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7 Schwierigere Termumformungen

7. 1 Multiplikation von Aggregaten

Nach dem allgemeinen Distributivgesetz (Satz 90 . 2) weißt du bereits , wie du
ein Aggregat mit einer Zahl multiplizierst . Unter Berücksichtigung der Vorzei¬
chenregeln wirst du also beispielsweise so rechnen :

a (b + c — d ) = ab + ac — ad .
Was machst du aber , wenn du zwei Aggregate miteinander zu multiplizieren
hast ? Betrachten wir als Beispiel das Produkt

( — a + b ) (c — d — e) .
Stell dir vor , du könntest die erste Klammer ausrechnen und erhieltest als Wert
die Zahl z . Dann hättest du nur noch z (c — d — e) zu berechnen . Das kannst
du aber nach dem Obigen leicht ausführen :

z (c — d — e) = zc — zd — ze .
Nun setzt du an Stelle von z wieder die ursprüngliche Klammer ( — a + b ) ;
dann nimmt die rechte Seite die folgende Form an :
zc — zd — ze = ( — a + b ) c — ( — a + b ) d — ( — a + b ) e .
Das rechts stehende Aggregat kannst du leicht mit Hilfe von Satz 108 . 1 umfor¬
men :

( — a + b ) c — ( — a + b ) d — ( — a + b ) e = — ac + bc + ad — bd + ae — be .
Betrachtest du nun den Anfang und das Ende deiner Rechnung und ordnest
die erhaltenen Summanden bezüglich des ersten Faktors a bzw . b , so ergibt
sich

( — a + b ) (c — d — e) = — ac + ad + ae + bc — bd — be ,
und du erkennst die Gültigkeit von

Satz 182 . 1 : Zwei Aggregate werden miteinander multipliziert, indem
man unter Berücksichtigung der Vorzeichenregeln jedes
Glied des einen Aggregats mit jedem Glied des anderen
Aggregats multipliziert und die entstandenen Produkte
addiert .

Beachte:
1) Damit du die Übersicht nicht verlierst , raten wir dir folgendes Vorgehen :

Multipliziere zuerst mit dem 1 . Glied des 1 . Aggregats der Reihe nach jedes
Glied des 2 . Aggregats . Multipliziere dann mit dem 2 . Glied des 1 . Aggre-
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gats der Reihe nach jedes Glied des 2 . Aggregats . Fahre so fort , bis du
schließlich mit dem letzten Glied des 1 . Aggregats der Reihe nach jedes
Glied des 2 . Aggregats multipliziert hast .

( — a + b ) (c — d — e) = — ac + ad + ae + bc — bd — be

2) Nehmen wir an , das erste Aggregat bestehe aus m Gliedernund das zweite
aus n Gliedern , dann hat das nach der Ausführung der Multiplikation
entstandene Aggregat m ■n Glieder , weil ja jedes Glied des ersten Aggre¬
gats mit jedem Glied des zweiten multipliziert werden muß . Damit kannst
du kontrollieren , ob du kein Produkt vergessen hast !

Beispiel 1 :
(2x 2 — 3x — 4) (5x — 6) =
= 10x 3 — 12x 2 — 15x 2 + 18x — 20x + 24 =
= 10x 3 - 27x 2 - 2x + 24 .

Beispiel 2:
(fx + 1y) (t^x 2 - jxy + hy 2) =

= Üx 3 - 1x 2 y + | xj 2 + fx 2 y - jxy 2 + £ y 3 =

= Ux 3 + £ y 3 .

Satz 182 . 1 läßt sich auch anwenden , wenn das Produkt aus mehr als zwei
Aggregaten besteht . Sind es drei Aggregate , dann rechnest du am besten von
links nach rechts der Reihe nach . Sind es aber vier oder mehr Aggregate , dann
kannst du unter Verwendung des Assoziativgesetzes und unter Umständen
auch des Kommutativgesetzes jeweils zwei geeignete Aggregate zu einem Pro¬
dukt zusammenfassen und darauf Satz 182 . 1 anwenden . Mit einiger Erfah¬

rung wirst du erkennen , welche Zusammenfassungen günstig sind . Ehe du
dann weiterrechnest , mußt du die erhaltenen Aggregate noch vereinfachen .
Dazu

Beispiel 3:
(2a — 3b ) (2a + 3h ) (5a — b ) =
= [ (2a — 3ö) (2a + 3 A)] (5a — b) =
= (4a 2 + 6 ab — 6ab — 9b 2) (5a — b ) =
= (4a 2 — 9b 2) (5a — b) ~
= 20a 3 — 4a 2 h — 45ah 2 + 9b 3 .

Beispiel 4:
7b (2a — b) {a — 2b) ( — a — 2b) (2a + b) =
= 7h [ (2a — b ) (a ~ 2b )] [ ( — a — 2b) (2a + ü )] =
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= lb (2a 2 — 4ab — ab + 2b 2) ( — 2a 2 — ab — 4ab — 2b 2) =
= 7b (2a 2 - 5 ab + 2b 2) ( - 2a 2 - 5 ab - 2b 2) =
= 7b ( - 4a A - 10a 3 b - 4a 2 b 2 + 10a 3 b + 25 a 2 b 2 + 10ab 3 -

- 4a 2 b 2 - 10ab 3 - 4bA) =
= 7b ( - 4a 4 + \ la 2 b 2 - 4b A) =
= - 28a 4 6 + 119a 2 & 3 - 28Z>5 .

Aufgaben

1 . a) (p + q ) (u + v ) b) (x + y ) (a — b ) c) (3 — s) ( t + 5)
d) (a — b ) (c — d ) e) ( — 1 + m ) (m — n) f) ( — x — y ) ( — u — v )

2 . a) (27a - 3b) (ax + ny ) b) (16p - 18r) (13 ? + 9)
c) ( — lfx + y ) (| x — 4-̂ j ) d) (2,15m — 0,7«) (3,5k + 20,10
e) (0,05 — 5,3a) ( — 1,2a — 3 ) f) ( l ^p 2 + 9,5q ) ( \ ,25p + fg 3)

3 . a) (a + b ) (c — d ) — (a — b ) (c + d)
b) (a — b ) (c — d) — (a + b ) (c — d)
c) (a + b ) (c + d) — (a — b ) (c — d)
d) (3 - r) Cs + 2t ) - (7s + 5t ) (3r + 8) + (4s - t ) (r + 1 )
e) (2y - 7) (5 + y 2) + 4^ (3 - 5^ - 2y 2) - (y - 6) (9y 2 + 1 )

4 . a) (17x 2 a — 3a4) (x — 5a) — (7a 2 x 2 + 2x ) ( l + 5a4)
b) 3m (16m — 9n 3 ) (5m 2 — n) — (12m 3 — 7n) ( — 2m — mn 3 ) ( — 2)

5 . a) (3x 2 + 5y ) [(27y — 8x) — (14x + 2y )
~
\

b) (3a — 9b) (2b + c) ( — c — 5a)
6 . a) (u + v) (x + y + z) b) (3s — 2t + \ ) (p — 3q — 7r )

c) (m 2 — n + 1 ) (« 2 4- m + 1 ) d) (a — 2b + 3c — 4d ) (5e — 6/ + 7g)
7 . a) ( 1 + x + x 2 + x 3 ) (1 — x) b) (1 — y + y 2 — y 3 + y 4') (1 + y)

c) (1 — a 2) ( l + a 2 + a4 + a 6) d) (a 2 + ab + b 2) (a — b)

• 8 . a) ( ljx 2y — | x_y
2) (17^x — ^ — 2jy )

b) (0,04a 2 - 0,laZ> + 0,25b 2) (0,2a + 0,5b )
c) (| x - | ^ ) (t ^x 2 + 0,3xj + 0,16^ 2)

9 . a) (a + b ) (a + 2b) (a + 3b ) b) (a — b) (a — 2b) (a — 3b )
c) (1 — x) (x + x 2 ) (2x — 1 ) d) (2 — x) (4 — x 2 ) (8 — x 3)

• 10 . a) ( l,2x — 0,l ^ ) ( l,44x 2 + 0,01j^2) (0,1 >^ + l,2x )
b) (\ + fx ) (i - ix + fx 2) (fx 2 - i )

11 . a) (1 - x) (2 - x) (3 - x) (4 - x) b) ( 1 - x) (2 + x) (3 - x) (4 + x)
c) (2 - y ) (4 + y 2) (4 + 2y + y 2) ( - y + 2)
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12 . (x 2 — x + l ) (x — 1 ) — (x 2 + x — l ) (x + 1 )
13 . (1 + 2x + x 2) (x — 2) + 4 (x + 1 ) — (x + 2) (x 2 — 2x + 1 )
14 . (3x 2 - 2x + 1 ) (1 - 2x) - llx 2 - 4 (3 + 2x - x 2) + 6x (x 2 + 4)

15 . (x 2 + ax + 2a 2) (2a — x) — (x 2 — 2ax + a 2) (x — 2a) — 2 (3 a 3 — x 3)

16 . (3 ab + 4ac — lbc ) (5ab — 6 ac) — (4ab — 8 ac + lbc ) (5ac — Tbc)

17 . (x 2 y — 2xy 2 + 3y 3 ) (2x 2 — 3 xy ) — (3x 3 + 2x 2y + xy 2) (4xy — 5y 2)

18 . (x + y + z) (x — y) — (x + y — z) (x — z) — (x — y + z) (z — y) —
- (z - x ~ y) (x + y)

19 . (o - p - q) (p + q) + (p - o - q) (o + q) - (q - o - p ) (o + p)

20. (xy + xz — yz) (x + y) — (xy + yz — xz) (y — z) —
— (xz — xy + yz) (x + z)

21 . (6x4 - 9x 2y + lly 2) (8x 2 - ly ) - (\ 3y2 + 2lx 2y - 17x4) ( llx 2 + 13j0

22 . (64a 6 ^ 3 + 48a 3 ^ 5 + 36a4 b n + 21a 3 b 9) (4a z b - 3 ab 3)

23 . (a 2 b4x — 2 aA b 3 x4 — 3 a 6 b 2 x 1 + a 8 bx 10) (a 3 b 2 x 2 — 2a 5 bx 5)

24 . 3a (2b - 5a) (3b + 4a ) - 4b (la 2 - 12ab ) - (5b + 4a ) (3a - 6b ) • 4a

25 . x2 (1 - x) 4- x (1 + x) ( l - 2x) - 2 (2 - x) ( l - 2x + 3x 2)

26 . 9 (14 + 11a + 17a2) ( 10 - 12a) - 13a (15 - 19a) ( 17 + 20a) +
+ 14a 2 (17a — 11 ) — 44a 3

27 . 2 (x - 2) (x - (2 - 3x)) - 3 (2 + (x - l )) (4 (x - 1 ) - 3 (x - 2))

! 28 . ([2x (x - 4) - 3 (x - 2) (2x + 3)] (4x - 2) • 3 + 48x 3 ) (3x - 5) -
— 540 (x 2 — 3x + 1 )

8 29. 3 12 (y - 4) + 5] l (y - 2) • 3 - 2 (y - 4)] -
— 4 [1 — 3 (y + 2) + y1 \ 5 — y — 3 (2 — yj ]

• 30. ([(x - l ) (x - 2) - 2] ■2 - 2 (2 - x)) ■ 2 - [2 - 2 (x - 2) ( l + x) +
+ 2 (1 - 2x)]

Gleichungen und Ungleichungen

31 . a) (x - 34) (x + 7) = (x - 4) (x - 7)
b) 2 (x + 0,1 ) (0,5x + 2) - (3 + ix ) (3x - 4) = 0

32 . 3x (x + 7) — x (3x + 7) + 70 = 0

33 . 4x (6 — 3x) + 6x (2x + 1 ) = 15

34. (ix - 1) • 21x - (33x + 5) ■^ x = 277
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35 . 0,32x ( l,25x - 10) + (6,3 - 0,8x ) • 0,5* + 1 = 0
36 . (x + 1 ) (jc — 14) - (x + l ) (x - 15) = 17
37 . (x - 16) (3x + l ) - (3x - l ) (x - 15 ) ^ - 35

38 . (&x + 3 ) (25 - 3x) + (f - 15) (^ x + 2) > 0

39 . (2,1 x - 1,5) (0,6x - 1,1 ) - (2,5 - 0,9x ) (0,8 - l,4x ) + 5,4 ^ 0
40 . Verlängert man in einem QuadratABCD die Seite [AB] über B hinaus um

2 cm , und [AD ] über D hinaus um 5 cm und ergänzt zu einem Rechteck ,
so ist dessen Fläche um 1,22 dm 2 größer als die des Quadrats . Wie lang ist
die Quadratseite ?

41 . Verlängert man eine Seite der Grundflächeeines Würfelsum 3 cm und ver¬
kürzt die andere um 2 cm , während man die Höhe beibehält , so entsteht
ein Quader gleichen Inhalts . Wie groß ist die Kantenlänge des Würfels ?

Abb . 186 . 1 Niccolö Tartaglia Abb . 186 .2 Simon Stevin
(1499 Brescia - 13 . 12 . 1557 Venedig) ( 1548 Brügge - 20 . 2 . /8 . 4 . 1620 Leiden) *

um 1546

r'Mlw [e'Tart(tfra

£f« 8

* i betont . Niederländischer Mathematiker und Ingenieur . Anfänglich in der Finanzverwaltung tätig , ab 1593
Berater des Prinzen Moritz von Oranien . In seinem Buch De Thiende - „ Der Zehnt “ - (1585) behandelt er als
erster systematisch die Stellenschreibweise von Zehnerbrüchen und trug damit wesentlich zur Verbreitung der
Dezimalbrüche bei . Das bequeme Komma hat 1617 der schottische Mathematiker John Napier (1550- 1617)
eingeführt .
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7 .2 . Binomische Formeln

Bei algebraischen Umformungen treten häufig Terme der Art (a + b) 2 und
(a — b)2 bzw . (a + b) {a — b) auf . Mit Satz 182 . 1 können wir sie leicht berechnen :

( 'a + b ) 2 = (a + b) (a + b ) = a 2 + ab + ab + b 2 = a 2 + lab + b z

(a — b) 2 = (a — b) (a — b) = a 2 — ab — ab + b 2 = a 2 — lab + b2

(ia + b ) (a — b ) = a 2 — ab + ab — b 2 = a 2 — b 2

In allen drei Fällen waren vier Glieder zu erwarten . Sie ließen sich aber zu
weniger zusammenfassen . Daher lohnt es sich, wenn du dir diese drei wichti¬
gen Umformungen als Formeln * merkst . Man nennt sie binomische * * For¬
meln .

Satz 187 . 1 : Die binomischen Formeln
1 . binomische Formel : (a + b) 2 = a 2 + lab + b 2

2 . binomische Formel : (a — b) 2 = a 2 — lab + b 2

3 . binomische Formel : (a + b) (a — b) = a 2 — b2

Beachte : Beim Quadrieren einer Summe oder einer Differenz tritt außer den
Quadraten der beiden Glieder auch noch ihr doppeltes Produkt auf .

Beispiele:
i ) (e^ + fr ) 2 = M* 2 + 5Af + Äk 2

ab a 2 a b b 2

2) (0,1rs 2 — 10r+ ) 2 = (0,lrs 2) 2 — 1 ■ 0,1 rs 2 ■ 10r2 s + (10r2 s) 2 =

ab a 2 a b b 2

= 0,01 r 2 s* - lr 3 s 3 + 100r4 ^2
* Ein Gebilde der Geometrie bezeichnet Euklid als crxiiiia (siehe Fußnote auf S . 160) , das ins Lateinische als

figura übersetzt wurde , was zu unserem Lehnwort Figur führte . Exriiaa wurde aber auch mit forma übersetzt ,
das Boethius zu formula verkleinerte , ihm dabei aber einen neuen Sinn gab . Bei Leibniz (1646- 1716)
gewinnt formula dann die heutige Bedeutung von Formel als Ausdruck einer Gesetzmäßigkeit .

** Spezielle Summen aus zwei Summanden nannte Euklid (4 ./3 .Jh . v. Chr .) im Buch X seiner Elemente £k Öüo

ovopäxcov (ek dyo onomäton ) = aus zwei Namen . Gerhard von Cremona (1114- 1187) verwendet dafür in
seiner Übersetzung der Kommentare des al -Nayrizi (lateinisch Anaritius , t um 922) zu den ersten zehn
Büchern des Euklid das Wort binomium . Luca Pacioli (um 1445- 1517) verallgemeinerte 1494 binomio zu
trinomio und multinomio in seiner Summa de Arithmetica Geometria Proportioni et Proportionalita . Niccolö
Tartaglia (1499- 1557) kommt mit seinem binomio bzw . trinomio de dignitä algebratica im 1560 postum
erschienenen 2 . Teil seines General trattato di numeri , et misure - »Allgemeine Abhandlung über Zahlen
und Maße « - unserem Gebrauch schon sehr nahe . In der 1585 erschienenen L ’Arithmetique des Nieder¬
länders Simon Stevin (1548- 1620) werden binomie in unserem Sinn für a + b und a — b, trinomie für
einen dreigliederigen Ausdruck und multinomie für ein allgemeines Aggregat verwendet . Letzteres setzt
sich nicht durch . In der In artem analyticem Isagoge (1591 ) des Fran5ois Viete (1540- 1603) tauchen ohne
weitere Erklärung die Ausdrücke binomia magnitudo und polynomia magnitudo für eine zweigliedrige bzw .

mehrgliedrige Größe auf . Sie waren anscheinend allgemeinverständlicher mathematischer Wortschatz . Im
Mathematischen Lexicon (1716) des Christian v . Wolff (1679- 1754) liest man schließlich die Beschreibung :
Binomium , © ne 3roet)fad )e ©röffe tmrb genennet , hie aus 310er) Tfyetlen beftefjet , bte mit bem mefyr = Reichen
3ufammen gefet3et toerben , als a + b .
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'sr

3) (1,5 U + yl>) ( l,5 U — yü) = ( l,5w)

1

2 — (yt>) 2 = 2,25 U 2 — yyU
2

a b a b a 2 b 2

Die drei binomischen Formeln waren bereits den Babyloniern um 1700 v . Chr .
bekannt . Ob und wie sie sie gegebenenfalls bewiesen haben , wissen wir nicht .
Der griechische Mathematiker Euklid (4,/3 . Jh . v . Chr .) hat diese drei For¬
meln mit Zeichnungen geometrisch bewiesen . Dieser Beweis setzt allerdings
voraus , daß a und b und gegebenenfalls a — b positive Zahlen sind . Seine
Zeichnung für die 1 . binomische Formel erklärt sich praktisch von selbst :

ab b 2

a 2 ab

a b
- v

a + b

( a + b )2

Abb . 188 . 1 (a + b ) 2 = a 2 + lab + b2

Auch für die beiden anderen Formeln kann man geometrische Veranschauli¬
chungen finden . Sie sind allerdings komplizierter (vgl . Aufgabe 190/24) .

Die 2 . binomische Formel ist nur ein Sonderfall der 1 . binomischen Formel ,
wenn man (a — b ) 2 als (a + ( — 6)) 2 schreibt . Dann gilt :
(a + ( — b)) 2 = a 2 + 2 ■ a ■ ( — b) + ( — b ) 2 = a 2 — lab + b 2 .
Genauso kann man bei anderen Vorzeichenverteilungen verfahren :
( — a + b ) 2 = (( — a) + b ) 2 = ( — ä) 2 + 2 ( — a) ■ b + b 2 = a 2 — lab + b 2
( — a — b ) 2 = (( - a) + ( - h )) 2 = ( - a) 2 + 1 ( - a) ( - b ) + ( - b ) 2 = a 2 + lab + b 2

Aufgaben

1 . a) (1 + x)2

d) ( 1 - 2x)2

2 . a) (3a + 46 ) 2
d) (6xy + 5y 2) 2

b) (x — l )2

e) (x 3 — 3)2

b) (2x + 5y) 2
e) (7ab - 96c) 2

c) (2 + x)2

f) (3 — x2)2

c) (4x 2 — 9y 2) 2
f ) ( lla 2 x + 13xy )2
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3 . a) {lly + 3z) 2 b) (13p - 7q)2

d) (21 + 15t ) 2 e) (| a + lfp ) 2

g) (9m - ft ; ) 2 h) ( l,8r + 3f) 2

c) (14x — ll ) 2
f) (2,3c — 0,11c?)
i) § a - lbf

j) (jx - Hy ) 2 k) (0, \ a 2 b + 10ab 2) 2 1) (^ u 3 - 0,07m4) 2

4 . a) (4 - x) (4 + x) b) (22x 2 + 33) (22 jc 2 — 33)
c) (1 — 4x 2) ( l + 4x 2)

5 . a) (5a — 4x ) (5a + 4x ) b) (17x 2 — 19y 2) (17x 2 + 19y 2)
6 . a) (16x + 24y) (16x — 24y)

b) (12p - 23q) ( i2p + 23q)
c) (7i + 24z) ( - 7| + 24z)
d) ( - 0,25m + 0,07c) ( - 0,25« - 0,07z;)

7 . a) (a + b) ( — a + b) b) (a — b ) ( — a — b )
c) (x - y ) ( - x + y ) d) ( ~ x - y ) (x + y)

8 . a) Beweise die Formel von Brahmagupta (598- nach 665) :
n 2 = {n + a) {n — a) + a2

b) Diese Formel wurde von den Indern zur Berechnungvon Zahlenqua¬
draten verwendet ; z . B .
2972 = (297 + 3) (297 - 3) + 3 2 = 300 • 294 + 9 = 88209 .
Berechne ebenso :
1) 98 2 2) 395 2 3) 1999 2 4) 2001 2 5) 9999 2

9 . Beweise die Formel von Narayana (um 1350 ) :
( a + b ) 2 = (a — b ) 2 + 4ab

10 . Die folgende Formel wurde auf einer altbabylonischen Tontafel aus dem
17 . Jh . v . Chr . gefunden . Beweise sie !

11 . Beweise die Formeln
4 (x 2 + y 2)a) (x + y) 2 + (x - y) 2 + ( - x + y) 2 + ( - x - y)

, , (x + y ) 2 + (x - y) 2
x 2 + y

12 . a) (3uv — 2v 2) 2 b) (7 a 2 b + 4ab2) {la 2 b - Aab 2)
c) (x 6 + y 3) 2 d) ßa 2 b 2 — 5c 4) (5c 4 — %a2 b 2)
e) ( ljp 2 qr 2 — l ) 2 f) ( l,9c 5 J - %d 3 e 2) Qd 3 e 2 + 1,9c5 d)

13 . Berechne (a + b ) 2 — (a — b ) 2 auf zwei Arten.

14 . Bestimme die Werte von (a + b ) 2 und a 2 + b 2 für
a = 7 ( - 4 ; 21 ; - 4j ; und b = 3 (11 ; - 21 ; - f ; - 2,8).
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15 . (2 — x) 2 — (2 — x) (2 + x) + (2 + x) 2

16 . (4a + 3x) 2 + 3 (4a + 5x) (3a — 2x ) — 4 (3a — 4x) 2

17 . (3a 2 — 16ax ) 2 — 4ax (7a — 2x ) (5x — 4a ) — 6a 2 (2x — 3a) (2x + 3a)
18 . 17a 3 - 36 ( lla + 7b ) (7b - 11a) + 2a ( lli - 7a) 2 -

- (nb - 7a) (Ub - 6a) - 3b
19 . x 4 + 2x 2 (x — l ) 2 — 3x (x 2 — x + l ) (x + 1 ) — (x 2 — 2x + 1 ) (1 + x) (l — x)
20. (x 2 - y 2) 2 + x (x - y ) 2 (x - y) - y (x - y) 2 (x + y ) + xy {x + 2y) (2x - y)
21 . (a + l ) 2 • 2a - a (a + 1 ) (1 - a) 2 + 2 (a - l ) (a + l ) 2 +

+ a (a 2 + 2a + l ) (a — 1 )
• 22 . [(x + y ) + z] [(x + y) + z] - [(x - y ) - z] [(x - y) - z] +

+ \iy - x) - z\ [(t - x) - z] - [x + (y + z)] [_(y + z) + x]
23 . [(fa - p ) + l ] [(| a - | Ä) + l ]
24 . Welche Formeln werden durch die Abbildungen veranschaulicht ? Begrün¬

dung !

a) b)

a - b -«

“ V ”
a - b

c) b

a - b a - b
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. 25 . (ffl + ! £ ) (! b - f a) - $ b + la ) 2 - (f b - f a) 2

• 26 . 2 (0,4 — 0,3x ) 2 — 0,4 (1 + 2x) 2 — 3 (x — 0,2) (0,2 — x)
27. Quadrieren zweistelliger Zahlen :

Beispiel :
34 2 = (4 + 3 • 10) 2 = 4 2 + 2 • 4 • 3 • 10 + 3 2 • 100, also:

16 (16 = Quadrat der Einerziffer) 6 an , 1 gemerkt
240 (24 = doppeltes Produkt der Ziffern) 4 + 1 = 5 an , 2 gemerkt
900 ( 9 = Quadrat der Zehnerziffer ) 9 + 2 = 11 j an

34 2 = 1156 1156
Berechne so die Quadrate der Zahlen :
a) 59 ; 26 ; 94 ; 73 ; 88 ; 47 ; 65 ; 31
b) 2,9; 6,7 ; 0,48 ; 0,038; 550 ; 0,00093

41 . 82 . 54 . 71 . 1 . 8 . 670 . 0,85
D 325 195 535 995 23 5 1,2 5 0,044

28 . Umwandlung eines Produkts in die Form (a + b ) (a — b ):
Beispiele:

53 • 47 = (50 + 3) (50 - 3) = 50 2 - 3 2 = 2500 - 9 = 2491
24 • 26 = (25 - 1 ) (25 + 1 ) = 25 2 - l 2 = 625 - 1 = 624

Berechne so folgende Produkte :
a) 29 - 31 ; 65 - 55;
b) 99 - 101 ; 498 - 502 ;
c) 3,8 - 42 ; 0,74 - 6,6;

29 . Das Quadrat einer Zahl mit der Einerstelle 5 , zum Beispiel 65 , berechnet
Peter folgendermaßen :
»6 • (6 + 1 ) = 6 • 7 = 42 ; 25 angehängt ; Ergebnis 4225.«
Er erhält also den richtigen Wert von 65 2 .
Prüfe dieses Verfahren an einigen ähnlichen Beispielen . Beweise, daß man
nach dieser Methode das Quadrat jeder Zahl mit der Einerstelle 5 berech¬
nen kann . (Tip : Schreibe die Zahl als Summe mit 5 als zweitem Summan¬
den und wende die Formel für (a + b) 2 an .)

23 • 27 ;
243 • 257 ;
58 62 .
75 855

72 - 88
1012 - 988
49 . 49
58 62

Gleichungen und Ungleichungen

30 . (2x + 3 ) (2x - 3) = (2x + 3) 2

31 . (x + 3) 2 + 2 (2x + l ) (2x - 1 ) = (5 - 3x) 2

32 . (x — 3) 2 — x 2 = 3 - 3 (x + 2)
33 . (x + l ) 2 > (x + l ) (x - 1 ) + x + 7

34 . (x - l ) 2 ^ x 2 - 2
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35 . (x + 2) 2 — (x — 4) 2 ^ 2 (x — 4) + 9x
36. (x — 3) 2 + (x + l ) 2 + 3x + 5 < 2 (x — l ) (x + 1 ) + 2
37 . (x + l ) 2 - (x + 2) 2 = (x + 3) 2 - (x + 4) 2

38 . (x + 3) (x - 3 ) + (x + 3) 2 = (x - 3) (x + 3) + (x - 3 ) 2

39 . (2x - l ) 2 + x 2 = (3x + l ) 2 - (2x - 5) 2

40. x 2 — 1 + (x — l ) 2 + (x — l ) (x + 1 ) > 3x 2 — 2x
41 . Verkleinert man die Seiten eines Quadrats um je 10 m , so entsteht ein um

1,4 a kleineres Quadrat . Wie lang ist die Seite des ursprünglichen Qua¬
drats ?

42 . Die eine Seite eines Rechtecks ist um 5 cm größer als die andere. Die
Fläche ist um 64 cm 2 kleiner als die Fläche eines Quadrats , dessen Seite
um 4 cm größer als die kleinere Rechtecksseite ist . Berechne die Seiten des
Rechtecks .

43. Wenn in einem Quadrat die eine Seite um 2 cm verkleinertund die andere
um ebensoviel vergrößert wird , so erhält man ein ebenso großes Rechteck
wie bei Verkürzung der einen Quadratseite um 4 cm und Verlängerung der
anderen um 10 cm . Wie groß ist die Quadratseite ?

44 . Der Inhalt eines Rechtecks, dessen Seiten sich um 11 cm unterscheiden,
ändert sich nicht , wenn man die größere Seite um 6 cm verkleinert und die
kleinere um 5 cm vergrößert . Berechne Länge und Breite des ursprüngli¬
chen Rechtecks .

45 . Wird bei einem Würfel die erste Kante um 2 dm vergrößertund die zweite
um ebensoviel verkleinert , während man die dritte beibehält , so entsteht
ein Quader , dessen Volumen um 12 dm 3 kleiner ist als dasjenige des Wür¬
fels . Wie lang ist die Würfelkante ?

46. Bei einem Quader ist die zweite Kante um 1 cm größer als das Doppelte der
ersten , die dritte um 2 cm kleiner als die zweite . Der Rauminhalt dieses
Quaders ist um 5 cm 3 kleiner als das vierfache Volumen eines Würfels ,
dessen Kante mit der ersten Quaderkante übereinstimmt . Berechne die
Kanten des Quaders .

47 . Vergrößert man bei einem Würfel alle Kanten um 1 dm , so nimmt seine
Oberfläche um 0,3 m 2 zu . Wie groß ist der Rauminhalt dieses Würfels ?
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7.3 Quadrate von Aggregaten
Analog zum Binom als zweigliedrigem Aggregat a + b bezeichnet man mit dem Kunst¬
wort Trinom ein dreigliedriges Aggregat der Form a + b + c . Quadriert man dieses
Trinom , so erwartet man 3 - 3 = 9 Glieder , von denen man wie beim Quadrat eines
Binoms hoffen kann , daß sich einige zusammenfassen lassen . Wir probieren es :

(a + b + c) 2 = (a + b + c) (a + b + c) =
= a 2 + ab + ac + ab + b 2 + bc + ac + bc + c 2 =
= a 2 + b 2 + c2 + lab + lac + Ibc .

Das Ergebnis des Quadrierens eines Trinoms entspricht dem Ergebnis des Quadrierens
eines Binoms , also der 1 . binomischen Formel ; man erhält nämlich die Summe aller
Quadrate und die Summe aller möglichen doppelten Produkte .
Besteht nun ein Aggregat aus mehr als 3 Summanden , so ergeben sich beim Quadrieren
wieder alle Quadrate und alle möglichen doppelten Produkte , da jedes Produkt mit
zwei verschiedenen Faktoren genau zweimal auftritt . Die Pfeile sollen es dir zeigen:

a - b
f \

(a b c -\- . . . z) (a b -\- c . . . + z) =
v._ s

a ■b

= a 2 + b 2 + c 2 + . . . + z 2 + lab + lac + . . . + laz + Ibc + . . .

Kommen im Aggregat nicht nur Plus- , sondern auch Minuszeichen vor , dann muß
man bei der Bildung der doppelten Produkte die Vorzeichenregeln beachten . Wir zei¬
gen es dir an

(a — b + c) 2 = (a — b + c) (a — b + c) =
= a 2 — ab + ac — ab + b 2 — bc + ac — bc + c 2 =
= a 2 + b 2 + c 2 — lab + lac — Ibc .

Wir fassen die gewonnenen Erkenntnisse zusammen in

Satz 193 . 1 : Das Quadrat eines Aggregats besteht aus der Summe der Quadrate
aller seiner Glieder und der Summe aller möglichen doppelten Pro¬
dukte unter Berücksichtigung der Vorzeichenregeln.

Beachte: Damit du kein doppeltes Produkt vergißt , mußt du systematisch Vorgehen.
Du beginnst am besten vorne und arbeitest dich nach hinten durch , wie es dir
die Pfeile zeigen:

1 . Schritt

(ü -\- b ~\- c -\- d -\- . . . )
/

2 . Schritt
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Dazu ein

Beispiel :
( — \ x + 2y — xz — A) 2 =
= %x 2 + 4y 2 + x 2 z 2 + 16 — 6xy + 3 x 2 z + I2x — Axyz — 16y + 8xz

Kehren wir zurück zu (a + b + c) 2
. Wir hätten das Quadrat auch anders als oben

ausrechnen können , nämlich mit Hilfe der 1 . binomischen Formel . Dazu müßte man
beispielsweise a + b mittels einer Klammer zusammenfassen :

(a + b + c) 2 = [(a + b) + c] 2 =
= (a + b) 2 + 2 (a + b ) c + c2 =
= a 2 + lab + b 2 + lac + 2bc + c 2 =
= a 2 + b 2 + c 2 + lab + lac + 2bc .

Einen kleinen Vorteil bringt dieses Verfahren , da wir keine 9 Produkte ausrechnen
mußten . Aber Satz 193 . 1 ist natürlich am schnellsten .
Einen großen Vorteil bringt der Trick des Klammerns aber , wenn man ein Produkt von
zwei Aggregaten dadurch auf eine Form bringen kann , bei der sich die 3 . binomische
Formel anwenden läßt .

Beispiel 1 :
(2a + 3 b + 4c) (2a + 3 b — 4c) =
= [(2a + 3 b ) + 4c] [(2u + 3b ) — 4c] =
= (2a + 3b ) 2 - (4c) 2 =
= Aa 2 + \ 2ab + 9b 2 — 16c 2 .

Beispiel 2:
(2a — 3 b + 4c) (2a + 3 b — 4c)
Das sieht recht schwierig aus ! Zwar kann man in der zweiten Klammer 3b — 4c
zusammenklammern . Was soll aber in der ersten Klammer geschehen? Wir
bräuchten ebenfalls (3 b — 4c) , aber ein Minuszeichen davor .
Satz 106 .2 macht ’s möglich :
(2a — 3 b + 4c) (2a + 3b — 4c) =
= [2a — (3b — 4c)] [2a + (3b — 4c)] =
= (2a) 2 - (3b - 4c) 2 =
= 4a 2 — (9b 2 — 2Abc + 16c 2) =
= 4a 2 — 9 b 2 + 2Abc — 16c 2

Aufgaben

1 . a) (u + v + w) 2 b) (u + v — w) 2

2 . a) (3x + 5y + \ )
2

c) (2x — 3y + Az) 2

e) (5x2 - 3y - l ) 2

g) (0,8x — 1,2y + 1,6xy ) 2

c) (u — v — w) 2 d) ( — u — v — w) 2

b) (2x + 3y + Az) 2
d) (0,7a — 1,16 — 0,9c) 2
f) ( lfß — 2§Z>+ l^c) 2
h) (0,lx — 0,2xy + 0,3y) 2

i
*

i
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3 . a) (u + v + w) 2 + (v — u + w) 2
b) (2a — 4b + 6c) 2 — ( — 8 a + b + 2c) 2
c) 100 (0,4r + 0,3s - \ t ) 2 - 4 (2a + \ b - 2,5 c) 2

4 . Stelle die Formel für (a + b + c) 2 durch eine Zeichnung dar .
5 . a) (5m — 8v + 6w — 2 )

2
• c) (17a 2 — I4ab + 13Z>2 — Wb) 2

• e) (W ~ \ b 2 - la + W
6 . a) (m + v + w ) (u + v — w)

c) (u — v + w) (u + v — w)
e) (ix - f y + z) (\ x + fy - z)

7 . a) (a + b + c) (a + b — c) b) (a

b) (3x 3 — 2x 2 + x — l ) 2
• d) ( l,2x 2 + 1,3jF — 0,25x — 0,15y) 2

b) (m + v + w) (u — v — w)
d) (2p + q + 7 r) (2p + q - lr )
f) (0,5a — \ b — 2c) (2c — \ b — 0,5a)
b — c) (a — b + c)

8 . a) ( 1 — x — y ) ( l + x + y ) b) ( 1 — x + x 2
) ( 1 — x — x 2)

• 9 . a) (7a — 9x + llj 2) (7a + 9x — ll _v
2)

b) (6x 2 - 13 / + 15 xj0 (6x 2 - 13y 2 - 15 xy)
• 10. a) (9ax 2 — 11a2 + 4x 4) (9ax 2 + 11a2 — 4x 4)

b) (9ax 2 + 11 a 2 + 4x 4) (9ax 2 - 11 a 2 + 4x 4)
• 11 . a) (a + b + c + d) (a + b — c — d)

b) (1 — x — x 2 + x 3) ( 1 — x + x 2 — x 3)
• 12 . a) (8x 3 + lx 2y + 6xy 2 — 5^ 3) (8x 3 + lx 2y — 6x_r 2 + 5y 3)

b) (19a6 b - 4aAb 2 - 5 a 2 b 3 - m A) (19a6 b - 4a 4 b 2 + 5 a 2 b 3 + 18 bA)
• 13. a) (a — 2b + 2c — x) (a — 2b — 2c + x)

b) (x 2 - 2 + y 2 - b ) (x 2 - y 2 - b + 2)
• 14. a) (b 2 — x + a 2 — y) (a 2 + y — x — b 2)

b) (x + 1 — x 2 — x 3) ( l — x 2 + x 3 — x)
c) ( 1 — a — x — ax ) (a — x + ax + 1 )
d) (a 3 + ab 2 — a 2 b — b 3) (b 3 — ab 2 — a 2 b + a 3)

* * 7 . 4 Höhere Potenzen von Binomen

In manchen komplizierteren Rechnungen kommen nicht nur Quadrate , sondern auch
höhere Potenzen von Binomen vor . Auch für sie kennt der Mathematiker Formeln , die
den Umgang mit ihnen erleichtern . Betrachten wir zunächst die dritte Potenz (a + b ) 3 .
Nach Definition der Potenz müßtest du (a + b ) (a + b ) (a + b ) rechnen , was zunächst 8
Summanden lieferte . Geschickter ist die Anwendung der 1 . binomischen Formel :

(a + b ) 3 = (a + b ) (a + b ) 2 =
= (a + b ) (a 2 + 2ab + b 2 ) =
= a 3 + 2a 2 b + ab 2 + a 2 b + 2ab 2 + b 3 =
= a 3 + 3 a 2 b + 3 ab 2 + b 3 .

Statt der 8 Summanden enthält das Ergebnis nur noch 4!
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Auch für (a — b) 3 können wir eine solche Rechnung durchführen . Einfacher geht ’s ,
wenn wir in dem Ergebnis von eben ( — b) statt b setzen:

(a — b) 3 = (a + ( — b )) 3 = a 3 + 3a 2 ( — b) + 3 a ( — b ) 2 + ( — b ) 3 =
= a 3 — 3a 2 b + 3ab 2 — b 3 .

Wegen des häufigen Vorkommens lohnt es sich, diese Ergebnisse als Formeln auswen¬
dig zu lernen :

Satz 196 . 1 : (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3

(a — b) 3 = a 3 — 3a 2 b + 3ab 2 — b 3

Beispiel :
(3x - 5y ) 3 = Tlx 3 - 3 ■9x 2 ■ + 3 ■3x • 25j 2 - 125j 3 =

= 21x 3 — 135x 2 y + 225 xy 2 — 125j>3 .

Durch eine räumliche Darstellung läßt sich die erste dieser Formeln auch mit Quadern
veranschaulichen .

b

Abb . 196 . 1 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b3

Die Mathematiker gaben sich natürlich nicht mit den Formeln für die Quadrate und
die dritten Potenzen zufrieden und untersuchten auch höhere Potenzen des Binoms
(a + b ) . Diese höheren Potenzen lassen sich schrittweise auf niedrigere zurückführen
und damit berechnen . Wir führen dies für (a + b ) 4 einmal vor :

(a + b ) 4- = (a + b ) (a + b) 3 =
= (a + b ) ( la 3 + 3a 2 b + 3ab 2 + 1Z>3) =
= la 4 + 3a 3 b + 3a 2 b 2 + lab 3 +

+ ia 3 b + 3a 2 b 2 + 3ab 3 + lb 4 =
= U 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + lb 4 .
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Das Koeffizientenmuster 1 — 3 — 3 — 1 wiederholt sich beim Ausmultiplizieren , um
eine Stelle verschoben , in der zweiten Zeile. Das neue Koeffizientenmuster 1 — 4 — 6
— 4 — 1 ergibt sich somit recht einfach , indem man nebeneinanderstehende Koeffizien¬
ten des vorhergehenden Musters 0 — 1 — 3 — 3 — 1 — 0 addiert . Setzt man dieses Ver¬
fahren fort , so erhält man eine dreieckige Anordnung von Koeffizienten . Sie ist auch
als Arithmetisches Dreieck oder PASCAL -STlFELsches Dreieck bekannt .

1
(a + b ) 1 1 1 la + 1b
(a + b)2 1 2 1 1a 2 + 2ab + 1b2

(a + b) 3 13 3 1 la 3 + 3a 2 b + 3ab 2 + 1b 3

(a + h )4 1 4 6 4 1 la 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + 1 bA

(a + b) 5 1 5 10 10 5 1 la 5 + 5a4 h + 10a 3 b 2 + 10a 2 b 3 + 5ab * + 1b

Das Arithmetische Dreieck war bereits den Indern des 2 . vorchristlichen Jh .s und den
Arabern des 11 . Jh .s bekannt . Die früheste erhaltene Darstellung dieses Dreiecks ent¬
hält die Untersuchung der Arithmetischen Regeln der Neun Bücher von Yang Hui aus
dem Jahre 1261 , die auf den chinesischen Mathematiker Qia Hsian [sprich : Tschia
Hsien] (um 1100 ) zurückgeht (sieheAbbildung 197 . 1 ) . Die erste gedruckte Darstellung
in Europa schmückt das Titelblatt des Neuen Rechenbuchsvon 1527 des Peter Apian
(1495 - 1552 ) (siehe Abbildung 197 .2) . Benannt ist das Arithmetische Dreieck nach dem
deutschen Mathematiker Michael Stifel (1487 - 1567) und dem französischen Mathe¬
matiker und Philosophen Blaise Pascal (1623- 1662) , die die interessanten Eigenschaf¬
ten dieses Dreiecks erforscht haben .

*©© ©©
*©©©©©

■©©©©©©

Abb . 197 . 1 Das Arithmetische Drei- Abb . 197 .2 Das Arithmetische Drei¬
eck des Yang Hui (1261) eck des Peter Apian (1527)

Aufgaben

1. a) (2x + l ) 3 b) ( 1 - 3a) 3

d) (3a — 5b) 3 e) ( - a + 4b) 3
c) (2a + 5b) 3

f ) ( — a — 2h) 3
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2. a) (0,1 + uf b) ( - l,2r + 5s) 3 c) ( 1\ a + l^ö) 3

3. a) (jab + f a) 3 b) (fx — 2 fx 2) 3 c) (0,2x — 0,5j ) 3

4 . a) (xy2 + 2x 2y) 3 b) (fa 3 Z>2 — \ a 2 b 3) 3

5 . Berechne (a + b) 5 auf zwei Arten, einmal als (a + b) (a + b 'f und einmal als
(fl + b) 2

(a + bf .
6 . a) (2a + l ) 4 b) (x — 3j>) 5 c) (x — j ) 7

7 .5 Die Kunst des Faktorisierens

7 .5 . 1 Einfaches Ausklammern

Beim weiteren Eindringen in die Mathematik im Laufe der nächsten Jahre
wirst du feststellen , daß man mit Produkten viel mehr anfangen kann als mit
Summen . Daher mußt du Bescheid wissen , wie man Aggregate in Produkte
verwandeln kann . Dieses Verwandeln nennt man auch Faktorisieren eines
Aggregats .
Die einfachste Art des Faktorisierens kennst du bereits als eine Anwendung
des verallgemeinerten Distributivgesetzes (Satz 90 .2) in der Form des Aus-
klammerns . Wir vertiefen deine Kenntnisse durch einige

Beispiele :
1) 6uv + 3 u 2 — 9uw =

= 3m • 2u + 3 m • m — 3m • 3 w =
= 3u (2v + u — 3 w) .
Der Faktor 3 m wurde ausgeklammert .

2) Man kann auch Aggregate ausklammern :
3 (fl + b ) — a (a + b ) + Ab 2

{a + b ) = (a + b ) (3 — a + 4b 2) .

3) Manchmal muß man ein Glied des Aggregats erst in ein Produkt
umschreiben , indem man den Faktor 1 hinzufügt :
3 a 2 + a =
= a ■ 3a + a ■ 1 = Trick : a = a ■ 1
= m (3m -|- 1 ) .

4) Mit Gewalt kann man jeden gewünschten Faktor ausklammern ! Wir
wollen aus dem Aggregat fx 2 — Ixy + x den Term ausklammern ,
damit in der Klammer keine Brüche mehr Vorkommen .
fx 2 — Ixy + x =
= yx • 2x — "ßX ■ 21 y J- yx • 3 =
= | x (2x — 2 \ y + 3 ) .
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5) Besonders aufpassen mußt du , wenn du in Potenzen von Aggregaten
ausklammerst .

(8a z b — 12a) 2 =
= (4a [2ab — 3 ] ) 2 =
= (4a ) 2 (2 ab — 3 ) 2 =
= 16a 2

(2a6 — 3) 2 .

Mit einiger Übung kannst du bald auf die 2 . Zeile unserer Beispiele verzichten ,
indem du im Kopf jeden Summanden durch den auszuklammernden Term
dividierst . Das mußt du aber üben ! Dazu dienen die

Aufgaben
1 . a) 3st — 4s 2 + s

c) 4a 2 - 8a2 + 12a 5

6**9

2 . a) | a + §6
c) I u - ^ v

b) ax 2 + bx + x
d) t ay + Töby - £ y
b) l | x - fj ; + l,2z
d)

3 . Faktorisiere so , daß in der Klammer keine Bruchzahl mehr steht .
a) | x + ib
c) \ r + js — t
e) 1

1 1 " 1

2 h 2

b) 0,4a — 0,5b
d) — 0,01m + 0,1 v + w
f) — 1,2a + §6 — 1

4 . a) abc — acd b) a 2 b + ab 2 — a 2 b 2

c) x 4 — x 3 + x 2 d) u 2 v 3 + uv4 — uv 5

5 . a) 6uv + 6uw — 3uz b) 3^p — 6jp 2 q
c) — ix 4 — ^f -x 3 d) 1 §§m2 i; 3 z — 2xju3 vz 5

6 . Berechne im Kopf nach geeigneter Faktorisierung ,
a) 13 - 9 + 13 b) 7 - 18 + 13 - 18
c) 2,9 - 18 - 1,9 - 18 d) 27 2 — 17 - 27
e) §§ - 83 + 2§§ - 83 f) 13 2 + 3 - 13 — 16 - 13

• 7 . a) 108xy — 162x + 216j^
b) 2jxy 4 z 2 — 2x 2y 2 z 2 — 4-fx 3 y 2 z + X\ xy 2 z 2 — 3| x 2

^ 3 z

• 8 . a) 21m4 — lu 3 + 23§m 2
b) l,3x 3 y + 2,35x 2y 2 - 0,9xy 3

9 . Klammere 3 aus .
a) 18a2 — 2736 b) 9x + 4
c) 1 — 12x d) a — 1
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10 . Klammere — 1 aus .
a) — 3 a 2 + b 2 b) 3 — 5x c) — 1 — 8 ab d) 3a 2 b + 5x

11 . Klammere —§ aus .
a) ja — 4jb b) 8a — f c) — 1 — f b d) 2x + 3y

12 . a) u (v + w) — v (v + w) + w (v + w)
b) x {a + b — c) — y {c — a — b ) + z (a — c + b )
c) m (2a — 3b ) + n (3b — 2a) — p { — 3b + 2a)
d) u (2e — f ) — 3v (4e — 2,f) + vr (3/ — 6e)

13 . a) jx (a — b ) — jjy (a — b ) b) 3,2a (x — 3 ) + 4,86 (x — 3)
c) I4x (3y + 2z) — 28y (3y + 2z)

14 . a) 12a 2 b 3 (Ix — 1 ) + %4ab A (lx — 1 )
b) 6a 3 (1 — x) — 21ab 2

{x — 1 )
c) %x 2y (3x — y ) + 7xy z (y — 3x)
d) 1,2a 2 (x — y ) + 8,4ab (x — y ) — 0,72b 2 (y — x)

15 . a) x (a + b ) + a + b b) x (a — b) + a — b
c) x (a — b ) — a + b d) x (a + b ) + a — b

16 . a) (2^x - y ) (2\ a - b ) - ( l^x + y) (f a - b )
• b) (3,la 2 b + c) (7,3ab 2 — c) + {3,1 a 2 b + c) (2,lab 2 + c)

17 . a) 4x 2y 2 z — 6xyz 2 + I0x 2y 2 z2
b) 3a 8 6 1 V 3 + 27a 7 Z>15 c 9 - 18 (aZ>c) 11

c) a 3 ( - b ) * - ( - a)4 b 3 + ( - a) 5 ( - b ) 5

d) (x + y ) 2 (x 2 + y 2) - (x + y ) (x 3 + y 3)

7 .5 .2 Mehrfaches Ausklammern

In manchen Fällen gelingt ein Faktorisieren auch dann , wenn kein allen Glie¬
dern gemeinsamer Faktor vorhanden ist , indem man zunächst aus geeigneten
Teilaggregaten einen gemeinsamen Faktor heraussetzt .
Dabei gibt es oft mehrere Möglichkeiten des Vorgehens .

Beispiele :
1) Faktorisiere ax — ay + bx — by .

1 . Möglichkeit : 2 . Möglichkeit :
ax — ay + bx — by = ax — ay + bx — by =

= x (a + b ) — y (a + b ) =
= (a + b ) (x - y)

= a {x - y ) + b (x - y)
= (x — y ) (a 4- b )
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2) au + b — bv + av — bu — a =
= {au + av — a) + {b — bv — bu) =
= a (u + v — \ ) + b {\ — v — u) =
= a (u + v — 1 ) — b (u + v — 1 ) =
= {u + v — l ) {a — b )

3) 6a 2 b — 3 ab 2 — 2a + b =
= 3ab {2a — b ) — 2a + b —
= 3ab {2a — b) — {2a — b) =
= {2a - b) {3ab - 1 )

Aufgaben

1 . a) ax + ay + bx + by
c) ab + ac — bx — cx

b) xs — ys + xt — yt
d) xz — yz — ax + ay

2 . a) 2ux + 3vy + 2uy + 3vx
c) x 2 + ax + ab + bx

b) ab + c + b + ac
d) x 2y 2 + x 2 + y 2 + 1

3 . a) mx + ny + nx + my + rx + ry
c) ar + br + er — a — b — c

4 . a) ax — cx + 2a + 2b + bx — 2c
c) x — y — xz + yz — l + z

b) ap — bp — aq + bq + az — bz
d) eh + fh — gh — ei —fi + gi

b) pu — pv + ru — qv — rv + qu
d) 1 a a 2 -F a 2 “F a^ -F a ^

5 . a) 3,3 ax + 3,3 ay — 4,4bx — A,4by
b) 0,7pq — 0,^9pr + 0,7qs — 0,9rs

• c) 4,2uv + 3,5uw + 2w + 2,4v
• d) — 8ax 2 + 9bx 2 — 3,6by2 + 3,2ay 2

6 . a) lax + 3ay — jbx — ^by
b) az2 + f axz + jbz 2 + j ^bxz
c) 0,2xyz — 0,3uxy — 0,6y 2 z + 0,9uy2

d) uv 3 — iuv 2 + §av 3 — §av 2

7 . a) ax — 7bx + 4ay — 28by
b) 12ax — 2ay — 18bx + 3by
c) x {a 4- b — c) — y {a + b — c) + {x - y)
d) y {a — b — c) + x {b + c — a) + {x - y)

• 8 . a) {a + 2b) (3 ux — vy) — {uy — 3vx) {a + 2b )
b) {1xz — 3y) {3a + 4b) - (3a + 4b) {yz - 21 x)
c) (2st - 3ru) { 5p - q) + (3 rt - 2su) {5p - q)
d) {Id - 2) (10eg - 2fh) + (2 - Id ) (5 eh - 4fg)
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9 . a) 64au + 36eu + 64ax + 36ex — 44bu — 44 bx
b) 24ap + 54aq — 36bp — 81 bq + 60 cp + 135c#

t c) \ ay 2 - \ by 2 + %ay - \ a - 2by + jb
• d) \ r 3 sv ~ jör 2 s 2 v + ^ r 2 s 2 u — \ r 3 su + \ rA u — ^ r4 r

7 .5 .3 . Faktorisieren mit Hilfe der binomischen Formeln

Schreibt man die binomischen Formeln von Satz 187 . 1 in der Form
a2 + 2ab + b 2 = (a + b ) 2 bzw . a 2 — 2ab + b 2 = (a — b ) 2 bzw.
a 2 — b 2 = (a + b) (a — b) ,
so kann man gewisse Aggregate mit ihrer Flilfe auch faktorisieren .

Beispiel 1:
u 2 ~y \ 2u -f- 36 —
= u2 + 2 ■ u ■ 6 + 6 2 = (u + 6)2

I III
a a b b

Beispiel 2:

16x4 - 8 x 2 y 3 + y 6 =
= (4x 2) 2 — 2 • 4x 2 • y 3 + (y 3 ) 2 = (4x 2 — y 3) 2

a a b b
Merke : Bestimme zunächst die beiden Glieder , deren Quadrate im gegebenen
Ausdruck Vorkommen , und prüfe anschließend , ob ihr doppeltes Produkt mit
dem entsprechenden Glied des gegebenen Aggregats übereinstimmt .

Beispiel 3:

(3x + ly ) 2 — 25x 2 =
= (3x + ly ) 2 — (5x) 2 = (3x + ly + 5x) (3x + ly — 5x) =

a b
= (8x + ly ) (ly — 2x)

Eine Differenz zweier Quadrate läßt sich stets in ein Produkt verwandeln .
Dagegen ist dies bei einer Summe zweier Quadrate nicht möglich . * Bei
3 . Potenzen dagegen lassen sich sowohl die Differenz wie auch die Summe
faktorisieren . Es gilt nämlich :

Produktzerlegungen von der Form x 2 + y 2 = 1 ■(x 2 + y 2) = i (2x 2 + 2y 2) = . . . usw ., die immer möglichsind , interessieren in diesem Zusammenhang natürlich nicht .
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Satz 203. 1 : a3 + b 3 = {a + b) (a2 — ab + b2)
a3 — b3 — (a — b) (a2 — ab + b2)

Die Richtigkeit dieser Formeln siehst du sofort ein, wenn du die rechten Seiten
ausmultiplizierst (Aufgabe 204/16) .

Beispiel 4:

0,021x 3 + 1000 / = (0,3x + 10p ) (0,09x 2 - 3xp + 100/ )

Aufgaben

1 . a)
c)
e)

2 . a)
c)
e)

x 2 — 8 x + 16 b) u 2 — 6uv + 9v 2

4z 2 + 4pz + p 2 d) 49p 2 — 112pq + 64 /
9p 4 + 30p2 + 25 f) x 10 + 4x 5 + 4

a 2 + a + i b) — 84a + 9a 2 + 196

0,16x 6 - 0,24x 3 p + 0,09p 2 d) 2,25 - 3x + x 2

0,36r 2 — 4,8rs + \ 6s 2 f) 4x 2 + 52x + 169

• 3 . a) f s 2 + + 25t2

c) 1,21 + ö + Yii
4 . a) 625 - 196a2

D - 2 - 1/ 2 — 25 . ,2c ) 16 “ 36 v

5 . a) 2,25 - 0,0256t 2

c) 400x 2y 2 - \ 2 \ u 2 v 2

b)
d)

— | uv + ^ v 2b) fsu
d) l,96x 4 — 2,8x

1 - 81x 2

0,49a 2 — 0,0\ b 2

36 L
2 + l

b)
d)

2S9P
2 — 3,61 /

169 „ 4
324 x 1

• 6 . a) 20x 2 — 45p2

c) 175p 4 — 252 /

7 . a) 6a 2 + 12a6 + 66 2

c) fl 3 + 2fl 2 + fl

b) 3,6x 2 - 4,9p2

d) 48 (xp) 2 — 147w2 r 2

b) 7x 2 — Ix + l |
d) 3x 7 - 12x 5 + 12x3

8 . a) fl4 — b A b) x 6 — p 6 c) x 8

9

- p 8

d) x4 - 2x 2p 2 + p4 e) 81 — 72m2 + 16m 4 S f ) 64x 6 - 1

9 . a) fl 2 + 2ab + b 2 - c 2 b) 4x 2 - 20x + 25 - 9p2

v 2 1
c) 36a 2 + 48 ab + 166 2 - 81c2 d) 196 u 2 - Auv + — - —

e) a 2 + 2ab + b 2 — x 2 + 2xy — y 2 ! f) 16u 2 — v 2 + 2v — l

10 . a) (2a + 3Z>) 2 - 16a2 b) (2a - 3b) 2 - 16a 2

c) I 602 — (2a + 3b) 2 d) 16a 2 — (2a — 3b) 2
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11 . a) (13x + 14+ )
2 - (13x - 14y ) 2

b) (0,1 * — 0,2j ) 2 — (0,1 * + 0,2p ) 2

c) (! * + ! T) 2 - (! * - fy ) 2

d) { \ lx - 2\ y ) 2 - (\ lx + 2\ y ) 2

12 . a) a 2 — b 2 — c 2 + 2bc b) x 2 — y 2 — 2yz — z 2

• c) 2,89a 2 — 0,64 £ 2 + 2,086c — 1,69c 2

• d) 3,24x 2 - 2,56j 2 - 3,52yz - 1,21z 2

• 13. a) 2a 2 — 2b 2 + a 2 x — b 2 x b) 2m 2 x — &n 2 x + 3m 2y — I2n 2y
c) \ 2a 2 x — 2b 2y — 3b 2 x + 8a 2y
d) 36p 2 x 2 — 9p 2y 2 — 16q 2 x 2 + 4q 2y 2

• 14 . a) 9a 2 x — 9 a 2y — 12abx + 12aby + 4b 2y — 4^ 2 *
• b) \ a 2 x 2 — \ a L xy + \ a 2y 2 — ^6 2 x 2 + \ b 2 xy — \ b 2y 2

15 . Verwandle , wenn möglich , in ein Produkt .
a 2 x 2 ■a 2y 2 ~ b 2 x 2 + b 2y 2a)

c) — a 2 — 2ab — b 2 + 1
e) u 2 + uv + v 2

g) 4a 2 - 5b2

b) 36p 2 + 2lpq + 64q 2

d) a 2 — 2ab + b 2 — 1
1) a 4 + Z>4

h) a 2 + 2 ab + b 2 + 1

16 . a) Beweise Satz 203 . 1 .
b) a3 — Sb 3 c) 243 + 216a 6
e) frfa 3 + 2^ Z>3 f ) 0,001 * 3 + y 3 z6

d) ffsx 3 - 1
g) 0,729a 3 — lOOOOOOr3

7 .5 .4 Faktorisieren durch Probieren

Wenn du a 2 + 5a + 6 in ein Produkt verwandeln sollst , so erscheint dir dies
sicherlich auf den ersten Blick als aussichtslos . Erstaunlicherweise kommt
man hier aber mit einigen kleinen Überlegungen und einem geschickten Pro¬
bieren zum Ziel .
Da das Aggregat mit a 2 beginnt und aus 3 Gliedern besteht , versuchen wir den
Ansatz

a 2 + 5a + 6 = (a □ ?) (a A ?) .
Die Symbole □ und A stehen dabei für + oder — .
Die für die Fragezeichen zu wählenden Zahlen müssen , miteinander multipli¬
ziert , 6 ergeben . 6 läßt sich mit natürlichen Zahlen als 2 • 3 , aber auch als 1 • 6
schreiben . Wir versuchen es mit 2 • 3 und setzen also an
a 2 + 5a + 6 = (a □ 2) (a A 3) .
Von den 4 möglichen Kombinationen + + , H- , — |- und - scheiden die
beiden mittleren aus , da wir sonst — 6 für das letzte Glied erhielten . Die Kom -



7 . 5 Die Kunst des Faktorisierens 205

bination + + führt zum richtigen mittleren Glied 5a . Also gilt die Faktorisie¬
rung
a 2 + 5a + 6 = (a + 2) (a + 3) .
Hätten wir 6 als 1 ■ 6 zerlegt , so ergäbe (a □ 1 ) (m A 6) für keine der 4 Rechenzei¬
chenkombinationen das mittlere Glied 5a . Man muß also ein Gespür dafür
haben ! Bei a 2 + 5a — 6 führt nämlich gerade 6 = 1 - 6 zum Ziel:

a 2 + 5a — 6 = (a — 1 ) (a + 6) .

Eine derartige Faktorisierung durch Probieren wird natürlich nicht immer
gelingen . Beim Versuch hilft

Regel 205. 1 : Bei Trinomen der Form x 2 + bx + c mit ganzen Zahlen b
und c zerlegt man c in ein Produkt zweier natürlicher Zah¬
len und versucht , die Rechenzeichenkombination so zu be¬
stimmen , daß sich die richtigen Rechenzeichen und das
mittlere Glied ergeben .
Hat das Trinom die Form ax 2 + bx + c , so klammert man
erst a aus .

Beispiel: \ x 2 — 6x + 9 = f (x 2 — 8x + 12) = f (x — 2) (x — 6)

Aufgaben

1 . a) x 2 + Ix + 12
c) x 2 + llx + 10

2 . a) u 2 — 13m + 40
c) z 2 — 10z + 9

• 3 . a) x 2 — 5xy + 4y2

c) a 2 — 9 ab + 18 £ 2

• 4 . a) x 2 + 2x — 48
c) x 2 — 2x + 48

5 . a) 2 .x 2 + 16x + 30
c) \ x 2 + 6x + 9

• 6 . a) 3x 2 — 39x + 108
c) — hx 2 + 9x — 18

. 7 . a) - 0,4z 2 + 2,8z - 4,8
c) W + Ix + 8

b) x 2 — x — 12
d) x 2 + 9x — 10

b) a 2 — 20a + 96
d) x 2 x 4

b) y 2 + yz — 56z 2

d) m2 — 4uv — 21v 2

b) x 2 — 2x — 48
d) x 2 + 2x + 48

b) 7x 2 - 14x - 105
d) — x 2 + 12x — 35

b) hx 2 — 3x + 9
d) 0,1m 2 — 1,1m + 1

b) hp 2 - pq ~ ^ q
2

d) \ y 2 + 25y + 120
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