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Löwe , Wolf und Fuchs fressen eine Ziege.
Fol . 97v des Trattato di aritmetica (1491) des Filippo Calandri (um 1430 Florenz - ?)



6 Textaufgaben

6. 1 Wie löst man Textaufgaben?

Algebra ist entstanden aus Auf¬
gaben und Problemen des All¬
tags , wie uns über 4000 Jahre
alte babylonische Keilschrift¬
texte auf Tontäfelchen und fast
ebenso alte ägyptische Papy¬
rusrollen zeigen . Sicherlich er¬
innerst du dich noch an die ein¬
fachen Aufgaben aus dem Pa¬
pyrus Rhind (Seite 119ff.) , die
dadurch gelöst werden konn¬
ten , daß man der gesuchten ,
aber noch unbekannten Größe
einen besonderen Namen gab .
Die Algebra war geboren !
Immer mehr setzten sich allmählich Buchstaben als Abkürzungen für solche
Namen durch ; für die Rechenoperationen wurden vor rund 500 Jahren Zei¬
chen wie + und — usw . erfunden , und schließlich lehrte Francois Viete
(1540 - 1603 ) , wie man mit diesen Buchstaben und Zeichen umgehen mußte . Es
entstand die Neue Algebra , nämlich eine formale »Sprache « mit Buchstaben ,
aus der die Probleme des Alltags verschwunden waren .
Aber das Leben geht weiter , Wirtschaft , Technik und Wissenschaft und auch
der Alltag liefern stets neue Probleme , die gelöst werden müssen . Formuliert
sind sie aber fast immer in der Umgangssprache . Sie heißen daher Textaufga¬
ben.
Nun hat Francois Viete stolz behauptet , mit seiner Algebra nova könne man

»jedes Problem lösen« .
Wenn wir also Textaufgaben algebraisch lösen wollen , dann müssen wir sie
zuerst aus der Umgangssprache in die Sprache der Algebra übersetzen , die du
in den letzten Kapiteln gelernt hast .
Bei einer solchen Übersetzung kann ein Schema* hilfreich sein . Die folgenden
Beispiele sollen dir zeigen , wie man mit seiner Hilfe eine Textaufgabe lösen
kann .
Da die Aufgaben des Papyrus Rhind zu einfach sind , die des al -Charizmi aber
viel zu schwer - er hat ja sein Buch für Testamentsvollstrecker , Kaufleute ,Landvermesser und Bankhalter geschrieben - , haben wir als erstes eine Auf¬
gabe aus der 1522 erschienenen Rechenung auff der linihen vnd federn des
Adam Ries ( 1492- 1559 ) in der Fassung von 1574 ausgewählt , um dir das
Schema vorzuführen .

Abb . 160 . 1 Babylonische Tontafel mit Keil¬
schriftzahlen , um 1800 v . Chr . - 13 cm x 9 cm.

axnr a (griech .) gesprochen s |chema , hat viele Bedeutungen , u . a . auch Gestalt , Figur , Form .
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Abb . 161 . 1 Titelblatt vom Rechenbuch
auff Linien und Ziphren (1574 ) von Adam
Ries

Abb . 161 .2 Adam Ries (1492 Staffel -
stein—30 . 3 ./1 . 4 . (?) 1559 Annaberg ) als
58jähriger . Holzschnitt vom Titelblatt
der Rechenungnach der lenge , aujf den Li-
nihen vndFeder ( 1550 ) . - Adam Ries war
Rechenmeister , d . h . , er gehörte zu denje¬
nigen , die mit den in arabischen Ziffern
geschriebenen Zahlen auch rechnen
konnten . In Annaberg führte er das Re¬
chenwesen des Erzbergbaus und leitete
eine Rechenschule . Seine Lehrbücher und
damit seine Methoden fanden eine so gro¬
ße Verbreitung , daß schließlich die Re¬
densart »nach Adam Riese« entstand .

Beispiel 1 :

3 « m/ « ncr ^ at3cfr/ » erfpi (röaruon } • fccr #

rom febri$m 4 . fl . mir bem andern Ijanbclf
er / »crleurcr ein tömIjeif/ imD bc(>dt 2 o . fl . tt>tc
Diel fyar er jum erflm MtffocfSfjw ?

Im heutigen Deutsch liest sich die Aufgabe etwa so :

Einer hat Geld , verspielt davon j . Von dem , was ihm übriggeblieben ist , ver¬
braucht er 4 Gulden *

. Mit dem Rest handelt er und verliert ein Viertel . Es
bleiben ihm 20 Gulden . Wieviel Gulden hat er anfänglich besessen?

* = goldene Münze . 1252 begann Florenz mit der Prägung einer solchen Münze , dicfloren und auf französisch
florin hieß . Daher wurde der Gulden mit fl . abgekürzt .
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Lösung:
1 . Festlegung der Unbekannten : Zuerst mußt du dir klarwerden , wonach über¬
haupt gefragt ist . Für diese gesuchte Größe führst du einen Buchstaben , meist
x , als Unbekannte ein:

x = Anzahl der Gulden , die der Mann anfänglich besessen hat .

2 . Übersetzen der Textinformationen und Aufstellen der Gleichung : Durch die
soeben vorgenommene Bezeichnung der unbekannten Größe mit x kannst du
nun so tun , als wäre sie dir bekannt . Damit kannst du alle Informationen des
Textes in mathematische Terme übersetzen , die du am besten gleich verein¬
fachst , und schließlich die Gleichung als Bedingung für diese Terme aufstellen .
Kontrolliere aber , ob du alle Angaben des Textes auch wirklich verwendet
hast . Schrittweise erhalten wir

Anzahl der im Spiel verlorenen Gulden = | x
Anzahl der ihm noch verbliebenen Gulden = x — jx = §x
Anzahl der Gulden , mit denen er handelt = f x — 4
Anzahl der Gulden , die er beim Handel verliert = ^ (fx — 4)
Anzahl der Gulden , die ihm noch bleiben = | (| x — 4) = ^x — 3

Mit der letzten verbliebenen Information können wir nun die Bestimmungs¬
gleichung aufstellen :

}x - 3 = 20 .

3 . Auflösungder Gleichung: Wende auf die gefundene Gleichung die Methoden
an , die du gelernt hast , um die Lösungsmenge der Gleichung zu ermitteln .

jx - 3 = 20
ix = 23

x = 46 , also L = { 46 } .

4 . Antwort : Das mathematische Ergebnis wird nun in die Alltagssprache über¬
setzt und damit die Antwort auf die im Text gestellte Frage gegeben .

»Der Mann besaß anfänglich 46 Gulden . «

5 . Textprobe : Es geht jetzt nicht darum zu prüfen , ob du die in 2 aufgestellte
Gleichung richtig gelöst hast , sondern darum , ob die gefundenen Lösungszah¬
len alle Bedingungen des Textes erfüllen . Du mußt also eine Textprobe durch¬
führen . Geht sie schief , dann hast du dich entweder verrechnet , oder du hast
den Aufgabentext falsch übersetzt . Meist macht man die Textprobe nur
mündlich . Wir schreiben sie ausnahmsweise hin .

Anfänglicher Besitz = 46 fl .
Verlust beim Spiel = { von 46 fl . = 15 } fl .
Rest = 46 fl . — 15 | fl . = 30ffl .
Kapital , mit dem er handelt = 30§ fl . — 4 fl . = 26§ fl .
Verlust beim Handel = j von 26§ fl . = \ ^ fl . = ^ fl . = 6f fl .
Es verbleiben ihm 26f fl . — 6§ fl . = 20 fl . - Stimmt !
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Eine weitere Aufgabe zum Einüben bietet dir ein altes Testament * .

Beispiel 2:
Ein Mann hinterläßt seinen 3 besten Freunden 300 Gulden . Im Testament
bestimmt er , daß Anton um 40 Gulden mehr als Hans erhalten soll; Ulrich
aber soll halb soviel wie die beiden anderen zusammen bekommen . Wie viele
Gulden entfallen auf jeden ?

Lösung :
1 . Festlegung der Unbekannten : Gefragt ist hier nach den Anzahlen der Gul¬
den , die jeder einzelne erhält . Das sind eigentlich 3 Unbekannte . Da aber auf
Grund des Textes ein gewisser Zusammenhang zwischen diesen besteht , hof¬
fen wir , mit einer Unbekannten auszukommen . Wegen der komplizierten Be¬
dingung für Ulrich eignen sich seine Gulden wohl nicht recht dafür . Wir könn¬
ten uns aber mit gleich guten Gründen für den Anteil von Anton oder für den
von Hans entscheiden . Daher führen wir dir beide Möglichkeiten vor .

x = Anzahl der Gulden , die Anton y = Anzahl der Gulden , die Hans
erhält erhält

2 . Übersetzen der Textinformationen und Aufstellung der Gleichung : Nun drük -
ken wir die Anteile , die auf die beiden anderen entfallen , durch die gewählte
Unbekannte aus :
Anzahl der Gulden , die Hans erhält
= x - 40
Anzahl der Gulden , die Ulrich er¬
hält
= 2 Ia + (x ~ 40)] = x — 20

Anzahl der Gulden , die Anton er¬
hält = y + 40
Anzahl der Gulden , die Ulrich er¬
hält
= i [y + (y + 40)] = 7 + 20

Da wir nun die 3 Anzahlen als Terme in x bzw . y kennen , können wir mit Hilfe
der übriggebliebenen Information über die Höhe der Erbschaft die Bestim¬
mungsgleichung aufstellen :

x + (x — 40) + (x — 20) = 300 (y + 40) + y + (7 + 20) = 300

3 . Auflösung der Gleichung :
x + (x - 40) + (x - 20) = 300

x + x — 40 + x — 20 = 300
3x - 60 = 300

3x = 360
x = 120

also L = { 120 } .

(y + 40) + y + (y + 20) = 300
7 + 40 + 7 + 7 + 20 = 300

37 + 60 = 300
37 = 240
7 = 80

also L = { 80} .

testamentum (lat .) = der letzte Wille
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4 . Antwort :
Anton erhält 120 Gulden ,
Hans erhält (120 — 40) Gulden =
= 80 Gulden ,
Ulrich erhält ^ [ 120 + (120 — 40)]
Gulden = 100 Gulden .

Hans erhält 80 Gulden ,
Anton erhält (80 + 40) Gulden ;
= 120 Gulden ,
Ulrich erhält | [80 + (80 + 40)]
Gulden = 100 Gulden .

5 . Textprobe : Die 120 Gulden von Anton sind tatsächlich um 40 mehr als die
80 , die Hans erhält . Zusammen erhalten sie 200; die Hälfte davon ist 100 . Und
unsere Rechnung hat dem Ulrich 100 Gulden zugeteilt . Dadurch haben sie
zusammen (120 + 80 + 100) Gulden = 300 Gulden , was die ganze Erbschaft
ausmacht . - Stimmt !

Aufgaben

1 . Ein Onkel vermacht seinen beiden Neffen ein Vermögen von 12400 DM .
Wieviel erhält jeder , wenn der ältere Neffe laut Testament für sein Studium
3500 DM mehr bekommen soll als der jüngere ?

2 . Ein Vermögen von 14000 DM soll an die drei erbberechtigten Kinder in
folgender Weise verteilt werden : Der Sohn erhält zum Ausgleich für die
Kosten seiner Ausbildung 3000 DM weniger als die jüngere Tochter , die
ältere Tochter als Entschädigung für ihre Mithilfe im Haushalt 2000 DM
mehr als diese.

3 . Eine Erbschaft von 19500 DM soll unter drei Erben A , B , C so verteilt
werden , daß B um 1500 DM mehr als A und C um 3500 DM weniger als A
und B zusammen erhält .

4 . Die Zahl 100 ist in 4 Summanden aufzuteilen. Der 2 . Summand soll die
Hälfte , der 3 . ein Drittel , der 4 . ein Viertel des ersten Summanden sein . Wie
heißen die vier Summanden ?

5 . Die Zahl 1000 soll so in vier Summanden zerlegt werden , daß der zweite
doppelt , der dritte dreimal und der vierte viermal so groß ist wie der erste .

6 . Eine alte chinesische Aufgabe : In einem Stall sind Kaninchen und Fasa¬
nen ; sie haben zusammen 35 Köpfe und 98 Füße . Wieviel Tiere jeder Art
waren es?

7 . In einer Garage stehen Personenkraftwagen , Motorräder und Fahrräder .
Die Gesamtzahl der Fahrzeuge beträgt 30 , die der Kraftfahrzeuge 20 . Die
Fahrzeuge stehen auf insgesamt 86 Rädern . Wie viele Fahrzeuge jeder Art
sind hinterstellt ?

• 8 . Ein aus 12 Wagen und einer Lokomotive bestehender Personenzug ist aus
zweiachsigen Güterwagen und dreiachsigen Personenwagen zusammen -



••
•

6 . 1 Wie löst man Textaufgaben? 165

gestellt . Die elektrische Lokomotive läuft auf vier Achsen . Aus wieviel
Personen - und Güterwagen besteht der Zug , wenn er einschließlich Loko¬
motive auf insgesamt 72 Rädern läuft ?

9 . Eine Weinlieferung im Wert von 675 DM besteht aus drei Sorten . Eine
Flasche der besten Qualität kostet 13,5 DM , eine von der mittleren Quali¬
tät 10,5 DM und eine der billigen Sorte 6 DM . Von der mittleren Sorte
sind es zweimal und von der teuren Sorte dreimal soviel Flaschen wie von
der billigen Preisklasse . Wieviel Flaschen wurden von jeder Sorte geliefert?

• 10 . Bei einer Kinovorstellung betrugdie Gesamteinnahme 1718 DM . Für den
dritten Platz wurden 83 , für den zweiten 106 und für den ersten 34 Ein¬
trittskarten gelöst . Der Eintrittspreis für den 2 . Platz war um 1,5 DM
höher als der für den 3 . Platz , während der Preis für den 1 . Platz f desjeni¬
gen für den 2 . ausmachte . Wie teuer waren die einzelnen Plätze?

• 11 . Aus dem Chiu Chang Suan Shu : Ein Mann hat Reis bei sich . Er geht durch
3 Zollschranken hindurch . An der äußeren Zollschranke wird ihm | weg¬
genommen , an der mittleren Schranke wird ihm vom Verbliebenen der
fünfte Teil weggenommen , an der inneren Zollschranke wird ihm j von
dem weggenommen , was er noch bei sich hatte . Es blieben ihm 5 Tou . Wie
viele Tou hatte er am Anfang ? (1 Tou « 0,2 dm 3)

• 12 . Von dem armenischen Astronomen und Mathematiker Anania Schira -
kazi ( = Anania von Schirak , f um 670) stammt die Aufgabe :
Ein Mann trat in eine Kirche und bat Gott : Gib mir soviel, wie ich habe ,
dann gebe ich Dir 25 Dahekan . Dasselbe tat er dann in einer anderen
Kirche und schließlich noch in einer dritten . Übrig blieb ihm nichts . Wie
viele Dahekan * hatte er anfangs ?

13 . Aus dem Liber abbaci (1202) des Leonardo von Pisa (um 1170 - nach
1240 ) : De illo qui intravit in viridariopropomis colligendis* * : Jemand ging
in einen Obstgarten , in dem 7 To¬
re waren ; er bekam dort eine be¬
stimmte Anzahl Äpfel . Als er her¬
ausgehen wollte , mußte er dem
ersten Wächter die Hälfte aller
Äpfel geben und einen mehr , dem
zweiten Wächter die Hälfte der
restlichen Äpfel und einen mehr .
Als er so auch den anderen 5
Wächtern gegeben hatte , hatte er
nur noch 1 Apfel . Wie viele Äpfel
hatte er bekommen ?

Abb . 165 . 1 Apfelgarten mit drei Tor¬
wächtern . Aus einem Manuskript des ita¬
lienischen Mathematikers , Astronomen ,
Astrologen und Dichters Paolo Dagoma -
ri (um 1281 - zwischen 1365 und 1372) .

* Dahekan ist ein Gewichtsmaß ; 1 Dahekan entspricht 4,72 g. Zugleich bedeutet es auch eine Goldmünze von
diesem Gewicht .

** Von jenem , der in den Obstgarten ging , um Äpfel zu holen . - Die älteste Aufgabe dieses Typs stammt aus
dem Chiu Chang Suan Shu .
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14 . Aufgabe 26 der propositiones ad acuendos iuvenes des Alkuin (735 bis
804 ) : De cursu canis acfuga leporis * : Ein Hund sieht in einer Entfernung
von 150 Fuß einen Hasen und jagt ihn . Der Hase springt 7 Fuß , der Hund
9 Fuß weit . Nach wie vielen Sprüngen hat der Hund den Hasen erjagt ?

• 15 . Vom Leben des großen griechischen Mathematikers Diophant (Ailxpav -
zog) , den manche Vater der Algebra nennen , weil er die Lehre von den
Zahlen und Gleichungen von der Geometrie abtrennte , wissen wir nichts .
Vermutlich hat er um 250 n . Chr . in Alexandria gelebt . Seine angebliche
Grabinschrift ist aber in der Anthologia Palatina , einer Sammlung griechi¬
scher Epigramme , überliefert .

»Hier dies Grabmal deckt Diophantos - ein Wunder zu schauen !
Durch arithmetische Kunst lehret sein Alter der Stein.

Knabe zu sein gewährt ein Sechstel des Lebens der Gott ihm,
Als dann ein Zwölftel dahin , ließ er ihm sprossen die Wang ’;

Noch ein Siebtel, da steckt ’ er ihm an die Fackel der Hochzeit ,
Und fünf Jahre darauf teilt ’ er ein Söhnlein ihm zu.

Weh! unglückliches Kind ! Halb hatt ’ es das Alter des Vaters
Erst erreicht , da nahm ’s Hades , der schaurige , auf .

Noch vier Jahre ertrug er den Schmerz , der Wissenschaft lebend ,
Und nun sage das Ziel, welches er selber erreicht .«

Wie alt wurde Diophant ? Beachte , daß »das Alter des Vaters« in Zeile 7
auf zwei Arten verstanden werden kann . Einerseits kann damit das von
Diophant wirklich erreichte Lebensalter gemeint sein , andererseits könn¬
te es aber auch das Alter sein , das Diophant beim Tode seines Sohnes
hatte . Welche der beiden Lösungen scheint dir auf Grund der 4 . Zeile des
Epigramms die richtige zu sein?

6 .2 Wichtige Typen von Textaufgaben

Textaufgaben können sehr verschiedenartig aussehen . Trotzdem kann man
bei näherer Betrachtung gewisse Typen ausmachen , die in verschiedener Ein¬
kleidung immer wieder auftauchen . Wenn du erkannt hast , daß eine vorgeleg¬
te Textaufgabe zu einem bekannten Typ gehört , dann fällt dir meist die Lö¬
sung leichter . Einige wichtige Typen stellen wir im Folgenden vor .

* Vom Lauf des Hundes und der Flucht des Hasen . - Ähnliche Aufgaben findet man bereits im Chiu Chang
Suan Shu , aus dem überhaupt die ältesten Bewegungsaufgaben stammen .
Die Aufgaben , die Jugend scharfsinniger zu machen , werden dem angelsächsischen Gelehrten Alkuin
( = Freund des Tempels ) (um 712 York - 19 . 5 . S04 Tours ) zugeschrieben . Alkuin war Freund und Lehrer
Kaiser Karls des Großen . Er übte erheblichen Einfluß auf das geistige Leben seiner Zeit aus .
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6 .2 . 1 Bestimmung von Zahlen

Beispiel:
Eine dreiziffrige Zahl hat die Quersumme 13 . Ihre Einerziffer ist doppelt so
groß wie ihre HunderterzifFer . Vertauscht man Einer - und Zehnerziffer mitein¬
ander , dann erhält man eine um 27 kleinere Zahl . Wie hieß die ursprüngliche
Zahl ?

Lösung :
1 . x = Hunderterziffer

2 . Einerziffer — 2x

Zehnerziffer = 13 — v — 2x = 13 — 3x

Wert der Zahl = * • 100 + (13 - 3x) • 10 + (2x) • 1 =
= lOOx + 130 — 30x + 2x =
= 72x + 130

Wert der veränderten Zahl = x • 100 + (2x ) ■10 + ( 13 — 3x) ■ 1 =
= 117x + 13

Bestimmungsgleichung : 12x + 130 — 27 = 117 .x + 13

3 . 72x + 103 = 117* + 13
90 = 45x
x = 2 .

4 . Die ursprüngliche Zahl hat die Hunderterziffer 2 , die Einerziffer 2 - 2 = 4
und die Zehnerziffer 13 — 3 - 2 = 7 . Also heißt sie 274 .

Beachte : Eine Zahl mit der Einerziffer a , der Zehnerziffer b und der Hunder¬
terziffer c hat den Wert 100 c + 106 + a und die Quersumme
c + b + a .

Aufgaben

• 1 . Aus dem Schlüssel zur Arithmetik von al -Kaschi (f 1429 in Samarkand ) :
Verdoppelt man eine Zahl und addiert die Eins dazu , multipliziert man
dann die Summe mit 3 und gibt 2 dazu , multipliziert man dann das Erhal¬
tene mit 4 und addiert 3 , dann hat man 45 . Wie heißt die Zahl ?

2 . Vermehrt man eine Zahl um 16 , so erhält man um 2 wenigerals ihr Dreifa¬
ches . Wie heißt sie?

3 . Vergrößert man eine Zahl um 5 , zieht vom Doppelten dieser Summe 4 ab
und teilt dann das Ergebnis durch 5 , so erhält man 4 . Welche Zahl ist es?

4 . Welche Zahl hat folgende Eigenschaft: zieht man 9 von ihr ab und addiert
zur Hälfte dieser Differenz 5 , so erhält man wieder die ursprüngliche Zahl?
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5 .

. 6.

. 7.

8.

9.

• 10 .

11 .

. 12.

13.

814 .

15.

Aus Daheim (1884 ) :
Eine Zahl hab ’ ich gewählt ,
90 noch hinzugezählt ,
drauf durch 18 dividiert ,
wieder 18 dann addiert ,

jetzt mit 3 multipliziert ,
84 subtrahiert ,
und als Rest ist mir geblieben
dann zuletzt die heilige 7 .

Welche 3 aufeinanderfolgenden ungeraden Zahlen haben die Summe 33?

Welche zweiziffrige Zahl ist durch 11 teilbar und hat die Quersumme 8?

Bei welcher Zahl ist es gleichgültig , ob man sie durch 2 teilt oder um 2
vermindert ?

Bei welcher Zahl ist es gleichgültig , ob man sie mit 13 multipliziert oder
durch 13 dividiert ?

Die Zehnerziffer einer zweistelligen Zahl ist um 2 kleiner als die Einerzif¬
fer . Die ganze Zahl ist 6mal so groß wie die Einerziffer . Wie heißt die Zahl ?

Auf der Einerstelle einer zweistelligen Zahl steht die Ziffer 6 . Vertauscht
man Einer - und Zehnerziffer und addiert die neue Zahl zur ursprüngli¬
chen , so erhält man 88 . Wie heißt die Zahl ?

Auf der Einerstelle einer dreistelligen Zahl steht die Ziffer 7 . Die Anzahl
der Zehner ist so groß wie die Anzahl der Einer und Hunderter zusammen .
Nun vertauscht man die Einer - mit der Hunderterziffer . Die Summe aus
der neuen und der ursprünglichen Zahl ist 1089 . Wie heißt die Zahl ?

Die Hunderterziffer einer dreistelligen Zahl ist 4 . Streicht man diese links
weg und setzt sie rechts an , so entsteht eine um 243 größere Zahl . Berechne
die ursprüngliche Zahl .
Die Einerziffer einer sechsstelligen Zahl ist 2 . Nimmt man diese Ziffer weg
und setzt sie vor die übrigen , so entsteht eine Zahl , die gleich dem 3 . Teil
der ursprünglichen ist . Berechne die Zahl .
Die Summe zweier Zahlen ist 56 , ihre Differenz 22 . Wie heißen die Zahlen ?

6 .2 .2 Bestimmung des Alters

Beispiel :
Eine Mutter ist jetzt dreimal so alt wie ihre Tochter . In 4 Jahren wird sie
achtmal so alt sein, wie ihre Tochter vor 7 Jahren war . Wie alt sind Mutter und
Tochter jetzt ?

Lösung :

1 . x = jetziges Alter der Tochter in Jahren
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2 . Der Übersicht halber bestimmt man die Terme in einer Tabelle :

vor 7 Jahren jetzt in 4 Jahren

Alter der Tochter
in Jahren x — 7 X x T 4

Alter der Mutter
in Jahren 3x — 7 3x 3x + 4

Bestimmungsgleichung : 3x + 4 = 8 - (x — 7)

3 . 3x + 4 = 8x — 56
60 = 5x
x = 12 .

4 . Die Tochter ist jetzt 12 Jahre alt , die Mutter 36 Jahre .

Aufgaben

1 . Ein Vater ist doppelt so alt wie sein Sohn . Vor 24 Jahren war er um 32
Jahre älter als dieser . Wie alt sind beide jetzt ?

2 . Eine Mutter, die jetzt doppelt so alt ist wie ihre Tochter , war vor 11 Jahren
gerade dreimal so alt wie diese . Wie alt sind beide jetzt ?

3 . Hans ist 16 Jahre , sein Bruder Fritz 12 Jahre alt.
a) Vor wieviel Jahren war Hans doppelt so alt wie Fritz?
b) Vor wieviel Jahren war er ümal so alt?

• 4 . EinVater istjetzt 13 mal so alt wie sein Sohn. Nach 17| Jahren ist das Alter
des Vaters um 2\ Jahre höher als das dreifache Alter des Sohnes . Wie alt
sind beide jetzt ?

5 . An seinem 50 . Geburtstag stellt ein Vater fest , daß seine drei Kinder zu¬
sammen ebenso alt sind wie er selbst . Die Tochter ist um 6 Jahre älter als
der jüngste Sohn , der gerade halb so alt ist wie sein älterer Bruder .
a) Wie alt ist der Vater?
b) Wie alt sind die Kinder?

• 6 . In welchem Jahr fand zwischen Vater und Sohn folgendes Gespräch statt ?
»Bei deiner Geburt war ich 30 Jahre alt . Am Ende des 2 . Weltkriegs warst
du sieben . Heute bin ich gerade dreimal so alt wie du . «

• 7 . Ein Onkel ist jetzt dreimal so alt wie sein Neffe und viermal so alt , wie der
Neffe vor 5 Jahren war . Wie alt sind beide jetzt ?

S 8 . Otto ist jetzt dreimal so alt , wie Heinz vor fünf Jahren war . Nach 5 Jahren
• wird Otto doppelt so alt sein , wie Heinz jetzt ist . Wie alt sind beide jetzt ?

19 . Lotte ist 19 Jahre alt . Als Helga 13 Jahre zählte , war Lotte ebenso alt , wie

Helga jetzt ist . Wie alt ist Helga jetzt ?
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10 . Karl ist 27 Jahre alt . Er ist dreimal so alt , wie Inge war, als Karl doppelt so
alt war , wie Inge jetzt ist . Wie alt ist Inge jetzt ?

11 . Der berühmte französische Philosoph und Mathematiker Rene Descar -
tes (latinisiert zu Cartesius ) hatte 4 Jahre vor Beginn des 30jährigen
Krieges (1618) noch zwei Drittel seiner Lebenszeit vor sich . Er starb zwei
Jahre nach Kriegsende . Berechne sein Geburts - und Todesjahr .

12 . Müller & Sohn werben mit dem Slogan : »Wir haben zusammen 50 Jahre
Berufserfahrung « . Wie alt können Vater Müller und Sohn Karl sein , wenn
sie den Beruf seit dem 18 . Lebensjahr ausüben und wenn der Vater minde¬
stens 20 Jahre älter ist als sein Sohn ? Wie alt sind sie zusammen ?

• 13. Löse ohne Bestimmungsgleichung durch Knobeln :
Platon war ein Schüler des Sokrates , Aristoteles ein Schüler des Pla¬
ton . Der Schüler war jeweils um 43 Jahre jünger als sein Lehrer . Die Zahl
der Lebensjahre hat bei jedem dieser Philosophen die Quersumme 8 . Das
von Platon erreichte Alter wird durch die größte zweistellige Zahl mit
dieser Eigenschaft angegeben . Sokrates starb im 8 . , Aristoteles im 7 .
Jahrzehnt seines Lebens . Vermehrt man die doppelte Summe der drei Le¬
bensalter um 1 , so erhält man das Geburtsjahr des Platon . Berechne für
jeden der drei Philosophen das Geburts - und Todesjahr .

6 .2 .3 Prozentaufgaben

Beispiel :
Jemand hat einen gewissen Betrag als Einlage in ein Geschäft eingebracht .
Nach einem Jahr erhält er 10 % davon als Gewinn . Er erhöht seinen Ge¬
schäftsanteil um diesen Betrag . Im darauffolgenden Jahr erzielt er aber nur
einen Gewinn von 5 % seiner Einlage . Immerhin hat er nun 12400 DM mehr
als anfangs . Wie groß war die ursprüngliche Einlage?

Lösung :
1 . x = ursprüngliche Einlage in DM
2 . Gewinn in DM im 1 . Jahr = 10 % von x = 0,1 x

Einlage in DM für das 2 . Jahr = x + 0,lx = l,lx
Gewinn in DM nach dem 2 . Jahr = 5 % von l,lx = 0,055x
Kapital in DM am Ende des 2 . Jahres = l,lx + 0,055x = l,155x
Bestimmungsgleichung : l,155x = x + 12400

3 . 0,155x = 12400
x = 80000 .

4. Die Einlage betrug anfangs 80000 DM .

Beachte : p % ist die Zahl ^ .F 100

p % von a bedeutet ■ a .
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* * Zur Geschichte des Prozentbegriffs

Die Idee , bei vielen Aufgaben des praktischen Lebens die Zahl 100 als Vergleichszahl
zu wählen , hat sich seit alters her bewährt . Man findet sie bereits in einem babyloni¬
schen Text, bei Aufgaben der Ägypter , Griechen und Inder . Die italienischen Kaufleute
des Mittelalters machten sehr häufig Angaben verschiedener Art »für hundert « = per
cento . In süddeutschen Quellen taucht dieses italienische per cento im 15 . Jh . auf ; es
wird zu Anfang des 16 . Jh .s im hochdeutschen Sprachraum zu einem falsch latinisier¬
ten pro cento*. Schließlich werden die beidenWörter zusammengeschrieben,iml8 .Jh .
dann als das Prozent substantiviert und letztlich auch dekliniert . Im Österreichischen
hat sich die süddeutsche Form als das Perzent noch erhalten .

Vielfach benützt man als Vergleichszahl
auch die Zahl 1000 , die im Lateinischen
mille heißt ; man spricht daher von einer
Promille -Rechnung . Die Idee dazu
stammt wohl von dem berühmten italie¬
nischen Arzt und Mathematiker Gero -
nimo Cardano (1501- 1576) .

Woher kommt unser Prozentzeichen % ?
In Italien kürzte man ab dem 14 . Jh . das
per cento durch p c ° oder auch durch p c
ab , das handschriftlich manchmal die
Form PcH * hatte . In der 2 . Hälfte des
17 . Jh . s wurde vermutlich aus drucktech¬
nischen Gründen aus dem c- 8 einfach §.
Später ließ man das per weg. Schließlich
schrieb 1841 Albert Franz Jöcher das
Zeichen § mit dem schrägen Bruchstrich
als ° / 0, woraus dann das Prozentzeichen
% wurde .

Für pro mille schrieb man zunächst -Jf“ ,
dann ^ und schließlich mit dem schrägen
Bruchstrich % o -

Abb . 171 . 1 Geronimo Cardano
(24 .9 . 1501 Pavia - 20 .9 .1576 Rom )

1572

A/iVtV -Tty nrwr

Aufgaben

1 . Ein Grossist verkauft das aus der Fabrik bezogene Tuch mit 15 % Gewinn
an den Händler , der seinerseits noch 25 % Gewinn daraufschlägt . Nun ist

das Meter um 17,50 DM teurer als der Fabrikpreis . Wie hoch war dieser?

• 2 . Es spekuliert einer mit seinem Vermögen und gewinnt dadurch im ersten
Jahr 7 % , verbraucht aber 20000 DM . Mit seinem jetzigen Vermögen ge¬
winnt er im darauffolgenden Jahr 6 % , verbraucht aber 20 900 DM , so daß

er schließlich um 5 % mehr als am Anfang besitzt . Wieviel hatte er?

Korrekt muß es nämlich pro centum heißen .
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• 3 . Zwei Brüder erben zusammen 9240 DM zu ungleichen Teilen ; da aber der
eine sein Kapital zu 3j % , der andere zu 4 % anlegt , erhalten sie jährlich
den gleichen Zins . Wieviel erbte jeder ?

• 4 . Zwei Kapitalien brachten gleich viel Zins , obwohl das erste um \ % höher
ausstand als das zweite . Wie hoch waren sie verzinst , wenn das erste
3000 DM , das zweite 3375 DM betrug ?

5 . Zu wieviel Prozent sind 2662,50 DM ausgeliehen , wenn sie in 144 Tagen
49,70 DM Zins einbringen ? (Das Zinsjahr hat 360 Tage .)

• 6 . Ein Kapital von 6000 DM verzinst sich mit 3 % . Nach einem Jahr wird der
Zins zum Kapital geschlagen . Gleichzeitig ändert die Bank den Zinsfuß .
Nach einem weiteren Jahr ist das Kapital samt Zinsen auf 6427,20 DM
angewachsen . Wie hoch war der Zinsfuß im zweiten Jahr ?

• 7 . 1800 DM sind zu einem gewissen Zinsfuß ausgeliehen . Ein zweites , um
400 DM größeres Kapital verzinst sich mit einem Zinsfuß , der f von dem
des ersten Kapitals beträgt . Beide Kapitalien zusammen bringen in einem
Jahr 216 DM Zinsen ein . Wie hoch verzinst sich jedes der beiden Kapita¬
lien?

8 . Jemand hat \ eines Kapitals in Pfandbriefen angelegt , die sich mit 4i %
verzinsen , | in Häusern , die 4 % , 1 in Grundstücken , die durch Verpach¬
tung 3j % einbringen . Den Rest hatte er in Aktien angelegt , bei denen er
2 % verlor . Wie groß war sein Kapital , wenn er einen Jahreszins von
8175 DM erhielt ?

• 9 . Auf ein Sparkonto wird ein gewisses Kapital eingezahlt , das mit 4 % ver¬
zinst wird . Nach einem Jahr werden die Zinsen dazugeschlagen und noch
720 DM einbezahlt . Nach weiteren 75 Tagen ist das Konto mit Zinsen auf
5445 DM angewachsen . Wie groß war das Anfangskapital ? (Das Zinsjahr
hat 360 Tage.)

• 10 . Ein Spieler gewinnt beim ersten Spiel 30 % seines Einsatzes . Dadurch er¬
mutigt , wagt er ein zweites Spiel und verliert dabei 125 % des vorher erziel¬
ten Gewinnes . Es bleiben ihm vom ursprünglichen Einsatz noch 74 DM .
Wieviel hatte er eingesetzt ?

11 . Eine Rechnung macht einschließlich 14 % Mehrwertsteuer 889,20 DM .
Wieviel macht der reine Rechnungsbetrag ohne Steuer aus?
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6 .2 .4 Mischungsaufgaben

Beispiel:
Aus einer 10 % igen und einer 4 %igen Salzlösung sollen durch Mischen 2 kg
einer 7,6 %igen Salzlösung hergestellt werden . Wie viele kg von jeder der Aus¬

gangslösungen muß man verwenden ?

Lösung :
1 . x = Anzahl der kg der 10 %igen Salzlösung
2 . Anzahl der kg der 4 % igen Salzlösung = 2 — x

Salzmenge in der 10 %igen Lösung in kg = 10 % von x = 0,1 x
Salzmenge in der 4 %igen Lösung in kg = 4 % von (2 — x) = 0,04 ■ (2 — x) =

= 0,08 — 0,04x
Salzmenge in der 7,6 % igen Lösung in kg = 7,6 % von 2 = 0,076 • 2 =

= 0,152

10 %ig 4 %ig 7,6 %ig

0,1 xkg
+

(0,08 — 0,04x)kg
= 0,152 kg

x kg (2 - x) kg 2 kg

Abb . 173 . 1 Überlegungsfigur zur Aufstellung der Bestimmungsgleichung

Bestimmungsgleichung : 0,1 x + (0,08 — 0,04x) = 0,152

3 . 0,06x = 0,072
x = 1,2.

4 . Man muß 1,2 kg 10 %iger Salzlösung mit 0,8 kg 4 % iger Salzlösung mi¬

schen , um 2 kg einer 7,6 %igen Salzlösung zu erhalten .

Beachte : 1 . Prozentangaben bei Mischungen bedeuten Gewichtsprozente ,
wenn nichts anderes gesagt wird .
So enthält z . B . eine 12 %ige Salzlösung 12 g Salz je 100 g Lösung .
2 . Bei Mischungen gilt :
Menge eines Stoffes vorher = Menge des Stoffes nachher

Abb . 173 .2 Veranschaulichung der Erhaltung der Menge beim Mischen
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Aufgaben

• 1 . Aufgabe 71 aus dem Papyrus Rhind : Aus einem Krug Bier der Stärke 2
wird j abgeschüttet und durch Wasser ersetzt . Wie groß ist die Stärke der
Mischung ?

2 . 800 g einer 10 % igen Sole werden mit 400 g Wasser verdünnt. Wieviel %
Salz enthält die Mischung ?

• 3 . Bei starken Blutverlusten wird häufig f % ige Kochsalzlösung in die Blut¬
bahn eingeführt . Mit wieviel kg reinem Wasser muß man 539 g einer
2 % igen Kochsalzlösung verdünnen , um die erforderliche Konzentration
herzustellen ?

4. 180 g einer Sole werden durch Verdampfen 125 g Wasser entzogen , wo¬
durch ihr Salzgehalt auf 12 % ansteigt . Welchen Salzgehalt hatte sie an¬
fangs?

5 . 255 g einer 15 %igen Zuckerlösung werden mit 207 g einer 8 % igen Zuk -
kerlösung gemischt . Welchen Prozentgehalt an Zucker hat die Mischung ?

6. 595 g einer 15 %igen Zuckerlösung sollen mit 8 %iger Zuckerlösung so
gemischt werden , daß die Mischung 12 % Zucker enthält . Wieviel Gramm
der zweiten Lösung sind dazu erforderlich ?

7 . Wieviel Gramm reines Wasser muß man 300 g 98 % igem Alkohol zuset¬
zen , um 60 % igen Alkohol zu erhalten ?

8 . Von zwei Sorten Spiritus enthält die eine 4 kg Alkohol in 7 kg Spiritus , die
andere 7 kg Alkohol in 8 kg Spiritus . Wie viele kg von jeder Sorte Spiritussind zur Herstellung einer Sorte verwendet worden , die 33 kg Alkohol in
45 kg Spiritus enthält ?

• 9 . Ein Faß enthielt 98 % igen Spiritus . Nachdem jemand 12 kg abzapfte und
durch Wasser ersetzte , war der Alkoholgehalt nur noch 83 % . Wie viele kg
Spiritus enthielt das Faß ?

10 . Das Meerwasser im Persischen Golf enthält etwa 5 % Salz. Wie viele kgSüßwasser muß man zu 40 kg Meerwasser dazugießen , damit der Salzge¬halt der Mischung 2 % beträgt ?

• 11 . Ein Kaufmann bezieht zwei Sorten Rosinen . Der Verkaufspreis würde für
2 kg der ersten Sorte 4,50 DM , für 1 kg der zweiten 1,80 DM betragen .Wieviel kg der zweiten Sorte muß man mit 8 kg der ersten Sorte mischen ,damit man 1 kg der Mischung um 2,04 DM verkaufen kann ?

• 12 . Von einer Kalfeesorte kosten 16 kg 368 DM , von einer zweiten kostet das
Kilogramm 30 DM . Welche Menge der zweiten Sorte muß man mit 26 kgder ersten Sorte mischen , damit das Kilogramm der Mischung um 26 DM
verkauft werden kann ?
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13 . 1 kg Likörbohnen kostet 31,20 DM , \ kg Pralinen 9,60 DM . Wie müssen
die Pralinen und Likörbohnen gemischt werden , damit 1 kg der Mischung
24 DM kostet ?

14 . Ein Auto braucht als Kühlflüssigkeit für den Motor eine Mischung aus
Wasser und einem Frostschutzmittel . Der Anteil des benötigten Frost¬
schutzmittels hängt vom Klima ab .
a) Herr Huber hat in einem Kanister 10 kg Kühlflüssigkeit mit einem

Frostschutzmittelanteil von 25 % . Für den zu erwartenden kalten
Winter braucht er aber einen Frostschutzmittelanteil von 40 % . Wie¬
viel Wasser muß er verdampfen und durch reines Frostschutzmittel
ersetzen?

b) Wieviel kg reines Frostschutzmittel muß man zu 10 kg Kühlflüssigkeit
mit 25 % Anteil schütten , um 40 % ige Kühlflüssigkeit zu erhalten ?

c) Wieviel kg der Kühlflüssigkeitmuß man durch reines Frostschutzmit¬
tel ersetzen , um aus 10 kg 25 %iger Kühlflüssigkeit 10 kg 40 % ige zu
erhalten ?

15 . Mit wieviel g Kupfer muß man 234 g Feingold mischen, wenn die Legie¬
rung den Feingehalt 585 haben soll? (Feingehalt ist der heute meist in
Promille des Gesamtgewichts ausgedrückte Gehalt an reinem Edelmetall .)

16 . In welchem Verhältnis muß man Silber vom Feingehalt 750 mit Silber vom
Feingehalt 600 mischen , um Silber vom Feingehalt 700 zu erhalten ?

17 . Manchmal wird der Feingehalt
von Gold in Karat , der von Sil¬
ber in Lot angegeben . Gold von n

n
Karat besteht zu — aus Feingold ,

n
Silber von n Lot zu — aus Fem -

16
Silber .

*

a) Wieviel g Feingold und wie
viel g Kupfer benötigt man
zur Herstellung eines 14karä -
tigen Ringes von 5 g?

b) Ein Silberschmied möchte 24
lOlötige Teelöffel zu je 50 g
herstellen . Welche Menge des
vorhandenen 141ötigen Silbers
benötigt er?

* Feingold ist Gold mit einem Feingehalt von mehr als 997°/00. Rechne aber so , als wäre Feingold reines Gold .

Das Karat entstand aus dem griechischen Kegauov (kerätion ) =- Hörnchen , womit aber , ihrer Form wegen ,

auch die Hülse des Johannisbrotbaums bezeichnet wurde ; arabisch kirrat . Die harten , nahezu gleichmäßig

großen Samen wurden als Gewichte für Gold und Edelsteine verwendet . Heute gibt es für Edelsteine das

metrische Karat = 0,2 g.
Das Wort Lot stammt aus dem Keltischen , wo es Blei bedeutet . Es wurde später auch als Gewichtseinheit

verwendet .

Abb . 175 . 1 Hülse und Samen des Jo¬
hannisbrotbaums (Ceratonia siliqua) ,
zum Vergleich eine 1 -Pf-Münze . Das Ge¬
wicht der Samen wurde zu 77 , 205 , 221 ,
209 , 202 und 158 mg bestimmt . Die mitt¬
leren vier wiegen also mit guter Näherung
0,2 g . Bedenke die Genauigkeit der alten
Waagen!
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6 .2 .5 Leistungsaufgaben

Die ältesten mathematischen Texte handeln von Aufgaben aus dem Wirt¬
schaftsleben . Ein wichtiger Typ dieser Wirtschaftsaufgaben beschäftigte sich
mit Problemen , bei denen Menschen , Tiere oder Geräte verschiedener Lei¬
stung zusammen wirkten und so eine Gesamtleistung erbrachten .
Einen Sonderfall dieses Aufgabentyps stellen die Zisternenaufgaben dar . Sie
handeln von Zisternen , Brunnen , Bädern , Teichen , Fässern und dergleichen
mehr , die jeweils mehrere Zu - und Abflüsse besitzen . Betrachten wir die älteste
uns überlieferte Zisternenaufgabe . Sie stammt aus dem chinesischen Rechen¬
buch -yf. jjl fyj Chiu Chang Suan Shu ( = Neun Bücher arithmeti¬
scher Technik ) , das vermutlich zu Beginn der Han -Zeit entstanden ist , die von
202 v . Chr . bis 9 n . Chr . dauerte (siehe auch Seite 85):

Beispiel:
Jetzt hat man einen Teich, 5 Kanäle führen ihm Wasser zu . Öffnet man von
ihnen 1 Kanal , dann bekommt man in | Tag 1 Füllung , beim nächsten in 1 Tag
1 Füllung , beim nächsten in 2\ Tagen 1 Füllung , beim nächsten in 3 Tagen
1 Füllung und beim nächsten in 5 Tagen 1 Füllung . Jetzt öffnet man sie alle
gleichzeitig . Frage : In wieviel Tagen füllen sie den Teich?

Lösung :
1 . x = Zeit in Tagen , die zur Füllung des Teichs benötigt wird , wenn Wasser

aus allen Kanälen zufließt .
2 . Der 1 . Kanal liefert in 1 Tag 3 Füllungen.

Der 2 . Kanal liefert in 1 Tag 1 Füllung .
1Der 3 . Kanal liefert in 1 Tag - y Füllungen = f Füllungen .2-2

Der 4 . Kanal liefert in 1 Tag j Füllung .
Der 5 . Kanal liefert in 1 Tag j Füllung .
Somit gilt : Alle 5 Kanäle liefern in 1 Tag (3 + 1 + | + | + | ) Füllungen =
= 4jj Füllungen .
Alle 5 Kanäle liefern in x Tagen 4jf ■x Füllungen . Das soll aber gerade
1 Füllung sein, weil ja nach x Tagen der Teich durch alle Kanäle gefüllt sein
soll . Also erhalten wir die
Bestimmungsgleichung : 4j-| x = 1

15 x = 1
V- — 15

3 .
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4 . Nach 41 Tagen , das sind etwas wenigerals 5 Stunden, wird der Teich durch
alle 5 Kanäle gefüllt .

Beachte : 1 . Bestimme , was in der Zeiteinheit jedes Gerät liefert oder ver¬
braucht .

2 . Bestimme die einzelnen Lieferungen in der betrachteten Zeit .
3 . Die Summe aller Einzellieferungen ergibt die gewünschte Ge¬

samtlieferung (meistens die Einheit ) .

Aufgaben

1 . Von Diophant (um 250 n . Chr .) stammt die Aufgabe :
Bin ein Löw aus Erz . Aus den Augen , aus Mund und der Sohle unter dem
rechten Fuß springen Fontänen hervor . Daß das Becken sich füllt ,
braucht rechts das Auge zwei Tage, links das Auge braucht drei und meine
Fußsohle vier . Doch meinem Munde genügen sechs Stunden . Wie lange
wohl dauert ’s , wenn sich alles vereint , Augen und Sohle und Mund ?

2 . Ein byzantinisches Rechenbuch des frühen 14 . Jh . s überliefert uns :
Einer hatte ein Schiff mit 5 Segeln . Mit dem ersten Segel nun wurde es an
das beabsichtigte Ziel in der Hälfte eines Tages hingebracht , mit dem zwei¬
ten aber in 4 Tag, mit dem dritten in 4 Tag, dem vierten in 4 und mit dem
fünften Segel in 4 Tag . Nachdem nun die 5 Segel gleichzeitig gehißt waren ,
in welchem Teil des Tages wurde das Schiff hingebracht ?

3 . Johannes Widmann von Eger (um 1460 - nach 1500) stellt in seiner Be¬
hende und hübsche Rechenung auff
allen kauffmanschafft 1489 die
folgende Aufgabe :
1 Leb vnd 1 Hunt vnd 1 Wolff
Die essen mit eynander 1 schoff
Und der Leb eß das schaff alleyn
in eyner stund Und der wolff
ynn 4 stunden Und der hunt in 6
stunden . Nu ist die frag wen sy
das schoff all z miteynander essen
in wie langer zeyt sy das essen.

4 . Ein Gasherd mit zwei Brennern
wird aus einer Propangasflasche
gespeist . Mit einer Füllung kann
der eine Brenner 30 Std . , der
andere 20 Std . bei voller Flamme
versorgt werden . Wie lange reicht
der Flascheninhalt , wenn beide
Brenner gleichzeitig in Betrieb
sind?

Tlu mach auch om ©rlttn Sprich fit $
fiunoenoasiji 12 0 mlnuten rynnen 2
eymeiauf wie vil rynnen in j 2 minuin

it f
factt 1 eymeryy Tlu aootr038 als

$u | am fadt gerat»2 eymer vn ffi recht
iirb -tDOlff-ljunt-:-

CUtmoeBgldcbn 1 TL* vno 1 Jfrun»
wo 1 WolffDie effen mit eynanoer 1
fchoff 'fUno ©er JLeb ef oaa fdpaff al*
Uw in eyner ffuno THnoOer wolffynn
4 ftunoen TUno oer hunt in 6 ffunoen .
Tlu ifl oie frag wen f

'
y oas fchoff all 5

miteynanoer effen in wie langer jeyt fy
t»as effm ZDach? alfo multiplicir 1 fiüo

Abb . 177 . 1 Folium 138r der Behende
und hübsche Rechenung auff allen kauff¬
manschafft des Johannes Widmann von
Eger (um 1460 - nach 1500) von 1489
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5 . Ein Wasserbehälter hat zwei Zuflußrohren . Mittels der ersten Röhre allein
kann der Behälter in 6 Std . , mittels der zweiten in 4 Std . gefüllt werden .
Wie lange dauert das Füllen , wenn beide Röhren gleichzeitig in Betrieb
sind?

• 6 . Zum Ausheben einer Baugrube wird ein Bagger verwendet , der die gesam¬
te Arbeit in 8 Tagen erledigen würde . Um schneller voranzukommen , wird
nach 3 Tagen noch ein zweiter Bagger eingesetzt , der den gesamten Aus¬
hub in 12 Tagen allein bewältigen könnte . Wieviel Tage müssen beide
Maschinen noch gemeinsam in Betrieb sein?

6 .2 .6 . Aufgaben aus der Geometrie

1 . Verkleinert man eine Seite eines Quadrats um 1 m , so entsteht ein um
lim 2 kleineres Rechteck . Wie lang ist die Quadratseite ?

2 . Vergrößert man eine Seite eines Quadrats um 2 cm , so entsteht ein um
1,22 dm 2 größeres Rechteck . Wie lang ist die Quadratseite ?

3 . Die zwei Seiten eines Rechtecks unterscheiden sich um 5 cm . Die Fläche
dieses Rechtecks ist um 64 cm2 kleiner als die Fläche eines Rechtecks ,
dessen eine Seite um 13 cm größer ist als die kleinere Seite des gegebenen
Rechtecks , während die andere Seite so lang wie diese ist .

4 . Der Umfang eines Dreiecks ist 20 cm . Die erste Seite ist um 1 cm länger als
die zweite , die dritte um 2 cm kürzer . Wie lang sind die drei Seiten?

5 . In einem Rechteck mit dem Umfang 30 cm ist die Fänge l^mal so groß wie
die Breite . Berechne die Seiten .

6 . In einem gleichschenkligen Dreieck mit der Basis 8 cm ist der Umfang das
3f fache der Schenkellänge . Wie groß ist diese?

• 7 . In einem Dreieck mit den Seiten a , b , c und dem Umfang 12 m ist die
Mittelparallele zu b um 5 dm länger als diejenige zu a ; die Mittelparallele
zu c beträgt das 1 4 fache derjenigen zu b . Berechne die drei Seiten des
Dreiecks .

8 . In einem Trapez ist die Mittellinie um 4 cm länger als die eine der paralle¬
len Seiten , von denen eine 5mal so lang wie die andere ist . Wie lang ist die
Mittelparallele ?

9 . In einem Dreieck ist der Winkel ß um 54 ° 54' größer als a , ferner y um
103 ° 30 ' kleiner als a und ß zusammen . Berechne die drei Winkel .

10 . In einem gleichschenkligen Dreieck ist das Doppelte des Winkels an der
Spitze um 4 ° kleiner als § eines Basiswinkels . Berechne die Winkel .

11 . In einem Dreieck ABC ist der Außenwinkel bei A fmal so groß wie der
Innenwinkel bei B , während der Innenwinkel bei C 5mal so groß ist wie
derjenige bei A . Berechne die Dreieckswinkel .
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• 12 . In einem Viereck ABCD ist der Winkel bei B um 30 ° kleiner als der bei A,
der Winkel bei C 3mal so groß wie der bei B und der Winkel bei D das
Y^fache der Summe aus den Winkeln bei B und C . Berechne die vier Win¬
kel.

13 . Wie groß ist die Eckenzahl eines Vielecks ohne einspringendeEcken, bei
dem die Summe der Innenwinkel
a) 7mal b) 5^mal so groß ist wie die Summe der Außenwinkel?
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