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2 . 1 Der Aufbau eines mathematischen Lehrsatzes

Lehrsätze (kurz »Sätze«) kennen wir schon viele , zum Beispiel :
- Im Dreieck sind zwei Seiten zusammen immer länger als die dritte Seite .
- Dreiecke sind kongruent , wenn sie in allen Seiten übereinstimmen .
- Jedes Parallelogramm ist ein punktsymmetrisches Viereck.
- Ein Dreieck , dessen Ecken so auf einem Kreis liegen, dass eine Seite Kreisdurchmes¬

ser ist , hat einen rechten Winkel.

In der Mathematik gehört es zum guten Ton , dass man zu jeder Behauptung auch die
Bedingungen nennt , unter denen sie gilt . Deshalb besteht jeder mathematische Satz ge¬
wöhnlich aus zwei Teilen :
1 . Die Bedingungen , die man zu Grunde legt.

Man nennt sie Voraussetzung des Satzes.
2 . Die Folgerung , die man aus der Voraussetzung zieht.

Sie heißt Behauptung des Satzes.

Oft erkennen wir Voraussetzung und Behauptung nicht auf Anhieb . Der Deutlichkeit
halber zerlegen wir die vier Beispielsätze in Voraussetzung und Behauptung :

Satz Voraussetzung Behauptung

Im Dreieck sind zwei
Seiten zusammen immer
länger als die dritte .

Drei Strecken bilden die
Seiten eines Dreiecks.

Zwei Seiten zusammen
sind länger als die dritte .

Dreiecke sind kongruent ,
wenn sie in allen Seiten
übereinstimmen .

Dreiecke stimmen in al¬
len Seiten überein .

Die Dreiecke sind kon¬
gruent .

Jedes Parallelogramm ist
ein punktsymmetrisches
Viereck .

Ein Viereck ist ein Paral¬
lelogramm.

Das Viereck ist punkt¬
symmetrisch .

Ein Dreieck , dessen Ek-
ken so auf einem Kreis
liegen, dass eine Seite
Kreisdurchmesser ist, hat
einen rechten Winkel.

Die Ecken eines Dreiecks
liegen so auf einem
Kreis , dass eine Seite
Kreisdurchmesser ist.

Das Dreieck ist recht¬
winklig.
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Um Voraussetzung und Behauptung besser zu trennen formuliert man mathematische
Sätze häufig in der Wenn-Dann -Form . Die Beispielsätze wirken dann zwar etwas
schwerfällig , dafür sind sie aber auch klarer :
- Wenn drei Strecken die Seiten eines Dreiecks bilden,

dann sind je zwei zusammen länger als die dritte .
- Wenn Dreiecke in allen Seiten übereinstimmen ,

dann sind sie kongruent .
- Wenn ein Viereck ein Parallelogramm ist ,

dann ist es punktsymmetrisch .
- Wenn die Ecken eines Dreiecks so auf einem Kreis liegen , dass eine Seite Kreis¬

durchmesser ist,
dann ist das Dreieck rechtwinklig .

Schreiben wir für die Voraussetzung ein A und ein B für die Behauptung , dann lautet
das Schema für einen mathematischen Satz :

Manchmal sagt man auch

und schreibt dafür symbolisch

A also B

Aus A folgt B

Wenn A, dann B

oder noch kürzer

Auch im Alltag verwenden wir solche Sätze, allerdings sind Voraussetzung und Be¬
hauptung manchmal sehr versteckt.
Satz , wie wir ihn sagen Satz in der Wenn -Dann -Form

Alle Menschen sind Wenn du ein Mensch bist ,
sterblich dann bist du sterblich .
Eisen rostet . Wenn ein Gegenstand aus Eisen ist,

dann rostet er.
Bei Rot anhalten ! Wenn die Ampel auf Rot steht,

dann musst du anhalten .
Weihnachtsgans nur auf Wenn man nicht vorbestellt ,
Vorbestellung dann bekommt man keine Weihnachtsgans .
Vampire haben kein Wenn ein Wesen ein Vampir ist,
Spiegelbild. dann hat es kein Spiegelbild.
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Jeder Satz, der eine Voraussetzung und eine Behauptung enthält , lässt sich auch anders
ausdrücken : Man vertauscht Voraussetzung und Behauptung und verneint die bei¬
den :

Voraussetzung Behauptung

Verneinung

Du bist nicht sterblich .

Du bist ein Mensch . Du bist sterblich .

Du bist kein Mensch .

in der Wenn -Dann -Fassung

Verneinung

Wenn du nicht sterblich bist , dann bist du kein Mensch .

Wenn du ein Mensch bist , dann bist du sterblich .

ein anderes Beispiel

Verneinung

Wenn ein Wesen
ein Vampir ist,

Wenn ein Wesen ein
Spiegelbild hat ,

dann ist es
kein Vampir.

dann hat es
kein Spiegelbild .

Damit haben wir ein allgemeines Gesetz kennen gelernt . In Kurzform lautet es :
A also B nicht B also nicht A

ist gleichwertig mit

wenn A , dann B
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Mit B (sprich » B quer «) meint man die Verneinung der Aussage B . Der Satz B =>A
heißt Kontraposition des Satzes A => B . Dazu noch ein Beispiel :

Satz :

Verneinung

Kontraposition :

Wenn Dreiecke nicht
kongruent sind ,

dann sind sie
kongruent .

dann stimmen sie nicht
in allen Seiten überein .

Wenn Dreiecke in allen
Seiten übereinstimmen ,

Haben Voraussetzung oder Behauptung mehrere Bestandteile , so ist die Kontraposition
verzwickter, weil man beim Verneinen einer zusammengesetzten Aussage sehr aufpas¬
sen muss . Beispiel :

Satz Kontraposition
Wenn ich nicht gelernt habe und ausge- Wenn ich keine schlechte Note bekommen
fragt werde , dann bekomme ich eine habe , dann habe ich gelernt oder bin nicht
schlechte Note . ausgefragt worden .

Um diese beiden Sätze in Kurzform zu schreiben brauchen wir zwei neue Symbole. Für
»und « schreiben wir » a « , für »oder « schreiben wir » v « . Das Ganze sieht dann so
aus :

Kontraposition :

J KAIN/ \ ABEl )
ROMEO/N3ULIAV
\ MAX̂ \ MORITZ

gelernt

ausgefragtnicht gelernt schlechte Note

nicht ausgefragtkeine schlechte Note

S => N v A

^VEL (LATEINISCH);
( ODER

'A5
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Aufgaben
1 . Gib Voraussetzung , Behauptung und Wenn - Dann -Form der folgenden Sätze an :

a) Jede Zahl mit der Quersumme 6 ist durch 3 teilbar .
b) Im Parallelogramm sind zwei Winkel gleich groß .
c) Ein Viereck mit drei rechten Winkeln ist ein Rechteck .
d) Nebenwinkel ergänzen sich zu 180°.

• 2 . Gib Voraussetzung , Behauptung und Wenn-Dann - Form der folgenden Sätze an :
a) Bei Gefahr Notbremse ziehen .
b) Vorsicht ! Bissiger Hund .
c) Kein Geist wirft einen Schatten .
d) Kängurus brauchen keine Handtaschen.

3 . Bilde die Kontrapositionvon :
a) Wenn ein Dreieck gleichschenklig ist , dann hat es zwei gleich große Winkel .
b) Wenn 2 die letzte Ziffer einer Zahl ist , dann ist es keine Quadratzahl .
c) Wenn zwei Geraden ein gemeinsames Lot haben , dann sind sie parallel .
d) Wenn eine Zahl genau zwei Teiler hat , dann ist sie eine Primzahl .

• 4 . Bilde die Kontrapositionvon :
a) Wenn die Sonne scheint , dann ist es hell .
b) Wenn du nicht sorgfältig zeichnest, dann wird die Konstruktion ungenau.
c) Wenn du mindestens 3 Richtige hast , dann gewinnst du im Lotto .
d) Wenn du höchstens drei Fehler im Diktat hast , dann kriegst du mindestens eine

2 .
• 5 . Bilde die Kontraposition von :

a) Wenn ein Viereck vier gleich große Winkel und vier gleich lange Seiten hat,dann ist es ein Quadrat .
b) Wenn eine Zahl durch 4 und durch 6 teilbar ist , dann ist sie durch 12 teilbar .

• 6 . Bilde die Kontraposition von :
a) Wenn ein Parallelogramm einen Umkreis hat oder zwei gleich große benach¬

barte Winkel, dann ist es ein Rechteck.
b) Wenn eine Zahl durch 111 oder 74 teilbar ist , dann ist sie durch 37 teilbar .
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2 .2 Wahre und falsche Sätze , Kehrsatz

Ein Satz kann wahr oder falsch sein . Beispiele:

- Wenn der Tank leer ist, dann springt der Motor nicht an . (wahr )
- Jedes gleichseitige Dreieck hat mindestens zwei gleich große Winkel . (wahr )
- Wenn die Autobatterie leer ist , dann springt der Motor nicht an . (falsch)
- Ein Dreieck mit mindestens einem 60°-Winkel ist gleichschenklig . (falsch)

Um zu zeigen, dass ein Satz wahr ist , muss man ihn beweisen ; um zu zeigen, dass
ein Satz falsch ist, genügt es ein Gegenbeispiel zu finden . Ein Gegenbeispiel erfüllt
die Voraussetzung , nicht aber die Behauptung . Gegenbeispiele für die beiden falschen
Sätze sind :
- ein Auto mit leerer Batterie , dessen Motor anspringt , wenn man das Auto anschiebt ,
- ein Dreieck mit den Winkeln 60°

, 30° und 90° .
Diese Sachverhalte kann man sich auch mit Mengendiagrammen klar machen .

Wenn der Tank leer ist , Jedes gleichseitige Dreieck hat
dann springt der Motor nicht an . mindestens zwei gleich große Winkel .

• Autos

Autos , deren Motor nicht anspringt

Autos mit leerem Tank

■Dreiecke

Dreiecke mit mindestens
zwei gleichen Winkeln

gleichseitige Dreiecke

Wenn der Akku leer ist,
dann springt der Motor nicht an.

■ Autos

- Autos , deren Motor nicht anspringt

- Autos mit leerem Akku

Gegenbeispiel : Auto mit leerem Akku,
dessen Motor beim Anschieben anspringt

Ein Dreieck mit mindestens
einem 60°-Winkel ist gleichschenklig .

■Dreiecke

gleichschenklige Dreiecke

Dreiecke mit mindestens
einem 60ö—Winkel

Gegenbeispiel

Kürzen wir die Aussagen genauso ab wie die Mengen , so gilt :
A =5>B (wahr ) ist gleichwertig mit Acß (A ist Teilmenge von B) .
Der Satz B => A ist falsch , weil B keine Teilmenge von A ist . Alle Elemente (Autos,
Dreiecke) , die zu B , aber nicht zu A gehören , sind Gegenbeispiele .

Der Satz »Wenn einer Lungenentzündung hat , dann hat er Fieber« ist wahr . Bei einem
wahren Satz A => B nennen wir die Voraussetzung A eine hinreichende Bedingung für B .
Lungenentzündung ist eine hinreichende Bedingung für Fieber . Es reicht, wenn man
weiß, dass einer Lungenentzündung hat (also A gilt) um sicher zu sein, dass er auch
Fieber hat (also auch B gilt) . _ _
Der Satz A => B (wenn Lungenentzündung , dann Fieber) hat die Kontraposition B =>A
(wenn kein Fieber , dann keine Lungenentzündung ) .
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Also ist Fieber notwendig dafür , dass Lungenentzündung vorliegt , denn ohne Fieber
keine Lungenentzündung (wie es die Kontraposition sagt) . Fieber (B) ist eine notwen¬
dige Bedingung für Lungenentzündung(A) . Allgemein sagt man :

B ist eine notwendige Bedingung für A,
wenn aus der Ungültigkeit von B (das ist B) die Ungültigkeit von A (A) folgt,
wenn also B =s>A wahr ist , was gleichwertig ist mit A => B .

HiNREICHEND̂
Q

liegt drIno O

Vj -ST LiNKS )

H ist hinreichend für N

N ist notwendig für F [

Bei jedem wahren Satz steht also
eine hinreichende Bedingung vor dem =>
und eine notwendige Bedingung hinter dem =>.

Zur Verdeutlichung noch drei Beispiele:
Wenn jemand einen Regenbogen sieht , dann scheint hinter ihm die Sonne (R => S) .
Der Regenbogen ist hinreichend für Sonnenschein .
Sonnenschein ist notwendig für einen Regenbogen.
Aber : Der Regenbogen ist nicht notwendig für Sonnenschein , denn die Sonne scheint ja

auch dann , wenn kein Regenbogen da ist ; Sonnenschein ist nicht hinreichend für
den Regenbogen , denn wenn die Sonne scheint , dann ist nicht immer auch ein
Regenbogen da .

Wenn eine Zahl durch 6 teilbar ist , dann ist sie auch durch 2 teilbar (T6 => T2) .
Die Teilbarkeit durch 6 ist hinreichend für die Teilbarkeit durch 2 , die Teilbarkeit
durch 2 ist notwendig für die Teilbarkeit durch 6 .
Aber: Die Teilbarkeit durch 6 ist nicht notwendig für die Teilbarkeit durch 2 (Gegen¬

beispiel 10) ;
die Teilbarkeit durch 2 ist nicht hinreichend für die Teilbarkeit durch 6 (Gegen¬
beispiel 10) .

Wenn ein Viereck eine Raute ist , dann hat es zwei Symmetrieachsen (R => S) .
Die Rauteneigenschaft ist hinreichend für zwei Symmetrieachsen , aber nicht notwendig
(Gegenbeispiel : Rechteck) . Zwei Symmetrieachsen sind bei einem Viereck notwendig
für die Rauteneigenschaft , aber nicht hinreichend (Gegenbeispiel : Rechteck) .
Vertauscht man in einem Satz Voraussetzung und Behauptung , so ergibt sich der Kehr¬
satz , zum Beispiel :

38



Satz wahr

Kehrsatz

dann springt der
Motor nicht an .

Wenn der Tank

dann ist der
Tank leer.

Wenn der Motor
nicht anspringt ,

Satz: A Kehrsatz: B

falsch

Viele Wenn -Dann -Sätze haben falsche Kehrsätze , aber nicht alle , zum Beispiel der hier :

Satz

Kehrsatz dann ist es Juni .
Wenn die Sonne in
Rom den höchsten

Stand erreicht ,

dann erreicht die
Sonne in Rom den

höchsten Stand .
Wenn es Juni ist, wahr

wahr

Sind beide , Satz und Kehrsatz , wahr , so sagt man :
A gilt genau dann , wenn B gilt.

A ist hinreichend und notwendig für B

B ist notwendig und hinreichend für A

Auch dafür gibt es eine symbolische Kurzform :
Im Diagramm fallen die Mengen für A und B zusammen .

A <=> B
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Beispiel: Ein Viereck ist genau dann ein Quadrat , wenn es vier Symmetrieachsen hat .
Vier Symmetrieachsen sind bei einem Viereck hinreichend und notwendig für
die Quadrateigenschaft .

Dieser Abschnitt hat angefangen mit »Ein Satz kann wahr oder falsch sein . . . « . Was
kann er denn sonst noch ? Es gibt Sätze, von denen man (noch) nicht weiß, ob sie wahr
oder falsch sind , zum Beispiel dieser :

Jede gerade Zahl größer als 2 ist als Summe zweier Primzahlen darstellbar .
(Beispiel : 18 = 7 + 11 )

Chr . GOLDBACH ( 1690 bis 1764) hat diesen Zusammenhang 1742 vermutet . Seitdem
ist sein Satz weder bewiesen noch ein Gegenbeispiel gefunden worden .

Aufgaben
1 . Entscheide bei den folgenden Sätzen, ob sie wahr oder falsch sind . Gib bei fal¬

schen Sätzen ein Gegenbeispiel an .
a) Alle Schüler sind fleißig.
b) Alle Vögel haben zwei Beine .
c) Wenn die Straße nass ist , dann hat es geregnet .
d) Bei Temperaturen unter 0 °C friert der Königsee zu .
e) Jede Langspielplatte hat 1 024 Rillen.

2 . Entscheide bei den folgenden Sätzen , ob sie wahr oder falsch sind . Gib bei fal¬
schen Sätzen ein Gegenbeispiel an .
a) Wenn die Quersumme einer Zahl durch 7 teilbar ist , dann ist die Zahl durch 7

teilbar .
b) Wenn 2 die letzte Ziffer einer Zahl ist , dann ist es keine Quadratzahl .
c) Jedes Viereck mit drei rechten Winkeln ist ein Trapez .
d) Wenn g -l h und h j_ k , dann gilt : g _l k .

• 3 . Zeichne zu den angegebenen Mengen die Mengendiagramme . Es gibt acht Wenn-
Dann -Sätze der Form A ^ B , A=> B , B =>A usw . , also acht Mengendia¬
gramme.
Entscheide bei jedem dieser Sätze, ob er wahr oder falsch ist, und gib gegebenen¬
falls ein Gegenbeispiel sowie seine Lage im Mengendiagramm an.
Warum genügt es eigentlich , wenn man vier dieser acht Sätze überprüft ?
a) A = Menge der Primzahlen

B = Menge der Vielfachen von 6
b) A = Menge der Drachenvierecke

B = Menge der Parallelogramme
c) A = Menge der Rauten

B = Menge der Vierecke mit vier gleich langen Seiten
d) A = Menge der Parallelogramme

B = Menge der Rechtecke
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• 4 . Entscheide , ob A eine hinreichende , eine notwendige , eine hinreichende und not¬
wendige oder eine weder hinreichende noch notwendige Bedingung für B ist .
a) A := Das Viereck hat zwei parallele Seiten .

B := Das Viereck ist ein Parallelogramm .
b) A := Das Dreieck hat drei gleich lange Seiten .

B := Das Dreieck hat einen 60°-Winkel.
c) A := Das Dreieck hat einen 31 °-Winkel .

B := Das Dreieck ist stumpfwinklig .
d) A := Die Raute hat einen 90°-Winkel .

B := Das Viereck ist ein Quadrat .

• 5 . Gib für B je eine notwendige , eine hinreichende und eine notwendige und hinrei¬
chende Bedingung an .
a) B := Das Viereck ist ein Quadrat .
b) B := Das Dreieck ist gleichschenklig .
c) B •'= Die Dreiecke ABC und DEF sind kongruent .
d) B := Die Zahl ist durch 12 teilbar .
e) B := Die Zahl ist nicht durch 6 teilbar .

6 . Bilde von jedem Satz den Kehrsatz und entscheide bei beiden , ob sie wahr oder
falsch sind . Gib gegebenenfalls ein Gegenbeispiel an .
a) Jedes Viereck mit zwei Symmetrieachsen ist eine Raute .
b) Jede gerade Quadratzahl ist durch 4 teilbar .
c) Jedes Viereck mit zueinander senkrechten Diagonalen ist ein Rechteck .
d) Jedes Dreieck mit zwei 60°-Winkeln ist gleichseitig .
e) Wenn drei Punkte auf einem Kreis liegen, dann bilden sie ein rechtwinkliges

Dreieck.
f) Wenn zwei Dreiecke punktsymmetrisch liegen , dann sind sie kongruent .

• 7 . Bilde die Kontraposition und den Kehrsatz . Entscheide dann , ob der Satz wahr
ist oder der Kehrsatz war ist oder beide wahr sind .
a) Wenn es blitzt , dann donnert ’s .
b) Wenn man in Urlaub geht , erholt man sich .
c) Wenn der Sturm übers Meer fegt, dann gehen die Wellen hoch.
d) Wenn man Glück hat , gewinnt man im Lotto.
e) Wenn man in den Spiegel schaut , sieht man vorn und hinten vertauscht .
f) Wenn einer eine Reise tut , so kann er was erzählen . (M . Claudius )
g) Wenn zwei sich streiten , freut sich der dritte .
h) Wenn es dem Esel zu wohl wird , geht er aufs Eis .
i) Wenn sie nicht gestorben sind , dann leben sie heute noch .

WENNWANDAWENIGER1V0LLWÜRSTE"
WÜRGT, WERDENWANDASWADEN' ~\ WIEDERWENIGERWULSTIG. /
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• 8 . Bringe den Satz in die Wenn - Dann - Form , bilde die Kontraposition und den
Kehrsatz .
Entscheide , ob der Satz wahr ist oder der Kehrsatz wahr ist oder beide wahr
sind .
a) Wer dieses Kapitel studiert , schult sein logisches Denken.
b) Wer weniger als vier Fehler hat , bekommt Note eins .
c) Bei klarer Nacht sind die Sterne sichtbar .
d) Hunde, die bellen, beißen nicht.
e) Was sich liebt , das neckt sich.
f) Wo Licht ist , ist auch Schatten .
g) Ohne Fleiß kein Preis.

• 9 . Wir spielen mit vier Karten . Jede hat auf einer Seite einen Buchstaben und auf
der andern eine natürliche Zahl . Die Karten liegen so vor uns :

N

a) Geobold stellt einen Satz auf:
Wenn auf einer Kartenseite ein Vokal steht,dann steht auf der Rückseite eine gerade Zahl .
Du sollst nun möglichst wenig Karten wenden , um zu entscheiden , ob der Satz
wahr oder falsch ist.
Welche Karten musst du wenden ?

b) Welche Karten muss man wenden, um den Kehrsatz von a) zu überprüfen ?
c) Welchen Satz überprüfst du , wenn du die Karten [e ] und [¥ ] wendest ?

ilO . a) Eva : » Adam , wann besuchst du mich endlich?«
Adam : »Wenn ich zu dir radle , muss das Wetter schön sein.«
Nach einem prächtigen Tag :
Eva : »Adam , gestern war schönes Wetter , aber du bist nicht gekommen.

Warum hältst du dein Versprechen nicht ?«
Besteht Evas Vorwurf zu Recht ?

b) Toni : » Bei Föhn habe ich immer scheußliches Kopfweh.«
Tino : »Aber heute ist doch kein Föhn ! Warum klagst du ?«
Welchen Fehler macht Tino ?
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2 .3 Der Beweis eines mathematischen Satzes

Bei mathematischen Aussagen unterscheidet man zwei Sorten :
Die eine Sorte sind Existenz -Aussagen vom Typ »es gibt . . . « , zum Beispiel :
Es gibt Dreiecke , bei denen sich die Mittelsenkrechten außerhalb des Dreiecks treffen .
Solche Existenz -Aussagen beweist man , indem man ein Beispiel vorzeigt . In unserem
Fall sehen wir das Beispiel im Bild, es ist der Beweis .

Die andere Sorte enthält die meisten mathematischen Sätze, es sind All -Aussagen vom
Typ »für alle . . . gilt . . . « oder vom Typ »wenn . . . , dann . . . « , zum Beispiel :
Für alle Dreiecke gilt : Die Summe der Innenwinkel beträgt 180°

. Weil es unendlich
viele Dreiecke gibt , ist es unmöglich , diesen Satz zu beweisen, indem man auch noch so
viele Dreiecke vorzeigt . Es könnte ja immer noch andere Dreiecke geben , deren Innen¬
winkel- Summe von 180° abweicht.

Die Mathematiker haben Methoden entwickelt , die einem die Richtigkeit von Sätzen
des Es-Gibt -Typs und des Wenn-Dann -Typs klar machen . Eine solche Methode heißt
Beweis . Es gibt vier wichtige Beweisarten :

- Beweis durch Nachrechnen
- Widerspruchsbeweis
- Symmetriebeweis
- Kongruenzbeweis
Bei jedem Beweis unterscheidet man drei Teile :
1 . Genaue Formulierung aller Voraussetzungen (Vor.)
2 . Genaue Formulierung der Behauptung (Beh .)
3 . Begründung der Behauptung ; man verwendet dabei die Voraussetzungen und schon

bekannte Sätze und Definitionen . (Bew .)

Das Beweisschema sieht dann ungefähr so aus :

Vor . : . (VI )

Beh . : .
Bew . : . (VI , Satz, . . .)

(V2)
(V3 ) usw.

Die Schlussformel q .e .d . ist die Abkürzung für
den lateinischen Satz »quod erat demonstran¬
dum « , sie heißt auf deutsch »was zu beweisen
war« . Seit Euklid stellt man mit ihr erleichtert
fest, dass man den Beweis geschafft hat .

(Definition , V2, . . .)
q .e .d.

Von jedem Beweistyp führen wir Beispiele vor.
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Beweise durch Nachrechnen

Beispiel aus der Algebra

Satz :
Eine 3ziffrige Zahl ist durch 9 teilbar , wenn ihre Quersumme durch 9 teilbar ist .
Vor. : a sei die Hundertziffer , b die Zehnerziffer und c die Einerziffer der Zahl

100a + 10b + c ; (VI )die Quersumme (a + b + c) ist durch 9 teilbar (V2)
Beh . : 100a + 10b + c ist durch 9 teilbar .
Bew . : 100a + 10b + c = (a + b + c) + 99a + 9b (VI)

durch 9 durch 9
teilbar teilbar
(V2)

also gilt : 100a + 10b + c ist durch 9 teilbar , q .e .d.

Beispiel aus der Geometrie

Satz :
Wenn die Ecken eines Dreiecks so auf einem Kreis liegen , dass eine Seite Kreisdurch¬
messer ist , dann ist ihr Gegenwinkel gleich 90°.
Zuerst zeichnen wir eine Überlegungsfigur .

Vor. :
Beh. :

CMAM = BM
ö + e = 90 °

Bew . : a = <5, denn AMCA ist gleichschenklig
ß = e, denn AMBC ist gleichschenklig

a + /? + £ + 5 = 180° (Winkelsummensatz )
(<5 + e ) + (e + d ) = 180 °

e + d = 90° w .z .b .w .

(V)

(V)
(V)

Der Widerspruchsbeweis
In der Umgangssprache begründet man seine Meinung oft mittels Kontraposition . Max
hat in Geschichte eine 6 geschrieben und der Vater schimpft : » Du hast nichts gelernt !
Wenn du nämlich gelernt hättest , dann hättest du keine 6 geschrieben .«
Setzen wir für » Max schreibt eine 6 « kurz S und für » Max lernt « kurz L, dann begrün¬det der Vater

seinen Satz S => L
mit der Kontraposition L => S, die er für richtig hält .

Dabei haben wir stillschweigend den Satz verwendet , dass die doppelte Verneinung eine
Bejahung ist : L = L .
In der Mathematik nennt man dieses Verfahren Widerspruchsbeweis , sein Schema ist :

Zu beweisen ist die Behauptung A ==> B
stattdessen beweist man die gleichwertige Kontraposition B => Ä



Zwei Beispiele aus der Geometrie:

Satz :
Wenn zwei Geraden einer Ebene ein gemeinsames Lot haben, dann sind sie parallel.

Kontraposition : Wenn sich zwei Geraden einer Ebene schneiden, dann haben sie kein
gemeinsames Lot .

Vor . : 11g und 1 1 h (A)
Beh . : g | | h (B)
Bew. : Annahme : g und h schneiden sich in S (B)
also gilt : e + x + a = 180°

(Winkelsumme im Dreieck EST)
e + t < 180° ( ff > 0°)
Es ist also unmöglich , dass e_

= 90° und zugleich r = 90° ist . (A)
Damit haben wir die Aussage A aus B gefolgert : B => A , was gleichwertig ist mit dem
Satz A => B .

Satz :
In jedem Viereck ist mindestens ein Winkel größer oder gleich 90° .

Vor . : oc, ß, y, 8 sind Winkel eines Vierecks,
das heißt oc + ß + y + 8 = 360° (A)

Beh . : Mindestens ein Winkel ist größer oder gleich 90°
. (B)

Bew. : Annahme : Jeder Winkel ist kleiner als 90°
, das heißt

a < 90°
a ß < 90 °

a y < 90 ° (B)
a ö < 90 °

oc + ß + y + ö < 360°

Also ist die Winkelsumme nicht gleich 360° und damit können oc, ß, y und 8 nicht Win¬
kel eines Vierecks sein, q .e .d.

Der Symmetriebeweis
Entdeckt man in einer Figur ein Symmetriezentrum oder eine Symmetrieachse , so wird
man beim Beweisen die Symmetrie-Eigenschaften ausnützen .
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Beispiel zur Punktsymmetrie

Satz :
Zwei Geraden durch den Mittelpunkt eines Parallelogramms schneiden das Parallelo¬
gramm so in vier Punkten , dass je zwei gegenüberliegende Verbindungsstrecken gleich
lang sind.

Überlegungsfigur

Vor . :

Beh . :
Bew . :

ABCD ist ein Parallelogramm (VI )
M ist Diagonalenschnittpunkt (V2)
M liegt auf HF (V3 )
M liegt auf EG (V4)
EH = GF und EF = GH
M liegt auf der Mittelparallele von DC und AB (VI und V2) [EG] ist Querstrecke
von AD und BC durch M (V4)
und wird damit von M halbiert .
Entsprechend gilt : HM = MF.
Also liegen E und G bzw . H und F symmetrisch bezüglich M . Deshalb sind die
Strecken [EH ] und [GF ] zueinander punktsymmetrisch und gleich lang .
Dasselbe gilt für [EF ] und [GH ] .

Beispiel zur Achsensymmetrie
Satz :
Schneidet ein Kreis um die Spitze eines gleichschenkligen Dreiecks die Schenkel in zwei
Punkten , dann ist ihre Verbindungsstrecke parallel zur Basis .

Überlegungsfigur

Vor . : AC = BC
DC = EC

Beh . : DE | | AB

(VI )
(V2 )

Bew . : CF ist Symmetrieachse des Dreiecks ABC und des Kreises k , folglich liegen die
Schnittpunkte D und E symmetrisch zur Achse CF .
Weil die Verbindungslinie zueinander symmetrischer Punkte senkrecht auf der
Achse steht , ist CF gemeinsames Lot von DE und AB .
Also sind DE und AB parallel .
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Der Kongruenzbeweis
In vielen Aufgaben muss man zeigen, dass zwei Strecken gleich lang oder zwei Winkel
gleich groß sind . Hier bewährt sich der Kongruenzbeweis . Man sucht sich zwei Drei¬
ecke , die dem Augenschein nach kongruent sind und die fraglichen Stücke enthalten .
Mit den Kongruenzsätzen begründet man die Kongruenz der Dreiecke und damit auch
die Kongruenz der Strecken und Winkel . Als Werkzeug sind die Kongruenzsätze uner¬
lässlich, wir wiederholen sie deshalb :
SSS : Wenn Dreiecke in allen Seiten übereinstimmen , dann sind sie kongruent .
SWS : Wenn Dreiecke in zwei Seiten und dem Zwischenwinkel übereinstimmen , dann

sind sie kongruent .
WSW : Wenn Dreiecke in einer Seite und den beiden anliegenden Winkeln übereinstim¬

men , dann sind sie kongruent .
SWW : Wenn Dreiecke in einer Seite , einem anliegenden und dem nicht anliegenden

Winkel übereinstimmen , dann sind sie kongruent .
SsW : Wenn Dreiecke in zwei Seiten und dem Gegenwinkel der größeren Seite über¬

einstimmen , dann sind sie kongruent .

Schema für den Kongruenzbeweis

Überlegungsfigur zeichnen (eventuell mit Hilfslinien , wesentliche Stücke hervorhe¬
ben)
Vor. : . (VI )

. (V2) usw.
Beh . : . . . = . . .
Bew . : . . . = . . . (VI . . .)

. . . = . . . (VI , V3 . . .) usw.
=> A . . . = A . . . (Kongruenzsatz )
=> . . . = . . . q .e .d.

1 . Beispiel

Satz :
Ein Parallelenpaar schneidet aus einem anderen Parallelenpaar gleich lange Strecken
aus.

Überlegung : Zu zeigen ist AD = BC .
Durch die Hilfslinie AC entstehen die Dreiecke ABC und CDA , sie sind
anscheinend kongruent und haben die fraglichen Strecken als Seiten.

Überlegungsfigur Vor. : g | | h
p IIq _

Beh . : AD = BC
Bew . : AC = AC (beiden Dreiecken gemeinsam)

< BAC = <* DCA (Z-Winkel , VI )
4 CAD = ACB (Z -Winkel , V2)

=> AAVC = ACDA (WSW)
also AD = BC q .e .d .

(VI )
(V2 )
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2 . Beispiel

Satz :
In einem gleichschenkligen Dreieck sind zwei Höhen gleich lang .

Überlegung : Es können nur die Höhen ha und hb gemeint sein, weil hc offenbar länger
als ha und hb ist . Die Dreiecke AEC und BCF sind anscheinend kongruent
und enthalten die beiden Höhen .

Überlegungsfigur Vor . : AC = BC (VI)
hb 1 AC (V2)
ha 1 BC (V3 )

Beh . : ha
= hb

Bew . : AC = BC (VI )
<f ACE = <* FCB = y
< BFC = <f CEA = 90° (V2, V3 )

=> AAEC = <tBCF (SWW)
=> ha

= hb w .z .b .w .

Man kann freilich auch andere Dreiecke für einen Beweis dieses Satzes wählen , zum
Beispiel die Dreiecke ABF und ABE :

Vor . : wie oben
Beh . : wie oben
Bew . : AB = AB

<£ BAF = < EBA (VI , Basiswinkel im gleichschenkligen Dreieck)
<£ AFB = <t AEB = 90° (V2, V3 )

=> AABF = AABE (SWW)
=> ha = hb w .z .b .w .

Zum Abschluss wartet Geobold mit einer Sensation auf .
Er beweist den Satz :
Überlegung : M ist die Mitte von [AB ] , D ist der Schnittpunkt von w r und mc . D ist von

A und B gleich weit entfernt , weil die Dreiecke ADM und BMD kongru¬
ent sind (SWS ) , für Geobold ist das V4.

ALLE DREIECKE
SIND

GLEICHSCHENKLIG

Überlegungsfigur ! Vor . : D ist Schnittpunkt von wy und mc (VI )
DE 1 CA (V2)
DF 1 CB (V3 )
DA = DB (V4)

Beh. 1 : CE = CF
Bew . 1 : CD = CD

-4ECD = <tDCF (VI , w,)
<f DEC = <tCFD = 90° (V2, V3 )

=> AEDC == ADFC (SWW)
=> CE = CF q .e .d.
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außerdem folgt : DE = DF , das ist V5 für
Beh . 2 . : AE = BF
Bew . 2 : DE = DF (V5 )

DA = DB (V4)
<tDEA = <tBFD = 90° (Y2, V3 )

=* AAED = ABDF (SsW)
=> AE = BF q .e .d . _

Nach Beweis 1 gilt CE = CF , nach Beweis 2 gilt AE = BF, also ist

CE - AE = CF - BF . Das bedeutet aber , wie ein Blick auf die Überlegungsfigur zeigt :

CA = CB , das heißt , jedes Dreieck ist gleichschenklig.
Geobolds »Beweis« beweist nur eines : Schlampig gezeichnete Überlegungsfiguren kön¬

nen zu Trugschlüssen führen . Zeichne eine genaue Überlegungsfigur und du wirst Geo-

bold auf die Schliche kommen . Er hat nur einen Fehler gemacht - mit Absicht !

Aufgaben
Beweise durch Nachrechnen

1 . Zeichne ein spitzwinkliges Dreieck . Die Winkelhalbierende WK bildet mit der
Seite a die Winkel g und er.
Beweise: Der Größenunterschied von g und ff ist gleich dem Größenunterschied

von y und ß.
2 . Die Ecken des Vierecks MOPS liegen so auf einem Kreis , dass [MO] Kreisdurch¬

messer ist.
Beweise : Die Winkel PMS und POS sind gleich groß.

3 . Die Ecken des Vierecks VIER liegen auf einem Kreis.
Beweise : Je zwei gegenüberliegende Winkel ergeben zusammen 180 °

. ( Tip : Ver¬
binde alle Ecken mit dem Kreismittelpunkt .)

4 . Zeichne ein Dreieck ABC mit y = 90 °
. Hc ist der Höhenfußpunkt auf c . Die Hal¬

bierende des Winkels H cCB schneidet c in D.
Beweise : Das Dreieck ADC ist gleichschenklig . ( Tip : Winkel !)

5 . Zeichne ein Quadrat ABCD . Verlängere [AB ] über B hinaus bis E mit AE = 3AB .
Verlängere [AD] über D hinaus bis F mit AF = 5AD.
Beweise : Die Fläche des Dreiecks AEF ist 7,5mal so groß wie die Quadratfläche .

6 . Im Dreieck ABC ist y doppelt so groß wie ß. Die Winkelhalbierende wr schneidet
c in D .
Beweise : Die Parallele zu a durch D halbiert den Winkel ADC .

• 7 . Beweise : Eine Zahl ist durch 4 teilbar , wenn die aus den beiden Endziffern gebil¬
dete Zahl durch 4 teilbar ist.

• 8 . Beweise : Die Differenz zweier aufeinander folgender Quadrate ist immer eine
ungerade Zahl .
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• 9 . Beweise : Die Differenz zweier aufeinander folgender Kubikzahlen ist immer eine
ungerade Zahl .

10 . Beweise : Das Quadrat einer ungeraden Zahl ist immer um 1 größer als ein Viel¬
faches von 8 .

11 . GLEICHEWINKEL

Beweise
(X= E

Beweise 6 = 10

Beweise durch Widerspruch
12 . Wenn ein Winkel im Dreieck 120° misst , dann ist das Dreieck nicht rechtwinklig .
13 . Wenn die drei Winkel eines Dreiecks verschieden groß sind , dann ist das Dreieck

nicht gleichschenklig.
14 . Wenn im Viereck ABCD a = 83 ° und ß = 96 ° ist, dann ist ABCD kein Parallelo¬

gramm .
• 15 . Wenn man ein Dreieck in zwei Teildreiecke zerlegt, dann sind nicht beide Teil¬

dreiecke spitzwinklig .
• 16 . Das Lot von einem Punkt auf eine Gerade ist die kürzeste Verbindung von Punkt

und Gerade .
• 17 . Ein Viereck mit verschieden langen Diagonalen ist kein Rechteck.

18 . Ein Viereck mit mindestens drei verschieden großen Winkeln ist kein Parallelo¬
gramm .

• 19 . Wenn die letzte Ziffer einer Zahl 2 , 3 , 7 oder 8 ist, dann ist es keine Quadratzahl .

Beweise durch Symmetrie
20 . Das Lot vom Mittelpunkt eines Kreises auf eine Sehne halbiert diese.
21 . Ein Dreieck ist gleichschenklig , wenn :

a) ha = wa b) hc = sc c) hb = mb.
22 . Die Winkelhalbierenden der Basiswinkel eines gleichschenkligen Dreiecks treffen

sich auf der Symmetrieachse.
23 . Zeichne ein Dreieck ABC mit b > c . Verlängere [AB ] über A hinaus um b bis D . w

ist die Winkelhalbierende durch A im Dreieck DAC , sie schneidet BC in E .
Zeige : Das Dreieck DEC ist gleichschenklig .

24 . Im Dreieck ABC liegt der Mittelpunkt von c auf wr
Zeige : wy

= hc.
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• 25 . Die Strecken [AB ] und [CD ] halbieren sich in M . Eine beliebige Gerade g durch
M schneidet AD in X und BC in Y.
Beweise mit Hilfe der Punktsymmetrie :
Die Dreiecke MCY und MDX sind kongruent .

26 . Zeichne ein Parallelogramm ABCD und fälle von A und C die Lote [AE] und
[CF ] auf BP . _
Zeige : ED = FB .

Beweise durch Kongruenz
27 . In einem gleichschenkligen Dreieck sind

a) zwei Seitenhalbierende gleich lang
b) zwei Winkelhalbierende gleich lang
c) die Lote von der Basismitte auf die Schenkel gleich lang .

28 . Formuliere und beweise vom Satz in Aufgabe 27 . c) den Kehrsatz .

29 . Verlängert man die Basis eines gleichschenkligen Dreiecks beiderseits um gleich
lange Strecken und verbindet man die Endpunkte mit der Spitze, so ergibt sich
wieder ein gleichschenkliges Dreieck.

30 . Verbindet man die Seitenmitten eines gleichschenkligen Dreiecks , so entsteht wie¬
der ein gleichschenkliges Dreieck.

• 31 . Zeichne ein Dreieck ABC mit AC = BC . Verlängere beide Schenkel über die
Basisecken A und B hinaus gleich weit. Die Endpunkte sind D und E .
Beweise : a) AE = BD

b) DEBA ist ein Trapez .
• 32 . Trägt man bei einem gleichseitigen Dreieck auf allen drei Seiten im selben Um¬

laufsinn von den Ecken aus eine gleich lange Strecke ab , so ergeben die End¬
punkte der drei Strecken wieder ein gleichseitiges Dreieck.

33 . Zeichnet man durch die Ecken eines Dreiecks die Parallelen zur Gegenseite, so
entsteht ein neues Dreieck , das aus vier kongruenten Teildreiecken besteht .

34 . Ein Dreieck ist gleichschenklig , falls
a) eine Winkelhalbierende zugleich auch Höhe ist
b) eine Höhe zugleich auch Seitenhalbierende ist .

35 . Die Schenkel eines Winkels schneiden auf jedem Lot der Winkelhalbierenden
eine Strecke aus , deren Mittelpunkt auf den Winkelhalbierenden liegt.

36 . Jedes Lot der Halbierenden eines Winkels schneidet auf den Schenkeln gleich
lange Strecken ab.

37 . Die Lote von einem Punkt der Winkelhalbierenden auf die beiden Schenkel sind
gleich lang .

38 . Fälle von zwei Ecken eines Dreiecks die Lote auf die Seitenhalbierende , die durch
die dritte Ecke geht . Zeige, dass die Lote gleich lang sind .

39 . In einem gleichschenkligen Trapez ABCD schneiden sich die Diagonalen in E .
Gib drei Paare kongruenter Dreiecke an und beweise jeweils die Kongruenz .
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40 . Zeichne einen Kreis k um M und einen Punkt A außerhalb von k . Der Thaieskreis
über [MA] schneidet k in B und C.
Beweise : AB = AC.

• 41 . Zeichne ein Quadrat ABCD und trage von den Ecken aus auf seinen Seiten im
selben Umlaufsinn Strecken gleicher Länge ab .
Beweise : Die vier so entstehenden Punkte bilden wieder ein Quadrat .

42 . In einem Quadrat ABCD liege P irgendwo auf [CD ] . E sei der Endpunkt der Ver¬
längerung von [CB ] über B hinaus um PD . W liege so auf [BC ] , dass AW den
Winkel BAP halbiert .
a) Zeichne das Ganze für AB = 6 .
b) Zeige : <$ PAE = 90°

c) Zeige : AE = EW
d) Zeige : AP = PD + BW.

43 . Zeichne ein Parallelogramm ABCD und durch A eine Gerade g , die das Paralle¬
logramm nicht noch einmal schneidet . Fälle von B , C und D die Lote auf g .
Beweise : Das längste Lot ist so lang wie die beiden andern zusammen .

44 . Zeichne ein Dreieck ABC und errichte nach außen über den Seiten a und b die
gleichseitigen Dreiecke BDC und ACE.
Beweise : a) AD = BE

b) <t (AD , BE) = 60° .

45 . Zeichne ein Parallelogramm und errichte Quadrate über allen Seiten nach außen .
Beweise : Die Mittelpunkte der Quadrate bilden wieder ein Quadrat .

46 . Fälle in einem Dreieck ABC die Lote von B und C auf die Winkelhalbierende wa ,
die Lotfußpunkte sind B ' und C'.
Beweise : B ' und C ' sind vom Mittelpunkt M der Seite [BC ] gleich weit entfernt .
Das Lot von c durch C ' schneidet das Lot von b durch B ' in D.
Beweise : DB ' = DC ' .

47 . DREIZACK
C liegt auf [AB ] , ACP und CBQ sind gleichseitige Dreiecke.
a) Beweise : AQ = BP ( Tip : AP und BQ schneiden sich !)
b) Beweise : AP und BQ schneiden sich unter 60° .
c) Beweise : ECK ist ein gleichseitiges Dreieck.

AE=EQ

PK=KB
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Beweise durch . . . Nachdenken

48 . SEHNENHALBIERUNG
Beweise : k halbiert die Sehne [PS ] .

p

! 49 . In einem Parallelogramm ABCD ist ß = 120°
, wK geht durch den Mittelpunkt Mb

der Seite b.
Beweise : a) a ist halb so lang wie b .

b) AMb ist doppelt so groß wie der Abstand von B und Seite d .
c) [DB] ist eine Höhe des Parallelogramms .

50 . WINKEL ABCD ist ein Quadrat . Beweise : <JPMR = 90° .

P BA
©

• 51 Zeichne ein Trapez , in dem die kürzere Basis genauso lang ist wie die Schenkel
zusammen .
Beweise : Es gibt zwei Winkelhalbierende , die sich auf der kleineren Basis schnei¬

den.
• 52 . In jedem Trapez gibt es zwei Paare zueinander senkrechter Winkelhalbierenden .

53 . Zeichne ein Trapez ABCD mit den Grundseiten a und c, in dem « = 90° und
d = a + c gilt . M ist der Mittelpunkt von b und der Punkt E liegt so auf der Seite
d , dass AE = c ist.
Beweise : a) EM 1 BC b) EM = MC .

• 54 . Zeichne ein Dreieck ABC mit y = 90 ° und die Winkelhalbierende von y* (Außen¬
winkel !) . Das Dreieck A'B 'C' ist symmetrisch zu ABC bezüglich dieser Winkel¬
halbierenden .
Beweise : Die Höhe auf der Hypotenuse des einen Dreiecks geht durch

den Mittelpunkt der Hypotenuse des ande

• 55 . PARALLANG
Beweise : a) [DE und [PQ] haben denselben Mittelp

b) MM C halbiert den Winkel PMCQ .

PARALLANG

AD = BE
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• 56 . Zeichne ein Dreieck ABC mit y = 90° .
Spiegle den Höhenfußpunkt H c an a (Spiegelpunkt E) und an b (Spiegelpunkt D) .
Beweise : a) Die Dreiecke AHCD und H cEC stimmen in den Winkeln überein ,

b) D, E und H c liegen auf einem Kreis . (Mittelpunkt ? Radius ?)
57 . Zeichne ein spitzwinkliges Dreieck ABC, die Höhenfußpunkte H a und Hb und den

Mittelpunkt M c.
Beweise : a) H a, Hb und M c bilden ein gleichschenkliges Dreieck,

b) <tH aM cHb + 2y = 180 ° .
58 . Zeichne ein Dreieck ABC und einen Punkt P im Innern des Dreiecks . Spiegle P

an den Seitenmitten und verbinde die Spiegelpunkte so mit A , B und C , dass ein
Sechseck entsteht .
Beweise : Das Sechseck ist punktsymmetrisch .

59 . Zeichne ein Rechteck ABCD und einen Punkt P im Innern . Spiegle P an den Sei¬
ten und verbinde die Spiegelbilder zu einem Viereck.
Beweise : A, B , C und D sind die Seitenmitten des Vierecks .

60 . Zeichne ein Dreieck ABC und Quadrate über den Seiten (nach außen ) : über [BC]
das Quadrat BLOC und über [AC] das Quadrat ACHT .
Beweise : OH 1 CM c und OH = 2CMc
Zeichne die Ecke U des Parallelogramms COUH .
Beweise : a) CU 1 AB

b) AL 1 BU und ÄL = BÜ
c) AU 1 BT und ÄÜ = BT.
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