varia fuerint , ex omnibus etiam
infmita sollertia id , quod exponam , videtur esse expressum . Hiero enim minor
Syracusis auctus regia potestate , rebus bene gestis cum auream coronam votivam diis
inmortabilibus in quodam fano constituisset ponendam , manupretio locavit
faciendam et aurum ad sacomam adpendit redemptori . Is ad tempus opus manu
factum subtiliter regi adprovabit et ad sacomam pondus coronae visus est
praestitisse . 10 . Posteaquam indicium est factum dempto auro tantundem argenti in
id coronarium opus admixtum esse , indignatus Hiero se contemptum esse neque
inveniens , qua ratione id furtum reprehenderet , rogavit Archimeden , uti in se sumeret
sibi de eo cogitationem . Tune is , cum haberet eius rei curam , casu venit in balineum ,
ibique cum in solium descenderet , animadvertit , quantum corporis sui in eo insideret ,
tantum aquae extra solium effluere . Itaque cum eius rei rationem explicationis
ostendisset , non est moratus , sed exsiluit gaudio motus de solio et nudus vadens
domum versus significabat clara voce invenisse , quod quaereret ; nam currens
identidem graece clamabat söpr |Ka , s8pr |Ka ! 11 . Tum vero ex eo inventionis ingressu
duas fecisse dicitur massas aequo pondere , quo etiam fuerat corona , unam ex auro et
alteram ex argento . Cum ita fecisset , vas amplum ad summa labra implevit aquae , in
quo demisit argenteam massam . Cuius quanta magnitudo in vasum depressa est ,
tantum aquae effluxit . Ita exempta massa quanto minus factum fuerat , refudit
sextario mensus , ut eodem modo , quo prius fuerat , ad labra aequaretur . Ita ex eo
invenit , quantum [ad] certum pondus argenti ad certam aquae mensuram
responderet . 12 . Cum id expertus esset , tum auream massam similiter pleno vaso
demisit et ea exempta , eadem ratione mensura addita invenit ex aquae numero
sextantum minore , quanto minus magno corpore eodem pondere auri massa esset
quam argenti . Postea vero repleto vaso in eadem aqua ipsa corona demissa invenit
plus aquae defluxisse in coronam quam in auream eodem pondere massam , et ita ex
eo quod fuerit plus aquae in corona quam in massa ratiocinatus reprehendit argenti
in auro mixtionem et manifestum furtum redemptoris .

165/ Was ist gleich , was ist ungleich ?
G = Gewicht , V = Volumen , A = Auftriebskraft , o = Dichte ,
links : Gewicht Gg des Goldes = Gewicht G K der Krone

6g Vg = 6k Vk (I)
rechts : Gg ~ ^ g > Gk ~ Ak

Ag < Ak
6w VG < 6w VK W = Wasser

VG < VK (II)
d . h . , der Goldklumpen hat kleineres Volumen als die Krone .
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Aus I und II folgt
6g > 6k

d . h . , die Dichte des Goldes ist größer als die Dichte der Krone ; sie besteht somit nicht
aus reinem Gold , sondern aus einer Legierung .

Aufgaben zu 7.1

Vorbemerkung : Wir bezeichnen die Nullstelle mit x0 , die Steigung mit m .

168/1 . a) x0 = f ; m — 2 > 0 ; L = ] — co ; f [
b) x0 = — 4; m = — 3 < 0 ; L = ] — oo ; — 4 [

2 . a) x0 = 6 ; m = — % < 0 ; L = ] — oo ; 6 [
b) x0 = m = ^ > 0; L = J ^ ; + oo [

3 . a) x0 = M ; w = 5,6 > 0 ; L = [m ; + °° [
b) x 0 = 1000; m = - 0,001 < 0; L = ] - oo ; 1000]

4 . a) x 0 = f ; m = 3 > 0 ; L = J — oo ; f [
b) *o = - if ; m = l ; L = [ — ff ; + oo [

5 . a) Z, = Q
b) L = { }

Aufgaben zu 7 .2

170/1. a) ] 2; 5 [ b) ] - oo ; 0 [ u ] £ ; + co [
c) [ - 1 ; 1 ] d) [ — 2 ; 4]

2 . a) G \ { — 2} b) { } c) Q d) { 7 } e) Q \ { - 1 }
f) ] — oo ; 3 [

3. a) { } b) Q \ [ — i ; f ] c) [ - 9 ; 4] d) [ - | ; f ]

4 . a) ] l ; 2 [ u ] 3 ; + oo [
c) ] — oo ; — 1,2] u [0,1 ; 1,2]

b) ] — f ; 0 [ <j ] 7 ; + oo [
d) [0 ; i ] u [2 ; + oo [

5 . a) ] - oo ; - f [u ] 0 ; + oo [ \ { § } b) ] - £ ; f [u ] 8 ; 100 [ c) ( - 1000; 0}

6 . a) [0; 3] b) 3 . binomische Formel anwenden! ] — f ; f [
c) ] - oo ; - ÜCu ] 0 ; ü [ d) x (x + 2) (x - 5) rg 0 ; ] - oo ; - 2] u [0 ; 5]

7 . a) a < b
a, = b
a > b

] a ; * [
{ }
lb ; a [
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Z-i != ] — co ; - [u ] l ; + co [

L2 — l - oo ; 1 [ u ] - ; + co [

ab I x (x - 1 ) > 0
] - oo ; i [] 1 ; + oo [

(x - 1 ) > 0(x - 1 ) < 0

Q \ { 1 }^ n

c) — x (a — x) (b + x) 2 2: 0
x (a — x) (b + x) 2 = 0 v x (a — x) (b + x) 2 < 0
L = {0 , a , — b} v L2
Zur Bestimmung von L 2 genügt es , x (a — x) < 0 zu lösen .
7 . Fall : a < 0 : L = O \ [a ; 0]
2 . Fall : a = 0 : L = Q \ {0}
3 . Fall : a > 0 : L = O \ [0 ; d]
Somit ergibt sich

a < 0 : L = ] — oo ; a] u [0 ; + oo [ u { — b)
a = 0 : L = Q
a > 0 : L = ] — oo ; 0] u [a ; + oo [ u { — b}
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— oo ; —

b6 < 0

x 3 > 0x 3 < 0

— (ax — b2 ) (ax + b 2) 2 < 0

<Q ~ Q +

Aufgaben zu 7 .3

171/1 . a) D = Q \ {0} ; L = Q “ b) Z) = Q \ { - l } ; L = ] - l ; + oo [

c) Z) = 0 \ { 3 } ; L = ] — co ; 3 [
d) JD = Q \ { - f } ; L = ] — § ; + oo [
e) Z> = Q \ { — f } ; L = ] - oo ; - f [
f ) D = Q \ { - 4} ; L = ] - 4 ; + oo [

2. a) D = Q \ { 1 } ; L = Q \ [ - 1 ; 1 ]
b) Z) = 0 \ { 5 } ; L = Q \ [ 3 ; 5]
c) D = Q \ {f } ; L = D

d) Z> = Q \ { 1 }; L = Q \ ] i ; l ]
e) Z) = Q \ {£} ; L = ] £ ; 6 [
f) i ) = Q \ { — 0,3 } ; L = ] - 0,3 ; 4]

172/3 . a) Z) = O \ {0} ; L = Q \ [ - i ; 0]
b) Z) = Q \ { — 2}; L = ] - f ; - 2 [
c) D = <Q \ {0,4 } ; L = ] — oo ; 0,4 [

4 . a) Z) = O \ { - 2 ; 0 } ; L = O \ [ - 2 ; 0]
b) D = Q \ { — 3 ; 2} ; L = ] - 3 ; 2 [
c) Z) = Q \ {0} ; L = { }
d) Z> = <0 \ { - 3 } ; L = D
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172/5. a) D = 0 \ { — 2 ; 2 } ; L = ] - oo ; — 2 [u ] 0 ; 2 [
b) Z> = Q>\ { 3 } ; L = D \ { - 3 } = Q \ { - 3 ; 3 }
c) D = Q \ {f } ; Z = [ - f ; f [
d) 2J = Q \ { - i ; i } ; Z = ] - *; * [

6. a) Z) = Q \ { 1 } ; Z = ] l ; + oo [
b) D = Q \ { 1 } ; Z = ] — oo ; 1 [
c) Z) = Q \ { - ±} ; Z = ] - oo ; - * [> [ - £ ; + oo [ = Q \ [ - i ; - * [
d) Z = Q \ { - 0,2} ; Z = Q \ [ - fc & ]

7 . a) Z> = O \ {0} ; L = ] - oo ; - 1 [ u ] 0 ; 1 [
b) Z> = Q \ { - 1 ; 0} ; Z = ] - 1 ; 0 [
c) Z> = Q \ { — -j } ; L = ] - i ; + oo [
d) D = Q \ { — 5 ; — y} ; Z = ] - oo ; - 5 [ u [ - £ ; - | [

8 . a) Z> = Q \ { — 2 ; — i } ; L = ] - oo ; - 2 [ u ] 0]
b) Z) = Q \ { - 1 ; 1 } ; L = ] - l ; - A ] u ] l ; + oo [
c) D = Q \ {

i ; f } ; Z = ] - oo ; | [ \ {i }
d) ü = Q \ { - i - | } ; L = ] - i ; i ] u ] f ; + oo [

9 . a) Z> = <Q>\ { — 1 ; 0} ; Z = ] - l ; - £ ] uQ +

b) D = Q \ { — 1 ; 1 } ; Z = ] - 1 ; 1 [ u [3 ; + oo [
c) Z> = 0 \ {0 ; 3 } ; L = [ - 3 ; 0 [ u ] 3 ; + oo [
d) Z> = <Q \ { — 1 ; 1 } ; Z = ] - l ; l [

10 . a) D = Q \ {0} ; Z = Z>
b) D = Q \ { — 2 ; 2 } ; Z = ] - oo ; - 2 [ u [ - f ; 0]
c) D = O \ { - 4 ; 0 ; 2} ; L = ] - 4; 0 [ u ] 2 ; 8]
d) D = Q \ { — 0 ; f } ; L = ] - f ; - Ä [ u ] 0; f [

173/11. a) D = Q \ {a}

a = 0 L = { }

a > 0 X — 9 + +

x — a - i
i - +

X

x — a
+

i
i0
ii

- +

i

Z = [0 ; a [
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a < 0

b) D = Q \ {a}

X - - 0
i

+

x — a - +
i
i
i +

X

x — a
+ - * +

i
a 0

x £ = ] « ; 0]

*
x — a ^ 1 <=>

x — x + a- go
x — a

o
a

x — a ^ 0

a = 0

a < 0

L = Q>\ { 0 } = D

L = ] — co ; a [

L = ] a ; + co [

c) D = Q \ { a}
x < a <=>

x — a
x — ax + al

x — a
< 0 (1 — a) x + a2

x — a
2: 0 (*)

x

x — 1 ^ 0 => L = ] — oo ; 1 [

a z a2
Die Nullstelle des Zählers ist - . Nun ist zu unterscheiden , ob - 2: a oder

n — 1 fl — 1
a

fl — 1
< fl ist .

Dazu lösen wir
fl — 1

> a o
fl - 1

> 0
fl — 1

> 0

a — + +

a — 1 — - +

a
A - 1

+ - +

0 1

Also - 2: 0 o ( — oo < fl < 0 v 1 < a < + oo )
fl — 1

63



fl2
l . Fall : — oo < a < 0

fl — 1

( 1 — a ) x + a 2 — -
? + +

X — fl — + + +

( 1 — a ) x + a 2
- - -- +

X — fl

1
- ! +

i
i

+

c
~

\ fl2

fl — 1

° 2
.

1 4
(

fl — 1

.X

X

X

2 . Fall : 1 < a < + oo

( 1 — ä ) x + a 2 + + 1®
-

+

X — fl — - ++

( 1 — ä ) x + a 2

X — fl
-

1 F
1

+ ^ -

1

fl
'
2

L = Q \ a — 1

a — 1

a 2

fl — 1
< fl O 0 < fl < 1

( 1 — fl) x + fl2 o + i
i + + i

i
i

+

X — fl _ “ i
i
i

- +
i
i
i

+

( 1 — x ) x + a 2

X — fl
+ (f -

i
i
i
i
i

- +

i
i
i
i
i

+

fl2 ! i
i

Ergebnis : Man erhält insgesamt für L in Abhängigkeit von a:

fl - 1 { } a - 1 ; fl ] - <» ; ! [ Q \

4-
0

+
1

a;
a2

a — 1
a
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173/12. a) D = 0 \ { — 3 }

1 > > 0,1
x + 3 x + 3

L = ( ] — co ; — 3 [ u ] — 2 ; + oo [) n ] - 3 ; 7 [ = ] - 2 ; 7 [
b) Z) = Q \ {f } ; L = ] 2 ; 5 [
c) D = Q \ {0} ; L = Q \ ] - 1 ; ± [
d) D = Q \ { — 2 } ; L = Q \ [ - 10 ; i [

13 . a) 1 . Fall: 0 < a < b 1 s
> 0

2 . Fall : a < 0 < b
ab

< 0

3 . Fall : a < b < 0

Also gilt der Satz : Haben a und b gleiches Vorzeichen , dann gilt

, 1 1
a < b =*• - > - .

a b

Haben a und b ungleiches Vorzeichen , dann gilt
1 1

a < b => - < - .

1
b) 1 ) 0 < 1 < — => l > x ; L = ] 0 ; 1 [ , da x offensichtlich positiv sein muss,

x

2) - < - 3 < 0
x

X > jL = ] — ^ ; 0 [ , da x offensichtlich negativ sein

muss .

3) 10 <
2x 20

> x ; L =

1
4) l . Fall: 0 < — < 1 => x > l ; L1 = ] l ; + oo [

1
x

2 . Fall : — < 0 < 1 => x < 0 : L 2 = Q>
x

1

, da offensichtlich x > 0 .

=> L = Q \ [0 ; 1 ]

5) l . Fall: - 3 < — < 0 ^ ~ i > 2x ; L, = ] - oo ; - i [2x ^
2 . Fall : - 3 < 0 < — => x > 0; L 2 = Q +

2x

£ = Q \ [ - *; 0]
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1
6) 1 . Fall: 0 < < 4 <s> x — 1 > 4x — 1

o x >

2 . Fall: - < 0 < 4 => x — 1 < 0 o x < 1 ;x — 1
Also L = 0 \ [ 1 ; f ]

L

L -

Aufgaben zu 7.4

176/1. a) {0} b) { - 1 ; 1 } c) { }
e) { - 19 ; 19} f) { } g) { - 2 ; 2}
i) { - 0,5; 2,5 } k) { - 10; 2} 1) { - ! }

2. a) ] - l ; l [ b) ] — oo ; — 2] u i
_i8+NC1

_1
c) [2 ; 4] d) ] — co ; 1 1-

1 c 1_
1 1

<-ln.
fi. + 8 1—

1

3 . a) ] 4 ; + oo [ b) ] - oo; 2] e) [i ; + oo [
d) { } e) { } f) Q

4. Di
_i1rn1r

—\
'S ] i ; 3 [ b) [ - 1 ; 2] u [4 ; 7]

C) { } d) ] - 1 ; + °o [
e) ] — co ; — 2 [ 0 ] £ ; f ] U [3 ; + co [

5 . a) Q \ ] - ± ; ± [ b) [ - h 5]
c) { } d) ] - oo ; — 2] u [0 ; 2]
e) [f ; + oo [ f) { }

6 . a) ] — oo ; — 1 [ u [ 1 ; + oo [ b) ] - oo ; — 1 [
c) ] — co ; — 3] d) { }

7 . 1_
1 1 OJ1 1—

1C ] i ; + °o [ b) ] - co ; + °o [
c) Q

8. a) ] — oo ; — l [ u ] l ; + co [ b) [ ,}, ; + oo [
O n1 1 i_

i c 1—
11 1_

1

= ] | ; + qo [

= ] — oo ; i [

d) { — 2f ; 2f }
h) { 0}
m) { - 3 ; 4Ä }
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Aufgaben zu 7.5. 1

Vorbemerkung: Die Lösungsmenge ist gerastert angegeben . Gehört die Gerade
dazu, ist sie ausgezogen , andernfalls gestrichelt .

179/1 . a)

a) y b) y

1 - 1 -
— I- ►

1 X 1 X
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c) d)

179/3 . a)

Aufgaben zu 7 .5 .2
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Der Schnittpunkt gehört nicht zur
Lösungsmenge .

181/2 . a)
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181/3. a) I x ^ 0 II y ^ 0 III 2x + 3y ^ 6
b) I x - 3y + 3 g 0 II x + 2^ ^ 2 III y ^ 0
c) Ix - 3j> - 6gO IIx + y - 6 ^ 0 III x ^ O
d) nicht möglich .

IV x ^ 5 V

182/4. a)

L = { (111 ) , (112) , (113) , (114) , (211 ) , (212) , (213) , (311 ) , (312) , (411)}
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Lösungspunkte mit natürlichen Koordinaten:
( 111 ) , (112) , (113) , (114) , (212) , (213) , (214) , (215) , (312) , (313) , (314) , (315) , (316) ,
(414) , (415 ) , (416 ) , (4 | 7) , (516), (5 | 7) , (518) , (618)

Aufgaben zu 7.5 .3

186/1. Zulässige Polygonfläche : (0 | 1 ) , (0 | 6) , (215) , (312) , (3 | 0) , (210)
a) (016) ; z (0 ; 6) = 24 b) (2 | 5 ) ; z (2 ; 5) = 7
c) Optimal sind alle Punkte der durch (215) und (312) bestimmten Strecke mit

z = 11 .
d) y = \ x - \ z = \ x +

Bei maximalem z wird der y-Achsenabschnitt am kleinsten . Aus der
Parallelenscharist also diejenige Gerade auszuwählen, die den kleinsten , d . h . den
am tiefsten gelegenen y-Achsenabschnitt besitzt .
(310) ; z (3 ; 0) = 9

2 . a) Bei minimalem z wird der y-Achsenabschnitt am kleinsten.
Man wählt also diejenige Gerade der Parallelenschar aus , die den kleinsten
y-Achsenabschnitt besitzt .
(210) ; z (210) = 2

b) (0 | 1 ) ; z (0 ; l ) = l
c) (0 | 1 ) ; z (0 ; 1 ) = 1
d) Bei minimalem z wird der y-Achsenabschnitt am größten.

Hier ist also die Gerade mit dem größten y-Achsenabschnitt zu wählen .
(016) ; z (0 ; 6) = — 12
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187/3. Zulässige Polygonfläche : (01 + oo) , (0111 ) , (215) , (31 4j ) , (31 + oo)
a) a, b , c keine Lösung , da die zulässige Menge nach oben unbeschränkt ist.

d) (3 | 4i ); z (3 ; 4i ) = - 6

b) a) (3 | 4i ) ; z (3 ; 4i ) = 21
b) (2 | 5 ) ; z (2 ; 5) = 7
c) Alle Punkte der Strecke [(0111 ) (2 | 5)] sind optimal mit z = 11 .
d) keine Lösung

4. x •■= Anzahl von Typ 1 ; y ~ Anzahl von Typ 2.
z = x + y
IrgO II y ^ 0 III 8x + \ 2y ^ 620
IV lOx + 4y ^ 390 V 5jc + 10y ^ 500 VI 4x g 140
Zulässige Menge ist die Polygonfläche mit den Ecken
(010), (0150) , (10 | 45) , (25135), (35 | 10), (45 ) 0).
Optimaler Punkt = (25135) , z (25 ; 35) = 60 .

5. a) Lieferschema

Nebenbedingungen :
I x ^ 0 II y ^ 0 III 20 - (x - y) ^ 0
IV10 - jc ^ 0 V 14 - y ^ 0 VI 8 - [20 - (x + y)] ^ 0
Zielfunktion :
z = 14x + lOy + 16 (20 — (x + y)) +

+ 4 (10 - x) + 6 (14 - y) + 8 (8 - [20 - (x + y)] )
z = 2x — 4y + 348
Zulässige Menge ist die Polygonfläche (0112) , (0114) , (6114) , (10110) , (1012) .

Parallelenschar y — jx + ^ (348 — z) .
Bei kleinstem z wird der y -Achsenabschnitt am größten . Also ist (0114) optimaler
Punkt mit z (0; 14) = 292.

Antwort :



b) Lieferschema:

M

Nebenbedingungen :
I x ^ O II y ^ 0 III 23 - (x + y) ^ 0
IVlO - x ^ O V 17 - j ^ 0 VI ll - [23 - (x + y)] ^ 0

Zielfunktion :
z = 5x + ly + 6 (23 — [x + j ] ) + 4 (10 — x) +

+ 2 (17 — y) + 7 [11 — (23 — [x + >Q )]
z = 2x + 6y + 188 .

Polygonfläche : (0 | 12) , (0117 ) , (6j 17) , (10 | 13 ) , (10 | 12)

Parallelenschar : y = — 3 x + g (z — 128)
Bei kleinstem z wird der y-Achsenabschnitt am kleinsten .
Also ist (1012) der optimale Punkt mit z (10 ; 2) = 160 .

Antwort :

M

B

c) Die zusätzliche Nebenbedingung VII y 2: x ergibt das Polygon
(0112) , (0117) , (6117) , (10113 ) , (10 | 10) , (6 | 6) .
Optimaler Punkt (616) mit z (6 ; 6) = 176 .

Antwort :

B

d) Die weitere Nebenbedingung VIII * + 2y ^ 24 ergibt das Polygon
(0112) , (0117 ) , (6117 ) , (10113 ) , (10 | 10) , (818) .
Optimaler Punkt (818) mit z (8 ; 8 ) = 192



Antwort :

188 /6 . Vom Müsli 1 werden x kg, vom Müsli 2 werden y kg hergestellt.

Nebenbedingungen :
1x ^ 0 IIj ^ O III x^ x + fy ^ 210
IV rsx + iygl80 VÄx + fj ^ 240

Polygon :
(010) , (01525) , (225 | 375) , (4501150) , (540 j 0) .

a) z — 9x + 10y o y = — ^ x + yjz
Optimaler Punkt (2251375) mit z (225 ; 375) = 5775 .

b) z = 12x + lOj y = — l,2x + 0,1z
Optimaler Punkt (4501150) mit z (450; 150) = 6900.

7 . Die eiserne Ration enthält x g Vollkornbrot , y g Wurst und u g Schokolade .
I x ^ 0 , II y ^ 0 III u ^ 0
IV 0,2x + 0,3y + 0,1m = 160
V 0,45x + 0,1 y + 0,6m ^ 360
VI 0,05x + 0,2y + 0,1 « g 100
Mittels IV lässt sich u eliminieren und man erhält die Nebenbedingungen
V ' 15x + 34y ^ 12000
VI ' 3x + 2y ^ 1200 ,
die das Polygon (0 | 0) , (0 | 352{f ) , (233 ^ 250) , (40010) bestimmen .

Zielfunktion :
z = x + y + u , mittels IV
z = 1600 — x — 2y
Parallelenschar :
y = — jx + 800 — jz
Optimaler Punkt (233 ^ 1250) .

Man benötigt 233 ^ g Vollkornbrot , 250 g Wurst und 383 ^ g Schokolade .
Gesamtgewicht 866f g.

8 . Es werden x kg Nüsse und y kg Rosinen gemischt .

Nebenbedingungen :
I O ^ x ^ lO II 0 ^ j ^ 5
III 0,5 (x + y) ^ y IV 0,3 (x + y) ^ x
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Polygon :

(0 | 0) , (^ | 5 ) , (515) .
a) z = 15 (x + y) + 25 (10 - x) + 10 (5 ~ y)

oy = 2x + | (z — 300 )
Bei maximalem z wird der y -Achsenabschnitt maximal .
Optimaler Punkt ist (Jf | 5) mit z (Jf 15) = 303 f .
2 ^ kg Nüsse mit 5 kg Rosinen mischen , Erlös 303 ^ € .
Die Mischung besteht zu 70 % aus Rosinen und zu 30 % aus Nüssen .

b) z = 13,75 (x + y) + 25 ( 10 - x) + 10 (5 - .y)
oy = 3x + yj (z — 300 )
Optimaler Punkt ist (OjO) : Kein Studentenfutter hersteilen !

c) z = 14,5 (x + y) + 25 (10 - x) + 10 (5 - y)
o y = jx + | (z — 300)
Optimal ist jeder Punkt der Strecke [(010 ) 15)] , also jede Mischung von
Rosinen und Nüssen im Verhältnis 7 : 3 , mit z = 300 , d . h . 70 % Rosinen
und 30 % Nüsse ; Erlös 300 € .

x = Kredit bei der 1 . Bank in €
y = Kredit bei der 2 . Bank in €
Also Kredit bei der 3 . Bank = 120000 — x — y.

I 0 ^ x ^ 120000 II 0 ^ y ^ 120000
III x + j ^ 120000 IV 120000 - x - y ^ 12000
V 0,08x + 0,16y + 0,11 (120000 - x - y) ^ 12200

Polygon :
(33333^ 0) , (80000 | 28000 ) , (108000 | 0)

Zielfunktion :
z = 0,05x + 0,04y + 0,06 (120000 — x — y)

Parallelenschar :

y = — 2 X + 360000 — 50z.

Bei minimalem z wird der Achsenabschnitt maximal .
Also ist (80000 | 28 000) der optimale Punkt mit z = 5840.
Kredit bei der 1 . Bank = 80000 €
Kredit bei der 2 . Bank = 28 000 €
Kredit bei der 3 . Bank = 12000 €
Zinsen im 1 . Jahr = 5840 €
Tilgung im 1 . Jahr = 6360 € .
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