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5 . 1 Transversalen

Übersicht
Eine Gerade heißt Transversale bezüglich eines Vielecks , wenn sie keine Seite des Vielecks
enthält . Besondere Transversalen des Dreiecks ergeben sich , wenn man die Grundkon¬
struktionen anwendet :
- Streckenhalbieren
- Winkelhalbieren
- Lotfällen
- Loterrichten
Lür diese Transversalen haben sich eigene Bezeichnungen eingebürgert .
Seitenhalbierende : Die Seitenhalbierende s a ist die Strecke zwischen der Ecke A und der

Mitte M a der Seite a .

Winkelhalbierende : Die WinkelhalbierendewK ist die Gerade , die den Winkel oc halbiert .
Mit wK bezeichnet man aber auch die Strecke, die das Dreieck aus der
Gerade ausschneidet , und manchmal meint man damit sogar die
Länge dieser Strecke. Was jeweils gemeint ist , geht aus dem Zusam¬
menhang hervor.

als Gerade

als Strecke

Höhe : Die Höhe ha ist das Lot, das von A auf die Seite a (oder ihre Verlänge¬
rung) gefällt wird . Genau wie bei der Winkelhalbierenden bezeichnet
man mit ha auch die Länge der Strecke zwischen Ecke und Lotfuß-
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punkt . Was jeweils gemeint ist , geht wieder aus dem Zusammenhang
hervor .

als Gerade

als Strecke

Mittelsenkrechte : Die Mittelsenkrechte m a ist das Lot zu a durch die Seitenmitte Ma.

Besondere Eigenschaften
Beim Zeichnen von Mittelsenkrechten , Höhen , Winkel- und Seitenhalbierenden hat man
den Eindruck , als ob sich gleichartige Linien jeweils in einem Punkt träfen . Das stimmt
tatsächlich . Und diese Schnittpunkte haben auch alle eine besondere Bedeutung im Drei¬
eck .

Umkreissatz :
Die drei Mittelsenkrechten eines Dreiecks treffen sich in einem Punkt M .

AM - BM - CM Begründung : M sei der Schnittpunkt von m a und m c.
Weil mc die Symmetrieachse von A und B ist,
gilt : MA = MB .
Genauso ist MB = MC , da M auf m a liegt.
Also gilt auch MA = MC , das heißt M liegt
auch auf mb.
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Wegen MA = MB = MC sind A , B und C von M gleich weit entfernt , liegen also auf dem
Kreis um M mit Radius MA . Dieser Kreis heißt Umkreis des Dreiecks . Der Umkreis eines
Dreiecks hat also als Mittelpunkt den Schnittpunkt M der drei Mittelsenkrechten und geht
durch alle drei Ecken des Dreiecks.

ISTEMIMMERIM3ECK\

M innerhalb M auf einer Seite M außerhalb

Höhenschnittpunkt -Satz :
Die drei Höhen eines Dreiecks treffen sich in einem Punkt H.

Höhenschnittpunkt

Begründung : Durch jede Ecke des Dreiecks ABC zeichnet man die Parallele zur Gegen¬
seite. Diese Parallelen bestimmen das Dreieck A ' B 'C ' mit dem Mittendreieck
ABC . Weil hc die Seite [A' B '

] senkrecht halbiert , ist die Höhe hc zugleich die
Mittelsenkrechte mA-B . Ebenso gilt ha = mBC und mb = m ,vc . Weil sich die
Mittelsenkrechten des Dreiecks A ' B 'C ' in einem Punkt treffen , tun ’s auch
die Höhen im Dreieck ABC.
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Auch der Höhenschnittpunkt muss nicht im Inneren des Dreiecks liegen.

H als Ecke H außerhalbH innerhalb

Wir wenden den Höhenschnittpunkt -Satz in einer (be)merkenswerten Konstruktion an :
Die Geraden a und b schneiden sich in S , aber S liegt nicht mehr auf dem Zeichenblatt .
Zwischen a und b liegt ein Punkt P . Wir suchen eine Gerade g , die durch P und S geht.

Planfigur | S Konstruktion

Lösungsidee: Wir betrachten P als Höhenschnittpunkt im Dreieck ABS , A liegt auf a und
B auf b .

Lösung: 0 Das Lot von P und b schneidet a in A .
@ Das Lot von P auf a schneidet b in B .
(3) Verbindungen von A und B .
0 g ist das Lot von P auf AB .

Inkreissatz :
Die drei Winkelhalbierenden eines Dreiecks treffen sich in einem Punkt W.

d(W,a )=d(W,b )=d(W,c ) = g
Inkreis

Begründung : W sei der Schnittpunkt von wK und wH.
Weil wy die Symmetrieachse von a und b ist , gilt : d(W, a) = d(W , b) .
Genauso ist d(W, b) = d(W, c) , da W auf wK liegt.
Also gilt auch d (W, a) = d(W , c) , das heißt W liegt auch auf wp .
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Wegen d (W, a) = d(W, b) = d(W, c) hat W von allen Dreieckseiten denselben Abstand £ . | |
Sind Fa, Fb und Fc die Fußpunkte der Lote von W auf die Seiten, dann geht der Kreis um
W mit Radius q durch diese drei Fußpunkte . Dieser Kreis heißt Inkreis des Dreiecks . Der
Inkreis eines Dreiecks hat also als Mittelpunkt den Schnittpunkt W der Winkelhalbieren¬
den , sein Radius q ist der Abstand von W und den Dreieckseiten . Man sagt auch : Der In¬
kreis berührt alle drei Seiten des Dreiecks.
Bezeichnen wir nicht nur die Dreieckseiten mit a , b und c, sondern auch die Geraden , auf
denen sie liegen, so gibt es außer W noch drei weitere Punkte , die von den Geraden a , b
und c denselben Abstand haben .
Betrachten wir zum Beispiel Aw : Er ist der Schnittpunkt der Außenwinkelhalbierenden wy.
und wß , und der Innenwinkelhalbierenden wa . Weil Aw von a, b und c denselben Abstand
hat , liegen die Fußpunkte der Lote von Aw auf die Geraden auf einem Kreis um Aw mit
dem Radius ß a . Dieser Kreis heißt Ankreis des Dreiecks ABC . Die Bilder zeigen jeweils
ein Dreieck mit seinen drei Ankreisen und seinem Inkreis .

Ankreis -Satz :

Ankreis

Ähnlich wie den Inkreis - Satz beweist man den

Ankreis-Satz:
Je zwei Außenwinkelhalbierende treffen sich mit der Innenwinkelhalbierenden des dritten
Winkels in einem Punkt .
Dieser Schnittpunkt ist Mittelpunkt eines Ankreises des Dreiecks.
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1
INKREIS UND ANKREISE
BEIM SPITZWINKLIGEN DREIECK

INKREIS UND ANKREISE

BEIM STUMPFWINKLIGEN DREIECK
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Bei genauer Betrachtung der Ankreis - Figur entdecken wir noch den

Satz :
Die Winkelhalbierenden des Dreiecks ABC sind die Höhen im Dreieck der Ankreismittel¬
punkte Aw, Bw und C„ .

Der Beweis beruht auf der bekannten Eigenschaft , dass Innenwinkel - und Außenwinkel¬
halbierende an einer Ecke aufeinander senkrecht stehen.

Nehmen wir das äußere Dreieck als Ausgangsfigur , so lässt sich der Zusammenhang zwi¬
schen den Höhen und Winkelhalbierenden auch so ausdrücken :

Satz :
Im spitzwinkligen Dreieck gilt :
Die Höhen halbieren die Innenwinkel des Höhenfußpunkt -Dreiecks .
Die Seiten halbieren die Außenwinkel des Höhenfußpunkt -Dreiecks .
Beim stumpfwinkligen Dreieck ist es verwickelter :
Eine Höhe und zwei verlängerte Seiten halbieren die Innenwinkel des Höhenfußpunkt -Drei¬
ecks .
Die dritte Seite und die beiden andern Höhen halbieren die Außenwinkel des Höhenfuß¬
punkt-Dreiecks .

114



Schwerpunkt-Satz:
Die drei Seitenhalbierenden eines Dreiecks treffen sich in einem Punkt S .

Begründung: Die Seitenhalbierende s a halbiert die Seite [MbM c] des Mittendreiecks in A '
(Punktsymmetrie bezüglich A'

, siehe Seite 102 ) . Also liegt auf ihr die Seiten¬
halbierende des Mittendreiecks , die durch Ma geht . Zeichnet man die drei
Seitenhalbierenden des Dreiecks ABC, so hat man damit zugleich auch die
Seitenhalbierenden des Mittendreiecks . Dasselbe gilt fürs Mittendreieck
vom Mittendreieck und so weiter . Träfen sich die drei Seitenhalbierenden s a,
sb und s c nicht in einem Punkt , sondern in den drei Punkten X , Y und Z,
dann müsste das Dreieck XYZ innerhalb jedes noch so kleinen Mittendrei¬
ecks liegen. Weil das aber nicht sein kann , schneiden sie sich in einem
Punkt .

B

Verschachtelte Mittendreiecke

B

Die Seitenhalbierenden eines Dreiecks heißen auch Schwerlinien. Ein Pappe - Dreieck
bleibt nämlich im Gleichgewicht , wenn es längs einer Seitenhalbierenden auf einer ge¬
spannten Schnur liegt. Der Schnittpunkt S der drei Seitenhalbierenden heißt auch Schwer¬
punkt . Ein Papp - Dreieck bleibt nämlich im Gleichgewicht, wenn man es im Schwerpunkt
unterstützt .
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Aufgaben zu 5 . 1
1 . Zeichne das Dreieck ABC, konstruiere den Schnittpunkt S der Seitenhalbierenden 1

und gib die Koordinaten von S an . f
a) A( — 2 j 2) b) A(011 ) c) A(0 | - 9 ) *

B( 16 | 5 ) B( — 18 112) B ( 17 | - 7)
C ( 10114) C ( — 15 111 ) C ( 10116)

2 . Zeichne das Dreieck ABC, konstruiere den Schnittpunkt W der Winkelhalbierenden ;
und gib die Koordinaten von W an.
a) A(416 ) b) A( - 7 | - 4) c) A(21 — 1)

B( 18 16) B( ll | — 3 ) B( 141 - 17 )
C (9 118 ) C( — 11 5) C(21 — 12)

• 3 . Zeichne die Punkte A( 111 ) , B (9
j
7 ) und W(71 8 ) .

W ist der Schnittpunkt der Winkelhalbierenden des Dreiecks ABC . Konstruiere
Punkt C .

4 . Zeichne das Dreieck ABC, konstruiere den Schnittpunkt H der Höhen und gib die
Koordinaten von H an . i
a) A( — 511 ) b) A( - 2 | - 7 ) c) A(2 | 0) nur für c) : 0 1

B( 1014) B(21 — 1) B( 16 | - 2) 0 0 17 |
C(3113 ) C( — 9,512 ) C( 12 | — 5) 13 ;

* 5 . Zeichne die Punkte A( 1012) , B(8 | 8) und H (9 13 ) .
H ist der Schnittpunkt der Höhen des Dreiecks ABC.
Konstruiere Punkt C .

6 . Zeichne das Dreieck ABC, konstruiere den Schnittpunkt M der Mittelsenkrechten
und gib die Koordinaten von M an.
a) A( 114) b) A( - l | 4) c) A(01 — 5)

B ( 13 110) B ( - 12116) B( — 111 — 7)
C (5 116) C ( - 4110 ) C( — 4 | — 8)

7 . Zeichne das Dreieck ABC, konstruiere den Schnittpunkt M der Mittelsenkrechten ,
den Schnittpunkt H der Höhen , den Schnittpunkt S der Seitenhalbierenden und gib
die Koordinaten dieser Punkte an .
a) A(010 ) b) A(010) c) A( 111 ) nur für c) : 11

B ( 1810) B ( 1816) B(4 | 10) 908
C (6118 ) C ( 12112) C ( 117 ) 0

8 . Konstruiere den Umkreis des Dreiecks ABC und gib die Koordinaten des Umkreis¬
mittelpunkts M an.
a) A(010 ) , B (610 ) , C (4 | 8)
b) A(010) , B( 1310) , C(916)
c) A(010) , B(910) , C(5,5 13,5)

9 . An den Orten A(010) , B (610) und C (216) knallt es gleichzeitig.
Geobold ist auf G(016 ) .
a) In welcher Reihenfolge hört Geobold die drei Schüsse?
b) Kennzeichne farbig die Menge der Punkte , in denen er nur 2 Knalle hört .
c) Wo hört er nur einen Knall ?
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• 10 . Bei welchen Dreiecken liegt der Höhenschnittpunkt H :
a) innerhalb des Dreiecks b) außerhalb des Dreiecks c) auf dem Dreieck ?

11 . U( 1112,5) , V(8,5 111 ) , A(010) , B(8 12) , P(5 16) 13
Konstruiere die Gerade g , die P und den Schnittpunkt von UV und AB 0 0 9
enthält . 0

• 12 . Zeichne zwei Parallelen im Abstand 4 und eine dritte Gerade , die die Parallelen
schneidet .
Konstruiere alle Punkte , die von den drei Geraden denselben Abstand haben .

13 . Zeichne das Dreieck ABC mit a = 7,5 , b = 6,5 und c = 7 .
Konstruiere den Inkreis und miss den Radius .

14 . Konstruiere den Inkreis des Dreiecks ABC mit A( 111 ) , B( 15 | 1) und C(6113 ) und gib
die Koordinaten seines Mittelpunkts an .

15 . U( 115 ) , V(5 13 ) und W(2,5 18 ) legen drei Geraden fest . 14
a) Konstruiere die Menge der Punkte , die von den Geraden denselben 4 0 16

Abstand haben . 4
b) Zeichne den Inkreis und die Ankreise des Dreiecks UVW .

16 . Zeichne das Dreieck ABC mit A(0 | 0) , B (5 | 0) und C(3,5 13,5) und kon - 9
struiere die drei Ankreise . 7 0 10

12
• 17 . In einem Dreieck ABC sind M a(5,5 | 9,5) , Mb(2 17,5) und Mc(5,5 | 4) die 14

Seitenmitten . 3 0 10
Konstruiere das Dreieck , den Schnittpunkt der Höhen und den der Mit - 0
telsenkrechten .

18 .

19

Zeichne das Dreieck ABC mit a = 5 , b = 4 und c = 3 und konstruiere das Höhenfuß -
punkt -Dreieck.
Zeichne drei Geraden wKj wß und wy, die sich in W schneiden . A liegt auf wK.
Konstruiere ein Dreieck ABC, bei dem wa , wß und wy die Winkelhalbierenden sind .
(Tipp : Spiegle A an wß und wK!)

20 . Zeichne drei Geraden m a, mb und mc, die sich in M schneiden. Ma liegt auf ma.
Konstruiere ein Dreieck ABC, bei dem diese drei Geraden die Mittelsenkrechten
sind und M a Mittelpunkt von a ist.
(Tipp : Spiegle an mb und an mc .)

21 . Gegeben ist das Dreieck ABC mit A(010) , B( 13,5 14,5) und C(6112 ) . 14
Beschreibe ihm ein Dreieck XYZ so ein, dass X auf a , Y auf b , Z auf c 2 0 17
liegt und der Umfang möglichst klein ist . Die folgenden Aufgaben führen 0
schrittweise zum Ergebnis .

Umtang?
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a) Zeichne das Dreieck ABC und die Punkte X ( 10 | 8 ) , Y(5 110) und Z(4,5 | 1,5) .
Das Spiegelbild von Z bezüglich a ist Z'

, und bezüglich b ist Z" .
Begründe : Der Streckenzug Z"YXZ ' ist genauso lang wie der Umfang des Drei¬
ecks XYZ.

b) Zeichne das Dreieck ABC und den Punkt Z(4,5 11,5) .
Wähle X auf a und Y auf b so , dass der Umfang des Dreiecks XYZ möglichst
klein wird .

Begründe : Wenn die Seiten a und b spiegeln , dann trifft ein Lichtstrahl , den man
von Z aus in Richtung X losschickt , nach zweimaliger Reflexion wieder
bei Z ein.

c) Begründe : Das Dreieck Z"Z'C ist gleichschenklig. Der Winkel an der Spitze hat
die Größe 2 y, unabhängig davon , wo Z auf c liegt.

d) Z'Z" ist die Länge des Umfangs desjenigen einbeschriebenen Dreiecks mit einer
Ecke in Z , das den kleinsten Umfang hat .
Begründe : Z'Z" ist am kürzesten , wenn Z Fußpunkt der Höhe hc ist.

e) Begründe : Das gesuchte Dreieck XYZ ist das Höhenfußpunktdreieck im Drei¬
eck ABC.

f) Begründe : Im Höhenfußpunktdreieck XYZ sind die Höhen ha, hb und h c die
Winkelhalbierenden .

g) Zeichne ein beliebiges Dreieck XYZ . Konstruiere das Dreieck ABC, in dem das
Dreieck XYZ das Höhenfußpunktdreieck ist.

22 . TREFFPUNKT
M a, Mb und M c sind die Spiegelpunkte des Umkreismittelpunkts M bezüglich der
Seiten eines Dreiecks ABC.
Zeige : Die Kreise um M a, Mb und M c mit dem Radius r ( = Umkreisradius ) treffen

sich im Höhenschnittpunkt H des Dreiecks.

M b
Ma

®M

®MC

23. Zeige cp = tp .
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5 .2 Achsensymmetrisches Dreieck

Wenn ein Dreieck eine Symmetrieachse hat , dann muss gelten :

- Eine Ecke (C) muss auf der Achse s liegen, sie heißt Spitze des Dreiecks.
- Die beiden anderen Ecken (A , B) liegen symmetrisch zueinander bezüglich s ; c heißt

Basis des Dreiecks .
- Die Basis wird von der Achse senkrecht halbiert .
- Die Seiten a und b liegen symmetrisch zueinander bezüglich s ; sie heißen Schenkel des

Dreiecks.
- Der Winkel y an der Spitze wird von der Achse halbiert .
- Die Basiswinkel a und ß sind gleich groß .

Gleichschenkliges Dreieck

Spitze

Weil die Schenkel gleich lang sind , heißt das Dreieck auch gleichschenklig .

Definition

Ein Dreieck mit zwei gleich langen Seiten heißt gleichschenklig .

Wir wissen, dass jedes achsensymmetrische Dreieck gleichschenklig ist . Ist aber jedes
gleichschenklige Dreieck auch achsensymmetrisch ? Nehmen wir an , die Seiten a und b
sind gleich lang . Sie liegen deshalb symmetrisch zur Winkelhalbierenden wr Ein End¬
punkt C liegt auf wy . Folglich liegen auch die anderen Endpunkte A und B symmetrisch
zu wr Also ist das Dreieck ABC achsensymmetrisch bezüglich wr Es gilt der

Satz :
Jedes gleichschenklige Dreieck ist achsensymmetrisch .

Damit hat jedes gleichschenklige Dreieck auch die Eigenschaften von oben . Aus der Ach¬
sensymmetrie folgen noch weitere Eigenschaften :
- Die Transversalen w y, hc , mc und s c , die von der Spitze ausgehen , fallen mit der Symme¬

trieachse zusammen , das heißt wr = hc = mc = s c .
- Für die Längen dieser Transversalen durch die Basisecken gilt : wK = wß , ha = hb , s a = sb .

Gleichartiges trifft sich auf der Achse.
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Jedes gleichschenklige Dreieck hat also zwei gleich große Winkel . Oft weiß man von einem
Dreieck nur , dass zwei seiner Winkel gleich groß sind . Ist ein solches Dreieck dann auch
gleichschenklig ? Gilt etwa oc = ß , dann falte man das Dreieck längs der Mittelsenkrechte
mc . Dabei fallen A und B zusammen und ebenso die Schenkel der Winkel cc und ß . Weil oc
und ß gleich groß und spitz sind , müssen sich die symmetrischen Schenkel auf der Achse
treffen . C liegt also auf der Achse und das Dreieck ist gleichschenklig . Es gilt der

Satz:
Ein Dreieck mit zwei gleich großen Winkeln ist gleichschenklig .

Zwei wichtige Sonderfälle :
Das gleichschenklig rechtwinklige Dreieck ist ein gleichschenkliges Dreieck , dessen Winkel
an der Spitze 90° ist . Die Schenkel sind die Katheten , die Basis ist die Hypotenuse . Die Ba¬
siswinkel betragen 45°

. Das gleichschenklig rechtwinklige Dreieck ist die Hälfte eines Qua¬
drats , das längs einer Diagonale zerschnitten ist . Unser Geodreieck schaut auch so aus .

■
jty^öterose

Das gleichseitige Dreieck ist ein Dreieck mit drei gleich langen Seiten. Jede Seite lässt sich
als Basis eines gleichschenkligen Dreiecks auffassen , also hat das gleichseitige Dreieck
drei Symmetrieachsen . Alle Transversalen w , h , m und s , die von einer Ecke ausgehen , fal¬
len zusammen . Zum Basiswinkel cc sind ß und y gleich große Partner - Basiswinkel , also
sind alle drei Winkel gleich groß . Weil sie zusammen 180 ° ergeben, ist jeder 60°.

Satz:
Im gleichseitigen Dreieck misst jeder Winkel 60“.

Bei einem Gerät macht man von den Eigenschaften des gleichschenkligen Dreiecks Ge¬
brauch . Es ist der Winkelhalbierende Heuschreck - eine mechanische Vorrichtung zum
Winkelhalbieren .
Im gleichschenkligen Dreieck KGF ist der Außenwinkel an der Spitze G gleich der
Summe der beiden Basiswinkel, also gleich 2 cc . Beim Heuschreck ist KG = FG . G und K
sind Gelenke , F gleitet in einer Führung . Mit dem um G drehbaren Arm [GF ] stellt man
bei G einen Winkel 2a ein und liest bei K den halben Winkel ab.



Winkelhalbierender Heuschreck

Winkeldrittler

Ein zusätzlicher Arm von derselben Länge erweitert diesen Gelenkmechanismus zum Win¬
keldrittler . Man schiebt den Einstellknopf E in der Führung so , dass bei F der Winkel 3a
entsteht , und liest bei K den Drittelwinkel ab.

Aufgaben zu 5 .2
1 . In einem gleichschenkligen Dreieck mit der Spitze C gilt :

a) y = 68 ° b) a = 17,8 ° c) ß = 2y
d) y * = 100° e) a * = 98 ° f) a * = 4y .
Berechne die Winkel des Dreiecks.

2 . In einem gleichschenkligen Dreieck ist ein Winkel cp bekannt . Berechne die übrigen
Winkel.
a) <y = 110° b) = 60° c) cp = 50° (zwei Fälle)

3 . In einem gleichschenkligen Dreieck mit der Spitze C ist ß = 40°
. Unter welchem

Winkel schneiden sich
a) m a und mb b) ma und mc c) s c und c
d) wy und wK e) wa und wß f) wKund h c ?

4 . Zeichne einen Kreis mit r = 4 . Trage den Radius immer wieder als Sehne so ab , dass
ein Sehnenzug entsteht .
Begründe , warum sich der Sehnenzug schließt .
(Tipp : Verbinde alle Sehnenenden mit dem Kreismittelpunkt .)

5 . Ist in einem gleichschenkligenDreieck ABC mit C als Spitze ein Schenkel doppelt so
lang wie die Basis, so schneidet sb ein gleichschenkliges Dreieck ab . Begründe dies.
Drücke die Winkel des abgeschnittenen Dreiecks mit y = 4 ACB aus .
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6 . ABC ist ein rechtwinkliges Dreieck mit y = 90 ° .
F liegt so auf AB , dass < ACF = a.
Begründe : [CF] = s c .

• 7 . Warum kann man kein Dreieck in zwei gleichseitige Dreiecke zerlegen?

• 8 . a) Zeichne ein spitzwinkliges und ein stumpfwinkliges Dreieck , das aus zwei gleich¬
schenkligen Dreiecken besteht , und gib die Dreieckswinkel an .

b) Zeige : Jedes Dreieck mit a = 3ß besteht aus zwei gleichschenkligen Dreiecken .
c) Zeige : Jedes rechtwinklige Dreieck besteht aus zwei gleichschenkligen Dreiecken.
d) Zeige : Jedes Dreieck mit y = 2ß und ß g 45° besteht aus zwei gleichschenkligen

Dreiecken .
• 9 . Warum gibt es kein Dreieck mit genau zwei Symmetrieachsen ?

10 . Die drei Strecken [MA] , [MB ] und [MC ] sind gleich lang und liegen so , dass je zwei
einen 120 °-Winkel bilden .
Begründe , dass das Dreieck ABC gleichseitig ist.

• 11 . Im Dreieck ABC schneiden sich wK und wß in I . Die Parallele durch I zu c schneidet
a in U und b in Y.
Zeige : ÜV = ÄV + BÜ .

12 . Im Dreieck ABC ist die Seite c doppelt so lang wie ihre Seitenhalbierende . Wie groß
ist der Winkel y ?

13 . Im Dreieck ABC schneidet wß die Seite b in D . Die Parallele durch D zu a schneidet
c in E .
a) Begründe : EB = ED .

• b) Welcher Zusammenhang muss zwischen ß und y bestehen , damit BD = DC ist?
Welche Bedeutung hat DE dann für den Winkel <tADB ? Begründung !

Hinweisfür die nächsten Aufgaben :
Suche in den Figuren gleichschenklige Teildreiecke!

• 14 . Das Dreieck ABC hat bei A einen rechten Winkel . _
D und E liegen so auf a , dass CA = CD und BA = BE .
Zeichne die Figur ins Heft .
a) Wie groß ist der Winkel < EAD ?
b) Berechne <£ ADE in Abhängigkeit von ß.
c) Wie groß muss ß sein, damit ADE ein gleichschenkliges Dreieck ist?

Warum muss A die Spitze sein?



• 15 . Zeichne ein Dreieck ABC mit b < a . F ist ein beliebiger Punkt auf c . G liegt so auf a,
dass CH = CG ; H liegt so auf b , dass AF = AH.
Zeige : <tFHG ist das arithmetische Mittel von a und y.

• 16 . Zeichne ein Dreieck ABC mit a < b . Der Kreis um C mit Radius a schneidet c in F
und b in G.
Berechne die Winkel <tGCF , < BGC und <fGFA in Abhängigkeit von a und ß .

18 . Zeichne zwei Kreise mit gleichem Radius so , dass der eine durch den Mittelpunkt
des andern geht . Wähle B auf einem Kreis und zeichne das Dreieck ABC.
Berechne ß in Abhängigkeit von a .

C F

• 19 . Zeichne zwei Kreise so , dass der eine durch den Mittelpunkt des andern geht . Wähle
A auf einem Kreis und zeichne das Dreieck ABC.
Berechne y in Abhängigkeit von a .
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•• 20 . Zeichne zwei Kreise so , dass der eine durch den Mittelpunkt des andern geht . Wähle
A auf einem Kreis und zeichne das Dreieck ABC.
Begründe , dass das Dreieck ABC gleichschenklig ist und die Spitze C hat .

21 . ESELSOHR

ESELSOHR
Nimm ein DIN -A4-Blatt und falte es so , dass die
längeren Seiten aufeinander liegen, dabei entsteht die
Faltlinie f. Knicke dann ein Eselsohr so , dass die
Ecke B im Punkt C auf f fällt und die neue Faltlinie
g durch die andere Ecke A geht.
Von welcher Art ist das Dreieck ABC ? Begründung !

22 . Zeichne ein spitzwinkliges Dreieck . Wähle D auf [AB ] .
Die Mittelsenkrechte von [AD ] schneidet AC in E ,
die Mittelsenkrechte von [DB ] schneidet BC in F.
Wie groß ist der Winkel <tFDE ?
Wie groß ist der Winkel <tFDE , wenn a (oder ß) stumpf ist?

23 . In einem Dreieck ABC ist CM = AM , wobei M der Mittelpunkt von [AB ] ist .
Was für Teildreiecke sind AMC und MBC ? Wie groß ist der Winkel bei C ?

• 24 . ZACKEN
Wie groß ist die Summe der Zackenwinkel beim regelmäßigen Fünfstern (Druden¬
fuß ) und Siebenstern , Form 1 und Form 2 ?

Drudenfuß

Form 1
Form 2
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25 . Gegeben sind zwei sich schneidende Geraden g und h und ein Punkt P , der weder
auf g noch auf h liegt . Konstruiere durch P eine Gerade e , die mit g und h ein gleich¬
schenkliges Dreieck einschließt .

• 26 . Konstruiere ein gleichseitiges Dreieck so in ein Quadrat , dass eine Ecke mit einer
Quadratecke zusammenfällt und die beiden anderen Ecken auf Quadratseiten lie¬
gen.

5 .3 Rechtwinkliges Dreieck , Satz von Thaies

Ein Dreieck mit einem 90°-Winkel heißt rechtwinkliges Dreieck . Die Schenkel des rechten
Winkels sind die Katheten , die Gegenseite des rechten Winkels ist die Hypotenuse . Wegen
a + ß + 90° = 180° sind oc und ß Komplementwinkel: oc + ß = 90 ° .

HAT EIN H

Hypotenuse ! ß

Komplementwinkel : 0t + ß — 90

Die Katheten sind zugleich Höhen . Die dritte Höhe hat eine bemerkenswerte Eigenschaft :
Sie zerlegt das Dreieck in zwei rechtwinklige Teildreiecke, deren Winkel mit denen des
großen Dreiecks übereinstimmen . Diese Höhe zerlegt also den rechten Winkel so in oc und
ß, dass ß an b anliegt .
Zerlegt man den rechten Winkel so in oc und ß, dass nun ß an a anliegt , so entsteht eine be¬
sondere Linie im Dreieck : die Seitenhalbierende sc.

c

TC =TBTA =TC

also TA =TB =TC

Begründung : Wegen der beiden gleich großen Winkel ist das Dreieck ATC gleichschenk¬
lig : TA = TC , ebenso gilt : TC = TB . Daraus folgt : TA = TB , also halbiert
T die Hypotenuse und [CT] ist die Seitenhalbierende .

Thaieskreis

Zeichnet man über einer festen Hypotenuse mehrere rechtwinklige Dreiecke, dann schaut
es so aus , als ob die Scheitel der rechten Winkel auf einem Kreis lägen . Schon vor etwa
zweieinhalbtausend Jahren hat der griechische Philosoph und Mathematiker Thaies von
Milet tatsächlich folgenden Satz aufgestellt :
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Satz :
Die freien Ecken aller rechtwinkligen Dreiecke mit gemeinsamer Hypotenuse liegen auf
einem Kreis mit der Hypotenuse als Durchmesser .

Begründung : Oben haben wir gezeigt, dass A , B und C von T gleich weit entfernt sind ;
folglich liegt C auf dem Kreis um T mit [AB ] als Durchmesser .

% s ür

% S 3-

Es gilt auch die Umkehrung dieses Satzes :

Satz :
Ein Dreieck , dessen Ecken so auf einem Kreis liegen , dass eine Seite Kreisdurchmesser ist,
hat einen rechten Winkel .

Begründung : Weil A , B und C auf dem Kreis um M liegen, ist AM = BM = CM = r ; des¬
halb sind die beiden Dreiecke AMC und CMB gleichschenklig , der Winkel
< ACB setzt sich also aus den Basiswinkeln oc und ß zusammen . Wegen der
Winkelsumme im Dreieck ABC gilt : _

ec + ß + (ß + a ) = 180°
( cc + ß ) + (« + ß ) = 180°

2 ( cc + ß ) = 180°
oc + ß = 90° .

Thales ( = 650 bis -+- 560 ) zu Ehren
heißt dieser Kreis Thaieskreis .
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Wir führen zwei Aufgaben vor , in denen man den Thaieskreis braucht : In der einen wird
konstruiert , in der anderen wird begründet .
1 . Konstruiere ein Viereck ABCD mit

c = 15 , d = 11,5 , f = DB = 16,6 , <5 = 60°
, ß = 90°

Planfigur

Lösungsidee: Zuerst Konstruktion des Dreiecks ACD .
B liegt auf dem Kreis um D
[AC] ,

Lösung:

mit Radius f und auf dem Thaieskreis über

© [AD] zeichnen
@ ö bei D antragen
© Der Kreis um D mit Radius c

schneidet den freien Schenkel
von <5 in C .

@ Kreis um D mit Radius f
© Thaieskreis über [AC] schnei¬

det Kreis @ in B .

Ergebnis : Viereck ABiCD und Viereck AB 2CD

Ergebnis
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2 . ABC ist ein gleichschenkliges Dreieck mit der Spitze C . Die Winkelhalbierende wa
schneidet a in D . Das Lot in D auf wK schneidet die Gerade AB in E . Zeige :
AE = 2DB .

Begründung : Weil <t ADE = 90° ist , liegt D auf dem Thaieskreis über [AE] mit dem Mit¬
telpunkt M . Außenwinkel im gleichschenkligen Dreieck AMD ist < DMB
=

^
- a Jr — a = a . Weil das Dreieck ABC gleichschenklig ist , ist ß = a ; des¬

halb ist auch das Dreieck BDM gleichschenklig .
Es gilt : DB = DM = ÄM =

y AE , also 2DB = ÄE

Aufgaben zu 5 .3

1 . Von einem rechtwinkligen Dreieck ABC (ß = 90°) ist bekannt : BC = 4 , a ist halb so
groß wie y.
a) Wie groß sind a und y7 b) Konstruiere das

Dreieck ABC.
c) Gib ohne Messung an , wie lang AC , sb und h c sind.
d) Begründe : wy halbiert sb .

• 2 . Gegeben sind eine Gerade g und ein Punkt P,
a) der nicht auf g liegt , b) der auf g liegt .
Konstruiere jeweils mit Hilfe des Thaieskreises das Lot zu g durch P .

• 3 . Zeichne ein spitzwinkliges Dreieck ABC und die drei Thaieskreise über den Seiten.
Begründe : Bei keinem spitzwinkligen Dreieck können sich die drei Thaieskreise in

einem Punkt schneiden .
Bei welchen Dreiecken schneiden sie sich in einem Punkt ?

4 . Zeichne in einen Kreis mit Radius 4 zwei Durchmesser und verbinde ihre End¬
punkte .
Welches Viereck entsteht ? Begründung !

• 5 . Welche Eigenschaft muss ein Viereck haben , damit sich die vier Thaieskreise über
den Seiten in einem Punkt schneiden ?
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6. WINKELZÜGE
Zeichne die Figuren zuerst ins Heft .

zeige : oc= ß zeige : e +t = v + e
(Tip: vergleiche v und t )

• 7 . Bei welchen Dreiecken liegt der Umkreismittelpunkt M :
a) innerhalb des Dreiecks b) außerhalb des Dreiecks
c) auf dem Dreieck ?

• 8 . Im Dreieck ABC ist c = 6 und der Umkreisradius r = 6 .
Zwischen welchen Werten muss a liegen, damit M innerhalb des Dreiecks liegt?

9 . Zeichne ein spitzwinkliges Dreieck ABC.
Begründe : Der Thaieskreis über a und der über b schneiden sich auf c.
Wie nennt man diesen Schnittpunkt noch ?

10 . Zeichne den Kreis um M(5 14) mit r = 4 und den Punkt S (3 12) . Fälle von S aus das
Lot auf jede Sehne (bzw . ihre Verlängerung ) , die durch T(9 14) geht.
Auf welcher Kurve liegen die Lotfußpunkte ?

11 . Die Gerade a geht durch A(3 16,5) , die zu a parallele Gerade b geht durch B(4 | 1) .
Konstruiere die Parallelen a und b mit Abstand 2,5 .

12 . Konstruiere die Geraden , die von A(0 | 0) und B ( ll | 2) den Abstand 2,5 haben .
• 13 . Zeichne ein rechtwinkliges Dreieck ABC, die Seitenmitten M a , Mb , M c und den Fuß¬

punkt H der Höhe durch den Scheitel C des rechten Winkels.
Begründe : Die Ecken des Fünfecks M cHM aCMb liegen auf einem Kreis.
Vergleiche den Radius dieses Kreises mit der Hypotenusenlänge c.

14 . In einem Dreieck ABC ist NA der Mittelpunkt der Strecke [AH] . Konstruiere den
Umkreis des Dreiecks NAHbH c . Welche weiteren besonderen Punkte des Dreiecks
ABC liegen auf diesem Kreis?

• 15 . Zeichne ein Dreieck ABC mit y = 90 °
, c = 9 und a = 5 .

a) Konstruiere die Mittelpunkte Mj und M2 der Umkreise von AAM cC und ABCM c .
b ) Beweise : MiM 2 1 CM c .
c) Beweise : AM b und BM2 schneiden sich auf dem Umkreis des Dreiecks ABC .
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••
••

•
•• 16 . Zeichne ein Dreieck ABC mit y = 90°

, a = 3,5 und b = 5,5 .
W ist ein beliebiger Punkt auf c . 1 ist das Lot von c durch W . 1 schneidet AC in D
und BC in E . N ist der Mittelpunkt von [DE ] ,
a) Beweise : Die Vierecke WBCD und AWCE haben je einen Umkreis .
b ) Beweise : <fNCE = <*
c) Auf welcher Linie bewegt sich N , wenn W auf c wandert ?

17 . KREISQUARTETT
Zeichne die Figur ins Heft und begründe , dass die Gerade AE senkrecht zu AB ist .

18 . Zeichne ein gleichschenkliges Dreieck ABC mit Spitze C und y = 45 ° .
Der Thaieskreis über b schneidet a in D . Berechne den Winkel e = 4: BAD .

19. Der Thaieskreis über der Basis c eines gleichschenkligen Dreiecks ABC schneidet
die Schenkel in D und E .
Begründe : Die Diagonalen im Viereck ABDE bilden denselben Winkel wie die

Schenkel.
20 . VERRÜCKTE LEITER

Die Leiter [AB ] wird so verrückt , dass A auf dem Boden und B an
der Wand entlangrutscht .
Auf welcher Kurve bewegt sich der Mittelpunkt M ? Begründung !

21 . Zeichne in ein gleichschenkliges Dreieck ABC mit C als Spitze (y < 90 °) alle Höhen
ein . Die Höhenfußpunkte sind Ha , Hb und H c , H ist der Schnittpunkt der Höhen .
a) Begründe : Die Ecken des Vierecks CHbHHa liegen auf einem Kreis .

Zeichne den Mittelpunkt M dieses Kreises.
b ) Begründe : <fMH bHc = 90° .
c) Wie groß muss y sein , damit das Viereck MHbHcHa ein Quadrat ist ?
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22 . Zeichne ein Dreieck ABC mit < C = 90° und H , den Höhenfußpunkt auf der Hypo¬
tenuse c . _ _
Zeichne den Punkt D auf der Hypotenuse so ein , dass DH = HB ist.
Zeichne die Gerade CD und die dazu Senkrechte durch A , die beiden schneiden sich
in E .
Begründe :
a) Das Dreieck DBC ist gleichschenklig.
b) Die Winkel <tEAB und <fBAC sind gleich groß .

• c) Durch A, E , H und C geht ein Kreis .
Die Strecken [HC] und [HE ] sind gleich lang.

23 . Konstruiere ein gleichschenkliges Dreieck , bei dem der Thaieskreis über dem einen
Schenkel den andern Schenkel in seinem Mittelpunkt schneidet .

• 24 . Im Innern eines Kreises k um M mit Radius r liegen die Punkte E und F.
Ein rechtwinkliges Dreieck ABC ist dem Kreis so einbeschrieben , dass E auf der
einen und F auf der anderen Kathete liegt.
a) Konstruiere das Dreieck ABC für M(414 ) , r = 4 , E(21 5 ) und F(617 ) .
b ) Suche zwei Punkte E und F so , dass es keine Lösung gibt .
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