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5 . 1 Grundlagen

Streckenlänge 9

Streckenlänge 6

□ Flächeninhalt 24

b =4

__ o _=6

Flächeninhalt 54m
b =6

-- t1= 5- -

Dekameter

ldam = 10m

Ar□

Hektometer

lhm =10dam =100m

Hektar

ldam 2

1 a =100m2

-- 10m - ►

lha =100a
= 10000 m2

- 100m -

Will man die Länge einer Strecke messen, so muss man
feststellen , wie oft eine vorgegebene Einheitsstrecke als
Längeneinheit in der Strecke enthalten ist . Passt die Ein¬
heitsstrecke zum Beispiel genau neunmal in die Strecke,dann sagt man : Die Strecke hat die Länge 9 . 9 ist die
Maßzahl bezüglich der gewählten Längeneinheit .
Nimmt man eine längere Einheitsstrecke , dann hat die¬
selbe Strecke eine kleinere Maßzahl .
Im Alltag haben bestimmte Einheitsstrecken Namen ,
diese Namen dienen als Benennung bei der Längenan¬
gabe . Früher war der Mensch auch im wörtlichen Sinn
das Maß aller Dinge , die alten Längeneinheiten wie
Fuß , Elle, Zoll , Spanne und Yard waren vom menschli¬
chen Körper abgeleitet . Die heute verwendeten Maßein¬
heiten stammen aus der Erdmessung . Am 7 . April 1795
hat die französische Nationalversammlung beschlossen,dass der 40millionste Teil des Erdumfangs als neue Ein¬
heit der Längenmessung verwendet werden solle . Diese
Einheit nannte man 1 Meter und leitete davon die klei¬
neren Einheiten 1 dm , 1 cm , 1 mm und die größere Ein¬
heit 1 km ab.
In der Geometrie geben wir Längeneinheiten als Stre¬
cken an . Weil wir keine Benennungen verwenden , haben
sie die Länge 1 . Bei der Flächenmessung macht man ’s
genauso . Als Flächeneinheit dient ein Quadrat mit der
Seitenlänge 1 : das Einheitsquadrat . Will man den Inhalt
einer Fläche messen , dann muss man feststellen , wie oft
das Einheitsquadrat in ihr enthalten ist . Passt es zum
Beispiel genau 24mal in ein Rechteck, dann sagt man :
Das Rechteck hat den Flächeninhalt 24 . 24 ist die Maß¬
zahl bezüglich der gewählten Flächeneinheit . Wenn man
ein kleineres Einheitsquadrat nimmt , dann erhält die¬
selbe Fläche eine größere Maßzahl .
Meistens bezeichnet man den Flächeninhalt mit A . Für
ein Rechteck mit den Seitenlängen a und b gilt - wie wir
schon wissen :

In der Geometrie sind auch die Flächeninhalte reine
Zahlen . In der Wirklichkeit leitet man die Namen der
Flächeninhalte von den Längeneinheiten ab . 1 m2 ist
zum Beispiel der Flächeninhalt eines Quadrats mit der
Seitenlänge 1 . Entsprechend sind in Gebrauch 1 dm2,
1 cm 2

, 1 m2 und 1 km2.
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Achte auf die unterschiedlichen Umrechnungszahlen bei Längen - und Flächeneinhei¬
ten :

1 km = 10 hm 1 km2 = 100 hm2 = 100 ha
1 hm = 10 dam 1 ha = 100 dam2 = 100 a

1 dam = 10 m la = 100m2
lm = 10dm 1 m2 = 100 dm2

1 dm = 10 cm 1 dm2 = 100 cm2
1 cm = 10 mm 1 cm2 = 100 mm2

Beispiel : 1 km = 1 000m , aber 1 km2 = 1 000000m 2.

Bei komplizierteren Figuren macht es mehr Mühe , den Flächeninhalt zu bestimmen . Ei¬

nige nahe liegende Eigenschaften des Flächeninhalts helfen uns dann weiter . Unmittel¬
bar leuchtet ein :

Kongruente Figuren haben den gleichen Flächeninhalt , kurz : sind flächengleich.

G lN
GOLDSCHATZ=AUGENBLICK Le

also _ aT

AgolDSCHATZ=Aa

S
~ CI

»GOLDSCHATZ“ ■‘ »AUGENBLICK

H Cl

Umgekehrt stimmt ’s meistens nicht :
Setzt man nämlich Figuren aus paarweise kongruenten Teilen zusammen , so entstehen
flächengleiche Figuren , die im Allgemeinen nicht kongruent sind .

paarweise kongruente
Figuren

Gelingt es andrerseits , zwei Figuren in paarweise kongruente Teile zu zerlegen, so sind
sie flächengleich . Solche Figuren heißen zerlegungsgleich. Das Bild zeigt fünf einfache
zerlegungsgleiche Figuren .

Statt Figuren zu zerschneiden , kann man sie auch geschickt ergänzen . Es gilt nämlich :
Zwei Figuren haben denselben Flächeninhalt , wenn sie sich beim Ergänzen mit paar¬
weise kongruenten Stücken in kongruente Figuren verwandeln lassen . Die Ausgangsfi¬
guren nennt man dann ergänzungsgleich. In der Ebene sind zerlegungsgleiche Figuren
immer auch ergänzungsgleich und umgekehrt .

107



zerlegungsgleiche Figuren

F ergänzungsgleich'
also

a, = a 2 I

paarweise

kongruente

Figuren

kongruent

Braucht man den Flächeninhalt komplizierterer Figuren , so zerlegt man diese in Teilfi¬
guren , deren Flächeninhalt man berechnen kann , und verwendet die unmittelbar ein¬
leuchtende Eigenschaft des Flächeninhalts :
Zerlegt man eine Figur in Teilfiguren , so ist der Inhalt der Figur gleich der Summe der
Inhalte der Teilfiguren .

Aufgaben
1 . MASSVOLL

Berechne den Inhalt der schwarzen Flächenstücke .

-1,5HJ _
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2 . MASSLOS J , UT
Berechne den Inhalt der schwarzen Flächenstücke , benutze den Maßstab 1 .
Wie ändert sich der Flächeninhalt , wenn du die Maßstäbe II beziehungsweise III

verwendest ?

Maßstäbe

3 . SCHEREREI
Die Parallelogramme ABCD und ABEF sind flächengleich .
Beweise dies !

4 . FLÄCHENGLEICH
Begründe : Die Figuren in a) sind flächengleich , die Figuren in b) sind flachen

gleich und die Figuren in c) sind flächengleich .

• 5 . QUADRATVOLLMACHT
Ergänze F und + mit drei paarweise
kleinen Quadrat .

kongruenten Stücken zu einem möglichst
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• 6 . VIERDAZU
Ergänze jede Figur mit jedesmal denselben vier Figuren zu einem möglichst klei¬
nen Quadrat .

7. HALBSCHWER
a) Jemand will mit einem geraden Zaun sowohl seinen quadratischen Garten als

auch den kreisförmigen Teich darin halbieren . Hilf ihm !
b) Halbiere die graue Fläche mit einem geraden Schnitt .

8 . ERGÄNZUNGS -PARALLELOGRAMME
Beweise : Zieht man durch einen Punkt der Diagonale eines Parallelogramms die

Parallelen zu den Seiten, so sind die Parallelogramme , durch die die
Diagonale nicht geht - das sind die ERGÄNZUNGS -PARALLELO¬
GRAMME - flächengleich .

9 . QUADRATSUMMENQUADRAT
Zeige : Der Flächeninhalt des großen Quadrats ist gleich der Summe der Flächen¬
inhalte der kleinen Quadrate .
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10 . ZERLEGEINDREI
Zeige : Die fünf Figuren sind flächengleich, weil sie sich jeweils in dieselben drei

Teilflächen zerlegen lassen.

ZERLEGEINDREI

811 . 168 1 169
Geobold hat zwei zerlegungsgleiche Rechtecke gefunden, mit denen er beweist,
dass 8 • 21 = 13 • 13 ist .

512 . FUTSCH?
16 Puzzle-Steine füllen - je nach Anordnung - ein und denselben quadratischen
Rahmen oder auch nicht .

Erst mit einer genauen Zeichnung (gut gespitzte Mine ) wirst du den Schwindel in den
letzten beiden Aufgaben aufdecken .
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5 . 2 Flächeninhalt einfacher

kongruent

•J v-
7

— V
h

h ^ A =gli ^
h
2)_

g

tL A =gh

Figuren

Parallelogramm
Zur Bestimmung des Flächeninhalts zeichnen wir ein
umbeschriebenes Rechteck, von dem eine Diagonale
mit der längeren Diagonale des Parallelogramms
übereinstimmt . Damit ist das Parallelogramm durch
zwei kongruente rechtwinklige Dreiecke zu einem
Rechteck ergänzt . Dieses Rechteck ergibt sich auch,
wenn wir ein kleineres Rechteck (rot) mit den beiden
rechtwinkligen Dreiecken ergänzen . Folglich sind die
beiden roten Figuren , Parallelogramm und Rechteck,
flächengleich (Prinzip : Ergänzungsgleichheit ) .
In den Bildern sehen wir : A = aha = bhb .
Es ist egal, mit welcher Parallelogrammseite man
rechnet , man muss bloß die zugehörige Höhe als zwei¬
ten Faktor nehmen . Allgemein gilt für ein Parallelo¬
gramm mit einer Seite g und der zugehörigen Höhe h :

Flächeninhalt des Parallelogramms

Demnach ändert sich der Flächeninhalt eines Paralle¬
logramms nicht , wenn man eine Seite festhält und die
Gegenseite so verschiebt , dass die Höhe gleich bleibt .
Dieser Vorgang heißt Scherung des Parallelogramms .
Mit der Scherung ist es möglich, ein Parallelogramm
in ein flächengleiches Parallelogramm mit gewünsch¬
ten Eigenschaften umzuformen .

gescherte Parallelogramme sind flächengleich

Als Anwendung verwandeln wir ein Quadrat mit der Seitenlänge q in ein flächenglei¬
ches Rechteck, in dem eine Seite die vorgegebene Länge a hat .

Lösungsidee : Mit einer ersten Scherung führen wir das Quadrat über in ein Parallelo¬
gramm mit der Höhe h = a . Mit einer zweiten Scherung verwandeln wir
das Parallelogramm in ein Rechteck , ohne dass sich dabei die Höhe än¬
dert .
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Dreieck

Spiegelt man ein Dreieck am Mittelpunkt einer Seite , so bildet die Gesamtfigur ein Par¬
allelogramm . Die Fläche des Dreiecks ist halb so groß wie die des Parallelogramms .
In den Bildern sehen wir :

A =
y aha = y bhb =

y chc.

das Dreieck als halbes Parallelogramm

Es ist egal , mit welcher Dreieckseite man rechnet , man muss bloß die zugehörige Höhe
als Faktor nehmen . Allgemein gilt für ein Dreieck mit einer Seite g und der zugehörigen
Höhe h

das rechtwinklige Dreieck

Flächeninhalt des Dreiecks

als halbes Rechteck

Weil ein rechtwinkliges Dreieck immer auch ein halbes Rechteck ist , hat es den Flä¬

cheninhalt A = y ab , das ist das halbe Produkt der Katheten .
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Der Flächeninhalt eines Dreiecks ändert sich nicht , wenn man eine Seite festhält und
die Gegenecke auf einer Parallele im Abstand h verschiebt . Dieser Vorgang heißt Sche¬
rung des Dreiecks .

gescherte Dreiecke sind flächengleich

Flächenberechnung
In einem Beispiel berechnen wir den Flächeninhalt eines Vierecks, dessen Ecken auf
Gitterpunkten liegen : A( 1 13 ) , B(9 11 ) , C (717 ) , D(419 ) .

1 . Möglichkeit: Mit Rechtecken und rechtwinkligen Dreiecken ergänzt man das Vier¬
eck zu einem Rechteck.

Aabcd = -̂ -berg Aabg — Absc — ACSET
— ACTD

— Aadr
= 8 - 8 -

y
‘ 2 ' 8 - ~ 2 - 6 - 2 - 2 -

y
• 3 • 2 -

y
• 3 • 6 = 34 .

1 D
2

3E
c

6

4

6

A 3^ 5
F 8 2

B“ T

2 . Möglichkeit: Man zerlegt das (passend ergänzte) Viereck in Rechtecke und recht¬
winklige Dreiecke.

Aabcd — Aafd + Aabg + Afghe + Aecd — Abhc
=

y
- 3 - 6 + y

- 8 - 2 + 4 - 5 + y
- 3 - 2 -

y
- 6 - 2 = 34 .
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Flächenverwandlung
Im nächsten Beispiel verwandeln wir ein Viereck in ein flächengleiches Dreieck , indem
wir eine Ecke durch Scherung beseitigen.

Lösungsidee und Lösung : Man schert das Dreieck ACD so zum Dreieck ACF , dass F
auf BC liegt. Das Dreieck ABF und das Viereck ABCD ha¬
ben denselben Flächeninhalt .
Schert man die Ecke D auf AB , dann ergibt sich ein anderes
Dreieck KBC.

Mit diesem Verfahren lässt sich jedes Vieleck in ein flächengleiches Vieleck mit weniger
Ecken verwandeln .

Trapez
Schert man eine der beiden oberen Trapezecken parallel zu einer Diagonale auf die an¬
dere Grundseite , so ergibt sich ein flächengleiches Dreieck mit gleicher Höhe , siehe
Bild. Weil EACD ein Parallelogramm ist , gilt EB = a + c.

Flächeninhalt des Trapezes

Aufgaben

Parallelogramm
1 . Berechne den Flächeninhalt eines Parallelogramms , von dem bekannt ist :

a) a = 3 , h a = 4,4 b) b = 2—
, hb = 1-

^
-

18
c) c = 3,875 , ha = 2—
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2 . Ein Parallelogramm hat den Flächeninhalt 144.
a) Berechne a , wenn h a = 16 . b) Berechne hb, wenn b = 7,2 .

3 . In einem Parallelogramm ist : a = 4,83 , ha = 2,4 , b = 3,6 .
Berechne hb.

4 . Eine Raute mit der Seitenlänge 8 hat den Flächeninhalt 56 . Wie lang ist die
Höhe ?

5 . BEWEIS ?
Zeige : Das Parallelogramm und das Rechteck sind zerlegungsgleich . Begründe

damit die Formel A = gh . Zeichne dann ein Parallelogramm , bei dem der
Beweis nicht klappt .

6 . MITTENVIERECK
a) Begründe : Das Parallelogramm ZICK ist halb so groß wie das Dreieck ALT .
b) Begründe : Das Parallelogramm REIZ ist halb so groß wie das Dreieck HAT .
c) Begründe : Das Mittenviereck RECK ist halb so groß wie das Viereck HALT.

7 . GELENKPARALLELOGRAMM
Über der Seite a = 10 lassen sich beliebig viele Parallelogramme mit b = 6 zeich¬
nen.
Zwischen welchen Grenzen liegen die Flächeninhalte ? Zeichne das größte Paral¬
lelogramm.

8 . Zeichne das Parallelogramm ABCD mit A(4 | 1 ) , B( ll 11 ) und D(8 | 7) 8
und konstruiere ein flächengleiches Parallelogramm ABC' D ' mit 0 0 19
a) <£ BAD' = 90° b) <£ BAD ' = 120 ° 0
c) BD' = 10 d) BC ' = 10
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9. Zeichne ein Parallelogramm ABCD mit a = 10 , b = 8 und BD = 6 .
Konstruiere ein flächengleiches Parallelogramm ABC'D ' (Mittelpunkt M ) , bei
dem
a) <fD ' BC ' = 30° b) < AMB = 90° c) < AMB = 75° ist .

S10 . QUADRADRE
ABCD und STUV sind kongruente Quadrate . C ist Mittelpunkt von STUV,
STUV dreht sich um C.
a) Begründe : Im Innern von ABCD liegt höchstens eine Ecke von STUV .
b) Begründe : Die Schnittflächebeider Quadrate hat immer denselben Inhalt , un¬

abhängig von der Lage von STUV ; vergleiche ihn mit dem der
Quadrate .

Dreieck
11 . Begründe die Dreiecks -Flächen - Formel , indem du den Inhalt eines a) spitzwinkli¬

gen, b) stumpfwinkligen Dreiecks als Summe (bzw . Differenz) rechtwinkliger
Dreiecke darstellt .

12 . Berechne die fehlenden Stücke
a b ha hb A

a) 10 7 3,5

b) 16 24 18

c) 9 12 36

d) 12 15 96
2L h

13 . Zeige : In jedem Dreieck gilt -— =

14 . Im Dreieck ABC liegt Punkt Q auf c so , dass [AQ ] dreimal so lang ist wie [QB] ,
a) Wie vielmal so groß ist der Inhalt von Dreieck AQC wie der Inhalt von Dreieck

QBC ?
b) Berechne den Inhalt von Dreieck AQC , wenn man außerdem weiß , dass c = 16

und hc = 8 ist.
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• 15 . a) Beweise : Ist s der halbe Dreiecksumfang und g der Inkreisradius , dann gilt
für den Flächeninhalt A des Dreiecks A = gs.

b) Beweise : Ist u der Umfang eines Tangentenvielecks und g der Inkreisradius ,
dann gilt für den Flächeninhalt A des Tagentenvielecks A = gu .

16. E ist ein beliebiger Punkt auf der Diagonale [BD] eines Parallelogramms ABCD .
Zeige : Aaed = AECD .

• 17 . I ist ein beliebiger Punkt im Innern eines Parallelogramms ABCD .

Zeige : Aabi + Acm = ABCI + Adai = — Aabcd .

18 . Zeichne ein Dreieck ABC und alle Seitenhalbierenden , die sich in S schneiden .
a) Zeige : Jede Seitenhalbierende zerlegt das Dreieck in zwei gleich große Teil¬

dreiecke.
b) Es entstehen sechs Dreiecke mit gemeinsamer Ecke S , die das Dreieck ABC

ausfüllen , ohne sich zu überlappen .
Zeige : Alle sechs Dreiecke sind flächengleich .

19 . Konstruiere ins Innere von Dreieck ABC mit A( l | 4) , B( 10 | l ) und 14
C(10 113 ) den Punkt P so , dass [PA] , [PB ] und [PC] das Dreieck in flä- 0 0 11
chengleiche Teildreiecke zerlegen. 0

20 . Zeichne ein Quadrat ABCD mit a = 2 und verlängere die Seiten aufs Doppelte ,
sodass wieder ein Quadrat entsteht . (Warum ausgerechnet wieder ein Quadrat ?)
Wie vielmal so groß ist das neue Quadrat verglichen mit dem alten ?

• 21 . SIEBEN
A'A = AC, B'B = BA , C 'C = CB . Zeige : Aaw = 7 Aabc .

A'

• 22 . Zeichne Quadrate , deren Ecken auf Gitterpunkten liegen, mit den Flächeninhal¬
ten 1 , 2 , 4, 5 , 8 , 9 , 10 und 13 .

523 . In einem Rechteck mit den Seiten a und b bilden die Winkelhalbierenden ein
Quadrat .

Zeige : Das Quadrat hat den Flächeninhalt A = — (a — b)2.

24 . Zeichne ein Dreieck ABC mit a = 7 , b = 8 und c = 10 .
Konstruiere ein flächengleiches Dreieck ABC' mit
a) <JC 'AB = 60° b) BC7 = 9 c) hAC = 4 d) sBC = 5 e) a' = b '
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• 25 . Verwandle das Dreieck ABC mit a = 4, b = 5 und c = 6 in ein flächengleiches
Dreieck mit demselben Winkel cc und der neuen Seite c' = 7 .

26 . QUADRATE
Zeichne und berechne den Inhalt der schwarzen Flächenstücke .

a) b) c)

1111 IJ KBT

• 27 . Verwandle das Dreieck ABC mit a = 6 , b = 8 und c = 7 in ein flächengleiches
Dreieck mit a ' = 10 und c' = 5 .

28 . STEANDAL
Zeichne und berechne den Inhalt der schwarzen Flächenstücke .

: 29 . EINBESCHRIEBEN
a) Konstruiere die Figur .
b) Wie oft hat das Dreieck UVW flächenmäßig im

EINBESCHRIEBEN

c

Dreieck ABC Platz ?
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S30. DREIVIERTELTAKT
Im Dreieck ABC sind die Seitenhalbierenden gezeichnet . Durch die Endpunkte
B , M b einer Seitenhalbierenden gehen die Geraden , die parallel sind zu den beiden
anderen Seitenhalbierenden ; sie schneiden sich in D .
a) Zeige : Die Seiten im Dreieck BDMb sind so lang wie die Seitenhalbierenden

im Dreieck ABC.
b) Zeige : Der Flächeninhalt von Dreieck BDMb ist gleich 75 % des Flächenin¬

halts von Dreieck ABC.

Trapez
31 . Berechne vom Trapez (a | | c) die fehlenden Stücke

a c h A

a) 10 7 157,5

b) 3,2c 6
5J_CC

c) 5a 6 90

d) 7c c 100

32 . Im Trapez (a | | c) ist : a = 22 , c = 16, d = 12 und <5 = 90° .
Berechne den Flächeninhalt .

33 . Trapezflächen
Berechne die Flächeninhalte .
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34 . Beweise : Trapeze mit gleicher Mittellinie und gleicher Höhe sind flächengleich .

35 . Zeichne ein Trapez und spiegle es am Mittelpunkt eines Schenkels . Bestätige die
Trapezflächenformel durch Betrachtung der Gesamtfigur .

36 . a) Konstruiere ein Tangententrapez ABCD mit A( 111 ) , B( 11,5 11 ) , b = 7,5 ,
d = 6,5 und h = 6 .

b) Konstruiere den Inkreis (Koordinaten des Mittelpunkts ?) und gib den Radius
r sowie die Länge von c ohne Messung an.

c) Berechne den Flächeninhalt des Trapezes auf zweierlei Arten .

• 37 . In einem Tangententrapez (a | | c) ist b + d = 16 und 2,5 der Inkreisradius .
Berechne den Flächeninhalt .

• 38 . Verwandle ein Trapez in ein flächengleiches gleichschenkliges Trapez mit dersel¬
ben Grundseite und Höhe.

• 39 . Zeichne ein Trapez ABCD und konstruiere ein Parallelogramm mit demselben
Flächeninhalt , demselben Winkel a und derselben Grundseite .

40 . Zeichne irgendein Trapez ABCD mit a = 10.
a) Verwandle das Trapez in ein flächengleiches Rechteck .

Sb) Verwandle das Trapez in ein flächengleiches Rechteck mit einer Seitenlänge 7 .

Halbierungen
41 . Zeichne das Viereck VIER mit V( 1 11 ) , 1 ( 11,511) , E(818) und R(3,5 15) , 9

die Diagonale [IR ] und ihren Mittelpunkt M . 0 0 12
1 0

a) Begründe AViM + AEMI = y AViER.

b) Zeichne durch M die Parallele p zur Diagonale [EV] , p schneidet [IV]
in S und [EI ] in T.
Begründe : Die Geraden ES und VT halbieren die Vierecksfläche
(»von einer Ecke aus«) ,

c) Zeichne das Viereck VIER noch mal und halbiere jetzt die Fläche von R aus.
Welchen Flächeninhalt hat es ?

42 . Zeichne das Viereck BREI mit B(7,5 11 ) , R( 1211 ) , E( 1 5 ) und 1 ( 119) . 10
Konstruiere die Gerade h durch den Mittelpunkt Me von [EI ] , die die 0 0 16
Fläche halbiert . 0
( Tipp : Verwandle BREI in ein flächengleiches Viereck mit Me als Ecke und scher
dich um R .)

43 . Zeichne das Parallelogramm ABCD mit A( 113 ) , B(9 11 ), C( 1416) und 8
D (61 8) . 0 0 15
a) Konstruiere die Gerade g , die ABCD von D aus halbiert . 0
b) Konstruiere die Gerade h , die ABCD von P( 1113) aus halbiert .
c) Konstruiere die Gerade u , die ABCD vom Ursprung aus halbiert .

44 . Zeichne das Dreieck ABC mit A(4 | 1) , B( 12 | 1 ) und C (6 | 7) . 7
a) Konstruiere die Gerade g , die ABC von B aus halbiert . 0 0 13

• b) Konstruiere die Gerade h , die ABC von P(81 5 ) aus halbiert . 0



••

45 . Zeichne das Trapez TRAP mit T( 114) , R(7 14) , A( 10110) und P(7 110) . 11
a) Konstruiere die Gerade p , die TRAP von P aus halbiert . 0 0
b) Konstruiere die Gerade q , die TRAP von Q(3,5 14) aus halbiert . 0

Sc) Konstruiere die Gerade s , die TRAP von S(4 | 7) aus halbiert .

Berechnungen
46 . FLÄCHENFLACHSEN

Berechne die gesuchten Stücke.

‘Rechteck

f)
.9- g)

1- 4-
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ia =6 = 3e

47 . In einem rechtwinkligen Dreieck ist eine Kathete dreimal so lang wie die andere .
Verdoppelt man die kürzere und nimmt man den dritten Teil der längeren Ka¬
thete, so verkleinert sich der Flächeninhalt um 18.
Berechne die Längen der Katheten .

48 . Die Diagonale e einer Raute ist um 5 kürzer als die andere Diagonale f.
Vergrößert man e um 12 und verkleinert man f um 8 , so ändert sich der Flächen¬
inhalt nicht .
Berechne e , f und den Flächeninhalt A .
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49 . In einem Trapez mit den Grundseiten a und c ist a dreimal so lang wie c . Die
Höhe h ist halb so lang wie c . Außerdem ist das Trapez flächengleich einem
Rechteck mit den Seitenlängen 4,5 und 72 .
Berechne a , c und h.

50 . In einem Trapez ist eine Grundseite 3,5mal , die andere 2,5mal so lang wie die
Höhe . Verkürzt man beide Grundseiten um 2 und verlängert man die Höhe um 2,
so nimmt der Flächeninhalt um 18 zu .
Berechne die Längen von Grundseiten und Höhe.
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