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Bisher haben wir Planimetrie getrieben , das heißt , wir haben uns mit Figuren in der
Ebene beschäftigt . Jetzt gehen wir hinaus in den Raum und untersuchen dort Figuren
und Körper , das heißt , wir treiben Raumgeometrie (Stereometrie) .

QUADER IM SCHRÄGBILD

Grundlegende Zusammenhänge entdecken wir schon an einem so einfachen Körper wie
dem Quader . Um eine räumliche Vorstellung zu bekommen , veranschaulichen wir auch
den Quader in einer Planfigur . In der Ebene (Tafel , Heft) ist es zwar möglich , Figuren
in wahrer Größe zu zeichnen , nicht aber Körper . Deswegen behelfen wir uns mit einem
einfachen Verfahren , das brauchbare Planfiguren von Quadern liefert :

Wir zeichnen die vordere Fläche als Rechteck und
die nach hinten führenden Kanten parallel und gleich lang .
Zweckmäßigerweise legt man alle Ecken auf Gitterpunkte .

Eine solche Planfigur heißt Schrägbild des Quaders . Sie wirkt noch räumlicher , wenn
man die unsichtbaren (verdeckten) Kanten strichelt oder dünner zeichnet.
Zeichnet man alle zwölf Kanten gleich dick und als durchgehende Linien , dann lässt
das Bild zwei räumliche Deutungen zu.
Beim Schrägbild eines Würfels ist die Vorderfläche ein Quadrat . Zu lange nach hinten
führende Kanten geben ein schiefes Bild vom Würfel . In Wirklichkeit sieht man Qua¬
der und Würfel nicht so wie im Schrägbild . Im Normalbild dagegen wirken Körper viel
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natürlicher . Normalbilder sind aber etwas schwieriger zu zeichnen als Schrägbilder -
wie man sie zeichnet , erfahren wir später .

VORN

VORN

WÜRFEL IM SCHRAGBILD

SONDERN SO !NICHT SO

übliche Bezeichnungen beim Quader

VERSCHIEDENE WÜRFEL

IM SCHRÄGBILD IM NORMALBILD

V - -

:-jv-

Die einfachsten Punktemengen im Raum sind Geraden und Ebenen . Ihre grundlegen¬
den Eigenschaften überlegen wir uns am Quader .
Übliche Bezeichnungen: Die Seiten der Quaderflächen heißen Kanten, zum Beispiel

[AB ] , [HD ] , . . .
Die Diagonalen der Quaderflächen heißen Flächendiagonalen ,
zum Beispiel [AF] , [ED ] , . . .
Die Verbindungsstrecken zweier Ecken , die durchs Innere des
Quaders gehen, heißen Raumdiagonalen ,
zum Beispiel [EC] , [DF ] , . . .
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Gerade- Gerade
Auch im Raum ist eine Gerade durch zwei Punkte festgelegt. So ist zum Beispiel GH
die Verlängerung einer Kante , BG die Verlängerung einer Flächendiagonale und DF
die Verlängerung einer Raumdiagonale .
Wie in der Ebene können sich auch im Raum zwei Geraden schneiden : GH und BG
schneiden sich in G.

Geraden im Raum Parallelen im Raum

Die Parallelität im Raum ist komplizierter als in der Ebene . In der Ebene sind zwei Ge¬
raden schon parallel , wenn sie ein gemeinsames Lot haben . Zwei Geraden im Raum
nennen wir parallel , wenn sie mindestens zwei gemeinsame Lote haben .

windschiefe Geraden

WINDSCHIEFER
ZUFLUCHTSORT

Im Gegensatz zur Ebene gibt es im Raum auch noch Geraden , die sich weder schneiden
noch parallel sind . Solche Geraden heißen windschief. Das Bild zeigt zwei windschiefe
Geraden und ihr gemeinsames Lot . Am Bild wird uns auch klar , warum wir im Raum
mindestens zwei gemeinsame Lote brauchen , um zwei Geraden als Parallelen festzule¬
gen.
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Wenn man eine Glasscheibe in drei Punkten unterstützt , dann wackelt sie nicht , son¬
dern liegt fest auf . Fassen wir eine Glasscheibe als Ebene auf , so erkennen wir :

Eine Ebene im Raum ist durch drei Punkte festgelegt , die nicht auf einer Gerade lie¬
gen.
Wenn aber die drei Punkte auf einer Gerade liegen, dann kann sich die Ebene um diese
Gerade drehen - genauso wie eine Tür , die an drei Nägeln hängt . Eine solche Ebene
liegt nicht eindeutig fest.
Statt durch drei Punkte kann man eine Ebene auch anders festlegen :
- durch eine Gerade und einen Punkt , der nicht auf der Gerade liegt,
- durch zwei Geraden , die sich schneiden ,
- durch zwei Parallelen .

BESTIMMUNGSSTÜCKE EINER EBENE

f3
~
PUNKTE |

E(A,B,C )

PUNKT UND GERADE

E(B,AC ) =E(B,g )

2 GERADEN|
b) die parallel sinda) die sich schneiden

In jedem dieser drei Fälle erkennen wir wieder drei Punkte , die die Ebene bestimmen .
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Die Bestimmungsstücke einer Ebene finden sich auch in der symbolischen Schreib¬
weise, zum Beispiel E(A , B , C) oder E(B , g) oder E(g , h) . Wenn klar ist, welche Ebene
gemeint ist, dann genügt ein lateinischer Großbuchstabe , zum Beispiel Ebene E oder
Ebene F oder . . . Wir zeigen das an einigen besonderen Flächen .

FLACHEN BEIM QUADER &
SÄ
flache

Der Quader hat :
- 6 Seitenflächen (jede enthält 4 Kanten ) zum Beispiel

E(B , C , F) = E(B , C , G) = E(BC, G) = E(BC , CG ) = E(BC , GF)
- 6 Diagonalflächen (jede enthält 2 Raumdiagonalen ) zum Beispiel

E(B , C , H ) = E (BC, EH) = E(BE, CH ) = E(BH , CE)
- 8 Eckflächen (jede enthält 3 Flächendiagonalen )

zum Beispiel E(B , G , E)
Alle Seitenflächen bilden zusammen die Oberfläche des Quaders . Die Seitenfläche , auf
der der Quader steht , heißt auch Grundfläche - ihr gegenüber liegt die Deckfläche .

Ebene- Ebene

Zwei Ebenen schneiden sich entweder in einer Gerade , oder sie sind parallel . So schnei¬
den sich beim Quader die Diagonalflächen E(A , B , G) und E(E , B , C) in der Raumdia¬
gonale HB, symbolisch : E(A , B , G) n E(E , B , G) = HB .
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Die Parallelität zweier Ebenen H und K erkennt man zum Beispiel daran , dass es zu ei¬
ner Geradenkreuzung (g , h) in H eine Geradenkreuzung (g'

, h ') in K gibt , sodass g' par¬
allel zu g und h ' parallel zu h ist . Die Eckflächen E(A , F , El) und E(B , G , D) sind par¬
allel , weil BG parallel AH und BD parallel FH ist.

LAGE VON EBENEN

ISCHNITT | IPARALLELITÄT |Schnittgerade von H und K

Gerade —Ebene

Zwischen Gerade und Ebene gibt es drei Lagebeziehungen :
- Die Gerade liegt in der Ebene (gcE ) .

Eine Gerade liegt schon dann ganz in einer Ebene,
wenn sie wenigstens zwei Punkte mit ihr gemeinsam hat .

- Die Gerade ist parallel zur Ebene (g | | E) .
Eine Gerade g heißt parallel zu einer Ebene E , wenn es in E eine Gerade f gibt , die
parallel ist zu g . Eine Gerade , die in einer Ebene liegt, ist damit auch parallel zu die¬
ser Ebene.

- Die Gerade schneidet die Ebene in einem Punkt (g n E = {S}) .

|MEHR ALS EIN GEMEINSAMER PUNKT ]

Drinliegen : gcE und Parallelität : g ||E

| KEIN GEMEINSAMER PUNKT

Parallelität : g |fE

LAGE VON GERADE UND EBENE

[GENAU EIN GEMEINSAMER PUNKTl

Schnitt : gnE = {S}
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Beim Schnitt von Gerade und Ebene gibt es einen wichtigen Sonderfall :
Die Gerade steht senkrecht auf der Ebene , das heißt , sie ist ein Lot der Ebene.
Wann ist eine Gerade Lot einer Ebene ?

Definition

Eine Gerade 1, die die Ebene E in einem Punkt schneidet , heißt Lot der Ebene , wenn
es in E zwei verschiedene Geraden g und h gibt , die 1 senkrecht schneidet .
Der Schnittpunkt heißt Lotfußpunkt .

Ist 1 ein Lot der Ebene E , dann schreiben wir : 1±E .
Die Gerade g allein reicht zur Definition des Lots noch nicht , wie wir im Bild sehen.
Denn zur Gerade g gibt es unendlich viele Lote pb die selber wieder eine Ebene P bil¬
den . Die Lote q, der zweiten Gerade h bilden auch wieder eine Ebene Q . Die Schnittge¬
rade der beiden Ebenen P und Q ist Lot 1 der Ebene E .
Man kann zeigen : Ein solches Lot steht sogar auf allen Geraden senkrecht , die in der

Ebene liegen und durch den Lotfußpunkt gehen.
Jede Parallele zu einem Lot ist auch wieder ein Lot.
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Zwei Ebenen sind genau dann parallel , wenn sie ein gemeinsames Lot haben . Die Lot¬
strecken sind alle gleich lang , ihre Länge heißt Abstand der beiden Ebenen .
Enthält eine Ebene F ein Lot 1E einer anderen Ebene E , dann heißt F Lotebene von E . E
ist dann auch Lotebene von F, weil sie das Lot 1F enthält .

PARALLELE EBENEN

gemeinsames Lot

1_LE und 1J_F

Abstand

1= d(E,F )

Ilotebenen ]

f EJ_ F

Beispiele für die möglichen Lagen von Gerade und Ebene finden wir wieder am Qua¬
der :
- die Raumdiagonale [DF ] liegt in der Diagonalfläche E(F , E , D) ,
- die Flächendiagonale [CF] ist parallel zur Seitenfläche E (A , D , H ) ,
- die Raumdiagonale [AG] schneidet die Diagonalfläche E(F , E , D) im Mittelpunkt M

des Quaders .
Die Kante [AE] ist ein Lot der Seitenfläche E(A, B , C) , weil sie auf AB und AD senk¬
recht steht . Sie steht deshalb auch senkrecht auf der Flächendiagonale [AC] ,
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Wir verwenden diese Lagebeziehungen , um Strecken oder Winkel in einem Körper in
wahrer Größe zu konstruieren - dazu jetzt ein Beispiel :
Im Quader ABCDEFGH ist AB = 4 , BC = 6 und CG = 6 .
T ist Mittelpunkt der Seitenfläche BCGF und U ist der Mittelpunkt der Kante [HG ].
Konstruiere das Dreieck TUE in wahrer Größe .

PLANFIGUREN

H_ U _ G
£

/
/

F \
\

T

D
/ 7' V

/ /ß/
'

7b
4

Zur Konstruktion eines Dreiecks braucht man drei Bestimmungsstücke . Wir beschaffen
sie uns durch Überlegen oder durch Hilfskonstruktionen .
In einer Planfigur tragen wir die gegebenen Punkte und Fängen ein.

Ergebnis

Lösungsidee: [EU] ist Hypotenuse im rechtwinkligen Dreieck HEU .
[UT] ist Hypotenuse im rechtwinkligen Dreieck GUT , in dem die Kathete
[GTj die halbe Diagonale des Rechtecks BCFG ist.
[ET ] beschaffen wir uns übers rechtwinklige Dreieck EST.
(ST ist parallel zum Lot FG der Ebene E(A, B , E) !)
Die Kathete [ES ] ist Hypotenuse im rechtwinkligen Dreieck FES.
Mit diesen drei Seiten konstruiert man das Dreieck TUE .
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Ergebnis in wahrer Größe mit Umgebung

Auch im Quader sehen wir das Dreieck TUE in wahrer Größe , wenn wir den Quader so
drehen , dass unser Blick senkrecht aufs Dreieck TUE fällt , das heißt , dass der Seh¬
strahl ein Lot der Ebene ist, in der das Dreieck TUE liegt.

Aufgaben
1 . UMRISSE

Der Umriss eines Quaders ist im Allgemeinen ein Sechseck.
Ergänze die Umrisse mit sichtbaren (durchgezogenen ) und unsichtbaren (gestri¬
chelten) Linien zu einem Quaderbild .
Zeichne für jeden Umriss die beiden möglichen Ansichten .
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2 . Der Umriss eines Quaders ist im Allgemeinen ein Sechseck.
a) Welche Besonderheit (en) hat das Umriss -Sechseck eines Quaders ?
b) Welchen besonderen Umriss hat ein Würfel , wenn sich beim Betrachten zwei

Gegenecken decken ?
c) Welche geometrischen Figuren können Umrisse von Quadern sein ?

3 . Wie viele Seitenflächen eines undurchsichtigen Quaders kann man je nach Blick¬
richtung sehen ?

4 . Wie viele Kanten eines undurchsichtigen Quaders kann man je nach Blickrich¬
tung sehen?

5 . Wie viele Ecken eines undurchsichtigen Quaders kann man je nach Blickrichtungsehen?
• 6 . QUADERSCHNITTE

Das Bild zeigt zerschnittene Quader .
a) Wie viel Schnitte sind es jeweils?
b) Wie viel kongruente Teilquader entstehen ?

• 7. ANSICHTSACHE (N)
Zeichne eine Figur ab (dünner Strich !) . Hebe dann die sichtbaren Kanten hervor
(dicker Strich , Farbe !) , sodass eine Ansicht des Körpers entsteht . Es gibt jeweils
zwei Ansichten , je nachdem wie man die Figur räumlich deutet .
Anleitung : Fang an mit dem Umriss , denn der ist immer sichtbar . Geh von einer
Umrissecke auf einer Kante nach innen : Die Kante ist sichtbar und ebenso alle
weiteren Kanten , die von einer sichtbaren Ecke ausgehen .
Schneiden sich zwei sichtbare Kanten konkaver Körper (nur in der Zeichen¬
ebene !), dann verdeckt bei dieser Schnittstelle eine Kante die andere , eine Kante
wird dort also unsichtbar . Oktaeder

SECHSFLACH ACHTFLACH
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ZWÖLFFLACH a ) DREIBEIN

VIERZEHNFLACHACHTZEHNFLACH

ALLESKLARb) SECHSBEIN
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8 . UMBAU
Lege einen der vier oberen Quader so auf einen andern , dass Kante auf Kante
liegt, und zeichne das Bild nur mit sichtbaren Kanten .

9 . EULER
Zeichne ab und die verdeckten Kanten ein.
Jeder Körper hat F Flächen , K Kanten und E Ecken.
Berechne für jeden Körper E + F - K und staune !

10 . WÜRFELANSICHTEN
Beschreibe, wie du das Drahtmodell eines Würfels anschauen musst , um es zu se¬
hen wie im Bild links .
Zeichne die Figuren ab und strichle die Kanten , die bei einem Holzwürfel ver¬
deckt wären .
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11 . LINKS - RECHTS -WURFEL
Die üblichen Würfel sind nach der Siebener- Regel beschriftet : Die Summe der
Augen auf gegenüberliegenden Seiten ist 7 .
Von diesen Würfeln gibt es zwei Sorten :
den Rechts-Würfel (RW) und den Links-Würfel (LW) .
a) Welche Augenzahlen haben die beiden Würfel unten , links hinten und rechts

hinten ?
b) Welche Würfel sind Rechts -Würfel ?
c) Ein Würfel steht auf einem andern .

Wie groß ist die Summe der Augen in den aufeinander liegenden Flächen ,
( 1 ) wenn es zwei Rechts-Würfel sind ?
(2) wenn der untere ein Links -Würfel ist?

12 . DREHAXN
Zeichne den Körper ab und drehe ihn in Gedanken
a) um die x-Achse b) um die y-Achse —
c) um die z-Achse
mit den Winkeln 90°

,
- 90° und 180 ° .

Zeichne die Bilder des gedrehten Körpers .

13 . ACHSE ?
X '

Bei einer Vierteldrehung (90°) oder Halbdrehung ( 180 °) geht ein Würfel in sich
über , wenn die Drehachse durch die Mitten von Gegenflächen geht . Wir bezeich¬
nen die Drehachse mit der Augenzahl einer durchstoßenen Fläche .

Um welche Achse muss man den Würfel drehen , damit sich die Stellungen a), b)
und c) ergeben?



14 . AUGEN ?
Zeichne den Würfel , nachdem er sich gedreht hat .

15 . AUGEN -ACHSEN -WINKEL ?
Nach einer Drehung sieht der Rechtswürfel A so aus wie B .
Bestimme die fehlende Augenzahl und gib Drehachse und Drehwinkel an .

16. LAGEN
a) Welche der eingezeichneten Geraden sind parallel zu BC bzw . windschief zuBC?
b) Welche der eingezeichneten Geraden sind parallel zu BD bzw . windschief zuBD ?

17 . Verwende die Bezeichnungen der Aufgabe LAGEN .
a) Bezeichne die Ebene , die durch A, B und C geht , auf 10 verschiedene Arten .
b) Wie viele Verbindungsgeraden gibt es zwischen C , F, E und B ?
c) Wie viel verschiedene Ebenen gibt es , die jeweils drei der Punkte A , B , C und

H enthalten ?
d) Welche Ebenen sind senkrecht zur Grundfläche , welche dazu parallel ?
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18 . Zeichne ins Schrägbild eines Quaders ABCDEFGH die Mittelpunkte L und M

von Grund - und Deckfläche sowie den Mittelpunkt N von [HG ] ein.
a) Begründe : BD || MF, AE || ML , BC || MN.
b) Gib drei Punkte an, die keine Ebene festlegen . (Mehrere Möglichkeiten!)
c) Begründe : E(A , B , F) | | E(H , D , C) , E(M , L , N) | | E(B , C , F) .
d) Entscheide, ob die Ebenen parallel sind , oder gib die Schnittgerade an :

E(A , C , G) und E(D , H , F) , E(A , M , N) und E(E , H , D ) , E(F , L , H) und
E(N , G , C) , E(G, F, L) und E(A , M , D ) .

19 . MITTELPUNKTE
Gegeben ist der Würfel ABCDEFGH . K, L und N sind Kanten -Mittelpunkte , M
ist Mittelpunkt des Vierecks BCGF .

a) Begründe : GC ist Lot von E(L , N , F) .
b) Begründe : Alle Raumdiagonalen schneiden sich in einem Punkt : der Würfel¬

mitte I .
c) Gib zwei Lote der Ebene E(B , F , D) an .
d) Entscheide, ob die Gerade parallel zur Ebene ist , oder gib den Schnittpunkt

an :
E(A , B , H ) und GC , E(D, C , F) und BG , E(A, B , F) und LM , E(A , B , M) und
DH , E(B , F , N) und KD , E(B , C , M) und FG , E (A , B , G) und FD , E(D , C , F)
und KN .

e) Begründe : GM liegt in E(B , C , F) .
f) In welcher Gerade schneiden sich E(A, B , G) und E(A, D , H) , E(B , C , H) und

E(A , F , G) ?

20 . Skizziere drei verschiedene Ebenen , die keine, eine, zwei oder drei Schnittgeraden
haben .

21 . Je drei Eckpunkte eines Quaders ABCDEFGH legen eine Ebene fest.
Wie viel (verschiedene) Ebenen gibt es ?

22 . a) Die Geraden g und h sind windschief , 1 ist ihr gemeinsames Lot und L der
Mittelpunkt der Lotstrecke. Für die Ebene E gilt : LeE und 1 j _ E .
Wie liegen g und h zur Ebene ?

b) Die Geraden AB und CD sind parallel , der Punkt G liegt nicht in
E(A , B , D ) .
Bestimme die Schnittmenge von E(A , B , D) und E(D , C , G) .

c) Die Geraden g , h und k schneiden sich in S , liegen aber nicht in einer Ebene .
A ist ein von S verschiedener Punkt auf h.
Bestimme die Schnittmenge von E(g , A) und E(h , k) .

141



23 . Der Würfel ABCDEFGH hat die Kantenlänge a = 6 . K und L sind Kanten -Mit¬
telpunkte , M ist Mittelpunkt des Vierecks BCGF , siehe Aufgabe Mittelpunkte .
Konstruiere in wahrer Größe :
a) Viereck BFGH b) Dreieck EFC c) Dreieck ACM
d) Dreieck KFM e) Winkel BMD f) Viereck ACNE.

24 . Im Quader ABCDEFGH ist AB = 6 , BC = 4 und BF = 8 . F liegt so auf [AD] , dass
AF = 1 , und K liegt so auf [CG ] , dass CK = 6 . M ist Mittelpunkt der Deckfläche
EFGH , P ist Mittelpunkt von [AE], Q ist Mittelpunkt von [CG],
Konstruiere in wahrer Größe :
a) Dreieck BCG b) Dreieck BFD c) Dreieck FKM
d) Dreieck FKM e) Dreieck DKM f) Dreieck HFK
g) Viereck ECKM h) Viereck DBFM i) Viereck PCQE .

• 25 . WAHRE GRÖSSE im Würfel ABCDEFGH mit der Kantenlänge 6.
a) S , T, U und V sind Kantenmitten .

Zeige : E(A , B,U ) | | E(G , H , S) .
Konstruiere den Abstand von E(A, B , U) und E(G, H , S) und das Viereck
AB UV in wahrer Größe .

b) U und W sind Kantenmitten . Zeige : BUWE ist ein Trapez .
Konstruiere BUWE in wahrer Größe .
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c) P , Q , R, S , U und W sind Kantenmitten .
Zeige : PSQRUW ist ein regelmäßiges Sechseck.
Konstruiere PSQRUW in wahrer Größe .
Wie viel solcher regelmäßigen Sechsecke gibt ’s im Würfel ?

d) I und J sind die Mitten von Deck- und Grundfläche.
Zeige : Es schneiden sich AI und EJ sowie BI und FJ

(Schnittpunkte Y und X ) .
Konstruiere das Viereck ABXY in wahrer Größe .

e) Verbindet man die Mitten angrenzender Quadrate , so ergibt sich ein regelmä¬
ßiges Achtflach .
Zeichne die Figur ab und die verdeckten Kanten ein.

eine der acht Flächen in wahrer Größe .



f) Verbindet man die Mitten angrenzender Kanten , so ergibt sich ein regelmäßi¬
ger Würfelstumpf .
Zeichne die Figur ab und die verdeckten Kanten ein.
Von welcher Art sind die Vielecke, die seine Oberfläche ausmachen ?
Konstruiere den Abstand gegenüberliegender Dreiecke (vom Stumpf ) in wah¬
rer Größe .

welcher stein liest'"7 AM HÖCHSTEN% r
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