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3 . 1 Was ist ein Satz in der Mathematik ?

Das Wort Satz hat vielerlei Bedeutungen :

Ein Text besteht aus Sätzen.
Eine Sinfonie hat vier Sätze.
Ein Tennismatch dauert höchstens fünf Sätze.
Zusammengehörige Briefmarken ergeben einen Satz.
Die Zukunft liest man aus dem Kaffeesatz .
Flöhe machen oft Riesensätze.

All das meint der Mathematiker nicht , wenn er von einem Satz spricht .
Der Mathematiker erkennt Zusammenhänge zwischen mathematischen Gebilden , wie zum
Beispiel Geraden , Winkeln , Dreiecken . . . Einen solchen Zusammenhang beschreibt er in
einem (mathematischen ) Satz, gelegentlich sagt man dazu auch Lehrsatz . Ein Beispiel aus
dem Zahlenrechnen ist der Satz :

Wenn die Quersumme einer Zahl durch 3 teilbar ist,
dann ist auch die Zahl selber durch 3 teilbar .

Das Kernstück jedes mathematischen Gebiets ist das Gerüst seiner Sätze. Immer wenn
man eine Behauptung begründen will , muss man auf diese Sätze zurückgreifen . In diesem
Kapitel suchen wir Sätze über Winkel.

3 .2 Geradenkreuzung

Zwei Geraden , die sich in einem Punkt schneiden , nennt man eine Geradenkreuzung . Im
Bild sehen wir die Winkel oc, ß, y, ä . Zwei Winkel mit einem gemeinsamen Schenkel, deren
andere Schenkel eine Gerade bilden , heißen Nebenwinkel (z . B . oc und ß) . Die Summe von
Nebenwinkeln ergibt einen gestreckten Winkel, also gilt der

Satz :
Nebenwinkel ergeben zusammen 180°.
Nebenwinkel sind Supplementwinkel .

ot + ß = 180'
Y + 6 = 180°

ß + Y = 180 ° 6 + a = 180 °

44



Umgekehrt stimmt ’ s nicht :
Zwei Supplementwinkel müssen keine Nebenwinkel sein.
<tA und <$ C sind Supplementwinkel , aber keine Nebenwinkel .

D

A

C

B

Sind alle vier Winkel einer Kreuzung gleich groß , also 90°
, so stehen die Geraden aufein¬

ander senkrecht , in Zeichen g±h . Man nennt g Lot der Gerade h bzw . h Lot der Ge¬
rade g.

g ist Lot von h
h ist Lot von g

Winkel einer Geradenkreuzung , die nur den Scheitel gemeinsam haben , sich also gegen¬
überliegen, heißen Scheitelwinkel. Scheitelwinkel sind kleiner als 180 . er und y sind Schei¬
telwinkel. ß ist Nebenwinkel von beiden , deshalb ist

a + /? = 180° also <x = 180° - /n
y + ß = 180° also y = 180° - /1J

und damit a V-

a = y . a = Y 4 P = 6

Satz :
Scheitelwinkel sind gleich groß.

Je zwei der vier Winkel einer Geradenkreuzung sind also gleich groß . Als Schnittwinkel
der beiden Geraden nimmt man den Winkel, der kleiner oder gleich 90° ist.

Schnittwinkel
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Aufgaben zu 3 .2
1 . Ein Winkel oc ist

a) doppelt b) dreimal c) halb d) 17-mal
so groß wie sein Nebenwinkel oc * .
Wie groß sind oc und « * ?

2 . Ein Winkel oc ist um
a) 10° größer b) 10° kleiner c) 90° größer d) 1 ' kleiner
als sein Nebenwinkel oc * .
Wie groß sind oc und oc* ?

3 . Zeichne ein beliebiges Dreieck ABC mit den Winkeln oc, ß, y.
Verlängere jede Seite über die Ecken hinaus und konstruiere die Summe der drei Ne¬
benwinkel oc *

, ß * und y * .
4 . Zeichne ein konvexes Viereck ABCD mit den Winkeln a, ß, y, ö .

Verlängere jede Seite über die Ecken hinaus und konstruiere die Summe der Neben¬
winkel oc *

, ß *
, y * und <5 * .

5 . GERADENBUSCHEL
Berechne alle fehlenden Winkel , falls
a) a = 27°

, e = 130° b) oc = 14,2°
, ß = 93,8°

c) oc + ß = 170°
, y + t5 = 40° d) oc + 8 = 58 ° = y + f

• 6 . TETATORTE
Gib cp, t , fi, ip in Abhängigkeit von & an .

7 . WINKELHALBIERUNG
g und h schneiden sich in S . Die Gerade w halbiert den Winkel oc. Warum halbiert w
auch den Winkel ßl
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8 . DIE WINKELHALBIERENDEN
Die Gerade v halbiert den Winkel w, u halbiert den Nebenwinkel .
Wie groß ist der Winkel y) zwischen u und v, falls
a) w = 117 ° b) (D beliebig ist ?

3 .3 Doppelkreuzung mit einem Parallelenpaar

Schneidet eine Gerade s zwei parallele Geraden g und g
'
, so entsteht eine Doppelkreuzung

mit einem Parallelenpaar. Jeder Schnittpunkt S und S ' ist Scheitel von vier Winkeln . Diese
Doppelkreuzung denken wir uns so entstanden , dass eine auf g liegende Gerade (rot)
längs der Gerade s verschoben wird . Weil sich die Gerade dabei nicht dreht , ändern sich
auch die Winkel nicht . Deshalb gilt :
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Je zwei dieser gleich liegenden und gleich großen Winkel heißen F-Winkel oder auch Stu¬
fenwinkel .
Die Winkel y und a ' erinnern an den Buchstaben Z . Sie heißen deshalb Z-Winkel oder
auch Wechselwinkel. Auch die Winkel, die wie <5 und ß ’ liegen, nennen wir Z-Winkel.
Die Winkel <5 und a ' erinnern an ein E (wenn wir uns den Mittelstrich dazudenken ) . Sie
heißen deshalb E-Winkel oder auch Nachbarwinkel . Auch die Winkel , die wie y und ß ' lie¬
gen, nennen wir E -Winkel.

E- Winkel

6 +0GI8O 1
Z-Winkel

Y = a 'F-Winkel
6 = 6’

Bei einer Doppelkreuzung mit parallelen Geraden gilt der

Satz :
F-Winkel sind gleich groß . Z-Winkel sind gleich groß.
E-Winkel sind supplementär .

Begründung : Die Gleichheit der F-Winkel haben wir schon eingesehen.
y und a ' sind gleich groß,
weil a = a ' (F-Winkel)
und a = y (Scheitelwinkel) .
<5 und a ' sind supplementär ,
weil ö + a = 180° (Nebenwinkel )

und cc = oc
' (F-Winkel) .

Umgekehrt gilt :
1 . Sind alle Winkel s und t] gleich groß , so sind die Geraden a und b parallel .

Begründung : Denkt man sich durch A die Parallele zu b , so schließt sie mit der Ge¬
rade s einen Winkel der Größe i) { = e) ein, weil der Z-Winkel- Satz gilt.
Die Gerade a tut dasselbe , also ist a parallel zu b .
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inkel

ip +(Jj =100°

also
u ||v

Ähnlich überlegt man sich :
2 . Sind die Winkel (i und k gleich groß , so sind die Geraden g und h parallel .
3 . Ergänzen sich die Winkel (p und ip zu 180 °

, so sind die Geraden u und v parallel .
Mit diesen Umkehrungen ist es möglich , Parallelen zu konstruieren .

3 . Grundkonstruktion : Parallele durch einen Punkt

Gegeben sind eine Gerade g und ein Punkt P , der nicht auf g liegt . Durch P soll die Paral¬
lele p zu g konstruiert werden . Die gegebenen Stücke sind gezeichnet.
Lösung: 1 . Zeichne durch P irgendeine Gerade s , die g schneidet .

2 . Konstruiere in P den Z-Winkel zu s.

gegebene Stücke Lösung Ergebnis p ||g

Konstruieren wir alles in ein Bild, dann nummerieren wir die Konstruktionslinien in der
Reihenfolge, in der sie entstehen . Die Konstruktionsbeschreibung sieht so aus :

©
©
©
©
©

Beliebige Gerade s durch P schneidet g in Q .
Kreis um Q mit beliebigem Radius r schneidet g in S und [PQ] in T.
Kreis um P mit demselben Radius r schneidet [PQ] in R.
Kreis um R mit Radius ST schneidet Kreis © in U.
PU ist die gesuchte Parallele .

Diese Grundkonstruktion klappt natürlich auch mit den F-Winkeln .
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Zum schnellen Zeichnen gehen wir so vor : Mit dem Geodreieck und einem festgehaltenen
Lineal verschieben wir einen F-Winkel und zeichnen damit eine Parallele zu einer gegebe¬
nen Gerade . Streng genommen ist dies keine Konstruktion , sondern nur ein Behelf, weil
wir dabei einen starren Winkel verschieben . Trotzdem werden wir künftig Parallelen mei¬
stens so zeichnen , es geht schneller und ist genauso genau .
Der Sonderfall , dass die Schnittgerade s senkrecht auf den Parallelen steht , enthält ein
wichtiges Kennzeichen für Parallelen :

Satz :
Zwei Geraden sind genau dann parallel , wenn sie ein gemeinsames Lot haben.

g±l und hll also g |[h

DANNIST ABER AUCH)
OEDE GERADE ZU
.SICH-SELBERPARALLEL

Aufgaben zu 3 . 3

1 . Bei einer Doppelkreuzung mit einem Parallelpaar ist bekannt :
a) a = 35 ° b) ß = 135 ° c) y ' = 87,7° d ) <5 = 123 ° 45'
Berechne alle übrigen Winkel.
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2 . Eine Doppelkreuzung mit einem Parallelenpaar hat die Schnittpunkte S und T mit
ST = 6 .
Zeichne die Doppelkreuzung , falls
a) a = 90° b) 8 = 32° c) « = 2 - ß ' .

3 . WINKELGLEICHHEIT
Welche Winkel sind gleich groß ?

4 . Im Bild ZWICKZANGE sind folgende Winkel bekannt :
a) a = 128 °

, e = 52°
, y = 42°

b ) a = 147 ° 47 '
, e = 113 ° 53 '

, y = 32° 13 '
Entscheide , ob AD II BC .

5 . Was folgt für die Geraden g und h , wenn man von der Geraden u weiß
a) g || u und u || h b) g j_ u und uih
c) g Üu und uih d) giu und u | | h ?

• 6 . a und b sind zwei Strecken, la und lb sind die Lote durch die Mittelpunkte dieser Strek-
ken.
a) Was kann man über die Strecken sagen , wenn sich die Lote schneiden bzw . nicht

schneiden ?
b) Was kann man über die Lote sagen , wenn sich die Strecken schneiden bzw. nicht

schneiden oder sogar parallel sind ?
Zeichne für jeden Fall ein Bild.

7 . Zeichne ein Dreieck ABC und konstruiere durch jede Ecke die Parallele zur Gegen¬
seite . Wie groß sind die Winkel des Dreiecks , das diese Parallelen bilden ?



8 . PARALLELENTRIOS
Je drei Parallelen kreuzen sich und erzeugen die rote Figur .
Berechne die roten Winkel
a) für r = 18 °

, <5 = 45° • b) allgemein aus <5 und r.

59 . Konstruiere durch P die Parallele g nach dem Plan :
0 Kreis um P mit beliebigem Radius r schneidet g in H.
@ Kreis um H mit demselben Radius r schneidet g in K.
@ Kreis um H mit Radius PK schneidet Kreis 0 in S .
@ PS ist die gesuchte Parallele .
Warum ist die so konstruierte Gerade PS parallel zu g ?



3 .4 Winkelsumme im Dreieck

Im Bild sehen wir lauter gleiche Dreiecke, sie fügen sich lückenlos zu einem Parkett .
Eignet sich jedes Dreieck zum Auslegen einer Fläche ?

aBüte
KW

H

_JMMH

iH

H IK« t*.hbkEk« ßSSlHKH

HBMBgB

Bei genauerem Hinschauen merkt man , dass die drei Winkel (weiß , rot und schwarz ) je¬
des der gezeichneten Dreiecke zusammen einen gestreckten Winkel ergeben . Offenbar
taugt zum Parkettieren der Ebene jedes Dreieck , bei dem gilt : Summe der Winkel = 180°.
Man sieht leicht , dass jedes Dreieck diese Eigenschaft hat :

C

Winkelsumme

(X+ ß + * = 180 °

Wir betrachten ein beliebiges Dreieck ABC mit den Winkeln a , ß und y. Durch C zeich¬
nen wir die Parallele zu AB . Dabei entstehen bei C die Winkel a und ß als Z-Winkel , sie
ergeben zusammen mit y dort einen gestreckten Winkel.

Satz :
Die Winkelsumme ist in jedem Dreieck 180°.
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Diesen Satz kann man auch noch anders einsehen :
Ein Pfeil wandert um ein Dreieck . An jeder Ecke dreht er sich nach links um den Neben¬
winkel des jeweiligen Dreieckswinkels . Schließlich erreicht er wieder die Ausgangslage ,
nachdem er eine volle Drehung ausgeführt hat . Diese Drehung setzt sich zusammen aus
den drei Drehungen um a *

, ß * und y *
, das heißt oc * + ß * + y* = 360°

. Die Nebenwinkel
von Dreieckswinkeln nennt man auch Außenwinkel des Dreiecks . Die Summe der Außen¬
winkel ist in jedem Dreieck 360° .

Außenwinkelsumme

Diese Außenwinkelsumme hilft uns nun weiter :

(« + oc*) + (ß + ß *) + (y + y *) = 180° + 180° + 180°
oc + ß + y + oc* + ß* + y* = 180° + 360°

<x + ß + y + 360° = 180° + 360°
oc + ß + y = 180°.

Sonderfall : Rechtwinkliges Dreieck.
Ist zum Beispiel y = 90°

, so sind oc und ß Komplementwinkel : oc + ß = 90 ° .

Komplementwinkel
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In einem Beispiel wenden wir den Winkelsummensatz an :
Im Dreieck ABC sind ß und y bekannt . Drücke alle andern Winkel mit ß und y aus .
Wir gehen immer so vor : Wir suchen Dreiecke, von denen wir zwei Winkel kennen , und
berechnen den dritten .

Dreieck Idee Rechnung Ergebnis

A ABC a + ß + y = 180 °

t + t = a t = ja
a = 180 ° — ß — y
z = 90 ° - iß - b

AADF (Pi + 90 ° + t = 180 ° <p 1 = 180 ° — 90 ° — t =
= 90 ° - (90 ° - \ ß - b ) <pi = b + b

Scheitelwinkel <P 3 = <Pi = iß + b

Nebenwinkel +
II
II

OO

00

o
o

0

O
1 <P2 = 180 ° — \ ß ~ b

Scheitelwinkel Va = <P 2 cp4 = m ° - iß - b

A ADC 7 ! + 90 ° + a = 180 °
y , = 180 ° — 90 ° — a =

= 90 ° — ( 180 ° — ß — y) 7i = ß + y - 90 °

ADBC y 2 + 90 ° + ß = 180 °
y 2 = 180 ° - 90 ° - ß y 2 = 90 ° - ß

A AEC ®i + y + T = 180 ° b 1 = 180 ° — y — t =
= m ° - y - (90 ° ~ ^ ß ~ b ) Bi = 90 ° + ^ ß — b

Nebenwinkel Bi ~\~ b2 = 180 °

s2 = 180 ° — £ i =
= 180 ° — ( 90 ° + jß ~ b ) b2 = 90 ° — 2 ß + 2 y
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Zwischen Innen - und Außenwinkeln eines Dreiecks besteht ein weiterer einfacher Zusam¬
menhang :
Winkelsumme: a + ß + y = 180°
Außenwinkel: <x + oc * = 180°

a * = ß + y.

Satz :
Ein Außenwinkel am Dreieck ist gleich der Summe der beiden nicht anliegenden Innenwin¬
kel .

Übliche Bezeichnungen am Dreieck:
Die Ecken heißen A , B , C . Sie sind so angeordnet , dass man beim Wandern von A über B
nach C das Innere des Dreiecks links liegen lässt .
Die Innenwinkel bei A, B und C heißen a , ß und y, zugehörige Außenwinkel heißen a * ,
ß * und y* .
Nach dem gegenüberliegenden Eckpunkt nennt man die Seiten a , b und c.
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3 .5 Winkelsumme in Vielecken

Vielecke heißen nach der Anzahl ihrer Ecken Dreieck , Viereck, Fünfeck , n - Eck.
Allgemein definieren wir :

Definition :

Verbindet man n Punkte durch einen geschlossenen Streckenzug ohne Überschneidun¬
gen , so entsteht ein n - Eck.
Der Bereich, der vom Streckenzug umschlossen ist , heißt Inneres des n - Ecks . Ist das In¬
nere konvex (konkav ) , so nennen wir auch das n - Eck konvex (konkav ) .

konvexes Sechseck konkaves Sechseck

Unter der Winkelsumme in einem Vieleck versteht man die Summe der Winkelmaße . Sie
errechnet sich aus der Winkelsumme im Dreieck , wenn man das Vieleck geeignet in Teil¬
dreiecke zerlegt.
Beim Viereck schaut das so aus :

Viereck

Satz :
Die Innenwinkelsumme ist in jedem Viereck 360° .

Sonderfall : Ein Viereck mit lauter gleichen Winkeln , also mit vier rechten Winkeln , heißt
Rechteck .

Rechteck
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Jedes Fünfeck lässt sich in drei Dreiecke zerlegen ; deshalb gilt der

Satz :
Die Innenwinkelsumme ist in jedem Fünfeck 3 • 180 ° = 540 °

Fünfeck

oc + ß + Tf + 6 + E = 540°

Ein n-Eck ist ein Vieleck mit n Ecken , es lässt sich in n

Satz :
Die Innenwinkelsumme ist in jedem n -Eck (n - 2) • 180 °.

|

2 Dreiecke zerlegen. Also gilt :
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Lassen wir einen Pfeil linksrum um ein konvexes n-Eck wandern , dann dreht er sich insge¬
samt um 360°

. Weil er sich dabei an jeder Ecke um den Außenwinkel dreht , ist wie im
Dreieck die Summe der Außenwinkel 360°

. Auch aus diesem Außenwinkelsummensatz
folgt der Satz über die Summe der Innenwinkel eines n-Ecks :

(«! + « *) + (oc2 + oc %) + . . . + (a a + a *) = n - 180 °

ux + oc2 + • • • + oca + + a 2 + . • • + oc* = (n — 2) • 180° + 2 - 180°

360°

Ui + oc2 + . . . + ocn — (n - 2) • 180°

n- Eck

Innenwinkelsumme (X, + 0t2+ (Xj+ . . . + 0Cn = 180 ° (n - 2 )

Außenwinkelsumme 0C* + (X2 + (X
*+ . . . + 0tn — 360 °

Bei konkaven Vielecken (einspringende Ecken kommen vor) ist die Sache verzwickt . An
der einspringenden Ecke mit dem Winkel q> > 180° muss man statt des Außenwinkels (den
es dort nicht gibt) als Drehwinkel 180 ° - (p nehmen . Achte dann auf die Drehrichtung !

Summe : 1260 °

Summe : 360 °

UND WIE IST DAS MIT J~_
DEN AUßENWINKELN BEI
EINSPRINGENDENECKEN \

DA GIBTS KEINE
AUßENWINKEL!
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Übliche Bezeichnungen am Vieleck: 1
Die Eckpunkte bezeichnet man meist in alphabetischer Reihenfolge mit A , B , C sodass f
beim Wandern von A nach B usw . das Innere des Vielecks immer links liegt . Die Innen - 1
winkel heißen bei A beginnend der Reihe nach a , ß, y, . . . Anders als beim Dreieck nennt 1
man die Seiten bei A beginnend a , b , c, . . .

Aufgaben zu 3 .4 und 3 .5
1 . Berechne die restlichen Innen - und Außenwinkel eines Dreiecks , von dem bekannt

ist :
a) a = 35 °

, ß = 135 ° b) ß = 83,7°
, y = 1,6 °

c) cc = 24°
, ß * = 42° d) ß * = 140°

, y * = 123 °.
• 2 . Gibt es ein Dreieck mit

a) cc = 90 °
, ß * = 90° b) a + ß = 95 °

, ß + y = 85°
c) a * = 90 °

, a + ß = 170° d) a * = ß * = 60°?
3 . In einem rechtwinkligen Dreieck (y = 90°) ist

a) a = 53 ° b) oc = ß c) a = 199ß d) a * = 90 ° e) cc = 2ß.
Wie groß ist ßl

4 . In einem Dreieck mit a = ß ist
a) y = 40° b) y = 3cc c) ß + y = 140 ° d) a = y.
Wie groß ist al

• 5 . TRUGSCHLUSS
Geobold hat einen scharfsinnigen Beweis für den Dreiecksinnenwinkelsummen¬
satz.
L = Winkelsumme im Dreieck
a2 + ßi + di + ß2 + yi + ö2 + y2 + (Xi + di = 3Z

I L L
cci + oc2 + ßi + ß2 + gi + y2 + öj + ö2 + <53 = 3E~

a
^ ~

ß 360°

L + 360° = 3E
360° = 21
180 ° = E

Was ist faul ? - Was hat er wirklich bewiesen?
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6 . Berechne den bzw . die unbekannten Winkel eines Vierecks, von dem bekannt ist :
a) a = 40°

, ß = 80 °
, y = 173 ° b) oc = ß = y, ö = 84°

c) a = 2ß = 3y = 4d d) cc = ß,y = ö = 60°.
7 . Zeichne das Fünfeck ABCDE , miss seine Innenwinkel und berechne ihre Summe.

8 . Zeichne ein Siebeneck und verbinde eine Ecke mit der übernächsten so , dass ein
Dreieck und ein Sechseck entsteht .
Welcher Zusammenhang besteht demnach zwischen den Winkelsummen von Drei¬
eck , Sechseck und Siebeneck?

9 . SCHNITTWINKEL
Zeichne die Geraden g und h und ermittle ihren Schnittwinkel
a) mit dem Winkelsummensatz fürs Dreieck ABS
b) mittels geeigneter Parallelverschiebung der Gerade g .

tri SCHNITTWINKEL —

4 ; r -C

10 . REFLEXIONEN
Berechne den Schnittwinkel er
a) wenn u = 70°

, y = 60°
b) wenn y = 60°

, a unbekannt
c) allgemein in Abhängigkeit von y.

Was ergibt sich für y = 45° bzw . y = 90° ?

REFLEXIONEN



11 . YPSILON Berechne a und ß.

12 . cc = 40°
, ß = 80°

. Berechne er und r.

13 . ÜBERSCHLAG
ep = 110 °

, r = 30 , e | | n . Berechne a , ß und y.

ÜBERSCHLAG

14 . er = 25°
, r = 125 °

, u || v . Berechne a und ß.

15 . w = 4s = 120°
, u || v || w . Berechne a und ß.
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• 16 . Zeichne das Dreieck ABC . Konstruiere durch C eine Gerade , die AB unter dem
Winkel y schneidet .

17 . oc = 50°
, ß = 78°

, q = 30°
. Berechne er und &.

18 . a = 36°
. Berechne

B

19 . e = 33 °
, ß = 69°

, q> = 62°
, w = 35°.

Berechne ß und y. Sind AB und CD parallel ?
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20 . a = 10°
, ß = 40°

. Berechne e und <5.

21 . ZWEIOTA
u = 51 °

, w = 26°
. Berechne und i2.

22 . VIERO
a = 55 °

, e = 65°
, r = 38 °

. Berechne q x bis q 4.

VIERO FÜNFI

23 . FUNFI
a = 34°

, <5 = 60°
. Berechne cp 4 bis <p 5.

24 . <5 = 65°
, e = 20°

. Berechne a, ß und y.
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25 . SECHSIG
Berechne ax bis ff6 und v x bis v6.

26 . ACHTAU
e = 20°

, tt) = 126 °
. Berechne t x bis r 8 und v x bis v .

27 . Wie groß ist die Innenwinkelsumme in einem konvexen Zehneck ?
Wie groß ist die Außenwinkelsumme ?

28 . In einem 18 - Eck sind alle Innenwinkel gleich groß . Wie groß ist einer ?



3 .6 Paarweise parallele , paarweise senkrechte
Schenkel

s

c'

Betrachten wir immer nur ein Paar der gezeichneten Winkel , so sehen wir , dass je zwei
Schenkel parallel sind . Man sagt : Die Schenkel sind paarweise parallel . Die zugehörigen
Winkel sind entweder gleich groß :

<tS = <t A = <tB
oder supplementär : <£ S + < C = 180 °

, <tS + < D = 180 ° .

Zur Begründung legen wir eine Gerade durch die Scheitel. Die entstehenden Z- bzw . F-
Winkel bestätigen die Behauptung . Je nach Lage der Winkel muss man verschiedene Fälle
unterscheiden . Zwei Fälle führen wir vor :

<tS = -tB

b

'Q

<t (a,b ) + <»(a’b') = 180o

Es ergibt sich der

Satz :
Zwei Winkel mit paarweise parallelen Schenkeln sind gleich groß oder supplementär .



Wir werden es noch öfter mit Figuren zu tun haben , die Winkel mit paarweise senkrechten
Schenkeln enthalten . Die Bilder zeigen die beiden wichtigsten Fälle :

Im ersten Bild sind a und r jeweils Komplementwinkel zu e, sie sind also gleich groß .
Im zweiten Bild sehen wir das Viereck WOLF . Für seine Winkelsumme gilt :

ff + r + 90° + 90° = 360°
ff + r = 180° .

Allgemein gilt der

Satz :
Zwei Winkel mit paarweise senkrechten Schenkeln sind gleich groß oder supplementär .

Aufgaben zu 3 . 6
1 - u | | v und g | | h , begründe : <t (u , h) = < (v, g) .

2 . u | | v und g h , begründe : 4 (u , h) + <t (v, g) = 180

h

3 . u | | v und g | | h , begründe : < (u, h) = <t (v, g) .



4 . u |!v und g | | h , begründe : <£ (u , h) + <£ (v , g) = 180 °.

55 . Von zwei Winkeln a und ß ist bekannt :
Die einen Schenkel sind parallel , die andern stehen aufeinander senkrecht .
Welcher Zusammenhang besteht zwischen a und ßl
Zeichne zuerst Überlegungsfiguren mit a = 30° bzw . a = 130°.

6 . Suche in der Figur Winkel mit paarweise senkrechten Schenkeln und kennzeichne
gleich große Winkel mit gleicher Farbe .

7 . Suche in der Figur Winkel mit paarweise senkrechten Schenkeln und kennzeichne
gleich große Winkel mit gleicher Farbe .

8 . DREIECKSCHNECKE
Zeichne die Schnecke aus lauter rechtwinkligen Dreiecken.
Fang an mit der Strecke [ON ] , zeichne sie 14 cm lang (DIN A4 ) bzw . 10 cm lang
(DIN A5) .
Warum sind die Winkel v { gleich groß ? Wie groß sind sie ?

i

1



9 . Von den Geraden g , h, u und v ist bekannt : g±u , hxv und <£ (u , v) = 40°.
Berechne alle weiteren Schnittwinkel dieser Geraden .

10 . Wie groß sind in der Figur die Winkel s 4 bis e4 und v 1 bis v4 ?

3 .7 Parallelenaxiom

In der Wissenschaft ist es guter Brauch , bei jeder Behauptung die Voraussetzungen zu
nennen, auf die sich die Behauptung stützt . Für ein mathematisches Gebiet stellt man die
zu Grunde liegenden Voraussetzungen meist unter dem Namen Fundamentalsätze oder
auch Postulate oder Axiome zusammen . Diese Axiome sollten möglichst einleuchtend
sein , denn sie werden nicht bewiesen, sondern bilden die Grundlage des gesamten logi¬
schen Geflechts , das man aus Sätzen und Definitionen knüpft .

AXIOM III

Satz 1

Satz 3

AXIOM I AXIOM II
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Euklid
Gemälde von Max Emst 1945
Menil Foundation Inc . Houston

ä

Um 300 v . Chr . lehrte der Grieche Euklid Mathematik in Alexandria . In der Geometrie
hat er als einer der ersten ein System von Axiomen geschaffen und daraus Sätze über geo¬
metrische Figuren abgeleitet . Sein Buch » Die Elemente« enthält eine Zusammenfassung
des geometrischen Wissens seiner Zeit . Bis ins 20 . Jahrhundert ist es das Standard - Lehr¬
buch der Geometrie in den Schulen gewesen. Die Axiome des Euklid sind bis auf eines
sehr plausibel , so fordert er zum Beispiel :
Es ist immer möglich , zwei Punkte mit einer Strecke zu verbinden .
Es ist immer möglich , um jeden Punkt mit jedem Radius einen Kreis zu zeichnen .
Es ist immer möglich , eine Strecke beliebig weit zu verlängern .

Aber eine Forderung ist viel komplizierter als alle andern , sie leuchtete den Mathemati¬
kern lange Zeit nicht so ein . Es ist das 11 . Axiom, bekannt als
Parallelenaxiom:
Wenn zwei Geraden mit einer dritten auf derselben Seite innere Winkel bilden , deren
Summe kleiner ist als zwei rechte Winkel , dann schneiden sie sich.

EUKLID

a + ß < 180'

Euklid brauchte dieses Axiom zu seinem Aufbau der Geometrie . Wichtige Sätze, wie zum
Beispiel den Satz über die Winkelsumme im Dreieck , konnte er sonst nicht beweisen.
Die Mathematiker nach Euklid glaubten lange , dass das Parallelenaxiom in Wirklichkeit aus
den übrigen Axiomen Euklids herleitbar und damit als Axiom überflüssig sein müsste.
Darauf deutete schon die wenn -dann -Formulierung hin , die verdächtig nach einem be¬
weisbaren Satz klang . Auch war vielen die Aussage deswegen unheimlich , weil sie im Ge¬
gensatz zu den anderen Axiomen vom Verhalten zweier Geraden ganz weit draußen han¬
delt , wo eine zeichnerische Überprüfung nicht mehr möglich ist . Trotz größter
Anstrengungen hat keiner einen Beweis gefunden . Zwar entdeckten die Mathematiker
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viele Sätze, die sich genauso gut wie das Parallelenaxiom zum Aufbau der Geometrie
eignen , aber auch alle diese Sätze ließen sich nur beweisen, wenn man das Parallelena¬
xiom voraussetzte . Einige dieser Sätze, die sich als gleichwertig mit dem Parallelenaxiom
erwiesen haben , sind :
- Die Menge der Punkte auf einer Seite einer Gerade , die denselben Abstand von dieser

Gerade haben , bildet wieder eine Gerade .
(Poseidonios 135 bis 51 )

- Durch einen Punkt P gibt es zu einer Gerade g genau eine Parallele
(Proklos 410 bis 484)

- Die Winkelsumme im Dreieck ist 180°
. (Saccheri 1667 bis 1733)

- Zu jedem Dreieck lässt sich ein Dreieck mit gleichen Winkeln zeichnen , das beliebig
groß ist . (Wallis 1616 bis 1703 )

- Durch je drei Punkte , die nicht auf einer Gerade liegen, geht ein Kreis . (W . Bolyai 1775
bis 1856)

PROKLOSPOSEIDONIOS

WALLIS

W. BOLYAI

SACCHERI

In diesem Buch haben wir das Parallelenaxiom versteckt in der Behauptung , dass bei
einer Doppelkreuzung mit einem Parallelenpaar die Z-Winkel gleich groß sind .
Erst Carl Friedrich Gauss (1777 bis 1855) ist der Nachweis gelungen , dass das Parallellen -
axiom aus den übrigen Axiomen Euklids bestimmt nicht gefolgert werden kann . Ebenso wie
J . Bolyai (1802 bis 1860) undN . I . Lobatschewski ( 1792 bis 1856) zeigte Gauß , dass es auch
eine Geometrie gibt , in der alle Axiome Euklids bis aufs Parallelenaxiom gelten.

Eine Geometrie , in der nicht alle euklidischen Axiome gel¬
ten , vor allem nicht das Parallelenaxiom , heißt nichteukli¬
dische Geometrie . Ein Beispiel dafür ist die Geometrie auf
der Kugel ; dort gibt es auch Dreiecke mit einer Winkel¬
summe von 270°

. Offen bleibt die Frage , welche Geometrie
die >Richtige<, d . h . diejenige ist , die unsere Welt genau be¬
schreibt . Bis heute hat man noch kein ebenes Dreieck ge¬
funden , bei dem durch noch so genaue Messung eine gesi¬
cherte Abweichung von der Winkelsumme 180° festgestellt
worden wäre.
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