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2 Die rationalen Zahlen und ihre Rechengesetze

2.1 Die Zahlenmenge B reicht nicht aus!

Die Menge B der Bruchzahlen hat, abgesehen von der grundsétzlich unmogh-
chen Division durch null, fiir das Rechnen einen wesentlichen Mangel: die
Subtraktion zweier Zahlen aus B ist nicht immer ausfithrbar. Dieser Mangel
ist nicht nur ein Schonheitsfehler innerhalb der mathematischen Theorie, er
macht sich auch in der Praxis storend bemerkbar.

Beispiele:

1) An einem Dezembertag zeigt mittags
das Thermometer die Temperatur 4°C
(= 4 Grad Celsius) an. Bis zum Abend
nimmt sie um 3 Grad ab. Daraus kon-
nen wir den neuen Thermometerstand
berechnen: 4 Grad — 3 Grad = 1 Grad;
die Abendtemperatur betragt also 1°C.
Bis Mitternacht sinkt nun die Tempera-
tur noch einmal um 4 Grad. Wie kann
man jetzt die neue Temperaturanzeige
ermitteln? Die Rechnung »1 Grad mi-
nus 4 Grad« ist ja nicht ausfithrbar! Be-
kanntlich hilft man sich hier so, dal}
man z.B. sagt, die Temperatur sei auf
»3 Grad unter O« gesunken oder die
Temperatur sei »minus 3 Grad«, wofir
man kurz »— 3°C« schreibt (Abbil-
dung 36.1).

Abb.36.1 Thermometer

2) Herr Knapp hat auf seinem Bankkonto 530,60 DM. Fiir dringende
Anschaffungen benotigt er 700 DM, die er von seinem Konto
abhebt. Auf seinem néchsten Kontoauszug diirfte Herr Knapp als
Kontostand » — 169.40 DM« oder auch »169.40 DM Soll« lesen. Das
bedeutet, dall er der Bank 169.40 DM schuldet (Abbildung 37.1).

3) In Agypten liegt westlich von Kairo die Kattara-Senke, fiir die man im
Atlas die Hohenangabe » — 134« findet. Damit wird bekanntlich aus-
gedriickt, daB der so gekennzeichnete Ort »134 m unter dem Meeres-
spiegel«, genauer: 134 m tiefer als der Nullpunkt der fiir solche Ho-
henangaben verwendeten Skala liegt.* (Abbildung 37.2)

* Dieser Nullpunkt, genannt Normalnull (NN), ist nach dem Amsterdamer Pegel festgelegt und gibt ungefihr
die mittlere Meereshohe an.
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KONTONUMMER ALTER KONTOSTAND
1234567890 VOM 14.01.85 ‘ DM 530,60 HA
ABHEBUNG AM 17.01.85 DM 700,00 SO

NEUER KONTOSTAND
BUCHUNGSDATUM 18.01.85 | DM 169,40 SO

Abb.37.1 Kontoauszug

Wie diese Beispiele zeigen, kommt es vor, dall man beim Riickwirtszdhlen den
Nullpunkt einer Skala, also eines Zahlenstrahls, iberschreiten muf3. Man ge-
langt zu Ergebnissen »unter Null«, zu deren Beschreibung man Zahlen be-
nutzt, vor die ein Minuszeichen gesetzt wird.

Sicher wire es auch aus mathematischer Sicht giinstig, wenn es Zahlen »unter
Null« gabe, mit denen man z. B. Rechnungen wie »1 — 4« ausfithren konnte.
Das Rechnen wiirde sich sehr vereinfachen, wenn auch die Subtraktion immer
ausfithrbar ware. Man miiBte dann beim Auftreten von Differenzen nicht
jedesmal iiberlegen, ob sie definiert sind bzw., falls Variablen vorkommen, fur
welche Werte der Variablen das der Fall ist.

Eine dhnliche Situation gab es schon frither beim Rechnen mit den natiirlichen
Zahlen*. Dort war die Division nicht unbeschrinkt ausfithrbar; man konnte
z.B. 12 nicht in 5 gleiche Teile zerlegen. Diese Schwierigkeit liel3 sich dadurch
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Abb.37.2 Die Kattira-Senke in Agypten

* Die Zahlen der Folge 1, 2, 3, ... nannte bereits NIKOMACHOS von Gerasa (um 100 n. Chr.) puotkog dot3poc

(physikos arithmos), was BorrHIus (um 480-524/525) mit numerus naturalis ins Lateinische iibersetzte und
das im Deutschen zu natiirliche Zahl wurde.
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38 2 Die rationalen Zahlen und ihre Rechengesetze

beseitigen, daB man die Menge N, durch Einfithrung der Briche er weiterte. In
dem s_mf’:ucn Zahlenbereich B ist die Division immer ausfithrbar, falls der
Divisor von 0 verschieden ist; z.B. gilt 12:5 = 22,

Dieses Beispiel legt den Versuch nahe, die Mume B noch einmal durch neue
Zahlen so zu erweitern, daB auch die Subtraktion immer ausfithrbar wird.
Natiirlich ist eine solche Erweiterung nur dann sinnvoll, wenn man im vergro-
Berten Zahlenbereich wieder »verniinftig« rechnen kann! Das soll heillen: In
der erweiterten Zahlenmenge sollen die gleichen Rechengesetze wie bisher
gelten. Diesen Grundsatz, von dem man sich in solchen Fillen stets leiten 143,
bezeichnet man als Permanenzprinzip, genauer »Prinzip der Permanenz der
Rechengesetze*«. Ob sich dieses Anliegen verwirklichen 1aBt, ist natlirlich
nicht von vornherein sicher.

Aufgaben

1. Was zeigt ein Thermometer an, wenn die Temperatur von —3°C aus
a) um 4 Grad sinkt, b) um 2.5 Grad steigt, ¢) um 11 Grad steigt?

2. Nachdem der Kontostand des Herrn Knapp auf — 169,40 DM gesunken
war, erhielt er vom Finanzamt eine Steuerriickzahlung von 340,00 DM.
Welches Guthaben stand dann auf seinem néchsten Kontoauszug?

3. Westlich der Kattara-Senke mit der llnhumngabe —134 liegt die Oase

Siwa, fiir deren tiefsten Punkt im Atlas die Angabe — 25 zu finden ist.

a) Welche der beiden Senken liegt tiefer und wie grof3 ist der Unterschied?

b) Zwischen den beiden Senken liegt ein Hohenzug, fiir dessen hochsten

Punkt die Hohenangabe 70 0|It Welche Hohenunterschiede miifite

man auf dem Weg von der Oase Siwa iiber den Hohenzug in die Katta-
ra-Senke tiberwinden?

2.2 FEinfiihrung der negativen Zahlen

Auf dem Zahlenstrahl ist jeder Zahl x € B eindeutig ein Punkt zugeordnet.
AuBerdem kann die Zahl x durch den vom Nullpunkt zum Punkt x zeigenden
Pfeil dargestellt werden (Abbildung 38.1).

0 % X
Abb.38.1 Die Zahl x als Punkt und als Pfeil auf dem Zahlenstrahl

Ahnlich wie beim Thermometer setzen wir nun die Skala nach links iiber 0
hinaus fort. Indem wir eine, zwet, drei, ... Lingeneinheiten nach links abtra-

* permanere (lat.) = fortdauern, erhalten bleiben. Der Ausdruck Permanenzprinzip wurde von dem englischen
Mathematiker und Professor der Astronomie George PEacock (1791-1858) in seinem 1830 erschienenen
Werk A rreatise of algebra geprigt, — Siehe Abbildung 86.1.
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gen, erhalten wir Punkte, die wir mit —1, — 2, — 3, ... bezeichnen. Allgemein
erhalten wir zu jeder Zahl x > 0, also x € B, den links von 0 liegenden Punkt

x, indem wir den zu x gehorigen Pfeil um den Nullpunkt nach links umklap-
pen. Das heillt, wir zeichnen von 0 aus einen nach links gerichteten Pfeil der
Linge x. Seine Spitze liefert einen Punkt, den wir mit — x beschriften. Den
Pfeil selbst bezeichnen wir ebenfalls mit — x (Abbildung 39.1).

Abb.39.1 Erweiterung des Zahlenstrahls

Natiirlich wollen wir nun diese Punkte bzw. Pfeile —1, —2, =3, ..., allge-
mein — x, als Vera :15chuuiichmwcn neuer Zahlen deuten! Diese ebenfalls mit
= i N . bezeichneten Zahlen nennen wir negative Zahlen.

In dieser Buudmuncr Lommt zum Ausdruck, dal} es sich bei ihnen um die
»Gegenstiicke« zu den schon bekannten positiven Zahlen, also den Zahlen der
Menge B\ {0} (= B ohne die Zahl 0), handelt. Der erweiterte Zahlenstrahl
heil3t Zahlengerade (Abbildung 39.2).

=2 = Z 2,7
| : 1 I% ] 5 ; [ B »
I ! 1 5 1 1 . L 1
=3 -2 -1 0 1 2 3
negative Zahlen Null positive Zahlen

Abb.39.2 Die Zahlengerade

Unser erweiterter Zahlenvorrat besteht nunmehr also aus den schon bisher
bekannten positiven rationalen Zahlen und der Null sowie den neu eingefiihr-
ten negativen rationalen Zahlen. Alle diese Zahlen zusammen bilden die Men-
ge der rationalen Zahlen*, die man mit Q bezeichnet. Fiir die Teilmenge der
positiven bzw. der negativen rationalen Zahlen verwendet man die Bezeich-
nung Q@ * bzw. Q . Die bisher héufig beniitzte Zahlenmenge B (Briiche!) laBt
sich nun in der Form B = Q" u {0} darstellen; man schreibt dafiir auch kurz
Qg -

Es gilt also:

Definition 39.1: @ = Menge der rationalen Zahlen
O* = Menge der positiven rationalen Zahlen
)~ = Menge der negativen rationalen Zahlen

Q7 = Menge der nicht-negativen rationalen Zahlen

* pationalis bedeutet seit dem 2. Th. zir den Rechmungen gehirend und hingt mit ratio = Rechnung, Verhdlinis,
Vernunfi zusammen. Die mathematische Bedeutung kdnnen wir dir aber erst im Band Algebra 3 erkliren.
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40 2 Die rationalen Zahlen und ihre Rechengesetze

**Zur Geschichte der Fachworter positiv und negativ

An der Entstehung des heutigen Gegensatzpaares positiv—negativ kann man sehr gut
verfolgen, wie bei der Herausbildung einer Fachsprache die urspriingliche Bedeutung
der Worter meist verlorengeht.

Das seit dem 4. Jh. belegte lateinische Wort positivus = geserzt, gegeben hatte als Ge-
gensatz das Wort privativus = abgesondert, hinweggenommen, das in spiterer Zeit auch
noch den Sinn von verneinend annahm. Das alte Wort fiir verneinend war aber negativus
(2.Jh.), zu dem das Gegensatzwort affirmativus = bejahend gehorte (nachgewiesen
5./6.Jh.). In der vor 1486 geschriebenen kleinen Lateinischen Algebra des Dresdener
Codex C80, eines Sammelbands verschiedener mathematischer Handschriften, finden
wir sduberlich getrennt die beiden Gegensatzpaare positiv—privativ und affirmativ—ne-
gativ. Bald jedoch werden diese Paare vermischt, und das Wort privativ verschwindet
immer mehr und wird durch negativ ersetzt. So verwendet Frangois VIETE (1540-1603)
den Gegensatz affirmativus—negaius (1591). Der deutsche Philosoph und Mathema-
tiker Christian von WoLrF (1679-1754) verfalit 1716 ein Mathematisches Lexicon, in
dem das Gegensatzpaar positiv—negativ zu Fachwortern wird. Und dabei ist es dann
geblieben!

Mathematifdes

LEXICON,

Darinnen
vi¢ in allen heilen dev Mathena
tick 11blichen Kunit - Mo fev

erPldret,
unb

Sut Hifforie

et
Mmathematifihen Wifen{dhafften
Dienlidye Tadvrichten ertheilet,
QAuch bie Edirifften, 1
tooiede Matevic ausgefihret su finden,
anaefubret toerben

YHuff Begebrin bevaud gegeben

Chriftian Wolfen,

£ H.unb P. P. O,

Leipsig,
Bep Job. Friedrich Gleditfyens feel. Sobn.
1716.
Abb.40.1 Christian, Freiherr von Abb.40.2 Titelblatt der 1. Auflage

(seit 1745) WoLFF, auch WOLF, (24.1.1679
Breslau — 9.4.1754 Halle/Saale)
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Aufgaben

un
"

Trage auf einer Zahlengeraden mit der Langeneinheit 1 cm die zu folgen-
den Zahlen gehorenden Punkte ein:

a) 4.6 b) —4 c) 0 d) — 1.5 e) 2,2 )i
Gib auf einer Zahlengeraden mit der Ldngeneinheit 2 cm die den folgen-
den Zahlen entsprechenden Punkte an:

S b = ; — = Ry N, B R |
u=21 o==21 w==125 =5 —=11 ‘2= —uo-

b

Zeichne von einer Zahlengeraden mit der Lingeneinheit 6 cm den Ab-

schnitt von — 1 bis 0.5 und markiere darauf die Punkte fiir folgende Zah-
len:

3} "‘-i = 'li h} -\I'.E i, ; C) '\-3 = :I' d} -\.—1- = lﬁl C) '\_5 = 1'2

f) 02 9)y,=—03 Wy, =—090 i) y,=—005

7ciclmc fiir eine Zahlengerade mit der Lingeneinheit 1 cm den Abschnitt
von — 5 bis 5. Trage ddmu[ folgende Punkte ein und gib die zugehdrigen
rationalen Zahlen an:

a) A liegt 3,5 cm links vom Punkt 2.

b) B 1 cgl 2,8 cm rechts vom Punkt

¢) C liegt 23 cm links vom Punkt 0.

d) D g. 3L‘ m links vom Punkt 1.

e) E liegt 1,4 cm rechts vom Punkt —1%.

) F l egt 4,5 cm rechts vom Punkt —4%

Bestimme folgende Zahlenmengen. (Beschreibe die sich ergebenden Men-
gen zuerst in Worten und dann mit Mengensymbolen.)

a) QT nQ° b OTud ¢) Qn N d) Q" nN,

e) QT UN, ) O\Q g) Q\Q~ h) Q\(@"uQ7)

2.3 Zahl und Gegenzahl, absoluter Betrag

Jede Zahl a € @ 148t sich auf der Zahlengeraden durch den von 0 zum Punkt a
zeigenden Pfeil darstellen. Zu dem Elugh angen, aber entgegengesetzt gerich-
teten Pfeil gehort wieder eine rationale Zahl, die wir die Gegenzahl von a
nennen und mit — ¢ bezeichnen.

Definition 41.1: Zwei Zahlen, zu denen auf der Zahlengeraden gleich |
lange, aber entgegengesetzt gerichtete Pfeile gehoren, |
heiBen (ein Paar von) Gegenzahlen.

Die Gegenzahl von @ wird mit — a bezeichnet.
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42 2 Die rationalen Zahlen und ihre Rechengesetze

Die schon auf Seite 39 eingefithrte Schreibweise fiir die negativen Zahlen steht
im Einklang mit der in dieser Definition vereinbarten Bedeutung von —a:
negative Zahlen wie —1; —3,7; — % ... &'ind ja gerade die Gegenzahlen der
entsprechenden positiven Zahlen 1; 3.7; Beachte aber, daB3 Definition
41.1 fur beliebige, also auch fiir I'ItLdii\L’ ' dh]cn gilt! (Abbildung 42.1)

-a a l b | -b
T T ¥ ]
-a 0 a b 0 -b

Abb.42.1 Zahl und Gegenzahl

Beispiele:
Die Gegenzahl von 5,2 ist — 5,2
Die Gegenzahl von 0 ist — 0 = 0.
Die Gegenzahl von — 3 hei3t — (— 3); ihr Pfeil ergibt sich aus dem Pfeil
fiir — 3 durch Umklappen und somit aus dem Pfeil 3 durch zweimaliges
Umklappen. Also gilt: —(—3) = 3.

Die im letzten Beispiel durchgefithrte Uberlegung 148t sich auf jede Zahl an-
wenden. Daher gilt:

Satz 42.1: Fir ae@ gilt: — (—a) = a.

Die Gegenzahlen der natiirlichen Zahlen, also —1, —2, —3, ... werden als
negative ganze Zahlen bezeichnet. Sie bilden zusammen mit 0 und den natirli-
chen Zahlen die Menge der ganzen Zahlen, fiir welche das Zeichen Z verwen-
det wird:

Definition 42.1: 7 = {..., —3, —2, —1, 0,1, 2, 3, ...} heiBt Menge der
ganzen Zahlen.*

4 } ; : t 4 f : t t f ' ;
-6 -5 4. '=31=210.4 0 1 2 3 b 6
Abb.42.2 Die ganzen Zahlen
- i
In Beispielen wie —3, — %, —a, — (x + 5), ... ist das Minuszeichen kein Re-

chenzeichen, es wird ja keine Suhlmkllon ver ];11101 Das vorangestellte Minus-
zeichen bedeutet hier jeweils die Aufforderung »Bilde die Gr.gen/.dhi VON«.

* Der Ausdruck ganze Zahl ist die deutsche l:.’ihl.‘l':&ul?.'llﬂg des lateinischen numerus integer, mit dem LEONARDO
vON Pisa (um 1170-nach 1240) den go3pog dhoxkneoc (arithmos holokleros) des DiopHANT (um 250
n.Chr.) ins Lateinische Gibertragen hatte. Sowohl das lateinische wie auch das griechische Adjektiv bedeuten
unversehrt, vollstindie, noch ganz. -




2.3 Zahl und Gegenzahl, absoluter Betrag 43

Derartige Minuszeichen nennt man Vorzeichen. In entsprechender Weise wird
oft auch das Pluszeichen als Vorzeichen verwendet, wofiir man festsetzt:
+a = a, (a e Q). Obwohl man demnach auf das Vorzeichen » + « verzichten
kénnte, erweist sich, wie sich noch zeigen wird, seine Verwendung gelegenthich
doch als niitzlich und sinnvoll.

Besonders wichtig ist es, sich klarzumachen, daB das Vorzeichen » — « keines-
wegs immer auf eine negative Zahl hinweist! Es gilt ja:

. . positiv negativ
Satz 43.1: —a st . genau dann, wenn a J5% LRt
negatv positly

Eine Zahl und ihre Gegenzahl werden durch Pfeile gleicher Lange dargestellt;
die entsprechenden Punkte auf der Zahlengeraden haben vom Nullpunkt glei-
che Entfernung.

Definition 43.1: Die Entfernung des Punktes @ vom Nullpunkt, also die
Linge des Pfeiles a, heilit absoluter Betrag der Zahl a; er
wird mit |a| bezeichnet.

Die beiden senkrechten Striche nennt man »Betrags-
striche«.

Der Fachausdruck absoluter Betrag und
die beiden senkrechten Striche dafir
wurden von Karl Theodor Wilhelm
WEIERSTRASS (1815-1897) eingefiihrt. Im
Druck erschien absoluter Betrag 18506, die
Absolutstriche aber erst 1876. WEIER-
STRASS war von 1842 bis 1855 Lehrer an
einem Gymnasium, wurde dann als Pro-
fessor ans Gewerbeinstitut nach Berlin
und 1864 an die Universitit berufen. Er
ist einer der bedeutendsten Mathemati-
ker des 19. Jh.s.

Abb.43.1 Karl Theodor Wilhelm
WEIERSTRASS (31.10.1815 Ostenfelde
Landkreis Warendorf — 19.2.1897 Berlin)
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44 2 Die rationalen Zahlen und ihre Rechengesetze

Eine Zahl und ihre Gegenzahl haben denselben Absolutbetrag; denn die ent-
sprechenden Pfeile sind gleich lang.

Beispiele:
1) 7! [I= 3=
2) I?|—|17|—1?
3) 7l=3
Da der Nullpfeil die Lange 0 hat, gilt|0]| = 0. Jede von 0 verschiedene Zahl hat

einen positiven Absolutbetrag.
Wir fassen zusammen:

| Satz 44.1: 1) Der Betrag einer Zahl ist nicht negativ.
Es gilt also: |a| = 0 fiir jedes a e Q.
2) Nur die Zahl 0 hat den Betrag 0.
Kurz*: |la|=0 = a=0.
3) Zahl und Gegenzahl haben gleichen Betrag.
Also: | —al| = |al.

Bei positiven Zahlen und bei 0 stimmt der absolute Betrag mit der Zahl selbst
uberein. Bei negativen Zahlen unterscheidet sich jedoch der Betrag von der
Zahl selbst:

Beispiele:
=2 =28 =St =547 3) | —3 =%

51
Die Beispiele lassen erkennen, dall der Betrag einer negativen Zahl a mit der
positiven (!) Gegenzahl — a iibereinstimmt. Es gilt ja:

|—=2|=2=—(=2), |—=517|=517=—(—517) usw.

Diese Uberlegungen fiihren zu

. ‘ a, wenn a positiv ist;
Satz 44.2: |a| = 0, wenna=0:
I a, wenn a negativ ist.

Dieser Satz zeigt, wie man den Betrag einer Zahl auch ohne Verwendung von
Betragsstrichen angeben kann: Bei 0 und den positiven Zahlen darf man die
Betragsstriche einfach weglassen; bei negativen Zahlen muBl man als Betrag
die Gegenzahl nehmen.

* Das Zeichen <= hat die Bedeutung »genau dann, wenn,
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Aufgaben
1. Wie heil3t die Gegenzahl von
a) 167 b) —3,14 ¢ 22 @ —0,001?
2. Vereinfache die Schreibweise der folgenden Zahlen:
)= — (=2 NPy — (=03 e) = ===y e S =S G
e) +49 s o o I el 1 A et ) U 1) e S ST
3. Welche der folgenden Aussagen sind wahr? Berichtige die falschen Aussa-
gen.,
a) Die Gegenzahl einer positiven Zahl ist nicht positiv.
b) Die Gegenzahl einer rationalen Zahl ist negativ.
¢) Die Gegenzahl einer nichtnegativen Zahl ist negativ.
d) Die Gegenzahl einer natiirlichen Zahl ist eine ganze Zahl.
¢) Wenn man zu den Elementen von N alle ihre Gegenzahlen hinzufiigt,
erhilt man die Menge Z.
4. Bestimme |x| fiir x e {—1000; —111; —0,1; 0; 0,12; 63; 10°}.
5. Bestimme alle Zahlen mit folgender Eigenschaft:
a) Der absolute Betrag ist 7.5.
b) Die Zahl ist negativ und hat den Betrag 2.8.
¢) Die Zahl ist positiv und hat denselben Betrag wie —99.
d) Weder die Zahl selbst noch ihr absoluter Betrag sind positiv.
e) Die Zahl ist von ihrem Betrag verschieden, und dieser hat den Wert 7.
6. Berechne:
a) [7.9] +|— 5] b) |7.9] — | = 5|
¢) |—81|+]|—19| d) | —81|—|19]
e) | —43]—|—0.85] 0 |—1]— 41— |4l
7. Bestimme die Losungsmengen:
a) |x| =05 b) x| =7 ¢) |x|=0
d) |x]==1 e) x| =0 f) |x|=0.
8. Welche Zahlen z € Z erfiillen folgende Bedingung?
a) |z[|=0 b) |z] <1 c) |zl =3
d) |z] >0 e) |z| =2 ) 1<|z|<4.

2.4 Addition und Subtraktion von rationalen Zahlen

2.4.1 Definition der Addition

Ob die neu eingefiihrten negativen Zahlen zu Recht als Zahlen bezeichnet
werden, entscheidet sich an der Frage, ob man mit ihnen in gewohnter Weise
rechnen kann. Wir wollen dies zuniichst fiir die Addition untersuchen. Dazu
betrachten wir einige Beispiele von Summen aus rationalen Zahlen:

e [ il
1 "

o Ik e b AT R




46 2 Die rationalen Zahlen und ihre Rechengesetze

Beispiele:
1) 2+3.7 2) 54+0 3) 52+(—3)
4) (—4)+13 5) (—2.4)+(—3,7) 6) 0+ (—1)

Beachte: Beim Anschreiben solcher Summen ist es wichtig, zwischen Rechen-
zeichen und Vorzeichen genau zu unterscheiden. Das Vorzeichen ist ein Be-
standteil der betreffenden Zahl! Dies wird, wie die Beispiele 3 bis 6 zeigen,
durch Klammern zum Ausdruck gebracht.

Die Summen in den Beispielen 1 und 2 sind von bekannter Art. Dagegen
stellen uns die iibrigen Beispiele vor neue Situationen: Wir wissen ja noch
nicht, wie Summen mit negativen Summanden zu berechnen sind! Man muf
erst einmal definieren, welche Bedeutung solche Summen haben sollen. Na-
turlich soll diese Definition der Addition rationaler Zahlen so beschaffen sein,
dal} sie fiir nicht-negative Summanden (Beispiele 1 und 2) mit der altbekann-
ten Addition ubereinstimmt.

Bei der Suche nach einer geeigneten Definition erinnern wir uns an die graphi-
sche Darstellung der Addition bei positiven Zahlen (Abbildung 46.1):

I

Abb. 46.1 Veranschaulichung der Addition in O

Man erhilt, wie Abbildung 46.1 zeigt, den Pfeil fiir die Summe a + b, indem
man an die Spitze des Pfeils a den Pfeil b ansetzt. Der Summenpfeil liuft dann
vom Anfangspunkt des ersten zur Spitze des zweiten Summandenpfeils. Wir
wollen dieses geometrische Verfahren im folgenden kurz als Pfeiladdition be-
zeichnen.

Es liegt nun nahe, diese Pfeiladdition versuchsweise auch auf Summen mit
negativen Summanden zu iibertragen. Fiir die obigen Beispiele 3, 4 und 5
ergeben sich dabei folgende Abbildungen:

-

Abb.46.2 524 (—3)
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3
PIRAL. ——
|

T -

-

4 1 %

Abb.47.1 (—4)+13

Abb.47.2 (—24)+(—3.7)

Aus der jeweils leicht errechenbaren Linge und der Richtung des Summen-
pfeils erkennt man, dafB dieses Additionsverfahren folgende Ergebnisse liefert:
524+(—3)=22; (—4H+12=—2% (—249+(—37=-6,1.

Deutet man z. B. positive Zahlen als Guthaben, negative als Schulden, so
erkennt man, daB3 diese Ergebnisse durchaus sinnvoll sind. Wir wollen daher
das in diesen Beispielen angewandte Verfahren zur Definition der Addition
beliebiger rationaler Zahlen verwenden.

Definition 47.1: Unter der Summe a + b zweier rationaler Zahlen ¢ und
b verstehen wir diejenige Zahl, deren Pfeil sich durch
Anwendung der Pfeiladdition auf die Pfeile @ und b er-
gibt.

Mit dieser Definition ist es uns tatsidchlich moglich, zwei beliebige Zahlen aus
Q@ zu addieren. Wie man an den vorausgehenden Beispielen erkennt, sind
dabei jeweils zwei Uberlegungen notwendig, ndmlich:
{. Welche Richtung hat der Summenpfeil (falls seine Linge nicht 0 ist)?
2. Wie lang ist der Summenpfeil?
Die Antwort auf die erste Frage liefert das Vorzeichen der zu bestimmenden
Summe, die Antwort auf die zweite ihren Absolutbetrag. Wie man vorgehen
muB, um jeweils die richtigen Antworten zu finden, hingt von Betrag und
Vorzeichen der beiden Summanden ab.
Wir untersuchen dazu verschiedene typische Fille:
Fall 1: Die beiden Summanden a und b sind positiv.

Fir diesen lingst bekannten Fall gilt (vgl. Abbildung 46.1):

a+ b ist positiv und |a + b| = |a| + | b|,

also a+b=|al+|b]|.
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Fall 2: Die beiden Summanden a und b sind negativ.

Abb. 48 1

3 Aus Abbildung 48.1 erkennt man leicht, daB nunmehr gilt;
: a+ b ist negativ und |a + b| = |a| + | b|,
also a+b=—(la|+|b]).

Fall 3. a ist positiv, b negativ und |a| > |b|.

a+b
Abb.48.2

Nach Abbildung 48.2 gilt:
a+ b ist positiv und |a + b| = |a| — ||,
I also a+b=|a|—|b].

=

Fall 4: a ist positiv, b negativ und |a

bl.

l I b a ]

Abb. 48.3

Abbildung 48.3 zeigt:
a+ b 1st negativ und |a+ b| = |b| — |al.
also a+b=—(b|—|al).

Ganz entsprechend wie die Fille 3 und 4 lassen sich die Fille »a negativ, b
positiv und |a| > |bl« bzw. »a negativ, b positiv und |a| < | 6]« behandeln.
Zeige dies z.B. anhand der Aufgaben 1.b) und 1.e) auf Seite 53.

Die Ergebnisse dieser Untersuchungen lassen sich so beschreiben:
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Satz 49.1: Zwei Zahlen mit gleichen Vorzeichen werden addiert, indem

man ihre Betrdge addiert und dieser Summe das Vorzeichen
der beiden Summanden gibt.
Zwel Zahlen mit verschiedenen Vorzeichen werden addiert,
indem man vom groBeren Betrag den kleineren subtrahiert
und dieser Differenz das Vorzeichen des Summanden mit
dem groBeren Betrag gibt.

Beispiele:

) (—3)+(—75) =2
Beide Summanden sind negativ, also auch die Summe. Die Betrage
der Summanden werden addiert. Somit gilt:
(—=3N4+(=75=—(=-3|+|=-75D=—-@B+17,5 =—10S5.

2) 58 +(—83) ="
Die Summanden haben verschiedene Vorzeichen. Der Summand mit
dem groBeren Betrag, also — 8.3, ist negativ; daher wird auch die
Summe negativ. Die Betrdge der Summanden werden voneinander
subtrahiert. Somit gilt:
58+(—83)=—(—8,3]—|58))=—=(8,3—58)=—2,

3) (—3)+4="
Die Summanden haben verschiedene Vorzeichen. Der Summand mit
dem groBeren Betrag ist positiv, also auch die Summe. Die Betrage
der Summanden werden voneinander subtrahiert. Somit gilt:

hn

1 1 | L 1 1 . =il D=
(Fochde=-hldel=| 33D =+@s=33) = k=%
Von besonderem Interesse sind noch die zwei folgenden Falle:
Fall 5: |a| = |b| und @ und b haben verschiedene Vorzeichen. In diesem Fall
ist b die Gegenzahl von «, also b = —a.
[l b=-a a | || a I b=-a [
: 0 a a 0 ]
-a —cy
Abb. 49.1

Aus Abbildung 49.1 erkennt man: a+(—a) = 0.

Satz 49.2: Die Summe aus einer Zahl und ihrer Gegenzahl ist 0.

a4+ (—a)=0 fiir jedes aec@
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Fall 6: Ein Summand ist 0.
Da der Pfeil fiir die Zahl 0 die Lange 0 hat, ergibt sich unmittelbar aus
Definition 47.1:

_ . R |
Satz 50.1: Fiir jede rationale Zahl a gilt
a+0=04+a=a.

Dieser Satz besagt, dal die Zahl 0 auch in der Zahlenmenge Q das neutrale
Element der Addition ist.

2.4.2 Eigenschaften der Addition in

Von der im Abschnitt 2.4.1 eingefithrten Addition rationaler Zahlen wissen
wir noch nicht, ob sie wirklich alle erwiinschten Eigenschaften besitzt. Es geht
hier vor allem um die Frage, ob fiir sie die Rechengesetze giiltig bleiben, die
uns von der Addition in @, her schon bekannt sind. Zur Wiederholung wol-
len wir diese Rechengesetze hier zusammenstellen:

Rechengesetze der Addition in Q

Fiir alle Zahlen a, b, ¢ aus Q gilt:

(E) a+ b ist wieder eine Zahl aus @; eindeutige Existenz der Sum-
me

(K) a+b=b+a Kommutativgesetz* der Addi-
tion

(A) (a+b)+c=a+(b+o Assoziativgesetz** der Addi-
tion

(Na+0=a 0 ist neutrales Element der Ad-
dition

Wir miissen nun priifen, ob die in der groBeren Za hlenmenge O eingefiihrte

Addition ebenfalls diesen Rechengesetzen geniigt.

1) Existenz der Summe: Nach dem in Definition 47.1 festgelegten Verfahren
kann man zwei rationale Zahlen stets addieren; die Summe ist wieder eine
Zahl aus (0. Damit bleibt (E) in Q giiltig.

* commutare (lat.) = veriindern, vertauschen. — Der Ausdruck kommutativ wurde 1814 von Francois Joseph
SERVOIS (1767-1847) in seinem Essai sur un nowvean mode d'exposition des principes du caleul différentiel
in die Mathematik eingefiihrt.
associare (lat.) = vereinigen, anschlieBen, verbinden. — Der Ausdruck assoziariv wurde 1843 von dem be-
rithmten irischen Mathematiker und Astronomen William Rowan Hamizron (1805 1865) bei der Erfin-
dung ganz besonderer »Zahlen«, der sog. Quaternionen, in die Mathematik eingefiihrt. — Abb. 90.1
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Kommutativgesetz der Addition: Wir konstruieren und vergleichen die
Pfellsummen a + b und b + « fiir die verschiedenen Vorzeichenzusammen-
stellungen:

Abb. 51.1 Zum Nachweis des Kommutativgesetzes

Abbildung 51.1 zeigt, daB in allen diesen Fillen a + b = b + a gilt. Wenn
ein Summand 0 ist, gilt nach Satz 50.1 ebenfalls a + 0 = 0 + a. Also bleibt
(K) in @ giltig.

Assoziativgesetz der Addition: Anstatt hier fiir alle typischen Fille Pfeil-
summen zu konstruieren, iiberlegen wir: Wenn man aus drei Pfeilen a. b, ¢
die Summen (a + b) + ¢ und a + (b + ¢) bildet, lduft das in beiden Féllen
darauf hinaus, daB man die Pfeile einfach der Reihe nach aneinandersetzt.
Das Ergebnis ist unabhiingig davon, ob @ und b oder b und ¢ zu einer
Zwischensumme zusammengefaBt werden. Damit gilt wieder (a + b) +
+ec=a+(b+c), d.h., (A) bleibt auch fiir die Addition in @@ giltig.

Ein Beispiel zeigt Abbildung 52.1. In den ersten beiden Zeichnungen wird
jeweils oberhalb der Zahlengeraden die Zwischensumme a + b bzw. b + ¢
konstruiert, die dann darunter zur Ermittlung der ganzen Summe
(a + b) + ¢ bzw. a + (b + ¢) verwendet wird. Der letzte Teil der Abbildung
zeigt zum Vergleich die drei der Reihe nach aneinandergesetzten Pfeile.
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i|:- {a+lI)}+c c
[
I
C
b b+c
1 a a+(b+c) c
i L
b 0 a I b+c
c
b_
aﬁ
b 0 a atb+c c

Abb.52.1 Zum Assoziativgesetz der Addition

4) Neutrales Element der Addition: Der schon bewiesene Satz 50.1 besagt, daf3
0 auch fiir die Addition in @ neutrales Element ist, so daB auch (N) giiltig
bleibt.

Damit gilt

Satz 52.1: Fir die Addition in der Menge @ der rationalen Zahlen
gelten wieder die auf Seite 50 zusammengestellten Rechen-
gesetze (E), (K), (A), (N). .

Fir die Rechenpraxis sind insbesondere die Gesetze (A) und (K) von groBer
Bedeutung. Aus (A) folgt bekanntlich, dal man bei dreigliedrigen Summen
darauf verzichten kann, die Reihenfolge der beiden Additionen durch Klam-
mern festzulegen. Da es nach dem Assoziativgesetz gleichgiiltig ist, ob man
(@ + b) + ¢ oder a + (b + ¢) berechnet, geniigt es auch, einfach a + b+ ¢ zu
schreiben. Nimmt man noch das Kommutativgesetz hinzu, so zeigt sich, daB
auch die Reihenfolge der Summanden beliebig verindert werden kann. Das-
selbe gilt, wie man zeigen kann, auch fiir Summen mit mehr als drei Summan-
den.

Beispiel 1:
Behauptung: a+b+c=c+b+a
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Beweis: Der Einfachheit halber schreiben wir im folgenden das bei einer
Umformung dﬂUL,\hll'ldlt Rechengesetz iiber das Gleichheitszeichen.
Zum Buwpml hat 2 die Bedeutung »ist wegen RLLhuwW.t/ (A) gleich«.

at+b+ec :(cH—h)—w-é ¢+ (a+b) Ec+(b+ a)= 2e+b+a

Beispiel 2:
12,54+ (—23,91) + 7,52 (12,5+ (—23.91)) + 7,5
£7.54+(12,5+4 (—" 91)) =
2 (7,5+12,5) 4+ (—2391) =
=20 + (—23,91) = — 391,

Beispiel 2 zeigt, wie man durch die Wahl einer giinstigen Reihenfolge der
Summanden und der Rechenschritte die Durchfithrung einer Rechnung oft
vereinfachen kann. Achte stets auf solche Rechenvorteile!

Aufgaben

1. Bestimme die folgenden Summen durch eine Pfeilkonstruktion. Verwende
dazu eine Zahlengerade mit der jeweils angegebenen Langeneinheit (LE).
a) (—3,2)+(—1,3), LE 1cm; b) (—2,6)+8, LE 1cm;
¢) 64+ (—97), LE 1 mm; d) 0,754+ (—0.,48), LE 1dm;
¢) (—1,1)+0,8 LE 5¢cm; f) (—3)+(—1%), LE 6cm.

I

Berechne die folgenden Summen. Uberlege jeweils zuerst, welches Vorzei-
chen das Ergebnis erhilt und wie man seinen Betrag berechnet.

a) (—10)+ 12 b) 10+ (—12) ¢) (—9.1)+(—-19)
d) 1,5+45 e (=745 +7% 1) 0,865+ (—1,39)
g (=9 +(—13 h) 42+ (—24%) i) (—0,196) + £

3. Konstruiere fiir dm folgenden Zahlenbeispiele zur Uberpriifung des Asso-
ziativgesetzes der Addition die Pfeilsummen (¢ + b) + ¢ und a + (b + ¢).
Kennzeichne dabei die zuerst gebildeten Zwischensummen durch zweifar-
bige Pfeile (vgl. Abbildung 52.1).

a) a =4 b==3c==3.5;LB:dcm
blia=—"—24 b= 30 =—— 7; 2: LE 1cm
) d=-—06b=- 1 ¢=5 LEdcm

4. Berechne die folgenden Summen. Achte dabei auf eventuelle Rechenvor-

teile.
¢) 1010 + (— 2000) + 990 d) (—123) (—63) F(—132)
e) (—0.93)+ 1,134+ (—0,63) ) (—225)+(—4,75)+ 7,25

g) 23+ (—15)+ (155 h) 15.8+(—2(};)+4-§--
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5. Berechne:
a) 27T+(=15)+(—8)+(—9) b) (—109) + (85 + 13 + (—45))
¢) ((—3,14) + 2,38) + (— 0,167) + 1,427
d) (4%+(—10,5) + (82 + (—23)
6. Berechne:
a) (—71+|—17| b) | —2,5|4+12,5] ey 24 —32|
d) [3+(=4)| e) |3|+]|—4| f) [(—3)+4|
g) [(—1,16) + (=239 h) |—1,16]+[—2.39] i) [(—55+|— 23]
7. Ist x positiv, null oder negativ, wenn folgende Gleichung gilt? (Hinweis:
Beachte Satz 49.1.)
a) |7+x|=T7+|x| b) [(=7)+x|="T+|x|
¢ |[x+2|=2—|x| d) [x+2|=|x|—2
e) Welche Angabe iiber | x| 1aBt sich im Fall ¢) bzw. im Fall d) machen?

8. Was kann man tiiber die Vorzeichen von x = 0 und y =+ 0 sagen, wenn gilt
a) |x+y|=|x[+|y| b) |x+y|=|x|—yl
Q) [x+(=l=lxl+Iy| & [(=x)+(=»NI=IxI-1Ipl ?

2.4.3 Die Subtraktion in Q@

Beim Addieren besteht die Aufgabe darin, aus den gegebenen Summanden die
Summe zu berechnen. Oft kommt es aber auch vor, daB3 von einer Summe der
Wert schon bekannt st und einer der Summanden gesucht wird. Um diesen zu
berechnen, mull man bekanntlich eine Subtraktion ausfithren. Man bezeich-
net wegen dieses Zusammenhangs die Subtraktion als Umkehrung der Addi-
tion.

Beispiel:
Auf einer StraBenkarte ist die Entfernung Miinchen—Niirnberg mit
162 km und die Teilstrecke Miinchen—Ingolstadt mit 73 km angegeben.
Wie lang ist dann die Strecke von Ingolstadt nach Niirnberg?
Bezeichnet man sie mit x km, so ist x die Losung der Gleichung
7134+ x =162, also x =162 — 73 = 89.
Die Strecke Ingolstadt—Niirnberg ist somit 89 km lang.

Das Beispiel zeigt deutlich den Zusammenhang zwischen der Differenz
162 — 73 und der Gleichung 73 + x = 162: die Differenz ist die Lisung der
Gleichung. Ganz allgemein legt man fest:

| Definition 54.1: Unter der Differenz b — a versteht man die Losung der
‘ Gleichung a + x = b.

b — a ist also diejenige Zahl, die man zu @ addieren muf3, um b zu erhalten.
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Nach dieser Definition hat eine Differenz » — a nur dann einen Sinn, wenn die
entsprechende Gleichung a + x = b genau eine Losung besitzt. In der Zahlen-
menge (05 war dies nur unter der Voraussetzung a < b der Fall. Fura > b war
die Gleichung unlésbar, somit die Subtraktion b — ¢ nicht ausfithrbar. Hat
sich daran durch die Einfithrung der negativen Zahlen etwas gedndert? Ist in
der Zahlenmenge @ die Subtraktion immer durchfithrbar?

Um diese wichtige Frage zu kldren, betrachten wir als Beispiel zunéchst eine
Gleichung, die in Q@ keine Losung hat:

BeiSpielz E

Fe—3 0 1 7 s,

Abb.55.1 Zur Gleichung 7+x =3

Die Pfeildarstellung zeigt, dall es genau eine Zahl x gibt, die man zu 7
addieren mufB}, um 3 zu erhalten. Sie wird durch den von 7 nach 3 zeigen-
den Pfeil dargestellt. Man erkennt leicht, dal} es die Zahl — 4 ist.

Es gilt also: 7+ x =3 hat die Léosung x =3 -7 = —4.

Das in diesem Beispiel angewandte Verfahren 13t sich auf jede Gleichung der
Form a + x = b iibertragen: Man stellt @ und b durch vom Nullpunkt der
Zahlengeraden ausgehende Pfeile dar. Dann gibt es genau einen Pfeil x, der
von der Spitze des Pfeils ¢ zur Spitze des Pfeils b fithrt; er stellt die einzige
Losung der Gleichung dar. Die Abbildung 55.2 zeigt einige typische Fille.

> Y

)H}

=
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Damit gilt folgender

Satz 56.1: Die Gleichung @ + x = b hat in der Menge © der rationalen
Zahlen stets genau eine Losung.

Da man die Ldsung der Gleichung a + x = b durch die Differenz b — a aus-

driickt (siehe Definition 54.1) und diese also fiir beliebige a, b € (D definiert ist,

gilt weiter der wichtige

| Satz 56.2: In der Menge () der rationalen Zahlen ist die Subtraktion
unbeschrinkt ausfithrbar.

Durch die Einfithrung der negativen Zahlen ist es uns also gelungen, die frither
ber der Subtraktion notwendigen Beschrinkungen aufzuheben!

Ein wichtiger Sonderfall der Gleichung a + x = b ergibt sich fiir = 0. In
diesem Fall, also fiir die Gleichung a + x = 0, lautet die Losung: x = 0 — a.
Bei dieser Differenz handelt es sich aber, wie Abbildung 56.1 zeigt, um die uns
schon bekannte Gegenzahl von a, also x = —a.

a a

I ; o

Abb. 56.1 Die Gleichung a + x = 0

Damit gilt

Satz 56.3: Die Differenz 0 — a ist die Gegenzahl von a.
0—a=-—a

Man kann nun also — ¢ auch als Kurzschreibweise fiir die Differenz 0 — a
auffassen. Analog dazu kann man + a als Kurzform fiir die Summe 0 + ¢
verstehen.

Die schon in Satz 49.2 aufgetretene Gleichung a + (— a) = 0 kann nun auch
folgendermaBen gedeutet werden: Zu jeder Zahl a € (0 gibt es eine zweite Zahl
(ndmlich —a), so daBl die Summe dieser Zahlen das neutrale Element der
Addition, also 0, ist. Man sagt dazu auch: »Die beiden Zahlen heben sich beim
Addieren gegenseitig auf.« In der Mathematik bezeichnet man solche Zahlen
als zueinander invers* beziiglich der Addition.

* inversus (lat.) = umgekehrt
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Satz 57.1: Zu jeder rationalen Zahl a gibt es genau eine Inverse beziig-
lich der Addition, ndmlich die Gegenzahl —a.

Dieser Satz stellt ein weiteres Rechengesetz der Addition dar, das als »Exi-
stenz des Inversen« bezeichnet wird. Wir verwenden dafiir die Abktrzung (I).
Damit haben wir fiir die Addition in @ funf Rechengesetze:

(E), (K), (A), (N), (

Wir betrachten noch einmal die Pfeildarstellung der Differenz b — a (Abbil-
dung 57.1).

‘l'a ‘ . a ”b
L] 0 T b
b-a -a

Abb. 57.1 Pfeildarstellung der Differenz

Offensichtlich erhiilt man den Pfeil » — a auch dadurch, daB man an den
Pfeil b den Pfeil — a ansetzt, also die Pfeilsumme b + (—a) bildet! Ob das
allgemeingiiltig ist, konnen wir durch Rechnen iiberpriffen. Da b—a die
Losung der (chlc.hunu a4+ x = b ist, rechnen wir nach, ob auch b+ (—a)
diese (:luahung erfullt:

a+ b+ (—a) Ea+(—a)+b) L2@+(—a)+b=0+b=0>,

also a+(h+(—a)=>b.

Damit ist gezeigt, daB} die Losung der Gleichung a + x = b, fiir die wir in
Definition 541 die Differenzschreibweise x = b — a vereinbart haben, auch
in der Form x = b + (— a) geschrieben werden kann. Da die Gleichung nur
eine einzige Losung besitzt, kann es sich bei b —« und b+ (—a) nur um
\*Lrb(,hli.duu, Darstellungen derselben Zahl handeln! Es gilt Ltlso

Satz 57.2: b—a=b+(—a)
Das heiBt: Das Subtrahieren einer Zahl ist gleichbedeutend
mit dem Addieren ihrer Gegenzahl.

Mit diesem Satz kann man jede Differenz in eine Summe, jede Subtraktion in
eine Addition umwandeln! Das ist deshalb von groBer praktischer Bedeutung,
weil wir das Addieren in der Zahlenmenge @ bereits gut beherrschen — und
damit nun auch schon das Subtrahieren.
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Beispiele:
IS —=lli=5 Ft{=H)==1lE=35)= =6
2) (=210) —8.05=(—2 1) +(=8 k= —(217 4805 =—10,22,
S 6 e NG SR O =G RO L
=+ (935 — 61%) = -1(:0 = 315.
Aufgaben
I. Berechne folgende Differenzen:
a) 99 — 1000 b) (—99) — 1000 ¢) (—99) — (—1000)
dy 52—79 e}l =16 d5)—(—17.5) f) (—0,625) — 0,625
g) & — 4 h) 23— (—53) i) (—10:D) — (= 7.2)

2. a) Beschreibe fiir die im folgenden angegebenen Fille, wie man das Vor-
zeichen und den Betrag der Differenz @ — b aus den Vorzeichen und
Betrdgen von Minuend ¢ und Subtrahend b erhilt. (Vergleiche dazu die
entsprechende Untersuchung auf Seite 48 fiir die Summe a + b.) Ferti-
ge jeweils eine Pfeilskizze an.

1. Fall: a positiv und b negativ
2. Fall: a negativ und b positiv
3. Fall: ¢ und b pmm\ und |a| > |b|
4. Fall: @ und b positiv und |a| < |b|
5. Fall: @ und b negativ und |a| > |b|
6. Fall: @ und b negativ und |a| < |b|

b) Formuliere nun einen dem Satz 49.1 entsprechenden Satz fiir die Sub-
traktion.

3. Schreibe nach Definition 54.1 die Losung der Gleichung als Differenz und
berechne sie.

a) 3+x=1 b) —3+x=1 e} S X =1

d) =3 +Fy==1 e) x+2.9=1.,5 e ti(=27y=1.5
g) x+27=-15 h) x+(=2D=-15 i) 5; =.\'—;—8-%
k) 21 —4L =914 x ) 231,77+ 378,29 = — 167,71

4, Berechne:

a) 21 — (17 + 14) b) (—123) — (213 — 321)
¢) (—76)— (18 + 58) d) (—51,6) + (34.9 — (— 17,7)
e) ((—15) + 813) — 100 f) 13,25— (23— (-13)

5. Berechne:
a) ( 65 — 640) + (575 — 700)
b) (62,8 — 20,25) — (32,08 4+ 10.47)
c) ((—[)"(n +0,173) — (17,3 — 21,6)
d) (16 — 127%5) — (8,75 + (— 33))
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Bestimme die Losung einer Gleichung vom Typ x —a = b,indemdu x — a
als Summe schreibst und Definition 54.1 anwendest.

@) x—5==3 by x—22=293

¢) x—24=31-6: d) 52— 14 = x— &3

e) 33—(17+ 4%) = x — 23 Tiek— (31l3 am 8315') = 4"['1g = [5

. Bestimme die Losungeiner Gleichung vom Typ a — x = b,indemdu a — x

als Summe schreibst und nach Definition 54.1 zuerst —x berechnest.
a) 16— x=20 b) 32— x
¢) 692 x=217—(0,25—4,5)d) 443l =75 —x

=L
=

Wihrend eines Wintertages wurde im Abstand von je 3 Stunden die Tem-

peratur abgelesen und notiert:

Uhrzeit | AT i gl jIE]’

Temperatur —10,7 | —11,8 | —5,6 ‘ 2.?! 2.1 | —2.1|-5.8 i—?.3

i 6 ‘ | |

a) Berechne die Temperaturinderung zwischen je zwei aufeinanderfol-
genden Ablesungen.

b) In welchem dieser Zeitabschnitte war die Temperaturabnahme, in wel-
chem die Temperaturzunahme am grofB3ten?

lgh

o

‘—9.5

. Gase werden bei sehr tiefen Temperaturen fliissig, z.B. Sauerstoff bei

—183°C und Helium bei — 269 °C. Um wieviel Grad mull man Helium,
das mit fliissigem Sauerstoff vorgekiihlt wurde, noch weiter abkiihlen, um
es zu verfliissigen?

Wenn man Quecksilber abkihlt, erstarrt es bei einer Temperatur von
— 59°C. Um wieviel Grad muB sich Quecksilber, das die Temperatur von
fliissigem Sauerstoff (—183°C) hat, erwdrmen, damit es wieder fliissig
wird?

Auf das Bankkonto des Herrn Knapp wurde am Monatsersten sein Ge-
halt in Héhe von 3275 DM iiberwiesen. Am gleichen Tag wurden 840 DM
als Monatsmiete abgebucht. Danach betrug sein Guthaben 2361,42 DM.
Wie hoch war der Kontostand vor den beiden Buchungen?

Aufeiner Reise durch den Westen der USA iibernachtet Familie Brown im
beriihmten Death Valley (California). Am nidchsten Tag fahren sie weiter
nach NW in die Sierra Nevada und erreichen dabei am Tioga-PalBl (Mee-
reshéhe 3031) den hochsten Punkt. Herr Brown stellt fest, dal sie damit an

diesem Tag einen Hohenunterschied von 3116 m iiberwunden haben. Auf

welcher Meereshdhe liegt demnach der tiefste Punkt des Death Valley
(= tiefster Punkt in den USA!)?
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2.5 Anordnung der rationalen Zahlen

2.5.1 Definition der Anordnung in Q
Fiir je zwei Zahlen p und g aus der Menge Q ist die folgende Aussage richtig:

Entweder gilt p =g, gelesen »p ist gleich g«,
oder es gilt p < g, gelesen »p ist kleiner als g«,
oder es gilt p > q. gelesen »p ist groBer als g«.

fJG t‘

Man sagt deshalb: »Die Zahlenmenge @, ist angeordnet.« Die Aussagen
p < g oder p > g nannte 1838 der LJ}n1m1~,|c11d|1t,k101 Johann Heinrich Trau-
gott MULLER (1797-1862) in seinem Lehrbuch der Mathematik fiir Gymnasien
und Realschulen Ungleichungen.

Das Zeichen = wurde von dem Englinder Robert RECORD(E) (1510(?)-1558) erfun-
den. In seinem The whetstone of witte (Der Schleifstein des Denkens) schreibt er 1557;
»And to avoid the tedious repetition of these words »is equal to<I will set [ ... ] a pair of
parallels, or twin lines of one length, thus: ==, because no 2 things can be more
equal.« — 70:'(1’:{’:: der Gleichheit nannte es 1791 Johann Heinrich VoigT (1751-1823).
Die Zeichen < und > erscheinen zum ersten Mal in der postum 1631 gedruckten Artis
analyticae praxis ad aequationes algebraicas resolvendas des Englinders Thomas HAR-
RIOT (1560-1621). Der Herausgeber, Walter WARNER, gab HARRIOTS handschriftlichen
Zeichen < bzw. > diese einfache Form.

(‘.I’

Wir wollen nun versuchen, die Anordnung in @ aufdie gréere Menge @ der
rationalen Zahlen auszudehnen. Dazu miissen wir auch fiir die neu hinzuge-
kommenen negativen Zahlen die Verwendung der Zeichen < und > sinnvoll
festlegen. Da in @, die Ungleichung p < ¢ ‘bedeutet, daB auf dem Zahlen-
strahl der Punkt p links vom Punkt ¢ liegt, bietet es sich an, zu vereinbaren,
dal auch fir zwei Zahlen @ und b aus Q die Beziehung a < b genau dann
gelten soll, wenn auf der Zahlengeraden der Punkt a links vom Punkt b liegt
(Abbildung 60.1). Damit miiite z.B. —20 < —1 oder — 300 <0 oder
— 2 < 0,2 gelten! Deutet man die Zahlen etwa als Angaben {iber Temperatu-
ren oder Kontostande, so erkennt man, daB3 solche Ungleichungen durchaus
sinnvoll sind.

Definition 60.1: Fiir zwei rationale Zahlen ¢ und b gilt ¢ < b genau
dann, wenn auf der Zahlengeraden der Punkt a links
vom Punkt b liegt.

Statt @ < b schreibt man auch b > a.

l
]

Abb. 60.1 Veranschaulichung von a < b

Aus Definition 60.1 folgt, daBl nun auch in der Menge @ fiir je zwei Zahlen a, b
die Aussage zutrifft:

Es gilt entweder a=b oder a<b oder a>b.
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Auf Grund der Anordnung auf der Zahlengeraden bestehen zwischen den
negativen Zahlen, der Zahl null und den positiven Zahlen die folgenden Bezie-
hungen:

Jede positive Zahl ist grofler als 0.
Jede negative Zahl ist kleiner als 0.
ede negative Zahl ist kleiner als jede positive.

e

Wegen Teil 1 und 2 dieses Satzes konnen wir die Aussagen »a ist positiv« bzw.
»a ist negativ« kiirzer durch die Ungleichungen a > 0 bzw. a < 0 beschreiben.

Wie die Abbildung 60.1 zeigt, ist im Fall @ < b der Pfeil von a nach b stets
rechtsgerichtet; er stellt also eine positive Zahl p dar. p ist digjenige Zahl, die
man zu a addieren muB, um b zu erhalten, also die Differenz b — a. Da umge-
kehrt fiir eine Zahl p > 0 zur Summe a + p immer ein rechts von a liegender
Punkt der Zahlengeraden gehort, gilt

=

Satz 61.2: a < b gilt genau dann, wenn es eine positive Zahl p gibt, so
daBa+p=>.

Beispiele:
1) —20<—1; denn —20+4+19=—1.
2) —500<0; denn — 500+ 500=0.
3) —2<02; denn —-2+4+22=0,2.
4) %<3 4 2

A = | L=
<2 denn F+35=35-

2.5.2 Monotoniegesetz der Addition

Wir wissen: Wenn man zwei gleiche Zahlen a und b hat und zu jeder dieselbe
Zahl ¢ addiert, erhilt man auch gleiche Summen. Das heiBt, aus a = b folgt
stetsa+c=b+c.

Beispiel*: 243=5=(2+3)+8=5+8

Welche Beziehung besteht aber zwischen @ + ¢ und b + ¢, wenn a4 und b ver-
schiedene Zahlen sind, wenn z.B. a < b gilt?

c

—>| r——n — [

b+c b

Abb.61.1 Zum Monotoniegesetz der Addition

* Den Folgepfeil = liest man daraus folgi.
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Wie Abbildung 61.1 zeigt, gilt mit @ < b stets auch a + ¢ < b + ¢, und zwar
unabhingig davon, ob ¢ > 0 oder ¢ < 0 oder ¢ = 0 gewihlt wird. Die Addi-
tion von ¢ verschiebt jeden der Punkte @ und b auf der Zahlengeraden um
den Pfeil ¢. Dabei bleibt ihre Reihenfolge und sogar ihre Entfernung erhalten.
Dall umgekehrt aus ¢ + ¢ < b + ¢ auch wieder die Ungleichung a < b folgt,
erkennt man, indem man auf beiden Seiten — ¢ addiert. Damit gilt

Satz 62.1: Monotoniegesetz der Addition
Addiert man auf beiden Seiten einer Ungleichung dieselbe
Zahl, so bleibt das Ungleichheitszeichen erhalten; kurz:
a<b < a+c<b+c

Ein entsprechendes Monotoniegesetz gilt auch fiir die Subtraktion, denn man
kann ja nach Satz 57.2 jede Differenz auch als Summe schreiben. Durchfiih-
rung in Aufgabe 63/3.

Das Monotoniegesetz der Addition wendet man gerne an, um festzustellen, ob
eine Ungleichung zutrifft oder nicht.

Beispiele:
1) ~36<—6 < —36+6<—-646 < —30<0
2) —36<—-6<= —364+36<—-6+36 <= 0<30
3) 36b6<-6<= —36+21<—6+21 = —15<15
4) 225> 3 = 225—5>3 -7 « 225-0,35>42 < 19> 2()
5) 225> %0 < 225-225>41—-225 <« 0>235—225 <= 0>0,1()

Die Beispiele 1, 2 und 5 zeigen, wie man durch Anwendung des Monotoniege-
setzes der Addition bzw. Subtraktion eine Ungleichung auf »Nullform« brin-
gen, d. h. auf einer Seite der Ungleichung die Zahl 0 herstellen kann. An einer
solchen Nullform erkennt man besonders leicht, ob die Ungleichung wahr
oder falsch ist.

Aufgaben

Stelle aus den Zahlen der folgenden Paare mit einem der Zeichen =, <, >
eine richtige Gleichung bzw. Ungleichung her.

a) 0; 0,1 b) 3; —1 c) —56;—65 d) —5& —0,35

e) —25 0 f) —099 001 g —2% X% h) —43; —23

i) —3;—1 k) —14; 1 ) 10; —100 m) —57; —75
2. Unter den folgenden Ungleichungen sind einige falsch! Welche?

a) 1,65 <2 b —l.65%=—~2

¢) 1¢>0,56 d) —1t < —0,56

e)d =2705==225 B —1,3=245< <4475

g) 3.5—(24+0,625 + (12— H - 0,875

h) 0.5-G+H+12-L
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3. Zum Monotoniegesetz der Subtraktion
a) Fasse folgenden Satz in Worte und begriinde ihn:
Firallea,b,ceQglt: a<b = a—c<b-—c.
b) Begriinde: Fiir alle ¢, b, deQ gilt: a—d<b—d = a<b. i

i

Stelle bei den folgenden Ungleichungen ihre beiden Nullformen her und
entscheide, ob die Ungleichungen wahr oder falsch sind.

a) 9,99 < 9,999 b) —1,001 < —1,01
) 1,85>42 d) —45 >—=28
€)1, 5ttt f) 161 —11> 181 —32

n

Auch fir Ungleichungen der Form a + b gilt das Monotoniegesetz der
Addition: a+ b = a+c+ b+c.

a) Gib zu diesem Monotoniegesetz drei Beispiele an.

b) Begriinde dieses Monotoniegesetz.

6. Wenn man bei zwei Ungleichungen a < b und ¢ < d die Zahlen links vom
Ungleichheitszeichen sowie die Zahlen rechts davon addiert und das Un-
gleichheitszeichen beibehilt, so entsteht wieder eine richtige Ungleichung.
Kurz:
aus a<bhb

und ¢ <d
a) Prife diese Behauptung an drei Zahlenbeispielen.
eb) Beweise die obige Behauptung, indem du bei @ < b auf beiden Seiten ¢
(*) und bei ¢ < d auf beiden Seiten b addierst und die erhaltenen Unglei-
chungen miteinander vergleichst. Mache dir die Zusammenhénge auch
an der Zahlengeraden klar.
ec) An der Ungleichung 3 + 97 < 1 + 100 erkennt man, daf3 der in b) be-
wiesene Satz nicht umkehrbar ist. Begriinde dies und gib ein weiteres
Gegenbeispiel an.

} folgt a+c<b+d.

2.6 Multiplikation und Division von rationalen Zahlen

2.6.1 Definition der Multiplikation in Q

In der Menge der rationalen Zahlen beherrschen wir bis jetzt erst das Addieren
und das Subtrahieren. Zwar wissen wir auch, wie Zahlen aus der Menge Q)
miteinander multipliziert werden, aber wir kennen noch keine Produkte mit
negativen Faktoren. Was soll z.B. 3:(—4) oder (—24)-% oder gar
(—3,4) - (—5,1) bedeuten?

Zunichst eine Bemerkung zur Schreibweise: Auch bei Produkten ist es sehr
wichtig, zwischen Vorzeichen und Rechenzeichen genau zu unterscheiden. Ein
Faktor mit Vorzeichen muB, wie die Beispiele zeigen, in Klammern gesetzt
werden.
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Produkte mit negativen Faktoren miissen wir also erst noch definieren. Natiir-
lich versuchen wir wieder, es so einzurichten, daB fiir die Multiplikation in @
die Rechengesetze erhalten bleiben, die uns fiir die Multiplikation in Q@ ge-
laufig sind (Permanenzprinzip, vgl. Seite 38). Zur Wiederholung stellen wir
diese Rechengesetze hier zusammen:

Rechengesetze der Multiplikation in Q

Fiir alle Zahlen a, b, ¢ aus Qg gilt:
(E) a- b ist wieder eine Zahl aus Q

(K) a‘b=b-a

(A) (a*b):c=a-(b:c)

eindeutige Existenz des
Produkts

Kommutativgesetz der
Multiplikation
Assoziativgesetz der Multipli-
kation

1 ist neutrales FElement der
Multiplikation

Produkte traten erstmals beim Rechnen mit natiirlichen Zahlen auf, Sie wur-
den dort als Kurzschreibweise fiir Summen mit gleichen Summanden einge-
fihrt; z.B. gilt: 3-4 =4 + 4 + 4. Deshalb liegt es nahe, ein Produkt wie
3 - (—4) ebenfalls als abgekiirzte Schreibweise fiir eine Summe aufzufassen.
namlich als 3 - (—4) = (—4) + (—4) + (— 4). Die rechts vom Gleichheitszei-

chen stehende Summe konnen wir berechnen! Wir erhalten so 3-(—4) =
= —12, wofiir man wegen 12 = 3 - 4 auch schreiben kann:

3-(-4)=-(3-4)

Das sieht nach einer sehr einfachen Regel aus! Man kann sie offenbar immer

dann anwenden, wenn der erste Faktor eine natiirliche Zahl und groBer als 1

DH(0,D+(—0,D+(—=0,7)+(—0,7) =

1) 5:(—0,7) =(
—3,5=—(5-0,7)

=65=—(2-3%)

G

Ein Produkt wie 3,4 - (— 5,1), bei dem der erste Faktor zwar wieder positiv,
jedoch nicht ganzzahlig ist, kann nicht mehr als Summe gedeutet werden.

Wohl aber ist es auch hier moglich, den Term — (3.4 - 5.1) zu berechnen. Der
Vergleich mit den obigen Beispielen legt nahe, zu vereinbaren, daB
34-(—5,1)=—(3.4-5,1) gelten soll. Dieses Verfahren 14Bt sich auf alle Pro-
dukte mit positivem ersten und negativem zweiten Faktor anwenden. Wir
erhalten so
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Definition 65.1: Fiir das Produkt aus einer positiven Zahl p und einer
negativen Zahl — g soll gelten:

p(—q)=—(p*q)

Beachte, daB3 in dieser Definition (und auch im folgenden) die Variablen p und
q positive Zahlen vertreten!

Vertauscht man im Beispiel 3.4 - (—5,1) die Rethenfolge der Faktoren, so
erhédlt man ein Produkt, bei dem der erste Faktor negativ, der zweite po-
sitiv ist. Natiirlich soll, da wir ja das Kommutativgesetz retten wollen, die-

ses Produkt denselben Wert wie 3.4 - (—5,1) erhalten! Es soll also gelten:
(=51):-34=34-(—5,1)=—(3.4-5.1) bzw., da man die positiven Fakto-

ren in der letzten Klammer vertauschen darf:
(=5,1)-34=—(51"-34)

Die Verallgemeinerung dieser Uberlegung fiihrt zu

Definition 65.2: Fiir das Produkt aus einer negativen Zahl — p und einer
positiven Zahl g soll gelten:

(=p)a=—(p:q)

Die beiden in den Definitionen 65.1 und 65.2 enthaltenen Regeln lassen sich so
zusammenfassen: Man erhalt das Produkt aus einer positiven und einer nega-
tiven Zahl, indem man das Minuszeichen des negativen Faktors vor das Pro-
dukt der beiden Betrige setzt.

Wenn wir nun weiter iiberlegen, wie man ein Produkt aus zwel negativen
Faktoren, z. B. (— 3,4) - (— 5.1), definieren soll, so liegt es nahe, die Regeln in
den Definitionen 65.1 und 65.2 versuchsweise auch jetzt zu beniitzen, also das
wHerausziehen des Minuszeichens« auch in diesem Fall anzuwenden (Per-
manenzprinzip!). Damit erhilt man:

(=34)-( 1= (34151 = (Anwendung von Def. 65.1 auch bei
negativem 1. Faktor!)
=—(—(3.4-51) = (nach Def. 65.2)
= JideiSil (nach Satz 42.1)

Die Verallgemeinerung dieses Vorgehens wiirde also folgende Regel ergeben:
(=p)-(—g)=p-qgfirp>0und g>0.

Demnach miiite das Produkt zweier negativer Zahlen positiv sein! Das mag
auf den ersten Blick iiberraschen. Sinnvoll erscheint aber jedenfalls, dali, wie
in den vorausgehenden Fiillen, der Betrag des Produktes wieder den Wert p - ¢
haben soll. Dann kann das Produkt selbst aber nur p - g oder — (p - ¢) sein.
Der Produktwert — (p - ¢) ergab sich aber bereits in den Fillen p - (—¢) und
(—p) - q, von denen sich (—p) - (—q) doch sicherlich unterscheiden sollte.
Das spricht wieder fiir das Ergebnis p - ¢, also fiir
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Definition 66.1: Fiir das Produkt zweier negativer Zahlen —p und — ¢
soll gelten:

(=p)'(—q)=p-q

Der jetzt noch verbleibende Fall, daB3 eine negative Zahl mit 0 multipliziert
werden soll, bereitet uns wenig Miihe. Natirlich soll ein solches Produkt wie-
der den Wert 0 haben:

Definition 66.2: Fiir das Produkt einer negativen Zahl — p mit der Zahl
0 soll gelten:

(=p) 0=0-(—p)=0

Nunmehr sind wir in der Lage, das Produkt zweier beliebiger rationaler Zah-
len zu berechnen. Die dafiir geltenden Regeln kann man so zusammenfassen:

Satz 66.1: Zwei rationale Zahlen mit gleichen Vorzeichen werden multi-
pliziert, indem man ihre Betrdge multipliziert.
Zwei rationale Zahlen mit verschiedenen Vorzeichen werden
multipliziert, indem man das Produkt ihrer Betrige bildet
und ithm das negative Vorzeichen gibt.
Ein Produkt mit dem Faktor 0 hat den Wert 0.

Beispiele:
1) 4- (- S} { B)i=7720
D=3 =il o F) 1?] — 54
J)(—1)- (—1)" Iis

=1
=R h)_b ?5:6{}
5)2,5-(—=3,7)=—2,5:3,7) =—925
O(-DB=-—0E1H=-G 3P=-3
7) (—100000) - 0 = 0

Wichtige Sonderfille von Produkten sind solche aus zwei gleichen Faktoren,
2

also die Quadrate™® rationaler Zahlen: a- a = a*.
Beispiele:

1)42=16; 2)(—4)*=(—4)-(—4)=4-4=16

0= 0; 4 (=12)2=(—12):(-1,2)=12-12 =144

* Das Produkt einer Zahl mit sich selbst nannten die Griechen — so belegt bei EUKLID, 8. Buch der Elemente -
tetpayovos [apidpoc] (tetrigonos [arithmos]) = viereckig[e Zahi], da sie den Inhalt des terpdymvoy
[oyfina] (tetrdgonon [s-chemal]) = viereckig[e Figur] angab, falls diese Figur gleichseitig rechtwinklig ist.
Uber das lateinische gquadratus = viereckig enisiand das deutsche Quadrat.
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Auf Grund dieser Beispiele vermuten wir die Giiltigkeit von

Satz 67.1: Das Quadrat einer von 0 verschiedenen rationalen Zahl ist
positiv. Das Quadrat von 0 ist 0. Kurz:

a0 = a*>0 und 0*=0

Der Beweis ergibt sich unmittelbar aus Satz 66.1 (vgl. Aufgabe 69/2).

2.6.2 Eigenschaften der Multiplikation in Q@

Es war unser Ziel, die Multiplikation in @ so zu definieren, dal} die auf Seite 64
zusammengestellten Rechengesetze giiltig bleiben. Ob uns das gelungen ist,
mul} nun gepriift werden.

1) Existenz des Produkts: Mit Hilfe der Definitionen in 2.6.1 bzw. nach Satz
66.1 kann man zwei rationale Zahlen stets miteinander multiplizieren. Das
Ergebnis ist wieder eine Zahl aus Q. Damit bleibt (E) in Q giiltig.

2) Kommutativgesetz der Multiplikation: Hier mulB3 untersucht werden, ob die
Gleichung a - b = b - a fur beliebige rationale Zahlen gilt. Bei den hierzu
notwendigen Fallunterscheidungen verwenden wir wieder p und ¢ als Zei-
chen fur positive Zahlen.

I.Fall: a>0und 6> 0
Dann gilt, wie schon bekannt, ¢-b=5b-a ((K)in Q).

2. Fall: a>0und b <0

Wir setzen a = p, b = — ¢; dann gilt
a-b=p-(—qp)=—(p:q)= (Definition 65.1)
=—(g-p)=  (K)in Q)
=(—q):p= (Definition 65.2)
=ba,
3. Fall: a<O0und b>0
Wir setzen @ = —p und b = g; dann gilt
a-b=i=nl g — D) — (Definition 65.2)
— (K) in Qg)
=g-(=p)= (Definition 65.1)
=ba.
4. Fall: a<QOund b<0
Wir setzen @ = —p und b = — g; dann gilt
ab=(—p)(—q)=p-q= (Definition 66.1)
= ((K) in Qp)
= (=alil=ip)= (Definition 66.1)

—
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5. Fall: a=0o0derb=0
Dann gilt a-b=0=5h-a (Satz 66.1)

Damit ist nachgewiesen, dal} in jedem Fall @ - b = b - a gilt. Also bleibt (K)
fiir die Multiplikation in @ gultig.

3) Assoziativgesetz der Multiplikation: Gilt (¢ b)-c=a- (b - ¢) fir
beliebige rationale Zahlen a, b, ¢?
1) Wenn mindestens einer der drei Faktoren 0 ist, gilt nach Satz 66.1:
@b -e=0=a- (b e).
2) Wenn keiner der drei Faktoren 0 ist, bestehen folgende acht Moglichkei-

ten:
l : : - I
1. Fall| 2. Fall | 3. Fall | 4. Fall | 5. Fall | 6. Fall | 7. Fall | 8. Fall
a pos. | pos. | pos. | pos. | neg. | neg. | neg. | neg.
b | pos. | pos. | neg. | neg. | pos. | pos. | neg. | neg.
|
¢ || pos. | neg. | pos. | neg. | pos. | neg. | pos. | neg. ‘

Im 1. Fall gehoren alle drei Faktoren zur Menge @ *, in welcher (A) gilt.
Als Muster fir die Uberpriifung der tibrigen Fille soll hier nur der
6. Fall untersucht werden:
6. Fall: a<0,6>0unde<0

Wir setzen a = —p. b=gund.c = —r, Mitip, g, r ausd*

Dann gilt:

@:b)e=(=p)-q@):(=r)=(—(pg))-(—r)= (Definition 65.2)

= (pg)r. (Definition 66.1)
a-(b-c)=(=p)-(q-(=r)=(—p)-(—(gr)) = (Definition 65.1)
= plqr). (Definition 66.1)

Wegen der Giiltigkeit von (A) in Q7 ist aber (pg) r = p(gr), also gilt
(a-b)-c= a-(b-c).

Nach derselben Methode kann man auch die Gibrigen Fille untersuchen
(vgl. Aufgabe 70/4). Dabei zeigt sich, dal3 (A) fiir die Multiplikation in @
giiltig bleibt.

4) Neutrales Element der Multiplikation: Fiir a < 0, also a = — p, gilt:
a1=(—p):1=—(p-1) =  (Definition 65.2)
=l = (NYin@Q™)
= d.

Daraus folgt, dafl 1 auch fiir die negativen und damit fiir alle rationalen
Zahlen neutrales Element der Multiplikation ist.




2.6 Multiplikation und Division von rationalen Zahlen 69

Damit st gezeigt:

=

| Satz 69.1: Fiir die Multiplikation in der Menge @ der rationalen Zahlen
- gelten wieder die auf Seite 64 zusammengestellten Rechenge-

| setze (E), (K), (A), (N).

Ebenso wie bei dreigliedrigen Summen kann man nun auch bei Produkten mit
drei Faktoren wegen (A) auf Klammern verzichten:
(a-b)-c=a: (b -¢c)=a-b'c.

Mit Hilfe von (K) erkennt man, dall auch die Reihenfolge der Faktoren belie-
big verindert werden darf:
Beispiel 1:

Behauptung: abe = cha

- A K . K A

Beweis: abc = (ab)c = c(ab) = c(ba) = cba.
Ganz entsprechend 146t sich auch bet Produkten mit mehr als drei Faktoren
zeigen, daB man auf Klammern verzichten kann und dafl auch die Reihenfolge
der Faktoren beliebig geandert werden darf.
Beispiel 2:

12: 5 - 23915

:l'_;.

12,5 -((—23.91) - 8) =
((=23,91)8):12.5=
(—23,91)-(8-12.5) =
=(—=23.91) - 100= —2391..

I= [l

Beispiel 2 zeigt, wie man durch die Wahl einer gunstigen Reihenfolge der
Faktoren und der Rechenschritte die Berechnung eines Produktes oft verein-
fachen kann. Achte also stets auf solche Rechenvorteile.

Aufgaben
l.a) (—35)-24 b) 16 - (— 30) ¢) (—125):(—81)
d) (—2,5-028 e) (—17,25)-(—3,04) f) 0,064 -(—6,25)
g 3 - (=290 (A i) (—8.45)- 155
2. Beweise Satz 67.1. Unterscheide dabei die Fille a > 0, a = 0 und a < 0.
3.:a) 142 b) (—0.,11)? c) (—32)2 d) (-8
e) 0375—32 N @-97 pE=3 W~
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Uberpriife das Assoziativgesetz (ab)c = a(bc) nach dem Muster des auf
Seite 68 durchgefiihrten 6. Falles

a) fir 2= 0.0 >0,c:< 0" (2. Fall),

b) fir ¢a>0,b<0,c<0 (4. Fall),

¢) fir a<0,56<0,c<0 (8. Fall).

5. Berechne die folgenden Produkte. Achte dabei auf Rechenvorteile.

10.

1L

12.

a) 4-(—37)-3 b) (—107) -8 - (—25)
¢) (—0,2)-(—6,28)-(—50) d) (—300)-13-(—0,132)
e) (—51) 0-(—3% ) (—29)% (%) 3
. Begriinde den Satz: Ein Produkt, in dem kein Faktor 0 ist, hat genau dann

einen positiven Wert, wenn die Anzahl der negativen Faktoren gerade ist.

. Setze zwischen die folgenden Zahlenterme eines der Zeichen <, =, > so,

daf eine wahre Aussage entsteht. In welchen Beispielen ist dies ohne Rech-
nung moglich?

a) 7-(—0,02) und 1 b) (—12)-(—13) und 150

¢) —6und (—1)(—=2)-(—3) d) (- (3D (—%Dund 0
e) (—0,64)2 und — 0,64 ) (—13)-4,5und 54 (—0,6)
A (=152 (=D =H W idi(r=2) 3u(=4)

©) (2,5 (—1,6)+3,25-(—0,5) d) 1515 (— 1) - 14

. Achte bei der Berechnung der folgenden Summen und Differenzen auf die

richtige Reihenfolge der Rechenschritte.

a) (ShE= 2103 (1) 2 (=3 (—4)

¢) 200-(=0.25Y— 25-(=0,250)" @) (—4,56)-(—10.5)=£63-(—7.6)
& (8D H-(-098) (- (DI (P+2:(—D-%

a) (263 — 298)(298 — 263) b) 41,54+ (—67,75)) - ((—2,1)—1,9)
0 (12-29-35-(-1H-H @ 1-PC-HB-D

Berechne folgende Absolutbetrige:

a) |5(—2)| b) [(—8)-9] ¢) [(=17)(—3)| d) |24 - 25|
el |U.?5(—4}(—§)] {)|(_g~?5}.4,_§_|

g) [(—0,75)(—4)(—3)| h) 9,81 - (— D) -0 (= 3D
Beweise den Satz: Der Betrag des Produktes zweier rationaler Zahlen a

und b ist gleich dem Produkt der Betrdge dieser Zahlen, d. h.
la*b| = |a|-|b].

. Berechne den Wert der folgenden Terme fiir die angegebenen Einsetzun-

gen:

a) T(x)=x>+4x+1 fiir x=—5(—23:0:2)

b) T(a;b) =(a+2b)(a—2b) fir a=3;b=—-1,5 und
far ai= R 3 h——38
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STy s) =xpz—ll—9)(y— 2 s =101 =g 7= 18
und fir, x =038y = —1.25. 2 — =965

d) Fla:b:e)=|(a=b)=¢c|=(|la]l=|b==q|) Tir a==22; b
=33 und: v g = =143 b= =58 p=—=GT

—18:

Il

2.6.3 Division in )

Es kommt hdufig vor, daBl von einem Produkt der Wert bekannt ist und einer
der Faktoren bestimmt werden mul}. Dessen Berechnung fithrt auf eine Divi-
sion. Man bezeichnet wegen dieses Zusammenhangs die Division als Umkeh-
rung der Multiplikation.

Beispiel:
Die Klasse 7a mietet fiir einen Ausflug einen Bus. Sie mul} dafiir
350 DM bezahlen. Welchen Fahrpreis hat jeder der 28 Schiiler zu ent-
richten?
Wenn wir den Fahrpreis pro Schiiler mit x DM bezeichnen, muB3 gelten:

28 x=350; also x= 35028 =125

Jeder Schiiler muB also 12,50 DM bezahlen.

Man erkennt an diesem mit Zahlen aus Q@ * gebildeten Beispiel, dali der Quo-
tient 350 : 28 die Losung der Gleichung 28 - x = 350 darstellt. Genau diese
Bedeutung wollen wir nun auch fiir Quotienten aus beliebigen rationalen Zah-
len vereinbaren:

| Definition 71.1: Unter dem Quotienten b : a der rationalen Zahlen b und
a + 0 versteht man die Losung der Gleichunga - x = b.

Statt b : g schreibt man auch
a

b:a ist also diejenige Zahl, mit der man a multiplizieren mul}, um & zu
erhalten.
Nach dieser Definition hat ein Quotient 5 : @ nur dann einen Sinn, wenn die
entsprechende Gleichung a - x = b fiir @ = 0 genau eine Losung hat. Wir wis-
sen schon, daB dies fiir ¢ @ " und b € Qg zutrifft. Gilt das aber auch, wenn
a oder b negativ ist? Das ldBt sich mit Hilfe einer Fallunterscheidung uber-
priifen:
I. Fall: a>0und b<0

Wir setzen ¢ = pund b = —q (p > 0, ¢ > 0); dann gilt:

a-x=b < px=—gq.
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Falls diese Gleichung eine Losung x besitzt, muB} sie negativ sein. Fiir sie

gilt also: x = — | x|. Damit erhilt man:
prx=—g s p-(=Ix|)=—¢q < —(p-|x])=—9q = p-|x| =4
Dies ist nun eine Gleichung mit positiven Zahlen. Sie hat die Losung
. q b q
| x| = =. Damit gilt: x = —=.
P = p
, : S . - q
Ergebnis: Die Gleichung p - x = — ¢ hat die Losung x = 5

Auf ganz entsprechende Weise kann man auch den 2. und 3. Fall untersuchen.
Man findet dabei folgende Ergebnisse:

2. Fall: a<Qund b =0

Die Gleichung (—p) - x = g hat die Losung x = — ;’: .
3. Fall: a<0und b <0

S R q

Die Gleichung (—p) - x = —¢ hat die Losung x = —.

4. Fall: a<0und b =0
Nach Satz 66.1 ist x = 0 eine Losung der Gleichung @ - x = 0. Dies mul3
auch die einzige Losung sein; denn fiir x > 0 wdre a - x < 0, fiir x < 0 wire
a-x = 0.

Damit ist nachgewiesen:

Satz 72.1: Die Gleichung a - x = b hat fir a # 0 in der Menge Q der
rationalen Zahlen stets genau eine Losung.

Fiir den Fall @ = 0, d.h. fir die Gleichung 0 - x = b, gelten in Q dieselben
Feststellungen wie in Qg :

Wenn b =+ 0, hat die Gleichung 0 - x = b keine Lésung,

wenn b = 0, ist jede Zahl eine Losung.

Daher sind Quotienten mit dem Nenner 0 auch in @ sinnlos. Damit gilt

Satz 72.2: In der Menge O der rationalen Zahlen kann man jede Zahl
| durch jede von 0 verschiedene Zahl dividieren.
Aber: Durch 0 kann man nicht dividieren.

Aus den in den ersten drei Fillen berechneten Losungen der Gleichung
@ - x = bund der Quotientendefinition 71.1 kénnen wir weitere wichtige Fol-
gerungen ableiten:

Die Gleichung p - x = —¢ (1. Fall) hat die Lésung x = — L Fir diese Lo-
8 P
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: : _— e . =g :
sung haben wir aber in Definition 71.1 die Schreibweise > vereinbart. Daher

c T (

gilt: i 'r‘.

i ) P

Ganz entsprechend erhalten wir im 2. und 3. Fall:
q ¢ -

! . 4 - : z . as .
5 u und . = Ii . Damit haben wir Vorzeichenregeln fiir Quotienten
gewonnen! Diese entsprechen ganz den Regeln fiir Produkte, die wir in den
Definitionen 65.1, 65.2 und 66.1 aufgestellt haben.

Satz 73.1: Fiir Quotienten rationaler Zahlen gelten mit p > O und g > 0

folgende Vorzeichenregeln:

=dr

e SR )

bzw. (—q):p=—(q:p), 4q:(—p)=-(q:p),
(=9):(—-p)=4q:p

=, . . A q
P PP

-

=
P-e

Beispiele:
]) “Hl_-l el .'l:— = 3: _1212] — _!_2,_-21 — _121 —= S‘S‘
2) 6,25:(—1,25) =—(6,25:1,25) =—5

) (- (- =t =1 3= $=23

Einen wichtigen Sonderfall stellt die Gleichung a - x =1 dar. Fiir a + 0 hat

: 1 -
sie nach Satz 72.1 genau eine Losung, nimlich x = —, also den Kehrwert von
a
o , 1 2 I ;
a. Es gilt somit a- — = 1, d.h., das Produkt der Zahlen a und — ist gleich
i a a

dem neutralen Element der Multiplikation. Daher bezeichnet man diese Zah-
len als zueinander invers beziiglich der Multiplikation. Es gilt

Satz 73.2: Zu jeder von 0 verschiedenen rationalen Zahl a gibt es ge-
nau eine Inverse beziiglich der Multiplikation, ndmlich ihren
1

Kehrwert
ol

Dieser Satz stellt ein weiteres Rechengesetz der Multiplikation dar, das man
als »Existenz des Inversen« bezeichnet und mit (I) abkiirzt. Damit kennen wir
fiir die Multiplikation in @ die fiinf Rechengesetze (E), (K), (A), (N), (I).

Fiir ¢ + 0 hat also der Term « - — stets den Wert 1. Multipliziert man ihn mit
{

# l o I
einem Faktor b, so erhilt man daher (L’." ) -h=1-5, also (u- u) b =b.
E‘r “
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Eine einfache Umformung der linken Seite liefert die Gleichung
i
1
a-|(b-—)=b.
a
Diese 1af3t sich nun so deuten:

] - _, :
b - ist Losung der Gleichung a-x = 5.
a

Da aber diese Gleichung nur eine einzige Losung hat und wir fiir diese in

o : b

Definition 71.1 die Schreibweise — eingefiihrt haben, miissen — und b -

a a
lediglich verschiedene Schreibweisen fiir dieselbe Zahl sein. Daher gilt

Satz 74.1: Die Division durch eine Zahl a &= 0 kann man durch die Mul-

1

tiplikation mit threm Kehrwert — ersetzen und umgekehrt,

()

b 1
dh,—=b-= bzw. b:a=b-(1:a) fir a+0.

. a a
BciSpidL
312@31_1%:m:—& 4) (—6,6) & =(—66):2,2=
Aufgaben
Berechne die folgenden Quotienten‘
a) 105:(—15) b) (—=7):(—1) ¢) (—65):125
d) (—3,24):(—1,8) e) 1024 132 ) (—10,24):0,064
g) 2,7:(—81) h) (—2,5):(—0.,35) i) (—18):21,6
Gib den Wert der folgenden Briiche in mdglichst einfacher Form an:
5 —16 —35 84
b d
). ) 12 s ) 144
(=1)% (=1)3 —1 (1)
e) f : : A e
=il ) (=l L}[—U‘" }i—]}°'
- 8 {_ 2 3 = )' 7 24
i) - 5 k) - ) 1) ( ) m) -

(—2)? 5 (—3)° (—1)
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3. Berechne:

a) 3—5%:(20-9) b) G+ 0,625): (3 — 0,625)
¢) (24—5):45 d) (—109): G5 19)

e) (11-25): (31— 75) ) 8,5:(—3):(—3.4)-2,5

4. Berechne den Wert folgender Bruchterme:

16-1,2 —20 3625 (—16)
a) i e

16—12 20 3,6+ (2,5— 1,6)
c)43—pJ2@—3n m(ﬂ@;ﬁﬁqgﬁ—@y

2:(=73) :J(_’:UH

5. Gib, wenn moglich, zu den folgenden Zahlen die Inversen beziiglich der
Addition und beziiglich der Multiplikation an.
a1 b) —1 ¢) 0 d) —0.125
e) % f) —45 g) 0,75 h) —2+%

6. Begriinde den Satz: Es gibt keine rationale Zahl, fiir welche die Inverse
beziiglich der Addition gleich der Inversen beziiglich der Multiplikation
i1st.

7. Schreibe nach Definition 71.1 die Losung der Gleichung als Quotienten
und berechne sie.

a) (—1)-x=17 b) 3x=—12 ¢) x-(—38)=-17,6

d 2-x=—3% &) 2—Hx=23 ) x(=2)=0,125-1,25
8. Welche Losungsmengen haben die folgenden Gleichungen?

a) x-(32-08) =1 b) (0,625:5—%) - x=0

0 x@G-P=%-1 d) G5—0,15) x = (FH%—0,15)-7

2.6.4 Allgemeine Vorzeichenregeln fiir Produkte und Quotienten

Die Multiplikation einer Zahl @ € @ mit 1, dem neutralen Element der Multi-
plikation, bewirkt keine Anderung: @ - 1 = a. Was aber erhalt man, wenn man
a mit der Gegenzahl von 1, also mit —1, multipliziert?

Beispiele:
1) 7-(—1)=—(11)=—T; 2) (—1)-0i=—(10)
3) (—=1)-3,14=—(1-314) =314 4 (=D (-D)=31=

~afn |

Wie man leicht beweisen kann (vgl. Aufgabe 78/2) gilt

Satz 75.1: Multipliziert man eine Zahl mit —1, so erhalt man ihre Ge-
genzahl.
a-(=1)=(—-1)ra=—a
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Das Interessante an diesem Satz ist, daBl man das Bilden der Gegenzahl nun
auch als Multiplikation mit —1 beschreiben kann. Das ist oft niitzlich, z. B.
bei den folgenden Uberlegungen:

In der Algebra treten hiaufig Produkte der Form a - (—b), (—a) - (— b) usw.
auf, bei denen die Variablen a, b beliebige rationale Zahlen vertreten. Zum
Vereinfachen solcher Produkte darf man daher nicht ohne weiteres die in den
Definitionen 65.1, 65.2 und 66.1 aufgestellten Regeln anwenden, denn die dort
beniitzten Variablen p, g bedeuten positive Zahlen. Immerhin wiére es denkbar
und wunschenswert (Permanenzprinzip!), dall diese Regeln auch fiir beliebige
rationale Zahlen giiltig bleiben. Das soll nun untersucht werden:

Bcispiel 1

—b) kann man folgendermaf3en umformen:
b)

f!'{ =a-((—1)-b) = (Satz 75.1)

5 (b (—1) =

2 (g b)(—1) =

=—(a-b). (Satz 75.1)
Natirlich ist wegen (K)) damit auch die Regel (—a) - b = — (a - b) bewie-
sen.

Beispiel 2:
(—a) - (—b) kann man so umformen:

(—a) (=b)=(—a)-((=1):b) = (Satz 75.1)
A ((=a) (=1)):-b=
=(—(—aq))-b= (Satz 75.1)
=a-b. (Satz 42.1)

Nimmt man der Vollstandigkeit halber noch die Vereinbarung a-b = ab
hinzu und schreibt, um die \amzun,hn,n zu betonen, fir a, b und ab noch +a.

+b, +ab, so erhilt man folgende allgemeingiiltigen Vorzeichenregeln fiir
Produkte:

Satz 76.1: Fur beliebige rationale Zahlen a, b gilt:
(+a): (+b)=+ab (—a)' (=b)=+ab
(+a): (—=b)= —ab (—a): (+b)= —ab

Diese Vorzeichenregeln prigt man sich am besten in folgender Form ein:

Regel 76.1: (+) (+)= + f¥).{_): +
(El(=j =" (=)' (+)=—

Man kann nun also auch Produkte mit Variablen, die beliebige Zahlen vertre-
ten, in gewohnter Weise vereinfachen. Dazu einige
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Beispiele:
1) 5(—a) = —5a; 2) (—2)(—3b) = 6b;
3) (—x)y(—2) = xyz; 4) (—=2)(—0,5)(—32) = —3z

Auch von den in Satz 73.1 enthaltenen Vorzeichenregeln fiir Quotienten, die
dort nur fiir positive Zahlen p, ¢ bewiesen wurden, kann man zeigen, daB sie
fiir beliebige rationale Zahlen gelten:

Beispiel:
—b 1 A
=(—b): — = (Satz 74.1)
ol a
s I 3 i
=({(=1)b) == (Satz 75.1)
a
. k]
- (—1) (h . ) =
a
b y
=(—1):- == (Satz 74.1)
e
b y o
= - . (Satz 75.1)
o
: ¥ : ) b =hanb ..
Auf dieselbe Weise kann man zeigen, dall auch = ——und — = —fur
— i a =T [4]
5 5 ; : o ot b b =
beliebige Zahlen gilt. Zusammen mit = + — erhadlt man so
T d o
Satz 77.1: Fiir rationale Zahlen a # 0 und b gilt:
+b b -—b b +b b -—=b b
——t -y —=t—, —=——, —=——
+a a —da a —da a +a a
Die entsprechende Merkregel lautet:
— - - -
Regel 77.1: — = — =+ i — ==
= A - -

Beachte. daf man in diesen Regeln den Bruchstrich auch durch den Doppel-
punkt als Divisionszeichen ersetzen kann.

Beispiele:
a a (—x)y —(xy) xy
D) ot 2)(—2: =Dy Wiz’
3) 15:(—w)=—([15:uw); A (2vw):(—)= 2ow) : (xp).
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Aufgaben
Vereinfache durch Anwendung der Vorzeichenregeln fiir Produkte:
a) (—2)-x b) (—5)(—y) e)(—2)(+2,3)
d) a(=b)(+c) e) (—a)(=b)c ) (+a)(+b)(—0
2. Beweise die Gleichung a - (—1) = —a (Satz 75.1) mit Hilfe der Fallunter-

scheidung a > 0, @ = 0, @ < 0. Gib jeweils an, welche Definitionen oder
Sétze beniitzt werden.
3. a) Stelle entsprechend der Regel 76.1 die Vorzeichenregeln fiir Produkte
mit drei Faktoren symbolisch dar.
b) Erganze zu richtigen Vorzeichenregeln:
(Z)=CE) =) = und () =) - (=)l (=) =7

Vereinfache durch Anwenden der Vorzeichenregeln fiir Quotienten:

2(—m) (=1 (+m) (=21)(—s)t
a) b) - ¢
=3 (+1)(—n) qg(+r)(—3)
5. Verwandlein den folgenden Produkten den Zahlenfaktor in einen Divisor.
a) m-= b) n-0,2 ¢) p-(—0,25)
d (=5)-q er-(13 f) (—13)s
6. Schreibe die folgenden Quotienten als Produkte:
a) x:0,5 b) y:i c) z:(—%)
d) (—u):(—0,125) ¢) v:3) f) w:(—0,001)

2.7 Die Rechengesetze fiir die rationalen Zahlen

2.7.1 Das Distributivgesetz

[m bisherigen Rechenunterricht hast du schon das Verteilungs- oder Distribu-
tivgesetz* kennengelernt. Es besagt, daB man beim Multiplizieren einer Sum-
me auf zwei verschiedenen Wegen zum richtigen Ergebnis kommen kann.
Dazu ein

Beispiel:
Die Klasse 7b besteht aus 16 Knaben und 10 Midchen. Fiir den Besuch
einer Ausstellung sammelt der Klassensprecher pro Schiiler 2,50 DM
ein. Wieviel Geld muB3 er dann haben?
I. Weg: Man rechnet »2,50 DM - Gesamtzahl der Schiiler«, also
2,50 DM - (16 + 10) = 2,50 DM - 26 = 65,00 DM.
* distribuere (lat.) = verteilen. — Der Ausdruck distributiv wurde ebenso wie das Wort kommutativ 1814 von

dem franzosischen Professor der Mathematik Frangois Joseph Servors (1767-1847) gepragt. Siehe auch
die FuBnote* auf Seite 50.
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2. Weg.: Man rechnet »2,50 DM - Zahl der Knaben« + »2,50 DM - Zahl
der Midcheny, also
2,50 DM - 16 + 2,50 DM - 10 = 40,00 DM + 25,00 DM =
65,00 DM.

Man erkennt: 2,50 DM - (16 + 10) = 2,50 DM - 16 + 2,50 DM - 10.
Allgemein gilt fiir @, b, c € @ § die Beziehung a(b + ¢) = ab + ac. Dies ist das
Distributivgesetz, fiir das wir die Abkiirzung (D) verwenden.

Nachdem wir nun wissen, wie in der groBeren Zahlenmenge Q@ die Addition
und die Multiplikation auszufithren sind, stellt sich die Frage, ob das Rechen-
gesetz (D) auch in @ giiltig bleibt. Wir priifen dies zunéchst an einigen Beispie-

len.
Beispiel 1: a=—2,b=5,¢c=—38
dann gilt: a(b+ ¢) —( 2) (5
und: ab+ac=(—2)"

Beispiel 2: a=4,1;b=—48; ¢ =35

dann gilt: a(b+¢)=4,1-((—4.8)+3 5] = 1’) = —35,33

[ |I
|
=
=
oo
+
=%
.IL
\,r-.l
L&,]
Il

|
Ln
L
Lad

und: ab+ac=4,1-(—438)+4,1-
Beispiel 3: a=—%b=—3,¢c=—15
dann gilt: a(b+)=(=2) (=D + (=) =(=2) (—G+:7) =
=2G+1D = L i = 14:-511
und: ab+ac=(—%-(—3+ ._'%}‘(—121 =2.242. 2=
Sn ] iy g e
e T A PR I54 — 154°*

Diese Beispiele lassen also vermuten, dafl (D) fiir alle rationalen Zahlen gilt.
Der genaue Nachweis dafiir erfordert eine ziemlich umfangreiche Fallunter-
scheidung und ist schwierig. Fiir Interessenten soll hier als Beispiel einer der
einfacheren Fille untersucht werden:
Fall: a>0,b<0,¢<0

Wir setzena =p, b= —q,c=—rmitp, g, re Q"

Dann gilt: a(b+¢) = p((—q) +(—=r) =p(—(@g + r)) =

—(plg+r)) =—(pg+pr).
Hier wurde beim letzten Schritt (D) in @ © angewandt.
Weiter gilt: ab + ac = p(—q) + p(—r) = (—pg) + (—pr) =
= —(pg+ pr).
Damit ist fiir diesen Fall (D) bewiesen. Man kann so tatsdchlich zeigen,
daB das Distributivgesetz in jedem Fall gilt. Dies halten wir fest in

Satz 79.1: Fiir beliebige rationale Zahlen a, b, ¢ gilt das Distributiv-
gesetz: (D): a(b+ c) = ab + ac
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Beispiele:
) (—=2)(@a+5)=(—2)a+(—2):-5=—2a—10.
2) (x+2p)-19=19(x+2y) = E()\; - 38y,
3) 6.5(a—4b)=06.5(a+(—4b)) = 6.5a+ 6,5(—4b) = 6.5a — 26b.
4) (—32)—T7)-(—10)=((—32z)+(=T7)) - (—10)
=(—32)( —-](}} --1 (=7 (—10) = 30z+ 70.

Aufgaben

I. Berechne zur chlplutu]w des Distributivgesetzes die Terme
I, =a(b+c)und T, = ab + ac fiir folgende Zahlenwerte:

a) a=—8;b=—-2;¢=35 b)) a=1,1; b=-0,7; '——160
¢) a=—36;b=+;c=—13 d) a=-25b=-9,11 -

bajta
Lnjt

e 2. Begriinde bei dem auf Seite 79 stehenden Beweis des Distributivgesetzes
fiir den Fall a > 0, b <0, ¢ < 0 die einzelnen Termumformungen, z. B.

durch Angabe der dabei verwendeten Sétze oder Regeln.

tributivgesetz auch fir den Fall « < 0, b < 0 und ¢ < 0.

4. Verwandle die angegebenen Pmdul\u in Summen oder Differenzen:
a) (16x+3y)-9 b) (2.8xy—5)-(—=12,5) ¢) (—=0,5) (1,60 —3w)
d) 12(—4a+3b) e (—n)-(2n+ ?) f) (—3x—3p)-5

5. Berechne und vergleiche 7} = (a+b):cund T, = a: c+ b : ¢ fiir folgen-
de Zahlenwerte:
a) a=22:b=10c=8 b) a=—54;b=78;¢=—6
¢) a=—25b=—3hc=% d) a=—-Lb=—16c=-04

Beweise nach dem Muster des auf Seite ?9 durchgefiihrten Falles das Dis-

6. Begrinde, dal auch fiir das Dividieren einer Summe ein Distributivgesetz

gilt, nimlich (¢ +b):c=a:c+ b: e, fiir ¢ = 0.
Hinweis: Beachte Satz 74.1.

7. Verwandle die folgenden Quotienten in Summen oder Differenzen:
a) 8x+6y):4 b) (0,64z%—1):0,4
¢) Gu—5v):(—2) d) (—51p—8,5g9):(—17)

2.7.2 Die Monotoniegesetze der Multiplikation

Wir wissen schon nach Satz 62.1. dabB eine U 11L1 ichu
man auf beiden Seiten dieselbe Zahl addiert: a < b = a+c¢ < b+ c. Gilt

ng erhalten bleibt, wenn

eine entsprechende Feststellung auch, wenn man beide Seiten einer Unglei-

chung mit derselben Zahl multipliziert?
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Beispiele:
1) Multiplikation mit 7:
Aus 2 < 5 wird 14 < 35, weil 14 links von 35 liegt.

Aus —5 < 1,5 wird —35 < 10,5.

Aus —3.1 < —1,2 wird —21,7 < —8,4.

2) Multiplikation mit — 3:
Aus 2 < 5 wird —6 > —15, weil —6 rechts von —15 liegt.
Aus —5<1,5wird 15> —4.,5.
Aus =31 <—1.2wird 9,3 > 3,6

Die Beispiele unter 1) lassen vermuten, daf} gilt:

Satz 81.1: Monotoniegesetz der Multiplikation
Multipliziert man eine Ungleichung mit einer positiven Zahl,
so bleibt das Ungleichheitszeichen erhalten; also
a<b

i = qc¢ < be.
c>0

Bemerkung: Da statt a < b auch b > @ und statt ac < be auch be > ac ge-
schrieben werden kann, gilt Satz 81.1 natiirlich dann auch fiir Ungleichungen
mit dem GroBerzeichen.

Beweis: a < b bedeutet nach Satz 61.2, daB} es eine Zahl p > 0 gibt, fiir welche
a+p=b gilt.
Dann ist auch (a + p)e = be bzw. ac + pe = be.
Wegen ¢ > 0 und p > 0 gilt auch pc > 0. Man muB also zu ac die
positive Zahl pc addieren, um be zu erhalten. Nach Satz 61.2 bedeutet
dies aber ac < bc, was zu zeigen war.

Die Beispiele 2) lassen erkennen, daB fiir negative Faktoren das Monotoniege-
setz nicht gilt. Offenbar kehrt sich in diesem Fall das Ungleichheitszeichen um,
d.h., aus dem Kleinerzeichen wird ein GroBerzeichen bzw. aus dem Groler-
ein Kleinerzeichen. Es gilt der folgende

Satz 81.2: Gesetz von der Umkehrung der Monotonie
Multipliziert man eine Ungleichung mit einer negativen Zahl,
so kehrt sich das Ungleichheitszeichen um, d.h.,

! a<h

= ac > bc.
c<0

Beweis: @ < b bedeutet nach Satz 61.2, daB3 es eine Zahl p > 0 gibt, fiir welche
a+p=b gilt.
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Die Auflésung dieser Gleichung nach a liefert
a=b—p oder a=b+(—p).
Dann gilt auch ac=(b+(—p))c=

2 be + (—p)e.
Nach Voraussetzung sind (—p) und ¢ negative Zahlen; somit ist
(—p)c positiv. Da man also zu be eine positive Zahl addieren mulB,
um ac zu erhalten, gilt ac > be, was zu zeigen war.

Einen wichtigen Sonderfall von Satz 81.2 stellt das Multiplizieren einer Un-
gleichung mit —1 dar. Es gilt (Abbildung 82.1):

a<b = a-(—1)>b-(—1), also
a<b = —a> —>b.

ot

Abb.821 a<b < —a>—b
Natiirlich gelten die beiden Monotoniegesetze auch fiir das Dividieren einer
Ungleichung durch eine positive oder negative Zahl. Das ergibt sich daraus,

daB man die Division durch ¢ # 0 als Multiplikation mit — auffassen kann.
7

1 : : :
Da ¢ und — gleiches Vorzeichen haben, gilt also:
=

a<b a b a<hb a b
= — < — und = — > —
c>0 CEe c<l CR

Aufgaben

Multipliziere die Ungleichung mit der angegebenen Zahl.
a) —20 < —2]|-5 b) 1,7> —1.8] - (—0,5) ¢) 24>0|-(—3)

&
d) 2> -7 (=21) e) 2x > y|l- 0,7 f) 02u<—8v|-(—3)
Dividiere die Ungleichung durch die angegebene Zahl:
a) —2<1|:5 b) 68 > 0] : (—0.5)
¢} —SA=—45|(—=2 d) £ <Z:04

e) 0,001 > —0,1]:(—=0,001) fH —08>—%|:|-2|
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3. Multipliziere die zwischen a und b bestehende Ungleichung mit dem Fak-
tor c:
a)a=37;b=—"1;¢c=3 b) a=%b=2¢=—-10
¢) a=—19,b=—-21;¢=—-02 d) a=—-0985:b=0; c=200
Was ergibt sich, wenn man eine Ungleichung mit 0 multipliziert?

Ist x positiv, null oder negativ, wenn gilt

alia=<b =" axi=bx b) u>v = ux=uvx
no_m p (

) n>m = — < dp>=>0=—->07?
X% Rl w

2.7.3 Zusammenstellung der Rechengesetze

| Fiir rationale Zahlen a, b, ¢ gelten folgende Rechengesetze:

Gesetze der Addition Gesetze der Multiplikation | Bezeichnungen
(Ey) a+beQ (E) a*beQ Existenz der
Summe/des
Produkts
(Ky) a+b=b+a (K.)) a:b=b-a Kommutativ-
gesetz
(Ay) (@a+b)+c= (A) (ab):c=a-(b-c)| Assoziativ-
=a+(b+c) gesetz
Ny) a+0=a (N.)) a‘1=a Existenz des
neutralen
Elements
1 ;
I,) a+(—a)=0 (I,) a-—=1, falls a % 0 | Existenz des
4 inversen
Elements
(D) (@a+b):c=a‘c+b-c Distributiv-
gesetz
a<bh Monotonie-
a<bh=a+c<b+c = g c<bcC
c>0 gesetz
a<h 4 Umkehrung
e e Lt der Monotonie
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Die hier zusammengestellten Rechengesetze bilden die Grundlage fir das
Rechnen mit rationalen Zahlen und tberhaupt fur die ganze Algebra. Du
wirst sie im folgenden immer wieder bendtigen, besonders haufig die mit (E),
(K), (A), (N), (I) und (D) bezeichneten Gesetze. Prige sie dir daher gut ein
(Merkwort: EKANID, vgl. auch Aufgabe 84/5.).

Besonders auffillig an dieser Gesetzestafel ist natiirlich die weitgehende Ana-
logie zwischen den Rechengesetzen der Addition und der Multiplikation: die
»EK ANI-Gesetze« gibt es fiir beide Rechenarten. Zu ihrer Unterscheidung
wurde in der Tafel ein an den Kennbuchstaben angehangtes Plus- bzw. Mal-
zeichen verwendet. Im Distributivgesetz (D) — und nur in ithm (!) — kommen
beide Rechenarten zugleich vor. Es stellt eine Verbindung zwischen den beiden
durch die Gesetze der Addition und der Multiplikation beschriebenen Re-
chenbereichen dar.

Aufgaben

1. Welches der in @ geltenden Rechengesetze der Addition konnte in der
Zahlenmenge @ 5 noch nicht aufgestellt werden und warum nicht?

2. Weshalb benétigt man keine eigenen Rechengesetze fiir die Subtraktion
und die Division? (In welchen Rechengesetzen der Addition und Multipli-
kation sind diese Umkehroperationen enthalten?)

3. Istesrichtig, zusagen »Wenn man in den Rechengesetzen der Addition die
Pluszeichen durch Malzeichen ersetzt, erhdlt man die Rechengesetze der
Multiplikation«?

4. Erkldre an der Zahlengeraden, warum es bei der Addition keine »Umkeh-
rung der Monotonie« gibt.

5. a) Wie gefillt dir der Wahlspruch »In Mathe fit mit EK ANID«?

Oder folgender: »Was EKANID weil}, macht mich nicht heif3«?
Denke dir selbst bel3’re Merksitze aus!
Vielleicht wird gar ein Gedicht daraus?

b) »Beim Rechnen in (5 eckt man oft an,
Weil man héufig nicht subtrahieren kann.
Das liegt daran: Man hat nur EKAN!
Erfinde zu diesem groBartigen Gedichtanfang eine passende Fortset-
zung, welche auf den mit @ und EKANI erreichten Fortschritt hin-
weist!




2.7 Die Rechengesetze fiir die rationalen Zahlen 85 !

**Zur Geschichte der negativen Zahlen

Bereits in altbabylonischen Texten um 2000 v. Chr. kommen an einigen Stellen negati-
ve Zahlen vor. Aber wir wissen nicht, wie die Babylonier sie aufgefaB3t und ob sie mit
thnen gerechnet haben.

Im chinesischen Rechenbuch Chiu Chang Suan Shu* = Neun Biicher arithmetischer
Technik, von dem man nicht weil}, wie alt es wirklich ist — der dlteste erhaltene Text ist
die 263 n. Chr. von Liu Hui mit Kommentaren versehene Ausgabe** —, kommen posi-
tive und negative Zahlen vor. Die positiven Zahlen werden rot, die negativen schwarz
geschrieben. Die Regeln fiir die Addition und Subtraktion negativer Zahlen sind be-
kannt und werden angegeben. Ergeben sich beim Losen von Gleichungen negative
Zahlen, so werden sie als Losungen anerkannt,

Rechenregeln fiir das Ausmultiplizieren von (@ — b) (¢ — d) findet man auch bei Dio-
PHANT (um 250 n.Chr.), der aber im Grunde nur mit Differenzen arbeitet, die einen
positiven Wert haben. Negative Zahlen als Losungen von Gleichungen bezeichnet er

als »unstatthaft«.
ARITHMETI

Die Inder kennen positive und negative
CA' INTEGRA.

Zahlenund benennensie durch die Worter
dhana = Vermogen und rna = Schulden.
Bei BRAHMAGUPTA (598—nach 665) werden
negative Zahlen durch einen dariiberge-
setzten Punkt gekennzeichnet: er schreibt
also z. B. 3 fiir unser — 3. In der weiteren
Entwicklung der indischen Mathematik
werden negative Zahlen auch als Ldsun-
gen von Gleichungen zugelassen.
Die Araber iibernehmen zwar von den In-
dern das Rechnen mit negativen Zahlen,
erkennen sie aber nicht als Losungen von
Aufgaben an.
Spitestens im 9. Jh. kann man im Abend-
land mit negativen Zahlen rechnen, aber | ) )
als erster 1it LEONARDO VON Pisa (um | N‘":“h" .:?EI‘“LI"":EE'E::““"“
1170-nach 1240) eine negative Zahl als il 3 |
Lasung zu, die er als Schulden deutet; an- Cum grartia & priuilegio Cxfareo
dernfalls wire die Aufgabe unlésbar. *** atqp Reegio ad Sexennium,
Ahnlich geht auch Michael STIFEL * ; ~
(1487 (7)-1567) vor, obgleich er zu tiefe- M_é / : /
rer Einsicht in das Wesen der negativen M AR /"‘fﬂ‘
Zahlen gekommen ist. Er spricht 1544 in

Abb. 85.1

tegra — »Die ganze Arithmetik«

Authore Michacle Snifelio.

Cum prafatione Philippi Melanchthonis.

Titelblatt der Arithmetica in-

(1544)

seiner Arithmetica integra davon, dal}
man sich Zahlen kleiner als null vorstellen

konne und daB null zwischen den »wah-
ren« Zahlen und den »absurden« Zahlen
liege. Im Gegensatz zu STIFEL hat sein

*  gesprochen tschiu tschang suan schu

von Michael StiFeL (14877 Esslingen bis
19.4.1567 Jena) und dessen Unterschrift.
Ein Bildnis ist nicht iiberliefert.

**  Der erste Kaiser Chinas, Scui HuanG-Ti (= ersier erhabener Kaiser, Regierungszeit 221-210v. Chr.),
lieB 213 v. Chr. alle Biicher verbrennen und viele konfuzianische Gelehrte lebendig begraben. Liu Hu
berichtet, daB das Rechenbuch von CHANG Tsan (f 152v.Chr.) aus erhalten geblicbenen Resten neu
zusammengestellt und von CHinGg Ch’ou-ch’ang (um 50 v. Chr.) erweitert wurde.

##% Um 1430 wird in einer auf provenzalisch geschriebenen Handschrift zum ersten Mal eine negative Zahl

als Lésung ohne weitere Erkldrung akzeptiert.
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Zeitgenosse Geronimo CARDANO (1501-1576) keine Schwierigkeiten mit negati-
ven Zahlen als Losungen von Aufgaben, nennt sie aber »gedachte« Zahlen im Gegen-
satz zu den positiven, den »wahren« Zahlen. Frangois VIETE (1540-1603), der
Begriinder der modernen Algebra, hingegen erkennt die negativen Zahlen nicht als
Losungen an. René DESCARTES (1596-1650) verwendet zwar positive und negative
Ordinaten bei seinen graphischen Darstellungen, die Abszissen sind fiir ihn aber immer
positiv. Negative Gleichungslosungen nennt er »falsche« Losungen im Gegensatz zu
den »wahren« positiven. Auch Buchstaben stellen bei ihm immer positive Zahlen dar.
Der erste. bei dem ein Buchstabe — so wie bel uns jetzt ublich — sowohl eine positive wie
auch eine negative Zahl vertreten konnte, war der Amsterdamer Biirgermeister und
Mathematiker Jan HUDDE (1628(7)—1704), und zwar in seiner um 1655 verfaliten
Schrift De reductione aequationum.

Selbst im 18. Jahrhundert gelang es noch nicht, eine befriedigende Erklirung der nega-
tiven Zahlen zu finden. Dies fiihrte dazu, daB diese Zahlen von manchen Mathemati-
kern nicht anerkannt wurden, zum Beispiel auch nicht durch Christian von WOLFF
(1679-1754). Im groBen und ganzen wurden sie aber allméhlich gleichberechtigt neben
die positiven Zahlen gestellt.

Die endgiiltige wissenschaftliche Klirung dieses Problems brachte erst das 19. Jahr-
hundert, insbesondere durch George PEAcock (1791-1858) und Hermann HANKEL
(1839-1873). Sie erkannten, daB man bei der Erweiterung eines Zahlenbereichs nach
Moglichkeit so zu verfahren hat, daB die fiir die bisherigen Zahlen giiltigen Gesetze
auch im erweiterten Zahlenbereich giiltig bleiben. PEAcOock nannte 1830 diesen Grund-
satz das Permanenzprinzip (vgl. Seite 38).

30.11. 1869

Hacrweid

Abb.86.1 George Peacock (1791 Abb.86.2 Hermann HANKEL (14.2.1839
Thornton Hall/Denton — 1858 Ely (7)) Halle/Saale — 29.8.1873 Schramberg)
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