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48 2 Rechnen mit Bruchtermen

2 .4 Dividieren von Bruchtermen

Vom Rechnen mit Zahlen kennen wir die Regel , dass durch einen Bruch divi¬
diert wird , indem man mit seinem Kehrwert * multipliziert . So ist z . B .
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a c ad
Aus diesem Grund ergeben die Terme - : - und — bei jeder Einsetzung den -

b d bc
selben Zahlenwert . Also sind sie äquivalent . Damit wissen wir , wie man durch
einen Bruchterm dividiert :

Satz 48 . 1 : Durch einen Bruchterm wird dividiert, indem man mit sei¬
nem Kehrwert multipliziert ; kurz :

a c ad
b d bc

bzw.
ad
c

Beispiele :
42 (x — y)2 56 (x2 — y2) 42 (x — y) 2 ■ 5 \ {a + b)2

^ 85 (a2 — b 2) 51 (a + b)2 S5 (a — b) (a + b) ■ 56 (x — y) (x + y)
3 - 3 (x — y) (a + b) 9 (x — y) (a + b)
5 ■4 (fl — b) (x + y) 20 (fl — b) (x + y)

c 15fl2
_ , 4b 2 25a 5 - 4b2 5 - 4a 3 b2 20a 3 b2

’ 4b2 15fl2 15 a 2 3 3
= ^ a3 b2

Weil jeder Term c als Bruchterm - geschrieben werden kann , lässt sich Satz

48 . 1 auch auf Divisionen vom Typ - : c änwenden . Es gilt also :
b

a a
b bc

Beispiel :
63uv
417 (42 uv 2)

63uv 1
41 x 42wt>2

63 uv 3
41x - 42 uv 2 82vx

Statt Kehrwert sagt man auch reziproker Wert, entstanden aus dem lateinischen reciprocus= auf demselben
Weg zurückkehrend , dessen ursprüngliche Bedeutung aber rückwärts und vorwärts ist .
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* *Zur Geschichte der Divisionsregel
In den alten Schriften ging man beim Dividieren durch einen Bruch anders vor als in
Satz 48 . 1 . Hatte man nämlich gleichnamige Brüche , z . B . J : f , so konnte man die
Nenner wie eine Benennung auffassen und dann die Division wie bei benannten ganzen
Zahlen durchführen , also 7 Viertel : 3 Viertel = 7 : 3 = | , d . h . , man dividierte die Zäh¬
ler durcheinander . Ungleichnamige Brüche machte man erst gleichnamig . So findet
man in Aufgabe 36 des Papyrus Rhind 1 : (3 + + j ) = §§ : = 30 : 106 . Ebenso
rechneten die Griechen , die Chinesen , die Araber und daher lange Zeit auch das

, a c ad bc ad
Abendland , wo man wegen -- : ;

=
( ; : ,

- =
( in vielen Büchern ohne weitere Er-

b d bd bd bc
klärung das Dividieren als Über-Kreuz-Multiplizieren an Hand der Figur fXf ff
einführte .
Unsere Regel vom Umkehren des Divisorbruchs lehrte in Indien Schridhara (um
900 ) . Im Abendland scheint sie 1544 Michael Stifel ( 1487 (?) 1567 ) in seiner Arithme-
tica integra erfunden zu haben ; denn 1553 nennt er sie stolz »meqn IRegel oont btuibtren
ber brücf)« . Abbildung 49 . 1 gibt sie wieder .

PDe Diuifione Minutiarum .
Ego Diuifionis regulam reduco ad regufam Mult/plicatio *

nis Minutiarum , hoc modo ; Diuilbri « terminos commuto >
id eft , numeratorcm pono fub uirgula , & denominatorem (ü-
pra uirgulam pono » Hoc fe<fto , nihil aliudreftat , nifiut opcre
ris iuxtS regulam Moltiplication/s fiipertus dacam.

Vtu olo diuidere * per \ , Sic ftabit cxemplum ad regufam.
i _ fadt ^ quotientem.

Sic (i uclim diuiderej per Sic ftabit exempfum fr 7-
fädt 'cphunc quotientem f . feu 1 j- . Etficdeahjs -

Et ego nouiqulm commode fiat bare regulär Diuifionis redu
<ftio,ö( quämfatpe memoriam kuet,praefertim in operationibua
cxemplorum fecundum Algebram fiendorum»

Abb . 49 . 1 Die Divisionsregel für Brüche aus Michael Stifels Arithmetica integra
(folium 6r) von 1544 - Übersetzung im Lösungsheft .
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