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2 Rechnen mit Bruchtermen

2 .5 Doppelbrüche

Ein Bruchterm , in dessen Zähler oder Nenner wieder Bruchterme auftreten ,

heißt Doppelbruch . So sind Beispiele für Doppelbrüche .

Damit klar erkennbar ist , was Zähler und was Nenner ist , muss der Haupt¬
bruchstrich deutlich länger sein als die Nebenbruchstriche .

So ist z . B . etwas anderes als

Zur Umformung eines Doppelbruchs könnte man den Hauptbruchstrich
durch den Divisions -Doppelpunkt ersetzen und Satz 48 . 1 anwenden . Besser
ist es aber , den Doppelbruch so zu erweitern , dass er zu einem einfachen Bruch
wird . Wir führen es zunächst an einem Zahlenbeispiel vor :

erweitern wir mit dem Hauptnenner 12 der Nebenbrüche :

12 + 9
18 - 20

Bei Doppelbrüchen mit Bruchtermen geht es genauso :

O - y) (x + y) x - y
x 2 + y 2 ■+ 2xy— I- h 2 1 xy

Merke dir die

Regel: Doppelbrüche werden vereinfacht, indem man sie mit dem
Hauptnenner der Brüche im Zähler und Nenner erweitert .
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2 Rechnen mit Bruchtermen

. +
U + 1 a — 1CI — 1 x — 1 x + 1 2a + 36 2a — 3b

x + 1 x — 1 2a + 36 2a — 3b
x — 1 x + 1 2a — 3b 2a + 36

x + 1 x — 1 2a — 36 2a + 36
-
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1
a — 1 a + 1

8 . Kettenbrüche in ihrer einfachsten Form verwendet Raffaele Bombelli
( 1526 Bologna - 1572 ebd .) in seiner L ’Algebra (1557/60 niedergeschrieben ,
1572 erschienen ) . Pietro Antonio Cataldi ( 1552 Bologna - 1626 ebd .) bil¬
det im Trattato del modo brevissimo di trovare la radice quadra delli numeri
( 1597 verfasst, 1613 erschienen ) sogar unendliche Kettenbrüche.
Verwandle die folgenden Kettenbruchterme in die übliche Bruchform, d . h .
in Bruchterme, bei denen weder im Zähler noch im Nenner Bruchstriche
Vorkommen .
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