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48 2 Rechnen mit Bruchtermen

2.4 Dividieren von Bruchtermen

Vom Rechnen mit Zahlen kennen wir die Regel, dass durch einen Bruch divi-
diert wird, indem man mit seinem Kehrwert* multipliziert. So 1st z. B.

3 8 30 438 3137 39
7 83 70§ - TEigE 56
g = A & C ac N i
Aus diesem Grund ergeben die Terme — : — und — bei jeder Einsetzung den-

My 11¢
selben Zahlenwert. Also sind sie dquivalent. Damit wissen wir, wie man durch
einen Bruchterm dividiert:

Satz 48.1: Durch einen Bruchterm wird dividiert, indem man mit sei-

nem Kehrwert multipliziert; kurz:

a ad ¢ ad
—t—=— bzw. G;—= —
b d b d e
Beispiele:
1 42 (x — y)? _ 56(x* — y?) 42(x — y)* - 51(a + b)*

85(a* — b*) = 51(a+b)?

~85(a—b)(a+b)-56(x—p) (x+ )

_ 3 3iy=w)ia+D)
= 5 4(a—b)(x+yp)

9(x—y)(a+ b)
20(@a—b)(x+y)

- 1547 e bt 25a° 4b2  5-4a3b* 20a°b®
2) 25a — = 25a — — — = . - =
4b* 15a* 15q° 3 3
= 20 53p2

Weil jeder Term ¢ als Bruchterm i geschrieben werden kann, ldsst sich Satz

e a :
48.1 auch auf Divisionen vom Typ s anwenden. Es gilt also:
.
| a a
— = —
! b be
63uv 63uv 1 63uv 3

Beispiel: T (42uv?) = =

Mx Duw? 4lx- 42w 8ux

* Statt Kehrwert sagt man auch reziproker Wert, entstanden aus dem lateinischen reciprocus = auf demselben
Weg zuriickkehrend, dessen urspriingliche Bedeutung aber riickwdrts und vorwdrts ist.
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xxZur Geschichte der Divisionsregel

In den alten Schriften ging man beim Dividieren durch einen Bruch anders vor als in
Satz 48.1. Hatte man nidmlich gleichnamige Briiche, z.B. 7: 3. so konnte man die
Nenner wie eine Benennung auffassen und dann die Division wie bei benannten ganzen

Zahlen durchfiihren, also 7 Viertel : 3 Viertel = 7: 3 = 1, d.h., man dividierte diec Zih-
ler durcheinander. Ungleichnamige Briiche machte man erst gleichnamig. So findet

man in Aufgabe 36 des Papyrus Rhind 1:(3+1+1) =35:426 = 30:106. Ebenso

rechneten die Griechen, die Chinesen, die Araber und daher lange Zeit auch das

a ¢ adibe ad . - . )
== in vielen Biichern ohne weitere Er-

b d bd bd be

klirung das Dividieren als Uber-Kreuz-Multiplizieren an Hand der Figur $><<3 1¢

einfiihrte.

Unsere Regel vom Umkehren des Divisorbruchs lehrte in Indien SCHRIDHARA (um

900). Im Abendland scheint sie 1544 Michael STireL (1487 (7)—1567) in seiner Arithme-

tica integra erfunden zu haben; denn 1553 nennt er sie stolz »meyn Regel vom diuidiren

Der briich«. Abbildung 49.1 gibt sie wieder.

Abendland. wo man wegen

P De Diuifione Minutiarum.

Ego Diuifionis regulam reduco ad regulam Multiplicatios
nis Minutiarum , hoc modo ; Diuiforis terminos commuto ,
id eft, numeratorem pono fub uirgula , & denominatorem fu-
pravisgulam poso . Hoc facto , nihil aliud reftat, nifi ut opere
ris fuxtd regulam Maltiplicationis fuperius datam,

Vtuolo dividere £ per . Sic ftabit exemplum ad regufam,
£ 2.facit} quotientem.

Sic fiuelim diuidere 3 per %. Sic ftabit exemplum 3%,
facitcy hunc quotientem %, feu 1 +, Etfic dealijs.
| Et ego noui quim commode fiat hac regula Diuifionis redu
L Rio,& quim fape memoriam leuet,prafertim in operationibus

exemplorum fecundum Algebram fiendorum,

Abb.49.1 Die Divisionsregel fiir Briiche aus Michael STIFELS Arithmetica integra
(folium 6r) von 1544 — Ubersetzung im Losungsheft.
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Tab  4bc? 5m*  Tmn\ m*n?
18. a) ( + ) : (14abc) b) — :
\2E a 2n 12 4

(- -3x%y?  12(xp)?  9x3p) 20t
\ 4z ) 20z*

e19. ':1)

b) (1 —p p—1 ) ( I 6p°
) - : > -
(3(; —8p 3q+4+8p 8p°+3pg ¢ )

/ \

(2_\' -8 XL 2x-r16 4+ x j e [
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