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3 .3 Umgang mit Klammem 101

19. Bestimme die Werte der folgenden Potenzen:
a) ( - 1 ) 2 b) ( - 1 ) 3 c) ( - 1 ) 4 d) ( - 1 ) 5
e) ( - 1 ) 8 f) ( - 1 ) 17 g) ( - 1 ) 103 h) ( - 1 ) 1234
i) Welche Werte können Potenzen mit der Grundzahl — 1 annehmen? Bei

welchen Hochzahlen treten die verschiedenen Potenzwerte auf ?
20 . Berechne :

a) ( — 0,1 ) 2 b) ( — 10) 2 c) ( — 0,1 ) 3 d) ( — 10) 3

e) ( — 0,01 ) 2 f ) ( - 0,01 ) 3 g) ( - 100) 2 h) ( - 100) 3

21 . a) ( — fl) 2 b) ( — fl) 5 c) ( — a) 32 d) ( — a) 1

e) ( — fl) 2”
, neN 1) ( — fl) 2n + 1

, « eN g) ( — a) 2 " - 1
, « eN

22 . a) ( - c) 4 - c4 b) ( — c) 5 + ( — c) 5 c) ( - ab) 3 d) ( - ab )4

e) - ( - ab ) 4 f ) [ - ( - flZ>)] 4 g) - ( - uv ) 1 h) - ( - uv 1)

23 . a) — ( — x) 2 b) - ( - x) 3 C) [ - ( - x)] 2 d) [ - ( - x)] 3

24 . a) ( - a) 2 ( - b ) 3 ( - c) 4 b) ( - a) 3 ( - b) 2 ( - c) 3

C) ( - i ) 3 ( _ x ) 2 ( _ J;) 4 d) ( _ 8 fl) 4 ( - | fl) 3 ( - 8fl) 2

• e) — 4a ( — ffl) 2 • (fa ) 3 Sf ) ( — 0,5x ) 3 • 2,7x • ( — 3,4x ) 2

25 . a) 1 + ( — l ) 1 b) l + ( - l ) 2 c) 1 + ( - l ) 3 d) l + ( - l ) 4

e) l - ( - l ) 1 f) l - ( - l ) 2 g) l - ( - l ) 3 h) l - ( - l )4

3 .3 . Umgang mit Klammern

Der Term (3x + 2y — 5) — (2y — 5 + 3x) läßt sich zu 0 vereinfachen , weil Mi¬
nuend und Subtrahend gleich sind , wie man durch Umordnen des Subtrahen¬
den erkennt . Schwieriger ist es , wenn man einen Term wie (3x + 2y — 5) —
— ( — 8x + 3^ — 1 ) vereinfachen will . Die Klammern lassen sich nicht ver¬
einfachen , und dennoch hat man das Gefühl , daß man diesen Term auch
einfacher schreiben kann . Tatsächlich geht es auch . Die dazu nötigen Hilfsmit¬
tel erarbeiten wir uns in diesem Kapitel .

Es hat sehr lange gedauert , bis sich Klammern als Zeichen für das Zusammenfassen
durchgesetzt haben . Zum erstenmal wurden runde Klammern von Michael Stifel
(14877- 1567 ) verwendet , als er in seinem Handexemplar seiner Arithmetica integra
eine Randbemerkung machte . Bei Niccolö Tartaglia (1499 - 1557 ) erschienen sie 1556
in seinem General trattato di numeri, et misure im Druck . Wichtig wurden Zusam¬
menfassungszeichen aber erst , als man allgemein mit Buchstaben rechnen wollte .
Francis Viete (1540 - 1603) faßte 1593 zusammengehörige Ausdrücke durch eckige
und geschweifte Klammern zusammen . Viele Mathematiker hatten das Zusammen -
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gehören durch Unterstreichen ausge¬
drückt . Rene Descartes (1596 - 1650)
führte statt dessen 1637 das Überstrei¬
chen ein, das durch seine Schüler allge¬
meine Verbreitung fand ; man schrieb also
7 + 3 : 5 an Stelle des heutigen (7 + 3) : 5 .
Da aber für die Druckereien Klammern
bequemer zu setzen waren als Überstrei¬
chungen , setzten sie sich immer mehr
durch . Leonhard Euler ( 1707- 1783) ver¬
wandte 1770 in seiner Vollständigen Anlei¬
tung zur Algebra zum erstenmal das deut¬
sche Wort Klammer.

Abb . 102 . 1 Leonhard Euler ( 15 .4 . 1707
Basel - 18 .9 . 1783 St . Petersburg ) öcUen.
3 .3 . 1 Rechenzeichen und Vorzeichen
Wir erinnern daran , daß die Subtraktion zweier Terme nichts anderes ist als
die Addition des Gegenterms :

a — b = a + ( — b ) .
Das Rechenzeichen Minus auf der linken Seite verwandelt sich dabei zum
Vorzeichen Minus auf der rechten Seite . Das Vorzeichen Plus bei a lassen wir
wie üblich weg.
Stehen vor einem Term mehrere Vorzeichen , so kann man sie immer mit der
Vorzeichenregel auf eines reduzieren ; nämlich

+ ( + fl) = + a = u — ( + a) = — a
+ ( — ä) = — a — { — a) = + a = a .

Man kann damit auch ganze Vorzeichenserien abbauen :
- ( - ( + ( - ( + ( - «))))) = - ( - ( + ( - ( - fl)))) =

= — ( — ( + ( + a))) =
= - ( - ( + «)) =
= - ( - fl) =
= a .

Wir haben die Serie dabei von innen nach außen abgebaut . Genausogut
könnte man sie auch von außen nach innen abbauen .
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Aufgaben

1 . Reduziere auf ein Vorzeichen :
a) + ( + 3a) b) - ( - fb )
c) — ( + xyz ) d) + ( — 4ab)
e) - { + { - lxy )) f) — ( — ( — ( — ( + ( — 13 m)))))

2 . Reduziere auf ein Vorzeichen :
a) + (a - b) b) - ( - (a - b)) c) - ( + ( - (a - b )))

3 . Du erinnerst dich sicher :
- Malpunkte in Produkten dürfen vor Variablen und Klammern wegge¬

lassen werden , z . B . 3 • a ■ {x — y ) = 3a (x — y ) .
- Das Pluszeichen bei gemischten Zahlen kann entfallen , also 1 + f = if .
- Das Pluszeichen als Vorzeichen am Anfang schreibt man nicht , z . B .

+ lab + 5a — b = 2ab + 5a — b .
Was versteht man nun eigentlich unter dem Term — 1 \ W.
Welche der folgenden Vorschläge hältst du für richtig :
a) ( — 1 ) - \ - b b) - (l + i ) - ü
c) - 1 + i - b d) ( — 1 - i ) - Ä
e) ( - l + i ) - b f) - (! + ! • £ ) ?

3 .3 .2 Plusklammern

Steht in einem Aggregat vor einer Klammer ein Pluszeichen , so spricht man
kurz von einer Plusklammer , z . B . 3x + ( ly — 5x + 8) . Weil es üblich ist , am
Anfang keine Pluszeichen zu schreiben - denke etwa daran , daß 3 + 5 auch
als + 3 + 5 geschrieben werden kann - so ist auch eine am Anfang stehende
Klammer eine Plusklammer : (3x + 5) + 8x .
Diese Plusklammern wollen wir nun beseitigen . Dabei hilft uns das verall¬
gemeinerte Assoziativgesetz . Weil es nur von Summen handelt , müssen wir
gegebenenfalls den Inhalt der Plusklammer als Aggregat , d . h . als algebraische
Summe , betrachten und dann das verallgemeinerte Assoziativgesetz
anwenden .

Beispiel: a + ( — b — c + d) = a + (( — b ) + ( — c) + d ) =
= ö + ( — b ) + ( — c) + t/ =
= a — b — c + d .
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Untersuchen wir das vorgeführte Beispiel auf das Wesentliche , so erkennen
wir

Satz 104 . 1 : In einem Aggregat kann eine Plusklammer mitsamt ihrem
Plusrechenzeichen weggelassen werden , ohne daß sich der
Wert des Aggregats ändert . Die Rechenzeichen in der Klam¬
mer bleiben erhalten . Falls vor dem ersten Glied in der
Klammer kein Zeichen steht , so muß ein Plusrechenzeichen
gesetzt werden ; kurz :
Plusklammern können weggelassen werden, Rechenzeichen
bleiben .

Wenn man bedenkt , daß der Inhalt der Plusklammer ein Aggregat ist , dann
läßt sich dieser Satz auch noch anders ausdrücken , nämlich :

Ein Aggregatwird addiert , indem man jedes Glied des Aggregats einzeln addiert .

Nach Satz 104 . 1 kann man also Plusklammern an beliebiger Stelle in einem
Aggregat weglassen . Umgekehrt kann man sie demnach an beliebiger Stelle
setzen ! Wir merken uns

Satz 104 .2 : Ein Aggregat ändert seinen Wert nicht, wenn man beliebig
viele Glieder in einer Plusklammer zusammenfaßt und
dabei ihre Rechenzeichen beibehält , z . B .
a + b — c + d — e — f = a + (b — c + d) + ( — e — / ) .

Nun können wir endlich das eingangs angeführte Aggregat vereinfachen :
3x + (ly — 5x + 8) = 3x + ly — 5x + 8 =

= ly + 3x — 5x + 8 =
= ly + (3x — 5x ) + 8 =
= ly — 2x + 8 .

Aufgaben
1 - a) 5 a + (3 b 1a) b) (5n + 3b ) + 7u

c) 5 a + (3 b — la ) d) — 5 (2 + ( — 3b + la )
e) ( — 5u + 3b ) — la f) — 5a + ( — 3b — la )

2 . a) (2x + 4y) + (6x + ■4y ) b) (2x — 4y ) + ( — 6x + 4y)
c) ( — 2x + 4y ) + (6x - 4y) d) ( — 2x — 4y ) + ( — 6x — 4y)
e) 2x + ( — 4y + 6x —4y) f) — 2x + (4y — 6x) — 4y
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3 . a) 3a + (9x 4- 7a) + (15a + 11 x)
b) 176 + (15a 4- 96) 4- 2a 4- (11a + 6 )
c) 14x + (20a + 76 + 4x ) + (9x + 13a + 316)
d) 11a + (136 + (12a + 196 )) + ((4a + 21b ) + 14a)

4 . (9 + 116 + 13c) + (156 + 17 + 19c) + (21c + 23 b + 25)

5 . 12x + (23x + 21y) + ( — 29 y + 3 z — 4 m) + (43z + 41 u — 59x) +
+ ( — 43 m — 7x — 2y) 4- ( — 19x + 4y — 46z)

• 6 . 2 + x + (x + (_y + 2) + (x 4- 2)) + (((x + 2) + 2) 4- 2)

• 7 . « 4- 1 4- (r 4- 1 ) 4- ((« 4- 1 ) 4- (r 4- 1 )) 4- (2 4- (2n + 1 ) 4- (2 r 4- 1 ))

• 8 . ( — 2 4- x) 4- (1 — x 4- ((1 — x) 4~ ( — 1 4“ x))) 4- ((1 — x) 4~ (x 4- 1))

9 . a) Wie lautet die Quersumme * q der Zahl 10 • x 4- y ; x e ( 1 , 2 , 3 , 4 , 5 , 6 ,
7 , 8 , 9} , y e (0 ; 1 ; 2 ; 3 ; 4; . . . ; 9} ?

b) Warum sind alle Zahlen der Form 10 - x4 - (9 — x ) mit
x e {0 ; 1 ; 2 ; . . . ; 9 ) durch 9 teilbar ?

• c) Sind auch alle Zahlen der Form 100 • x 4- (99 — x ) mit
x e (0 ; 1 ; 2 ; . . . ; 99 } durch 9 teilbar ?

8 d) Welche gemeinsamen Teiler haben alle Zahlen aus c) ?

3 .3 .3 Minusklammern

Steht in einem Aggregat vor einer Klammer ein Minuszeichen , so spricht man
kurz von einer Minusklammer , z . B . 3x — (ly — 5x 4- 8) .
Diese Minusklammer wollen wir nun beseitigen . In Satz 75 . 1 haben wir

gezeigt , daß — a = ( — 1 ) • a ist . Setzen wir an Stelle von a ein Aggregat , dann
erhalten wir z . B .
— (6 — c — d + e) = ( — 1 ) • (6 — c — d + e) = ( — 1 ) • (6 4- ( — c) 4- ( — d) + e) .

Mit Hilfe des Distributivgesetzes ergibt sich für die rechte Seite

( — l ) - b + ( — l ) ' ( — c) + ( — l ) ' ( — d) + ( — l ) ' e = — b + c + d — e .

Also gilt :
— (6 — c — d + e ) = — b + c + d — e .

Mit dieser Erkenntnis können wir nun auch Minusklammern im Innern eines

Aggregats beseitigen :

a — (6 — c — d + e) = a + \_ — (6 — c — d + e )
~
\ =

= a + ( — 1 ) • (6 — c — d + e) =
= a + ( — b + c + d — e) =
= a — b + c + d — e .

Das bequeme Fachwort Quersumme scheint erst im 19 . Jh . aufgekommen zu sein .
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Weil sich unsere Überlegungen auf jedes Aggregat übertragen lassen , gilt :

Satz 106.1 : In einem Aggregat kann man, ohne daß sich der Wert des
Aggregats ändert , eine Minusklammer mitsamt ihrem Mi¬
nuszeichen weglassen , wenn man alle Rechenzeichen in der
Klammer ändert , d . h . Pluszeichen durch Minuszeichen und
Minuszeichen durch Pluszeichen ersetzt . Falls vor dem er¬
sten Glied in der Klammer kein Zeichen steht , so muß ein
Minuszeichen gesetzt werden ;
kurz : Minusklammern dürfen weggelassen werden, wenn alle

Rechenzeichen geändert werden.

Beispiel :
3x — (ly — 5x + 8 ) = 3x — ly + 5x — 8 = 8x — ly — 8 .

Wenn man bedenkt , daß der Inhalt der Minusklammer ein Aggregat ist , dann
läßt sich dieser Satz auch noch anders ausdrücken , nämlich :

Ein Aggregat wird subtrahiert , indem man jedes Glied des Aggregats
subtrahiert .

Beispiel :

3x — (ly — 5x + 8 ) = 3x — ly — ( — 5x) — 8 =
= 3x — ly + 5v — 8 =
= 8x - ly - 8 .

Nach Satz 106 . 1 kann man also Minusklammern an beliebigen Stellen in
einem Aggregat weglassen , wenn man alle Rechenzeichen in der Klammer
ändert . Umgekehrt kann man demnach Minusklammern an beliebigen Stellen
setzen , wenn man die Rechenzeichen bei den Gliedern ändert , die in die Min¬
usklammer kommen . Wir haben damit

Satz 106 .2 : Ein Aggregat ändert seinen Wert nicht , wenn man beliebig
viele Glieder in einer Minusklammer zusammenfaßt und
dabei alle Rechenzeichen ändert , z . B .
a + b — c + d - e - f - a - ( - b + c - d ) — (e + f ) .

Wie man mit diesem Satz arbeitet , zeigen wir an folgendem

Beispiel: - ( — 2a + 3b) - (5b + 8a) = 2a - 3b - 5b — 8a =
= (2a - 8a) - (3b + 5b ) =
= — 6a — 8b .
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Aufgaben

1 . a) 5a — (36 + 7a) b)5a — (36 — 7a)
c) 5a — ( — 3b + 7a) d)5a - ( - 3b - 7a)

2 . a) (2x — 4y ) — (6x — 4y) b) (2x + 4y) — (6x + 4y)
c) (2x + 4y) — (6x — 4y) d) ( — 2x — 4y) — (6x — 4y)
e) ( — 2x + 4y ) — ( — 6x — 4y) f) — 2x — (4y — 6x) — 4y

3 . a) 3a — (9x + 7a) — ( — 4a — llx )
b) 176 — (15a — 96) — 2a + ( — 17a — 266)
c) 14x — ( — 20a + 7 b — 4x ) — ( — 9x + 19a + 17 b ) + 6x
d) 11a + ( 13 b + (12a - 196 )) - ((4a - 176 ) + 19a)

4 . (9 — 116 + 13a) — (156 + 17 — 19a) — ( — 21c — 26b + 18)
5 . 12x — (23x — 27y) — ( — 29y + 3 z + 4 u) + ( — 43z — 47 u — 59x) —

— ( — 51a — 16x + 56y) — (7z + x)
6 . a) | + a - (i - 2ja )

b) — §b + ja + 3jc — ( — c — ljb )
c) - ( - a + 7| - 4f ) - (6^ + a - 9f )
d) (5,7 - 6 ) - (a + 3,6) - (9,6 - 6 ) + (2,4 + a)

7 . a) — ( — a + | 6 — 21c + 9,05) + (2^6 — 9,5)
b) - ( - ( - 3,5m + 5,5t; - 7 w)) - (3,5u - 5,5v - 7 w )

8 . a) ( - jx + §y - 2) - ( ~ &x + jy - f ) -

b) (ja - 1 - jjb ) - ( - ja - jjb ) - (1 - jjb )
c) (^ - | ^ - 3) - ( - ^ r + f5 - J^ )

9 . a) (3x 2 — 2x + 1 ) — ( — 2x 2 + 4x — 6)
b) (7x 3 - 3x + 2) - ( - 4x + 5x 3 + 3)
c) ( — 3x 3 + 2x — 3) — (4x 2 — 5 — 2x) — 6x 3

d) — (6x 3 — 2x 2 + 5) — (3x 3 + 7x 2 — 2)
10 . a) (| a6 — fa 2 6 + 1 ) — ( — jab + ja 2 b ) + ( — ab + ja 2 b)

b) (f a 2 4- ja — 7) — (a 2 + ja — 5) — (| a 2 + a — 3)

3 .3 .4 Faktor bei der Klammer

Bisher haben wir gelernt , wie man bei Aggregaten vom Typ a + ( 6 — c) —
— (e + f — g) die Klammern auflöst . Was aber , wenn vor einer dieser Klam¬
mern noch ein Faktor steht ? Jetzt muß doch auch die Regel »Punkt vor
Strich « berücksichtigt werden . Die einfachsten Fälle sind a + b (c + d — e)
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und a — b (c + d — e) . Die schwierigeren Fälle , wo beide Faktoren Klammern
sind , wie z . B . a + (b — c) (d — e + f ) , betrachten wir erst in 7 . 1 .
Nun zum ersten Fall :
Wegen der Regel »Punkt vor Strich « können wir eine zusätzliche Klammer
setzen , ohne daß sich der Wert des Aggregats ändert :
a + b (c + d — e) = a + (b (c + d — e)) .
Wir wenden auf den Inhalt der roten Klammer das Distributivgesetz an :
a + (b (c + d — e) ) = a + (bc + bd — be) .
Nach unserer Klammerregel (Satz 104 . 1 ) können wir die rote Plusklammer
einfach weglassen . Damit haben wir :
a + b (c + d — e) = a + bc + bd — be .
Den zweiten Fall können wir analog behandeln :
a — b (c + d — e) = a — (b (c + d — e) ) = Punkt vor Strich

= a — (bc + bd — be) = Distributivgesetz
= a — bc — bd + be . Satz 106 . 1

Vergleichen wir in beiden Fällen das gegebene Aggregat mit dem Ergebnis der
Umformungen , so erkennen wir

Satz 108 . 1 : Steht in einem Aggregat bei einer Klammer ein Faktor, so
multipliziert man jedes Glied in der Klammer mit diesem
Faktor unter Berücksichtigung der Vorzeichen .

a + b (c + d — e) = a + bc + bd — be .
a — b (c + d — e) = a — bc — bd + be .

Beispiele :
1 ) 3x — 5y (2 — 2x + 3y) + 2x ( — 6 + x — 5y) =

= 3x — 10y + 10xy — 15y 2 — I2x + 2x 2 — 10xy =
= 2x 2 — 9x — 15y 2 — 10y .

2) 5 ■ (joab - ib ) - ^a ( - ib + 1 | ) + b (2 ~ .%a) =
= \ ab — 2 b + %ab — 2a + 2b — J ab =
= — 2a .

Aufgaben
1 . a) 3a + 5 (2a — b) b) x — 3 ( 1 — x)

c) 3 + x ( \ — x ) d) 12z 2 — 3z ( — 2 + 4z)
2 . 6 (2 a + 3 b — 1c) + 1 (4a — 3b + 7c) — 8 (5a — 4b + 3c)
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3 . 15 (a + b - 3 ) - 6 (3 a - 2b ) + 7 (4 - 3b) - 8 (5 - 2a)

4 . a) a (a — 2b) — b (2a — b) b) a (2a + 3b) — b (2a + 5b)

5 . x (x — 1 ) — 2x 2 + 4x (2x + 1 ) — 6 (3x + 2)

6 . \ 5a (3x — 4y + la ) + 12x ( lla — ly + 4x) — 10j (13x — 4a + 11y)

7 . (3b 2 — 4ab) 2b — 3a (4ab + b 2) — 5ab (3a — 2b)

. 8 . (12a 2 b - 13 ab 2 + b 3) 5a - (11 a 3 - 32a2 b - 19ab2) ■ 3b -
— 16 ab {a 2 + 2ab + 4b 2)

• 9 . 5a2 bc (2ac - 3 bc 2) - labc 2 (3abc + 4b 2 c 2) - U 3 c 2 (2ac 2 - 3bc 3) -
~ 4ab 2 c 3 ( - 9a ~ \ \ bc)

• 10. \ 1a 2xy {9a 2 x 2 y — 11 ax 3 y 3 + 10xy 2) — 2 \ ax 2 y 2
{ \ 2a2 x 2 y 2 +

+ 15ay — 9a 3 x) + 23axy ( Jaxy 2 — 5 a 3 x 2 y + 9a 2 x 3 y 3)

11 . 5ab (3ab + 4ac — bc) — 3ac (3bc — 4ac + 5 ab ) —
— 4bc (3ab — 4ac + bc) — 4t 2 (3a 2 — b 2 + 2ab) — 15a 2 b 2

• 12 . 40a 2 bc 3 — 4ab 2 (3a2 c + 3 ac 2 + 4bc 3) + 3a 2 c (4ab 2 — 2bc2 — 4 b 2 c) —
— 5abc (9ac 2 — 4abc — 4b 2 c2) + 4bc 2 (5a 2 c — ab 2 c + a 2 b )

13 . 2x (1 - x (3 - 5 jc + 2x 2 ) - x 2 (2 - 3 jc)) - 4x 2 (2x - 2)

14. a (a + b — 2) — b (a + b — 3) — 4 (a — b) — 7 {b — ja )

15 . 4 (x — y + 5) — 5 (x + y ) + \ l (y — x — 3)

16 . 50x - 12 (x + y - z) - \ 4 {x - y + z) + \ l (y + z - x)

17 . (ö - b - 5 + c) ■ 3 + (b - a + c - 11 ) • 7 - (c + a - b - 14) • 6 -
— (2c + 5 b — 5a) ■ 2

18 . 21 {a + b + c) - 29 (a - b + c) + 31 (a + b - c) - 35 (b - c - a)

19 . (x + y + z) ■17 — (x - 4 - z) • 12 - (y — 15 - x ) • 13 - 3 (6x - 49)

20 . 5 (ö + x — 3) + 6x — (x — a — 3 ) • 7 — 3a — 4 (a — x)

21 . (a — b ) ■ 5 + 7 (fl + b) — (a - 7) ■ 5 - 7 (fl + 5)

22 . 100 - 99 (a + b - 1 ) - 50 + 49 {b + a - 1 ) + 50 (a + b - 2)

23 . (x — y - z - 2) ■ 2 + 3 - 4 (z - y - x - 5) + (x + 4) ■ 8 - 5 ( ^ + 2)

24 . a ( l + b + c) — b (2 + a — c) — c (3 + a + b)

25 . y + y ( l - y ) - y (2 - y ) + y 2

26. x (n + 1 ) — x (n — 1 ) + x (n — 2) — nx 4- 3x

27 . x 2 — x (a + x) + x — x (a — 1 ) + (a + 1 + x) x — x (3 — a)

28. 4b + a (x — 3) + a (7 — x) + a — (a + b) • 4
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29 . a (a + b) + c (a + b) — ac — c 2 + bia + b) — bc — 2ab
30 . a 2 + c (b — c) + ac — b {b — c) + a (b — c) — ab — 2bc
31 . a) 3a - (lb - a) + 15 (2a + b ) b) - w (7 - Sv ) + 3w (2 - 3 «)

c) 7 ( 17 + 8fx ) — (x + 7) • 17
d) 3 (2x + llj ) + 7j (l + 5x) + y ( — 2 + x)

32 . a (a 2 b + a 3 c 2) + a 3 (2b + ac 2)
33 . x 2 (5a + bx) + 3a (2b + x 2) + 2 b (a + 2x 3) — 8 a (x 2 + b )
34 . p 2

q (2pr + 4r 3 + Irq 2) + 2r (p 2
q

3 + 5p 2
q + 2p 2 qr 2) —

- 2pqr (p 2 + pq 2 + 5p )
35 . a) 0,5x (0,8x — 0,6^) — 0,4y ( l,5y — 2,5x)

b) 2 ^-a (4fa — 6^ 6) — 2§ 6 (3fa + 8 ^ 6)
c) 6jb (4^ b — Ufa ) — 4§ a (3f 6 — 5 § a)

36 . a) u (v — w) + v (w — u) + w (u — v)
b) x (y + z) — y (x + z) + z (x — y)
c) 5xy + 3y (2x + 1 ) — 6x (y — 2) + 2 (x — y)

37 . a) 4pqr — (8prs — 11 qrs) — (
'
Iprq — 6rsq + 4srp) • ( — 2)

b) 2a (9b — 6c) — b (6a + 15c) + 3c (4a — 2b)
c) 2ab {5 + c) — lb {3a + ac) — ab ( l8c — 7 • 3c)

38 . a) 6p (3pq + q 2) - 2q (9pq - 3p 2) + 8pq (p - q)
b) %a 2 b 2 (\ 5c 2 — 5) + \ ab {%ab — lOahc2) — la 2 b2

39 . a) 3 (Ixy - §y ) - fx ( - fy - 14) + 26y - ix )
b) 3ia ( l^ a - b + 7) - 3^b {^ b - {ffa - 6) -

— (63 — faö + 6| a 2) • + 162
• c) ( — 0,2x ) 2 ( — 0,2 + x) - 0,2x 2 (0,22 - x) - ( - 0,2x) 3

3 .3 .5 Schachtelklammern

Bei komplizierteren Termen kommt es vor , daß in Klammern Klammern
stehen , in denen womöglich wieder Klammern stehen usw.

Beispiel : 4a — ( — 1 + 3 (2a — (a + 3))) .

Wenn es dabei zu unübersichtlich wird , verwendet man auch verschiedene
Klammerarten , z . B . runde und eckige Klammern .

Beispiel : 4a — ( — 1 + 3 [2a — (a + 3 )] ) .
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3 .3 Umgang mit Klammern 111

Mit Hilfe unserer Klammerregeln können wir jetzt solche »Schachtelklam¬
mern « auflösen . Man kann dabei verschieden Vorgehen. Wir empfehlen die

Regel 111 . 1 : 1 . Vereinfache , falls möglich, in jeder Klammer.
2 . Löse die innerste Klammer auf .
3 . Vereinfache wieder .
4 . Wiederhole 2 . und 3 . so lange , bis keine Klammern mehr

vorhanden sind .

Beispiele:
1) 4a - ( - 1 + 3 [2a - (a + 3)] ) = 4a - ( - 1 + 3 [2a - a - 3] ) =

= 4a — ( — 1 + 3 [a — 3] ) =
= 4a — ( — 1 + 3a — 9) =
= 4a — ( — 10 + 3a) =
= 4a + 10 — 3a =
= a + 10 .

2) (3x — (
'lyz + 3z ( — 3 + 2x — 5y) — 6xz )) ( — 5) — (8z — 15x) =

= (3x — (lyz — 9z + 6xz — 15yz — 6xz )) ( — 5) — 8z + 15x =
= (3x — ( — 8yz — 9z)) ( — 5) — 8z + 15x =
= (3x + 8yz + 9z) ( — 5) — 8z + 15x =
= — 15x — 40yz — 45 z — 8z + 15x =
= — 53z — 40^ .

Aufgaben

1 . a) (3a2 + 4 b ) — (5a2 — (2a 2 — b ))
b) (7a 3 - 2b ) - (4a 3 - (Ab - (3a 3 - b )))

2 . a) 5x 3 — xy — (3x^ — (2x 3 + _v
2 + 6x_y)) — (3x_y — (2x 3 + xy ))

b) 2xy - 4x 3 - (2x .y - (3x 3 - y 2 - 8xj )) - ( - 2y 2 - (8 xy + 10x 3 ))

3 . a) 3a4 - b 2 + (Sab - (2a4 - 3b 2)) - (8 ab - (b 2 - 2a4))
b) 6 ab - a 4 - (lab - (4a4 - b 2)) + ( - 4a4 - (lab - Ab 2))

4 . a) — ( — a + (1b — (21c — 9))) b) - [ - ( - 3w + 5t> - 7w)]
c) — [(x — 3y) — ( — 2x + + 1 )]
d) — { — [(6m — 9n ) — ( — p — qj] — ( 1 + 5 m + 10«) } — (1 + P + q)

5 . 0,5a [3v 3 + (2,4m » - 1 )] + 3 [2m - 1,8uv (u + r 2)]

. 6 . (( 11 — 16x + 17x 2) • 3x — 5x (6 — lOx + 10x2)) • 3x —
— 4x ((x + 2) x + 1 ) + 1



112 3 Einfache Termumformungen

• 7 . ((2a + 3b ) 2b — (3a — 2b ) 3a ) ab 2 + (3a (2a — 3b ) —
- 2b (3a + 2b)) a 2 b

• 8 . 5a (6 - 4 (3 - ä)) - (5a (6a - 11 ) - 4 (3a 2 - 6a + 6)) - 24

89 . 6 [ ((3x - 1 ) 2 - 4 (x + 5)) ■ 5 - 4 (2 - 2 (3 - 3 (4 - 5x )))] -
— 20 (39x — 58) — 19

10 . 3a ((5a — 4) • 5 — (2a — 7 + 2a 2) + 6a (2a — 4)) — 5a 2 (3a — 4)
811 . ((a 2 + ab + b 2) b — a (a 2 + ab + b 2)) b — a (b 3 + 2 ab 2 — a 2 b) + b 3 (b + a)

12. (a 2 + 2b (2b — 3a )) a — b (b 2 — 2a (2a — b )) + b 3 — a 3

13 . 2 (3 - 4 (5 - 6 (7 - je))) - 7 (6 - 5 (4 - 3 (2 - x )))
. 14. 2x (4x ((3x - 2) • 5 - 3 (2x - 4)) + 6 (3x - 1 )) - 3x 2 (x (20 - x) + 20)
. 15 . a (25a - ((4a + 3) - 4 - 15a ) - 2a + 3 (a + 4 (a - 2))) +

-T 4 (a (a a (a 1 )) -)- a)
16 . (ysX — 3x 2) — (3x 2 — jx — (2x 2 — 2 — 4x + i ) + (fx — fx 2 — yf ))

817 . x 2 — (| x + 3x 2 — (2x 2 — 3x — (4x 2 — \ x + 2) + | x 3) — ^x 3) +
+ (fi * - 2o * 3) + 2

18 . \ ab 2 - (6ac 2 - c 3 - 2a (c 2 - \ b 2 ) + ab 2 - fc 3 ) + y{ab 2 + 4ac 2

19 . i b 3 + 4a 2 - (| (3 bc - 4) - (a 2 - bc - 2ab ) + f bc ) - {b 2 - 6 - \^ bc
820 . \ b 2 ( lab - \ a 2 ) - 1b (ab (b - | a ) + -̂ ab 2 ) - ^ ab 2

(20a + 31b )
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