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Wasserhähne in Form vergoldeter Delphine im Badebecken der Badenburg im
Schlosspark zu Nymphenburg (München ) , die 1718 - 1722 von dem kurfürstlichen
Hofbaumeister Joseph Effner (1687 - 1745) für Kurfürst Max Emanuel erbaut wurde .



3 Bruchgleichungen

3 . 1 Kreuzweises Multiplizieren

Eine Gleichung , in der Bruchterme Vorkommen , bei denen wenigstens ein
Nenner eine Unbekannte enthält , nennen wir kurz Bruchgleichung . Die ein¬
fachste Form einer Bruchgleichung liegt vor , wenn auf der linken und auf der
rechten Seite je ein Bruchterm steht . Hierzu

Im Gegensatz zu den Gleichungen , die du in der 7 . Klasse kennen gelernt hast ,
kann man in einer Bruchgleichung für x nicht immer jede Zahl einsetzen , weil
die Nenner bekanntlich nicht null werden dürfen . Wir müssen also von <Q all
die Zahlen wegnehmen , für die ein Nenner null wird . Dazu betrachten wir die
Definitionsmengen der vorkommenden Bruchterme . So hat der im obigen
Beispiel links stehende Bruchterm die Definitionsmenge i ^ i = Q \ { — 3 } .
Der rechts stehende Bruchterm hat die Definitionsmenge D 2 = <0 \ { — kj } .
Die Definitionsmenge der Bruchgleichung ist daher die Menge

li .
3 5 3 } .D = <0 \ { -

Das ist aber genau die Menge D 1 c \ D 1 . Wir merken uns

Definition 56. 1 : Die Definitionsmenge einer Bruchgleichung ist die
Schnittmenge der Definitionsmengen aller vorkommenden Bruch¬
terme .

Zur Bestimmung der Lösungsmenge der Bruchgleichung vom Beispiel 1 wen¬
den wir Satz 14 . 1 an :

<=> (2x — 1 ) (3x + 11 ) = (x + 3) (6x — 13 )

Wir erkennen , dass jeweils der Zähler des einen Bruchterms mit dem Nenner
des anderen Bruchterms multipliziert wird . Diese Äquivalenzumformung
nennen wir kreuzweises Multiplizieren .

Kreuzweises Multiplizieren

b^ o ad = bc

Die so entstandene Gleichung (2x — l ) (3x + ll ) = (x + 3) (6x — 13) lösen
wir nun nach den aus der 7 . Klasse bekannten Methoden . Dabei müssen wir
aber bei allen Äquivalenzumformungen , die wir ausführen , bedenken , dass sie
nur in der Definitionsmenge D gültig sind , d . h . , dass nur Zahlen aus der Defi-
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nitionsmenge D eingesetzt werden dürfen . Die gesamte Rechnung sieht dann
s° aus ; 2x — 1 6x — 13

D = <Q \ { -
x + 3 3x + 11

(2x - 1 ) (3x + 11 ) = (x + 3) (6x - 13 )
6x2 + 22x — 3x — 11 = 6x 2 — 13x + 18x

19x — 11 = 5x - 39
14x = - 28

x = — 2

i± .
3 !

39

- 3 }

— 6x2
- 5x + 11
: 14

Im Gegensatz zu früher können wir aus der letzten Zeile noch nicht schließen ,dass { — 2 } die Lösungsmenge unserer Ausgangsgleichung ist . Es könnte näm¬
lich sein , dass die Zahl — 2 nicht zur Definitionsmenge D der gegebenen
Bruchgleichung gehört . Ein Blick auf D zeigt uns aber , dass — 2 e D und
dass somit tatsächlich L = { — 2 } gilt . Unsere Bruchgleichung ist eindeutiglösbar .
Wir erinnern uns , dass wir aber auch schon nicht eindeutig lösbare Gleichun¬
gen kennen gelernt haben . Auch unter den Bruchgleichungen gibt es solche,wie einige der folgenden Beispiele zeigen .

2 — 4x 2x + 1 _ , , .
Beispiel 2 : -— — = - - — ; D = Q \ { 3 }6 — 2x 3 — x

Beachte: Du musst das Minuszeichen der rechten Seite beim kreuzweisen
Multiplizieren entweder zum Zähler oder zum Nenner nehmen !
Wir entscheiden uns für den Zähler und denken uns die rechte

_ — 1
Seite als — — geschrieben .

3 — x

(2 - 4x ) (3 - x) = (6 - 2x ) ( - 2x - 1 )
6 — 2x — 12x -\~ 4x 2 ~ — 12x — 6 -\~ 4x ^ -1- 2x

6 — 14x = — lOx — 6
— 4x = — 12

x = 3

| | - 4x 2

H + lOx - 6
II : ( - 4)

Da 3 $ D ist , gilt L = { } . Die durch die Bruchgleichung gegebene Infor¬
mation ist also widersprüchlich .

Beispiel3: - — - = - — ^
; D = Q \ {2 ; 3}r 1 r 3

(x — 1 ) (x — 3) = (x — 2)2
x 2 — 3x — x + 3 = x 2 — 4x + 4 | | — x2

— 4x + 3 = — 4x + 4 | | + 4x — 3
0 • x = 1

Die letzte Gleichung ist widersprüchlich , also ist es auch die Bruchglei¬
chung ; somit gilt L = { } .
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Beispiel 4: D = O \ { 0}

4x = — 3x 2
| | + 3x2

3x2 + 4x = 0
x (3x + 4) = 0

x = 0v3x + 4 = 0
x = 0 v x = — f

Da 0 $ D ist , gilt L = { — §} .
Die durch die Bruchgleichung gegebene Information ist eindeutig .

Beispiel 5 : — = —
^
— — ; D = G>\ { — 1 ; 1 }

X 1 X 1

Auf das Anschreiben der Zwischenzeile mit den Produkten kann man
verzichten und gleich kreuzweise ausmultiplizieren :

x 3 — x = x 3 — x2 + x2 — x | | — X3
— x = — X

Da diese Gleichung für alle Zahlen aus D erfüllt wird , ist
L = 0 \ { — 1 ; 1 } .

Die durch die Bruchgleichung gegebene Information ist also mehrdeutig .

Beispiel 6 : - 1 = — 3 ; D = Q \ { —
x + 3

Hier scheint die kreuzweise Multiplikation nicht möglich zu sein . Wir
- 3

denken uns aber — 3 als — geschrieben und können dann kreuzweise
multiplizieren :

1

x — i = — 3 (x + | )
x — "

3 = — 3x — 1 | | + 3x + |
4x = — § | | : 4

^ — i

Da — ^ gD ist , gilt L = { — ^} .

Aufgaben

1
l . a) = 1

x
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3 . a) 2x — 1
= 2 b) x — 2 c) 5x — 1

= 0

4. a) 3 : (4x + 5) = 6 : 7 b) - 5 : (9 - 2x) = - 1 c) 3,43 : (x - 1 ) - 2

X 1 1
5 . a) - =

6. a)

x 2x — 5

38 2
8x — 11 x — 11

b)

b)

13 1
1 + x Ix

16
8x — 16 4x — 3

x 23 17
c )

Yx
~

*

c)
9 — 6x 2x — 3

5x + 6
7' a) 3Ü - 8

= 1

. 13X -Ic) VTs *
- - 1

„ 16 — 23x
b) — = 5

d)

11 - 5x
2x — 1 _ 1
— llx 2

8 . a)

c)

0,5x — 3 3
4^ 8^ ~

4
24x - 1 _ 3
1 — 36x 5

b) 1,2 =

9 . a) (2x + 6) : x = 4
c) (5x — 4) : (4x + 5) = 0
e) (14x + 5) : (6x — 1 ) = 7 : 3

10. a)

c)

e)

11 . a)

c)

e)

2x + 4 5
3x — 5 2
9x + 4 _ 8
6x + 1 5
32x - 27 _ 3

5x + 3 2

^ 16_ _ 22
3x — 4 2x + 3

_ 13 _ _ 11
2x — 3 x + 3

34 21

15 - 0 , lx
x — 20

d) -7X ± ^ = 24; 3x - 5 7

b) ( 18x + 5) : (3x + 2 ) = 7
d) (4x - 3) : (0,75 - x) = 0
f ) fx : (5x - 4) = £

5x -f- 9 4x -j- 1

b)

d)

f)

b)

d)

f)

5x + 7 _ 7
8x + 4

“
10

13x + 3 _ 15
Tx +T “ Y
17x + 2 _ 18
2337 — 8

_
19

19 _ _ 23
5x + 4 8x — 1

25 17
4x + 1 3x — 1

19 _ 37
5x — 6 7x + 2

: 8 = 0,5
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12 . a)

13 . a)

c)

14. a)

c)

15 . a)

c)

16. a)

c)

17 . a)

c)

18 . a)

c)

e)

19 . a)

20. a)

x — 1 2 — 2x

3x2 — 5x + 23 3
4x 2 + 3x — 8

_
4

8x2 — 3x + 4 2
12x2 + 5x — 13

=
3

5x2 — 5x + 8 2
4x 2 + 3x + 12

=
3

13x2 — 5x + 28 _ 4
3x2 + 7x + 35 5

3x — 5 6x — 11
7 — 4x 15 — 8x
12x + 3 24x — 9
5x — 3 lOx — 11

9x — 25 Ix — 5
5x — 10 4x — 2
9x — 51 _ 7x + 17
5x — 9 4x + 3

x x
2x + 3 2x — 3

x 4 1 x 4 3
x + 2 x + 4

5x + 13 15x + 1
2x + 8 6x
llx - 8 5 — 22x
21 — 2x 4x — 2

0,8x + 2 _ 4,8x + 0,1
2,5x + 1 15x — 22

V V
b)

b)

b)

d)

b)

d)

b)

d)

b)

d)

b)

d)

b)

d)

f)

x + 7 x — 1
x — 5 x + 3

5x 2 — 7x + 8 5
3x 2 + 2x — 20 3
12x2 — 7x + 5 2

18x2 — llx + 9
"

3

Ix 2 — 3x — 15 3
9x 2 + x — 25 5
17x2 — x — 28 7

13x2 + 12x — 36
=

9

7x + 5 Ix - 5

15x - ll 15x — 27
8x — 7 12x — 19
6x + 7 9x + 2

6x — 18 llx — 3
7x + 24 13x + 4
5x — 24 7x + 6
3x + 32 9x — 8

6x 6x — 3
Ix — 3 Ix
x — 5 17 — x

5x + 3 1 — 5x

3x — 6 9x + 1

x

x + 5 3x — 2
18x 9x + 7

2x — 27 x — 10

f — 1,1 0,25 - l,5x
Ix - 3,75

“
11 — 9x

3x . x x
3 — x x — 3 x + 2 x — 2 c)

13x 5x
5 — 8x 2x — 1

= 0 b)
5x

x — 2 4 — 2x

3x
3x — 1,2 5x — 2

= 0
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21 .

22 .

• 23.

824.

825.

2x — 6 4x — 4
x — 3 3x + 1

3x 2 — 5x 1 — x 2
a) — - — • — - = 0

x + 1 x

826 . a)
2x + 4 5x

x 2 + 2x 8

x

• 27 .

• 29 .

x 4 1

2x 2

x 4" 1
x

= - 1

b)
x + 3 8x — 3

3x — 5 3x + 5
= 0

6 — 2x 3x — 6
b)

3x 4- 20 i5x - :
x — 3 2 — x 2x 4- 5 5 — x

2x 4- 1 2 5 3 4- 2x
b) f1 2x

3 x 2x 4 \ x x 2 / x 2 - l

4x — x 2

x — 1
2 — 2x

3x
= 6 b) ( 3x 4- 1

( 2x +
3x -f- 1

3x

= 1

x — 1 5
6x + 2 x

b)

b)

2x 4“ 1
2x

x 2 4- x
4x 2 — 1

= 1

x 4~ 2

x
1

x 4- 1

2

1 1
x — 1 x

3

• 28.
x 2 — 4

x ( 4
2 \ x

'

1
x — 1

12

x
x 4- 2

2x 2x
x — 2 x — 1 x 4- 1

3x 4“ 24
2x ■ + 2 6x4 -

2x — 4 + 24

3 .2 Multiplizieren mit dem Hauptnenner
Nun wenden wir uns schwierigeren Bruchgleichungen zu , bei denen das kreuz¬
weise Multiplizieren nicht mehr so ohne weiteres möglich ist . Hier können wir
die Bruchterme dadurch beseitigen , dass wir die Gleichung mit dem Haupt¬
nenner multiplizieren . Damit erhalten wir eine nennerfreie Gleichung . Hierzu

Beispiel 1 : 1 |
2x 2 5x 4- 17 16 -f 3x

1 +
25 - 4x 2 =

lOx + 25
_

8x 2 - 50

Hier macht schon die Bestimmung der Definitionsmenge einige Schwie¬
rigkeiten . Am einfachsten geht es , wenn wir zuerst den Hauptnenner
bestimmen :
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25 - 4x2
10x + 25
8x 2 - 50

(5 - 2x) (5 + 2x)
5 (2x + 5)
2 (4x 2 - 25 ) = 2 (2.x - 5) (2x + 5)

2 • 5 ( — 1 ) = — 10
2 (2jc — 5) = 4x - 10
5

HN = 2 - 5 (2x — 5) (2x + 5)
Da alle Nenner als Faktoren im Hauptnenner enthalten sind , kann man
aus ihm die gefährlichen Zahlen ersehen , die wir aus O entfernen müssen ,
um die Definitionsmenge zu erhalten :
D = 0 \ { - f ; ! } ■
Nun multiplizieren wir die Gleichung mit dem Hauptnenner und erhal¬
ten :

2 • 5 (2x - 5) (2x + 5) + 2x 2
( - 10)

40x 2 - 250 - 20x 2

20x 2 - 250
0
0

(5x + 17 ) (4x - 10) - ( 16 + 3x) ■ 5
20x 2 - 50x + 68x - 170 - 80 - 15x
20x 2 + 3x - 250 | | - 20x 2 + 250
3x
x

Da Oe D , gilt L = { 0 } .

Wenn sich jemand die Arbeit ersparen will , den Hauptnenner zu bestimmen ,
dann multipliziert er gleich mit dem Produkt der Nenner und erreicht damit
auch eine nennerfreie Gleichung . Diese Gleichung ist aber meist schwieriger
oder gar nicht zu lösen , weil sie höhere Potenzen von x enthält , die dadurch
entstehen , dass man nicht mit dem kleinstmöglichen gemeinsamen Nenner
multipliziert hat . Zur Warnung diene

Beispiel 2 :

jh ~ ^ 2
= ^ 4 | | ' (^ - 2) (^ + 2) (^ - 4) ; D = Q \ { - 2 ; 2}

15 (x + 2) (x2 — 4) — 4 (x — 2) (x2 — 4) = 5 (x — 2) (x + 2)
15x 3 + 30x 2 — 60x — 120 — 4x 3 + 8x 2 + 16x — 32 = 5x2 — 20

llx 3 + 38x 2 — 44x — 152 = 5x2 - 20 | | — 5x2 + 20
llx 3 + 33x 2 - 44x - 132 = 0 | | : 11

x 3 + 3x2 — 4x — 12 = 0
Diese Gleichung kannst du noch nicht lösen . Vergleiche dazu jedoch Auf¬
gabe 63/1.



3 .2 Multiplizieren mit dem Hauptnenner 63

Aufgaben

1 . Löse Beispiel 2 mithilfe des Hauptnenners .
3 9

2 . a) - + 2 = - - 2 b) 2xx • 7 + ~ + 7 = 0

12 8
c) — I- 1- 7 = - 3

XX X d) — — — + 1 = —
x

4 1 1
3 - a )

x
"

2 ^
+ 2 “

4
b )

1 13 1 111
c) X - f - ^ 7 “ h -

3 x 13x 6 2 x

3 2 5 13 8 11 _ 31
)

8
+ 3x

-
6x

~
15

+
5^ +

12^
~

40

x x

3 1
5x

2 4
3x

~
9

4 . a)

5 . a)

b)

c)

6
x — 2 x — 2

2 3

+ 3 = 0

+

b)
18

2x — 3 3 — 2x
= 5

1 — x 5 (1 - x) 4 (x — 1 ) 10
71_ _ 3_ _

5x + 2
~*~

6 + 15x 25x + 10
4,5 7,5 69

d) I

1 — 14x 0,5 — 7x 28x — 2

22 3

- 0,5

1 1
+

3 3x — 7 3 14 - 6x 7 - 3x

6 . a) —
x + 3 7 — x x + 3

c) tr
7

xr +
11 33

7 . a)

c)

8 . a)

2x + 3 3x + 2 2 (2 + 3x)

35
6x — 9 10x + 4 2x — 3

27 1 72

b)

= 0 d)

b)

15
— x 8 + x

= 0
— x

68 51 30
+ - - ^ + — = 0

3 (2x — 5) 5 — 2x x

21 42 138
15x ^ 4

~
— 30x 45x — 6

2x + 11 2x — 11 11 + 2x 11 — 2x

18
+

1
+

1
5x + 6 lOx — 3 x + 1,2 x — 0,3

= 0
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b)

c)

d)

9 . a)

b)

c)

d)

10 . a)

b)

11 . a)

c)

13 13 13
3x — 11 4x + 5 12x + 15

1
+ +

= 0

21
x — 7 14 — 2x 2x — 5 14x — 35

30
J T

1 3
+

x + 1 x — 1 X

1 1
+ X- X +2x + 3 2x — 3 4x 2 — 9

5 2 2
+ 5x - ^ +

+

= 0

5x + 4 ' 5x — 4 ‘ 16 — 25x2

46 1 23

= 0

9x 2 — 121 ' 3x4 - 11 11 — 3x

3 1 15
3x — 6 2x — 4 4 (x — 2)2

38 7 3

= 0

x2 4- 16x + 64 4x4 - 32 x 4- 8
f

4-
x — 1 x -l- 5 x2 4- 4x — 5

= 0

1 7
+

35
3x — 2 ' 2x4 - 3 6x 2 4- 5x — 6

0 3x — 5\ b) - 2x
x 4- 5

= 1

5x 8x
x 4“ 3 x 4“ 2 + 3 = 0

. x + 1 x — 1
12 - a) ^ = 2

x + 2 x — 2

^ 3x — 7 6x + 4
c) 3ITT -

x +T + 5 = 0

13 . a) -r——T +
+ 1 — 1 .5 = 0

c)

14 . a)

4x + 1 3x + 7
x 4- 5 4 x + 7

X 1 — X x — 1

x 3x + 2 5x
x — 3 6 — 2x 2x — 1

, x x — 2 2x — 1
b) i—I- —— - 3

x + 1 x — 1
13x + 26 6 — 2x

d) - — + - r = 11
x + 2 x — 3

5x + 7 12x — 4 11
b)

d)

b)

3 + x
x

9x + 3
2x 3x + l

+ - - , = 0
x + 1 x — 2 3x — 6

5x + 1 3x + 16 0,5x
5x — 3 2x + 18 x — 0,6
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2x — 11 4 — 3x 3x + 415 . — - — “l- - - — -|- - - -
7x + 35 2x + 3 2x + 10

„ , x — 2 4x
• 16 . - +

7 — 6x
+

_
2

“
7

x + 5
x + 3 2 — x 2x — 4 0,2x + 0,6

= 5

^ 0,5x 2x + 3 x
2x — 3 x + 2 4x — 6

x + 4 8
b)

x +
~
2 x 2 — 4

2x — 2
x — 2

18. a)

b)

2x — 3

11

+

+

2x 4
2x + 3

3x — 9

6
9 — 4x 2

2x + 28

= 0

+

, 19.

■25 5 — x 3x + 15

10x 2 — 30x + 6 3x

= 0

4x + 10 +
4x 2 - 25

x 2 + 1
- b - r -
x + 2,5 x 2 — 6,25

3
4

20 .
3x +i + ^ l -

1
= 2 -

2x — 1 6x + 3
4x 2 — 22x — 11

12x 2 — 3

21 . a)
x + 1 x — 1 18

x + 2 x 2 — 4
x — 2 25 — x 55

b) + i^ y + ^ 9
= 0

1959 — x 3x + 4,5
2x — 3 9 + 6x

”*”
9 — 4x 2

b)

23 . a)

b)

24. a)

b)

5x — 3
x — 5

3x + 1

5x + 26 25 7
x — 3

3 — 3x

x 2 — 8x + 15

177x + 7

= 0

x — 7 x + 7 4x 2 — 196
9x + 4 12x — 3 50x + 25

3x — 12 4x + 16 2x 2 — 32

1 — Ix 8 — 3x 4 — 5x
15x - 25

25 .

26 .

9x 2 — 30x + 25 9x — 15
4x + 3 3x + 1 5x 2 + x — 28
5x — 7 5x + 7

2x — 13 5x + 3
x — 1

^
x — 8 x 2 — 9x + 8

6x 2 — 23x — 3 lOx — 15 30 - 4x

25x 2 - 49

7x 2 + 8
= 0

x — 2x — 15 x + 3 x — 5

n
U

9
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27 .
20 + 4x

|
3x — 35

3x + 8
+

18x 2 - 128

• 28 .

x — 1 x — 3
x — 3 x — 1

x — 1 x — 3
x — 3 x — 1

1 x
7 4- 75 x — 2

/ 3x _ 2
T

~
T *~

3x ^ y
\ ~FT

3x - 5
FF3 2x — 1 T

6x
2x — 3

• 30 .

- 2
x — 1

+ - - = 1 -
X

3

2

+ 1

3x

5 31-
x
X

x T 3

+

1
X

x -|- 2

2x + 5
x 2 + 3x

4 -j- 5x • 32 .
x

X +
x + 2

= x 2 + 1

X +

33 . Aus der Algebra des al -Charizmi : Die Differenz zweier Zahlen ist 2 . Teilt
man die kleinere durch die größere , so erhält man Wie groß sind die
Zahlen ?

34 . Die Summe zweier Zahlen ist 425 . Dividiert man die größere durch die
kleinere , dann erhält man 2 , und es bleibt der Rest 92 . Wie heißen die
Zahlen ?

35 . Der Zähler eines Bruchs ist um 12 größer als der Nenner . Zieht man die
Ganzen heraus , dann ergibt sich die gemischte Zahl 3 4 - \ ■ Bestimme x .

36 . Hans möchte wissen , wie alt Renate ist . Weil sie weiß , dass er schwach im
Rechnen ist , sagt sie : »Wenn du den Kehrwert meines Alters in 15 Jahren
vom Kehrwert meines heutigen Alters subtrahierst , dann erhältst du den
Kehrwert meines Alters in 15 Jahren .« Wie alt ist Renate heute ?

37 . Ein Gasherd mit zwei Brennern wird aus einer Propangasflasche gespeist .
Mit einer Füllung kann der eine Brenner 30 Std . , der andere 20 Std . bei
voller Flamme versorgt werden . Wie lange reicht der Flascheninhalt ,
wenn beide Brenner gleichzeitig in Betrieb sind ?
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38 . Der holländische Arzt und Mathe¬
matiker Reinerus Gemma Frisius
(1508 - 1555) stellte in seinem 1544 in
Wittenberg gedruckten Arithmeticae
practicae methodus facilis * folgende
Aufgabe (Teil 3 , Beispiel 6) :
Potator quidam solus exhaurit cadum
vini in 20 diebus , verum si uxor eum
iuverit servata proportione bibendi 12
diebus vini tantundem absumunt ,
quanto ergo tempore sola uxor totum
vas exhauriet ?
Ein Trinker leert einen Krug Wein in
20 Tagen . Wenn seine Ehefrau ihm
aber hilft , dann verbrauchen sie eben¬
so viel Wein in 12 Tagen , falls sie das
Verhältnis , in dem sie trinken , beibe¬
halten . In welcher Zeit würde also die
Ehefrau allein das ganze Gefäß aus¬
trinken ?

39 . Ein Wasserbehälterhat zwei Zufluss¬
rohren . Mittels der ersten Röhre al¬
lein kann der Behälter in 6 Std . , mit¬
tels der zweiten in 4 Std . gefüllt wer¬
den . Wie lange dauert das Füllen ,
wenn beide Röhren gleichzeitig in Be¬
trieb sind ?

40. Der Kaltwasserhahn füllt eine Badewanne in 10 min . Dreht man zusätz¬
lich den Warmwasserhahn auf , dann dauert es nur 6 min , bis die Wanne
voll ist . Wie lange würde es dauern , wenn man die Wanne nur mit dem
Warmwasserhahn füllen wollte ?

• 41 . Ein Teich wird durch einen Zufluss in 10 Stunden und durch einen zweiten
in 5 Stunden gefüllt . Der Abfluss leert ihn in 4 Stunden . Nun werden alle
zwei Zuflüsse und der Abfluss gleichzeitig geöffnet . Wie lange dauert es
jetzt , bis der Teich voll ist?

• 42 . Ein Dampfkraftwerk ist mit zwei Kesseln von verschiedener Leistungsfä¬
higkeit ausgestattet . Der Inhalt des vollen Kohlenbunkers reicht aus , um
den ersten Kessel allein 18 Tage bzw . beide Kessel zusammen 7^ Tage zu
beheizen . Wie lange könnte mit derselben Kohlenmenge der zweite Kessel
allein betrieben werden ?

8»

Abb . 67 . 1 Reinerus Gemma Frisius ,
eigentlich Rainer van den Steen
(8 . 12 . 1508 Dockum/Ostfriesland -
25 .5 . 1555 Löwen ) 1541 Professor der
Medizin an der Universität von Lö¬
wen

* »Ein leichter Weg zur Beherrschung der Arithmetik« , geschrieben um 1536, veröffentlicht 1540 in Antwer¬
pen. Das Büchlein war so beliebt, dass es im 16 . Jh . mindestens 59 Auflagen erlebte.
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• 43 . Zum Ausheben einer Baugrubewird ein Baggerverwendet, der die gesam¬
te Arbeit in 8 Tagen erledigen würde. Um schneller voranzukommen, wird
nach 3 Tagen noch ein zweiter Bagger eingesetzt , der den gesamten Aus¬
hub in 12 Tagen allein bewältigen könnte . Wieviel Tage müssen beide Ma¬
schinen noch gemeinsam in Betrieb sein?

• 44 . Ein Arbeiter würde eine Arbeit in 18 Tagen allein fertigstellen. Nach
8 Tagen erhält er eine Hilfskraft, deshalb ist die Arbeit schon nach insge¬
samt 14 Tagen fertig . Wie lange hätte die Hilfskraft allein für den Rest der
Arbeit gebraucht, wenn der Arbeiter nach 8 Tagen krank geworden wäre?

45. Aus dem Trattato di aritmetica (1491 ) des Filippo Calandri (geb . um
1430 ) :
Es sind 3 Männer in einem Gefängnis, die ausbrechen wollen ; der erste
sagt , dass er in 6 Stunden das Gefängnis aufbrechen werde , der zweite
sagt , dass er es in 12 Stunden aufbrechen werde , und der dritte sagt , dass
er es in 18 Stunden aufbrechen werde . Die Frage ist , wenn alle 3 Zusam¬
menarbeiten, in welcher Zeit sie dann das Gefängnis aufbrechen werden .

46 . a)

b)

c)

• d)

• e)

• 47 . a)

b)

c)

d)

• 48 . a)

Welche Zahl muss zu dem Zähler und Nenner des Bruches addiert
werden , damit er den Wert f erhält?
Welche Zahl muss von dem Zähler und Nenner des Bruches jg subtra¬
hiert werden , damit er den Wert \ erhält?
Welche Zahl muss zu dem Zähler und Nenner des Bruches addiert
werden , damit er das arithmetische Mittel zu | und I wird ?° CIUm welche Zahl muss man den Zähler und Nenner des Bruches -

c b
1 ) vermehren, 2) vermindern, um - zu erhalten?d
Welche Zahl muss von dem Zähler und Nenner des Bruches - subtra-

c b
hiert und zu dem Zähler und Nenner des Bruches - addiert werden ,
damit zwei gleich große Brüche entstehen? ^

Vermehrt man den Zähler eines Bruches mit dem Wert j um 16 und
vermindert seinen Nenner um 5 , so erhält man seinen reziproken Wert .
Wie heißt der Bruch ?
Vermehrt man den Zähler eines Bruches mit dem Wert § um 4 und
seinen Nenner um 3 , so erhält er den Wert f . Wie heißt der Bruch ?
Vermindertman den Zähler eines Bruches mit dem Wert f um 8 und
vermehrt seinen Nenner um 2 , so erhält er den Wert j . Wie heißt er?
Ein Bruch mit dem Wert f wird doppelt so groß , wenn man seinen
Zähler um 5 vermehrt und seinen Nenner um 6 vermindert. Wie heißt
der Bruch ?
Vermehrt man den Zähler und Nenner eines Bruches mit dem Wert f
um 9 und zieht den entstandenen Bruch von§5 ab , so erhält man f . Wie
heißt der Bruch ?
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b) Vermindert man den Zähler und Nenner eines Bruches mit dem Wert f
um 5 und zieht den entstandenen Bruch von ff ab , so erhält man f . Wie
heißt der Bruch ?

c) Ein Bruch hat den Wert f . Vermehrt man seinen Zähler um 3 und
vermindert seinen Nenner um 4, so erhält man dasselbe , wie wenn
man seinen Zähler um 10 und seinen Nenner um 5 vermehrt . Wie heißt
der Bruch ?

* 49 . a) Die Zahl 240 wird so in zwei Teile zerlegt , dass der Quotient aus
1) den beiden Teilen gleich f ist,
2) dem größeren Teil und der Differenz der Teile gleich ^ ist,
3) dem kleineren Teil und der Differenz der Teile gleich f ist.
Wie groß sind die Teile ?

b) Die Zahl 68 wird so in zwei Teile zerlegt, dass f des ersten um 12
größer ist als f des anderen . Wie groß sind die Teile?

c) Die Zahl 100 wird so in zwei Teile zerlegt, dass f des ersten um 6
kleiner ist als f des anderen . Wie groß sind die Teile?

d) Die Zahl 123 wird so in drei Teile zerlegt, dass der erste um 5 größer
ist als der zweite und f des ersten mit f des zweiten zusammen 6 mehr
betragen als die Hälfte des dritten . Wie groß ist der erste Teil?

3 .3 Proportionen

aDen Bruch - bezeichnet man auch als das Verhältnis von a zu b . Eine Glei-b
chung , die die Gleichheit zweier Verhältnisse zum Ausdruck bringt , nennt
man Verhältnisgleichung oder Proportion * . In Verhältnisgleichungen schreibt
man die beiden Quotienten statt mit Bruchstrich meist mit Doppelpunkt , also

a : b = c : d an Stelle von

Die Gleichung a : b = c : d liest man
»a verhält sich zu b wie c zu d« .

a und d heißen Außenglieder , b und c Innenglieder der Proportion :

Innenglieder

a : b = c : d

Außenglieder

proportio (lat .) = Verhältnis, Ebenmaß
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Selbstverständlichmüssen b und d von null verschieden sein . - Die Glieder
einer Proportion können natürlich auch Terme mit Variablen sein .

Mit den oben eingeführtenNamen gewinnt man aus Satz 14 . 1 eine Regel zur
Umformung von Proportionen , die wir uns merken wollen als

Satz 70 . 1 : In einer Proportion ist das Produkt der Außenglieder gleich
dem Produkt der Innenglieder, * d . h . ,

a : b = c : d => a • d = b • c

Beispiel: 3x2
: (x — 1 ) = (x + 1 ) : (2x3)

3x 2 ■2x 3 = (x — 1 ) (x + 1 )
6x 5 = x 2 — 1

* * Zur Geschichte der Proportionen
Verhältnisse kommen bereits bei den Ägyptern im Papyrus Rhind und auch bei den
Babyloniern vor , eine Theorie der Verhältnisse entwickelten jedoch erst die Griechen .
Angeblich soll Pythagoras (um 570 - 497/6 v . Chr .) die Lehre von den Verhältnissen
erfunden haben . Er und seine Schüler , die Pythagoreer , waren der Ansicht , dass sich
alle Erscheinungen der Natur auf Verhältnisse von natürlichen Zahlen zurückführen
ließen . So erklingen zwei Saiten , deren Längen sich wie 2 : 1 verhalten , im Grundton
und der Oktave . Bis in die Neuzeit hinein dienten und dienen Verhältnisgleichungen
dazu , funktionale Zusammenhänge zweier Größen zu beschreiben . So lernt man noch
heute in der Fahrschule , dass bei Verdoppelung der Geschwindigkeit der Bremsweg
viermal so lang , bei Verdreifachung aber neunmal so lang wird , dass sich also allgemein
die Bremswege wie die Quadrate der zugehörigen Geschwindigkeiten verhalten , kurz ,
dass Sj : s2 = v \ : v \ gilt . Den genauen Zusammenhang zwischen Bremsweg und Ge¬
schwindigkeit drückt man heute aber durch eine Funktionsgleichung aus , die du in der
11 . Klasse lernen wirst . Erst mit der Erfindung der Buchstabenrechnung durch Fran -
fois Viete ( 1540 - 1603) wurde es möglich , solche Funktionsgleichungen aufzustellen ,
und seitdem haben Verhältnisse immer mehr an Bedeutung verloren .
Die Lehre von den Proportionen brachte Eudoxos aus Knidos (um 400 - um 347 v .
Chr .) zu einem mustergültigen Abschluss . Euklid (um 340 - um 270 v . Chr .) benützte
dessen Darstellung als Vorlage für Buch V seiner Elemente.
Das Verhältnis zweier Größen nannten bereits die Pythagoreer Xöyoq (lögos) , und
wenn zwei Paare dem Verhältnisse nach ( = dvd. Xöyov [anä lögon] ) gleich waren , so
nannten sie dieses Gleichsein der Verhältnisse dvaXoyla (analogia ) . Die klassische latei¬
nische Übersetzung für Xöyoq (Verhältnis) ist ratio ; die dvaXoyia (Verhältnisgleichheit )
übersetzt Marcus Tullius Cicero (106 - 43 v . Chr .) mit dem seltenen lateinischen Wort
proportio . Boethius (um 480 - 524 (7)) hingegen verwendet proportio für das Verhältnis
und bezeichnet die Verhältnisgleichung mit proportionalitas . Dieses Übersetzungs¬
durcheinander spiegelt sich in der lateinischen mittelalterlichen Literatur wider und
geht auch ins Deutsche ein , bis sich schließlich in der 2 . Hälfte des 18 . Jh .s die Aus-

* Diesen Sachverhalt formuliert Euklid als Satz 19 in Buch VII seiner Elemente ( = azoix^io. [stoicheia] ) .
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1644 1566
Abb . 71 . 1 William Oughtred Abb . 71 .2 Robert Record (e)

(5 . 3 . 1574 Eton - 30 . 6 . 1660 Albury ) (1510 (?) Tenby - 1558 London )

•>,i %h\

'’*1.-*44:.iM». l.’L, 1

Ä
■ '« ».«Ci

drücke Verhältnis und für Verhältnisgleichung Proportion durchsetzen ; Verhältnis tritt
1667 bei Johann Christoph Sturm (1635- 1703) in seiner Übersetzung von Archime -
des ’ Sandrechnung erstmals auf , Proportion 1694 bei Anton Ernst Burckhart von
Pirckenstein .Äußeres und inneres Glied verbreiten sich im 18 . Jh . vor allem durch
Johann Andreas von Segners ( 1704 - 1777) Deutliche und vollständige Vorlesungen über
Rechenkunst und Geometrie (1747) und durch Abraham Gotthelf Kästners (1719
bis 1800) Anfangsgründe (1758) .
Die erste brauchbare Schreibweise für Proportionen , nämlich A .B : :C .D , schuf 1631
der englische Landpfarrer William Oughtred (1574- 1660 ) , der in seiner Arithme-
ticae in numeris et speciebus institutio : Quae tum logisticae, tum analyticae , atque adeo
totius mathematicae , quasi clavis est an die 150 mathematische Symbole erfand , u . a .
auch das schräg liegende Multiplikationskreuz x . Seine Frau soll eine Geizhälsin
gewesen sein und ihm nicht erlaubt haben , nach dem Abendessen Kerzen anzuzünden ,
sodass so manch guter Einfall verloren gegangen und so manches Problem ungelöst
geblieben sei .
1651 schreibt der englische Mathematiker und Astronom Vincent Wing (1619 - 1668)
in seinem Harmonicon coeleste A : B : : C : D , wobei der Doppelpunkt keineswegs als
Divisionszeichen aufgefasst werden darf ; denn ein Verhältnis und eine Division waren
zwei ganz verschiedene Operationen ! Wings Schreibweise breitet sich rasch über Eu¬
ropa aus und hat sich in Großbritannien und den USA bis ins 20 . Jh . gehalten . Das
1557 von dem Engländer Robert Record (e) (1510(?)- 1558 ) erfundene Gleichheitszei¬
chen verwendet 1639 als erster auf dem Kontinent der Holländer Jan Jansse Stampioen
de Jonghe (1610 - nach 1685 ) ; für die Proportion schreibt er A „ B = C „ D . 1678/79
benützt Gottfried Wilhelm Leibniz (1646- 1716) den Doppelpunkt sowohl als Divi¬
sionszeichen wie auch als Zeichen für das Verhältnis . 1684 verwendet er den Doppel¬
punkt als Divisionszeichen in einer Veröffentlichung , und 1693 lehnt er Sonderzeichen
für die Proportion ab . Es genüge , so meint er, die Schreibweise a : b = c : d, die sich
schnell im kontinentalen Europa durchsetzt .
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Aufgaben
1 . Oft gelingt es , ein Verhältnis großer Zahlen , das sehr unanschaulich ist , in

ein Verhältnis kleinerer Zahlen umzuformen , nämlich dann , wenn man
den Bruch kürzen kann . Dazu ein

Beispiel: 1029 : 1911 = 1029
19TT

7
13

= 7 : 13 .

2.

Gekürzt wurde mit 143 .
Drücke ebenso folgende Verhältnisse durch Verhältnisse teilerfremder
ganzer Zahlen aus :
a) 102 : 153 b) 0,05 : 0,7 c) 2,25 : 0,18 d) lf : 3,5
e) f 0 g) ( - 3) : 15,9 h) ff : ( - 2£ )
Welchen Wert muss x in den folgenden Proportionen haben ?
a) x : 8 = 3 : 2 b) 15 : (2x) = 2,4 : 5
c) 25 : 45 = (4x + 3) : 27 d) 7x 2 : 99 = 0 : 999
e) (5 — 7x) : (2x) = ( — 19) : 4 f) 5 : (x + 1 ) = 1 : ( 1 - x)
g) 0 : (x — 1 ) = (x + 1 ) : (x + 2) h) (2x + 3 ) : (7 — x) = (3 — 2x) : (x - 7)

3 . Berechne diejenigen Zahlen , für die gilt:
a) x : y = 2 : 3 ; x + y = 45
b) x : j = 3 : 5 ; x + y = — 16
c) x : y = ( — 1 ) : 3 ; x + j = 14
d) x : y = 1 : ( — 3) ; x + y = — 14
e) x : y = 11 : 5 ; x — y = 6
f) x : >> = 10 : 7 ; x — y = 6

4 . Berechne zu a , b , c die so genannte 4 . Proportionale; das heißt, löse die
Gleichung a : b = c : x .
a) a = 8 ; b = 3 ; c = 24 b) a = — 1 ; b = 5 ; c = 3
c) a = f ; b = lf ; c = j d) a = 0,27 ; b = 2,43 ; c = 16,2

5 . Umformen von Proportionen . Beweise für a,b,c,d 4= 0 die Richtigkeit der
folgenden Behauptungen :
a) In einer Proportion dürfen die Innenglieder miteinander vertauscht

werden , d . h . ,
ö : b = c : d <s> a \ c = b \ d\ z . B . : 7 : 5 = 35 : 25 o 7 : 35 = 5 : 25 .
(Euklid : Elemente , V, Satz 16 und VII , Satz 13 )

b) In einer Proportion dürfen die Außenglieder miteinander vertauscht
werden , d . h . ,
a : b = c : d <=> d : b = c : a ; z . B . : 7 : 5 = 35 : 25 o 25 : 5 = 35 : 7 .

c) In einer Proportion dürfen die Innenglieder mit den Außengliedern
vertauscht werden , d . h . ,
a : b = c : d o b : a = d : c ; z . B . : 7 : 5 = 35 : 25 <s> 5 : 7 = 25 : 35 .
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• 6 . Korrespondenz -Umformungen *
a) Beweise die Richtigkeit folgender Behauptungen, vorausgesetzt, alle

Nenner sind von null verschieden :
1 ) Korrespondierende Addition:

a : b = c : d <=̂ (a + b) : b = (c + d) : d
(Euklid : Elemente , V, Satz 18 )

2) Korrespondierende Subtraktion:
a : b = c : d <=> (« — b) : b = (c — d) : d
(Euklid : Elemente , V, Satz 17)

3) a : b = c : d o (a + b) : (a — b) = (c + d) : (c — d)
b) Leichter lassen sich diese Umformungen merken, wenn man sie in

Bruchform anschreibt. Mach’s !
• 7 . Mit den Umformungen aus Aufgabe 5 und 6 lassen sich Proportionen

vereinfachen , wenn man es geschickt anfängt.
Beispiel:

(a — x) : (b — x) = (a + x) : x
( ,a — b) : {b — x) = a : x korrespondierende Subtraktion

(a — b) : a = (b — x) : x Vertauschung der Innenglieder
(2a — b) : a = b : x korrespondierende Addition

x : b = a : (2a — b) Vertauschung der Innen- und der
Außenglieder und der beiden Seiten

Vereinfache auf entsprechende Art und Weise :
a) (19 + x) : v = 4 : 3 b) (15 - a) : a = 2 : 3
c) (a — b) : b = (c — d) : d d) (a + b) : b = (d + c) : d
e) (24 + 3a) : a = 63 : 5 f) (8 - 3a) : 2 = 3 a : 9
g) (2a + 3 b + x) : (2a + 3b — x) = 4a : (6b)

8 . In einem rechtwinkligenDreieck verhalten sich die beiden spitzen Winkel
wie 7 : 11 . Wie groß sind sie?

9. a) Zwei Zahlen verhalten sich wie 6 zu 7 . Vermindert man die erste um 4
und vermehrt die andere um 2 , so verhält sich die Differenz zu der
Summe wie 2 zu 3 . Wie heißen die Zahlen?

b) Vermehrt man den Zähler und Nenner des Bruches ^ um Zahlen, die
sich wie 3 zu 4 verhalten, so erhält man f . Wie heißen diese Zahlen?

c) Vermindertman den Zähler und Nenner des Bruches um Zahlen, die
sich wie 3 zu 4 verhalten, so erhält man Wie heißen diese Zahlen?

d) Welche Zahl muss man vom Zähler und Nenner des Bruches sub¬
trahieren , damit der entstandene Bruch sich zu f wie 3 ^ : 2 | verhält?

* correspondere (lat .) = miteinander in Einklang stehen
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10 . Im Kochbuch Das gelingt aus dem EhrenwirthVerlag steht ein Rezept für
»König Ludwigs Lieblingskuchen« : Lür den Teig benötigt man 200 g
Butter, 250 g Mehl , 80 g Zucker und 4 Esslöffel (EL) Weißwein . Der Belag
entsteht aus 600 g Äpfeln , 1 EL Zucker, etwas Zitronenschale und 1 \ EL
Wasser . Wie viel von den Zutaten muss man nehmen, wenn man nur
125 g Butter hat?
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