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92 5 Funktionen und ihre graphischen Darstellungen

15 . Begründe folgende Aussagen durch die Angabe der entsprechenden
Funktionsgleichungen :
a) In einem Stromkreis mit konstantem Widerstand R (z . B . R = 100 Q)

ist jedem Wert der angelegten Spannung U eindeutig ein Wert der
Stromstärke / zugeordnet .

b) In einem Stromkreis, der mit einer konstanten Spannung U (z . B .
U = 220 Y) betrieben wird , benötigt man einen ganz bestimmten Wi¬
derstand R , um eine gewünschte Stromstärke I zu erreichen .

5 .2 Der Graph einer Funktion

Bei sehr vielen Funktionen besteht sowohl die Definitionsmenge D als auch
die Wertemenge W aus Zahlen . Da eine solche Funktion jeder Zahl xe D eine
Zahl yeW zuordnet , kann man sagen : Die Funktion erzeugt Zahlenpaare
(x \ y) . Ein solches Paar besteht also jeweils aus einem Wert der unabhängigen
Variablen an erster Stelle und dem dazugehörenden Wert der abhängigen Va¬
riablen an zweiter Stelle . Diese Zahlenpaare erkennt man besonders leicht ,
wenn die Funktion durch eine Wertetabelle beschrieben ist . Betrachte etwa die
Funktion von Beispiel 1 des vorhergehenden Abschnitts ; zu ihr gehören die
Zahlenpaare ( 111 ) , (21 — 2) , (313) , (41 — 4) , (515) und (61 — 6) . Aber auch bei
einer Funktion , die durch einen Term bzw . eine Gleichung definiert ist , lassen
sich die entsprechenden Zahlenpaare leicht angeben . So erzeugt die im Bei¬
spiel 3 von 5 . 1 betrachtete Funktion unendlich viele Zahlenpaare (x \ x2) mit
xe 0 + .
Mit Zahlenpaaren hast du auch schon bisher im Mathematikunterricht zu tun
gehabt , vor allem in der Geometrie . Dort werden sie zur Beschreibung der
Lage von Punkten benützt . Man benötigt dazu bekanntlich ein Koordinaten¬
system, also zwei zueinander senkrechte Zahlengeraden mit gemeinsamem
Nullpunkt , das so genannte Achsenkreuz .
Die eine Gerade , meist von links nach
rechts laufend , bezeichnet man als
x-Achse , die andere als p -Achse (Ab¬
bildung 92 . 1 ) . Falls die Längenein¬
heiten auf beiden Achsen gleich sind ,
spricht man von einem kartesischen
Koordinatensystem * .
Zu einem Zahlenpaar (a \ b) erhält
man eindeutig einen Punkt P, indem
* Bezeichnet zu Ehren des französischen Philoso¬

phen und Mathematikers Rene Descartes ( 1596—
1650) . Siehe auch »Zur Geschichte des Koordina¬
tensystems« Seite 96 ff.
rö aoarrnja (tö systema) = Zusammenstellung, Ge¬
bilde

Abb . 92 . 1 Kartesisches Koordi¬
natensystem ; P hat die Abszisse a
und die Ordinate b
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man durch den Punkt a auf der x-
Achse und den Punkt b auf der y-
Achse die Parallele zur jeweils ande¬
ren Achse zieht , a ist die jc -Koordinate
bzw . Abszisse, b die j -Koordinatc
bzw . Ordinate * des Schnittpunktes P.
Diesen Zusammenhang zwischen
dem Punkt und seinen Koordinaten
bringt man durch die Schreibweise
P (a | A) zum Ausdruck .
Es liegt nun nahe , die von einer Funk¬
tion / erzeugten Zahlenpaare als Ko¬
ordinaten von Punkten zu deuten .
Dem Paar (x \ y) mit y = / (v) wird da¬
mit in der Koordinatenebene der
Punkt (x | j>) zugeordnet . Da zu jedem
xeD genau ein Funktionswert y
existiert , entspricht ihm auch genau
ein Punkt . Die Menge aller Punkte ,
die auf diese Weise einer Funktion zu¬
geordnet werden , heißt Graph * * der
Funktion ; man bezeichnet ihn mit G
oder auch Gf .

1644

ISSII iS »XANN
PP »

Abb . 93 . 1 Rene Descartes , latinisiert
Cartesius (31 . 3 . 1596 La Haye bis
11 .2 .1650 Stockholm )* * *

Definition 93 . 1 : Der Graph G einer Funktion/ist die Menge aller Punkte
(x | v ) der Koordinatenebene , deren Koordinaten die Bedingungen
xe D und y = fix ) erfüllen ; kurz :

G = {(* IjO I xeD und y = f (x)} .

Der Graph einer Funktion wird oft
auch als Schaubild bezeichnet . Wir
wollen nun die Schaubilder der in den
Beispielen von 5 . 1 besprochenen
Funktionen zeichnen .

Zu Beispiel 1 : Der Graph besteht aus
den sechs Punkten (111 ) , (21 — 2),
(313) , (41 - 4) , (515) und (61 — 6) ; vgl .
Abbildung 93 .2 .

* abscissa (lat .) = die Abgeschnittene;
ordinata (lat .) = die Geordnete (vgl . Seite 98)

** yedcpeiv (gräphein) = schreiben, zeichnen
*** gezeichnet von dem Mathematiker Frans van

Schooten dem Jüngeren (um 1615- 1660) Abb . 93 .2 Graph zu Beispiel 1
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Zu Beispiel 2 : Wir zeichnen den Graphen für 1 ^ x 11 (Abbildung 94 . 1 ) .
Die Zeichnung lässt gut erkennen, dass beim Übergang zu einem größeren
x- Wcrt der Funktionswert y entweder gleich bleibt oder zunimmt. Dazu eine
interessante Frage : Hört das Zunehmen einmal auf, d . h . , liegen die Punkte
von einem gewissen x-Wert ab alle in gleicher Höhe , oder trifft dies nicht zu?
Mit anderen Worten : Gibt es endlich viele oder unendlich viele Primzahlen?
Die richtige Antwort kannst du anhand der Aufgabe 103/15 finden .

Abb . 94 . 1 Graph zu Beispiel 2

___ _ _1 — ■- — 3

Abb . 94 .3 Ausschnittvergrößerung zu
Abbildung 94 .2
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Zu Beispiel 3 : Hier wird man zuerst die Punkte ( 111 ) , (2 | 4) , (3 | 9) , (4 | 16),berechnen und , soweit der verfügbare Platz es zulässt , in das Koordinatensys¬
tem einzeichnen (Abbildung 94 .2) . Aber natürlich gibt es zwischen je zwei
von ihnen schon unendlich viele Zwischenpunkte , z . B . zwischen (111 ) und
(2 j 4) die Punkte mit den x-Werten f ; f , J ; f , y , jf , . . . Auch links
von x = 1 gibt es noch Punkte des Graphen . Abbildung 94 . 3 zeigt in 8 -facher
Vergrößerung einen Ausschnitt aus Abbildung 94 .2 mit den zu den x -Werten
j ; 5 , und 1 gehörenden Punkten .
Natürlich muss man mit dem Berechnen und Einzeichnen von Zwischenpunk¬
ten bald aufhören ; es sind ja unendlich viele. Offensichtlich liegen alle Punkte
des Graphen auf einer gekrümmten Linie . In solchen Fällen berechnet und
zeichnet man eine passende Anzahl von Punkten und verbindet sie dann frei¬
händig oder mit einem Kurvenlineal durch eine möglichst glatte Linie (Abbil¬
dung 94 .2) .
Zu Beispiel 4 : Die dick eingezeichneten Punkte in Abbildung 95 . 1 ergeben sich
aus den Tabellenwerten auf Seite 86 . Beachte , dass bei einer Funktion die
Variablen nicht immer x und y heißen müssen . In diesem Beispiel haben wir
die unabhängige Variable mit t (Zeitpunkt in h) , die abhängige mit 3 (Tempe¬
ratur in °C) bezeichnet und dementsprechend den Graphen in einem ( / , 3)-
Koordinatensystem gezeichnet .
Die Funktion , welche jedem Zeitpunkt seine Temperatur zuordnet , hat als
Graphen wieder eine zusammenhängende Linie . Solche Temperaturkurven
kann man mit so genannten Thermographen * aufzeichnen (Abbildung 96 . 1 ) .
Kennt man jedoch , wie in unserem Beispiel, nur wenige Punkte der Kurve ,
möchte aber ihren Verlauf wenigstens grob darstellen , so verbindet man ein¬
fach benachbarte Punkte geradlinig . Auf diese Weise entstehen auch die so ge¬
nannten Fieberkurven (vgl . Aufgabe 101/8) .

24 tin Std .
Abb . 95 . 1 Graph zu Beispiel 4

* Thermograph = Temperaturschreiber; von Segpog (thermös) = warm , heiß
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Abb . 96 . 1 Aufzeichnung des Temperaturverlaufs durch einen Thermographen . Die
Schreibspitze befindet sich am Ende eines Hebels , der sich bei Temperaturänderung um
einen festen Punkt dreht . Auf ebener Fläche würde die Spitze dabei Kreisbögen be¬
schreiben . Da das Koordinatenpapier aber auf einen Zylinder gespannt ist , handelt es
sich bei den Ordinatenlinien ( t konstant und — 35 °C ;S 5 45 °C ) um kompliziertere
Kurven , die als Schnittlinien der Zylinderfläche mit einer Kugel entstehen .

Auch bei einer Relation zwischen zwei Zahlenmengen werden Zahlenpaare
erzeugt . Die Menge der ihnen in einem Koordinatensystem entsprechenden
Punkte heißt dann Graph der Relation . Im Unterschied zu einem Funktions¬
graphen können beim Graphen einer Relation auch mehrere Punkte mit der¬
selben x-Koordinate auftreten . Abbildung 97 . 1 zeigt den Graphen der Rela¬
tion von Beispiel 6 aus Abschnitt 5 . 1 für den Bereich 1 51 x 10 .

* * Zur Geschichte des Koordinatensystems

Die Idee , Punkte und Linien mithilfe von Gitternetzen festzulegen , hatten bereits die
Ägypter , wie uns Funde aus der Zeit um 2800 v . Chr . bezeugen . Griechische Astrono¬
men und Geographen orteten Punkte am Himmel und auf der Erde mittels Gradnet¬
zen , wie wir es auch heute noch machen . Vergleichedazu das Bild auf Seite 121 . Bereits
Hipparchos aus Nicäa (um 190 - um 125 v . Chr .) benützte die dir von jedem Atlas her
vertrauten Begriffe : Als Länge * bezeichnte man die Ausdehnung der damals bekann¬
ten Welt von Ost nach West entlang des Mittelmeers , als Breite * * die Ausdehnung von
Nord nach Süd . Die Kunst der Landvermessung erreichte ihren Höhepunkt in der
Antike bei den Römern , die ihrer Stadtplanung mit dem meist von Ost nach West
laufenden decumanus und dem dazu senkrechten cardo als Hauptstraßen ein recht¬
winkliges Koordinatensystem zugrunde legten .
Erstaunlicherweise findet sich in der antiken Mathematik kaum ein Niederschlag die¬
ser Gedankengänge . Zur Weiterentwicklung bedurfte es eines neuen Anstoßes . Dieser
kam aus der Naturphilosophie , als sich Nikolaus von Oresme (1320/25 - 1382 ) fragte ,

* tö fifjKog (to mekos ) = longitudo (lat .) = die Länge
* to nXkxog (to plätos ) = latitudo (lat .) = die Breite
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Abb . 97 . 1 Graph der Relation von Beispiel 6

wie die Veränderungen in der Natur vor sich gingen . »Da [diese] « , so beginnt sein um
1350 entstandener tractus de latitudinibus formarum *

, »vielfältig variieren und diese
Vielfalt nur mit größter Schwierigkeit erkannt werden kann , es sei denn , man übertrage
sie auf eine Betrachtung durch geometrische Figuren « * *

, veranschaulichte er sie , in¬
dem er über einer Zeitachse als »Länge « die jeweilige Stärke einer Erscheinung als
»Breite« auftrug . Damit war gewissermaßen die Idee der Funktion und ihrer graphi¬
schen Darstellung in einem Koordinatensystem geboren . Seine Abhandlung - siehe die
Abbildung auf Seite 84 - wurde an den Universitäten gelehrt , 130 Jahre später mehr¬
mals gedruckt und beeinflusste noch Galileo Galilei (1564 - 1642 ) und Johannes
Kepler (1571 - 1630 ) .

Wie so oft , wenn eine Zeit reif ist für eine neue Entdeckung , haben mehrere fast
gleichzeitig daran gearbeitet . Pierre de Fermat (1601 - 1665 ) vollendete spätestens 1636
seine Schrift Ad locosplanos et solidos isagoge - »Einführung in die ebenen und räum¬
lichen Örter « * * * . Dort schreibt er :

* wörtlich: Abhandlung über die Breiten der Formen - sinngemäß: Abhandlung über die Intensitäten der
Variablen

** Quia formarum latitudines multipliciter variantur et multiplicitas difficillime discernitur nisi ad figuras
geometricas consideratio referatur

** * Gemeint sind Gerade und Kreis als loci plani und die Kegelschnitteals loci solidi . Die lateinischenTermini
sind Übersetzungen der von Pappos von Alexandria (300 n . Chr .) eingeführten Ausdrücke xönoi emneöoi
(töpoi eplpedoi) und zönoi ozepeoi (töpoi stereöi) . StEpeö g bedeutet eigentlichfest , hart , starr .
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»Sobald in einer Schlussgleichung zwei
unbekannte Größen auftreten , hat man
einen Ort , und der Endpunkt der einen
Größe beschreibt eine [ . . .] Linie . [ . . .]
Die Gleichungen können aber bequem
versinnbildlicht werden , wenn wir die bei¬
den unbekannten Größen in einem gege¬
benen Winkel aneinander setzen , den wir
meist als rechten wählen , [ . . .]«

Aber leider hatte der viel beschäftigte Ju¬
rist Fermat keine Zeit , seine Arbeit zu
veröffentlichen ; erst sein Sohn Samuel-
Clement gab sie 1679 im Druck heraus .
Und so gebührt der Ruhm , das Koordi¬
natensystem geschaffen zu haben , dem
Mathematiker und Philosophen Rene
Descartes , der 1637 seinem Discours de
la Methode eine Abhandlung La Geome¬
trie anhängte als Beispiel für die neue wis¬
senschaftliche Methode . * Frans van
Schooten (1615- 1660 ) übersetzte sie
1649 ins Fateinische und machte sie so
erst der Welt der Gelehrten zugänglich !
Was war nun die Feistung von
Descartes ? Er verband die Geometrie
der Griechen mit der Algebra Vietes
zu etwas Neuem : Um die Gleichung
y = fix ) einer Kurve zu finden , wählte
er eine beliebige Gerade a , die »Achse« , auf ihr einen Punkt A und zog dann - meist
rechtwinklig zu a - eine Parallelenschar (Abbildung 99 . 3 ) . Diese parallelen Geraden
hatte Apollonios von Perge (etwa 262 - 190 v . Chr .) eingeführt ; er nannte sie reToty-
fisvcog KaTrjyjUEvca (tetagmenos kategmenai ) , was etwas ungenau mit ordinatim appli-
catae (lineae) ins Lateinische übersetzt wurde * * und wofür Descartes appliqueespar
ordre sagte , zu deutsch geordnet gezogene {Linien) . Darüber hinaus bezeichnete er mit
diesem Ausdruck auch die auf einer solchen Linie zwischen einem Kurvenpunkt P und
der Achse liegende Strecke , die er mit y abkürzte . Der aus dem Baskischen stammende
Pierre Herigone (f um 1643 Paris ) prägte dafür in seinem Cursus mathematicus
(1634/42) das Fachwort ordinata . Die Parallele schneidet auf der Achse eine von A aus
gemessene Strecke ab , die Descartes mit x bezeichnete . Gottfried Wilhelm Leibniz
(1646 - 1716) nannte sie 1676 abscissa = die Abgeschnittene, x und y zusammen 1692
Coordinates. Als Fremdwörter Abszisse , Ordinate und Koordinaten gingen sie ins
Deutsche ein . - Descartes ’ großes Verdienst war es , gezeigt zu haben , dass man
Kurven durch eine Gleichung zwischen dem Abszissenwert x und dem Ordinatenwert

* Wegen der 1633 erfolgten Verurteilung Galileis durch das Heilige Offizium ließ Descartes sein Werk nur
anonym im protestantischen Leiden (Niederlande) drucken . Nach seinem Tode wurde es auf den päpstli¬
chen Index der verbotenen Bücher gesetzt. Der volle Titel lautet Discoursde la methodepour bien conduire sa
raison , et chercher la verite dans les Sciences - »Abhandlung über die Methode , die Vernunft richtig zu leiten
und die Wahrheit in den Naturwissenschaften zu suchen«.

** korrekt wäre Ordinate = regelmäßiggeordnet:; denn ordinatim bedeutet der Reihe nach . (Apolloniosüber-
setzung von 1566 des Federigo Commandino [ 1509 - 1575] ) .

* X

Abb . 98 . 1 Pierre de Fermat
(17 . (7) 8 .1601 Beaumont de Lomagne /
Montauban - 12 . 1 . 1665 Castres
[Toulouse] )
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Abb . 99 . 1 Isaac Newton (4 . 1 . 1643 Abb . 99 .2 Gottfried Wilhelm Leibniz
Woolsthorpe - 31 .3 . 1727 Kensington ) , ( 1 .7 . 1646 Leipzig - 14 . 11 . 1716 Hanno -
Gemälde von Godfrey Kneller ver) , Gemälde von Andreas Scheits

Jk fldiviV7l_

y beschreiben kann . Ein Koordinatensystem mit zwei Achsen findet man aber noch
nicht bei ihm . 1679 erkannte zunächst Philippe de la Hire (1640 - 1718) , dass Abszisse
und Ordinate gleichwertig sind . Wenngleich sich bereits bei Pierre de Fermat
( 1601 - 1665 ) Andeutungen von negativen Werten für die Koordinaten finden , so war
es dem großen Isaac Newton ( 1643 - 1727 ) Vorbehalten , mit dem Tabu negativer
Koordinaten endgültig zu brechen , und zwar in seiner 1668/69 niedergeschriebenen
Enumeratio linearum tertii ordinis, die 1704 als Anhang zu seinem großen Werk Opticks
erschien . Dort gibt es dann auch die zwei Achsen . Gleichwertig in unserem Sinne
werden sie aber erst im Cours de Mathematiques (Bd . 4 ; 1798/99) von Sylvester
Franpois Lacroix (1765 - 1843 ) .

zsmypevwc , miriyßevou
ordinatim applicatae
geordnet Gezogene

Achse
abscissa axis
Abb . 99 .3 Zur Entstehung des Koordinatensystems
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Aufgaben

1 . Zeichne in ein kartesisches Koordinatensystem mit der Längeneinheit
1 cm folgende Punkte ein:
a) A (410) b) B ( — 410 ) c) C (01 — 3) d) D (0 | 3 ) e) E (3 | 3 )
f) F ( — 31 — 3) g) G ( — 2,5j3 ) h) H (2,5 | — 3) i) I ( - 4 | - 2) k) K ( - 2 | - 4)

2 . Kennzeichne in einem Koordinatensystem die Menge aller Punkte P (x | v)
mit
a) 1 :S x ^ 5 und y = 0
c) 1 5S x 5S 5 und — 2,5 ^ y ;£ 4
e) x ^ 2 und y = — 1
g) x 2; 2 und y 2; — 1

b) x = 3,2 und — 2,5 5S y ^ 4
d) — 3 < x < — 1 und — 4 < y < 2
f) x = — 1,8 und y ^ 4,5
h) x > — 1,8 und y < 4,5 .

3 . Die beiden Koordinatenachsen zer¬
schneiden die Ebene in vier Quadran¬
ten * (Abbildung 100 . 1 ) .
a) Begründe, dass der 1 . Quadrant

aus der Punktmenge
Mi = { (x | y ) | x > 0 a y > 0 }
besteht .

b) Gib die entsprechende Beschrei¬
bung für die Punktmengen M 2 ,
M 3 und M 4 der übrigen Quadran¬
ten an .

y ,
i -

2 . Quadrant 1 . Quadrant

0 1 X
3. Quadrant A.Quadrant

Abb . 100 . 1 Quadranteneinteilung
4 . Zeichne in ein Koordinatensystem ein Rechteck ABCD von 5 cm Breite

und 3 cm Elöhe so ein , dass die Seiten zu den Koordinatenachsen parallel
sind und A ( — 2 j — 1 ) die linke untere Ecke ist .
a) Welche Koordinaten haben die Ecken B , C , D?
b) Gib die Bedingungen an , denen die Koordinaten der auf den einzelnen

Seiten liegenden Punkte genügen .
c) Durch welche Bedingungen werden die Punkte im Innern des Recht¬

ecks gekennzeichnet ?
d) Wie lauten die Ergebnisse zu a , b und c , wenn ABCD ein Quadrat

mit 6 cm Seitenlange ist?

Zeichne den Graphen der durch die Wertetabelle festgelegten Funktion
/ : xh -> y .

X l 2 3 4 5 6
y 5 - 4 3 - 2 1 0

quadrans (lat .) = das Viertel einer Geldschuld, ein Viertel-As (römische Münze) . Leonhard Euler (1707
bis 1783) und Gabriel Cramer ( 1704- 1752) beginnen bei ihren Betrachtungen stets mit dem oberen rechten
Quadranten .
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- 4)

b)

c)

d)

X - 3 - 2 - 0,5 0 1,5 2 4
y 3 1 - 2 - 3 0 1 5

X - 3 - 2 - 1 0 1 2

y 2 - 1 - 2 - 1 0 - 1

X - 4 9
4 - 1 1

4 0 1
4 1 9

4

y - 1 1
2 0 1

2 1 1
2 0 1

2

6 . Zeichne mithilfe einer Wertetabelle den Graphen im Bereich | x | A 5 .
a) / : xi —> | x | , D = Z b) / : x t- >- 2 — | x | , D = Z

(x — 2)2
c) fi xh y , Z> = Z

e) / : x i
x

I X | + 1
Z> = Z

d) / : x i—►—

f) fix

10

( _ l ) i + W

D = Z

2x
1 + Ix

D = Z

7 . Jeder natürlichen Zahl « im Bereich 2 5S « A 10 werde
a) der größte Primfaktor , b) die Anzahl der Primfaktoren
ihrer Primfaktorzerlegung zugeordnet . Zeichne für jede dieser beiden
Funktionen den Graphen (Einheit 1 cm ) .

8 . Im Krankenhaus wurden bei einem Patienten an fünf aufeinander folgen¬
den Tagen jeweils um 6 h und um 18 h folgende Körpertemperaturen gemes¬
sen :

Zeitpunkt
1 - Tag 2 . Tag 3 . Tag 4 . Tag 5 . Tag

6 h 18 h 6 h 18 h 6h 18 h 6 h 18 h 6 h 18 h

Temperatur
in ° C 38,7 39,5 39,3 39,8 38,9 39,2 38,1 38,0 37,2 37,4

39- -

36--

Zeichne die Fieberkurve . Stelle dazu auf der Zeitachse je 12 h
durch eine 1 cm lange Strecke dar . Zeichne von der Temperatur -

‘c Skala nur den Bereich von 36 ° C bis 40 °C (Abbildung 101 . 1 ) und
wähle dabei für 1 ° C eine Strecke von 2 cm Länge . Verbinde be¬
nachbarte Punkte geradlinig .

0 6h 18h 6" 18h 6* 18*
VTog 2.Tag 3.Tog

6* 18*
t .Tag

6* 18* Zeitochse
5-Tag

Abb . 101 .1 Zu Aufgabe 8
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• 9 . Die folgenden Funktionen mit der Definitionsmenge G> sind durch ihre
Funktionsgleichung y = f (x) definiert . Berechne für xe { — 3 ; — 2 ; — 1 ;
— 0,5 ; 0 ; 0,5 ; 1 ; 2 ; 3 ; 5 } die Funktionswerte und skizziere den Graphen
im Intervall [ — 3 ; 5] .

a) y = io
x

2
+ 1

b) y = 5x
x2 + 1

10 . Zeichne das Schaubild der Funktion / : x \—> y .
a) y = ggT (x; 2x) , xe { 1,2 , . . . , 10}
b) y = kgV (x; 2x) , x e { 1 , 2, . . . , 5 }
c) y = ggT (x ; x + 2) , x e { 1 , 2, . . . , 10 }
d) y = kgV (x ; 2) , x e { 1 , 2, . . . , 5 }

11 . Begründe folgende Aussagen:
a) Auf einer zur y-Achse parallelen Geraden liegt immer nur höchstens

ein Punkt des Graphen einer Funktion .
b) Aufeiner Parallelenzur x-Achse können mehrere Punkte des Graphen

einer Funktion liegen .
12 . Welche der in Abbildung 102 . 1 gezeigten Kurven a bis h können als

Graphen von Funktionen f \ x \-+ y aufgefasst werden ? Begründung!

Abb . 102 . 1 Zu Aufgabe 12

13 . Stelle fest, ob die angegebene Punktmenge der Graph einer Funktion
fi. xv^ y sein kann . Wenn ja , welche Definitions - und welche Wertemenge
hat die Funktion ?
a) { ( 210) , ( 117 ) , (010) , (i | — 3) , (517)}
b) { (8 | - 4) , (310) , ( - 2 | - 2) , (116) , (31 - 2) , (6 | 1 )}

• 14 . Zeichne im Intervall [ — 4; 4] den Graphen der Relation
a) | _y | = | x | , x e Z
c) \ x \ + y = 2 , xeZ
e) 4y = x2

, x e Z
g) y2 = x2

, x e Z

b) I* I + | yl = 2 , xeZ
d) x + | y | = 2 , xeZ
f) 4 \ y \ = x2

, xe Z
h) 4y2 = 9x 2

, x e Z .
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• 15 . Die Frage, ob es endlich oder unendlich viele Primzahlen gibt, wurde
schon von dem berühmten griechischen Mathematiker Euklid * im
IX . Buch seiner Elemente behandelt. Du kannst seine Überlegungen in
den folgenden Schritten nachvollziehen :
Man geht aus von der Annahme: Es gibt nur endlich viele Primzahlenp u
p2 , p 3 ,
Aus ihnen denkt man sich die Zahl z = p x

■p2 ■p3 ■ . . . • p„ + 1 gebildet .
a) Zeige: Wenn z eine Primzahl ist, dann handelt es sich bei ihr um eine

neue , d . h . von pu p2 , verschiedene Primzahl.
b) Falls z keine Primzahl ist, gilt: In der Primfaktorzerlegung von z

kommt keine der Zahlen p t , p2 , vor. Weise zur Begründung
nach , dass z durch keine der Zahlen p l , p2 , ■■■, pn teilbar ist .

c) Erkläre nun , warum die anfangs gemachte Annahme falsch ist.

5 .3 Die direkte Proportionalität

Im Mathematikunterricht hast du bereits direkt proportionale Größen ken¬
nen gelernt . Zur Wiederholung betrachten wir folgendes

Beispiel :
Inge lässt Wasser in die Badewanne laufen . Der voll aufgedrehte Hahn
liefert in 1 Minute 15 Liter Wasser . Inge überlegt, wie viel Wasser in
2 Minuten , 3 Minuten , . . . , 10 Minuten in die Wanne läuft.
Da der Hahn in jeder Minute 15 1 Wasser liefert , muss man lediglich 15 1
mit der Zahl der Minuten multiplizieren, um die in dieser Zeit in die
Wanne fließende Wassermenge zu erhalten . Bezeichnet man die Zeit mit x
Minuten und die Wassermenge mit y 1, so gilt y = 15 • x.
Da so jedem xeQ + eindeutig ein v-Wert zugeordnet ist , handelt es sich
hier um eine Funktion , nämlich
f \ x i—►y mit y = I5x , xeQ + .
Sie hat die besondere Eigenschaft, dass der Quotient zusammengehöriger
Werte von x und y konstant ist ; es gilt ja y : x = 15 . In einem solchen Fall
sagt man : x und y sind zueinander direkt proportional.

Definition 103 . 1 : Eine Funktion , deren Zuordnungsvorschrift durch ei¬
ne Gleichung der Form y = a • x mit a 4= 0 beschrieben werden
kann , heißt direkte Proportionalität.
Die Konstante a heißt Proportionalitätsfaktor.

In unserem Beispiel war Q + die Definitionsmenge . Da der Funktionsterm
a ■x aber für jeden Wert von x definiert ist , kann man als Definitionsmenge

Euklid von Alexandria (um 300 v . Chr .); Satz 20 aus Buch IX der Elemente: »Es gibt mehr Primzahlen als
jede vorgelegte Anzahl von Primzahlen.«
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