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78 2 Die rationalen Zahlen und ihre Rechengesetze

Aufgaben

1 . Vereinfache durch Anwendung der Vorzeichenregeln für Produkte :
a) ( - 2) - x b) ( - 5) ( - j ) c) ( - z) ( + 2,3)
d) a { - b ) ( + c) e) ( — a) ( — b ) c f) ( + a) ( + b) ( — c)

2 . Beweise die Gleichung a • ( — 1 ) = — a (Satz 75 . 1 ) mit Hilfe der Fallunter¬
scheidung a > 0 , a = 0 , a < 0 . Gib jeweils an , welche Definitionen oder
Sätze benützt werden .

3 . a) Stelle entsprechend der Regel 76 . 1 die Vorzeichenregeln für Produkte
mit drei Faktoren symbolisch dar .

b) Ergänze zu richtigen Vorzeichenregeln:
( - ) • ( + ) • ( - ) • ( + ) = ? und ( + ) • ( - ) ■( - ) • ( + ) • ( - ) = ?

4 . Vereinfache durch Anwenden der Vorzeichenregeln für Quotienten:

a)
2 ( — m)

- 3
b)

( - 1 ) ( + m)
( + ! ) ( - «)

c)
( 21 ) ( — 51) Z
<? ( + r) ( - 5)

5 . Verwandle in den folgenden Produkten den Zahlenfaktor in einen Divisor ,
a) m - j b) n ■0,2 c) p ■ ( — 0,25)
d) ( - £) ■ ? e) r - ( lf ) f) ( - {§) • 5

6 . Schreibe die folgenden Quotienten als Produkte :
a) x : 0,5 b) y : \ c) z : ( - | )
d) ( — m) : ( — 0,125) e) v : (3| ) f ) w : ( - 0,001 )

2.7 Die Rechengesetze für die rationalen Zahlen

2 .7 . 1 Das Distributivgesetz
Im bisherigen Rechenunterricht hast du schon das Verteilungs- oder Distribu¬
tivgesetz* kennengelernt. Es besagt, daß man beim Multiplizieren einer Sum¬
me auf zwei verschiedenen Wegen zum richtigen Ergebnis kommen kann .
Dazu ein

Beispiel:
Die Klasse 7b besteht aus 16 Knaben und 10 Mädchen . Für den Besuch
einer Ausstellung sammelt der Klassensprecher pro Schüler 2,50 DM
ein . Wieviel Geld muß er dann haben ?
1 . Weg : Man rechnet »2,50 DM ■ Gesamtzahl der Schüler « , also

2,50 DM ■ (16 + 10) = 2,50 DM ■ 26 = 65,00 DM .
distribuere (lat .) = verteilen . - Der Ausdruck distributiv wurde ebenso wie das Wort kommutativ 1814 von
dem französischen Professor der Mathematik Francois Joseph Servois (1767- 1847) geprägt . Siehe auch
die Fußnote * auf Seite 50.
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2 . Weg: Man rechnet »2,50 DM • Zahl der Knaben « + »2,50 DM ■ Zahl
der Mädchen « , also
2,50 DM • 16 + 2,50 DM • 10 = 40,00 DM + 25,00 DM =
65,00 DM .

Man erkennt : 2,50 DM • (16 + 10 ) = 2,50 DM • 16 + 2,50 DM • 10 .

Allgemein gilt für a,b,ce 0 die Beziehung a (b + c) = ab + ac . Dies ist das
Distributivgesetz , für das wir die Abkürzung (D) verwenden .
Nachdem wir nun wissen , wie in der größeren Zahlenmenge G> die Addition
und die Multiplikation auszuführen sind , stellt sich die Frage , ob das Rechen¬
gesetz (D) auch in G>gültig bleibt . Wir prüfen dies zunächst an einigen Beispie¬
len.
Beispiel 1 : a = — 2 , b = 5 , c = — 8

dann gilt : a (b + c) = ( — 2) • (5 + ( — 8)) = ( — 2) • ( — 3) = 6
und : ab + ac = ( — 2) • 5 + ( — 2) ■ ( — 8) = — 10 + 16 = 6 .

Beispiel 2 : a = 4,1 ; b = — 4,8 ; c = 3,5
dann gilt : a (b + c) = 4,1 • (( - 4,8) + 3,5) = 4,1 • ( - 1,3) = - 5,33

und : ab + ac = 4,1 • ( - 4,8) + 4,1 ■ 3,5 = — 19,68 + 14,35 = - 5,33 .

Beispiel 3 : a — — f , b = — f , c = — jy
dann gilt : a (b + c) = ( - ■£) ■ (( - | ) + ( - tt )) = ( - ?) ' ( - $ + u )) =

— 2/1 , _2_\ ___ 2 . 41 _ 41“ 7U + llj - 7 44 — 154

und : ^ + ac = ( - f ) - ( - J) + ( - f ) - ( - l ) = f - f + M =
_ 3_ _i_ — 33 + 8 _ 41— 14 "T 77 — 154 — 154 -

Diese Beispiele lassen also vermuten , daß (D) für alle rationalen Zahlen gilt.
Der genaue Nachweis dafür erfordert eine ziemlich umfangreiche Fallunter¬
scheidung und ist schwierig . Für Interessenten soll hier als Beispiel einer der
einfacheren Fälle untersucht werden :

Fall : a > 0 , b < 0 , c < 0
Wir setzen a = p,b = — q,c = — r mit p , q , r e 0 + .
Dann gilt : a {b + c) = p (( - q ) + ( ~ r)) = p { - (q + r)) =

= ~ (p (q + r)) = - (pq + pr) -
Hier wurde beim letzten Schritt (D) in Q + angewandt .

Weiter gilt : ab + ac = / >( — q) + p ( — r) = ( '—pq ) + { —pr ) =
= ~ (pq + pr ) .

Damit ist für diesen Fall (D ) bewiesen . Man kann so tatsächlich zeigen,
daß das Distributivgesetz in jedem Fall gilt . Dies halten wir fest in

Satz 79 . 1 : Für beliebige rationale Zahlen a , b , c gilt das Distributiv¬
gesetz: a (b + c) = ab + ac
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Beispiele :
1 ) ( — 2) (a + 5) = ( — 2) a + ( — 2) - 5 = - 2a - 10 .
2) (x + 2y) - 19 = 19 (jc + 2y) = 19x + 38j .
3) 6,5 (ö — 4b) = 6,5 (a + { — Ab)) = 6,5a + 6,5 ( — Ab) = 6,5a — 26 b .
4) (( — 3z) — 7) • ( — 10) = (( — 3z) + ( — 7)) • ( — 10) =

= ( — 3z) • ( — 10) + ( — 7) - ( — 10) = 30z + 70 .

Aufgaben
1 . Berechne zur Überprüfung des Distributivgesetzes die Terme

7) = a (b + c) und T2 = ab + ac für folgende Zahlenwerte :
a) a = — 8 ; £ = — 2 ; c = 5 b) a = 1,1 ; 6 = — 0,7 ; c = — 160
c) a = — 36 ; b = c = — lf d) a = — 2,5 ; b = — 9,12 ; c = — ff

• 2 . Begründe bei dem auf Seite 79 stehenden Beweis des Distributivgesetzes
für den Fall a > 0 , b < 0 , c < 0 die einzelnen Termumformungen , z . B .
durch Angabe der dabei verwendeten Sätze oder Regeln .

• 3 . Beweise nach dem Muster des auf Seite 79 durchgeführten Falles das Dis¬
tributivgesetz auch für den Fall a < 0 , b < 0 und c < 0 .

4 . Verwandle die angegebenen Produkte in Summen oder Differenzen :
a) { \ 6x + 5y ) - 9 b) (2,8xy — 5) • ( — 12,5) c) ( - 0,5) • ( 1,6 » - fw )
d) 12 ( — Aa + 3b ) e) ( — ri) - (2n + 7) f) ( — jx — fy ) • f

5 . Berechne und vergleiche 7) = (a + b) : c und T2 = a : c + b : c für folgen¬
de Zahlenwerte :
a) a = 22 ; b = 10 ; c = 8 b) a = - 5,4 ; b = 7,8 ; c = - 6
c) A = - 2^ ; b = c = ^ d) a = b = - 1,6 ; c = - 0,4

6 . Begründe , daß auch für das Dividieren einer Summe ein Distributivgesetz
gilt , nämlich (a + b ) : c = a : c + b : c , für c + 0 .
Hinweis : Beachte Satz 74 . 1 .

7 . Verwandle die folgenden Quotienten in Summen oder Differenzen :
a) (8x + 6y ) : 4 b) (0,64z 2 — 1 ) : 0,4
c) (fw — 5u) : ( — -§■) d) ( — 5,1p — 8,5g ) : ( — 17)

2 .7 .2 Die Monotoniegesetze der Multiplikation
Wir wissen schon nach Satz 62 . 1 , daß eine Ungleichung erhalten bleibt , wenn
man auf beiden Seiten dieselbe Zahl addiert : a < b => a + c < b + c . Gilt
eine entsprechende Feststellung auch , wenn man beide Seiten einer Unglei¬
chung mit derselben Zahl multipliziert ?
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Beispiele:
1 ) Multiplikation mit 7 :

Aus 2 < 5 wird 14 < 35 , weil 14 links von 35 liegt.
Aus — 5 < 1,5 wird — 35 < 10,5 .
Aus — 3,1 < — 1,2 wird — 21,7 < — 8,4.

2) Multiplikation mit — 3 :
Aus 2 < 5 wird — 6 > — 15 , weil — 6 rechts von — 15 liegt.
Aus — 5 < 1,5 wird 15 > — 4,5.
Aus — 3,1 < — 1,2 wird 9,3 > 3,6 .

Die Beispiele unter 1) lassen vermuten , daß gilt:

Satz 81 . 1 : Monotoniegesetz der Multiplikation
Multipliziert man eine Ungleichung mit einer positiven Zahl ,
so bleibt das Ungleichheitszeichen erhalten ; also

a < b
ac < bc

c > 0

Bemerkung : Da statt a < b auch b > a und statt ac < bc auch bc > ac ge¬
schrieben werden kann , gilt Satz 81 . 1 natürlich dann auch für Ungleichungen
mit dem Größerzeichen .
Beweis : a < b bedeutet nach Satz 61 .2 , daß es eine Zahl p > 0 gibt, für welche

a + p = b gilt .
Dann ist auch (a + p ) c = bc bzw . ac + pc = bc.
Wegen c > 0 und p > 0 gilt auch pc > 0 . Man muß also zu ac die
positive Zahl pc addieren , um bc zu erhalten . Nach Satz 61 .2 bedeutet
dies aber ac < bc , was zu zeigen war .

Die Beispiele 2) lassen erkennen , daß für negative Faktoren das Monotoniege¬
setz nicht gilt . Offenbar kehrt sich in diesem Fall das Ungleichheitszeichen um ,
d . h . , aus dem Kleinerzeichen wird ein Größerzeichen bzw . aus dem Größer¬
ein Kleinerzeichen . Es gilt der folgende

Satz 81 .2 : Gesetz von der Umkehrung der Monotonie
Multipliziert man eine Ungleichung mit einer negativen Zahl ,
so kehrt sich das Ungleichheitszeichen um , d . h . ,

a < b
=> ac > bc

c < 0

Beweis : a < b bedeutet nach Satz 61 .2 , daß es eine Zahl p > 0 gibt, für welche
a + p = b gilt .
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Die Auflösung dieser Gleichung nach a liefert
a = b — p oder a = b + ( — p ) .
Dann gilt auch ac = {b + { — p )) c =

= bc + ( — p ) c .
Nach Voraussetzung sind ( —p ) und c negative Zahlen ; somit ist
( —p ) c positiv . Da man also zu bc eine positive Zahl addieren muß ,
um ac zu erhalten , gilt ac > bc , was zu zeigen war .

Einen wichtigen Sonderfall von Satz 81 . 2 stellt das Multiplizieren einer Un¬
gleichung mit — 1 dar . Es gilt (Abbildung 82 . 1 ) :

a < b => a ■ ( — 1 ) > b • ( — 1 ) , also
a < b => — a > — b .

- b - a 0 a b

- b 0 b- aa

b 0 - b - aa

Abb . 82 . 1 a < b — a > — b

Natürlich gelten die beiden Monotoniegesetze auch für das Dividieren einer
Ungleichung durch eine positive oder negative Zahl . Das ergibt sich daraus ,

1
daß man die Division durch c 4= 0 als Multiplikation mit — auffassen kann .

c
1

Da c und - gleiches Vorzeichen haben , gilt also :
c

a < b
c > 0

a < b
c < 0

und

Aufgaben

1 . Multipliziere die Ungleichung mit der angegebenen Zahl .
a) - 20 < - 2 | | - 5 b) 1,7 > - 1,81 | - ( - 0,5) c) 24 > 0 | | - ( — f )
d) f > — Hl • ( — 21 ) e) 2x > y \ \ ■0,7 f) 0,2« < - 8 « | | ■ ( - 5)

2 . Dividiere die Ungleichung durch die angegebene Zahl :

c) _ 5 ,4 < - 4,5 | | : ( - f ) d) < ff | | : 0,4
e) 0,01 > - 0,11 | : ( - 0,001 ) f ) - 0,8 > ~ i \ \ : \ - 2 |

a) — 2 < 11 | : 5
c) — 5,4 < — 4,51 | : ( — f )

b) 68 > 0 | | : ( - 0,5)
d) if < 25 II : 0,4
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3 . Multipliziere die zwischen a und b bestehende Ungleichung mit dem Fak¬
tor c :
a) a = 37 ; b = — 1 ; c = 3 b) a = f ; b = f ; c = — 10
c) a = - 1,9 ; b = - 2,1 ; c = - 0,2 d) a = - 0,985 ; b = 0 ; c = 200

4 . Was ergibt sich, wenn man eine Ungleichung mit 0 multipliziert ?
5 . Ist x positiv , null oder negativ , wenn gilt

a) a < b => ax > bx b) u > v => ux = vx
n m pc) n > m — < — d) p > 0 => — > 0 ?
xx x

2 .7 .3 Zusammenstellung der Rechengesetze

Für rationale Zahlen a , b , c gelten folgende Rechengesetze :

Gesetze der Addition Gesetze der Multiplikation Bezeichnungen

(E + ) a + beO (E . ) a • b e <Q> Existenz der
Summe/des
Produkts

(K + ) a + b = b + a (K . ) a • b = b • a Kommutativ¬
gesetz

(A + ) (a + b) + c =
= a + (b + c)

(A . ) (a ■ b) • c = a • (b • c) Assoziativ¬
gesetz

(N + ) a + 0 = a (N . ) a • 1 = a Existenz des
neutralen
Elements

(I + ) « + ( - «) = 0 (I ) a • - = 1 , falls a + 0
a

Existenz des
inversen
Elements

(D) (a + b) - c = a - c + b - c Distributiv¬
gesetz

a < b => a + c < b + c
a < b ]

> => a - c < b - c
c > 0 j

Monotonie¬

gesetz

a < b |
> =s> a - ob - c

c < 0 J
Umkehrung
der Monotonie
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Die hier zusammengestellten Rechengesetze bilden die Grundlage für das
Rechnen mit rationalen Zahlen und überhaupt für die ganze Algebra . Du
wirst sie im folgenden immer wieder benötigen , besonders häufig die mit (E) ,
(K ) , (A) , (N ) , (I) und (D ) bezeichneten Gesetze . Präge sie dir daher gut ein
(Merkwort : EKANID , vgl . auch Aufgabe 84/5 .) .
Besonders auffällig an dieser Gesetzestafel ist natürlich die weitgehende Ana¬
logie zwischen den Rechengesetzen der Addition und der Multiplikation : die
»EKANI -Gesetze « gibt es für beide Rechenarten . Zu ihrer Unterscheidung
wurde in der Tafel ein an den Kennbuchstaben angehängtes Plus - bzw . Mal¬
zeichen verwendet . Im Distributivgesetz (D) - und nur in ihm ( !) - kommen
beide Rechenarten zugleich vor . Es stellt eine Verbindung zwischen den beiden
durch die Gesetze der Addition und der Multiplikation beschriebenen Re¬
chenbereichen dar .

Aufgaben

1 . Welches der in <Q> geltenden Rechengesetze der Addition konnte in der
Zahlenmenge G / noch nicht aufgestellt werden und warum nicht ?

2 . Weshalb benötigt man keine eigenen Rechengesetze für die Subtraktion
und die Division ? (In welchen Rechengesetzen der Addition und Multipli¬
kation sind diese Umkehroperationen enthalten ?)

3 . Ist es richtig , zu sagen »Wenn man in den Rechengesetzen der Addition die
Pluszeichen durch Malzeichen ersetzt , erhält man die Rechengesetze der
Multiplikation «?

4 . Erkläre an der Zahlengeraden, warum es bei der Addition keine »Umkeh¬
rung der Monotonie « gibt .

5 . a) Wie gefällt dir der Wahlspruch »In Mathe fit mit EKANID «?
Oder folgender : »Was EKANID weiß , macht mich nicht heiß«?
Denke dir selbst beß ’re Merksätze aus !
Vielleicht wird gar ein Gedicht daraus ?

b) »Beim Rechnen in Qq eckt man oft an ,
Weil man häufig nicht subtrahieren kann .
Das liegt daran : Man hat nur EKAN !
. «
Erfinde zu diesem großartigen Gedichtanfang eine passende Fortset¬
zung , welche auf den mit O und EKANI erreichten Fortschritt hin¬
weist!
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