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7 . Kapitel

Kongruenz



7 . 1 Kongruenz von Figuren

Die meisten regelmäßigen Muster bestehen aus sich wiederholenden Figuren .

Definition:

Figuren , die sich beim Aufeinanderlegen decken , heißen deckungsgleich oder kongru¬
ent .
Sind zwei Figuren F , und F2 kongruent , so schreibt man kurz Fi = F2.

Zwei Figuren decken sich, wenn sie punktweise übereinstimmen .

Bei manchen einfachen geometrischen Figuren können wir mit einem Blick entscheiden ,
ob sie kongruent sind . So sind zum Beispiel kongruent :
- zwei Strecken, wenn sie gleich lang sind
- zwei Winkel, wenn sie gleich groß sind
- zwei Kreise, wenn sie gleichen Radius haben
- zwei Quadrate , wenn ihre Seitenlangen übereinstimmen .

kongruente Strecken kongruente Winkel

[abMpqMvu ]

AB = PQ = VU

< ROT a < MUS

■3R0T - < MUS

kongruente Kreise kongruente Quadrate

RITA®HUGO a = g

0 g G

H U

Immer kongruent sind auch zwei zueinander achsen - oder punktsymmetrische Figuren :
Die achsensymmetrischen Figuren lassen sich zur Deckung bringen , indem man an der
Symmetrieachse faltet , und die punktsymmetrischen Figuren gehen ineinander über , wenn
man sie 180 ° ums Symmetriezentrum dreht .

Aus der Definition der Kongruenz wird sofort klar , dass in kongruenten Figuren entspre¬
chende Strecken gleich lang und entsprechende Winkel gleich groß sind . Unter entspre¬
chenden Stücken verstehen wir solche, die sich beim Aufeinanderlegen decken.
Gewöhnlich schreiben wir die Ecken so an , dass entsprechende Buchstaben links und
rechts vom = -Zeichen an der gleichen Stelle stehen.
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entsprechende Stücke
- 1cntspricht|- 1

H
ABCDEF = ZYXWVU

- 1entspricht]-

<JFED = <£ UVW

Aufgaben zu 7 . 1

1 . DISKUS
DIS und KUS sind kongruente Dreiecke . Schreibe dies in Zeichen auf drei verschie¬
dene Arten . Welche Strecken und welche Winkel sind kongruent ?

2 . EMIL wird
a) an der Gerade a gespiegelt zu E'M 'I 'L' ,
b ) am Zentrum Z gespiegelt zu E"M" I"L" .
Zeichne Urbild und Bild . Warum sind sie kongruent ?

EMIL

• 3 . DRITTEL - VIERTEL
Zeichne die Figuren auf ein Blatt und zerschneide sie in
a) drei kongruente Teilfiguren ,
b) vier kongruente Teilfiguren .

DRITTEL - VIERTEL
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• 4 . VIERTEL
Zerlege jede Figur in vier kongruente Teilfiguren .

VIERTEL

«1
1

c)
-

\
DRITTEL

1 i 1

c)
dl e)

b)a)

e)
r d)

L

5 . DRITTEL
Zerlege jede Figur in drei kongruente Teilfiguren .

* 6 . HALBE
Zerlege jede Figur in zwei kongruente Teilfiguren .

HALBE

7 . Zerlege ein gleichseitiges Dreieck
a) in zwei , drei, vier kongruente Teildreiecke ,

• b) in drei kongruente Trapeze.
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8 . AUS VIER MACH DREI
Die Figur ist in vier kongruente Teile zerlegt.
a) Setze die Teile zu einem Quadrat zusammen.
b) Zerlege die Ausgangsfigur in drei kongruente Teile .

AUS VIER MACH DREI

• 9 . BRUNNEN
Alexander , ins Alter gekommen, will seinen Grundbesitz an seine beiden Söhne und
seine beiden Töchter vererben . Er besitzt ein quadratisches Grundstück von acht Mei¬
len Seitenlänge ; das Grundstück ist in quadratische Parzellen eingeteilt , jede Parzelle
hat die Seitenlänge von einer Meile.
Das Land muss künstlich bewässert werden , aber auf dem Grundstück gibt es nur vier
Brunnen , a) Alexanders Kinder sollen kongruente Grundstücke mit je gleich viel Par¬
zellen erhalten , b) Jedes Grundstück soll einen eigenen Brunnen haben , der alle eige¬
nen Parzellen über eine Leitung mit Wasser versorgt , die nur auf eigenem Grund ver¬
läuft .
Für a) sind 76 Lösungen , für b) sind 5 Lösungen bekannt .

BRUNNEN

7 .2 Kongruenzsätze für Dreiecke

Zwei kongruente Dreiecke ABC und DEF stimmen in den entsprechenden Seiten und
Winkeln überein . Um bei zwei Dreiecken zu entscheiden , ob sie kongruent sind , muss man
nicht alle 12 Bestimmungsstücke nachmessen . Gewöhnlich reichen schon 3 Übereinstimmun¬
gen, man muss also nur jeweils 3 Stücke messen - es müssen bloß die Richtigen sein ! Wenn
nämlich das Dreieck aus diesen 3 Stücken eindeutig konstruierbar ist , dann können wir sicher
sein, dass zwei Dreiecke kongruent sind , die in diesen Stücken übereinstimmen .
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Von früher wissen wir , dass ein Dreieck aus den 3 Seiten eindeutig konstruierbar ist . Also
gilt :

1 . Kongruenzsatz (SSS ) :
Dreiecke sind kongruent,
wenn sie in allen Seiten übereinstimmen.

Entsprechend gelten :

2 . Kongruenzsatz (SWS ) :
Dreiecke sind kongruent,
wenn sie in zwei Seiten und dem Zwischenwinkel übereinstimmen .

3 . Kongruenzsatz (WSW ) :
Dreiecke sind kongruent,
wenn sie in einer Seite und den beiden anliegenden Winkeln übereinstimmen .

4 . Kongruenzsatz (SWW ) :
Dreiecke sind kongruent,
wenn sie in einer Seite , einem anliegenden und dem nicht anliegenden Winkel übereinstim¬
men.

5 . Kongruenzsatz (SSW ) :
Dreiecke sind kongruent ,
wenn sie in zwei Seiten und dem Gegenwinkel der größeren Seite übereinstimmen .

Weiß man von zwei Dreiecken , dass sie in drei Stücken übereinstimmen , für die wir einen
Kongruenzsatz kennen , dann wissen wir , dass sie kongruent sind , also auch in den übri¬
gen Stücken übereinstimmen .

a = 8

ß = e
_ Y = <P_
AB = DE
BC = EF
CÄ = FD

Kongruente Dreiecke

Aabc = Adef

Wenn nun zwei Dreiecke in mehr als drei Stücken übereinstimmen , dann könnte man mei¬
nen , dass sie erst recht kongruent sind . Obacht ! Es gibt sogar Dreiecke, die in fünf Stü¬
cken übereinstimmen und doch nicht kongruent sind , siehe Bild.



An diesem Beispiel sehen wir , dass es nicht nur auf die Anzahl , sondern auch auf die

Lage der gegebenen Stücke ankommt . Deshalb haben wir bei der Formulierung der Kon¬

gruenzsätze die Lage der Stücke angedeutet , indem wir sie beschrieben haben mit : Zwi¬
schenwinkel , anliegender Winkel , Gegenwinkel .

Im Bild sehen wir einen zusammenfassenden Überblick über die Kongruenzsätze .

swwWSW

Aufgaben zu 7 .2
1 . Welche Stücke (Seiten oder Winkel) bestimmen ein Dreieck eindeutig , wenn man

weiß , dass das Dreieck
a) gleichseitig b) gleichschenklig-rechtwinklig
c) gleichschenklig d) rechtwinklig
e) stumpfwinklig ist ?

• 2 . Ein Dreieck soll eindeutig bestimmt sein ; bei welchem Dreieckstyp genügt die An¬
gabe
a) einer Seite b) eines Winkels
c) zweier Winkel d ) zweier Seiten
e) eines Winkels und einer Seite ?

• 3 . KONGRUENZ ?

Sind die Dreiecke ABC und DEF kongruent , wenn man weiß
a) c = d , a = e, ß = (p b) c = d , a = e , ß - d
c) c = d , oc = s, ß = cp d) c = d , u = cp, ß = s
e) c = d , cc = s, ß = <5 f) b = f, k = e, h c

= hd ?
Zeichne , falls möglich , zwei nicht kongruente Dreiecke.

• 4 . Zeichne ein gleichschenkliges Dreieck ABC mit der Spitze C . F ist irgendein Punkt
auf [AB ] , Die Dreiecke AFC und BCF stimmen in zwei Seiten und einem Winkel
überein .
Welche Stücke sind das ? Sind die Dreiecke kongruent ?
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• 5 . SUCHE in den Figuren a) bis d) alle Paare kongruenter Dreiecke . Gib jeweils einen
passenden Kongruenzsatz an .

D

b) Quadrat

A

C) Dreieck
d ) gleichschenkliges Dreieck

. 0

Mc

• 6 . Im Dreieck ABC ist H der Höhenfußpunkt von hc . Außerdem gilt AH = a .
Zeige : Die Dreiecke AHC und HBC stimmen in zwei Seiten und einem Winkel über¬

ein , müssen aber nicht kongruent sein.

7 .3 Kongruenzabbildungen

Definition

w

I

Eine Abbildung , die jede Figur auf eine dazu kongruente abbildet , heißt Kongruenzab¬
bildung .

Wegen dieser Definition bleiben bei jeder Kongruenzabbildung die Streckenlängen und
Winkelgrößen erhalten , werden aus Geraden wieder Geraden . Deswegen sagt man auch ,
Kongruenzabbildungen sind längentreu , winkeltreu und geradentreu . Zwei Kongruenzab¬
bildungen kennen wir schon : die Achsen- und die Punktspiegelung . Am Besten stellt man
sich eine Kongruenzabbildung so vor, dass man eine ebene Figur bewegt, ohne sie zu ver¬
zerren . Man kann zeigen, dass es nur drei wesentlich verschiedene Möglichkeiten gibt :
Die Figur verschieben , sie drehen oder an einer Achse spiegeln (wenden) . Die Punktspie¬
gelung ist damit schon erfasst , weil sie ja eine spezielle Drehung (um 180°) ist .
Zusätzlich zur Achsenspiegelung definiert man demnach noch zwei Kongruenzabbildun¬
gen : die Verschiebung und die Drehung .

Verschiebung
!«^ ! - -- fl \

Varschiebitng8?

B ’
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Verschiebt man jeden Punkt einer Figur gleich weit in dieselbe Richtung , so entsteht
eine Bildfigur . Diese Abbildung heißt Verschiebung oder Translation . Man kennzeich¬
net sie mit Verschiebungspfeilen .

Bewegt man jeden Punkt P einer Figur auf dem Kreis um den festen Punkt M mit dem
Radius MP um den DrehWinkel cp , so entsteht eine Bildfigur . Diese Abbildung heißt
Drehung oder Rotation um den Drehpunkt M mit dem Drehwinkel cp .

Drehwinkel cp

Die Drehung zeigt uns eine neue Art der Symmetrie, die Drehsymmetrie . Eine Figur heißt
drehsymmetrisch mit dem Winkel cp , wenn sie bei einer Drehung um cp in sich übergeht .

11;:

ip = 2M! = 120 ip = 2M ! = 90 «
ip = M ! = 60 °

. 360°
0

V = 3^ = 40 -

tp = M ! = 72 °

ip = 360! _ 36 °
y 10
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Eigenschaften von Verschiebung und Drehung
Im Koordinatensystem ist der Verschiebungspfeil v und damit die Verschiebung durch
zwei Zahlen eindeutig festgelegt, v = bedeutet zum Beispiel eine Verschiebung um 3
nach rechts und um 6 nach oben . Minuszeichen weisen auf die Gegenrichtung hin . So be¬
deutet zum Beispiel w = ( _ eine Verschiebung um 5 nach links und um 2 nach unten .

Zwei Verschiebungen , die man nacheinander ausführt , haben dieselbe Wirkung wie eine
einzige Verschiebung . Die Nacheinanderausführung von Abbildungen heißt auch Verket¬
tung der Abbildungen. Der Verschiebungspfeil z der Verkettung zweier Verschiebungen
ergibt sich in der Zeichnung , indem man die Pfeile v und w aneinander hängt (Fuß an
Spitze) und den Fuß des ersten Pfeils v verbindet mit der Spitze des zweiten Pfeils w . Man
bezeichnet z als Summe von v und w und schreibt z = v + w . Rechnerisch ergibt sich z , in¬
dem man die entsprechenden Zahlen von v und w addiert , siehe Bild.

V + W

( 3 + (- 5 ) ) _ (- 2 )
U + (- 2) J

“ l 2j

V + w

Zwei Drehungen
ums gleiche Zentrum

Eine Drehung ist im Koordinatensystem
eindeutig festgelegt durch Drehzentrum M
und Drehwinkel cp . Die Verkettung zweier
Drehungen um dasselbe Zentrum M mit
verschiedenen Drehwinkeln q>1 und cp2 er¬
gibt wieder eine Drehung um M mit dem
Drehwinkel q>2 + <p2 .
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Zwei Drehungen
um verschiedene Zentren

im Bild ist

Die Verkettung
einer Drehung um Mi und
einer um M2 lässt sich ersetzen
durch eine Drehung um M.

1 . Drehung (um M x mit cp )̂ : AABC
2 . Drehung (um M2 mit q>2) : AA' B 'C '

Verkettung (um M mit cpx + q>2) : AABC

Es gilt sogar : Die Verkettung zweier Dre¬
hungen um verschiedene Zentren Mi und
M2 mit den Drehwinkeln cp t und q>2 ergibt
wieder eine Drehung um ein Zentrum M
mit dem Drehwinkel q>i + g>2 , solang
(p 2 + (pj kein ganzzahliges Vielfaches von
360° ist . Wenn aber q>1 + cp2 ein ganzzahliges
Vielfaches von 360° ist , dann ergibt sich
eine Verschiebung .
Zunächst überlegen wir uns an einem Bild,
dass der Winkel zwischen einer beliebigen
Gerade und ihrer Bildgerade gleich ist dem
Drehwinkel cp , unabhängig davon , wo das
Zentrum M liegt . Führt man zwei Drehun¬
gen nacheinander aus , dann dreht sich jede
Gerade um q)2 + cp2 .

An einem Beispiel zeigen wir, wie man
den Mittelpunkt M der resultierenden
Drehung konstruieren kann , wenn von
den beiden Drehungen die Zentren
und M2 sowie die Drehwinkel cp 2 und
q)2 bekannt sind . Verfolgen wir die
Bahn eines Dreiecks :

AA' B 'C '
AA"B"C"
AA"B"C"
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Weil Bild P" und Urbild P gleich weit vom Zentrum entfernt sind , muss M auf jeder Mit¬
telsenkrechten mp,,', liegen, zum Beispiel
1 . auf der Mittelsenkrechten niAA » von [AA"]
2 . auf der Mittelsenkrechten mCC" von [CC"]
M ist also der Schnittpunkt von m^ » und mcc» .
Im Fall (p 1 + q>2 = 360° (Verschiebung) sind diese Mittelsenkrechten parallel .

Mehrfachspiegelungen
Die Verkettung zweier Verschiebungen ergibt also wieder eine Verschiebung , die Verket¬
tung zweier Drehungen wieder eine Drehung (oder eine Verschiebung) . Was aber ergibt
die Verkettung zweier Achsenspiegelungen ? Weil jede Achsenspiegelung den Umlaufsinn
umkehrt , kann die Verkettung zweier Achsenspiegelungen keine Achsenspiegelung sein.
Tatsächlich ergibt sich entweder eine Verschiebung oder eine Drehung .

1 . Verschiebung (Translation )

Am Geobold - Ornament fallen uns zwei Arten von Regelmäßigkeiten auf :
1 . Jeder Geobold ist das Spiegelbild seines Nachbarn .
2 . Jeder übernächste Geobold entsteht durch Verschiebung .

Spiegelung Spiegelung Spiegelung Spiegelung Spiegelung

VERSCHIEBUNG

Ein Blick aufs Geobold -Ornament lässt vermuten , dass eine Verschiebung gleichwertig ist
zu zwei Spiegelungen an parallelen Achsen . Tatsächlich gilt der
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Satz :
Eine Zweifachspiegelung an parallelen Achsen mit dem Abstand d ist gleichwertig mit einer
Verschiebung um 2d senkrecht zu den Achsen .
(Verschiebungsrichtung : von der ersten zur zweiten Achse)

Die Begründung steht im Bild.

Jb pp ” = 2r + 2s = 2(r + s) = 2d

=F
r I

P ’-

PP ” = 2s - 2r = 2 (s —r ) = 2d

s

P”
■V "

s
Zs

s
zxz

I
i

PP ” = 2s - 2r = 2(s —r ) = 2d

NP ^ P ’
■V *

s

2 . Drehung (Rotation )
Am Geobold -Ornament fallen uns zwei Arten von Regelmäßigkeit auf :

1 . Jeder Geobold ist das Spiegelbild seines Nachbarn .
2 . Jeder übernächste Geobold entsteht durch Drehung .

0\ (©

0 / vO

Spiegelung

Ein Blick aufs Geobold -Ornament lässt vermuten , dass eine Drehung gleichwertig ist zu
zwei Spiegelungen an zwei Achsen , die sich im Drehpunkt schneiden . Tatsächlich gilt

Satz :
Eine Zweifachspiegelung an Achsen , die sich in M unter dem Winkel a schneiden ist gleich¬
wertig mit einer Drehung um M mit dem Drehwinkel q> = 2a .
(Drehrichtung : von der ersten zur zweiten Achse)
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Die Begründung steht im Bild.

ip = 2 t - 2e = 2 (t - e ) = 2a

ip = 2t - 2e = 2 (t - e ) = 2tX.

Wir wissen jetzt , dass sich jede Verschiebung , jede Drehung und jede Punktspiegelung
( = Drehung um 180 °) aus Achsenspiegelungen zusammensetzen lässt . Damit ist auch jede
Verkettung verschiedener Abbildungstypen - und somit jede Kongruenzabbildung -
durch Achsenspiegelungen ersetzbar . In jedem Fall kommt man sogar mit höchstens drei
Achsenspiegelungen aus.

Beweis : Das Dreieck ABC ist durch Kongruenzabbildung aus dem Dreieck ABC entstan¬
den . Mit höchstens drei Achsenspiegelungen können wir das Dreieck ABC aufs
Dreieck ABC abbilden .

Mit den ersten beiden bilden wir [AB ] auf [AB ] ab . Weil die Dreiecke kongruent sind , liegt
C" entweder schon auf C und wir sind fertig , oder C" liegt symmetrisch zu C bezüglich
AB . Dann brauchen wir noch die dritte Achsenspiegelung an AB .

160



Bei zwei kongruenten Vielecken mit mehr als drei Ecken kommt man auch mit höchstens
drei Achsenspiegelungen aus : Zuerst bildet man wie vorhin ein Teildreieck ab , die restli¬
chen Punkte müssen dann wegen der Kongruenz der Figuren automatisch richtig liegen.
Man teilt die Kongruenzabbildungen in zwei Sorten ein : Bei der einen Sorte ist der Um¬
laufsinn im Bild und Urbild der gleiche, bei der anderen entgegengesetzt . Deshalb nennt
man dann die Kongruenzabbildung gleichsinnig oder gegensinnig.

ABCDE s ABCDE
E

Weil eine einzige Achsenspiegelung den Umlaufsinn umkehrt , ist sie und jede Zusammen¬
setzung aus einer ungeraden Anzahl von Achsenspiegelungen gegensinnig . Dagegen ist
jede Zusammensetzung aus einer geraden Anzahl von Achsenspiegelungen gleichsinnig .

Wir haben gesehen, dass sich jede Kongruenzabbildung durch höchstens drei Achsenspie¬
gelungen darstellen lässt . Damit verschaffen wir uns eine Übersicht über alle Kongruenz¬
abbildungen :

Anzahl der Lage der Name der Sorte :
Achsen - Achsen : Kongruenz -

Spiegelungen abbildung :

1
\ '-v

Achsenspiegelung gegensinnig

2 —
Verschiebung gleichsinnig

\ /\ /
X- \/ \ Drehung gleichsinnig

111
ii
1

ii
i

11i
m oder /“

T " 7“ Achsenspiegelung gegensinnig

\ \ /
— — — — oder Schubspiegelung gegensinnig

Der einzig neue Typ , die Schubspiegelung , besteht aus einer geradlinigen Verschiebung
von Punkten (Translation ) und einer Spiegelung , bei der die Achse parallel zur Verschie¬
bungsrichtung ist.
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Schubspiegelung
C’

AABC = aabc

3 . Anwendungen
In vier Beispielen sehen wir, wie man mit Verschiebungen , Drehungen und Mehrfachspie¬
gelungen schwierige Aufgaben löst.

Brückenaufgabe (Translation ) :

Krachkirchen und Bröselbrunn sind durch einen Fluss getrennt . Eine Brücke soll senk¬
recht so über den Fluss gebaut werden , dass der Weg über die Brücke von Krachkirchen
nach Bröselbrunn möglichst kurz wird .
Lösungsidee : Wir verschieben die Brücke [ST] so , dass S ' = K wird . We il Strecken auf

gleich lange parallele Strecken abgebildet werden , ist KT' = ST und
[KT'

] || [ST] . T' ist also für alle möglichen Brücken [ ST] derselbe Punkt . Weil
T'T = KS ist , sind der rote und der schwarze Weg gleich lang . T'TB ist am
kürzesten , wenn T'

, T und B auf einer Gerade liegen. Der gesuchte Punkt T
ist also der Schnittpunkt von [TB ] und dem Flussufer . Jetzt schieben wir die
Brücke wieder zurück zum Punkt T und haben damit den kürzesten Weg
konstruiert .

Wohin soll die Brücke ?

Ergebnis

hierhin ? dorthin ?

KSTB = KT’TB
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Drei Ecken auf drei Kreisen (Rotation )

Gegeben sind drei Kreise k, , k2 und k3 mit demselben Mittelpunkt M und ein Punkt A auf
k, . Konstruiere ein gleichseitiges Dreieck ABC mit B auf k2 und C auf k3 .

AVso1

Planfigur

Lösungsidee : Wir drehen das Dreieck ABC um A mit dem Winkel 60° so , dass B' = C ist.
Dann gilt :

C liegt auf k3 1 k2und k3 schneiden
B' = C liegt auf k2 J sich in C .
[AC] ergänzt man zum gleichseitigen Dreieck ABC.
Je nach Größe der Radien schneidet k2< den Kreis k3 zweimal, einmal oder
gar nicht , das heißt , es gibt zwei Lösungsdreiecke , nur ein Lösungsdreieck
oder gar keines.

ge .
'

Ergebnis

C,

M



Winkelspiegel (Mehrfachspiegelung ) :

Zwei Spiegel, die den Winkel <5 einschließen , nennt man einen Winkelspiegel.
Ein Lichtstrahl trifft unter dem Winkel a auf den Spiegel und verlässt den Winkelspiegel
nach zweimaliger Reflexion . Wie groß ist der Winkel y zwischen dem einfallenden Strahl e
und dem reflektierten Strahl r?

Winkelspiegel

Lösung durch Winkelrechnung:
y = (180° - 2a ) + (180° - 2ß) (Außenwinkel am Dreieck)

= 360° — 2a ~ 2ß
= 2 (180° - a - ß)

ö
y = 2ö

Unabhängig von a dreht sich also der Lichtstrahl um den doppelten Winkelspiegelwinkel .
Das kann man auch ohne Rechnung sofort einsehen : Eine Zweifachspiegelung an Achsen,
die sich unter dem Winkel <5 schneiden , ist gleichwertig mit einer Drehung um y = 2ö , y ist
auch der Winkel zwischen Gerade (e) und Bildgerade (r) .

GE0 7 IST VOLLBRACHT
JCH HAB FREI BIS SE 0 8
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Aufgaben zu 7 .3
1 . A( 114) , B(412 ) , C (7 16) , A '(7 13 )

Das Dreieck A ' B 'C ' entsteht durch Verschiebung des Dreiecks ABC . Konstruiere B '
und C ' und gib die Koordinaten an .

£ (716)
C’(1315)

A(114)
A'(713)

BMI 2}
B'(lOll )

10
2 . A( l | 4) , B (5 14) , C( 117 ) , M(7 10) , cp = - 53 ° 0 0 10

1
Das Dreieck A'B 'C ' entsteht durch Drehung des Dreiecks ABC um M mit dem
Drehwinkel cp . Konstruiere A'

, B' und C ' und gib die Koordinaten an.
15

3 . A(0,5 13,5) , B (8 13,5) , A'(0114 ) , B '(619,5 ) 0 0 17
0

[A'B'
] ist das Bild von [AB ] bei einer Drehung um M mit dem Drehwinkel cp . Kon¬

struiere M und seine Koordinaten sowie den Drehwinkel cp .

4 . Zeichne das Dreieck ABC mit A(8,5 | 0) , B ( 13,5 | 0) und C ( 13,5 | 3,5) . 14
A'B 'C ' sei das gedrehte Dreieck . 3 0 15

5
a) Drehe das Dreieck um den Ursprung mit cpa = 45° und lies die Koordinaten von

A'
, B ' und C ' ab.

b) Drehe das Dreieck um Mb(4,5 | - 2) so , dass B auf B '(10,5 | 5) abgebildet wird . Lies
den Drehwinkel cph und die Koordinaten von A' und C ' ab .

c) Drehe das Dreieck um M c( 13,5 111,5 ) mit <p c = - 60° und lies die Koordinaten von
A'

, B' und C ' ab .
d) Drehe das Dreieck um Md(5,5 12) mit cpd = 180° und lies die Koordinaten von A' ,

B' und C ' ab .
e) Drehe das Dreieck um M c(8,5 | - 5 ) so , dass C ' auf der x-Achse liegt und lies den

Drehwinkel cpe und die Koordinaten von A '
, B ' und C ' ab.
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5 . Die sechs Figuren sind alle drehsymmetrisch .
Gib den kleinsten Drehwinkel cp an , bei dem die Figur mit sich zusammenfällt .

im
i§ Ü

6 . Zeichne das Dreieck ABC mit A( 111 ) , B(413 ) und C (5 J 2 ) .
a) Verschiebe das Dreieck so , dass A aufA'(7 | 4) abgebildet wird . Gib den Verschie¬

bungspfeil v sowie die Koordinaten von B ' und C ' an .
und gib die Koordinaten von A '

, B ' und C 'b) Verschiebe das Dreieck mit w

an .
c) Verschiebe das Dreieck mit r = zu A'B 'C ' und verschiebe A 'B 'C ' mit s =

zu A"B"C"
. Gib die Koordinaten von A"

, B " und C" und den Pfeil k der Verket¬
tung der beiden Verschiebungen an.

7 . Die Drehung um M 2(6 10) mit q>2 bildet M2(6 110) auf M2(01 8) ab ; die 11
Drehung um M 2 mit cp2 bildet M 2 auf M 2 (4 | 4) und MJ = M auf 0 0 15
M '^ 14 | 4) ab . Miss q>x und cp2 und konstruiere das Zentrum M der Ver - 0
kettung der beiden Drehungen .

8 . Zeichne das Dreieck ABC mit A(010) , B (5 10) und C (412 ) .
a) Spiegle das Dreieck an a2 = h c und das Bild an a2 = mc .
b ) Wie lang ist der Verschiebungspfeil der durch die Zweifachspiegelung festgeleg¬

ten Translation ?
c) Das Dreieck A* B * C * entsteht aus dem Dreieck ABC durch Doppelspiegelung an

a2 = mc und a2 = hc .
Konstruiere A * B * C *

, ohne zu spiegeln.
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9 . Gegeben sind die Punkte S (8 | 5 ) , T( 1013) , U( 1217) , A(013 ) und B(3 16) .
Verschiebe die Strecke [AB ] so , dass A ' und B ' auf den Geraden SU bzw . ST liegen.

10 . Zeichne den Kreis k um M(7 13 ) mit r = 2 . A(7 15 ) und B (5 18 ) bestimmen die Strecke
[AB ] , Auf welcher Kurve läuft B , wenn [AB ] so verschoben wird , dass A immer auf
k liegt?

11 . Zeichne die Kreise k: um Mx(7 13 ) mit r1 = 2 und k2 um M2(3 19) mit r2 = 3 .
Verschiebe die Strecke [AB ] mit A (0 | 2) und B (- 2 | 5 ) so , dass A' auf k , und B ' auf
k2 liegt.

12 . Zeichne die Strecke [AB ] mit A( 111 ) und B(6 12) .
a) Die Achse a2 ist die Mittelsenkrechte von [AB ] , die Achse a2 ist diejenige Winkel¬

halbierende von [AB ] und a l5 die die y -Achse unterhalb der x-Achse (bei einem
negativen y-Wert) schneidet .
Konstruiere das Bild der Strecke [AB ] bei der Doppelspiegelung an at und a2 .
Wo liegt der Drehpunkt , wie groß ist der Drehwinkel ?

b) Löse a) , wenn a2 die Gerade AB und a2 die x-Achse ist .
13 . Gegeben sind die Punkte A(2 11 ) und A'(615 ) sowie die Achse ax , die in S (3 10) senk¬

recht auf der x -Achse steht.
Konstruiere a2 so , dass die Doppelspiegelung an und a2 A auf A ' abbildet .
Wo liegt der Drehpunkt , wie groß ist der Drehwinkel ?

14 . Eine Drehung um M bildet A auf D ab . Auf welche Geraden werden dabei AC und
EC abgebildet ? Wie groß ist der Drehwinkel ? Wie groß ist e ?

Quadrat ABCD
ÄC =ÄE

15 . k ist ein Kreis um M mit r = 4 . Zeichne einen Punkt P mit MP = 2,5 .
Konstruiere eine Sehne der Länge 7 , die durch P geht.
(Tipp : Zeichne zuerst in den Kreis eine beliebige Sehne der Länge 7 und drehe dann .)

16 . Zeichne R(2 | 1) , S (3 16) , T(6 | - 1,5) und C(4 | 1) . Konstruiere ein gleichseitiges Drei¬
eck ABC , dessen Ecken A und B auf SR bzw . ST liegen.
(Tipp : Drehe das Lösungsdreieck um C so , dass A ' = B ist) .

• 17 . Zeichne das Dreieck ABC mit A(415 ) , B ( 1015) und C (5,5 19,5) . Konstruiere über je¬
der Seite nach außen ein gleichseitiges Dreieck , das sind die Dreiecke BSC , CTA
und AUB.
Begründe : Die Strecken [AS ] , [BT] und [CU ] sind gleich lang . Unter welchem Winkel
schneiden sich AS und BT ?
(Tipp : Drehe um C , sodass B' = S ist .)
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18 . Zeichne die Strecken [AB ] und [AB ] mit A( 121 — 1,5) , B(4,5 | — 3 ) , A
(6 110,5 ) , B(4,5 13 ) .
Konstruiere zwei Spiegelachsen so , dass [AB ] in [AB ] übergeht .

19 . Zeichne die Dreiecke ABC und ABC mit A( - 6 | 0) , B(9 | 5) , C( — 3 111 )
und A(910 ) , B( - 61 5 ) , C(01 - 7 ) .

Konstruiere die Spiegelachsen so , dass AABC in AABC übergeht .
20 . Zeichne die Dreiecke ABC und ABC mit A( 12,5 | 10) , B(2 | 13,5 ),

C(7,5 120) und _
A(7,5 10) , B( 18 14,5) , C ( 12,5 110) . _
Konstruiere die Spiegelachsen so , dass AABC in AABC übergeht .

21 . Zeichne die Fünfecke ABCDE und ÄBCDE mit A(3 [ 9) , B ( 12111),
C (7 | 16),_ D(7 | 21 ) , E(1118) und Ä(6 | 12) , B(0 | 5),
C(7 14) , D( 1010) , E( 13 16 ) .
Konstruiere die Spiegelachsen so , dass ein Fünfeck ins andere über¬
geht.

12
0 0 13

5

12
7 0 10

8

22
0 0 19

0

22
0 0 15

0

22 . Zeichne zwei Dreiecke ABC und ABC so , daß
a) AABC = AABC (gleichsinnig)
b ) AABC = AABC (gegensinnig) ist .
Konstruiere die Spiegelachsen so , dass ein Dreieck ins andere übergeht .

23 . Zeichne das Dreieck ABC mit A( — 4,5 11,5) , B( — 1,5 10,5) , C (0 | 5) und die Achsen
durch den Ursprung O :
a3 = OP mit P( 11 - 1) 6
a2 = OQ mit Q( 112) 6 0 6
a3 = OR mit R(210 ) 5
Spiegle dasJAreieck ABC der Reihe nach an den drei Achsen bis zum
Endbild ABC .
Konstruiere eine einzige Spiegelachse a , die dasselbe leistet.

24 . Zeichne das Dreieck ABC mit A( — 1,5 13,5) , B (4 | 0) , C ( 116 ) und die Parallelen zur
y-Achse :
a3 durch (010) 7
a2 durch (3 10) 2 0 13
a3 durch (8 10) 1
Spiegle das Dreieck ABC der Reihe nach
an den drei Achsen bis zum Endbild ABC .
Konstruiere eine einzige Spiegelachse a , die dasselbe leistet.

25 . Zeichne das Dreieck ABC mit A( 116) , B (4,5 111,5 ) , C(4,5 16,5) und die Achsen :
a3 = UV mit U (5,5 14,5) und V(7 | 1,5) 13
a2 = WU mit W( 110) 0 0 15
a3 = XV mit X (5,5 10) 4
Spiegle das Dreieck ABC der Reihe nach_an den drei Achsen bis zum Endbild ABC .
Gib eine Schubspiegelung an , die dasselbe leistet.
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• 26 . Zeichne das Dreieck ABC mit A(3 16,5) , B(0,5 14) , C (5 15 ) und die Achsen :
a3 = UC mit U(7,5 10) 9
a2 = OC mit 0 (010) 0 0 10
a3 = OU 9 _
Spiegle das Dreieck ABC der Reihe nach an den drei Achsen bis zum EndbildABC .
Gib eine Schubspiegelung an , die dasselbe leistet.

27 . Plumsbüttel liegt am Ufer eines Flusses . Wo muss senkrecht über den Fluss eine
Brücke gebaut werden , damit der Weg von Plumsbüttel nach Schnödsted möglichst
kurz wird ?
Miss den kürzesten Weg .

p
j

Fluss

■-

28 . Duftafing und Muffhausen sind durch zwei Flüsse getrennt .
Wo müssen die beiden Brücken senkrecht zum Flussufer gebaut werden , damit der Weg
zwischen beiden Ortschaften möglichst kurz wird ?

29 . Zeichne drei Parallelen a , b und c ; b liegt zwischen a und c so , dass der Abstand von
b und a 2 und der Abstand von b und c 3 ist . Wähle auf a einen beliebigen Punkt A
und konstruiere ein gleichseitiges Dreieck ABC mit B auf b und C auf c.

30 . Zeichne die Punkte X(3 10) , Y( 13 12) und Z(5 19) . A ist der Mittelpunkt von [XY] ,
Beschreibe dem Dreieck XYZ ein gleichseitiges Dreieck ABC ein.

31 . Zeichne den Kreis k3 um M3(3 13 ) mit r3 = 3 , den Kreis k2 um M2(713 ) mit r2 = 2,5
und den Kreis k3 um M 3(41 8) mit r3 = 4 . Punkt A(3 16) liegt auf kx .
Konstruiere ein gleichseitiges Dreieck ABC mit B auf k2 und C auf k3 . (Zwei Lösun¬
gen !)

532 . Zeichne den Kreis k3 um M3( 101 8) mit r3 = 3 , den Kreis k2 um M2(8,5 12) mit r2 = 2,5
und den Kreis k3 um M3(5 16) mit r3 = 2 . Punkt A(612 ) liegt auf k2 .
Konstruiere ein Quadrat ABCD mit B auf k3 und D auf k3 .
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