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4 .2 Lösen von Gleichungen

4 .2 . 1 Gleichung als Information über eine unbekannte Zahl

4 .2 . 1 . 1 Ein historisches Beispiel

Der Hyksoskönig * A ’User -re Apophis (um 1590 - um 1550 v . Chr .) herrschte
schon seit 33 Jahren über Ägypten . Im 4 . Monat der Überschwemmungsjah¬
reszeit dieses 33 . Regierungsjahres schrieb Ahmose * * auf eine Papyrusrol¬
le * * * ein altes Buch der Mathematik ab , das aus der Zeit des Königs
Amenemhet III . ( 1842 - 1794 v . Chr .)
stammte . * * * * Die Rolle wurde im
19 . Jh . wieder aufgefunden und im
Jahre 1858 in Luxor an den schotti¬
schen Juristen Alexander Henry
Rhind ( 1833 - 1863 ) verkauft . Sie ist
33 cm breit und 5,34 m lang und beid¬
seitig beschrieben (Abb . 113) . Der
Text der Rolle - sie heißt heute Papy¬
rus Rhind - beginnt mit einer großen
Versprechung :
»Regeln zur Erforschung aller Dinge ,
zur Erkenntnis alles Seienden , aller
dunklen Geheimnisse « .
Dann kommen Divisionstabellen , an die sich 84 Aufgaben anschließen . Diese
entschleiern zunächst das Geheimnis der Zahlen und der Bruchrechnung ,
dann lösen sie Probleme aus der Geometrie und der Lehre von den Körpern ,
und schließlich beschäftigen sie sich mit Fragen aus der Landwirtschaft .
Aufgabe 24 - man liest den Text von rechts nach links - lautet :

mJ 3

* f 3 4 3 1

Abb . 119 . 1 Papyrusrolle (um 1250 v .
Chr .) Kairo , Ägyptisches Museum

Übersetzung : Haufen , sein Siebentel zu ihm , es macht 19 .
Gemeint war : Ein Siebentel einer unbekannten Zahl wird zu dieser Zahl

hinzugefügt ; man erhält dann 19 .
* Hyksos bedeutet »Fürst aus der Fremde « . Mit diesem Wort bezeichneten die ägyptischen Geschichts¬

schreiber später die aus Westasien stammenden fremden Herrscher , die Ägypten von ca . 1650- ca . 1540

v . Chr . regiert hatten .
** sprich Achmose , zu deutsch Mondgeborener . Oft liest man auch die gräzisierte Form Ahmes .

*** Zu Beginn des 3 . Jahrtausends v . Chr . gelang es den Ägyptern , aus dem faserigen Mark des dreieckigen
Halms der bis zu 6 m hohen Doldenpflanze Cyperus papyrus , die in den Sumpfgebieten wuchs , einen

Beschreibstoff herzustellen , der das Leder verdrängte . Wegen des hohen Verbrauchs wurde die Papyrus¬
staude immer seltener , so daß sich König Eumenes I . (263- 241 v . Chr .) von Pergamon genötigt sah ,
feingegerbtes Leder wieder als Schreibmaterial zu verwenden , das sog . Pergament . Die Papyrusstaude ist
heute in Ägypten ausgerottet .

**** Der Pharao Amenemhet III . war so klug , von den Bürgern nur die Steuern zu verlangen , die sie auch

aufbringen konnten . Dazu ließ er jedes Jahr den höchsten Pegelstand des Nils messen und daraus die zu
erwartende Ernte berechnen . Dann erst setzte er die Jahressteuern fest .
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4 .2 . 1 .2 Die Unbekannte

Die Ägypter waren vermutlich die ersten , die für eine unbekannte Zahl eine
eigene Bezeichnung verwendeten . Im Papyrus Rhind schrieben sie dafür T„

'
Tsj

r- aoZ- f\ _ H
— in Hieroglyphen * a . Ausgesprochen wurde dieses Wort »aha « ;

i l I A T
seine Bedeutung war eigentlich Haufen .
Es war sicherlich ein ganz großer Einfall in der Entwicklung der Mathematik ,
für eine Zahl , die man noch gar nicht kennt , ein eigenes Wort zu verwenden .
Denn nun konnte man , da sie ja einen Namen hatte , von ihr reden , mit ihr
Überlegungen , ja sogar Rechnungen ausführen .
Diese großartige Idee taucht auch bei den Babyloniern und bei den Indern auf ,
im 4 . Jh . v . Chr . finden wir sie bei griechischen Mathematikern . Thymaridas
nennt die gesuchte Zahl genauso , wie wir es heute machen , nämlich unbekannt
aöpioTOv (aöriston ) . Bei al - Charizmi (um 780 - nach 847 ) heißt die un -

m äbekannte Zahl = schal = ein Etwas .♦♦

Nun haben wir oben auf Seite 15 gesehen , daß es sich immer mehr eingebür¬
gert hatte , bekannte Zahlen durch Buchstaben wiederzugeben , wenn man
allgemeine Rechenregeln angeben
oder einen allgemeingültigen Re¬
chenweg beschreiben wollte . Was lag
also näher , als auch für die un¬
bekannte Zahl einen Buchstaben zu
verwenden ? Aber welchen? Recht
einleuchtend ist eigentlich die Idee
von Frant ^ois Viete (1540 - 1603 ) , der
1591 vorschlug , für die unbekannte
Zahl den Vokal A zu verwenden , und ,
falls es mehrere unbekannte Zahlen
gibt , eben die Vokale der Reihe nach
zu benützen , nämlich A , E , I , O , U
und Y. Bekannte Zahlen sollten
durch Konsonanten bezeichnet wer¬
den , also durch B , G , D usw . (Siehe
Abbildung 120 . 1 , Nr . 5 .)
Durchgesetzt hat sich aber eine
Schreibweise , die 1637 der große
französische Philosoph und Mathe¬
matiker Rene Descartes (1596 bis
1650 ) ohne weitere Begründung im
Abschnitt La Geometrie seines Dis-
cours de la methode einführte .
* Entstanden aus den griechischen Wörtern '

legog (hierös ) = heilig und yMipeiv (glyphein ) = einmeißeln .
Sprich hi -eros , Hi -eroglyphe .
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r7 Etcfeosperficumdzformahisferelegibuscontinctur.
i Sidelongirudincqutrritur, laceaiautematqualitasvelproportio/iibinuolucriseorumqua;proponumur,qua:fiialongitudoLatuseile.

2 Sideplanierequxriiur,larcarauicmtequalirasvelproportiofubinuolucriseorum
qua?ptoponumur,qua:(iiaplaniciesQuadratumcßo.
J Sidcfolidicatequxriiitr.lateatatitemaequalitasvelproportiofubinuolucriseorum
qua?proponuntur, qiia'fitafoliditasCubuseftn.AdfccnderigittirInaviveldefeedetperquofeumquegraduscomparataruuimagnitodinumcadequjquatricur.
4 Magniiudincstimdatarquamquxficarfcctindumcondiionemqucflionididlamad-
fiiniljnror&comparantor. addcndo/ubduccndo,tmiltiplicando&diuidendoconflan-
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factumpartimfubmagnitudinibusdacis&inccriadequaquarricur,auteinsparudicoad
poccflaccmgradu.
5 Qundopus,vtartealiquiiuiiecitr,fymbolocondanri&perpettioacbeneeonfpienodata;magnituflinesabinccrtisquxfititiisdiftinguantur,vtpotcmagmtudincsquxfititiaselemenroAaliaticliterivocali, E, I, O, V, Y, dataselcmcnrisB, G, D, aliiliie
conlönisdefignando.6 Fadlaibbdarisomninbuiagniciidiaibusaddamuralterumalceri.vclliibducanturiuxta
adfcdiioniseorundemnotam, &invntmil'adlumcoalcfcanc,quodcflohomogeneumcon>parationis,feufitbdatamenfura:6ripfnmvnamtequationispartemfacito.
7 Acqticfadhfubmagnitudinibusdatiseoddmqttcparodicoadpoteflatcmgraduad¬
damuralterumaltcri,vel(iibducanturiuxtaadfcäioniseorimdamnotam,&invnumla¬
dtumcoakfcant,quodcfloliomogencuinadfedüonis,(cufubgradu. Biij

Abb . 120 . 1 Seite 7r der In artem analyti -
cem Isagoge (1591 ) des Franijois Viete
( 1540 - 1603)
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Er bezeichnete die unbekannten Zah¬
len mit x , y und z , die bekannten da¬
gegen mit den ersten Buchstaben des
Alphabets , also mit a , b , c usw .
Wir wollen es genauso halten !
Falls du mehr über die geschichtliche Ent¬
wicklung wissen willst, dann lies weiter!

Die Babylonier (um 1800 v . Chr .) nann¬
ten die unbekannte Zahl = usch

= Länge , die Inder (vor 300 v . Chr .)
<4 | c| ^ dN ^ = yavat - tavat = wieviel-soviel .
Erst um 250 n . Chr . kamen griechische
Mathematiker , unter ihnen Diophant ,
(siehe Aufgabe 166/15) , auf die Idee , für
die unbekannte Zahl , die sie kurz Zahl
= &qiÜ|i.6<; (arithmös ) nannten , eine
Abkürzung einzuführen , nämlich <; '

, über
deren Entstehung heute noch die Gelehr¬
ten streiten . Die einen meinen , sie sei der
letzte Buchstabe von dgiOgdi; , zusammen
mit einem Akzent . Andere hingegen
meinen , das Zeichen sei eine Verschmel¬
zung der beiden ersten Buchstaben dieses
Worts . Wie dem auch sei , die Abkürzung
war erfunden ! Fast 400 Jahre später - wir wissen es sogar ganz genau , es war im Jahre
628 - kam auch in Indien jemand auf die Idee , das lange yavat - tavat abzukürzen : In
seinem in Versen abgefaßten Mathematiklehrbuch schrieb Brahmagupta (um 598
bis nach 665 ) einfach = ya dafür .
Die Araber lernten von den Indern die Mathematik , und die Europäer des Mittel¬
alters lernten sie bei den Arabern . Da das schai des al -Charizmi im Arabischen auch
Sache bzw. Ding heißt , übersetzte man es mit dem lateinischen res , gelegentlich auch
mit causa , woraus im 15 . Jh . das italienische cosa wurde . Daraus wurde im Deutschen
Coß als Bezeichnung für das , was wir heute Algebra nennen .
Bis zum x für die Unbekannte war aber noch ein langer Weg . Einige Araber kürzten
das schai mit j ab , Luca Pacioli (um 1445 - 1517) mit co . seine cosa. Das tat man
auch in Deutschland , so z . B . in den vor 1486 geschriebenen Abhandlungen , die im
Codex Dresden C80 zusammengebunden sind : Der Verfasser der Deutschen Algebra
von 1481 schreibt Q für cosa, der der Lateinischen Algebra zunächst , das ist ein c
und ein o , das in ein Schwänzchen ausläuft . Immer mehr aber krümmt er sein c nach
links und gibt ihm schließlich sogar eine Spitze: . Den Plural cosae kenn¬
zeichnet er durch ein kleines hochgestelltes e : . In der Form Ü , führt es Christoff
Rudolff (um 1500 - vor 1543 ) in seiner 1525 gedruckten Coß als Symbol für die Un¬
bekannte ein . Er liest es aber - wie andere auch - als radix , vermutlich , weil es einem
handschriftlichen r ähnelt , vor allem aber , weil Gerhard von Cremona (1114 - 1187)
mit radix das arabische dschidr ( = Wurzel) übersetzt hat , das al -Charizmi auch für
die unbekannte Größe verwendete . * Gelegentlich wurde es übrigens auch res gele-

Abb . 121 . 1 Rene Descartes , latinisiert
zu Cartesius (31 .3 . 1596 La Haye -Des-
cartes/Touraine - 11 .2 . 1650 Stockholm )

* Siehe Lösungsheft Seite 4f.
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sen . * Vor allem durch die Arithmetica Integra (1544 ) Michael Stifels (14877- 1567)
fand 2^ seine Verbreitung . Descartes hat es noch benutzt , doch 1637 entschied er
sich anders : das x als Zeichen für die Unbekannte war geboren .
Mit der Schreibweise von Descartes lautet die Aufgabe 24 des Papyrus Rhind

x + jx = 19 .
Diese Gleichung stellt eine Information über eine unbekannte Zahl x dar .
Unsere Aufgabe besteht nun darin , auf Grund dieser Information die Zahl x
zu entlarven . Da man annimmt , daß durch eine solche Information die un¬
bekannte Zahl x bestimmt ist , nennt man eine solche Gleichung auch Bestim¬
mungsgleichung für x . Zahlen, die für x in Frage kommen, heißen Lösungen
der Gleichung .
Die Methoden , die zur Bestimmung von x , d . h . zur Lösung der Gleichung
führen , werden wir im Abschnitt 4 .2 .2 kennenlernen .

Aufgaben
1 . Schreibe als Bestimmungsgleichung für x die folgenden Aufgaben aus

dem Papyrus Rhind:
a) Aufgabe 25 : Haufen , seine Hälfte zu ihm , es macht 16 .
b) Aufgabe 26 : Haufen , sein Viertel zu ihm , es macht 15 .
c) Aufgabe 27 : Haufen , sein Fünftel zu ihm, es macht 21 .

2 . Im Museum der Schönen Künste in Moskau wird ein mathematischer
Papyrus aufbewahrt , der noch etwas älter als der Papyrus Rhind ist . Er
heißt Moskauer Papyrus . Er ist nur 8 cm breit und 5,44 m lang und enthält
25 Probleme , von denen allerdings die meisten fast unleserlich sind .
Schreibe als Bestimmungsgleichung für x die folgenden Aufgaben aus dem
Moskauer Papyrus :
a) Problem 25 : Haufen , zweimal genommen, und noch ein Haufen , es

ergibt 9 .
b) Problem 19 : Haufen, eineinhalb davon , zusammen mit 4 , es ergibt 10 .

3 . Ich denke mir eine Zahl , vervierfache sie und subtrahiere dann 6 . Wenn ich
das Ergebnis halbieren , erhalte ich 10 .
Schreibe eine Bestimmungsgleichung für die gedachte Zahl z an .

4 .2 . 1 .3 Die Gleichung als Aussageform
x + ljx = 19 ist ein Satz , der eine Variable enthält ; also ist er nach Definition
115 . 1 eine Aussageform . Deuten wir eine Bestimmungsgleichung als Aussage¬
form , so besteht unsere Aufgabe darin , alle Zahlen zu finden , durch die man
die Variable x ersetzen kann , so daß dabei aus der Aussageform eine wahre
Aussage wird . Kurz , wir suchen die Lösungsmenge L der Aussageform .
Im Papyrus Rhind wird behauptet , die Lösungsmenge der Aussageform
x + ljX = 19 sei { 16f} .
* Andere Wissenschaftler meinen aber , sei ursprünglich aus dem Worte res entstanden , dann aber doch

als cosa gelesen worden .
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4 .2 . 1 .4 Die Probe

Wenn man eine Zahl gefunden hat , von der man vermutet , daß sie eine Lösung
der Gleichung ist , dann kann man diese Vermutung durch eine Probe
bestätigen oder widerlegen . Dazu ersetzt man die Variable x durch die gefun¬
dene Zahl und berechnet getrennt die linke Seite und die rechte Seite der
Gleichung . Dabei versteht man unter linker Seite einer Gleichung denjenigen
Term , der links vom Gleichheitszeichen steht . Wir schreiben dafür kurz LS .
Der rechts vom Gleichheitszeichen stehende Term heißt rechte Seite , kurz RS .
Machen wir also in x + jx = 19 die Probe für x = 16f :

LS = 16f + 7 • 16f = RS = 19 .
= 16 f + t " 1 ! 1 =

= 16f + ^ =
= 16| + 2| =
= 19 .

Wir stellen fest : LS = RS , also ist 16f eine Lösung der Gleichung x + jx = 19 ,
was man kurz durch 16f e L ausdrücken kann .
Schon im Papyrus Rhind ist diese Probe ausgeführt !

Aufgaben

1 . Aufgabe 28 des Papyrus Rhind lautet in moderner Form
(x + §x) - j (x + jx ) = 10 .
Ahmose gibt als Lösung x = 9 an . Mach die Probe !

2 . Aufgabe 30 des Papyrus Rhind lautet in moderner Form
fx + ^ x = 10 .
Ahmose gibt als Lösung x = 13^ an . Mach die Probe !

3 . Aufgabe 29 des Papyrus Rhind lautet in moderner Form

3 [ x + | x + i ( x + | x ) ] = 10 .

Ahmose gibt als Lösung x = 13| an . Mach die Probe !

• 4. Aufgabe 32 des Papyrus Rhind lautet in moderner Form
x + -jx + | x = 2 .
Ahmose gibt als Lösung x = 1 + ^ + jj + jxj + jjs an * Mach die Probe !

5 . Für die Bestimmungsgleichung 1 \ x — \ x = f + fx werden die Zahlen 2 , §
und — | als Lösungen angeboten . Mach die Probe und entscheide , welche
der Zahlen wirklich Lösungen sind .

Die Ägypter gaben mit Ausnahme von f alle anderen Brüche nur als Summe von Stammbrüchen , das sind

Brüche mit dem Zähler 1, an .
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6 . Im Algebrabuch des al -Charizmi finden wir eine Aufgabe , die in heutiger
Schreibweise als Bestimmungsgleichung so lautet : x 2 + 15 = 8 x.
Er gibt als Lösungen die Zahlen 3 und 5 an . Sind das Lösungen ?

7 . Für die Bestimmungsgleichung x 3 + x 2 = 2x — 2x 3 werden folgende
Lösungen angeboten : 1 , — 1 , 3-

, §, 0 .
Entscheide durch Proben , welche dieser Zahlen zu der Lösungsmenge
gehören .

4 .2 . 1 .5 Was kann eine Information leisten ?
Wir haben oben gesehen , daß 16f eine Lösung der Gleichung x + jx = 19 ist .
Man wird sich also fragen müssen , ob es noch weitere Lösungen dieser Glei¬
chung gibt oder ob 16f die einzige Lösung ist .
Falls es keine weitere Lösung gibt , dann wird durch die Information
x + jx = 19 eindeutig eine Zahl x bestimmt . Gibt es aber mehr als eine
Lösung , dann ist die Information mehrdeutig .
Allgemein unterscheidet man je nach der Anzahl der Lösungen verschiedene
Arten von Informationen .
1) Eine Information ist eindeutig , wenn sie genau eine Zahl x bestimmt. Die

Lösungsmenge der Aussageform enthält dann eine einzige Zahl .
Unser Informant hat die unbekannte Zahl x genau beschrieben .
Beispiel :

3x = 2 ist eine eindeutige Information über x . Denn wegen Satz 72 . 1
ist § die Zahl , die durch sie eindeutig bestimmt ist .
Die Lösungsmenge der Aussageform 3x = 2 ist die Menge {§} .

2) Manchmal reicht die Information nicht zur eindeutigen Bestimmung der
unbekannten Zahl x aus . Der Informant hat die Zahl x also nicht genau
genug beschrieben . Somit gibt es mehrere Möglichkeiten für x . Man sagt ,
die Information sei mehrdeutig . Die Lösungsmenge einer solchen Aussa¬
geform besteht dann aus mindestens zwei Zahlen .
Beispiel :

x 2 = 64 .
Die Information reicht nicht aus , die unbekannte Zahl x eindeutig zu
ermitteln . Wir können nämlich sagen , daß sowohl + 8 als auch — 8
Lösungen sind .

3) Je mehr Möglichkeiten es für die unbekannte Zahl x gibt, desto wertloser
ist die Information zur Bestimmung der unbekannten Zahl x . Ganz
schlimm wird es , wenn uns der Informant an der Nase herumführt und wir
für die unbekannte Zahl x jede Zahl nehmen können . Die Information ist
also allgemein gültig .
Wir merken uns

Definition 124 . 1 : Eine Gleichung heißt allgemeingültig , wennjede Zahl
Lösung der Gleichung ist .
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Beispiel :
X “t~ 1 = 1 -1- x .
Jede Zahl ist Lösung dieser Gleichung . Also ist sie allgemeingültig .
Die Lösungsmenge der Aussageform x + 1 = 1 + x ist die Menge O .

4) Andererseits kann es aber Vorkommen , daß es solch eine Zahl , wie sie
durch die Information beschrieben wird , gar nicht gibt . Der Informant hat
uns also angeschwindelt !
Wir merken uns

Definition 125 . 1 : Eine Gleichung heißt widersprüchlich, wenn keine Zahl
Lösung der Gleichung ist .

Beispiel :
x + 1 = x .
Es gibt keine Zahl x , deren Wert sich nicht ändert , wenn man 1 dazu¬
zählt . Also ist die Gleichung widersprüchlich .
Die Lösungsmenge der Aussageform x + 1 = x ist die leere Menge { } ,
für die man auch 0 schreibt .

Aufgaben

Bei den folgenden Aufgaben soll entschieden werden , welche Art von Glei¬

chung vorliegt . Gib jedesmal die Lösungsmenge an .

1 . a) x + 3 = — 18 b) x + ^x = fx c) — 3jx = 3j d) x 2 = 256

e) x 4 = 16 0

2 . a) - 0,02x + 0,02 = 0,02 b) - 0,02x + 0,02 = - 0,02x
c) — 2x 2 = — 2,88 d) x + x = 2x e) x 2 = — 4

x ~L 1x 1 Sc ) 9x 2 = 1024= 0. 3 . a) = 1

d) x (x + 3) = 0 e) 3 • (x + 2) = 3x + 6

4 .2 .2 Äquivalenzumformungen von Gleichungen

4 .2 .2 . 1 Äquivalenz von Gleichungen

Der einfachste Gleichungstyp ist von der Bauart x = 7 . Eine Lösung dieser

Gleichung liest man direkt ab , nämlich 7 . Weitere Lösungen gibt es nicht , da
man mit keiner von 7 verschiedenen Zahl an Stelle von x eine wahre Aussage
erhält . Die Information über die gesuchte Zahl ist also eindeutig . Die gesuchte
Zahl ist 7 .
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