
Algebra

Barth, Friedrich

München, 1996

5 Ungleichungen

urn:nbn:de:hbz:466:1-83493

https://nbn-resolving.org/urn:nbn:de:hbz:466:1-83493


5 Ungleichungen

$*1

C* ± ‘ * W0M

»•■««i ? m.V "

■«*■

kt '

Cf.. . 1

silfei ^ .



5 Ungleichungen

5 . 1 Was ist eine Ungleichung?

Wir erinnern daran , daß a < b anschaulich bedeutet , daß die Zahl a auf der
Zahlengeraden links von der Zahl b liegt . Rechnerisch bedeutet a < b : Es gibteine positive Zahl p , so daß a + p = b gilt . Abbildung 144 . 1 veranschaulichtdies.

a b

Abb . 144 . 1 a < b <=> Es gibt ein p > 0 , so daß a + p = b.

Was aber bedeutet eine Ungleichung , die eine Variable enthält ?Betrachten wir z . B . die Ungleichung
2x — 3 < 1 — x .
Wie bei einer Gleichung haben wir eine Information über eine unbekannteZahl x vor uns . Diese Information ist in der vorliegenden Form noch sehr
undurchsichtig . Durch Probieren kann man womöglich Zahlen finden , die derInformation entsprechen . Nehmen wir z . B . für x die Zahlen 0 , 2 oder — 2 , soerhalten wir der Reihe nach die Zahlen -Ungleichungen
- 3 < 1 1 < - 1 - 7 < 3 .
Die erste und die dritte sind richtig , die mittlere falsch . Wir sehen , daß durchdie Information 2x — 3 < 1 — x die Zahl x nicht eindeutig festgelegt ist , dabereits die beiden Zahlen 0 und — 2 der Ungleichung genügen . Wie bei Glei¬
chungen möchten wir aber alle Zahlen kennen , die der Information genügen .Betrachtet man die Ungleichung als Aussageform , dann bilden diese Lösungs¬zahlen gerade die Lösungsmenge der Ungleichung .Bei Ungleichungen der Form x < 5 oder x > - 2,3 kann man die Lösungs¬menge sofort sehen . Wir veranschaulichen sie auf der Zahlengeraden . Dabeisoll der kleine , nicht ausgefüllte Kreis über 5 bzw . — 2,3 andeuten , daß dieZahl 5 bzw . — 2,3 nicht zur Lösungsmenge gehört .

Abb. 144 .2 Lösungsmenge der Ungleichung x < 5

? i i
- 2,3 0 1

Abb. 144 .3 Lösungsmenge der Ungleichung x > — 2,3



5 .2 Äquivalenzumformungen von Ungleichungen 145

Unser Ziel ist es , Ungleichungen so lange umzuformen , bis man auf solche
einfache Ungleichungen stößt . Das ist immer dann erreicht , wenn man die
Unbekannte auf einer Seite der Ungleichung isoliert hat . Dabei dürfen aber
weder Lösungen hinzukommen noch verlorengehen . Wie bei Gleichungen
legt man daher fest :

Definition 145 .1 : Zwei Ungleichungen heißen äquivalent, wenn ihre Lö¬
sungsmengen übereinstimmen .
Eine Ungleichungsumformung heißt Äquivalenzum¬
formung , wenn die ursprüngliche Ungleichung und
die umgeformte Ungleichung äquivalent sind .

5 .2 Äquivalenzumformungen von Ungleichungen

Ersetzt man in einer Ungleichung einen Term durch einen äquivalenten , so
ändert sich die Lösungsmenge nicht , weil bei jeder Einsetzung der alte und der
neue Term den gleichen Zahlenwert liefern .

Beispiel: 3x — 5 + x < Ix — (13 — 19)
4x — 5 < Ix + 6

Für die Addition von Termen gilt

Satz 145 . 1 : Monotoniegesetz der Addition
Addiert man auf beiden Seiten einer Ungleichung einen
Term , so bleibt das Ungleichheitszeichen erhalten ; kurz

\ < T2 II + T
o Ij + T < T2 + T

Bemerkung : Satz 145 . 1 gilt natürlich auch für die Subtraktion eines Terms , da
die Subtraktion eines Terms T ja nichts anderes als die Addition des Terms
- T ist .

Beweis : Ist a ein Element der Lösungsmenge der Ungleichung 7j < T2 , dann gilt
7j (a) < T2 (a) . Auf Grund des Monotoniegesetzes der Addition für rationale Zah¬
len (Satz 62 . 1 ) kann man auf beiden Seiten die Zahl T(a) addieren und erhält
Ty (a) + I '(a ) < T2 {a) + T(d) . (Siehe Abbildung 145 . 1 ) Also ist a auch Lösung der
Ungleichung 7j + T < T2 + T. Wir haben somit bei der Addition des Terms T keine
Lösung verloren . .

T | (a ) Ti (a )+T (a ) T2<a ) T2 (a ) + T (a )

Abb . 145 . 1 Ty (a ) < T2 (a) o 7j (a) + T(a) < T2 (a) + T (a)
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Ist umgekehrt b eine Lösung der Ungleichung 7j + T < T2 + T, dann gilt
T̂ b) + T(b ) < T2 {b) + T (b) . Addiert man hier auf beiden Seiten die Zahl — T (b) , so
erhält man nach dem Monotoniegesetz der Addition für rationale Zahlen die Zahlen¬
ungleichung Tx (b) < T2 (b) . Also ist b auch eine Lösung der Ungleichung < T2 .
Somit kann durch die Addition des Terms T keine Lösung hinzugekommen sein.
Die Ungleichungen 7j < T2 und Tx + T < T2 + T sind also äquivalent .

Beispiel : 4x — 5 < 7x + 6 | | — 4x — 6
- 11 < 3x

Bei der Multiplikation von Ungleichungen mit Zahlen muß man aufpassen ,
da es zwei Monotoniegesetze gibt , eines für positive Multiplikatoren und eines
für negative Multiplikatoren . Du kennst sie für rationale Zahlen bereits als
Satz 81 . 1 und Satz 81 .2 .
Deshalb müssen wir auch bei den Äquivalenzumformungen von Ungleichun¬
gen mit Variablen zwei Monotoniegesetze unterscheiden .

Satz 146 . 1 : Monotoniegesetz der Multiplikation
Multipliziert man eine Ungleichung mit einer positiven
Zahl , so bleibt das Ungleichheitszeichen erhalten , kurz

Tt < T2 | | • p , wobei p > 0
o p Tt < p - T2

Bemerkung : Satz 146 . 1 gilt natürlich auch für die Division durch eine positive
1Zahl , da die Division durch p ja nichts anderes ist als die Multiplikation mit —.
P

Beweis : Ist a ein Element der Lösungsmenge der Ungleichung Ä < t 2 , dann gilt
Tl (a ) < T2 (a) . Auf Grund des Monotoniegesetzes der Multiplikation für rationale
Zahlen (Satz 81 . 1 ) kann man beide Seiten mit der positiven Zahl p multiplizieren und
erhält/ » ■ J \ (a) < p ■ T2 (a) . (Siehe Abbildung 146 . 1 ) Also ist a auch Lösung der Unglei¬
chung p ■ T[ < p ■ T2 . Bei der Multiplikation mit p ist keine Lösung verlorengegangen !

p = 3

0 Ti (a ) T2(a ) p -T, (a ) P -T2(a )

P -Ti ( a )

Abb . 146 . 1 Ist p > 0 , dann gilt: 7) (4 ) < T2 (a) o p ■ T̂ ia) < p ■ T2 (a) .

Ist umgekehrt b eine Lösung der Ungleichung p ■ 7j < p ■ T2 , dann gilt
p ■ 7i (b) < p • T2 (b) . Multipliziert man diese Zahlenungleichung mit der positiven



5 .2 Äquivalenzumformungen von Ungleichungen 147

1Zahl - , dann gilt nach dem Monotoniegesetz der Multiplikation für rationale Zahlen

die Zahlenungleichung 7) (b) < T2 (b ) . Also ist b auch eine Lösung von l \ < T2 . Beider
Multiplikation mit p ist keine Lösung hinzugekommen !
Die Ungleichungen 7j < T2 und p - 7j < p ■ T2 mit positivem p sind daher äquivalent .

Beispiel : — 11 < 3x | | •
3
-

Damit haben wir durch drei Äquivalenzumformungen die eingangs gegebene
Ungleichung 3x — 5 + x < Ix — (13 — 19) schließlich auf die äquivalente
Form — ^ < x gebracht , bei der wir die Lösungsmenge sofort erkennen kön¬
nen ; Abbildung 147 . 1 zeigt sie .

Abb . 147 . 1 Die Lösungsmenge der Ungleichung 3x — 5 + x < Ix — (13 — 19)

Nun zum zweiten Monotoniegesetz der Multiplikation !

Satz 147 . 1 : Gesetz von der Umkehrung der Monotonie
Multipliziert man eine Ungleichung mit einer negativen
Zahl , so wird aus dem Kleiner -Zeichen ein Größer -Zeichen
bzw . aus dem Größer -Zeichen ein Kleiner -Zeichen ; man
sagt dafür auch , das Ungleichheitszeichen kehrt sich um .
Kurz

< T2 (I • q , wobei q < 0
<t> q - T1 > q T1

Bemerkung: Satz 147 . 1 gilt natürlich auch für die Division durch eine negative
Zahl .

Beweis : Ist a ein Element der Lösungsmenge der Ungleichung 7) < 12 , dann gilt
7) (a) < T2 (a) . Auf Grund des Gesetzes von der Umkehrung der Monotonie bei ratio¬
nalen Zahlen (Satz 81 .2) erhält man daraus bei Multiplikation mit einem negativen q
die Zahlenungleichung q • 7) (a) > q ■ 7) (a) . (Siehe Abbildung 148 . 1) Also ist a auch
Lösung der Ungleichung q ■ 7) > q • T2 . Keine Lösung ist verlorengegangen !

Ist umgekehrt b eine Lösung von q ■ 7) > q ■ T2, dann gilt q - T1 (b) > q ■T2 (b) . Multi -
1

pliziert man diese Zahlenungleichung mit der negativen Zahl dann erhält man wegen

des Gesetzes von der Umkehrung der Monotonie bei rationalen Zahlen die Zahlenun¬
gleichung 7) (b) < T2 (b) . Also ist b auch eine Lösung von 7] < T2 . Somit ist bei der
Multiplikation mit q keine Lösung hinzugekommen !
Die Ungleichungen 7) < 7’

2 und q ■ Tx > q ■ T2 mit negativem q sind somit äquivalent .
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q -T2 (a ) q -Ti ( a ) 0 Ti (a ) T2 (a )

Beispiel : — §x < — 6 | | • ( — §)
x > 9

Die in diesem Abschnitt gefundenen Äquivalenzumformungen von Unglei¬
chungen sollen uns nun helfen , die Lösungsmenge einer Ungleichung zu be¬
stimmen .

5.3 Lösen von Ungleichungen

5 .3 . 1 Intervalle

Die Lösungsmengen von Ungleichungen enthalten meistens unendlich viele
Lösungen , denen auf der Zahlengeraden Strecken oder Halbgeraden entspre¬
chen . Diese Zahlenmengen nennen wir Intervalle *

. Für Intervalle gibt es in
der Mathematik Kurzbezeichnungen :

Definition 148 . 1 :

Beschreibung
des Intervalls

Intervall¬
symbol

Art des
Intervalls

Bild des
Intervalls

Menge aller Zahlen zwi¬
schen a und b einschließ¬
lich der Grenzen

[a ; b\ abge¬
schlossen

a b

Menge aller Zahlen zwi¬
schen a und b ohne die
Grenzen

] a ; 6 [ offen UC—

Menge aller Zahlen zwi¬
schen a und b mit a , aber
ohne b

La ; bl halboffen a b

Menge aller Zahlen zwi¬
schen a und b ohne a , aber
mit b

] ö ; &] halboffen ab

* intervallum (lat .) = Zwischenraum , eigentlich der Raum zwischen ( = inter ) zwei Pfählen ( = vallus) einer
Palisade .
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Beachte : In der Intervallschreibweise darf die linke Zahl nicht größer sein als
die rechte .

Wie man mit Intervallen umgeht , zeigen die folgenden

Beispiele: (Vgl . dazu Abbildung 149 . 1 ) .
1 ) 0 e [0 ; 3 [ , l,7e [0 ; 3 [ , 3 $ [0 ; 3 [
2) [0 ; 3 [ c [ — 1,5 ; 6] , (4,1 ; 5 ; 6| ; 7,99 } c ] 4 ; 8 [
3) [ — 1,5 ; 6] n ] 4 ; 8 [ = ]4 ; 6] , [ - 6 ; - 4[ n [ - 4 ; - 2] = { }
4) [ — 6 ; — 4[ u [ — 4 ; — 2] = [ — 6 ; — 2] ,

[ - 1,5 ; 6] u ] 4 ; 8 [ = [ — 1,5 ; 8 [

f I 1 Q
- 6 - 5 - 4 - 3 - 2 0 1 2 7 8

Abb . 149 . 1 Zu den Beispielen 1) bis 4)

Bei Halbgeraden gibt es auf einer Sei¬
te keinen Endpunkt , da es dort keine
letzte Zahl gibt . Als Ersatz für die
fehlende Grenze hat 1655 der engli¬
sche Mathematiker John Wallis
(1616 - 1703) in seiner Arithmetica In¬
finit orum das Symbol oo , gesprochen
unendlich, eingeführt .
Die Römer schrieben mit dem Zeichen co
ihr Zahlwort mille, das einerseits tausend
bedeutet , andererseits im übertragenen
Sinn für unzählig viele verwendet wurde -
denke nur an unseren Tausendfüßer ! Ob
die Römer Wallis inspirierten , wissen
wir nicht . *

Weil oo keine Zahl ist , gehört es nie¬
mals zum Intervall . Je nachdem , ob
man nach links oder rechts ins Un¬
endliche fortschreitet , unterscheidet
man zwischen — oo und + oo .
* Neben oo gab es noch 0 und 0 ) als Zeichen für

mille . Das M ist im wesentlichen mittelalterlichen
Ursprungs , wenngleich es sich gelegentlich auch
in römischen Inschriften findet; frühester Beleg
89 v . Chr.

1698

I

Abb . 149 .2 John Wallis (3 .12 .1616
Ashford/Kent - 8 . 11 . 1703 Oxford )
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Damit haben wir

Definition 150 . 1 :

Beschreibung
des Intervalls

Intervall¬
symbol

Art des
Intervalls

Bild des
Intervalls

Menge aller Zahlen links
von a einschließlich a

] — co ; ß] halboffen fl

Menge aller Zahlen links
von a ohne a

] — oo ; a[ offen fl

Menge aller Zahlen rechts
von a einschließlich a

[fl ; + oo [ halboffen fl

Menge aller Zahlen rechts
von a ohne a

] a ; + oo [ offen a C

Aufgaben

1 . Zeichne die Intervalle
a) [2 ; 4] b) [ - 1,5 ; 5,6] c) ] — 2 ; - 0,5]
d) [ 1,4 ; 4,1 [ e) ] 0 ; 5 [ f) [ 1 ; 1]

2 . Schreibe als Intervall
a) 2 • - • 3,9 b) - 7 • - o 3
c) — 1 o- • 1 d) — 8,3 o- O 16,6

3 . Zeichne die Intervalle
a) [2 ; + oo [ b) ] — 1 ; + oo [ c) ] — co ; 0] d) ] — oo ; — 2 [

4 . Schreibe als Intervall
a) - 5 • - b) - • 7
c) - o 100 d) - o - 13

5 . Schreibe als Intervall
a) <0 b) Q + c) Q “ d) Q0

+ e) Qö 0 { }
6 . Entscheide für jede der Zahlen — 5 ; 20 ; 0 ; — 3,1 ; 1,5 ob sie in dem

folgenden Intervall liegt oder nicht :
a) ] — 5 ; 1,5] b) [ - 3 ; 5] c) ] - 10 ; 20] d) ] - 5,5 ; 0[

7 . Bestimme das größte abgeschlossene Intervall mit ganzzahligen Grenzen ,
das eine Teilmenge des folgenden Intervalls ist :
a) ]0 ; 5 [ b) ] — 2,7 ; 3] c) [ — 2,7 ; 3 [ d) [ — 6 ; — 1,1 [ e) [ — 1 ; 2]

8 . Gib zu den Intervallen der Aufgabe 7 das jeweils kleinste offene Intervall
mit ganzzahligen Grenzen an , welches das gegebene Intervall ganz über¬
deckt .
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Bestimme folgende Schnitt - bzw . Vereinigungsmengen :
a) [ — l ; 2] n ] 0 ; 4[ b) [ - 1 ; 2] u ] 0 ; 4 [
c) [ — 3 ; — 0,5] u [ — 0,5 ; 3 [ d) [ - 3 ; - 0,5] n [ - 0,5; 3 [
e) Nn [0 ; 6 [ f ) Q - 5 ; 0 [ u [ - l ; 4] ) nZ

5 .3 .2 Kleiner- und Größer-Ungleichungen

Mit Hilfe der Äquivalenzumformungen können wir nun Ungleichungen wie
z . B . 2x + 5 < Ix — 3 lösen , wenn es uns gelingt , sie auf eine der Normalfor¬
men x < a oder x > a zu bringen .

Beispiel 1 : 2x + 5 < Ix — 3
8 < 5x

* > f

In der Intervallschreibweise lautet die Lösungsmenge L = ] f ; + oo [ . Sie läßt
sich auch graphisch darstellen :

Abb . 151 . 1 Lösungsmenge der Ungleichung 2x + 5 < Ix — 3

Es gibt aber auch Ungleichungen , die sich nicht auf die Normalformen x < a
bzw . x > a bringen lassen , nämlich dann , wenn die Unbekannte bei den Äqui¬
valenzumformungen »herausfällt « . Es bleibt in diesem Fall eine Ungleichung
zwischen Zahlen übrig , also statt einer Aussageform nur eine Aussage . Ist
diese wahr , dann ist die ursprüngliche Ungleichung allgemeingültig , ihre Lö¬
sungsmenge ist also Q . Ist die übrigbleibende Zahlenungleichung eine falsche
Aussage , dann ist die ursprüngliche Ungleichung widersprüchlich , ihre Lö¬
sungsmenge also { } . Die folgenden beiden Beispiele sollen dir das verdeutli¬
chen .

Beispiel 2 :

Beispiel 3:

2x + 5 < I •- (5 - 2jc)
2x + 5 < 17 -- 5 + 2x
2x + 5 < 12 + 2x | | 1 K

> 1
0 < 7 ; wahre Aussage ! Also L = 0 .

2x + 5 < 7 - (5 - 2x)
2x + 5 < 7 - 5 + 2x
2x + 5 < 2 + 2x | | -- 2x — 5

0 < - 3 ; falsche Aussage ! Also L =
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Aufgaben

1 . a) x — 3 < 5 b) 2 — x > — 3 c) — x < — 3
d) 3x > 18 e) fx < f f) — fx > — f
g) - ^ x < 24f h) H < 2jjx i) 4H < - %x

2 . Schreibe die Lösungsmenge als Intervall .
a) 3x — 11 < 12x — 10 b) 5 — 8x < x — 13
c) 15 — 6y > 1 — 20y d) — z > z — 10

3 . Stelle die Lösungsmenge graphisch dar .
a) 2 X + 2 < i x + l | b) 15f — 14| x > 12fx + 42,25
c) 0,8 - 0,9z > fz + f d) 0,3y - i < jy - 3§

4 . Schreibe die Lösungsmenge als Intervall .
a) x — (3 — x) > 5 — (5 — x)
b) 2j + 3 — (5 + 3y) < 3 — (2y - 1 )
c) 5f - (3 iji - > 8z + (7 - fz )

5 . a) 11z — 3 ( — z + 4) > — (z — 8) + 5 (2z — 3)
b) — 5 (3 — 3x) + 4 (7 — 5x) < 5x + 19 - 2 (x + 11)
c) 2^ + 11 > — 3 ( j ; + l ) — 1

6 . a) 3x - 12 < 4 + 3 (1 - (1 - x))
b) 7| x + 3 ( - j^ x + | ) > 4| x - 6 (£i - ^ x)
c) — llx + (17 — 3x) ■ 3 < 7 — f (50x — 3f)
d) 0,01x — 0,lx + x < 0,02x — 0,31x + l,2x

5 .3 .3 Höchstens- und Mindestens-Ungleichungen
In öffentlichen Verkehrsmitteln können Jugendliche zu einem günstigeren Ta¬
rif fahren , wenn sie höchstens 15 Jahre alt sind . Die Verbilligung kann also
jeder in Anspruch nehmen , der 15 Jahre alt ist oder der weniger als 15 Jahre alt
ist . Bezeichnet man die Anzahl der Jahre kurz mit j , so gibt es Fahrpreisermä¬
ßigung , falls gilt :

7 = 15 v 7 < 15 .
Die beiden Bedingungen dieser Oder-A ussageform faßt man zusammen zu

und liest dies als
7 = 15

»7 ist höchstens 15« oder auch »7 ist kleiner oder gleich 15 « .

Zu Schuljahrsbeginn bietet ein Schreibwarengeschäft 5 % Rabatt * bei Abnah -
* Vom italienischen rabatto = Preisabschlag . Eist im 17 . Jh . wird unser Rabatt aus dem Italienischen entlehnt .
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me von mindestens 10 Heften gleicher Art an . Diesen Preisnachlaß erhält man
also , wenn man 10 Hefte oder mehr als 10 Hefte kauft . Bezeichnet man die
Anzahl der Hefte kurz mit h , so wird Rabatt gewährt , falls gilt:

h = 10 v h > 10 .
Die beiden Bedingungen dieser Oder -Aussageform faßt man zusammen zu

h A 10
und liest dies als

»h ist mindestens 10« oder auch »h ist größer oder gleich 10« .

Definition 153 . 1 : a A b bedeutet a < b v a = b
a ^ b bedeutet a > b v a = b
a + b bedeutet a < b v a > b

Die Zeichen A und 3: wurden 1734 von Pierre Bouguer (1698 - 1758) erfunden .

Ungleichungen mit A bzw . A löst man genauso wie Ungleichungen mit <
bzw . > . Dazu ein

Beispiel: 3jx — ^ A 5^i + 2-f^x | | — 2,^x + ^
ix A 5fi 11 - 2

* ^ Htt -

In Intervallschreibweise lautet die Lösungsmenge L = [ 11 jj ; + oo [ . Abbil¬
dung 153 . 1 veranschaulicht L.

Abb. 153 . 1 Die Lösungsmenge [ll ^ r ; + oo [

Aufgaben

1 . Löse die folgenden Ungleichungen . Veranschauliche die Lösungsmengen
auf der Zahlengeraden .
a) x + 7 A 9 b) x — 16 A — 17 c) x + 2,5 A 5
d) x — f A | e) x + 1 A — 1,75 f) x - 4 * 0

2 . Schreibe die Lösungsmenge als Intervall .
a) 2x — 1 A 1 — 2x b) 1 — x A 17 — 17x
c) 12x - 7 A 8x + 41 d) y - 19 A 19^ - 19
e) 8z — 1 A 18z — 10 f) Uw - 92 A 108 + 11 w
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3 . Stelle die Lösungsmenge auf der Zahlengeraden dar .
a) \ x — \ S 3^ — £x b) 18£ — 7jx S 3£x +
c) 0,01 y - 12,7 ^ 3,3 - 0,ly d) \ z + f A f - fz

• 4 . Schreibe die Lösungsmenge als Intervall .
a) 3x — (1 — 2x) S — 2 (x — 1 ) + 7
b) 3i - 2i (ix - 3f ) ^ 2| x (li - 0,75) + (2| + £x)

• 5 . a) 2,lx 4- 2,1 (0,lx — 2,1 (1 — 0,01x)) ^ 2,1 — 2,1 (( 1 — 2x ) + 2,1 )

5 .3 .4 Doppelungleichungen

Die Deutsche Bundespost erkennt Sendungen nur dann als Briefe an , wenn sie
gewisse Mindest - und Höchstmaße erfüllen . So muß z . B . die Länge minde¬
stens 14 cm und darf höchstens 23,5 cm betragen . Bezeichnet man kurz mit l
die Länge in cm , so muß für einen Brief gelten :

/ ^ 14 und IS 23,5 .

Eine Länge ist Lösung dieser C/n <i -Aussageform , wenn beim Einsetzen eine
wahre Und -Aussage entsteht . Eine Und-Aussage in der Mathematik ist eine
Verknüpfung zweier Aussagen durch das Wort und, das man symbolisch
durch a wiedergibt . Eine Und -Aussage ist genau dann wahr , wenn beide
Teilaussagen wahr sind .
Die obigen Bedingungen für die Länge lassen sich mit dem a - Symbol kurz
schreiben :

l A 14 a IS 23,5 .

Übersichtlicher wird es , wenn man nur Ungleichheitszeichen derselben Rich¬
tung verwendet , also

14 fS / a l S 23,5 oder auch / A 14 a 23,5 2; /

schreibt . Stimmen dann die rechte Seite der ersten und die linke Seite der
zweiten Ungleichung überein , so kann man beide Ungleichungen zu einer
Doppelungleichung zusammenfassen. Statt 14 A / a l S 23,5 schreibt man
kurz

14 Sl ^ 23,5 .

Bei der Notierung / A 14 a 23,5 A / läßt sich unsere Regel nicht anwenden !
Weil die Reihenfolge der Bedingungen in einer Und -Verknüpfung aber keine
Rolle spielt , so kann man sie auch in der Form 23,5 A / a l A 14 schreiben ,
was sich nun zu 23,5 A / A 14 zusammenfassen läßt . - Wir merken uns
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Definition 155 . 1 : a ^ b ^ c bedeutet a ^ b a b £ c
a < b < c bedeutet a < b a b < c
a ^ b > c bedeutet a ^ b a b > c
a > b 't . c bedeutet a > b a b ^ c
usw .

Bemerkungen: 1) Die Doppelungleichung a < b < c drückt aus , daß b
zwischen a und c liegt.

2) Doppelungleichungen mit gegenläufigen Ungleichheitszei¬
chen wie a < b > c sind nicht erlaubt ! Näheres dazu in Auf¬
gabe 156/5.

Eine Doppelungleichung mit einer Unbekannten löst man , indem man die
beiden durch a verknüpften Ungleichungen einzeln löst . Weil eine Lösung
der Doppelungleichung die beiden Teilungleichungen zugleich erfüllen muß ,
ist die Lösungsmenge der Doppelungleichung die Schnittmenge der beiden
Teillösungsmengen . Das a -Zeichen erinnert an das Schnittmengenzeichen n .
Merke dir also den

Satz 155 . 1 : Die Lösungsmenge einer Doppelungleichung ist die
Schnittmenge der Lösungsmengen der beiden Teilunglei¬
chungen .

Beispiel:
4x + 5 A — 3x + 5 < 17

<=> 4x + 5A — 3x + 5 a — 3x + 5 < 17

In zwei getrennten Nebenrechnungen (NR .) lösen wir die beiden Teilun¬
gleichungen :
NR . 1 :

NR . 2 :

4x + 5 rg — 3x + 5 | | + 3x — 5
7x g 0 | | : 7

xgO
=> L x = ] — oo ; 0]
— 3x + 5 < 17 | | - 5

— 3x < 12 f| : ( — 3)
x > - 4

=> L 2 = ] ~ 4 ; + oo [

Als Lösungsmenge L für die Doppelungleichung erhalten wir somit
L = L 1 (xL 2 = ] — 4 ; 0] . Abbildung 156 . 1 veranschaulicht die Entstehung
von L .
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o
+

- 4

o
Abb . 156 . 1 L = L 1 nL 1

Aufgaben

1 . Schreibe als Doppelungleichung und gib die Lösungsmenge als Intervall
an .
a) x > - 1 a b) x 0 a x 2: — 3,5
c) xi £ — 7ax > — 10 d) 15 < xA22 > x

2 . Bestimme die Lösungsmenge als Intervall und stelle sie auf der Zahlenge¬
raden dar .
a) 0 ^ 2x - l ^ l b) 0 < 1 — | x < 2 c) 84 > 7 (5 - f x) ^ - 153

3 . Bestimme die Lösungsmenge als Intervall .
a) 0 < x ^ 1 — x b) 2x ^ 1 ^ 3x c) 3x < 1 < 2x

4 . a) 2x — 1 < 3x — 1 ^ 1 — x
• b) fx - f < fx - ^ < - fx + f
• c) 0,1 (0,1 - 2x) ^ l,01x - 0,5 (2x - 0,3 ) > - 0,7x - l,27

5 . a) In einer Doppelungleichung verbirgt sich neben den beiden Teilunglei¬
chungen der Und -Aussage noch eine weitere Ungleichung ; sie entsteht ,
wenn man das Mittelstück und ein Ungleichheitszeichen wegnimmt .
Wie heißen die drei Ungleichungen , die man aus — 3 < x < 1 erhält ?

b) Hans baut die Und -Aussageform — 3 < xax > — 10 zu einer »Dop¬
pelungleichung « der Art — 3 < x > — 10 zusammen .
Sabine zeigt ihm , daß sich dann beim Vorgehen nach a) ein Wider¬
spruch ergibt . Welcher?
Trotzdem hat die Und -Aussageform — 3 < xax > — 10 eine Lö¬
sungsmenge . Gib sie als Intervall an .

5 .3 .5 Ungleichungen mit Absolutbeträgen
In Gleichungen und in Ungleichungen kann auch der Betrag der Unbekann¬
ten auftreten . Die einfachste solche Gleichung ist von der Art | x | = 4 , die
einfachsten Ungleichungen sind von der Art | x | < 4 bzw . | x | > 4 .
Die Lösung ist ganz einfach , wenn wir uns an die Definition des Betrags
(Definition 43 . 1 ) erinnern : | x | ist die Entfernung des Punkts x vom Nullpunktauf der Zahlengeraden .
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Die Information | x | = 4 teilt uns mit , daß die Zahl x bzw . der zugehörige
Punkt auf der Zahlengeraden 4 Einheiten vom Nullpunkt entfernt ist . Diese
Information ist nicht eindeutig , weil sie auf die beiden Zahlen 4 und — 4
zutrifft . Also gilt :

\ x \ = 4 o x = 4 v x = — 4 .
Die Lösungsmenge ist L = { — 4; 4} .

T i T—
- 4 0 4

Abb . 157 . 1 Die Lösungsmenge von | x | = 4

Durch die Information | x | < 4 wird uns mitgeteilt , daß die Zahl x weniger als
4 Einheiten vom Nullpunkt entfernt liegt . Alle Zahlen zwischen — 4 und 4
erfüllen diese Bedingung . Also gilt :

| x | < 4 o — 4 < x < 4 .
Die Lösungsmenge ist L = ] — 4 ; 4[ .

Abb . 157 .2 Die Lösungsmenge von | x | < 4

Durch die Information | x j > 4 wird uns mitgeteilt , daß die Zahl x mehr als 4
Einheiten vom Nullpunkt entfernt liegt . Alle Zahlen links von — 4 oder rechts
von 4 erfüllen diese Bedingung . Also gilt :

| x | > 4 o x < — 4 v x > 4 .

Die Lösungsmenge ist L = ] — oo ; - 4[ u ]4 ; + 00 [ .

Mit Hilfe des Ohne - Symbols \ läßt sich L statt als Vereinigungsmenge auch als
Restmenge schreiben , nämlich zu L = Q \ [ — 4; 4] . Eine solche Schreibweise
kann gelegentlich übersichtlicher sein.

- 4 0 4

Abb . 157 .3 Die Lösungsmenge von jx | > 4

Man kann also die angegebenen einfachen Gleichungen und Ungleichungen
mit Beträgen auf betragsfreie Formen äquivalent umschreiben .
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Wir merken uns

Satz 158 . 1 : Für a > 0 gilt
| x | = a x — — avx — a
| x | < a <*• — a < x < a
| x | > a x < — a v x > a .

Aufgaben

1 . Welche Zahlen erfüllen die Gleichung ?
a) \ x \ = 4,5 b) | x | = 1986 c) | x | = 0,1
d) Ix | = 0 e) | x | = — f f ) | x [ = | 3,7 - 5,91

2 . Gib die Lösungsmenge der Ungleichung an und stelle sie auf der Zahlen¬
geraden dar .
a) | x | < 1 b) | x | ^ 4,5 c) | x | > — 2 d) | x | rg — 4
e) lxl ^ 3,6 f) | x | > H g) 1* 1 ^ 3,14 h) f =g | x |

3 . Stelle die Lösungsmenge auf der Zahlengeraden dar .
a) 2 ^ | x | ^ 4 b) 0 < | x | ^ 3 c) 4 > | x | > 1

4. Welche rationalen Zahlen erfüllen die folgenden UND -Bedingungen ?
Stelle dazu die Lösungsmengen der Teilbedingungen und die der Gesamt -
bedingung auf der Zahlengeraden dar .
a) | x | > 1 und | x | ^ 5 b) | x | ^ 1 und | x | > 0,5
c) x < 0,3 und | x | > 3,5 d) - 2,75 ^ | x | und x ^ — 1,5
e) x > — 1 und | x | ^ 4 f) | x | < 6 und x < — 2

Zu Seite 159:

Uno lione mangia una chapra in 2 di et
uno lupo la mangia in 3 di et una gholpe
la mangia in 5 di : vo’ sapere in quanto
tempo tuttj questj animalj insieme man-
gereb[o]no detta capra : fa ’ cosi togli uno
numero che abbi | e i e I torraj 30 poi
diraj el j di 30 e 15 el 3 e 10 e ’l | e 6
racogli fa 31 e questo e ’l partitore ; poi
partj 30 per 31 , ne viene ff di di et in
tanto tempo la mangerebono .

Ein Löwe frißt eine Ziege in 2 Tagen , und
ein Wolf frißt sie in 3 Tagen , und ein
Fuchs frißt sie in 5 Tagen . Du willst wis¬
sen , in welcher Zeit all diese Tiere gemein¬
sam diese Ziege fräßen . Mach es wie folgt .
Nimm eine Zahl , die 5 und 1 hat , nimm
30 ; dann sage: \ von 30 ist 15 , 5 ist 10
und 3 ist 6 . Zähle zusammen , das ergibt
31 , und das ist der Teiler. Teile dann 30
durch 31 , daraus erhält man §j des Tages ,
und in dieser Zeit fräßen sie sie .
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