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Titelblatt des Augsburger Raubdrucks (1514) des Rechenbüchleins von Jakob Köbel
( 1460/65 - 1533 ) , das 1514m Oppenheim erschienen war . Rechenbücher sind die ersten
volkstümlichen Druckschriften , die im 16 . Jh . in allen Ländern erscheinen . Das älteste ,mit Einzelbuchstaben gesetzte Rechenbuch ist der um 1475 in Trient gedruckte in
baierischem späten Mittelhochdeutsch geschriebene Algorismus.



2 Rechnen mit Bruchtermen

2 . 1 Addieren und Subtrahieren gleichnamiger Bruchterme

Vom Rechnen mit Zahlen kennen wir die Regel , dass gleichnamige Brüche
addiert bzw . subtrahiert werden , indem man ihre Zähler addiert bzw . subtra¬
hiert und den Nenner beibehält . So ist z . B .
3 5 _ 3 + 5 _ 8

bzw
3 _ 5 _ 3 - 5 - 2 2

7777 ' 111 1 1

Aus diesem Grunde ergeben die Terme — I— und bei jeder Einsetzungc c c
den gleichen Zahlenwert . Also sind sie äquivalent . Damit wissen wir , wie man
gleichnamige Bruchterme addiert :

Satz 34. 1 : Gleichnamige Bruchterme werden addiert, indem man die
Zähler addiert und den Nenner beibehält ; kurz :

b a + ba b- + - =
c c c

Beispiel :
b 2 + lab (4a2 — 6ab) + (b 2 + lab )
4a 2 — b2 4a 2 — b2

4a 2 - 4ab + b2

4a2 — b2

(2a — b)2

(2a - b) (2a + b)
2a — b
2 a + b

Auch bei der Subtraktion gleichnamiger Bruchterme ergeben die Terme
- und - nach dem obigen bei jeder Einsetzung den gleichen Zahlen -
c c c
wert . Sie sind also äquivalent und es gilt

Satz 34.2 : Gleichnamige Bruchterme werden voneinander subtrahiert,
indem man die Zähler voneinander subtrahiert und den Nenner
beibehält ; kurz

a b a — b
c c c



2 . 1 Addieren und Subtrahieren gleichnamiger Bruchterme 35

Beachte : Da der Bruchstrich eine Klammer ersetzt, muss der Zähler des Mi¬
nuenden, falls er ein Aggregat ist , unbedingt in eine Klammer gesetzt werden ,
wenn die beiden Zähler auf den gemeinsamen Bruchstrich kommen.

( .3x2 — 6) — (x2 — 4x — 8)
x 2 + x

3x 2 — 6 — x 2 + 4x + 8
x 2 + x

2x 2 4~ 4x -j~ 2
x 2 + x

2 (x 2 ~j~ 2x -j- 1 )
x 2 + X

2 (x + l )2
_

x (x + 1 )
2 (x + 1 )

x

Sind mehr als zwei Bruchterme durch Plus - und Minuszeichen miteinander
verknüpft, so erhält man ein Aggregat von Bruchtermen, für das die dir be¬
kannten Regeln über das Rechnen mit Aggregatengelten . Speziell für Aggre¬
gate aus gleichnamigen Bruchtermen gilt

3a 2 — 6 x2 — 4x — 8
Beispiel : —j- -

2
- -

X + X X + X

Satz 35. 1 : Ein Aggregat von gleichnamigen Bruchtermenwird berech¬
net , indem man den Nenner beibehält und in den Zähler das ent¬
sprechende Aggregat aus den Zählern der einzelnen Glieder setzt .

Beispiel :
3 r + s
r 2 — s2

7 — 2r
t

4s + 1 (3r + s) — (1 — 2r) + (4s + 1)
r

2 _ s
2 +

r 2 _ g2
=

r 2 _ s 2

3r + s — 7 + 2r + 4s + 1

5 r + 5s

5 (r + s)
(r + s) (r — s)

5
r — s
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Aufgaben

l . a)

c)

d)

la 9a
5x 5x

6a
5x

13a 17a
b ) - -

1b 1b
2a — 3b~

5
~ +

-O\o135T') 351-Q 2b
5 5 5

Ix — 9y 12x - 13j> 14x + 15 v- - — - +
18

, 5m — 6n 8 n — 9m ln — 6m 5n — 2m
' 13 13 13 13

2a 2 + 3ab 3a 2 + 2ab a 2 + 3b 2

+
5a 2 + ab + 2b 2

a + b a + b a + b a + b

g)
x 2 + 4xy + y 2 3 xy — 2x 2 + 4y 2 2y 2 + 2x 2 — 3 xy

x — y x - y x - y
5a 2 + 2ab — 3b 2 3a 2 — 5ab + b 2 a 2 — ab + lb 2

h) ^ T 2 If ^ b2 + '
ä 2 ^ b 2

2x 2 — 4xy + 5y 2 Ixy — 4x 2 + 3y 2 5x 2 — 9 xy + y 2
2 2x 2 — y2 2 2x — y 2 x 2 - y 2

2 . a)

b)

(a + b) 2
_ (,a - bf

2 ab 2 ab

(3p ~ 2.q)2
{5p + 3 q) 2

(5 q - 4p ) {4p - q)
2pq 2pq 2pq

{5r — 8 ^) 2 (3r + 10i )2
r {4r + 6s) 2

£) 7^ 7"̂ “h

d)

12rs 12rs ' 12rs

{la - 8 b) {5a + 2b ) {2a — b) {5a - 4b ) {9a + b) {a + 5b ) - 59ab
4a — 5b 4a — 5b

\ 2

4a — 5b

{5x + 4y ) {2x - 3y ) {4x - 3y ) 2
{2x - 5y ) {2x + 5y)

®/ 2 a 2 2 A 2 2 . 2 4“

+

x 2 — 4y 2

llx 2 - 13xj
x 2 - 4y 2

x 2 — 4y 2 ■4y 2

{6a — 5b ) 2 \ 5ab — \ \ b 2
{4a — 3b) {a + \ lb ). 3 . a) —— — - -- —- 1- — \ ,- - +

+

2 \ 5ab - l \ b 2

7 + 3b
~

la + 3b

9a 2 + lOab + 6b 2
la + 3b

la + 3b
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(2x - 3y) 2
_ (5x + ly ) (3x - y) (4x - 3y) (5x - 9y) 2 \y 2 + 3lxy

3x — 8y 3x — 8y 3x — 8y 3x — 8y
(u + 4v) 2

^ (2m — 5v)2 (2m — Iv ) (3v — 5ü) \ 10v2 — 15uv
5u — 6v 5u — 6v 5u — 6v 5u — 6v

(4r — 3s) 2 (2r — 7^) (3s — 8r) 9s (2r — s)
4r — 7s 4r — ls 4r — ls

. (x + 1 ) (x + 2) (x — 1 ) 2 (x + 2) (x + 1 ) (x — 2 ) x3 — 6x — 9
' ^ x - 3 x - 3

+
x - 3

, . (a + 5) (a + 3) (a — 2) (a — 3)2 (a + 4)b) -
2a + 3 2a + 3

(a + 2) 3 — a2
(a — 2) — 71

2a -f- 3

(3x + 4y) (2x — y) (2x + 3y) (x + 3y) (3x — 2y) (2x + y)
C)

6p 6?
x2 (6x + 11 y)

6y2

d (2p - 3q) (p - 4q) (4p - 5 q) (4p - 3q) (5p - 2 q) (p + 10g) _
3pq ipq

4p (5q2 + lp 2)
3pq

2.2 Addieren und Subtrahieren ungleichnamiger Bruchterme

Genauso wie bei Zahlen kann man ungleichnamige Bruchterme addieren bzw.
subtrahieren , nachdem man sie mithilfe des Hauptnenners gleichnamig ge¬
macht hat . Wir merken uns

Satz 37. 1 : Ungleichnamige Bruchterme werden addiert bzw . subtra¬
hiert , indem man sie gleichnamig macht und dann die Sätze für
gleichnamige Bruchterme anwendet .
Ebenso stellt man aus einem Aggregat ungleichnamiger Bruchter¬
me zuerst ein Aggregat gleichnamiger Bruchterme her und berech¬
net dann dieses.

Beispiele :

^
. ci + 2b 2
’ a 2 + 2ab + b 2

~
3a + 3b
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Wir bilden unter Angabe der Erweiterungsfaktoren EF den Haupt -
nenner HN : EF
a2 + 2ab + b 2 = (a + b)2 3
3a + 3b = 3 (a + b) (a + b)
HN = 3 (a + b)2

41 a + 2b 2 3 (a + 2b) 2 (a + b)
a

*

2 + 2ab + b 2 3a + 3b 3 (a + b)2 3 (a + b)2

3 (a + 2b) — 2 (a + b)
3 (a + b)2

3a + 6b — 2a — 2b=
3 (a + b) 2

=

a + 4b
3 (a + b)2 '

1 2 15 — 19x — 8x2
2) 2x 3 + 4x 2 +

15 — 3x
~

12x3 - 36x 2 - 120x
Wir bilden durch Faktorisieren den Hauptnenner und multiplizieren
die Erweiterungsfaktoren EF so weit wie möglich aus :

EF
2x 3 + 4x 2 = 2x 2 (x + 2) 2 • 3 (x — 5) = 6x — 30
15 — 3x = 3 (5 — x) — 2 2 x2 (x + 2) = — 4x 3 — 8j
12x3 — 36x 2 — 120x = 12x (x2 — 3x — 10) =

= 2 2 • 3x (x + 2) (x — 5) X
HN = 2 2 • 3 • x 2 (x + 2) (x — 5)
Beim Zusammenfassen der gleichnamig gemachten Brüche ersparen
wir uns viel Schreibarbeit , wenn wir für den Hauptnennerterm , solan¬
ge wir nur im Zähler rechnen , einfach kurz HN schreiben :

1 2_ 15 - 19x - 8x 2
_

2x 3 + 4x 2 15 — 3x 12x3 — 36x 2 — 120x

_ 1 • (6x — 30) + 2 • ( — 4x 3 — 8x2) — (15 — 19x — 8x2) • x
HN

6x — 30 — 8x 3 — 16x2 — 15x + 19x2 + 8x3
=

HN
=

_ 3x 2 — 9x — 30 _ 3 (x2 — 3x — 10)
HN 2 2 • 3 • x2 (x + 2) (x — 5)

_ (x + 2) (x — 5) 1
2 2 • x 2 (x + 2) (x — 5) 4x2
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Nun weißt du , wie du Aggregate aus Bruchtermen berechnen kannst . Was
6 xmachst du aber mit dem Term 3x + - - - ? Wir erinnern uns , dass man jede

Zahl als Bruch mit dem Nenner 1 schreiben kann , z . B . 5 = j . Genauso kann
man jeden Nicht -Bruchterm als Bruchterm mit dem Nenner 1 schreiben .
Machen wir ’s !

6x 3x 6x
X + 7x - 2

=
T + 7x - 2

=

21 x1 — 6x + 6x
~

Ix - 2

3x (7x — 2) + 6x • 1
Ix — 2

21 x2

Ix - 2

Aufgaben

„ , a 2a
1 . a) - 1-’ 10 5
. , 7 3
2 . a) I- —

a b

ix 5p 3pb) ~
9

~
T

3 . a)

4 . a)

c)

5
4m

6n
Im

b 2 + 1 a
3 a2 ^ 6b

b)

b)

6 2
a 3a

11 u 8 u
13 vw 3 vw

a b
C

5
_

3
11 3
8m 4«

4) ^ + 1^
7 14 21

d)
- 1
~
7^

27
196z

c)
1b 3
a2 b y *

, , 4a + b a — 36
b) +

7j - l 1
4 .v4 d)

16a26
2m + 1
4m2«

\ 2ab 2

3n2 — m
6m«3

5 . a) 1 +
b

b) a -
a

K cl + dl 2
cd

c> -4x2

a 2 + b2
6 . a) —- + 2

ab

7 . a)
<2±+ _ (a _ t) „ hzA

x + k
3a

c)
(m + «)2

4m«
1

d) T - + v
uv
0 - k ) 2

,d) -
^
- + +F

8 . a)

9 . a)

c)

10. a)

a — b
a

a + b

a

(u + v)2
+ (x + y) c) -- h (u + v)

+
a

a — b

b

b) 4a - 1

a — b a + b

a + b a — b
a — b a + b
3a + 5 b 2a — 3b

2b + 1
3b

b)

d)

c)

u — v
3x — 1 3k — 2

2x 2 — xy 2xk — y2

y
x + k

1
x - k

1
+

X + k X — k

2a + 36 3a — 5b
4m — Iv

+
6 u + v

6u — v 4u + 7v



40

11 . a)

12 . a)

c)

13 . a)

c)

14 . a)

• 15. a)

. 16 . a)

b)

17 . a)

18 . a)

19 . a)

20. a)

21 . a)

22. a)

23 . a)

24. a)

2 Rechnen mit Bruchtermen

4a — 5b 5 b + 4a
6a + lb 6a — 1b

2a b 4c
~
9

~
9

+ ~
9

5p — 3a 4
— H- - _|-
18 45 21

1 1 a + b
ab ab

a 2 + 3b 1 — 3 a
a 2 b 3 ab

4x — 3 y 6x — 5y

b)
2a (a — b)

a 2 - 2ab + b 2

— Im 3 n
) ”

23
~ + ^ 23

a + b
a — b

8 m — n
23

d) 16
2 a + b — a + b

36
+ 24

3 mn
5b - 3

+

5b 2

2y - 3x

m — 2 1
b) ^ r +
^ 3x - 1
d) lx 3y

+

x 2 + y
2 x 2y 2

3n + 2
— 6n

y z - 1
+

3/

a + b 2a + 2b 3a + 3b
, 3z — 1 1 — 4z
b) ZZ-- ^ ^ - TZ +

- 3
15a - 9 20a - 12 21 - 35a

4p — Iq p + 5q+
lm — 4n — lm — 4n

1 49q

b)

+
4p - Iq

' 2 \ pq — 12p 1

3

3p + q
Im + 4n

8p + 3 q
12pq — 21 q2

4 y 2 + z2

3a — b 4a + b 2a — b
x — 2y 2y — x 2 x — y

32yz 2 + 28y 2 — 24z 3 — 2 \ yz 8y 2 z 3 + 7y 3 z
4a + 1 7
4a + 7 16a2 - 49

x + b x + b
2 - ul a 2 — ab

6jc - 1,25

b)

Sb)

b)

x
+

3x -)- 1
45x 2 — 5

' 3x — 1

5m + 2 n 4m — 5 n
125m 2 — 20n2

z + 4

a “ — b
3

24x — 4 36x 2 — 12x + l
— 13x

y 2 — 26yz + 169z 2 169z 2 — 13yz 243a 2 — 3b
13x

8 + 40z + 50z2

3a — b

+

b)

16m 2 — 20mn
1

• 22 - 55z
b — 3a

+

5s + 1
t2 - 4t + 4

x

6s — 1
4 — t2

x 2

2x — 6 x 2 — 4x + 3
2a 2 — a + 21 2a — 7

+

5 -

12a2 - 27
5x + 9
x + 2

6a — 9

16

- 1

b)

b)

b)

5 r + 12 ^
4r 2 - 64s2

y
2y 2 + 4y — 6 '

y — 1
2

21 ab - 3 b 2

r — 4s
— r 2 — 8 rs — 16s 2

1
+

m
m 2 — 4n 2

Im + 4n 1
10m + 20n 5

16^4 + 60j + 9 5
} 16/ - 81

+
4y 2 + 9

_ 1
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25 . a)

b)

26 . a)

27 . a)

28 . a)

29 . a)

30 . a)

c)

d)

e)

f)

31 . a)

b)

c)

31a 2 — 506 2
16a 2 + 40a6 + 25b 2 + 2

a 2 + ab + b2 a 2 — lab
- + -

16a2 — 25 b 2

b 2 a 2 — ab + b 2

£T ab
1 _ 2 _ 5a — 12b
a b a 2 — 4a6 + 4b 2

m — 1 4 15 m
+

b) ^- +

- 2

2x — 3y

6m — 4 4 — 9m 2

8x2 — 0,5 a Ix + 0,5a — 1
m
„ 2

2x 2 — ax

1 1

2x — a
b2

+

b)

x — 1
2x

,_ 1
2x ' 4x 2 + I2xy + 9y 2 3y
u + 5v

uv

b)

10m 5
u2 — 25v 2 u — 5v

6m 2 + 9
Im 3 — 63 m

+
m

+
■m

1
Im

2 - b

a + b

2 + b 4 — b 2

a — b a 2 + b 2

a — b a + b a 2 — b2

3P + 4q 3p - 4q

b)

b)

x — a x + a
+

(4a + 6) x
5x + 3 5x — 3

2a — 3b

25x 2

2a + 3b
2a + 3b

_ 8a 2 + 18ö 2

2 a - 3b + 4a 2 - 9 b 2
48pq

3p — 4q 3p + 4q 9p 2 — 16q 2

2 (4a — b) 3 (4a + b) +
32a2 + 32ab + 2 b2

4a + b 4a — b

5 (2x — 3y ) 4 (2x + 3y)

16 a2 — b2

4x 2 — 25x >’
4x — 5y 4x4 - 5^ 16x 2 — 25y 2

— 3a + 4 2a — 1 64 — 64a — 26a 2

4a - 32
~

6a + 48 24a 2 - 1536
2 (3m + 4«) 2,5m — n 3m 2 — l,5mn — ln 2

6m + 9n
a

(a + b)2 (a — b)2

a b

10m — 15n
b 2b

+

a + b ■

a 2 — b2 ä + b

lab — c (a + b)
a — b + c a 2 — (b — c)2

4m 2 — 9 n2

1 a 3 — 3a 2 b + 3ab 2 + 3b 3
+ —

(a — b2)2 \ 2

32
6x + l 8x — 3 20x 2 — 4x + 9 4 — 5y 4 + 5 y 12 — 145y
4x — 6

+ 6x + 9 8x 2 — 18 4 + 5y
~̂

5y — 4 32 — 50 y2

?3
12a + 56 9a + 46 2 (27a 2 + 33a6 - 462)' a)

0,9a + 0,66
+

0,6a + 0,46 2,7a 2 - 1,262

, 3a 2 + 6ab ab 5 ab — 46 2 5a — 146
15a — 206 3a — 46 6a — Sb 30
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- . \ 3a ~ b
,

Aa ~ b b {x + y )
3x — 6y — 4x4 - 8y 2x2 — 8y2

b)

35 . a)

b)

36 . a)

• 37 . a)

b)

3z
_ _ y + 2z y

6u + 12v 4 u + 8v (2u 4- 4v
'
)2

22x 2 — 21x — 49 - 2x4 - 4 4x — 1
735 - 15x2 3x — 21

+ 5x + 35
2a — 3b 6a + 4b 5a + 8b 8a — b

4a2 + 2ab Gab + 3 b 2 Gab 8a 2 4- 4ab

a ‘4 4~ 1 a2 4~ 1 a 4- 1 x2 x 1
a4 — 1 a2 — 1 a — 1 1 — x4 1 + x2 1 + x

3 ab a + b 2az — 4ab — b2
9a2 — b 2 2b — Ga 18a 2 — 2b2

3a — 5b 2a + lb 5ab — 15b 2 4a2 — 23b2
Ga2 — 9 ab 4ab + Gb 2 12a 3 — 21ab 2 + 8a2 b — \ 8b2

- 2x + 3 llx 2 4- 51x — 54 llx - 12
3x 4- 9 6x2 — 54 x2 — 9
7x 4- 2y 3x — 4y Gx2 — 4y2 6x2 + ly 2

Gxy — 2y2 9x2 4- 3 xy 27x 3 — 3x_y
2 9x2

_y — y3

2 x — 3 x 1 24^
x 4- 1 x2 — 1 x2 — 2x4 - 1 3y — 2z 36y2 — 16z2

1 2a — b a — 3b
• 40 3^ _ “I- _ _ _

3a — 4b — 9a2 + 24ab — 16b2 9a2 + 24ab + i6b 2

4a2 2a 3b 9 b2
^ Gab + 9b2 3b 2a 4a2 4- Gab

m
• 41 . a) - — b

m m (m2 + n2)

b)

2n m 2 — 2 mn + n 2 2m 2 n — 4mn2 + 2n3

4a2 25 b 2 2a 5b
5b 2a

• 42 .

10 ab — 25 b2

x - y

4a2 - 10ab

+ 1
3ax — 2by 4- 3 ay — 2bx 3a — 2b

, 43 .
ax — a + 2 ax2 4- ax

2ax 4- 2x — a — 1 4ax2 4- 4x

2z
(3y 4- 2z)2

1
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, 2a - 3b 3
• 44 . — — - b

2b

45 .

6ab
2

4a — 6 b 6 a 2 — 9 ab 8 ab — 12b
3 a 5 a2 + 6 ab — 19 b2

+
24 a2 b - 36ab2

+ 1
1 x + x — 2 x2 + 3x + 2

46 .

. 47.

248 .

• 50.

+
x 2 — 6x + 9 x 2 + 8x + 16 x 2 + x — 12

x2 + j 2 x - x4 + 4x 3 y
2x_y x + y x — y

' 2 (x 3j — x_y
3)

P 2 q . 1

p — q p 2 + pq + q2 p 3 — q3 2 49 . + x - y x (x — y)
x + y x 2 — xy + y 2 x 3 + y 3

+
4x 2 — 28x — 7

4x 2 — 4x + 1 4x 2 + 4x + l 16x4 — 8x 2 + 1
a + b a — b 2a — b 4 (ab 2 — b 3 )• 51 . —- :- :- — + V 2

. 52.

a 2 — 2 ab + b 2 a 2 + 2ab + b 2 a 2 — b 2 (a 2 — b 2 ) 2

x 2 + y 2 xy (6 xy — 5y 2)
4x 2 — 4xy + y 2 4x 2 + 4xy + y 2 4x 2 — y 2 '

(4x 2 — y 2) 2

. 53.
7a 2 - 4b 2 5 a 2 — 9 ab 2 a 2 — 3ab + 4b 2

a 2 + 6 ab + 9 b 2 a 2 — 6ab + 9b 2 a 2 — 9b 2

462ab 3 — 82a 2 b2

■+

+

• 54 .

• 55 .

256 .

a4 - 18a 2 b 2 + 8 \ bA

2a — 3 b 2a + 3b 10a 3 + 10a 2 b+ 6b
a 2 + 2 ab + b 2 a 2 — 2ab + b 2 '

a4 — 2a 2 b 2 + b4 a 2 — b 2

2x — 1 2x + 1 4x 2 + 7
+4x 2 + 4x + l 4x 2 — 4x + 1

' 16x4 — 8x2 + 1
a b a + b

a 2 + 3ab + 2b 2 a 2 + 4ab + 3b 2 a 2 + 5ab + 6b 2

• 57 . a)

b)

c)

d)

1
+ 1

+ 1
(a — b) (a — c) (b — a) (b — c) (c — a) (c — b)

a b c+ +
(a — b) (a — c) (b — a ) (b — c) (c — a) (c — b)

+
(a — b) {a — c) (b — a) (b — c) (c — a) (c — b)

+ +
(a — b) (a — c) (b — a) (b — c) (c — a) (c — b)
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2 .3 Multiplizieren von Bruchtermen

Vom Rechnen mit Zahlen kennen wir die Regel , dass Brüche miteinander
multipliziert werden , indem man Zähler mit Zähler und Nenner mit Nenner

, . n . 3 8 3 - 8 24
multipliziert . So ist z . B . - ■ — = .

a c ac
Aus diesem Grund ergeben die Terme - • - und — bei jeder Einsetzung

b d bd
denselben Zahlenwert . Also sind sie äquivalent . Damit wissen wir , wie man
Bruchterme miteinander multipliziert :

Satz 44 . 1 : Bruchterme werden miteinander multipliziert , indem man
Zähler mit Zähler und Nenner mit Nenner multipliziert ; kurz :

a c ac
b d bd

Beachte : 1 ) Produkte sind meist bequemer zu verarbeiten als Summen , des¬
halb multiplizieren wir nicht aus , sondern versuchen im Gegen¬
teil so weit wie möglich zu faktorisieren , um gegebenenfalls kür¬
zen zu können .
Übrigbleibende Zahlenfaktoren multiplizieren wir aus .

2) Vergiss die Klammern nicht , wenn du einen Bruchstrich machst .

10x2 — 60x + 90 4x 2 + 4x — 8
x2 — 4 5x — 15Beispiel :

5x - 15
10 (x2 — 6x + 9) • 4 (x2 + x — 2) _ 10 • 4 (x — 3) 2 (x + 2) (x — 1 )

(x2 — 4) • 5 (x — 3) 5 (x — 2) (x + 2) (x — 3)
2 • 4 (x — 3) (x — 1 ) 8 (x — 3) (x — 1 )

Nun weißt du , wie du Bruchterme miteinander multiplizieren kannst .
1 + x

Was machst du aber mit dem Produkt 12x ■ — =- ?
6x 2 — 18x

Wir schreiben 12x als Bruchterm - und wenden Satz 44 . 1 an :1

18x 1 • (6x2 — 18x) 6x (x — 3) x — 3

1 T x 12x 1 T x 12x ( l + x) 12x ( l + x) 2 (x + l )

b ab
a •

c c
Es gilt also
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Aufgaben
a d

L a )
b

'
b

2 . a)

3 . a)

64k 125
25 / 128/t

lax V
13byJ

b)

b)

b)

a b
b a
121 b
~
91a

'
156 d

11 m ( 15 « \

169c

c)

c)

lp_
2p

3 q 5 q
13x 35y

3t? 5p

. N 5 (2 „4 . a) — • 7c
3 b

15 n

b) 3 mn

\ 11 m )
14m

c)

lOyz 52x2

( :U
2

V)
2 W

w

11 «
c) 16xy

(uv)3

54

5 . a)

c)

6. a)

d)

7 . a)

c)

8 . a)

9 . a)

b)

10 . a)

1
a + b (b + a)

12

b) (2p - q) -

d)

d)

d)

98«t 2 « 65«i
39

4«c
Wd 3

147«3

(3 ab 2 d 2)2

10 c3

13 «2

12p2 4p3

2
9 - 2/»

3x —
- • (4x - 8jO6y

d) (lab -- 3b 2 ) ■
6b -- 14a

a — b
■ (a 2 — b 2)

a + b a + h
a + b

b) (ci
2 -- b 2) a ^ b

C)
a - b (a — b)

a — b
■ (b 2 — a 2) e) (b 2 - a + b a + b

a + b
- a 2) a - b

f) -
a - b (b - a)

— 24z 18x — 6y
3 x — y 8z — 24
6uv — 14p2 3 u 2 — 3

u2 + u
3x — 1

7p2 — 3 mp
2x + 4

x 2 — 4 9x 2 — 3x
36a 2 - 84ab + 49 b2

b)

d)

b)

20m — 12« 22m 2 « — 33m «
55m «

48a 2 c — 28 ab

5m — 3 «
21öc + 18c 2

28 abc + 2Abc2 14b2 — 2Aabc

(5m — n) 2 78m2 + 39m
13 mn 25m 2 — «2

27 (ab ) 3

(3 ab ) 2

3 (a + b)2
14a 2

4x + 2y

12ab

Ax2 — y2 2 ax — ay + 2bx — by
15x — 5x 2 4 — x 2 2x 2 + 12x + 18
x 2 + x — 6 18 — 2x 2 5x2 + lOx

2x — 5 3x + 4
6x 2 — x — 12 8x 2 — 14x — 15
40x 2 — 29x + 3 45x 2 — 17x — 6

11 . a) - • -
9x + 2 8x — 1

2 a 2 — 5 ab + 3 b 2 3 a 2 — 5 ab + 2 b2

3 a 2 + ab — 2 b 2 2 a 2 — ab — 3 b 2
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12 . a)

13 . a)

14. a)

15 . a)

16. a)

c)

17 . a)

18 . a)

. 19 . a)

c)

20 . a)

. 21 . a)

c)

d)

2 Rechnen mit Bruchtermen

1 2- H— 1 ■2x
2 x .

^ l m 2n
mn

c)

x 2
y

2

xU ^ + -

x + y
x - y

1 \ 1

3 m — 2n

b) (7z5 - 5z7)

8^z
y 4z) 8z — y

1 5
'

^7 4 5z z

X X J (x + l ) 2 b)
8 u 2

9u — 30v \ 3 uv 2v
1

18 v

- h
pq

1 1
(a + b) ( h -

V a b

a
~ l ) (“ ~ b)

pq
p + q

m
16n m — 2n

b)

d)

1
a + b

1 1
a b

1 1
a b

1
a — b

1 1
a b

1 1
a b

b)

u
u + v

8x +

+
V

u — V
29y

2x — 3y

15x

v
u -

u
12xy — 4x 2

4x - 3y

28/

1 IV
a bt

x . 5 2
b) ^ 2x?

+
7 y

b) -
¥r

2x
T

5y
2

s 3s \
r 3r + 2s )

9x ~
74

-
y ) V >’ +

27X

{ 7 c -|- d

\ 4c + 3t/

a b
2b ^

a

- 14 +
10d - 13c
4c — 3c?

a — 3b a + 2b
2a — 6b

21 p :

20^

- 3 | b

+

2,5q 2,5q
P + 5q ,/ \ 2/> + 10 ? p + 5q
/ 2a 3b \ 2

V3i 4a /

2 (2 _ — \
2

+ ( — - 2± \
2

( p_ ,
3 ? y _ ( 2p_ _ ^l

3 b 3a ) \ 4£ 3a / \ 5g 2/? / \ 3 <7 2p
22. a)
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c)

23. a)

• 24 . a)

b)

25 . a)

• 26 . a)

b)

c)

d)

• 27 . a)

b)

c)

2a
3b

3b
4a

3a
4b

2b
3a

a
3b

x 2 - y 2 +
x + y

m 3m + 11 «
3

*” “
Ä

-
o

- ^ ^
3n bm — 3 n

1

13m — 4«

b
__

4a

b)

a
4b

y 2

x * — y ^

3"

b_
6a

+
x - y

n
2m + 4n m 2

2x + 3y 2x — 3y \ 9x 2 — 16y
3x — 4y 3x + 4y

1 H- 1— 2 ) z 4~ z2)z z

4x 2 — 9y 2

b) 3—
2 3— 3X X X

2
1 + -

X

x x 2 2x_y
3 3x — 2y 9x — 6y

x
3x — 2y

2 xy
9x — 6y

x

ab
)

2x 2

a
~~

2 3- h 2x xy y

r r
2

+

b 2

3x - 4 r 2 2 r ^—
2 3 - 1- 3

x x
2a 2 x 4ay 8 by2

21b 2y 9 bx 3ax 2
3b 2y 9bx- — H-
8a 2 x 4ay

21 ax *

2 by2

1 +
1 4ab a — b

a + b
a ■

a — b a + b

x ( 2y 2 + 1

y V xy

a — b

3

a 2 - b 2

b a 2 + b2

a 2 — b 2 j \ 5a 2 + 1

y \ ( 2x — y 6 x + y

( 1 - a)2
+ - -— h+

b 2 +

x — 1
4y — 8x2

x + 3
~*”

x 2 + 2x — 3

• 28 . Leonardo von Pisa , genannt Fibonacci , (um 1170 - nach 1240) schreibt:
Die Zahl a sei in zwei Teile [ = Summanden ] b , g geteilt . Man teile a durch
b , das Ergebnis sei e ; und man teile a durch g , das Ergebnis sei d . Ich
behaupte , dass das Produkt von d und e gleich der Summe von d und e ist .
Zeige , dass Leonardo Recht hat .



48 2 Rechnen mit Bruchtermen

2 .4 Dividieren von Bruchtermen

Vom Rechnen mit Zahlen kennen wir die Regel , dass durch einen Bruch divi¬
diert wird , indem man mit seinem Kehrwert * multipliziert . So ist z . B .
3 8 _ 3 13 _ 3 • 13 _ 39
7

'
13

“
7

’
T

“
7 • 8

“
56 '

a c ad
Aus diesem Grund ergeben die Terme - : - und — bei jeder Einsetzung den -

b d bc
selben Zahlenwert . Also sind sie äquivalent . Damit wissen wir , wie man durch
einen Bruchterm dividiert :

Satz 48 . 1 : Durch einen Bruchterm wird dividiert, indem man mit sei¬
nem Kehrwert multipliziert ; kurz :

a c ad
b d bc

bzw.
ad
c

Beispiele :
42 (x — y)2 56 (x2 — y2) 42 (x — y) 2 ■ 5 \ {a + b)2

^ 85 (a2 — b 2) 51 (a + b)2 S5 (a — b) (a + b) ■ 56 (x — y) (x + y)
3 - 3 (x — y) (a + b) 9 (x — y) (a + b)
5 ■4 (fl — b) (x + y) 20 (fl — b) (x + y)

c 15fl2
_ , 4b 2 25a 5 - 4b2 5 - 4a 3 b2 20a 3 b2

’ 4b2 15fl2 15 a 2 3 3
= ^ a3 b2

Weil jeder Term c als Bruchterm - geschrieben werden kann , lässt sich Satz

48 . 1 auch auf Divisionen vom Typ - : c änwenden . Es gilt also :
b

a a
b bc

Beispiel :
63uv
417 (42 uv 2)

63uv 1
41 x 42wt>2

63 uv 3
41x - 42 uv 2 82vx

Statt Kehrwert sagt man auch reziproker Wert, entstanden aus dem lateinischen reciprocus= auf demselben
Weg zurückkehrend , dessen ursprüngliche Bedeutung aber rückwärts und vorwärts ist .
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* *Zur Geschichte der Divisionsregel
In den alten Schriften ging man beim Dividieren durch einen Bruch anders vor als in
Satz 48 . 1 . Hatte man nämlich gleichnamige Brüche , z . B . J : f , so konnte man die
Nenner wie eine Benennung auffassen und dann die Division wie bei benannten ganzen
Zahlen durchführen , also 7 Viertel : 3 Viertel = 7 : 3 = | , d . h . , man dividierte die Zäh¬
ler durcheinander . Ungleichnamige Brüche machte man erst gleichnamig . So findet
man in Aufgabe 36 des Papyrus Rhind 1 : (3 + + j ) = §§ : = 30 : 106 . Ebenso
rechneten die Griechen , die Chinesen , die Araber und daher lange Zeit auch das

, a c ad bc ad
Abendland , wo man wegen -- : ;

=
( ; : ,

- =
( in vielen Büchern ohne weitere Er-

b d bd bd bc
klärung das Dividieren als Über-Kreuz-Multiplizieren an Hand der Figur fXf ff
einführte .
Unsere Regel vom Umkehren des Divisorbruchs lehrte in Indien Schridhara (um
900 ) . Im Abendland scheint sie 1544 Michael Stifel ( 1487 (?) 1567 ) in seiner Arithme-
tica integra erfunden zu haben ; denn 1553 nennt er sie stolz »meqn IRegel oont btuibtren
ber brücf)« . Abbildung 49 . 1 gibt sie wieder .

PDe Diuifione Minutiarum .
Ego Diuifionis regulam reduco ad regufam Mult/plicatio *

nis Minutiarum , hoc modo ; Diuilbri « terminos commuto >
id eft , numeratorcm pono fub uirgula , & denominatorem (ü-
pra uirgulam pono » Hoc fe<fto , nihil aliudreftat , nifiut opcre
ris iuxtS regulam Moltiplication/s fiipertus dacam.

Vtu olo diuidere * per \ , Sic ftabit cxemplum ad regufam.
i _ fadt ^ quotientem.

Sic (i uclim diuiderej per Sic ftabit exempfum fr 7-
fädt 'cphunc quotientem f . feu 1 j- . Etficdeahjs -

Et ego nouiqulm commode fiat bare regulär Diuifionis redu
<ftio,ö( quämfatpe memoriam kuet,praefertim in operationibua
cxemplorum fecundum Algebram fiendorum»

Abb . 49 . 1 Die Divisionsregel für Brüche aus Michael Stifels Arithmetica integra
(folium 6r) von 1544 - Übersetzung im Lösungsheft .

Aufgaben

i . z )
X- : x d) 21 y

5x x 9x 5y
25 ' 3

3 . a) a
2
y : (6a ) b) 8 x7 :

4
( 12 w) d) 21 ab

x
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• 5 . a)

6. a)

7. a)

4x 5y
5y

' 4x
l %m

7 35n
Im
9n

c)
108 135/7

25pq
'

q2
12ab 2 16a2b

d) 27^ : ^ c2
-

141 (uv2 w)2 196 u 3 w
b)

f 12m3 « V llmfx 2
1024ab2 '

640 (ab)3
\ 55xyz2 ) 242ny2z

5 (2a — b) 4a - 2b
9

' 15 b)
5 m m2

3 « — 5 5 — 3 n

rs st
24r — 32s + 20t 30r - 40s + 25t

a + 3b

b)
8x — 2%y 21y — 6x

8 . a) (a2 - 9 b2) :
a — 3b

fYl — 59 . a) (2m2 4- 20m + 50) : - —
15 4- 3m

10 . a)

11 . a)

. 12 . a)

13 . a)

25 a 2 — 20 ab + 4b 2 5a — 2b
4c2 + 56c + 196 ' 3c + 21

9p 2 — 36 q 2 2p — 4q

x2 — 1 ( x — 1
1 - y2 ■

\ l - y

1 1 \ 1
a b

5yz — 3y 20z — 12

6x — 6y
5x + 5^

x — 3

■ av
;> - 3 y

2
)

: (x 2 + 2x — 15)3x + 15

8 u — 20v 4u2 — 25c2
9 + 3w w2 + 6w + 9

18 j — 2 2
81 ^2 + 18j + 1

’
1 — 81s2

(x — l )2 + 4x 32c2 + 6x + 3

14 . a)
\ V W X

b)

b)

1 ( 1 1

x 2 + 4y2 '
4xy — (x + 2j )2

i fi r
a \ b c

u ( v w
v \ w x

15 . a) : y

. 16. a)
x2 - 9

6y
z : xyz

x + 3

, 51 (x2 - y2 ) N2n1? ' 3 -
Ixy

- : E68 ^ -
-̂ 1

5 ab {x — y) 10ax (x — y)c)
6xy (x + y) 3 by (x + y)

b)

b)

b)

d)

c)

c)

1 1
z2 ' z3

c a

V w

U V

x
w

1

(2m + l ) 2 3 n + 6
n — 2 4m — 2

4m2

54 (a2 - b 2)
: [81 (ab + b 2)

~
\13 a

38a (a — b) 51b (a 2 — b 2)
51 b {x — y) 68 a (x2 — y 2)
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20 . a)
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. 22 . a)

• 23 . a)

: 24 . a)
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c)
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b)

5 m 2 Imn

- 3
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+

12 (xyl
5z
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+

2n

9x 3jA .
21 x2y3

10z 5 )
‘ 20z4

5 r2s

12
m2 n3

As2 - 25 r 2

1

3q — 8p 3q + 8p
2x + 8

_ .
Sp2 + 3pq q

3a — 5b

21 a2 b

x 2 -h 8x + 16
^

4 4" x
9a 2 - 25b 2 +

16

5 ab ab
10 c2 \ 3 c 5 c

9a + 15bJ
'

9 a 2

lp + Aqb)

u2 — 2m + 1 / 2m — 2 3 — 3 u
Au2 - 36 +

40pq

1 — u 2

25 b2

2q_ _ lp^
lp 8 q

26 a3 / 3 8 a4 b2

5 c2 d 5 cd2

1
,

2
1 + x 2 +

1 - x 2

u — 3 u + 3 '
u 2 — 9

3 a2 b 3 5a 3 b2

+

8 c2 d2

2x A~ 1
1 - x4

1

7
bc

x +
y .

2cd 3

1

1 A~ x

b)

+

x 4 -

x + 7
1 + x2

1

a bc a
bc d 2 d

a + b a — b
b a

- 2r - 5t

(a + b) 2

b)

(a — b) 2
~~

b

y

y

l
"

12

x ~
y

y
2x 2

3 r
2r + 5t 4r 2 — 25t 2

, 2— + -
i

— | : (4r

: (a 2 — b 2)

25 ?2)

2x 3 y 6 xy
6xy + 9y > 4x ^ + 6xy

+
Sx 3 + 21f _ 2x _ } y

.
(4x z _

m
| (N
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2 .5 Doppelbrüche

Ein Bruchterm , in dessen Zähler oder Nenner wieder Bruchterme auftreten ,

heißt Doppelbruch . So sind Beispiele für Doppelbrüche .

Damit klar erkennbar ist , was Zähler und was Nenner ist , muss der Haupt¬
bruchstrich deutlich länger sein als die Nebenbruchstriche .

So ist z . B . etwas anderes als

Zur Umformung eines Doppelbruchs könnte man den Hauptbruchstrich
durch den Divisions -Doppelpunkt ersetzen und Satz 48 . 1 anwenden . Besser
ist es aber , den Doppelbruch so zu erweitern , dass er zu einem einfachen Bruch
wird . Wir führen es zunächst an einem Zahlenbeispiel vor :

erweitern wir mit dem Hauptnenner 12 der Nebenbrüche :

12 + 9
18 - 20

Bei Doppelbrüchen mit Bruchtermen geht es genauso :

O - y) (x + y) x - y
x 2 + y 2 ■+ 2xy— I- h 2 1 xy

Merke dir die

Regel: Doppelbrüche werden vereinfacht, indem man sie mit dem
Hauptnenner der Brüche im Zähler und Nenner erweitert .
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Aufgaben
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3 . a)

CI “J“
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c
d

a

e)

a
~
b
a

¥
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'
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1 +

6 . a)
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b

~

¥ — a
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b
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y

25p 5y 3
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C) "

35
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y
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X
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12 r 5 s

c)
CI +

a ■

f)
3a

5b - 4c
T

a

c)
a

c)
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a b
b a

a „ b
- + 2 + -
b a

c)
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a

"
¥

ab

d)
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53
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. +
U + 1 a — 1CI — 1 x — 1 x + 1 2a + 36 2a — 3b

x + 1 x — 1 2a + 36 2a — 3b
x — 1 x + 1 2a — 3b 2a + 36

x + 1 x — 1 2a — 36 2a + 36
-

7 - 7 7 - 77 + 7 —

1
a — 1 a + 1

8 . Kettenbrüche in ihrer einfachsten Form verwendet Raffaele Bombelli
( 1526 Bologna - 1572 ebd .) in seiner L ’Algebra (1557/60 niedergeschrieben ,
1572 erschienen ) . Pietro Antonio Cataldi ( 1552 Bologna - 1626 ebd .) bil¬
det im Trattato del modo brevissimo di trovare la radice quadra delli numeri
( 1597 verfasst, 1613 erschienen ) sogar unendliche Kettenbrüche.
Verwandle die folgenden Kettenbruchterme in die übliche Bruchform, d . h .
in Bruchterme, bei denen weder im Zähler noch im Nenner Bruchstriche
Vorkommen .

a)
1

^
- b)

1 +

1
1

1 +

1
1

1 + 1
1 + 1

1 + x 1
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