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2 Die rationalen Zahlen und ihre Rechengesetze

2 . 1 Die Zahlenmenge B reicht nicht aus!

Die Menge B der Bruchzahlen hat , abgesehen von der grundsätzlich unmögli¬
chen Division durch null , für das Rechnen einen wesentlichen Mangel : die
Subtraktion zweier Zahlen aus B ist nicht immer ausführbar . Dieser Mangel
ist nicht nur ein Schönheitsfehler innerhalb der mathematischen Theorie , er
macht sich auch in der Praxis störend bemerkbar .

Beispiele :
1) An einem Dezembertag zeigt mittags

das Thermometer die Temperatur 4 °C
( = 4 Grad Celsius) an . Bis zum Abend
nimmt sie um 3 Grad ab . Daraus kön¬
nen wir den neuen Thermometerstand
berechnen : 4 Grad — 3 Grad = 1 Grad ;
die Abendtemperatur beträgt also 1 °C .
Bis Mitternacht sinkt nun die Tempera¬
tur noch einmal um 4 Grad . Wie kann
man jetzt die neue Temperaturanzeige
ermitteln ? Die Rechnung » 1 Grad mi¬
nus 4 Grad « ist ja nicht ausführbar ! Be¬
kanntlich hilft man sich hier so , daß
man z . B . sagt , die Temperatur sei auf
» 3 Grad unter 0« gesunken oder die
Temperatur sei »minus 3 Grad « , wofür
man kurz » — 3 °C« schreibt (Abbil¬
dung 36 . 1 ) .
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Abb . 36 . 1 Thermometer

2) Herr Knapp hat auf seinem Bankkonto 530,60 DM . Für dringende
Anschaffungen benötigt er 700 DM , die er von seinem Konto
abhebt . Auf seinem nächsten Kontoauszug dürfte Herr Knapp als
Kontostand » — 169,40 DM « oder auch » 169,40 DM Soll « lesen . Das
bedeutet , daß er der Bank 169,40 DM schuldet (Abbildung 37 . 1 ) .

3) In Ägypten liegt westlich von Kairo die Kattara -Senke , für die man im
Atlas die Höhenangabe » — 134« findet . Damit wird bekanntlich aus¬
gedrückt , daß der so gekennzeichnete Ort » 134 m unter dem Meeres¬
spiegel« , genauer : 134 m tiefer als der Nullpunkt der für solche Hö¬
henangaben verwendeten Skala liegt . * (Abbildung 37 .2)

Dieser Nullpunkt , genannt Normalnull (NN ) , ist nach dem Amsterdamer Pegel festgelegt und gibt ungefähr
die mittlere Meereshöhe an .
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KONTONUMMER
1234567890

ALTER K
VOM 14 . 01 . 85

ONTOSTAND
DM 530,60 HA

ABHEBUNG AM 17 . 01 . 85 DM 700,00 SO

BUCHUNGSDATUM
NEUER KONTOSTAND

18 . 01 . 85
|

DM 169,40 SO

Abb . 37 . 1 Kontoauszug

Wie diese Beispiele zeigen , kommt es vor , daß man beim Rückwärtszählen den
Nullpunkt einer Skala , also eines Zahlenstrahls , überschreiten muß . Man ge¬
langt zu Ergebnissen »unter Null « , zu deren Beschreibung man Zahlen be¬
nützt , vor die ein Minuszeichen gesetzt wird .
Sicher wäre es auch aus mathematischer Sicht günstig , wenn es Zahlen »unter
Null « gäbe , mit denen man z . B . Rechnungen wie » 1 — 4« ausführen könnte .
Das Rechnen würde sich sehr vereinfachen , wenn auch die Subtraktion immer
ausführbar wäre . Man müßte dann beim Auftreten von Differenzen nicht
jedesmal überlegen , ob sie definiert sind bzw . , falls Variablen Vorkommen , für
welche Werte der Variablen das der Fall ist .
Eine ähnliche Situation gab es schon früher beim Rechnen mit den natürlichen
Zahlen * . Dort war die Division nicht unbeschränkt ausführbar ; man konnte
z . B . 12 nicht in 5 gleiche Teile zerlegen . Diese Schwierigkeit ließ sich dadurch

CQ \

Abb . 37 .2 Die Kattara -Senke in Ägypten

Die Zahlen der Folge 1,2 , 3, . . . nannte bereits Nikomachos von Gerasa (um 100 n . Chr .) (puoiKÖi ; &Qi9 |iö <;
(physikos arithmös ) , was Boethius (um 480- 524/525 ) mit numerus naturalis ins Lateinische übersetzte und
das im Deutschen zu natürliche Zahl wurde .
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beseitigen , daß man die Menge N 0 durch Einführung der Brüche erweiterte . In
dem größeren Zahlenbereich B ist die Division immer ausführbar , falls der
Divisor von 0 verschieden ist ; z . B . gilt 12 : 5 = 2f .
Dieses Beispiel legt den Versuch nahe , die Menge B noch einmal durch neue
Zahlen so zu erweitern , daß auch die Subtraktion immer ausführbar wird .
Natürlich ist eine solche Erweiterung nur dann sinnvoll , wenn man im vergrö¬
ßerten Zahlenbereich wieder »vernünftig « rechnen kann ! Das soll heißen : In
der erweiterten Zahlenmenge sollen die gleichen Rechengesetze wie bisher
gelten . Diesen Grundsatz , von dem man sich in solchen Fällen stets leiten läßt ,
bezeichnet man als Permanenzprinzip , genauer »Prinzip der Permanenz der
Rechengesetze * « . Ob sich dieses Anliegen verwirklichen läßt , ist natürlich
nicht von vornherein sicher .

Aufgaben

1 . Was zeigt ein Thermometer an , wenn die Temperatur von — 3 °C aus
a) um 4 Grad sinkt, b) um 2,5 Grad steigt, c) um 11 Grad steigt?

2 . Nachdem der Kontostand des Herrn Knapp auf — 169,40 DM gesunken
war , erhielt er vom Finanzamt eine Steuerrückzahlung von 340,00 DM .
Welches Guthaben stand dann auf seinem nächsten Kontoauszug ?

3 . Westlich der Kattara -Senke mit der Höhenangabe - 134 liegt die Oase
Siwa, für deren tiefsten Punkt im Atlas die Angabe — 25 zu finden ist .
a) Welche der beiden Senken liegt tiefer und wie groß ist der Unterschied?
b) Zwischen den beiden Senken liegt ein Höhenzug , für dessen höchsten

Punkt die Höhenangabe 70 gilt . Welche Höhenunterschiede müßte
man auf dem Weg von der Oase Siwa über den Höhenzug in die Katta¬
ra -Senke überwinden ?

2 .2 Einführung der negativen Zahlen

Auf dem Zahlenstrahl ist jeder Zahl x e B eindeutig ein Punkt zugeordnet .
Außerdem kann die Zahl x durch den vom Nullpunkt zum Punkt x zeigenden
Pfeil dargestellt werden (Abbildung 38 . 1 ) .

o 1 k
Abb . 38 . 1 Die Zahl x als Punkt und als Pfeil auf dem Zahlenstrahl

Ähnlich wie beim Thermometer setzen wir nun die Skala nach links über 0
hinaus fort . Indem wir eine , zwei, drei, . . . Längeneinheiten nach links abtra -

permanere (lat .) = fortdauern , erhalten bleiben . Der Ausdruck Permanenzprinzip wurde von dem englischen
Mathematiker und Professor der Astronomie George Peacock ( 1791 - 1858) in seinem 1830 erschienenen
Werk A treatise of algebra geprägt . - Siehe Abbildung 86 . 1.
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gen , erhalten wir Punkte , die wir mit — 1 , - 2 , - 3, . . . bezeichnen . Allgemein
erhalten wir zu jeder Zahl x > 0 , also xeB , den links von 0 liegenden Punkt
— x , indem wir den zu x gehörigen Pfeil um den Nullpunkt nach links umklap¬
pen . Das heißt , wir zeichnen von 0 aus einen nach links gerichteten Pfeil der
Länge x . Seine Spitze liefert einen Punkt , den wir mit — x beschriften . Den
Pfeil selbst bezeichnen wir ebenfalls mit — x (Abbildung 39 . 1 ) .

- x - 2

Abb . 39 . 1 Erweiterung des Zahlenstrahls

Natürlich wollen wir nun diese Punkte bzw . Pfeile — 1 ,
— 2 , — 3, . . . , allge¬

mein — x , als Veranschaulichungen neuer Zahlen deuten ! Diese ebenfalls mit
— 1 , — 2 , — 3, . . . , — x, . . . bezeichneten Zahlen nennen wir negative Zahlen .
In dieser Bezeichnung kommt zum Ausdruck , daß es sich bei ihnen um die
»Gegenstücke « zu den schon bekannten positiven Zahlen , also den Zahlen der
Menge B \ { 0 } ( = B ohne die Zahl 0) , handelt . Der erweiterte Zahlenstrahl
heißt Zahlengerade (Abbildung 39 .2) .

- 3 - 2 - 1 0 1 2 3

negative Zahlen Null positive Zahlen

Abb . 39 .2 Die Zahlengerade

Unser erweiterter Zahlenvorrat besteht nunmehr also aus den schon bisher
bekannten positiven rationalen Zahlen und der Null sowie den neu eingeführ¬
ten negativen rationalen Zahlen . Alle diese Zahlen zusammen bilden die Men¬
ge der rationalen Zahlen*

, die man mit Q bezeichnet. Für die Teilmenge der
positiven bzw . der negativen rationalen Zahlen verwendet man die Bezeich¬
nung 0 + bzw . Q ~

. Die bisher häufig benützte Zahlenmenge B (Brüche !) läßt
sich nun in der Form B = <Q + u { 0 } darstellen ; man schreibt dafür auch kurz
Oo+ -
Es gilt also :

Definition 39. 1 : <Q> = Menge der rationalen Zahlen
<Q + = Menge der positiven rationalen Zahlen
(Q “ = Menge der negativen rationalen Zahlen
(Qq = Menge der nicht -negativen rationalen Zahlen

rationalis bedeutet seit dem 2 . Jh . zu den Rechnungen gehörend und hängt mit ratio = Rechnung , Verhältnis ,
Vernunft zusammen . Die mathematische Bedeutung können wir dir aber erst im Band Algebra 3 erklären .
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* * Zur Geschichte der Fachwörter positiv und negativ

An der Entstehung des heutigen Gegensatzpaares positiv- negativ kann man sehr gut
verfolgen , wie bei der Herausbildung einer Fachsprache die ursprüngliche Bedeutung
der Wörter meist verlorengeht .
Das seit dem 4 . Jh . belegte lateinische Wort positivus = gesetzt , gegeben hatte als Ge¬
gensatz das Wort privativus = abgesondert , hinweggenommen, das in späterer Zeit auch
noch den Sinn von verneinendannahm . Das alte Wort für verneinendwar aber negativus
(2 . Jh .) , zu dem das Gegensatzwort affirmativus = bejahend gehörte (nachgewiesen
5 ./6 . Jh .) . In der vor 1486 geschriebenen kleinen Lateinischen Algebra des Dresdener
Codex C80 , eines Sammelbands verschiedener mathematischer Handschriften , finden
wir säuberlich getrennt die beiden Gegensatzpaare positiv- privativ und affirmativ- ne¬
gativ . Bald jedoch werden diese Paare vermischt , und das Wort privativ verschwindet
immer mehr und wird durch negativ ersetzt . So verwendet Franijois Viete (1540 - 1603 )
den Gegensatz affirmativus- negatus (1591) . Der deutsche Philosoph und Mathema¬
tiker Christian von Wolff (1679 - 1754) verfaßt 1716 ein Mathematisches Lexicon , in
dem das Gegensatzpaar positiv- negativ zu Fachwörtern wird . Und dabei ist es dann
geblieben!

t>k in allen Steilen bev $?atf)eiit«<
tictiiMicpenSfimfCSottet

LEXICON,

5Uatl)entatifcf)en 3ßiiTenfd)affteti
OiftilidR ütactmc&f« erteilet,

2iuc&hieSdjrifftcn,
twiete 35?«tetie au^ efii^retp nnten ,

angefuljttttmben:

Staff Segetjren ßerauä gegeben

gfjttilian SBolffen

SföatI ) emötifcf ) C6

Ä . 9>. £>. unt>p. p. o.

3ut £ i (totie

Sarinnen

erftöret ,

Ä Soipsig,
StieOtid ) © lei>itfd)m$ feel,@otm.

1716 .

Abb . 40 . 1 Christian , Freiherr von Abb . 40 .2 Titelblatt der 1 . Auflage
(seit 1745) Wolff , auch Wolf , (24 . 1 . 1679
Breslau - 9 .4 . 1754 Halle/Saale )
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Aufgaben

1 . Trage auf einer Zahlengeraden mit der Längeneinheit 1 cm die zu folgen¬
den Zahlen gehörenden Punkte ein:
a) 4,6 b) - 4 c) 0 d) - 1,5 e) 2,2 f) -

2 . Gib auf einer Zahlengeraden mit der Längeneinheit 2 cm die den folgen¬
den Zahlen entsprechenden Punkte an :
u = 2,1 ; v = — 2,1 ; w = — 1,25 ; x = f ; y = — lf ; z = —

3 . Zeichne von einer Zahlengeraden mit der Längeneinheit 6 cm den Ab¬
schnitt von — 1 bis 0,5 und markiere darauf die Punkte für folgende Zah¬
len :
a) x i = 3 b) x2 = - f c) x 3 = - -§ d) x6r = Y2 e) x 5 = — Y2
f ) Li = 0,2 g) y2 = - 0,3 h) y 3 = - 0,90 i) = - 0,05

4 . Zeichne für eine Zahlengerade mit der Längeneinheit 1 cm den Abschnitt
von — 5 bis 5 . Trage darauf folgende Punkte ein und gib die zugehörigen
rationalen Zahlen an :
a) A liegt 3,5 cm links vom Punkt 2 .
b) B liegt 2,8 cm rechts vom Punkt - 5 .
c) C liegt 2f cm links vom Punkt 0 .
d) D liegt 3 cm links vom Punkt
e) E liegt 1,4 cm rechts vom Punkt - lf .
f) F liegt 4,5 cm rechts vom Punkt - 4j .

5 . Bestimme folgende Zahlenmengen . (Beschreibe die sich ergebenden Men¬
gen zuerst in Worten und dann mit Mengensymbolen .)
a) Q + nQ " b) Q + uG ~ c) Q n N d) Ö + nN 0
e) O + uN 0 f) Q \ CT g) Q \ G + h) Q \ (Q + uQ “ )

2 .3 Zahl und Gegenzahl, absoluter Betrag

Jede Zahl a e Q läßt sich auf der Zahlengeraden durch den von 0 zum Punkt a
zeigenden Pfeil darsteilen . Zu dem gleich langen , aber entgegengesetzt gerich¬
teten Pfeil gehört wieder eine rationale Zahl , die wir die Gegenzahl von a
nennen und mit — a bezeichnen .

Definition 41 . 1 : Zwei Zahlen, zu denen auf der Zahlengeraden gleich
lange , aber entgegengesetzt gerichtete Pfeile gehören ,
heißen (ein Paar von ) Gegenzahlen.
Die Gegenzahl von a wird mit - a bezeichnet .
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Die schon auf Seite 39 eingeführte Schreibweise für die negativen Zahlen steht
im Einklang mit der in dieser Definition vereinbarten Bedeutung von - a:
negative Zahlen wie - 1 ; - 3,7 ; - §; . . . sind ja gerade die Gegenzahlen der
entsprechenden positiven Zahlen 1 ; 3,7 ; f ; . . . Beachte aber , daß Definition
41 . 1 für beliebige , also auch für negative Zahlen gilt ! (Abbildung 42 . 1 )

A - « 3 -fc

- a o a
4 b 4

Abb . 42 . 1 Zahl und Gegenzahl

Beispiele:
Die Gegenzahl von 5,2 ist — 5,2 .
Die Gegenzahl von 0 ist — 0 = 0 .
Die Gegenzahl von — 3 heißt - ( — 3) ; ihr Pfeil ergibt sich aus dem Pfeil
für — 3 durch Umklappen und somit aus dem Pfeil 3 durch zweimaliges
Umklappen . Also gilt : — ( — 3) = 3 .

Die im letzten Beispiel durchgeführte Überlegung läßt sich auf jede Zahl an¬
wenden . Daher gilt:

Satz 42 . 1 : Für a e <0 gilt : — ( — a) = a .

Die Gegenzahlen der natürlichen Zahlen , also — 1 , - 2 , — 3 , . . . werden als
negative ganze Zahlen bezeichnet. Sie bilden zusammen mit 0 und den natürli¬
chen Zahlen die Menge der ganzen Zahlen , für welche das Zeichen Z verwen¬
det wird :

Definition 42 . 1 : Z = { . . . , - 3 , — 2 , - 1 , 0,1 , 2 , 3, . . . } heißt Menge der
ganzen Zahlen . *

- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- «-
- 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6

Abb . 42 .2 Die ganzen Zahlen

In Beispielen wie - 3 , - f , — a , - (x + 5) , . . . ist das Minuszeichen kein Re¬
chenzeichen , es wird ja keine Subtraktion verlangt . Das vorangestellte Minus¬
zeichen bedeutet hier jeweils die Aufforderung »Bilde die Gegenzahl von « .

* Der Ausdruck ganze Zahl ist die deutsche Übersetzung des lateinischen numerus integer , mit dem Leonardo
von Pisa (um 1170- nach 1240) den dgiOfioq 6X.ökA,t ]qo <; (arithmos holokleros ) des Diophant (um 250
n . Chr .) ins Lateinische übertragen hatte . Sowohl das lateinische wie auch das griechische Adjektiv bedeuten
unversehrt , vollständig , noch ganz .
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Derartige Minuszeichen nennt man Vorzeichen. In entsprechender Weise wird
oft auch das Pluszeichen als Vorzeichen verwendet , wofür man festsetzt :
+ a = a , (fl e 0 ) . Obwohl man demnach auf das Vorzeichen » + « verzichten
könnte , erweist sich, wie sich noch zeigen wird , seine Verwendung gelegentlich
doch als nützlich und sinnvoll .
Besonders wichtig ist es , sich klarzumachen , daß das Vorzeichen » — « keines¬
wegs immer auf eine negative Zahl hinweist ! Es gilt ja :

positiv negativ .Satz 43. 1 : - a ist . genau dann, wenn a . . ist .
negativ positiv

Eine Zahl und ihre Gegenzahl werden durch Pfeile gleicher Länge dargestellt ;
die entsprechenden Punkte auf der Zahlengeraden haben vom Nullpunkt glei¬
che Entfernung .

Definition 43. 1 : Die Entfernung des Punktes a vom Nullpunkt , also die
Länge des Pfeiles a , heißt absoluter Betrag der Zahl a ; er
wird mit | a | bezeichnet .
Die beiden senkrechten Striche nennt man »Betrags¬
striche « .

Der Fachausdruck absoluter Betrag und
die beiden senkrechten Striche dafür
wurden von Karl Theodor Wilhelm
Weierstrass (1815- 1897 ) eingeführt . Im
Druck erschien absoluter Betrag 1856 , die
Absolutstriche aber erst 1876 . Weier¬
strass war von 1842 bis 1855 Lehrer an
einem Gymnasium , wurde dann als Pro¬
fessor ans Gewerbeinstitut nach Berlin
und 1864 an die Universität berufen . Er
ist einer der bedeutendsten Mathemati¬
ker des 19 . Jh .s .

Abb . 43 . 1 Karl Theodor Wilhelm
Weierstrass (31 . 10 . 1815 Ostenfelde /
Landkreis Warendorf - 19 .2 . 1897 Berlin)
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Eine Zahl und ihre Gegenzahl haben denselben Absolutbetrag ; denn die ent¬
sprechenden Pfeile sind gleich lang .

Beispiele :
1 ) 131 = | — 31 = 3 ;
2) | - 1,7 | = | 1,7 | = 1,7 ;
3) ItI = I “ fl = i

Da der Nullpfeil die Länge 0 hat , gilt 101 = 0 . Jede von 0 verschiedene Zahl hat
einen positiven Absolutbetrag .
Wir fassen zusammen :

Satz 44. 1 : 1 ) Der Betrag einer Zahl ist nicht negativ.
Es gilt also : | a | ä ; 0 für jedes « eQ .

2) Nur die Zahl 0 hat den Betrag 0 .
Kurz * : \ a \ = 0 <=> a = 0 .

3 ) Zahl und Gegenzahl haben gleichen Betrag .
Also : | — a \ = \ a \ .

Bei positiven Zahlen und bei 0 stimmt der absolute Betrag mit der Zahl selbst
überein . Bei negativen Zahlen unterscheidet sich jedoch der Betrag von der
Zahl selbst :

Beispiele :
1 ) | - 2 | = 2 , 2) | - 5,17 | = 5,17 , 3) | - f | = f .

Die Beispiele lassen erkennen , daß der Betrag einer negativen Zahl a mit der
positiven ( !) Gegenzahl — a übereinst immt . Es gilt ja :
| - 2 | = 2 = - ( - 2) , | - 5,17 1 = 5,17 = - ( - 5,17 ) usw.
Diese Überlegungen führen zu

a , wenn a positiv ist ;
Satz 44.2 : \ a \ = 0 , wenn a = 0 ;

- a , wenn a negativ ist .

Dieser Satz zeigt , wie man den Betrag einer Zahl auch ohne Verwendung von
Betragsstrichen angeben kann : Bei 0 und den positiven Zahlen darf man die
Betragsstriche einfach weglassen ; bei negativen Zahlen muß man als Betrag
die Gegenzahl nehmen .

* Das Zeichen « > hat die Bedeutung »genau dann , wenn « .
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Aufgaben

1 . Wie heißt die Gegenzahl von
a) 167 b) - 3,14 c) 2{f d) - 0,001 ?

2 . Vereinfache die Schreibweise der folgenden Zahlen:
a) - ( - 2) b) - ( - 0,34) c) - ( - ( - 1 )) d) - ( - ( - ( - 0,6)))
e) + 49 f) - ( + 7,3) g) - ( + ( - 4)) h) + ( - ( + 5))

3 . Welche der folgenden Aussagen sind wahr ? Berichtige die falschen Aussa¬
gen.
a) Die Gegenzahl einer positiven Zahl ist nicht positiv.
b) Die Gegenzahl einer rationalen Zahl ist negativ.
c) Die Gegenzahl einer nichtnegativen Zahl ist negativ .
d) Die Gegenzahl einer natürlichen Zahl ist eine ganze Zahl.
e) Wenn man zu den Elementen von N alle ihre Gegenzahlen hinzufügt,

erhält man die Menge Z .
4 . Bestimme | x | für x e { — 1000 ; — 111 ; - 0,1 ; 0 ; 0,12; 63 ; 10 6

} .
5 . Bestimme alle Zahlen mit folgender Eigenschaft:

a) Der absolute Betrag ist 7,5 .
b) Die Zahl ist negativ und hat den Betrag 2,8 .
c) Die Zahl ist positiv und hat denselben Betrag wie - 99 .
d) Weder die Zahl selbst noch ihr absoluter Betrag sind positiv .
e) Die Zahl ist von ihrem Betrag verschieden, und dieser hat den Wert 7 .

6. Berechne :
a) 17,91 + | - 51 b) j 7,91 | 51
c) | — 81 j + | — 191 d) | — 811 — 1191
e) I - Ml - | - 0,85 | f ) | - l | - | i | - | - i | .

7 . Bestimme die Lösungsmengen :
a) \ x \ = 0,5 b) | x | = 7 c) | x | = 0
d) | xj = - 1 e) | x | ^ 0 f) [x | > 0 .

8 . Welche Zahlen z e Z erfüllen folgende Bedingung?
a) | z | ^ 0 b) | z | < l c) | z | ^ 3
d) | z | > 0 e) | z | ^ 2 f) 1 < | z | < 4 .

2 .4 Addition und Subtraktion von rationalen Zahlen

2 .4 . 1 Definition der Addition

Ob die neu eingeführten negativen Zahlen zu Recht als Zahlen bezeichnet
werden , entscheidet sich an der Frage , ob man mit ihnen in gewohnter Weise
rechnen kann . Wir wollen dies zunächst für die Addition untersuchen . Dazu
betrachten wir einige Beispiele von Summen aus rationalen Zahlen :
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Beispiele :
1) 2 + 3,7 2) 5 + 0 3) 5,2 + ( - 3)
4) ( — 4) + lj 5) ( - 2,4) + ( - 3,7) 6) 0 + ( - l )

Beachte : Beim Anschreiben solcher Summen ist es wichtig , zwischen Rechen¬
zeichen und Vorzeichen genau zu unterscheiden . Das Vorzeichen ist ein Be¬
standteil der betreffenden Zahl ! Dies wird , wie die Beispiele 3 bis 6 zeigen,
durch Klammern zum Ausdruck gebracht .

Die Summen in den Beispielen 1 und 2 sind von bekannter Art . Dagegen
stellen uns die übrigen Beispiele vor neue Situationen : Wir wissen ja noch
nicht , wie Summen mit negativen Summanden zu berechnen sind ! Man muß
erst einmal definieren , welche Bedeutung solche Summen haben sollen . Na¬
türlich soll diese Definition der Addition rationaler Zahlen so beschaffen sein,
daß sie für nicht -negative Summanden (Beispiele 1 und 2) mit der altbekann¬
ten Addition übereinstimmt .
Bei der Suche nach einer geeigneten Definition erinnern wir uns an die graphi¬
sche Darstellung der Addition bei positiven Zahlen (Abbildung 46 . 1 ) :

Abb . 46 . 1 Veranschaulichung der Addition in Q +

Man erhält , wie Abbildung 46 . 1 zeigt , den Pfeil für die Summe a + b , indem
man an die Spitze des Pfeils a den Pfeil b ansetzt . Der Summenpfeil läuft dann
vom Anfangspunkt des ersten zur Spitze des zweiten Summandenpfeils . Wir
wollen dieses geometrische Verfahren im folgenden kurz als Pfeiladdition be¬
zeichnen .
Es liegt nun nahe , diese Pfeiladdition versuchsweise auch auf Summen mit
negativen Summanden zu übertragen . Für die obigen Beispiele 3 , 4 und 5
ergeben sich dabei folgende Abbildungen :

1 5,2
15 , 2 + (- 3 )

Abb . 46 .2 5,2 + ( - 3 )
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Abb . 47 . 1 ( — 4 ) + I 4

- 3,7

i - 24

4 - 3 ’7 i - 2 ’4 0 1

1 ( - 2,4 ) + ( - 3,7 )

Abb . 47 .2 ( - 2,4 ) + ( - 3,7)

Aus der jeweils leicht errechenbaren Länge und der Richtung des Summen¬
pfeils erkennt man , daß dieses Additionsverfahren folgende Ergebnisse liefert :
5,2 + ( - 3) = 2,2 ; ( - 4) + l| = - 2i ; ( - 2,4) + ( - 3,7 ) = - 6,1 .
Deutet man z . B . positive Zahlen als Guthaben , negative als Schulden , so
erkennt man , daß diese Ergebnisse durchaus sinnvoll sind . Wir wollen daher
das in diesen Beispielen angewandte Verfahren zur Definition der Addition
beliebiger rationaler Zahlen verwenden .

Definition 47 . 1 : hinter der Summe a + b zweier rationalerZahlen a und
b verstehen wir diejenige Zahl , deren Pfeil sich durch
Anwendung der Pfeiladdition auf die Pfeile a und b er¬
gibt .

Mit dieser Definition ist es uns tatsächlich möglich , zwei beliebige Zahlen aus
<Q> zu addieren . Wie man an den vorausgehenden Beispielen erkennt , sind
dabei jeweils zwei Überlegungen notwendig , nämlich :
1 . Welche Richtung hat der Summenpfeil (falls seine Länge nicht 0 ist)?
2 . Wie lang ist der Summenpfeil ?
Die Antwort auf die erste Frage liefert das Vorzeichen der zu bestimmenden
Summe , die Antwort auf die zweite ihren Absolutbetrag . Wie man Vorgehen
muß , um jeweils die richtigen Antworten zu finden , hängt von Betrag und
Vorzeichen der beiden Summanden ab .
Wir untersuchen dazu verschiedene typische Fälle :

Fall 1 : Die beiden Summanden a und b sind positiv .
Für diesen längst bekannten Fall gilt (vgl . Abbildung 46 . 1 ) :
a + b ist positiv und \ a + b \ = \ a \ + \ b \,
also a + b = \ a \ + \ b \ .
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Fall 2 : Die beiden Summanden a und b sind negativ .

<—

H— =—
\i b 0 *

1 a + b

Abb . 48 . 1

Aus Abbildung 48 . 1 erkennt man leicht , daß nunmehr gilt :
a + b ist negativ und \ a + b \ = \ a \ + \ b \ ,
also a + b = — (\ a \ + \ b \) .

Fall 3 : a ist positiv , b negativ und \ a \ > \ b \.

A ... b L . a k

0 o

Abb . 48 .2

Nach Abbildung 48 .2 gilt :
a + b ist positiv und \ a + b \ = | <a | — | 6 | ,
also a + b = \ a \ — \ b \.

Fall 4 : a ist positiv , b negativ und \ a \ < \ b \.

a k

—

’ a + b

Abb . 48 .3

Abbildung 48 .3 zeigt :
a + b ist negativ und \ a + b \ = \ b \ - \ a \ ,
also a + b = — ( \ b \ — \ a \) .

Ganz entsprechend wie die Fälle 3 und 4 lassen sich die Fälle »a negativ , b
positiv und \ a \ > | 6 |« bzw . »a negativ , b positiv und \ a \ < | 6 |« behandeln .
Zeige dies z . B . anhand der Aufgaben l .b) und l .e) auf Seite 53 .
Die Ergebnisse dieser Untersuchungen lassen sich so beschreiben :
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Satz 49 . 1 : Zwei Zahlen mit gleichen Vorzeichen werden addiert , indem
man ihre Beträge addiert und dieser Summe das Vorzeichen
der beiden Summanden gibt .
Zwei Zahlen mit verschiedenen Vorzeichen werden addiert ,
indem man vom größeren Betrag den kleineren subtrahiert
und dieser Differenz das Vorzeichen des Summanden mit
dem größeren Betrag gibt .

Beispiele :
1) ( - 3) + ( - 7,5 ) = ?

Beide Summanden sind negativ , also auch die Summe . Die Beträge
der Summanden werden addiert . Somit gilt :
( — 3) + ( — 7,5) = — ( | — 31 + | — 7,51 ) = — (3 + 7,5) = — 10,5 .

2) 5,8 + ( - 8,3) = ?
Die Summanden haben verschiedene Vorzeichen . Der Summand mit
dem größeren Betrag , also - 8,3 , ist negativ ; daher wird auch die
Summe negativ . Die Beträge der Summanden werden voneinander
subtrahiert . Somit gilt :
5,8 + ( - 8,3) = - ( | - 8,31 - 15,81) = - (8,3 - 5,8 ) = - 2,5 .

3) ( - 3| ) + 4i = ?
Die Summanden haben verschiedene Vorzeichen . Der Summand mit
dem größeren Betrag ist positiv , also auch die Summe . Die Beträge
der Summanden werden voneinander subtrahiert . Somit gilt :

( - 3i ) + 4i = + ( | 4i | - | - 3i |) = + (4£ - 3i ) = + f = f .

Von besonderem Interesse sind noch die zwei folgenden Fälle :

Fall 5 : \ a \ = \ b \ und a und b haben verschiedene Vorzeichen . In diesem Fall
ist b die Gegenzahl von a , also b = — a .

j b = - a 3 1
0 a .

f~ 3
■ .

b= - a

Abb . 49 . 1

Aus Abbildung 49 . 1 erkennt man : a + ( — a) = 0 .

Satz 49 .2 : Die Summe aus einer Zahl und ihrer Gegenzahl ist 0 .
a + ( — a) = 0 für jedes a e O
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Fall 6: Ein Summand ist 0 .
Da der Pfeil für die Zahl 0 die Länge 0 hat , ergibt sich unmittelbar aus
Definition 47 . 1 :

Satz 50. 1 : Für jede rationale Zahl a gilt
a + 0 = 0 + a = a .

Dieser Satz besagt , daß die Zahl 0 auch in der Zahlenmenge O das neutrale
Element der Addition ist .

2 .4 .2 Eigenschaften der Addition in Q>

Von der im Abschnitt 2 .4 . 1 eingeführten Addition rationaler Zahlen wissen
wir noch nicht , ob sie wirklich alle erwünschten Eigenschaften besitzt . Es geht
hier vor allem um die Frage , ob für sie die Rechengesetze gültig bleiben , die
uns von der Addition in Qq her schon bekannt sind . Zur Wiederholung wol¬
len wir diese Rechengesetze hier zusammenstellen :

Rechengesetze der Addition in Qq
Für alle Zahlen a , b , c aus Q c| gilt :
(E) a + b ist wieder eine Zahl aus Qq eindeutige Existenz der Sum-

me
(K) u + b — b + u Kommutativgesetz * der Addi¬

tion
(A) (a + b) + c = a + (b + c) Assoziativgesetz* * der Addi¬

tion
(N) a + 0 = a 0 ist neutrales Element der Ad¬

dition

Wir müssen nun prüfen , ob die in der größeren Zahlenmenge Q eingeführte
Addition ebenfalls diesen Rechengesetzen genügt .
1) Existenz der Summe : Nach dem in Definition 47 . 1 festgelegten Verfahren

kann man zwei rationale Zahlen stets addieren ; die Summe ist wieder eine
Zahl aus <Q>. Damit bleibt (E) in Q gültig .

* commutare (lat .) = verändern , vertauschen . - Der Ausdruck kommutativ wurde 1814 von Franfois Joseph
Servois (1767- 1847) in seinem Essai sur un nouveau mode d 'exposition des principes du calcul dijferentiel
in die Mathematik eingeführt .

* associare (lat .) = vereinigen , anschließen , verbinden . - Der Ausdruck assoziativ wurde 1843 von dem be¬
rühmten irischen Mathematiker und Astronomen William Rowan Hamilton (1805- 1865) bei der Erfin¬
dung ganz besonderer »Zahlen « , der sog . Quaternionen , in die Mathematik eingeführt . - Abb . 90 .1
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2) Kommutativgesetz der Addition : Wir konstruieren und vergleichen die
Pfeilsummen a + b und b + a für die verschiedenen Vorzeichenzusammen¬
stellungen :

o
b a

h

b
a

0a

b

b

$ 0b

Abb. 51 . 1 Zum Nachweis des Kommutativgesetzes

Abbildung 51 . 1 zeigt , daß in allen diesen Fällen a + b = b + a gilt . Wenn
ein Summand 0 ist , gilt nach Satz 50 . 1 ebenfalls a + 0 = 0 + a . Also bleibt
(K) in O gültig .

3) Assoziativgesetz der Addition : Anstatt hier für alle typischen Fälle Pfeil¬
summen zu konstruieren , überlegen wir : Wenn man aus drei Pfeilen a , b , c
die Summen {a + b) + c und a + (b + c) bildet , läuft das in beiden Fällen
darauf hinaus , daß man die Pfeile einfach der Reihe nach aneinandersetzt .
Das Ergebnis ist unabhängig davon , ob a und b oder b und c zu einer
Zwischensumme zusammengefaßt werden . Damit gilt wieder (a + b) +
+ c = a + (b + c) , d . h . , (A) bleibt auch für die Addition in <Q gültig .

Ein Beispiel zeigt Abbildung 52 . 1 . In den ersten beiden Zeichnungen wird
jeweils oberhalb der Zahlengeraden die Zwischensumme a + b bzw . b + c
konstruiert , die dann darunter zur Ermittlung der ganzen Summe
(a + b) + c bzw . a + (b + c) verwendet wird . Der letzte Teil der Abbildung
zeigt zum Vergleich die drei der Reihe nach aneinandergesetzten Pfeile.
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b a + b

b

] a + b

o
> a (a+l3)+ C C

ja + b
C - b

c

\ .
b . .. b + c Kl

- k j a + i D+CJ C

0 0 a

0 a a + b + c c

Abb. 52 . 1 Zum Assoziativgesetz der Addition

4) NeutralesElement der Addition : Der schon bewiesene Satz 50 . 1 besagt, daß
0 auch für die Addition in 0 neutrales Element ist , so daß auch (N ) gültig
bleibt .

Damit gilt

Satz 52 . 1 : Für die Addition in der Menge Q der rationalen Zahlen
gelten wieder die auf Seite 50 zusammengestellten Rechen¬
gesetze (E) , (K) , (A) , (N ) .

Für die Rechenpraxis sind insbesondere die Gesetze (A) und (K) von großer
Bedeutung . Aus (A) folgt bekanntlich , daß man bei dreigliedrigen Summen
darauf verzichten kann , die Reihenfolge der beiden Additionen durch Klam¬
mern festzulegen . Da es nach dem Assoziativgesetz gleichgültig ist , ob man
(a + b) + c oder a + (b + c) berechnet , genügt es auch , einfach a + b + c zu
schreiben . Nimmt man noch das Kommutativgesetz hinzu , so zeigt sich, daß
auch die Reihenfolge der Summanden beliebig verändert werden kann . Das¬
selbe gilt, wie man zeigen kann , auch für Summen mit mehr als drei Summan¬
den .

Beispiel 1 :
Behauptung : a + b + c = c + b + a
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Beweis: Der Einfachheit halber schreiben wir im folgenden das bei einer
Umformung angewandte Rechengesetz über das Gleichheitszeichen .
Zum Beispiel hat = die Bedeutung »ist wegen Rechengesetz (A) gleich« .
a + b + c = {a + b) + c = c + (a + b) = c + (b + a) = c + b + a .

Beispiel 2:
12,5 + ( - 23,91 ) + 7,5 = (12,5 + ( - 23,91 )) + 7,5 =

= 7,5 + (12,5 + ( - 23,91 )) =
= (7,5 + 12,5) + ( - 23,91 ) =
= 20 + ( - 23,91 ) = - 3,91 .

Beispiel 2 zeigt , wie man durch die Wahl einer günstigen Reihenfolge der
Summanden und der Rechenschritte die Durchführung einer Rechnung oft
vereinfachen kann . Achte stets auf solche Rechenvorteile!

Aufgaben

1 . Bestimme die folgenden Summen durch eine Pfeilkonstruktion . Verwende
dazu eine Zahlengerade mit der jeweils angegebenen Längeneinheit (LE) ,
a) ( - 3,2 ) + ( - 1,5) , LE 1 cm ; b) ( — 2,6) + 8 , LE 1 cm ;
c) 64 + ( - 97) , LE 1 mm ; d) 0,75 + ( - 0,48 ) , LE 1 dm ;
e) ( - 1,1 ) + 0,8 , LE 5 cm ; f) ( - f ) + ( - ^ ) , LE 6 cm .

2 . Berechne die folgenden Summen . Überlege jeweils zuerst , welches Vorzei¬
chen das Ergebnis erhält und wie man seinen Betrag berechnet .
a) ( - 10) + 12 b) 10 + ( - 12) c) ( - 9,1 ) + ( - 1,9)
d) 1,5 + 4i e) ( — 7,45 ) + f) 0,865 + ( - 1,39)
g) ( - £) + ( - & ) h) ^ + ( - 2£ ) i) ( - 0,196) + ^

3 . Konstruiere für die folgenden Zahlenbeispiele zur Überprüfung des Asso¬
ziativgesetzes der Addition die Pfeilsummen (a + b) + c und a + (b + c) .
Kennzeichne dabei die zuerst gebildeten Zwischensummen durch zweifar¬
bige Pfeile (vgl . Abbildung 52 . 1 ) .
a) a = 4 ; b = — 3 ; c = - 3,5 ; LE 1 cm
b) a = - 2,4 ; b = 7,3 ; c = - 3,2 ; LE 1 cm
c) a = — 0,6 ; b = — f ; c = LE 4 cm

4 . Berechne die folgenden Summen . Achte dabei auf eventuelle Rechenvor¬
teile.
a) 15 + 27 + ( - 32) b) ( - 243 ) + ( - 102) + 45
c) 1010 + ( - 2000) + 990 d) ( — 123) + ( — 68) + ( — 132)
e) ( - 0,93 ) + 1,13 + ( - 0,63 ) f) ( - 2,25 ) + ( - 4,75) + 7,25
g) 2f + ( — 1 | ) + ( l £ ) h) 15,8 + ( - 20i ) + 4j
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5 . Berechne :
a) (27 + ( - 15 )) + ( - 8) + ( - 9) b) ( - 109) + (85 + 13 + ( - 45))
c) (( - 3,14 ) + 2,38 ) + ( - 0,167) + 1,427
d) (4-y + ( — 10,5 )) + (8f + ( — 2f ))

6 . Berechne :
a) ( — 7) + | — 71 b) | - 2,5 | + | 2,5 | c)
d) 13 + ( — 4) | e) 131 + | — 41 f)
g) | ( - 1,16 ) + ( - 2,39 ) | h) | - 1,16 | + | - 2,39 | i)

• 7 . Ist x positiv , null oder negativ , wenn folgende Gleichung gilt? (Hinweis :
Beachte Satz 49 . 1 .)
a) | 7 + x | = 7 + | x | b) | ( - 7) + x | = 7 + | x |
c) | x + 21 = 2 — | x | d) | x + 21 = | x | — 2
e) Welche Angabe über | x | läßt sich im Fall c) bzw . im Fall d) machen?

8 8 . Was kann man über die Vorzeichen von x + 0 und y 4= 0 sagen , wenn gilt
a) \ x + y \ = | x | + \y \ b) | x + y \ = | x | - \y \
c) l * + ( - k ) l = M + | j>| d) j ( x) + ( _y) | = [x | \y \ ?

2 .4 .3 Die Subtraktion in Q>

Beim Addieren besteht die Aufgabe darin , aus den gegebenen Summanden die
Summe zu berechnen . Oft kommt es aber auch vor , daß von einer Summe der
Wert schon bekannt ist und einer der Summanden gesucht wird . Um diesen zu
berechnen , muß man bekanntlich eine Subtraktion ausführen . Man bezeich¬
net wegen dieses Zusammenhangs die Subtraktion als Umkehrung der Addi¬
tion .

Beispiel :
Auf einer Straßenkarte ist die Entfernung München - Nürnberg mit
162 km und die Teilstrecke München - Ingolstadt mit 73 km angegeben .
Wie lang ist dann die Strecke von Ingolstadt nach Nürnberg ?
Bezeichnet man sie mit xkm , so ist x die Lösung der Gleichung
73 + x = 162 , also x = 162 — 73 = 89 .
Die Strecke Ingolstadt - Nürnberg ist somit 89 km lang .

Das Beispiel zeigt deutlich den Zusammenhang zwischen der Differenz
162 — 73 und der Gleichung 73 + x = 162 : die Differenz ist die Lösung der
Gleichung. Ganz allgemein legt man fest :

3,2 + | - 3,2 |
I ( 3) + 41
| ( - 5£) + | - 2£

Definition 54 . 1 : Unter der Differenz b — a versteht man die Lösung der
Gleichung a + x = b .

b — a ist also diejenige Zahl , die man zu a addieren muß , um b zu erhalten .
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Nach dieser Definition hat eine Differenz b — a nur dann einen Sinn , wenn die
entsprechende Gleichung a + x = b genau eine Lösung besitzt . In der Zahlen¬
menge Q>o war dies nur unter der Voraussetzung a ^ b der Fall . Für a > b war
die Gleichung unlösbar , somit die Subtraktion b — a nicht ausführbar . Hat
sich daran durch die Einführung der negativen Zahlen etwas geändert ? Ist in
der Zahlenmenge <Q die Subtraktion immer durchführbar ?
Um diese wichtige Frage zu klären , betrachten wir als Beispiel zunächst eine
Gleichung , die in Qq keine Lösung hat :

Beispiel :
7 k

7 + x = 3 o ^ 3 f
7 X

Abb. 55 . 1 Zur Gleichung 7 + x = 3

Die Pfeildarstellung zeigt , daß es genau eine Zahl x gibt , die man zu 7
addieren muß , um 3 zu erhalten . Sie wird durch den von 7 nach 3 zeigen¬
den Pfeil dargestellt . Man erkennt leicht , daß es die Zahl — 4 ist .
Es gilt also : 1 + x = 3 hat die Lösung x — 3 — 7 = — 4 .

Das in diesem Beispiel angewandte Verfahren läßt sich auf jede Gleichung der
Form a + x = b übertragen : Man stellt a und b durch vom Nullpunkt der
Zahlengeraden ausgehende Pfeile dar . Dann gibt es genau einen Pfeil x , der
von der Spitze des Pfeils a zur Spitze des Pfeils b führt ; er stellt die einzige
Lösung der Gleichung dar . Die Abbildung 55 .2 zeigt einige typische Fälle .

X

' o

- ■- ►
X

4-^—
i- r- 0 X

Abb . 55 .2 Zur Gleichung a + x = b
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Damit gilt folgender

Satz 56 . 1 : Die Gleichung a + x = b hat in der Menge G der rationalen
Zahlen stets genau eine Lösung .

Da man die Lösung der Gleichung a + x = b durch die Differenz b — a aus¬
drückt (siehe Definition 54 . 1 ) und diese also für beliebige a , beQ definiert ist,
gilt weiter der wichtige

Satz 56.2 : In der Menge Q der rationalen Zahlen ist die Subtraktion
unbeschränkt ausführbar .

Durch die Einführung der negativen Zahlen ist es uns also gelungen , die früher
bei der Subtraktion notwendigen Beschränkungen aufzuheben !

Ein wichtiger Sonderfall der Gleichung a + x = b ergibt sich für b = 0 . In
diesem Fall , also für die Gleichung a + x = 0 , lautet die Lösung : x = 0 — a.
Bei dieser Differenz handelt es sich aber , wie Abbildung 56 . 1 zeigt , um die uns
schon bekannte Gegenzahl von a , also x = — a .

Abb . 56 . 1 Die Gleichung a + x = 0

Damit gilt

Satz 56.3 : Die Differenz 0 - a ist die Gegenzahl von a .
0 — a = — a

Man kann nun also — a auch als Kurzschreibweise für die Differenz 0 — a
auffassen . Analog dazu kann man + a als Kurzform für die Summe 0 + a
verstehen .
Die schon in Satz 49 .2 aufgetretene Gleichung a + ( — a) = 0 kann nun auch
folgendermaßen gedeutet werden : Zu jeder Zahl a e Q gibt es eine zweite Zahl
(nämlich — a) , so daß die Summe dieser Zahlen das neutrale Element der
Addition , also 0 , ist . Man sagt dazu auch : »Die beiden Zahlen heben sich beim
Addieren gegenseitig auf .« In der Mathematik bezeichnet man solche Zahlen
als zueinander invers * bezüglich der Addition.

inversus (lat .) = umgekehrt
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Satz 57 . 1 : Zu jeder rationalen Zahl a gibt es genau eine Inverse bezüg¬
lich der Addition , nämlich die Gegenzahl - a .

Dieser Satz stellt ein weiteres Rechengesetz der Addition dar , das als »Exi¬
stenz des Inversen « bezeichnet wird . Wir verwenden dafür die Abkürzung (I) .
Damit haben wir für die Addition in G> fünf Rechengesetze :

(E) , (K ) , (A) , (N ) , (I) .

Wir betrachten noch einmal die Pfeildarstellung der Differenz b — a (Abbil¬
dung 57. 1 ) .

- a
— ►

!a
— ►b

o | b

— - 414 —

Abb. 57 . 1 Pfeildarstellung der Differenz

Offensichtlich erhält man den Pfeil b — a auch dadurch , daß man an den
Pfeil b den Pfeil — a ansetzt , also die Pfeilsumme b + ( ~ a) bildet ! Ob das
allgemeingültig ist , können wir durch Rechnen überprüfen . Da b — a die
Lösung der Gleichung a + x = b ist , rechnen wir nach , ob auch b + ( — ä)
diese Gleichung erfüllt :
a + (b + ( - a)) = a + (( - a) + b) = (a + ( - a)) + b = 0 + b = b ,
also a + (b + ( — a)) = b .
Damit ist gezeigt , daß die Lösung der Gleichung a + x = b , für die wir in
Definition 54 . 1 die Differenzschreibweise x = b — a vereinbart haben , auch
in der Form x = b + { — a) geschrieben werden kann . Da die Gleichung nur
eine einzige Lösung besitzt , kann es sich bei b — a und b + ( — d) nur um
verschiedene Darstellungen derselben Zahl handeln ! Es gilt also :

Satz 57 .2 : b — a = b + ( — a)
Das heißt : Das Subtrahieren einer Zahl ist gleichbedeutend
mit dem Addieren ihrer Gegenzahl .

Mit diesem Satz kann man jede Differenz in eine Summe , jede Subtraktion in
eine Addition umwandeln ! Das ist deshalb von großer praktischer Bedeutung ,
weil wir das Addieren in der Zahlenmenge Q bereits gut beherrschen - und
damit nun auch schon das Subtrahieren .
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Beispiele:
1) 5 - 11 = 5 + ( — 11) = — (11 — 5) = — 6 .
2) ( - 2,17) - 8,05 = ( - 2,17) + ( - 8,05 ) = - (2,17 + 8,05 ) = - 10,22 .
3) ( - 6£ ) - ( - 9^ ) = ( - 6& ) + ( - ( - 9^ )) = ( - 6&) + 9J _ =

= + (^ 20 — 6yif) = = 3 Y2 -

Aufgaben

1 . Berechne folgende Differenzen :
a) 99 - 1000 b) ( — 99) — 1000 c) ( - 99) - ( - 1000)
d) 5,2 - 7,9 e) ( - 16,45 ) - ( - 17,5 ) f ) ( - 0,625) - 0,625
g) U ~ i h) 2f - ( - 5 | ) i) ( - 10*?) - ( - 7,2)

2 . a) Beschreibe für die im folgenden angegebenen Fälle , wie man das Vor¬
zeichen und den Betrag der Differenz a — b aus den Vorzeichen und
Beträgen von Minuend a und Subtrahend b erhält . (Vergleiche dazu die
entsprechende Untersuchung auf Seite 48 für die Summe a + b . ) Ferti¬
ge jeweils eine Pfeilskizze an .
1 . Fall : a positiv und b negativ
2 . Fall : a negativ und b positiv
3 . Fall : a und b positiv und \ a \ > \ b \
4 . Fall : a und b positiv und \ a \ < 1* 1
5 . Fall : a und b negativ und \ a \ > \ b \
6 . Fall : a und b negativ und \ a \ < \ b \

b) Formuliere nun einen dem Satz 49 . 1 entsprechenden Satz für die Sub¬
traktion .

3 . Schreibe nach Definition 54 . 1 die Lösung der Gleichung als Differenz und
berechne sie .
a) 3 + x = 1 b) — 3 + x = 1 c) 3 + x = — 1
d) — 3 + x = — 1 e) x + 2,7 = 1,5 f) x + ( - 2,7 ) = 1,5
g) x + 2,7 = — 1,5 h) x + ( - 2,7) = - 1,5 i) 5* = x + 8*
k) 2* - 4^ = 9* + x 1) 231,77 + 378,29 = - 167,71 + x

4 . Berechne :
a) 21 - ( 17 + 14) b) ( - 123) - (213 - 321)
c) ( - 76) - ( 18 + 58) d) ( - 51,6 ) + (34,9 - ( - 17,7 ))
e) (( — 15*f ) + 81f) — 100 f) 13,25 - (2| - ( - lf ))

5 . Berechne :
a) (365 - 640 ) + (575 - 700)
b) (62,8 - 20,25) - (32,08 + 10,47 )
c) (( - 0,216) + 0,173 ) - (17,3 - 21,6)
d) (16 - 12£ ) - (8,75 + ( - 3£))
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• 6 . Bestimme die Lösung einer Gleichung vom Typ x — a = b , indem du x — a
als Summe schreibst und Definition 54 . 1 anwendest ,
a) x — 5 = — 3 b) x — 22 = 29,3
c) x - 2i = 3^ - 6i d) 5£ - 14i = x - 8|
e) 33 - (17 + 48) = x - 25 f) x - (3^ + 8& ) = 4^ -

• 7 . Bestimme die Lösung einer Gleichung vom Typ a — x = b , indem du a — x
als Summe schreibst und nach Definition 54 . 1 zuerst — x berechnest ,
a) 10 — x = 20 b) 3^ — x = 5|
c) 6,92 - x = 2,17 - (0,25 - 4,5) d) 4£ + 3£ = 7| - x

8 . Während eines Wintertages wurde im Abstand von je 3 Stunden die Tem¬
peratur abgelesen und notiert :
Uhrzeit 0 h 3 h 6h 9h 12 h 15 h 18 h 21 h 24h

Temperatur
in °C

- 9,5 - 10,7 - 11,8 - 5,6 2,7 2,1 - 2,1 - 5,8 - 7,3

a) Berechne die Temperaturänderungzwischen je zwei aufeinanderfol¬
genden Ablesungen .

b) In welchem dieser Zeitabschnitte war die Temperaturabnahme, in wel¬
chem die Temperaturzunahme am größten ?

9 . Gase werden bei sehr tiefen Temperaturen flüssig , z . B . Sauerstoff bei
— 183 °C und Helium bei — 269 ° C . Um wieviel Grad muß man Helium ,
das mit flüssigem Sauerstoff vorgekühlt wurde , noch weiter abkühlen , um
es zu verflüssigen?

10 . Wenn man Quecksilber abkühlt, erstarrt es bei einer Temperatur von
— 59 °C . Um wieviel Grad muß sich Quecksilber , das die Temperatur von
flüssigem Sauerstoff ( — 183 °C) hat , erwärmen , damit es wieder flüssig
wird?

11 . Auf das Bankkonto des Herrn Knapp wurde am Monatsersten sein Ge¬
halt in Höhe von 3275 DM überwiesen . Am gleichen Tag wurden 840 DM
als Monatsmiete abgebucht . Danach betrug sein Guthaben 2361,42 DM .
Wie hoch war der Kontostand vor den beiden Buchungen ?

12 . Auf einer Reise durch den Westen der USA übernachtetFamilie Brown im
berühmten Death Valley (California ) . Am nächsten Tag fahren sie weiter
nach NW in die Sierra Nevada und erreichen dabei am Tioga -Paß (Mee¬
reshöhe 3031 ) den höchsten Punkt . Herr Brown stellt fest , daß sie damit an
diesem Tag einen Höhenunterschied von 3116 m überwunden haben . Auf
welcher Meereshöhe liegt demnach der tiefste Punkt des Death Valley
( = tiefster Punkt in den USA !)?
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2 .5 Anordnung der rationalen Zahlen

2 .5 . 1 Definition der Anordnung in <Q>
Für je zwei Zahlen p und q aus der Menge Q rj ist die folgende Aussage richtig :
Entweder gilt p = q , gelesen »p ist gleich q« ,
oder es gilt p < q , gelesen »p ist kleiner als q« ,
oder es gilt p > q , gelesen »p ist größer als q« .
Man sagt deshalb : »Die Zahlenmenge (Qq ist angeordnet . « Die Aussagen
p < q oder p > q nannte 1838 der Gymnasialdirektor Johann Heinrich Trau¬
gott Müller (1797- 1862 ) in seinem Lehrbuch der Mathematik für Gymnasien
und Realschulen Ungleichungen.
Das Zeichen = wurde von dem Engländer Robert Record (e) (1510 (?)—1558 ) erfun¬
den . In seinem The whetstone of witte (Der Schleifstein des Denkens ) schreibt er 1557 :
»And to avoid the tedious repetition of these words >is equal to <I will set [ . . . ] a pair of
parallels , or twin lines of one length , thus : = , because no 2 things can be more
equal .« - Zeichen der Gleichheit nannte es 1791 Johann Heinrich Voigt (1751 - 1823 ) .
Die Zeichen < und > erscheinen zum ersten Mal in der postum 1631 gedruckten Artis
analyticae praxis ad aequationes algebraicas resolvendas des Engländers Thomas Har -
riot (1560 - 1621) . Der Herausgeber , Walter Warner , gab Harriots handschriftlichen
Zeichen < bzw. > diese einfache Form .
Wir wollen nun versuchen , die Anordnung in Qq auf die größere Menge Ü der
rationalen Zahlen auszudehnen . Dazu müssen wir auch für die neu hinzuge¬
kommenen negativen Zahlen die Verwendung der Zeichen < und > sinnvoll
festlegen . Da in Qq die Ungleichung p < q bedeutet , daß auf dem Zahlen¬
strahl der Punkt p links vom Punkt q liegt , bietet es sich an , zu vereinbaren ,
daß auch für zwei Zahlen a und b aus Q die Beziehung a < b genau dann
gelten soll , wenn auf der Zahlengeraden der Punkt a links vom Punkt b liegt
(Abbildung 60 . 1 ) . Damit müßte z . B . - 20 < — 1 oder — 500 < 0 oder
— 2 < 0,2 gelten ! Deutet man die Zahlen etwa als Angaben über Temperatu¬
ren oder Kontostände , so erkennt man , daß solche Ungleichungen durchaus
sinnvoll sind .

Definition 60 . 1 : Für zwei rationale Zahlen a und b gilt a < b genau
dann , wenn auf der Zahlengeraden der Punkt a links
vom Punkt b liegt.
Statt a < b schreibt man auch b > a.

4L + 4L
a bO ä Ob Oa

Abb . 60 . 1 Veranschaulichung von a < b
Aus Deünition 60 . 1 folgt , daß nun auch in der Menge Q für je zwei Zahlen a , b
die Aussage zutrifft :

Es gilt entweder a = b oder a < b oder a > b .
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Auf Grund der Anordnung auf der Zahlengeraden bestehen zwischen den
negativen Zahlen , der Zahl null und den positiven Zahlen die folgenden Bezie¬
hungen :

Satz 61 . 1 : 1 . Jede positive Zahl ist größer als 0 .
2 . Jede negative Zahl ist kleiner als 0 .
3 . Jede negative Zahl ist kleiner als jede positive .

Wegen Teil 1 und 2 dieses Satzes können wir die Aussagen »a ist positiv « bzw.
»a ist negativ « kürzer durch die Ungleichungen a > 0 bzw . a < 0 beschreiben .

Wie die Abbildung 60 . 1 zeigt , ist im Fall a < b der Pfeil von a nach b stets
rechtsgerichtet ; er stellt also eine positive Zahl p dar . p ist diejenige Zahl , die
man zu a addieren muß , um b zu erhalten , also die Differenz b — a . Da umge¬
kehrt für eine Zahl p > 0 zur Summe a + /; immer ein rechts von a liegender
Punkt der Zahlengeraden gehört , gilt

Satz 61 .2 : a < b gilt genau dann, wenn es eine positive Zahl p gibt, so
daß a + p = b .

Beispiele:

1) - 20 < - 1 ; denn - 20 + 19 = - l .
2) — 500 < 0 ; denn - 500 + 500 = 0 .
3) - 2 < 0,2; denn - 2 + 2,2 = 0,2 .
4) f < f ; denn f + M = t -

2 .5 .2 Monotoniegesetz der Addition

Wir wissen : Wenn man zwei gleiche Zahlen a und b hat und zu jeder dieselbe
Zahl c addiert , erhält man auch gleiche Summen . Das heißt , aus a = b folgt
stets a + c = b + c .

Beispiel * : 2 + 3 = 5 => (2 + 3) + 8 = 5 + 8

Welche Beziehung besteht aber zwischen a + c und b + c , wenn a und b ver¬
schiedene Zahlen sind , wenn z . B . a < b gilt?

C C C c

_ I
— ju -ü — *= !-

a a +c b b +c a + c a btc b

Abb . 61 . 1 Zum Monotoniegesetz der Addition

Den Folgepfeil => liest man daraus folgt .
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Wie Abbildung 61 . 1 zeigt , gilt mit a < b stets auch a + c < b + c , und zwar
unabhängig davon , ob c > 0 oder c < 0 oder c = 0 gewählt wird . Die Addi¬
tion von c verschiebt jeden der Punkte a und b auf der Zahlengeraden um
den Pfeil c . Dabei bleibt ihre Reihenfolge und sogar ihre Entfernung erhalten .
Daß umgekehrt aus a + c < b + c auch wieder die Ungleichung a < b folgt ,
erkennt man , indem man auf beiden Seiten — c addiert . Damit gilt

Satz 62 . 1 : Monotoniegesetz der Addition
Addiert man auf beiden Seiten einer Ungleichung dieselbe
Zahl , so bleibt das Ungleichheitszeichen erhalten ; kurz :

a < b o a + c < b + c

Ein entsprechendes Monotoniegesetz gilt auch für die Subtraktion , denn man
kann ja nach Satz 57 .2 jede Differenz auch als Summe schreiben . Durchfüh¬
rung in Aufgabe 63/3.
Das Monotoniegesetz der Addition wendet man gerne an , um festzustellen , ob
eine Ungleichung zutrifft oder nicht .

Beispiele:
1 ) — 36 < — 6 <f> — 36 + 6 < — 6 + 6 o — 30 < 0
2) — 36 < — 6 o — 36 + 36 < — 6 + 36 o - 0 < 30
3) - 36 < - 6o - 36 + 21 < - 6 + 21 o - 15 < 15
4) 2,25 > <=> 2,25 —

2^ > fo ~ 20 ^ 2,25 - 0,35 > fg 1,9 > 2 ( !)
5) 2,25 > o 2,25 - 2,25 > - 2,25 o 0 > 2,35 - 2,25 0 > 0,1 ( !)

Die Beispiele 1 , 2 und 5 zeigen, wie man durch Anwendung des Monotoniege¬
setzes der Addition bzw . Subtraktion eine Ungleichung auf »Nullform « brin¬
gen , d . h . auf einer Seite der Ungleichung die Zahl 0 herstellen kann . An einer
solchen Nullform erkennt man besonders leicht , ob die Ungleichung wahr
oder falsch ist .

Aufgaben

1 . Stelle aus den Zahlen der folgenden Paare mit einem der Zeichen = , < , >
eine richtige Gleichung bzw . Ungleichung her .
a) 0 ; 0,1 b) 3 ; — 1 c) — 5,6 ; — 6,5 d) - & - 0,35
e) - 25 ; 0 f) - 0,99; 0,01 g) - & & h) - g ;
i) — 3 ; — 1 k) — 1,4 ; j 1) 10 ; - 100 m) - 57 ; - 75

2 . Unter den folgenden Ungleichungen sind einige falsch ! Welche?
a) 1,65 < 2 b) - 1,65 < - 2
c) 2^ > 0,56 d) — ü < — 0,56
e) 1 - 2,75 > - 2,25 f) - 1,3 - 2,45 < - 4 + 0,75
g) 3,5 - (2i + 0,625) + ( lf - | ) - 0,875
h) 0,5 - (f + i ) + l,2
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3 . Zum Monotoniegesetz der Subtraktion
a) Fasse folgenden Satz in Worte und begründe ihn :

Für alle a , b , c e 0 gilt : a < b => a — c < b — c .
b) Begründe: Für alle a,b,deO gilt: a — d < b - d => a < b .

4 . Stelle bei den folgenden Ungleichungen ihre beiden Nullformen her und
entscheide , ob die Ungleichungen wahr oder falsch sind .
a) 9,99 < 9,999 b) - 1,001 < - 1,01
c) 1,85 > ^ d) - % > - £
e) 1,5 — ^ < lii f) 16,l - ü > 18| - 3^

5 . Auch für Ungleichungen der Form a =f= b gilt das Monotoniegesetz der
Addition : a ^ b o a + c 4= b + c .
a) Gib zu diesem Monotoniegesetz drei Beispiele an .
b) Begründe dieses Monotoniegesetz .

6 . Wenn man bei zwei Ungleichungen a < b und c < d die Zahlen links vom
Ungleichheitszeichen sowie die Zahlen rechts davon addiert und das Un -
gleichheitszeichen beibehält , so entsteht wieder eine richtige Ungleichung .
Kurz :
aus a < b
und c < d folgt a + c < b + d .

a) Prüfe diese Behauptung an drei Zahlenbeispielen.
• b) Beweise die obige Behauptung, indem du bei a < b auf beiden Seiten c

und bei c < d auf beiden Seiten b addierst und die erhaltenen Unglei¬
chungen miteinander vergleichst . Mache dir die Zusammenhänge auch
an der Zahlengeraden klar .

• c) An der Ungleichung 3 + 97 < 1 + 100 erkennt man, daß der in b) be¬
wiesene Satz nicht umkehrbar ist . Begründe dies und gib ein weiteres
Gegenbeispiel an .

2 .6 Multiplikation und Division von rationalen Zahlen

2 .6 . 1 Definition der Multiplikation in Q

In der Menge der rationalen Zahlen beherrschen wir bis jetzt erst das Addieren
und das Subtrahieren . Zwar wissen wir auch , wie Zahlen aus der Menge Qd
miteinander multipliziert werden , aber wir kennen noch keine Produkte mit
negativen Faktoren . Was soll z . B . 3 - ( — 4) oder ( — 2,4) - f oder gar
( — 3,4) • ( — 5,1 ) bedeuten ?
Zunächst eine Bemerkung zur Schreibweise : Auch bei Produkten ist es sehr
wichtig , zwischen Vorzeichen und Rechenzeichen genau zu unterscheiden . Ein
Faktor mit Vorzeichen muß , wie die Beispiele zeigen, in Klammern gesetzt
werden .
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Produkte mit negativen Faktoren müssen wir also erst noch definieren . Natür¬
lich versuchen wir wieder , es so einzurichten , daß für die Multiplikation in Q
die Rechengesetze erhalten bleiben , die uns für die Multiplikation in 0>o ge¬
läufig sind (Permanenzprinzip , vgl . Seite 38) . Zur Wiederholung stellen wir
diese Rechengesetze hier zusammen :

Rechengesetze der Multiplikation in Qq
Für alle Zahlen a , b , c aus Q>o gilt :
(E) a • b ist wieder eine Zahl aus <Q>(} eindeutige Existenz des

Produkts

(K) a • b = b • a Kommutativgesetz der
Multiplikation

(A) II Assoziativgesetz der Multipli¬
kation

(N) a • 1 = a 1 ist neutrales Element der
Multiplikation

Produkte traten erstmals beim Rechnen mit natürlichen Zahlen auf . Sie wur¬
den dort als Kurzschreibweise für Summen mit gleichen Summanden einge¬
führt ; z . B . gilt : 3 - 4 = 4 + 4 + 4 . Deshalb liegt es nahe , ein Produkt wie
3 • ( — 4) ebenfalls als abgekürzte Schreibweise für eine Summe aufzufassen ,
nämlich als 3 • ( — 4) = ( — 4) + ( — 4) + ( — 4) . Die rechts vom Gleichheitszei¬
chen stehende Summe können wir berechnen ! Wir erhalten so 3 • ( - 4) =
= — 12 , wofür man wegen 12 = 3 - 4 auch schreiben kann :

3 - ( - 4) = - (3 * 4)
Das sieht nach einer sehr einfachen Regel aus ! Man kann sie offenbar immer
dann anwenden , wenn der erste Faktor eine natürliche Zahl und größer als 1
ist .

Beispiele :
1 ) 5 • ( - 0,7) = ( - 0,7) + ( - 0,7) + ( - 0,7) + ( - 0,7) + ( - 0,7) =

= - 3,5 = - (5 • 0,7)
2) 2 - ( — 3f) = ( — 3i ) + ( - 3f) = — 6f = — (2 - 3 §)

Ein Produkt wie 3,4 • ( — 5,1 ) , bei dem der erste Faktor zwar wieder positiv ,
jedoch nicht ganzzahlig ist , kann nicht mehr als Summe gedeutet werden .
Wohl aber ist es auch hier möglich , den Term - (3,4 ■ 5,1 ) zu berechnen . Der
Vergleich mit den obigen Beispielen legt nahe , zu vereinbaren , daß
3,4 • ( — 5,1 ) = — (3,4 • 5,1 ) gelten soll . Dieses Verfahren läßt sich auf alle Pro¬
dukte mit positivem ersten und negativem zweiten Faktor anwenden . Wir
erhalten so
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Definition 65 . 1 : Für das Produkt aus einer positiven Zahl p und einer
negativen Zahl — q soll gelten :

p - ( - q ) = ~ ( p - q )

Beachte , daß in dieser Definition (und auch im folgenden ) die Variablen p und
q positive Zahlen vertreten !
Vertauscht man im Beispiel 3,4 • ( — 5,1 ) die Reihenfolge der Faktoren , so
erhält man ein Produkt , bei dem der erste Faktor negativ , der zweite po¬
sitiv ist . Natürlich soll , da wir ja das Kommutativgesetz retten wollen , die¬
ses Produkt denselben Wert wie 3,4 - ( — 5,1 ) erhalten ! Es soll also gelten :
( — 5,1 ) • 3,4 = 3,4 • ( — 5,1 ) = — (3,4 • 5,1 ) bzw . , da man die positiven Fakto¬
ren in der letzten Klammer vertauschen darf :

( - 5,1) - 3,4 = - (5,1 - 3,4)
Die Verallgemeinerung dieser Überlegung führt zu

Definition 65 .2 : Für das Produkt aus einer negativen Zahl - p und einer
positiven Zahl q soll gelten :

( ~ p) - q = - (p - q)

Die beiden in den Definitionen 65 . 1 und 65 .2 enthaltenen Regeln lassen sich so
zusammenfassen : Man erhält das Produkt aus einer positiven und einer nega¬
tiven Zahl , indem man das Minuszeichen des negativen Faktors vor das Pro¬
dukt der beiden Beträge setzt .
Wenn wir nun weiter überlegen , wie man ein Produkt aus zwei negativen
Faktoren , z . B . ( - 3,4) • ( — 5,1 ) , definieren soll , so liegt es nahe , die Regeln in
den Definitionen 65 . 1 und 65 .2 versuchsweise auch jetzt zu benützen , also das
»Herausziehen des Minuszeichens « auch in diesem Fall anzuwenden (Per¬
manenzprinzip !) . Damit erhält man :

( — 3,4) ■ ( — 5,1 ) = — (( — 3,4) • 5,1 ) = (Anwendung von Def . 65 . 1 auch bei
negativem 1 . Faktor !)

= - ( - (3,4 • 5,1 )) = (nach Def . 65 .2)
= 3,4 • 5,1 (nach Satz 42 . 1 )

Die Verallgemeinerung dieses Vorgehens würde also folgende Regel ergeben :
( - P) ' ( — q) = P ' q für p > 0 und q > 0 .
Demnach müßte das Produkt zweier negativer Zahlen positiv sein ! Das mag
auf den ersten Blick überraschen . Sinnvoll erscheint aber jedenfalls , daß , wie
in den vorausgehenden Fällen , der Betrag des Produktes wieder den Wert p ■ q
haben soll . Dann kann das Produkt selbst aber nur p ■ q oder — (p ■ q) sein.
Der Produktwert — (p ■ q) ergab sich aber bereits in den Fällen p • ( — q) und
( - /?) • q , von denen sich ( ~ p ) • ( - q) doch sicherlich unterscheiden sollte .
Das spricht wieder für das Ergebnis p ■ q , also für
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Definition 66 . 1 : Für das Produkt zweier negativer Zahlen - p und - q
soll gelten :

( — p) • ( — «) = p - q

Der jetzt noch verbleibende Fall , daß eine negative Zahl mit 0 multipliziert
werden soll , bereitet uns wenig Mühe . Natürlich soll ein solches Produkt wie¬
der den Wert 0 haben :

Definition 66 .2 : Für das Produkt einer negativen Zahl — p mit der Zahl
0 soll gelten :

( - p) - 0 = 0 - ( - p) = 0

Nunmehr sind wir in der Lage , das Produkt zweier beliebiger rationaler Zah¬
len zu berechnen . Die dafür geltenden Regeln kann man so zusammenfassen :

Satz 66.1 : Zwei rationale Zahlen mit gleichen Vorzeichenwerden multi¬
pliziert , indem man ihre Beträge multipliziert .
Zwei rationale Zahlen mit verschiedenen Vorzeichen werden
multipliziert , indem man das Produkt ihrer Beträge bildet
und ihm das negative Vorzeichen gibt .
Ein Produkt mit dem Faktor 0 hat den Wert 0 .

Beispiele:
1 ) 4 - ( - 5) = - (4 - 5) = - 20
2) ( - 3) - 17 = - (3 - 17) = - 51
3) ( — 1 ) ( — 1 ) = 11 = 1
4) ( - 8) - ( - 7,5 ) = 8 - 7,5 = 60
5) 2,5 - ( - 3,7 ) = - (2,5 - 3,7) = - 9,25
6) ( - ! ) - li = - (| - li ) = - (| - ^ ) = - f
7) ( — 100000) - 0 = 0

Wichtige Sonderfälle von Produkten sind solche aus zwei gleichen Faktoren ,
also die Quadrate * rationaler Zahlen : a - a = a2 .

Beispiele:
1) 4 2 = 16; 2) ( — 4) 2 = ( — 4) - ( — 4) = 4 - 4 = 16
3) 0 2 = 0 ; 4) ( — 1,2) 2 = ( — 1,2) • ( — 1,2) = 1,2 • 1,2 = 1,44

* Das Produkt einer Zahl mit sich selbst nannten die Griechen - so belegt bei Euklid , 8 . Buch der Elemente -
TSTpäymvoi; [dpt3göi ;] (teträgonos [arithmös ] ) = viereckig [e Zahl ] , da sie den Inhalt des TETpaycovov
[a '/fjpa ] (teträgonon [ s-chema ] ) = viereckig [e Figur ] angab , falls diese Figur gleichseitig rechtwinklig ist .
Uber das lateinische quadratus — viereckig entstand das deutsche Quadrat .
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Auf Grund dieser Beispiele vermuten wir die Gültigkeit von

Satz 67 . 1 : Das Quadrat einer von 0 verschiedenen rationalen Zahl ist
positiv . Das Quadrat von 0 ist 0 . Kurz :

fl + 0 => a 2 > 0 und 0 2 = 0

Der Beweis ergibt sich unmittelbar aus Satz 66 . 1 (vgl . Aufgabe 69/2 ) .

2 .6 .2 Eigenschaften der Multiplikation in <Q
Es war unser Ziel , die Multiplikation in Q so zu definieren , daß die auf Seite 64
zusammengestellten Rechengesetze gültig bleiben . Ob uns das gelungen ist ,
muß nun geprüft werden .

1) Existenz des Produkts : Mit Hilfe der Definitionen in 2 .6 . 1 bzw . nach Satz
66 . 1 kann man zwei rationale Zahlen stets miteinander multiplizieren . Das
Ergebnis ist wieder eine Zahl aus Q . Damit bleibt (E) in <Q gültig .

2) Kommutativgesetz der Multiplikation : Hier muß untersucht werden , ob die
Gleichung a ■b = b ■ a für beliebige rationale Zahlen gilt . Bei den hierzu
notwendigen Fallunterscheidungen verwenden wir wieder p und q als Zei¬
chen für positive Zahlen .
1 . Fall : a > 0 und b > 0

Dann gilt , wie schon bekannt , a - b = b ■ a ((K) in Qq ) •
2 . Fall : a > 0 und b < 0

Wir setzen a = p , b = — q \ dann gilt
a - b = p • ( — q) = — (p ■ q) = (Definition 65 . 1 )

= - {q - p ) = ((K) in G>o )
= ( — q) ■p = (Definition 65 .2)
= b ■ a .

3 . Fall : a < 0 und b > 0
Wir setzen a = — p und b = q ; dann gilt
a ■ b = { - p ) ■ q = ~ (p ■ q ) = (Definition 65 .2)

= - {q - p ) = ((K) in Qq )
= q ■ ( — p ) = (Definition 65 . 1 )
= b ■ a .

4 . Fall : a < 0 und b < 0
Wir setzen a = — p und b = — q ; dann gilt
a - b = ( ~ p ) - ( - q) = p - q = (Definition 66 . 1 )

= q - p = ((K) in Qq )
= ( — q ) ■ { - p ) = (Definition 66 . 1 )
= b ■ a .
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5 . Fall : a = 0 oder b = 0
Dann gilt a ■ b = 0 = b ■ a (Satz 66 . 1 )

Damit ist nachgewiesen , daß in jedem Fall a - b = b ■ a gilt . Also bleibt (K)
für die Multiplikation in <0 gültig .

3) Assoziativgesetz der Multiplikation: Gilt (a ■ b) ■ c = a ■ (b ■ c) für
beliebige rationale Zahlen a , b , c ?
1 ) Wenn mindestens einer der drei Faktoren 0 ist , gilt nach Satz 66 . 1 :

(a ■ b) ■ c = 0 = a ■ (b ■ c) .
2) Wenn keiner der drei Faktoren 0 ist , bestehen folgende acht Möglichkei¬

ten :

1 . Fall 2 . Fall 3 . Fall 4 . Fall 5 . Fall 6 . Fall 7 . Fall 8 . Fall

a pos . pos . pos . pos . neg. neg. neg. neg.

b pos . pos . neg. neg. pos . pos . neg. neg.

c pos . neg. pos . neg. pos . neg. pos . neg.

Im 1 . Fall gehören alle drei Faktoren zur Menge <Q +
, in welcher (A) gilt .

Als Muster für die Überprüfung der übrigen Fälle soll hier nur der
6 . Fall untersucht werden :
6 . Fall : a < 0 , b > 0 und c < 0

Wir setzen a = — p , b = q und c = — r , mit p , q , r aus G>+ .
Dann gilt :
(a - b) - c = (( ~ p ) ■ q ) ■ ( - r) = ( - (pq )) ■ ( - r) = (Definition 65 .2)

= (pq ) r . (Definition 66 . 1 )
a - (b ■ c) = ( - p ) ■ (q ■ ( - r)) = ( — p ) ■ ( - (qr)) = (Definition 65 . 1 )

= p {qr) . (Definition 66 . 1 )
Wegen der Gültigkeit von (A) in Q + ist aber (pq ) r = p (qr ) , also gilt
(a ■ b ) ■ c = a ■ (b ■ c) .

Nach derselben Methode kann man auch die übrigen Fälle untersuchen
(vgl . Aufgabe 70/4) . Dabei zeigt sich , daß (A) für die Multiplikation in <0
gültig bleibt .

4) Neutrales Element der Multiplikation: Für a < 0 , also a = — p , gilt:
a ■ 1 = ( ~ p ) - 1 = - (p ■ 1 ) = (Definition 65 .2)

= - p = ((N ) in G>+ )
= a .

Daraus folgt , daß 1 auch für die negativen und damit für alle rationalen
Zahlen neutrales Element der Multiplikation ist .
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Damit ist gezeigt :

Satz 69 . 1 : Für die Multiplikation in der Menge G>der rationalenZahlen
gelten wieder die auf Seite 64 zusammengestellten Rechenge¬
setze (E) , (K ) , (A) , (N ) .

Ebenso wie bei dreigliedrigen Summen kann man nun auch bei Produkten mit
drei Faktoren wegen (A) auf Klammern verzichten :

(a ■b) ■ c = a ■ (b ■ c) = a ■ b ■ c .
Mit Hilfe von (K ) erkennt man , daß auch die Reihenfolge der Faktoren belie¬
big verändert werden darf :

Beispiel 1 :
Behauptung : abc = cba
Beweis: abc = (ab ) c = c (ab ) = c (ba) = cba .

Ganz entsprechend läßt sich auch bei Produkten mit mehr als drei Faktoren
zeigen , daß man auf Klammern verzichten kann und daß auch die Reihenfolge
der Faktoren beliebig geändert werden darf .

Beispiel 2:
12,5 • ( - 23,91 ) • 8 = 12,5 ■ (( - 23,91 ) • 8) =

= (( — 23,91 ) ■ 8) - 12,5 =
= ( — 23,91 ) - (8 - 12,5) =
= ( - 23,91 ) - 100 = - 2391 .

Beispiel 2 zeigt , wie man durch die Wahl einer günstigen Reihenfolge der
Faktoren und der Rechenschritte die Berechnung eines Produktes oft verein¬
fachen kann . Achte also stets auf solche Rechenvorteile.

Aufgaben

1 . a) ( - 5) - 24
d) ( - 2,5 ) - 0,28
g) 3^ ‘ ( - 2i )

b) 16 - ( - 30)
e) ( - 17,25 ) - ( - 3,04 )
h) ( - Ä ) ' ( - Ä )

c) ( - 125) - ( - 81 )
f) 0,064 - ( - 6,25 )
i) ( — 8,45 ) • lyg

2 . Beweise Satz 67 . 1 . Unterscheide dabei die Fälle a > 0 , a = 0 und a < 0 .
3 . a) 1,1 2 b) ( - 0,U ) 2 c) ( - 32) 2 d) ( ~ ü ) 2

e) (0,375 - | ) 2 f) (| - 4) 2 g) (f - I ) 2 h) (( - f ) - | ) 2
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4 . Überprüfe das Assoziativgesetz (ab) c = a (bc) nach dem Muster des auf
Seite 68 durchgeführten 6 . Falles
a) für a > 0 , b > 0 , c < 0 (2 . Fall ) ,
b) für a > 0 , b < 0 , c < 0 (4 . Fall) ,
c) für a < 0 , b < 0 , c < 0 (8 . Fall) .

5 . Berechne die folgenden Produkte . Achte dabei auf Rechen vorteile ,
a) 4 • ( — 37) ■| b) ( - 107) - 8 - ( - 25)
c) ( - 0,2) - ( - 6,28 ) - ( - 50) d) ( - 300 ) - lf ■ ( - 0,132)
e) ( - ^ ) - O - ( - M ) f) ( - 2f ) 2 - ( - ü ) - f

6 . Begründe den Satz : Ein Produkt , in dem kein Faktor 0 ist , hat genau dann
einen positiven Wert , wenn die Anzahl der negativen Faktoren gerade ist .

7 . Setze zwischen die folgenden Zahlenterme eines der Zeichen < , = , > so,
daß eine wahre Aussage entsteht . In welchen Beispielen ist dies ohne Rech¬
nung möglich?
a) 7 - ( - 0,02) und 1
c) - 6 und ( — 1 ) • ( — 2) • ( — 3)
e) ( - 0,64) 2 und — 0,64

8 . a) ( 1 ) ■ ( 2) - ( 3 ) • ( 4)
c) ( - 2,5) - ( - 1,6) - 3,25 - ( - 0,5)

b) ( - 12) - ( - 13 ) und 150
d) ( - f ) - ( - M) ’ ( - 9{f ) undO
f) ( —it ) - 4,5 und 5,4 - ( - 0,6)

b) 1 • ( - 2) - 3 - ( - 4)
d) li - lü ( - li ) - l |

9 . Achte bei der Berechnung der folgenden Summen und Differenzen auf die
richtige Reihenfolge der Rechenschritte .
a) ( — 1 ) + ( — 2) • ( — 3) b) ( - 1 ) • ( - 2) - ( - 3 ) - ( - 4)
c) 250 - ( - 0,25 ) - 25 - ( - 0,250) d) ( - 4,56) • ( - 10,5 ) + 6,3 • ( - 7,6 )
e) ( - 8,1) - ff - ( - 0,98 ) - ( - 4) f) ( — i ) - | - ( — f ) + 2 - ( — f ) - f

10 . a) (263 — 298 ) (298 — 263 ) b) (41,5 + ( — 67,75)) - (( — 2,1 ) — 1,9)
c) ( lf - 2j ) ■ 3,5 • (( - lf ) - i ) d) (1 - f ) (2 - f ) (3 - l )

11 . Berechne folgende Absolutbeträge:
a) 15 ( 2) | b) | ( — 8 ) • 91 c) | ( - 17) ( - 3) | d) 124 - 251
e) 10,75 ( — 4) ( — f ) | 0 I ( — 0,75) • 4 • f |
g) | ( — 0,75 ) ( — 4) ( — f ) | h) 19,81 ' ( — tV) • 0 • ( — 3f ) |

12 . Beweise den Satz : Der Betrag des Produktes zweier rationaler Zahlen a
und b ist gleich dem Produkt der Beträge dieser Zahlen , d . h.
\ a - b \ = \ a \ - \ b \ .

13 . Berechne den Wert der folgenden Terme für die angegebenen Einsetzun¬
gen:
a) T {pc) = x 2 + Ax + \ für x = — 5 ( - 2,3 ; 0 ; 2)
b) T(a ; b) = (a + 2b) (a — 2b) für a = 3 ; b = — 1,5 und

für a = — 8,3 ; b = - 3,8
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c) T(x ; y ; z) = xyz - (x - y ) (y ~ z) für x = - 12; y = 4 ; z = 18
und für x = 0,8 ; y = — 1,25 ; z = - 9,65

d) T (a -,b ’
, c) = \ (a - b) - c \ - (\ a \ — \ b - c \) für a = - 22 ; b = - 18 ;

c = 33 und für a = — 14,3 ; b = - 5,8 ; c = — 6,7

2 .6 .3 Division in <Q>

Es kommt häufig vor , daß von einem Produkt der Wert bekannt ist und einer
der Faktoren bestimmt werden muß . Dessen Berechnung führt auf eine Divi¬
sion . Man bezeichnet wegen dieses Zusammenhangs die Division als Umkeh¬
rung der Multiplikation.

Beispiel:
Die Klasse 7a mietet füf einen Ausflug einen Bus . Sie muß dafür
350 DM bezahlen . Welchen Fahrpreis hat jeder der 28 Schüler zu ent¬
richten ?
Wenn wir den Fahrpreis pro Schüler mit x DM bezeichnen , muß gelten :

28 ■ x = 350 ; also x = 350 : 28 = 12,5 .

Jeder Schüler muß also 12,50 DM bezahlen .

Man erkennt an diesem mit Zahlen aus <Q>+ gebildeten Beispiel, daß der Quo¬
tient 350 : 28 die Lösung der Gleichung 28 • x = 350 darstellt . Genau diese
Bedeutung wollen wir nun auch für Quotienten aus beliebigen rationalen Zah¬
len vereinbaren :

Definition 71 . 1 : Unter dem Quotienten b : a der rationalenZahlen b und
a #= 0 versteht man die Lösung der Gleichung a - x = b .

Statt b : a schreibt man auch — .a

b : a ist also diejenige Zahl , mit der man a multiplizieren muß , um b zu
erhalten .
Nach dieser Definition hat ein Quotient b : a nur dann einen Sinn , wenn die
entsprechende Gleichung a - x = b für a 4= 0 genau eine Lösung hat . Wir wis¬
sen schon , daß dies für a e <Q>+ und b e Qq zutrifft . Gilt das aber auch , wenn
a oder b negativ ist? Das läßt sich mit Hilfe einer Fallunterscheidung über¬
prüfen :
1 . Fall : a > 0 und b < 0

Wir setzen a = p und b = — q (p > 0 , q > 0) ; dann gilt:
a - x = 6 <s> p ■ x = — q .
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Falls diese Gleichung eine Lösung x besitzt , muß sie negativ sein . Für sie
gilt also : x = — \ x \ . Damit erhält man :
p . x = - q <s> p ■ ( ~ \ x \) = - q o ~ {p - \ x \) = - q o p - \ x \ = q .
Dies ist nun eine Gleichung mit positiven Zahlen . Sie hat die Lösung

\ x \ = Damit gilt : x = — — .p p

Ergebnis : Die Gleichung p ■x = — q hat die Lösung x = 1
P '

Auf ganz entsprechende Weise kann man auch den 2 . und 3 . Fall untersuchen .
Man findet dabei folgende Ergebnisse :
2 . Fall : a < 0 und b > 0

Die Gleichung ( — p ) - x = q hat die Lösung x = — — .

3 . Fall : a < 0 und b < 0

Die Gleichung ( — p) ■ x = — q hat die Lösung x =

4 . Fall : a < 0 und b = 0
Nach Satz 66 . 1 ist x = 0 eine Lösung der Gleichung a ■ x = 0 . Dies muß
auch die einzige Lösung sein; denn für x > 0 wäre a ■ x < 0 , für x < 0 wäre
a ■ x > 0 .

Damit ist nachgewiesen :

Satz 72 . 1 : Die Gleichung a ■ x = b hat für a =t= 0 in der Menge Q der
rationalen Zahlen stets genau eine Lösung .

Für den Fall a = 0 , d . h . für die Gleichung 0 • x = b , gelten in O dieselben
Feststellungen wie in Qq :
Wenn b =|= 0 , hat die Gleichung 0 ■x = b keine Lösung,
wenn b = 0 , ist jede Zahl eine Lösung.
Daher sind Quotienten mit dem Nenner 0 auch in <0 sinnlos . Damit gilt

Satz 72.2 : In der Menge Q der rationalen Zahlen kann man jede Zahl
durch jede von 0 verschiedene Zahl dividieren .
Aber : Durch 0 kann man nicht dividieren.

Aus den in den ersten drei Fällen berechneten Lösungen der Gleichung
a - x = b und der Quotientendefinition 71 . 1 können wir weitere wichtige Fol¬
gerungen ableiten :

Die Gleichung p ■ x = — q { 1 . Fall ) hat die Lösung x = —1
P

Für diese Lö-
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sung haben wir aber in Definition 71 . 1 die Schreibweise —- vereinbart . Daher

Ganz entsprechend erhalten wir im 2 . und 3 . Fall :
q q — q q- = - und - = — . Damit haben wir Vorzeichenregeln für Quotienten

— pp —pp ®

gewonnen ! Diese entsprechen ganz den Regeln für Produkte , die wir in den
Definitionen 65 . 1 , 65 .2 und 66 . 1 aufgestellt haben .

Satz 73. 1 : Für Quotienten rationaler Zahlen gelten mit p > 0 und q > 0
folgende Vorzeichenregeln :

Z± = 4 <1 - q _ q
P P ’ ~ P P ’ - P P ’

bzw . ( — q ) : p = — (q : p) , q : ( - p ) = - (q : p ) ,
( - q) : ( - p) = q - p

Beispiele:
n - 24 24 _ - 121 121 11 c g .
D 8 — — 8 — ~~ A - 22 — 22 ~ 2 ~ AA

2) 6,25 : ( - 1,25) = - (6,25 : 1,25) = - 5 ;
r 2LW Z_ ■_3_ A . 11 — 1 _
V 1 ll • t lll — 11 • 11 — 11 3 3 ^ 3 ■

Einen wichtigen Sonderfall stellt die Gleichung a ■x = 1 dar . Für a 0 hat
1

sie nach Satz 72 . 1 genau eine Lösung , nämlich x = also den Kehrwert von

1 1
a . Es gilt somit a - - = 1 , d . h . , das Produkt der Zahlen a und - ist gleich

a a
dem neutralen Element der Multiplikation . Daher bezeichnet man diese Zah¬
len als zueinander invers bezüglich der Multiplikation . Es gilt

Satz 73 .2 : Zu jeder von 0 verschiedenen rationalen Zahl a gibt es ge¬
nau eine Inverse bezüglich der Multiplikation , nämlich ihren

1
Kehrwert — .a

Dieser Satz stellt ein weiteres Rechengesetz der Multiplikation dar , das man
als »Existenz des Inversen « bezeichnet und mit (I) abkürzt . Damit kennen wir
für die Multiplikation in <Q die fünf Rechengesetze (E) , (K) , (A) , (N ) , (I) .

Für a 4= 0 hat also der Term a ■ - stets
a

einem Faktor b , so erhält man daher

den Wert 1 . Multipliziert man ihn mit

a - i
a

■ b = 1 • b , also a ■ ■ b = b .
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Eine einfache Umformung der linken Seite liefert die Gleichung

Diese läßt sich nun so deuten :
1

b ■ - ist Lösung der Gleichung a - x = b .a
Da aber diese Gleichung nur eine einzige Lösung hat und wir für diese in

Definition 71 . 1 die Schreibweise - eingeführt haben , müssen - und b ■ -
a a a

lediglich verschiedene Schreibweisen für dieselbe Zahl sein . Daher gilt

Satz 74. 1 : Die Division durch eine Zahl a 4= 0 kann man durch die Mul-
1

tiplikation mit ihrem Kehrwert — ersetzen und umgekehrt ,a
, , b 1d . h . , — = b - — bzw . b : a = b - (l : a) für a =|= 0 .a a

Beispiele:
1 ) ^ = 45 - ^ = 150 ;
3) 126 • = 126 : 21 = 6 ;

2) ( - £ ) : * = ( - £ ) ■! = - * ;
4) ( - 6,6 ) ■£ = ( - 6,6) : 2,2 = - 3 .

Aufgaben

1 . Berechne die folgenden Quotienten :
a) 105 : ( - 15) b) ( - 7) : ( - l )
d) ( - 3,24) : ( - 1,8) e) 1024 : 32
g) 2,7 : ( — 81 ) h) ( - 2,5 ) : ( - 0,35 )

2 . Gib den Wert der folgenden Brüche in möglichst einfacher Lorm an :
5

( ~ i )
2

- l

c) ( - 65) : 125
f) ( - 10,24 ) : 0,064
i) ( - 18 ) : 21,6

a)

e)

b)

f)

- 16
c)

- 35 84
12 - 49 « I44

( - 1 ) 3
/ A\ S g)

- 1
/ A\ -JC\ 1.) < -

?
>

( — 2 )
2 k)

(

( — 2 )
3

16

57

1)
( ~ 3) 2

( — 3) 3 m)
( - 1 ) '
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3 . Berechne :
a) (3 - 5 2

3

) : (20 - 9) b) (| + 0,625) : (| - 0,625)
c) (2| - 5) : 4f d) ( - 104) : (Ü - H)
e) (11 • 25) : (31 - 75) f) (8,5 : ( - f )) : (( - 3,4) • 2,5 )

4 . Berechne den Wert folgender Bruchterme :
16 - 1,2 - 20 3,6 - 2,5 - ( - 1,6)
16 - 1,2 - 20

b)
3,6 + (2,5 - 1,6)

4,3 - 0,72 - ( - 31 ) ^ (10* + 6f ) : (2{f - 6*)

5 . Gib , wenn möglich , zu den folgenden Zahlen die Inversen bezüglich der
Addition und bezüglich der Multiplikation an .
a) 1 b) - 1 c) 0 d) - 0,125
e) * f) - 4,5 g) 0,75 h) - 2£

6 . Begründe den Satz : Es gibt keine rationale Zahl , für welche die Inverse
bezüglich der Addition gleich der Inversen bezüglich der Multiplikation
ist .

7 . Schreibe nach Definition 71 . 1 die Lösung der Gleichung als Quotienten
und berechne sie .

c) x ■( — 38) = — 7,6a) ( - ! ) • * = 17 b) 3x = — 12
d) f - jt = - ^ e) (2 — §) x = 2-f f) x - ( - 2*) = 0,125 - 1,25

8 . Welche Lösungsmengen haben die folgenden Gleichungen ?
a) x - (*1 — 0,8 ) = 1 b) (0,625 : 5 - *) • * = 0

d) (^ — 0,15 ) - x = (^ — 0,15 ) - 7c) * ' (I ~ t) = 4 3
3 4

2 .6 .4 Allgemeine Vorzeichenregeln für Produkte und Quotienten

Die Multiplikation einer Zahl cieQ mit 1 , dem neutralen Element der Multi¬
plikation , bewirkt keine Änderung : a • 1 = a . Was aber erhält man , wenn man
a mit der Gegenzahl von 1 , also mit — 1 , multipliziert ?

Beispiele:
1 ) 7 - ( — 1 ) = — (7 - 1 ) = — 7 ; 2) ( - 1 ) • 0 = - (1 • 0) = - 0 = 0

3) ( - 1 ) - 3,14 = - (1 - 3,14) = - 3,14; 4) ( - 4) ■ ( - 1 ) = 4 ■ 1 = 4

Wie man leicht beweisen kann (vgl . Aufgabe 78/2) gilt

Satz 75.1 : Multipliziert man eine Zahl mit — 1 , so erhält man ihre Ge¬
genzahl .

a - ( - l ) = ( - l ) - a = — a
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Das Interessante an diesem Satz ist , daß man das Bilden der Gegenzahl nun
auch als Multiplikation mit — 1 beschreiben kann . Das ist oft nützlich , z . B .
bei den folgenden Überlegungen :
In der Algebra treten häufig Produkte der Form a ■ ( — b ) , ( — ä) ■ ( — b) usw.
auf , bei denen die Variablen a , b beliebige rationale Zahlen vertreten . Zum
Vereinfachen solcher Produkte darf man daher nicht ohne weiteres die in den
Definitionen 65 . 1 , 65 .2 und 66 . 1 aufgestellten Regeln anwenden , denn die dort
benützten Variablen p , q bedeuten positive Zahlen . Immerhin wäre es denkbar
und wünschenswert (Permanenzprinzip !) , daß diese Regeln auch für beliebige
rationale Zahlen gültig bleiben . Das soll nun untersucht werden :

Beispiel 1 :
a - ( — b) kann man folgendermaßen umformen :
a ■ ( — b ) = a ■ (( — 1 ) • b) = (Satz 75 . 1 )

^ fl - (M - l )) =
= {a - b) { - 1 ) =
= — (a - b) . (Satz 75 . 1 )

Natürlich ist wegen (K) damit auch die Regel ( — a) ■ b = — (a • b) bewie¬
sen.

Beispiel 2:
( — a) - { — b ) kann man so umformen :
( - a) • ( - b ) = ( - a) • (( - 1 ) • b) = (Satz 75 . 1 )

^ (( - «) • ( - ! )) • £ =
= ( — ( — a)) - b = (Satz 75 . 1 )
= a - b . (Satz 42 . 1 )

Nimmt man der Vollständigkeit halber noch die Vereinbarung a - b = ab
hinzu und schreibt , um die Vorzeichen zu betonen , für a , b und ab noch + a,+ b , + ab , so erhält man folgende allgemeingültigen Vorzeichenregeln für
Produkte :

Satz 76. 1 : Für beliebige rationale Zahlen a , b gilt:
( + a) • ( + b) = + ab ( — a) ■ ( — b) = + ab
( + a) • ( — b) = — ab ( — a) • ( + b) = — ab

Diese Vorzeichenregeln prägt man sich am besten in folgender Form ein:

Regel 76 . 1 : ( + ) • ( + ) = + ( - ) • ( - ) = +
( + ) • ( - ) = - ( - ) • ( + ) = -

Man kann nun also auch Produkte mit Variablen , die beliebige Zahlen vertre¬
ten , in gewohnter Weise vereinfachen . Dazu einige
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Beispiele:
1) 5 ( - a) = - 5a ; 2) ( — 2) ( — 3 b) = 66;
3) = xyz ; 4) ( — 2) ( — 0,5) ( — | z) = - | z .

Auch von den in Satz 73 . 1 enthaltenen Vorzeichenregeln für Quotienten , die
dort nur für positive Zahlen p , q bewiesen wurden , kann man zeigen, daß sie
für beliebige rationale Zahlen gelten :

Beispiel:

- = ( - *) • - =
a a

= (( - 1 ) 6) -

= ( - l ) U

= ( - ! ) ' - =
a

_ _ ,6
a

(Satz 74 . 1 )

(Satz 75 . 1 )

(Satz 74 . 1 )

(Satz 75 . 1 )

Auf dieselbe Weise kann man zeigen , daß auch - = - und - = — für
— a a — a a

beliebige Zahlen gilt . Zusammen mit = H— erhält man so
~\ ~ d CI

Satz 77. 1 : Für rationale Zahlen a 4= 0 und b gilt :

+ b b - b _ b +
_
/» _ b

_
~ b b

+ a a ’ — a a ’ — a a ’ + a a

Die entsprechende Merkregel lautet :

Regel 77 . 1 : — = +

Beachte , daß man in diesen Regeln den Bruchstrich auch durch den Doppel¬
punkt als Divisionszeichen ersetzen kann .

Beispiele:

1)
— a a= ~ r

3) 15 : ( — «) =

2)
( ~ x)y C*y) _ xy .

2z '
( - 2z) - (2z)

- (15 : ü) ; 4) ( - 2vw) : ( - xy) = (2vw) : (xy) .
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Aufgaben

1 . Vereinfache durch Anwendung der Vorzeichenregeln für Produkte :
a) ( - 2) - x b) ( - 5) ( - j ) c) ( - z) ( + 2,3)
d) a { - b ) ( + c) e) ( — a) ( — b ) c f) ( + a) ( + b) ( — c)

2 . Beweise die Gleichung a • ( — 1 ) = — a (Satz 75 . 1 ) mit Hilfe der Fallunter¬
scheidung a > 0 , a = 0 , a < 0 . Gib jeweils an , welche Definitionen oder
Sätze benützt werden .

3 . a) Stelle entsprechend der Regel 76 . 1 die Vorzeichenregeln für Produkte
mit drei Faktoren symbolisch dar .

b) Ergänze zu richtigen Vorzeichenregeln:
( - ) • ( + ) • ( - ) • ( + ) = ? und ( + ) • ( - ) ■( - ) • ( + ) • ( - ) = ?

4 . Vereinfache durch Anwenden der Vorzeichenregeln für Quotienten:

a)
2 ( — m)

- 3
b)

( - 1 ) ( + m)
( + ! ) ( - «)

c)
( 21 ) ( — 51) Z
<? ( + r) ( - 5)

5 . Verwandle in den folgenden Produkten den Zahlenfaktor in einen Divisor ,
a) m - j b) n ■0,2 c) p ■ ( — 0,25)
d) ( - £) ■ ? e) r - ( lf ) f) ( - {§) • 5

6 . Schreibe die folgenden Quotienten als Produkte :
a) x : 0,5 b) y : \ c) z : ( - | )
d) ( — m) : ( — 0,125) e) v : (3| ) f ) w : ( - 0,001 )

2.7 Die Rechengesetze für die rationalen Zahlen

2 .7 . 1 Das Distributivgesetz
Im bisherigen Rechenunterricht hast du schon das Verteilungs- oder Distribu¬
tivgesetz* kennengelernt. Es besagt, daß man beim Multiplizieren einer Sum¬
me auf zwei verschiedenen Wegen zum richtigen Ergebnis kommen kann .
Dazu ein

Beispiel:
Die Klasse 7b besteht aus 16 Knaben und 10 Mädchen . Für den Besuch
einer Ausstellung sammelt der Klassensprecher pro Schüler 2,50 DM
ein . Wieviel Geld muß er dann haben ?
1 . Weg : Man rechnet »2,50 DM ■ Gesamtzahl der Schüler « , also

2,50 DM ■ (16 + 10) = 2,50 DM ■ 26 = 65,00 DM .
distribuere (lat .) = verteilen . - Der Ausdruck distributiv wurde ebenso wie das Wort kommutativ 1814 von
dem französischen Professor der Mathematik Francois Joseph Servois (1767- 1847) geprägt . Siehe auch
die Fußnote * auf Seite 50.
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2 . Weg: Man rechnet »2,50 DM • Zahl der Knaben « + »2,50 DM ■ Zahl
der Mädchen « , also
2,50 DM • 16 + 2,50 DM • 10 = 40,00 DM + 25,00 DM =
65,00 DM .

Man erkennt : 2,50 DM • (16 + 10 ) = 2,50 DM • 16 + 2,50 DM • 10 .

Allgemein gilt für a,b,ce 0 die Beziehung a (b + c) = ab + ac . Dies ist das
Distributivgesetz , für das wir die Abkürzung (D) verwenden .
Nachdem wir nun wissen , wie in der größeren Zahlenmenge G> die Addition
und die Multiplikation auszuführen sind , stellt sich die Frage , ob das Rechen¬
gesetz (D) auch in G>gültig bleibt . Wir prüfen dies zunächst an einigen Beispie¬
len.
Beispiel 1 : a = — 2 , b = 5 , c = — 8

dann gilt : a (b + c) = ( — 2) • (5 + ( — 8)) = ( — 2) • ( — 3) = 6
und : ab + ac = ( — 2) • 5 + ( — 2) ■ ( — 8) = — 10 + 16 = 6 .

Beispiel 2 : a = 4,1 ; b = — 4,8 ; c = 3,5
dann gilt : a (b + c) = 4,1 • (( - 4,8) + 3,5) = 4,1 • ( - 1,3) = - 5,33

und : ab + ac = 4,1 • ( - 4,8) + 4,1 ■ 3,5 = — 19,68 + 14,35 = - 5,33 .

Beispiel 3 : a — — f , b = — f , c = — jy
dann gilt : a (b + c) = ( - ■£) ■ (( - | ) + ( - tt )) = ( - ?) ' ( - $ + u )) =

— 2/1 , _2_\ ___ 2 . 41 _ 41“ 7U + llj - 7 44 — 154

und : ^ + ac = ( - f ) - ( - J) + ( - f ) - ( - l ) = f - f + M =
_ 3_ _i_ — 33 + 8 _ 41— 14 "T 77 — 154 — 154 -

Diese Beispiele lassen also vermuten , daß (D) für alle rationalen Zahlen gilt.
Der genaue Nachweis dafür erfordert eine ziemlich umfangreiche Fallunter¬
scheidung und ist schwierig . Für Interessenten soll hier als Beispiel einer der
einfacheren Fälle untersucht werden :

Fall : a > 0 , b < 0 , c < 0
Wir setzen a = p,b = — q,c = — r mit p , q , r e 0 + .
Dann gilt : a {b + c) = p (( - q ) + ( ~ r)) = p { - (q + r)) =

= ~ (p (q + r)) = - (pq + pr) -
Hier wurde beim letzten Schritt (D) in Q + angewandt .

Weiter gilt : ab + ac = / >( — q) + p ( — r) = ( '—pq ) + { —pr ) =
= ~ (pq + pr ) .

Damit ist für diesen Fall (D ) bewiesen . Man kann so tatsächlich zeigen,
daß das Distributivgesetz in jedem Fall gilt . Dies halten wir fest in

Satz 79 . 1 : Für beliebige rationale Zahlen a , b , c gilt das Distributiv¬
gesetz: a (b + c) = ab + ac
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Beispiele :
1 ) ( — 2) (a + 5) = ( — 2) a + ( — 2) - 5 = - 2a - 10 .
2) (x + 2y) - 19 = 19 (jc + 2y) = 19x + 38j .
3) 6,5 (ö — 4b) = 6,5 (a + { — Ab)) = 6,5a + 6,5 ( — Ab) = 6,5a — 26 b .
4) (( — 3z) — 7) • ( — 10) = (( — 3z) + ( — 7)) • ( — 10) =

= ( — 3z) • ( — 10) + ( — 7) - ( — 10) = 30z + 70 .

Aufgaben
1 . Berechne zur Überprüfung des Distributivgesetzes die Terme

7) = a (b + c) und T2 = ab + ac für folgende Zahlenwerte :
a) a = — 8 ; £ = — 2 ; c = 5 b) a = 1,1 ; 6 = — 0,7 ; c = — 160
c) a = — 36 ; b = c = — lf d) a = — 2,5 ; b = — 9,12 ; c = — ff

• 2 . Begründe bei dem auf Seite 79 stehenden Beweis des Distributivgesetzes
für den Fall a > 0 , b < 0 , c < 0 die einzelnen Termumformungen , z . B .
durch Angabe der dabei verwendeten Sätze oder Regeln .

• 3 . Beweise nach dem Muster des auf Seite 79 durchgeführten Falles das Dis¬
tributivgesetz auch für den Fall a < 0 , b < 0 und c < 0 .

4 . Verwandle die angegebenen Produkte in Summen oder Differenzen :
a) { \ 6x + 5y ) - 9 b) (2,8xy — 5) • ( — 12,5) c) ( - 0,5) • ( 1,6 » - fw )
d) 12 ( — Aa + 3b ) e) ( — ri) - (2n + 7) f) ( — jx — fy ) • f

5 . Berechne und vergleiche 7) = (a + b) : c und T2 = a : c + b : c für folgen¬
de Zahlenwerte :
a) a = 22 ; b = 10 ; c = 8 b) a = - 5,4 ; b = 7,8 ; c = - 6
c) A = - 2^ ; b = c = ^ d) a = b = - 1,6 ; c = - 0,4

6 . Begründe , daß auch für das Dividieren einer Summe ein Distributivgesetz
gilt , nämlich (a + b ) : c = a : c + b : c , für c + 0 .
Hinweis : Beachte Satz 74 . 1 .

7 . Verwandle die folgenden Quotienten in Summen oder Differenzen :
a) (8x + 6y ) : 4 b) (0,64z 2 — 1 ) : 0,4
c) (fw — 5u) : ( — -§■) d) ( — 5,1p — 8,5g ) : ( — 17)

2 .7 .2 Die Monotoniegesetze der Multiplikation
Wir wissen schon nach Satz 62 . 1 , daß eine Ungleichung erhalten bleibt , wenn
man auf beiden Seiten dieselbe Zahl addiert : a < b => a + c < b + c . Gilt
eine entsprechende Feststellung auch , wenn man beide Seiten einer Unglei¬
chung mit derselben Zahl multipliziert ?
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Beispiele:
1 ) Multiplikation mit 7 :

Aus 2 < 5 wird 14 < 35 , weil 14 links von 35 liegt.
Aus — 5 < 1,5 wird — 35 < 10,5 .
Aus — 3,1 < — 1,2 wird — 21,7 < — 8,4.

2) Multiplikation mit — 3 :
Aus 2 < 5 wird — 6 > — 15 , weil — 6 rechts von — 15 liegt.
Aus — 5 < 1,5 wird 15 > — 4,5.
Aus — 3,1 < — 1,2 wird 9,3 > 3,6 .

Die Beispiele unter 1) lassen vermuten , daß gilt:

Satz 81 . 1 : Monotoniegesetz der Multiplikation
Multipliziert man eine Ungleichung mit einer positiven Zahl ,
so bleibt das Ungleichheitszeichen erhalten ; also

a < b
ac < bc

c > 0

Bemerkung : Da statt a < b auch b > a und statt ac < bc auch bc > ac ge¬
schrieben werden kann , gilt Satz 81 . 1 natürlich dann auch für Ungleichungen
mit dem Größerzeichen .
Beweis : a < b bedeutet nach Satz 61 .2 , daß es eine Zahl p > 0 gibt, für welche

a + p = b gilt .
Dann ist auch (a + p ) c = bc bzw . ac + pc = bc.
Wegen c > 0 und p > 0 gilt auch pc > 0 . Man muß also zu ac die
positive Zahl pc addieren , um bc zu erhalten . Nach Satz 61 .2 bedeutet
dies aber ac < bc , was zu zeigen war .

Die Beispiele 2) lassen erkennen , daß für negative Faktoren das Monotoniege¬
setz nicht gilt . Offenbar kehrt sich in diesem Fall das Ungleichheitszeichen um ,
d . h . , aus dem Kleinerzeichen wird ein Größerzeichen bzw . aus dem Größer¬
ein Kleinerzeichen . Es gilt der folgende

Satz 81 .2 : Gesetz von der Umkehrung der Monotonie
Multipliziert man eine Ungleichung mit einer negativen Zahl ,
so kehrt sich das Ungleichheitszeichen um , d . h . ,

a < b
=> ac > bc

c < 0

Beweis : a < b bedeutet nach Satz 61 .2 , daß es eine Zahl p > 0 gibt, für welche
a + p = b gilt .
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Die Auflösung dieser Gleichung nach a liefert
a = b — p oder a = b + ( — p ) .
Dann gilt auch ac = {b + { — p )) c =

= bc + ( — p ) c .
Nach Voraussetzung sind ( —p ) und c negative Zahlen ; somit ist
( —p ) c positiv . Da man also zu bc eine positive Zahl addieren muß ,
um ac zu erhalten , gilt ac > bc , was zu zeigen war .

Einen wichtigen Sonderfall von Satz 81 . 2 stellt das Multiplizieren einer Un¬
gleichung mit — 1 dar . Es gilt (Abbildung 82 . 1 ) :

a < b => a ■ ( — 1 ) > b • ( — 1 ) , also
a < b => — a > — b .

- b - a 0 a b

- b 0 b- aa

b 0 - b - aa

Abb . 82 . 1 a < b — a > — b

Natürlich gelten die beiden Monotoniegesetze auch für das Dividieren einer
Ungleichung durch eine positive oder negative Zahl . Das ergibt sich daraus ,

1
daß man die Division durch c 4= 0 als Multiplikation mit — auffassen kann .

c
1

Da c und - gleiches Vorzeichen haben , gilt also :
c

a < b
c > 0

a < b
c < 0

und

Aufgaben

1 . Multipliziere die Ungleichung mit der angegebenen Zahl .
a) - 20 < - 2 | | - 5 b) 1,7 > - 1,81 | - ( - 0,5) c) 24 > 0 | | - ( — f )
d) f > — Hl • ( — 21 ) e) 2x > y \ \ ■0,7 f) 0,2« < - 8 « | | ■ ( - 5)

2 . Dividiere die Ungleichung durch die angegebene Zahl :

c) _ 5 ,4 < - 4,5 | | : ( - f ) d) < ff | | : 0,4
e) 0,01 > - 0,11 | : ( - 0,001 ) f ) - 0,8 > ~ i \ \ : \ - 2 |

a) — 2 < 11 | : 5
c) — 5,4 < — 4,51 | : ( — f )

b) 68 > 0 | | : ( - 0,5)
d) if < 25 II : 0,4
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3 . Multipliziere die zwischen a und b bestehende Ungleichung mit dem Fak¬
tor c :
a) a = 37 ; b = — 1 ; c = 3 b) a = f ; b = f ; c = — 10
c) a = - 1,9 ; b = - 2,1 ; c = - 0,2 d) a = - 0,985 ; b = 0 ; c = 200

4 . Was ergibt sich, wenn man eine Ungleichung mit 0 multipliziert ?
5 . Ist x positiv , null oder negativ , wenn gilt

a) a < b => ax > bx b) u > v => ux = vx
n m pc) n > m — < — d) p > 0 => — > 0 ?
xx x

2 .7 .3 Zusammenstellung der Rechengesetze

Für rationale Zahlen a , b , c gelten folgende Rechengesetze :

Gesetze der Addition Gesetze der Multiplikation Bezeichnungen

(E + ) a + beO (E . ) a • b e <Q> Existenz der
Summe/des
Produkts

(K + ) a + b = b + a (K . ) a • b = b • a Kommutativ¬
gesetz

(A + ) (a + b) + c =
= a + (b + c)

(A . ) (a ■ b) • c = a • (b • c) Assoziativ¬
gesetz

(N + ) a + 0 = a (N . ) a • 1 = a Existenz des
neutralen
Elements

(I + ) « + ( - «) = 0 (I ) a • - = 1 , falls a + 0
a

Existenz des
inversen
Elements

(D) (a + b) - c = a - c + b - c Distributiv¬
gesetz

a < b => a + c < b + c
a < b ]

> => a - c < b - c
c > 0 j

Monotonie¬

gesetz

a < b |
> =s> a - ob - c

c < 0 J
Umkehrung
der Monotonie
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Die hier zusammengestellten Rechengesetze bilden die Grundlage für das
Rechnen mit rationalen Zahlen und überhaupt für die ganze Algebra . Du
wirst sie im folgenden immer wieder benötigen , besonders häufig die mit (E) ,
(K ) , (A) , (N ) , (I) und (D ) bezeichneten Gesetze . Präge sie dir daher gut ein
(Merkwort : EKANID , vgl . auch Aufgabe 84/5 .) .
Besonders auffällig an dieser Gesetzestafel ist natürlich die weitgehende Ana¬
logie zwischen den Rechengesetzen der Addition und der Multiplikation : die
»EKANI -Gesetze « gibt es für beide Rechenarten . Zu ihrer Unterscheidung
wurde in der Tafel ein an den Kennbuchstaben angehängtes Plus - bzw . Mal¬
zeichen verwendet . Im Distributivgesetz (D) - und nur in ihm ( !) - kommen
beide Rechenarten zugleich vor . Es stellt eine Verbindung zwischen den beiden
durch die Gesetze der Addition und der Multiplikation beschriebenen Re¬
chenbereichen dar .

Aufgaben

1 . Welches der in <Q> geltenden Rechengesetze der Addition konnte in der
Zahlenmenge G / noch nicht aufgestellt werden und warum nicht ?

2 . Weshalb benötigt man keine eigenen Rechengesetze für die Subtraktion
und die Division ? (In welchen Rechengesetzen der Addition und Multipli¬
kation sind diese Umkehroperationen enthalten ?)

3 . Ist es richtig , zu sagen »Wenn man in den Rechengesetzen der Addition die
Pluszeichen durch Malzeichen ersetzt , erhält man die Rechengesetze der
Multiplikation «?

4 . Erkläre an der Zahlengeraden, warum es bei der Addition keine »Umkeh¬
rung der Monotonie « gibt .

5 . a) Wie gefällt dir der Wahlspruch »In Mathe fit mit EKANID «?
Oder folgender : »Was EKANID weiß , macht mich nicht heiß«?
Denke dir selbst beß ’re Merksätze aus !
Vielleicht wird gar ein Gedicht daraus ?

b) »Beim Rechnen in Qq eckt man oft an ,
Weil man häufig nicht subtrahieren kann .
Das liegt daran : Man hat nur EKAN !
. «
Erfinde zu diesem großartigen Gedichtanfang eine passende Fortset¬
zung , welche auf den mit O und EKANI erreichten Fortschritt hin¬
weist!
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* * Zur Geschichte der negativen Zahlen
Bereits in altbabylonischen Texten um 2000 v . Chr . kommen an einigen Stellen negati¬
ve Zahlen vor . Aber wir wissen nicht , wie die Babylonier sie aufgefaßt und ob sie mit
ihnen gerechnet haben .
Im chinesischen Rechenbuch Chiu Chang Suan Shu* = Neun Bücher arithmetischer
Technik , von dem man nicht weiß , wie alt es wirklich ist - der älteste erhaltene Text ist
die 263 n . Chr . von Liu Hui mit Kommentaren versehene Ausgabe * * kommen posi¬
tive und negative Zahlen vor . Die positiven Zahlen werden rot , die negativen schwarz
geschrieben . Die Regeln für die Addition und Subtraktion negativer Zahlen sind be¬
kannt und werden angegeben . Ergeben sich beim Lösen von Gleichungen negative
Zahlen , so werden sie als Lösungen anerkannt .
Rechenregeln für das Ausmultiplizieren von (a — b) (c — d) findet man auch bei Dio-
phant (um 250 n . Chr .) , der aber im Grunde nur mit Differenzen arbeitet , die einen

positiven Wert haben . Negative Zahlen als Lösungen von Gleichungen bezeichnet er
als »unstatthaft « .
Die Inder kennen positive und negative
Zahlen und benennen sie durch dieWÖrter
dhana = Vermögen und rna = Schulden .
Bei Brahmagupta (598- nach 665 ) werden
negative Zahlen durch einen darüberge¬
setzten Punkt gekennzeichnet ; er schreibt
also z . B . 3 für unser — 3 . In der weiteren
Entwicklung der indischen Mathematik
werden negative Zahlen auch als Lösun¬
gen von Gleichungen zugelassen .
Die Araber übernehmen zwar von den In¬
dern das Rechnen mit negativen Zahlen ,
erkennen sie aber nicht als Lösungen von
Aufgaben an .
Spätestens im 9 . Jh . kann man im Abend¬
land mit negativen Zahlen rechnen , aber
als erster läßt Leonardo von Pisa (um
1170- nach 1240) eine negative Zahl als
Lösung zu , die er als Schulden deutet ; an¬
dernfalls wäre die Aufgabe unlösbar . * * *
Ähnlich geht auch Michael Stifel
(1487 (?)—1567) vor , obgleich er zu tiefe¬
rer Einsicht in das Wesen der negativen
Zahlen gekommen ist . Er spricht 1544 in
seiner Arithmetica integra davon , daß
man sich Zahlen kleiner als null vorstellen
könne und daß null zwischen den »wah¬
ren« Zahlen und den »absurden « Zahlen
liege . Im Gegensatz zu Stifel hat sein
* gesprochen tschiu tschang suan schu
** Der erste Kaiser Chinas , Schi Huang -Ti ( = erster erhabener Kaiser , Regierungszeit 221 - 210v . Chr .) ,

ließ 213 v . Chr . alle Bücher verbrennen und viele konfuzianische Gelehrte lebendig begraben . Liu Hui
berichtet , daß das Rechenbuch von Chang Tsan (| 152 v . Chr .) aus erhalten gebliebenen Resten neu
zusammengestellt und von Ching Ch ’ou -ch ’ang (um 50 v . Chr .) erweitert wurde .

*** Um 1430 wird in einer auf provenzalisch geschriebenen Handschrift zum ersten Mal eine negative Zahl
als Lösung ohne weitere Erklärung akzeptiert .

ARITHMETI
CA ' INTEGRA .

Authort Michade Sdidio .

Cum prxfärioncPhilippi Mdandithonis .

Norimberg * apud Iohan . Petreiuni »
AnnoChndi m. d. xliui .

Cum gratia & priuilegio Cacfareo

atcp Regio ad Scxennium »

Abb . 85 . 1 Titelblatt der Arithmetica in¬
tegra - »Die ganze Arithmetik « - (1544)
von Michael Stifel ( 1487 ? Esslingen bis
19 .4 . 1567 Jena ) und dessen Unterschrift .
Ein Bildnis ist nicht überliefert .
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Zeitgenosse Geronimo Cardano ( 1501- 1576 ) keine Schwierigkeiten mit negati¬
ven Zahlen als Lösungen von Aufgaben , nennt sie aber »gedachte « Zahlen im Gegen¬
satz zu den positiven , den »wahren « Zahlen . Franfois Viete (1540 - 1603) , der
Begründer der modernen Algebra , hingegen erkennt die negativen Zahlen nicht als
Lösungen an . Rene Descartes (1596 - 1650 ) verwendet zwar positive und negative
Ordinaten bei seinen graphischen Darstellungen , die Abszissen sind für ihn aber immer
positiv . Negative Gleichungslösungen nennt er »falsche« Lösungen im Gegensatz zu
den »wahren « positiven . Auch Buchstaben stellen bei ihm immer positive Zahlen dar .
Der erste , bei dem ein Buchstabe - so wie bei uns jetzt üblich - sowohl eine positive wie
auch eine negative Zahl vertreten konnte , war der Amsterdamer Bürgermeister und
Mathematiker Jan Hudde (1628(?)—1704) , und zwar in seiner um 1655 verfaßten
Schrift De reductione aequationum.
Selbst im 18 . Jahrhundert gelang es noch nicht , eine befriedigende Erklärung der nega¬
tiven Zahlen zu finden . Dies führte dazu , daß diese Zahlen von manchen Mathemati¬
kern nicht anerkannt wurden , zum Beispiel auch nicht durch Christian von Wolff
(1679- 1754 ) . Im großen und ganzen wurden sie aber allmählich gleichberechtigt neben
die positiven Zahlen gestellt.
Die endgültige wissenschaftliche Klärung dieses Problems brachte erst das 19 . Jahr¬
hundert , insbesondere durch George Peacock (1791- 1858 ) und Hermann Hankel
(1839 - 1873) . Sie erkannten , daß man bei der Erweiterung eines Zahlenbereichs nach
Möglichkeit so zu verfahren hat , daß die für die bisherigen Zahlen gültigen Gesetze
auch im erweiterten Zahlenbereich gültig bleiben . Peacock nannte 1830 diesen Grund¬
satz das Permanenzprinzip (vgl . Seite 38) .

H (UrtiOi

Abb . 86 . 1 George Peacock (1791 Abb . 86 .2 Hermann Hankel (14 . 2 . 1839
Thornton Hall/Denton - 1858 Ely (?)) Halle/Saale - 29 . 8 . 1873 Schramberg )


	[Seite]
	2.1 Die Zahlenmenge B reicht nicht aus!
	[Seite]
	Seite 37
	Seite 38
	Aufgaben
	Seite 38


	2.2 Einführung der negativen Zahlen
	Seite 38
	Seite 39
	Zur Geschichte der Fachwörter positiv und negativ
	Seite 40

	Aufgaben
	Seite 41


	2.3 Zahl und Gegenzahl, absoluter Betrag
	Seite 41
	Seite 42
	Seite 43
	Seite 44
	Aufgaben
	Seite 45


	2.4 Addition und Subtraktion von rationalen Zahlen
	2.4.1 Definition der Addition
	Seite 45
	Seite 46
	Seite 47
	Seite 48
	Seite 49
	Seite 50

	2.4.2 Eigenschaften der Addition in Q
	Seite 50
	Seite 51
	Seite 52
	Seite 53
	Aufgaben
	Seite 53
	Seite 54


	2.4.3 Die Subtraktion in Q
	Seite 54
	Seite 55
	Seite 56
	Seite 57
	Seite 58
	Aufgaben
	Seite 58
	Seite 59



	2.5 Anordnung der rationalen Zahlen
	2.5.1 Definition der Anordnung in Q
	Seite 60
	Seite 61

	2.5.2 Monotoniegesetz der Addition
	Seite 61
	Seite 62

	Aufgaben
	Seite 62
	Seite 63


	2.6 Multiplikation und Division von rationalen Zahlen
	2.6.1 Definition der Multiplikation in Q
	Seite 63
	Seite 64
	Seite 65
	Seite 66
	Seite 67

	2.6.2 Eigenschaften der Multiplikation in Q
	Seite 67
	Seite 68
	Seite 69
	Aufgaben
	Seite 69
	Seite 70
	Seite 71


	2.6.3 Division in Q
	Seite 71
	Seite 72
	Seite 73
	Seite 74
	Aufgaben
	Seite 74
	Seite 75


	2.6.4 Allgemeine Vorzeichenregeln für Produkte und Quotienten
	Seite 75
	Seite 76
	Seite 77
	Aufgaben
	Seite 78



	2.7 Die Rechengesetze für die rationalen Zahlen
	2.7.1 Das Distributivgesetz
	Seite 78
	Seite 79
	Seite 80
	Aufgaben
	Seite 80


	2.7.2 Die Monotoniegesetze der Multiplikation
	Seite 80
	Seite 81
	Seite 82
	Aufgaben
	Seite 82
	Seite 83


	2.7.3 Zusammenstellung der Rechengesetze
	Seite 83
	Seite 84
	Aufgaben
	Seite 84



	Zur Geschichte der negativen Zahlen
	Seite 85
	Seite 86


