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6 . Kapitel
Dreieckkonstruktionen
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6 . 1 Grundkonstruktionen

Geradlinig begrenzte Figuren lassen sich immer aus Dreiecken zusammensetzen . Sie sind
also konstruierbar , wenn man ihre Teildreiecke konstruieren kann . Deshalb sind Dreieck¬
konstruktionen ein unentbehrlicher Bestandteil der Elementargeometrie .
Beim ersten Blick auf ein Dreieck sieht man drei Seiten und drei Winkel . Wenn diese sechs
Größen bekannt sind , dann lässt sich das Dreieck sicher eindeutig rekonstruieren . Geht ’s
aber auch mit weniger als sechs Stücken ? Versuchen wir , Dreiecke aus nur zwei Stücken

ICH KANN'-S AUCHL .
MIT ZWEISTUCKEN

zu konstruieren , zum Beispiel aus den Seiten b und c oder aus der Seite a und dem Winkel
ß. Die beiden Bilder zeigen, dass es dann aber unendlich viele Dreiecke gibt . Deshalb ist
die Aufgabe , ein Dreieck aus zwei Stücken zu konstruieren , nicht eindeutig lösbar . Mit
drei Stücken aber klappt es meistens.
Dreieckkonstruktionen bestehen also darin , dass man aus drei gegebenen Stücken mit Zir¬
kel und Lineal ein Dreieck konstruieren soll , in dem diese drei Stücke Vorkommen. Als
Stücke kommen neben Seiten und Winkeln zum Beispiel auch Höhen , Seiten- und Winkel¬
halbierende infrage . Sind nur Seiten und Winkel gegeben, dann sprechen wir von Grund¬
konstruktionen .

Als Lösungen lassen wir nur solche Dreiecke zu, die den üblichen Umlaufsinn haben :
Beim Durchlaufen der Ecken der Reihe nach muss das Innere links liegen.

Eine Dreieckkonstruktion gliedert sich in drei Schritte :
- Zuerst zeichnen wir eine Planfigur - das ist eine Figur , die zeigt, wie die Lösung ausse-

hen könnte . Die Planfigur soll uns auf die Lösungsidee bringen , an der Planfigur über¬
legen wir uns die Konstruktionsschritte . Die gegebenen Stücke zeichnen wir rot ein , das
erwartete Ergebnis schwarz .

- Im zweiten Schritt beschreiben wir die Lösungsidee.
! - Im dritten Schritt folgt die eigentliche Konstruktion mit Zirkel und Lineal (und Geo-

Dreieck) .
Beim Formulieren der Lösungsidee (der Analysis, wie manche auch sagen) gibt es einige
typische Situationen : Man beginnt meist mit einer Strecke bekannter Länge und hat damit
die beiden Endpunkte . Für jeden weiteren Punkt X braucht man zwei Linien : Geraden
oder Kreise, die sich in ihm schneiden . Eine solche Schnittlinie nennt man von alters her
auch geometrischen Ort . Die wichtigsten geometrischen Örter sind :



,xBedingung Geometrischer Ort

Man kennt einen Punkt P
und die Entfernung d = PX .

Kreis
um P mit Radius d

{ XIPX = d } P

Man kennt von einem Winkel a
die Größe , einen Schenkel [SA
und weiß , dass X auf dem andern
Schenkel liegt .

Man kennt eine Gerade g und
weiß , dass X den Abstand s hat .

Man kennt eine Strecke [AB ]
und weiß , dass X der Scheitel
eines 90°-Winkels über [AB ] ist .

freier Schenkel von a
{ XI -*ASX= <xl

Parallelenpaar
von g im Abstand s

{ XI d(g,X) = s )

Thaieskreis über [AB]
1X1 -£AXB = 90° }

Wir gliedern nach den gegebenen Stücken :

a) Drei Seiten (SSS)
Beispiel : a = 7,5 ; b = 6,5 ; c = 7

Planfigur

Lösungsidee und Lösung:
[AB ] bestimmt die Punkte A und B . ©
C liegt 1 . auf dem Kreis um A mit Radius b ©

2 . auf dem Kreis um B mit Radius a ©
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Es ergeben sich zwei Dreiecke, ABQ und ABC2 , mit den geforderten Eigenschaften .
Die beiden Dreiecke sind achsensymmetrisch zueinander , aber nur das Dreieck ABQ
hat den richtigen Elmlaufsinn ! Damit ist die Konstruktion eindeutig .



b) Zwei Seiten und der Zwischenwinkel (SWS )

Beispiel : a = 12,5 ; ß = 53 °
; c = 13

Planfigur

Lösungsidee und Lösung :
[AB ] bestimmt die Punkte A und B . ©
C liegt 1 . auf dem freien Schenkel von Winkel ß ©

2 . auf dem Kreis um B mit Radius a ©

Auch diese Aufgabe hat nur eine Lösung , die Konstruktion ist eindeutig .

c) Zwei Winkel und eine Seite (WSW )

Beispiel : oc = 51 °
; c = 8,5 ; ß = 76°

Planfigur

Lösungsidee und Lösung:
[AB ] bestimmt die Punkte A und B.
C liegt 1 . auf dem freien Schenkel von Winkel oc

2 . auf dem freien Schenkel von Winkel ß

a und ß sind anliegende Winkel der Seite c . Ist nur einer der beiden gegebenen Winkel
anliegend , so ergibt sich der zweite anliegende Winkel über die Winkelsumme im Drei¬
eck. In jedem Fall hat die Aufgabe nur eine Lösung , die Konstruktion ist eindeutig .
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d) Zwei Seiten und ein Gegenwinkel (SSW)
Beispiel : c = 8,5 ; a = 6,5 ; oc = 45 ° ;

Planfigur

Lösungsidee und Lösung:
[AB ] bestimmt die Punkte A und B . @
C liegt 1 . auf dem freien Schenkel von Winkel ec ©

2 . auf dem Kreis um B mit Radius a @

Im Gegensatz zu den bisherigen Konstruktionen ergeben sich jetzt zwei Lösungsdrei¬
ecke : ABCj und ABC2 . Das liegt daran , dass der Kreis um B den freien Schenkel von a
zweimal trifft . Vergrößert man den Kreisradius , dann laufen die Schnittpunkte Q und
C2 auseinander , bis schließlich C2 auf A trifft , der Radius also gleich c ist . Wird der Ra¬
dius noch größer , dann gibt ’s nur noch einen Schnittpunkt . Die Konstruktion ist dem¬
nach eindeutig , wenn die Seite , die dem gegebenen Winkel gegenüberliegt , mindestens
so lang ist wie die andere gegebene Seite .

1 Lösung
wenn a § c

1 2 Lösungen
r wenn d < a < c

1 Lösung wenn a = d
l keine Lösung
J wenn a < d

£ di£ LÄNGERE -SEITE KANN
AUCHGLEICHLANG-SEIN! )

in allen Dreiecken ist (X=45° ß =72° ^ =63°

Damit haben wir alle Fälle behandelt , in denen drei Stücke (Seiten oder Winkel) eines
Dreiecks bekannt sind . Bei drei gegebenen Winkeln ist einer immer schon durch die bei¬
den anderen bestimmt (Winkelsumme im Dreieck !) , im Grund sind dann vom Dreieck
bloß zwei Stücke bekannt , und diese erlauben beliebig viele Lösungen.
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Dreieck -
Grundkonstruktionen

Anwendung : Vermessung

QR = 6 = 18ml =3m

QP = 7,2 =21,6m
Länge ?

APQR = AP ’Q
’R

(WSW )

Die Entfernung PQ soll möglichst einfach bestimmt werden . Weil zwischen P und Q ein
Bach fließt , ist die direkte Längenmess ung recht mühsam . Auf dem Q -Ufer wählen wir
irgendeinen Punkt R so , dass sich QR bequem messen lässt . Durch Visieren messen wir
außerdem im Dreieck PQR den Winkel bei Q und den bei R . Wir zeichnen das Dreieck
maßstäblich verkleinert (WSW) , messen die Länge der Dreieckseite [PQ] und berechnen
schließlich ihre wahre Länge . Nebenbei bekommen wir so auch die Entfernung PR und
den Winkel bei P .

Die Kunst der Geländevermessung besteht darin , in geschickt ausgewählten Dreiecken
drei geeignete Größen zu messen und dann die fehlenden drei Stücke eindeutig zu bestim¬
men. Ist im Gelände genug Platz , dann macht ein geometrischer Trick die Zeichnung ent¬
behrlich : Man steckt auf dem Q - Ufer ein Dreieck P'Q 'R ab , das bezüglich R punktsymme¬
trisch zum Dreieck PQR ist und misst die Streckenlänge P 'Q ' .
Bei der Landesvermessung ermittelt man wichtige Ausgangspunkte zum Beispiel für
Grundstück -Vermessungen oder für die Herstellung von Landkarten . Man überzieht das
betreffende Gebiet mit einem Netz von Dreiecken , deren Ecken feste Punkte im Gelände
sind , zum Beispiel Granitsteine oder Kirchturmspitzen . In der Lachsprache heißen diese
Punkte trigonometrische Punkte , abgekürzt TP. Hat man die Länge einer Strecke genau ge¬
messen, dann lassen sich allein durch Winkelmessung mit der WSW- Konstruktion alle
Seiten des Netzes bestimmen (Triangulation ) .
Man beginnt mit einem weitmaschigen Netz , dem Netz 1 . Ordnung (Seitenlängen etwa
30 km) und verfeinert durch Netze 2 . Ordnung (Seitenlängen etwa 10 km) , 3 . Ordnung
(Seitenlängen etwa 3 km) bis zum Netz 4 . Ordnung (Seitenlängen etwa 1 km) . Um genaue
Ergebnisse zu erzielen, sucht man trigonometrische Punkte so , dass die Dreiecke möglichst
nah an die Lorm gleichseitiger Dreiecke herankommen . Denn so vermeidet man schlei¬
fende Schnitte , die eine exakte Bestimmung des Schnittpunkts erschweren .

S,

schleifender Schnitt



■Kirchturm in
Aufkirchen

N
. Basispyramidexin Aufkirchen

&

' Basispyramide
in Oberföhring

' Nordturm der Frauen¬
kirche in München

Bei der ersten
Landesvermessung

1801 in Bayern wählte
$ man als Grundlinie eine

21653,8m lange Strecke von
Oberföhring nach Aufkirchen .

^ Vv Über den Endpunkten errichtete man
oSö'*" pyramidenförmige Denkmäler , sie sind

^ heute noch erhalten (Basispyramiden ).
Aus dieser Grundhnie berechnete man den

Abstand zweier lotrechter Achsen : die eine ist die
, 4? Symmetrieachse der Helmstange auf dem Nordturm

der Frauenkirche in München , die andre ist die Sym¬
metrieachse der Helmstange auf dem Kirchturm in Auf¬

kirchen . Auf dieser 28496,9m langen Strecke baute man das
ganze bayerische Dreiecknetz auf . Die Netzpunkte beschrieb

man in einem Koordinatensystem : die x-Achse wies nach
Norden , die y-Achse nach Westen (!). Der Punkt auf dem

Nordturm der Frauenkirche , in dem die Symmetrieachse der
Helmstange den Knopf an seiner Unterseite durchdringt ,

hat die Koordinaten (010).

ArberGerolfingen Weißenburg .Berletzhof Brennberg

Kösching

SchöfwegOberkochen »Wellheim
Bollstadt

Mühlhausen
Kammern

Widdersdorf

HölsbrunnSchweiten-
\ kirchen Reutern'Oberwittels¬

bach j/ Reichen-,
\ berg /

PauluszelK
Bonstetten

Gerats- KirchbergkirchenIIMittelstettenMeßhofen

.Mittbach
MünchenTussenhausen Asten

.Schnaitsee

10km
Obemdorf-
Weithwörth

Hohenpeißenberg

HochgemKümachi
.Wendelstein

Benediktenwand
HoherGöllHochplatteyGrünten'

.Pfänder
Rofhn\ / — ^ Bimhom

Ausschnitt aus einem neuzeitlichen Dreiecknetz l .Ordnung
Aufkirchenist Punkt in einemNetz2.0rdnung.

ÖdkarspitzeHochvogelHoherIfen
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Aufgaben zu 6 . 1
1 . SSS

Konstruiere ein Dreieck ABC mit
a) a = 6 ; b = 4 ; c = 7 b) a = 3,9 ; b = 3,9 ; c = 6,2

2 . SWS
Konstruiere ein Dreieck ABC mit
a) b = 7 ; c = 6 ; <x = 50° b) a = 6,5 ; b = 5,6 ; y = 113°

3 . WSW, SWW
Konstruiere ein Dreieck ABC mit
a) c = 6 ; a = 70°

; ß = 50° b ) a = 4,9 ; ß = 63 °
; y = 64°

c) b — 5 ; er — 60°
; ß — 50° d) a = 5 ; a = 60°

; ß = 50°

4 . SSW
Konstruiere ein Dreieck ABC mit
a) c = 7 ; a = 5 ; y = 85° b) c = 7 ; a = 5 ; ec = 35°

Fertige eine Zeichnung in geeignetem Maßstab an und bestimme die gesuchte Größe :

5 . MAUERHÖHE

8 . FERNSEHTURM 9. KANALBREITE

|S(? I?)1

A(1 !U ORTUNG

10 . TRIANGULATION / 64 ! SCn /79 -
’D(? I?)

C(? !?k| r

/sS ? (? l?)

A(? I?)«
F (? l?)

Q(610 )PCO10)
E (? l?)



6 .2 Schwierigere Konstruktionen

a) Konstruktionen mit Transversalen

Beispiel : c = 12,5 ; y = 90°
; hc = 6

Lösungsidee und Lösung :
[AB ] bestimmt die Punkte A und B.
C liegt 1 . auf dem Thaieskreis über [j

2 . auf der Parallele zu [AB ] in

Es ergeben sich die beiden Lösungsdreiecke ABQ und ABC2.

Planfigur

>B

©
4B ] ©
i Abstand hc ©

b) Dreieck aus Teildreiecken

Beispiel : b - c = 5 ; a = 37°
; hc = 9

Lösungsidee : Das Teildreieck CAH c ist konstruierbar aus a , hc und < CH cA — 90°
(WWS ) .
D liegt auf [AC] und auf dem Kreis um C mit Radius b - c.
B liegt auf dem Kreis um A mit Radius AD und auf AHC.

Lösung : [CH c] bestimmt die Punkte C und Hc. ©
A liegt 1 . auf dem freien Schenkel von <t Hc = 90° ©

2 . auf dem freien Schenkel von <tDCH c = 90° — oc ©
D liegt 1 . auf AC

2 . auf dem Kreis um C mit Radius b - c ©
B liegt 1 . auf [AH C

2 . auf dem Kreis um A mit Radius AD ©

Planfigur Ergebnis
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c) Viereck aus Teildreiecken

Wie viele der vier Seiten und der vier Winkel braucht man , damit das Viereck eindeutig
festliegt ? Genügen zum Beispiel alle vier Seiten? Nein ! Die Bilder zeigen,dass es dann
unendlich viele Lösungen gibt .
Im Gegensatz zum beweglichen Gelenkviereck ist ein Gelenkdreieck starr (Eindeutig¬
keit der SSS -Konstruktion !) . In der Technik macht man sich das beim Bau von Fach¬
werkhäusern , Brücken und andern starren Gebilden zunutze .

Gelenkviereck

Nicht einmal mit fünf unabhängigen Stücken ist ein Viereck eindeutig konstruierbar .
Beispiel : a = 14 ; b = 5,8 ; c = 6,5 ; d = 7,5 ; oc = 53°

Planfigur

A'

Lösungsidee : Zuerst konstruieren wir aus a , d und a das Teildreieck ABD , wegen der
SSS - Konstruktion ist es eindeutig .
C liegt auf dem Kreis um D mit Radius c und auf dem Kreis um B mit
Radius b.

Lösung : [AB ] bestimmt die Punkte A und B . ©©
D liegt 1 . auf dem freien Schenkel von Winkel a ©

2 . auf dem Kreis um A mit Radius d ©
C liegt 1 . auf dem Kreis um D mit Radius c ©

2 . auf dem Kreis um B mit Radius b ©

A

Ergebnis

‘B •B

Es ergeben sich die beiden Lösungsvierecke ABQD und ABC2D.
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Aufgaben zu 6 .2
1 . Konstruiere ein rechtwinkliges Dreieck ABC (y = 90°) aus

a) c = 7 , b = 6,5 b) c = 7 , cc = 60° c) c = 7 , ha = 4.
2 . Konstruiere ein gleichschenklig rechtwinkliges Dreieck ABC mit der Basis AB = 8 .

• 3 . Konstruiere ein rechtwinkliges Dreieck ABC (y = 90°) aus
a) c = 8 , hc = 3 (zwei Lösungen) b) c = 8 , hc = 4
Für welche Längen von hc gibt es kein Lösungsdreieck ?

Konstruiere ein Dreieck ABC mit :
4 . a) a = 3 , b = 6,5 , ha = 5 b) c = 9 , b = 10 , ha = 9

d) b = 5 , ß = 62°
, ha = 4 e) b = 6 , oc = 55 °

, hb = 4
5 . a) a = 6 , b = 7 , sa = 5 b) c = 6 , ß = 105 °

, sc = 4

c) a = 5 , c = 6 , h c = 4,5
f) c = 8 , a = 110 °

, ha = 5
c) b = 6 , a = 30°

, s c = 3
6 . a) a = 9,ß = 60°

, wß
= 5

c) ß = 45°
, y = 105 °

, wß
= 9

b ) b = 5 , « = 70°
, w, = 4,8

d) y = 75°
, « ■= 45°

, w, = 8
7 . a) c = 10 , hc = 7 , ha = 4

d ) a = 10 , h c = 6 , s c = 7
• 8 . a) y = 60°

, ha = 7 , hb = 9
c) oc = 30°

, hb = 5 , s c = 5

b) b = 8 , hb = 4 , sb = 6 c) c = 10 , ha = 8 , s c = 5
e) b = 6 , ha = 5 , wK = 5,7 f) b = 7 , h c = 5 , wa = 5

b) ß = 115 °,h a = 4,s a = 5
d) ß = 110 °

, hc = 6 , wy
= 7,5

• 9 . Tipp : Spiegle das Dreieck an einer Seitenmitte :
a) b = 9 , c = 11 , sa = 8 b) c = 12 , oc = 150 °

, sa = 3 c) b = 6 , hb = 8 , sa
= 5

d) c = 9 , ha = 7 , sb = 8 e) oc = 105 °
, hc = 6 , s a = 5

• 10 . Tipp : Suche geeignete gleichschenklige Teildreiecke :
a) y = 90°

, ß = 50°
, c - a = 3 b) y = 30°

, a = b , b - c = 3
c) a = 5 , h c = 4 , b - c = 1,5 d) c = 6 , a = 60°

, a + b = 10
e) a = b , a + c = 10 , y = 90° f) a + b + c = 15 , <x = 60°

, y = 90°

11 . Konstruiere ein Dreieck ABC aus :
a) c = 7 , ha = 6 , oc = 45° b) c = 6 , ha = 5 , hc = 4 c) c = 8 , hb = 7 , b = 6 .

• 12 . Konstruiere ein Dreieck ABC mit dem Umkreisradius r :
a) a = 4,5 ß = 70°

, r = 2,5 b) r = 5 , oc = 65 °
, ß = 65° c) b = 4,5 , hb = 3 , r = 2,5

d) c = 6 , hb = 4 , r = 3 e) c = 6 , hb = 3 , r = 3,5 .
13 . Konstruiere ein Dreieck ABC mit c = 8 , hc = 7 , Mc(5 11 ) Mittelpunkt auf

c und mit dem Umkreis um M (5 | 4) mit Radius 5 . 0

14 . Zeichne A( 111 ) , B (8 11 ) und M(4,5 14) . Konstruiere die Ecke C so , dass M
der Umkreismittelpunkt des Dreiecks ABC mit der Höhe hc = 4 ist . 0

15 . In einem Dreieck ABC ist H(515) , und die Höhenfußpunkte sind Hc(5 [ l ) und
H a(6,5 16,5) . Konstruiere das Dreieck.

• 16. Konstruiere ein Dreieck ABC aus b = 7 , HA = 5 und HC = 3 .
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• 17 . Konstruiere das spitzwinklige Dreieck ABC , von dem die Höhenfuß - 9
punkte bekannt sind : H a( 1014) , Hb(6 16) und Hc(8,5 11 ) . 0 0 11

0
18 . In einem Dreieck ist H(413 ) , Ha(8 | 5 ) und Hb( l 14) . 13

a) Konstruiere das spitzwinklige Dreieck ABC . 0 0 11
• b ) Welche weiteren Dreiecke haben dasselbe Höhenfußpunkt-Dreieck 0

wie a) ?
19 . Hc und Hb sind die Höhenfußpunkte im Dreieck ABC.

Begründe : A, H , H c und Hb liegen auf einem Kreis . Welchen Radius hat er?

20 . Konstruiere ein Viereck ABCD mit :
a) a = 7 , b = 6 , c ^ 4 , d = 8 , y = 82°
b) a = 7 , b = 4 , BD = 11 , « = 150°

, ß = 65 °
c) a = 8 , b = 9 , c

_
= 2 , ß = 15 °

, y = 110°
d) a = 7 , b = 5 , AC = 7 , BD = 10 , <tDCA = 35 °
e) a = 5 , d = 7 , <t ADB = 35 °

, <f CDB = 15 °,
<tCBD = 20°

21 . Konstruiere ein Rechteck ABCD aus
a) ÄC = 8 , BC = 4 b) BD = 8 , <£ BDC = 22,5°

22 . Konstruiere ein Viereck ABCD aus
AB = 5 , ÄD = 6 , CD = 2,5 , a = 45°

, y = 90°.
23 . Konstruiere ein Fünfeck ABCDE mit :

AB = 4, BC = 3 , CD = 2,5 , DE = 3,5 , < EAC = 60°
, < ABC = 105 °

, <tBCD = 105°

24 . Konstruiere ein Sechseck ABCDEF mit :
AB = 2 , BC = 2,5 , ÄC = 4 , DC = 4 , 4BCD = 115 °

, -4FCE = 30°
, < ECD = 30°,

< CDE = 100°
, <tEFC = 75°

25 . Fertige eine Zeichnung in geeignetem Maßstab an und bestimme die gesuchte Größe
a) INSELGRÖSSE b) SONNENHÖHE

1100m

26 . a) B ( 1511 ) , W(715) , H c(6 | l ) ;
konstruiere A und C vom Dreieck ABC

b) M(2,5 15 ) , W(5 | 5 ) , H = C(8 14) ;
konstruiere A und B vom Dreieck ABC

c) M c(413) , B(816) , W(3,514,5 ) ;
konstruiere das Dreieck ABC

0 0 15
0

10
0 0 8

0
7

0 0 9
0
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6 . 3 Beziehungen zwischen Seiten und Winkeln im Dreieck

Die Aufgabe , ein Dreieck aus den gegebenen Seiten zu konstruieren , ist nicht immer lös¬
bar . So gibt es zum Beispiel kein Dreieck mit den Seitenlängen 3 , 4 und 8 . Der Grund ist
einfach : Die beiden Kreise, die sich in C schneiden sollten , treffen sich nicht . Damit sie
sich schneiden , muss a + b s c sein ; der Fall a + b = c liefert jedoch kein Dreieck , weil
C auf [AB ] liegt. Es gilt der

Satz :
Im Dreieck sind zwei Seiten zusammen immer länger als die dritte . (Dreiecksungleichung )

Dreiecksungleichung

a +b <c

C,AB < AC, + C,B

ÄB <Ä^ + C^B

usw

Es gilt also immer : a + b > c, b + c > a und c + a > b.
Im Grund beschreibt die Dreiecksungleichung etwas , was jeder weiß : Der direkte Weg
von A nach B ist immer kürzer als ein Umweg über C . Auch der Längenunterschied zweier
Seiten ist nicht beliebig wählbar . Wäre nämlich zum Beispiel a - bgc , dann wäre auch
a ^ b + c , was gegen die Dreiecksungleichung verstieße . Deshalb gilt der

Satz :
Im Dreieck ist der Längenunterschied zweier Seiten immer kleiner als die Länge der dritten
Seite.

Auch zwischen Seiten und Winkeln gibt es Zusammenhänge . Sind in einem Dreieck zum
Beispiel alle Seiten gleich lang , so sind auch alle Winkel gleich groß . Sind nur zwei Seiten
gleich lang (gleichschenkliges Dreieck !) , so sind auch die Gegenwinkel dieser Seiten gleich
groß . Zu verschieden langen Seiten gehören auch verschieden große Gegenwinkel .

Satz:
Im Dreieck gehört zum größeren zweier Winkel die längere Gegenseite .

Beispiel : Wenn oc > ß, dann a > b .



Begründung : Im Dreieck ABC ist a > ß. Tragen wir in A den Winkel ß an , dann schneidet
der freie Schenkel die Seite [BC ] in D . Das Dreieck ABD ist dann gleich¬
schenklig : AD = BD . Wegen der Dreiecksungleichung ist AC < CD + DA ,
also auch ÄC < CD + DB (weil DA = DB) ,
also ist b < a

Weil in einem Dreieck höchstens ein Winkel ein rechter oder gar ein stumpfer sein kann ,
gilt der

Satz :
Im rechtwinkligen Dreieck ist die Hypotenuse die längste Seite.
In jedem stumpfwinkligen Dreieck ist die Gegenseite des stumpfen Winkels die Längste .

Damit können wir auch zeigen, dass die Lotstrecke 1 die kürzeste Verbindung von einem
Punkt (nicht auf der Gerade ) zu einem Punkt der Gerade ist . Jede andere Verbindungs¬
strecke ist Hypotenuse in einem Dreieck mit der Kathete 1, sie ist deshalb länger .

USW

Geht man von den Seiten aus (statt von den Winkeln) , dann ergibt sich der

Satz:
In einem Dreieck liegt der längeren zweier Seiten auch der größere Winkel gegenüber .

Beispiel : Wenn c > b , dann y > ß
Begründung : Wäre ß ^ y, dann wäre auch bäc . Das kann aber nicht sein, weil wir c > b

vorausgesetzt haben .

Aufgaben zu 6 .3
1 . Entscheide ohne Zeichnung , ob es ein Dreieck ABC gibt mit

a) a = 10 , b = 15 , c = 20 b) a = 8 , b = 9 , c = 10
c) a = 43 , b = 27 , c = 16 d) a = 9 , b = 14, oc = 95°
e) a = 4 , b = 5 , oc = 70°

, y = 50° f) a = 5,h c = 5,5 « = 70°

2 . In einem Dreieck ABC ist ß = 120 ° und b = 10 .
Was kannst du über die Längen von a und c sagen?

3 . Von drei Punkten P , Q und R ist bekannt
a) PQ + QR = PR b) PQ + QR > PR
c) PQ - QR = PR . Wie liegen jeweils die drei Punkte ?

4 . In einem Dreieck haben zwei Seiten die Längen 5 und 7 .
Zwischen welchen Grenzen liegt die Länge der dritten Seite ?

145



• 5 . Zeichne ein Dreieck ABC mit b < a . W ist der Schnittpunkt von wy und c, D ist der
Spiegelpunkt von A bezüglich wr
Begründe : a) CD = b b) <tCDW = ec
c) ß < oc (ohne Verwendung des Satzes : b < a => ß < a ) .

6 . Zeichne ein Dreieck ABC mit a > b . Wähle D auf [BC ] so , dass CD = 6 .
Begründe : a) <£ ADC ist spitz b) AB > BD c) Formuliere die Aussage b) mit Hilfe der
Dreieckseiten a , b und c .

7 . Im Dreieck ABC ist c = 13 und b = 19 . Die Länge BC ist ganzzahlig . Wie lang kann
[BC ] sein, wenn gilt
a) zwei Winkel sind gleich groß
b) y < oc < ß c) ß > 100 ° ?

• 8 . Zeichne ein konvexes Viereck ABCD und seine Diagonalen e und f. u ist der Um¬
fang des Vierecks.
Begründe :
a) e + f > a + c b) e + f > iu c) e + f < u.

9 . ABC ist ein gleichseitiges Dreieck , D ein Punkt auf AC.
Begründe :
a) Liegt D zwischen A und C , dann ist BD > DC .
b) Liegt D nicht auf der Strecke [AC ] , aber auf ihrer Verlängerung über A hinaus ,

dann ist BD < DC .
b + c• 10 . Begründe : In jedem Dreieck ABC gilt : ha < —-— .

• 11 . Folgere aus dem Ergebnis von 10. , dass in jedem Dreieck die drei Höhen zusammen
kürzer sind als der Umfang .

• 12 . Zeichne ein Dreieck ABC mit y = 90° und die Höhe hc.
c

Begründe : hc g — .
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