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1 Die reellen Zahlen

» ZvW

Pentagramm - Siegel Salomonis - Drudenfuß
Gipsschnittstukkatur aus Marokko

Das magische Zeichen, das 5-mal A , das große griechischeAlpha , enthält und deswegen
auch Pentalpha heißt , symbolisiert das Weltall, die Vollkommenheit und auch die
Gesundheit . Es diente den Pythagoreern (500- 350 v . Chr .) und später den Neupla -
tonikern (3 .- 6 . Jh . n . Chr .) als Zeichen ihres Bundes . - Salomo , König von Israel und
Juda (um 965- 926 v . Chr .) , galt in den ersten Jahrhunderten unserer Zeitrechnung bis
ins Mittelalter hinein als großer Zauberer ; das Pentagramm wurde zu seinem Siegel . -
Die Drude ist eine Hexe , ein weiblicher Nachtgeist , der für Alpträume und Magen¬
drücken verantwortlich ist . Ihr Fußabdruck , der Drudenfuß , ist , auf die Schwelle ge¬
zeichnet , ein Abwehrsymbol gegen Druden , später ein allgemeines Bannzeichen gegen

Geister und den Teufel (siehe Goethe , Faust 1 . Teil , Vers 1394ff.)
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1 . 1 Das Problem der Quadratverdoppelung

Der griechische Philosoph Platon
(428 - 348 v . Chr .) beschreibt in sei¬
nem vor 389 v . Chr . verfassten Dialog
Menon (82b- 85b) die Lehrmethode
seines berühmten Lehrers Sokrates
(470- 399 v . Chr .) . Er schildert , wie
Sokrates einem mathematisch unge¬
bildeten Sklaven seines Freundes
Menon dazu verhilft , die folgende
Aufgabe zu lösen :

Zu einem gegebenen Quadrat soll
ein zweites Quadrat gefunden wer¬
den , dessen Flächeninhalt doppelt
so groß ist .

Der Sklave schlägt zunächst vor jede
Seite des gegebenen Quadrats (Abbil¬
dung 10 .2) zu verdoppeln , erkennt
dann aber , dass sich dabei der Flä¬
cheninhalt vervierfacht (Abbildung
10 .3) . Das gesuchte Quadrat darf nur
halb so groß sein ; man muss also die
Fläche des großen Quadrates halbie¬
ren . Die Lösung , zu der Sokrates den
Sklaven anleitet , beruht darauf , dass
von jedem der vier Teilquadrate die
Hälfte weggenommen wird , indem
man sie , wie Abbildung 10 .4 zeigt ,
durch Diagonalen zerschneidet . ABCD ist dann das gesuchte Quadrat . Seine

Seite ist die Diagonale des gegebenen Quadrats .
D

Abb . 10 . 1 Platon , eigentlich Aristo -
kles (428 Athen oder Ägina - 348 Athen )
Kaiserzeitliche römische Kopie nach dem
Werk des Silanion , entstanden wohl bald
nach 348 v . Chr . München , Glyptothek

Abb . 10 .2
gegebenes Quadrat

Abb . 10 .3 Quadrat mit
doppelter Seitenlange

Abb . 10 .4 Quadrat mit
doppeltem Flächeninhalt
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Uns interessiert die Frage , wie lang die Seite des Lösungsquadrats ist . Das
hängt natürlich von der Größe des gegebenen Quadrats ab . Zur Verein¬
fachung setzen wir voraus , dass es sich um das Einheitsquadrat handelt , also
um das Quadrat mit der Seitenlänge 1 (d . h . 1 Längeneinheit ) . Sein Flächen¬
inhalt ist damit ebenfalls 1 (d . h . 1 Flächeneinheit ) . Da somit das Lösungs¬
quadrat ABCD den Flächeninhalt 2 besitzt , muss für seine Seitenlänge x
gelten : x ■x = 2 , kurz x 2 = 2 .
Um die Länge der Diagonale des Einheitsquadrats angeben zu können
muss man also diese Gleichung lösen . Man erkennt leicht , dass x eine Zahl
zwischen 1 und 2 sein muss , denn es ist 1 2 < 2 und 2 2 > 2 ; also muss 1 < x < 2
gelten . Eine genauere Eingrenzung von x erhält man , indem man die Qua¬
drate von 1,1 ; 1,2 ; 1,3 ; . . . berechnet ; wegen 1,4 2 = 1,96 und 1,5 2 = 2,25 gilt :
1,4 < x < 1,5 . Ebenso findet man mit Hilfe des Taschenrechners schnell die
Ergebnisse

1,41 < x < 1,42
1,414 < x < 1,415

1,4142 < x < 1,4143 .
Können wir auf diesem Wege den genauen Wert von x finden?
Sicherlich nicht ! Denn wenn man einen Dezimalbruch mit einer , zwei, drei, . . .
Stellen nach dem Komma quadriert , erhält man eine Zahl mit zwei, vier , sechs,
. . . Stellen nach dem Komma , also niemals eine ganze Zahl . * Die Gleichung
x 2 = 2 kann somit keinen endlichen Dezimalbruch als Lösung haben .
Neben den ganzen Zahlen und den endlichen Dezimalbrüchen gehören zu der
uns zur Verfügung stehenden Menge Q der rationalen Zahlen auch Brüche ,
deren Dezimalentwicklung unendlich und periodisch ist . Das sind bekannt¬
lich diejenigen Brüche , deren Nenner nach vollständigem Kürzen noch einen
von 2 und 5 verschiedenen Primfaktor enthalten . Gibt es unter ihnen eine
Lösung von x 2 = 2?

Angenommen , x = — mit p , q e N wäre eine solche Lösung ; dabei sei dieser
q

Bruch vollständig gekürzt . Da x keine ganze Zahl ist , muss q > 1 gelten .
Durch Quadrieren erhält man x 2 = ^ ^

. Dieser Bruch kann aber keine
q - q

ganze Zahl sein; denn , da p und q teilerfremd sind , lässt er sich nicht kürzen ,
und wegen q > 1 ist sein Nenner von 1 verschieden . Das heißt aber : Es gibt
keinen Bruch , dessen Quadrat den Wert 2 hat .
Das Ergebnis unserer Überlegungen lautet somit : Die Gleichung x 2 = 2 ist
mit rationalen Zahlen nicht lösbar . Wir sind mit den uns zur Verfügung ste¬
henden Zahlen nicht in der Lage die Länge der Diagonale des Einheitsqua¬
drats anzugeben . Man erkennt leicht , dass es neben x 2 — 2 noch viele andere ,
ebenso einfache Gleichungen gibt , die in Q nicht lösbar sind . Weitere Beispiele
findest du in den folgenden Aufgaben .

Wir setzen dabei voraus , dass die letzte Stelle der zu quadrierenden Zahl jeweils nicht 0 ist .
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Aufgaben
1 . Zeige : Die folgenden Gleichungen haben keine rationalen Lösungen ,

a) x 2 = 3 b) x 2 = 6 c) x 2 = 8 d) x 2 = 500
2 . Die folgenden Gleichungen sind in Q lösbar . Gib alle Lösungen an .

a) x 2 = 1 b) x 2 = 4 c) x 2 = 121 d) x 2 = 625
e) x 2 = f) x z = 2% g) x 2 = 0,64 h) x 2 = 0,0004

• 3 . Beweise: Die Gleichung x 2 = n,ne \Kl , ist genau dann in Q lösbar , wenn n
eine Quadratzahl ist .

4. Der folgende auf den Begriff »gerade Zahl« sich stützende Beweis für die
Unlösbarkeit der Gleichung x 2 = 2 in der Menge Q wurde bereits von
Aristoteles (384 - 322 v . Chr .) in seinen Analytica priora (1 . 23 . 41a . 23 -
27) angedeutet und ist als Anhang zu Buch X der Elemente des Euklid
(um 300 v . Chr .) überliefert .

Angenommen , der vollständig gekürzte Bruch — sei eine Lösung der
Gleichung x 2 = 2 . Dann gilt ^

p 2 = lq 2

Daher ist p 2 und somit auch p eine gerade Zahl . Man kann deshalb
p = 2n setzen , mit n e [Kl .
(2«) 2 = 2 q 2

| | : 2
2 n2 = q2

Also ist auch q 2 und damit q eine gerade Zahl .
Begründe die angewandten Schlüsse . Erkläre , wieso die Annahme zu ei¬
nem Widerspruch geführt hat und somit falsch ist .

• 5 . Der Beweisvon Aufgabe 4, bei dem die Teilbarkeitdurch den Primfaktor2
die entscheidende Rolle spielt , lässt sich auch auf andere Primfaktoren
übertragen . Zeige nach dieser Methode , dass auch die folgenden Glei¬
chungen in Q unlösbar sind : a) x 2 = 7 b) x 2 = 12 c) x 2 = 15

6 . Die Gleichung x 2 = f hat keine rationale Lösung . Das kann man so be¬
weisen : Aus x 2 = | erhält man (3x) 2 = 2 - 3 (Multiplikation mit 3 2) . Mit
der Substitution z — 3x wird daraus z2 = 6 , eine in <Q unlösbare Glei¬
chung (vgl . Aufgabe lb ) .
Begründe mit dieser Methode die Unlösbarkeit der Gleichungen
a) x 2 = 5 , b) x 2 = 2f , c) x 2 = 0,2, d) x 2 = 1,25
in der Grundmenge Q.

• 7 . Beweise: Die Gleichung x 2 = - , p , q e \bi , ist in Q genau dann lösbar ,
wenn p • q eine Quadratzahl ist . (Hinweis : Beachte die Aufgaben 6 und 3 .)
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8 . Gegeben ist ein Quadrat mit der Seitenlänge a , a e Q + .
a) Bestimme die Seitenlange eines Quadrats, dessen Flächeninhalt

1) 4 -mal, 2) 49 -mal, 3) 2,25-mal, 4) ff -mal so groß ist .
b) Gibt es eine rationale Zahl, welche die Seitenlänge eines Quadrats mit

dem 1) 5fachen , 2) löfachen , 3) l,6fachen Flächeninhalt angibt ?

9 . Kannst du mit Hilfe rationaler Zahlen angeben , wie lang die Seiten folgen¬
der Figur sind?
a) Quadrat mit 1) 15 m 2

, 2) 16 cm 2
, 3) 2,3 dm 2 Flächeninhalt

b) Rechteck mit dem Seitenverhältnis 2 : 3 und 1) 36cm 2
, 2) 324mm 2 ,

3) 0,24 m 2 Flächeninhalt

10 . Dem Problem der Quadratverdoppelung entspricht bei den Körpern das
der Würfelverdoppelung :

Zu einem gegebenen Würfel soll ein zweiter Würfel gefunden werden ,
dessen Rauminhalt doppelt so groß ist .

Diese Aufgabe wird als delisches Problem bezeichnet aufgrund einer Er¬
zählung des Eratosthenes (3 . Jh . v . Chr .) :
Als auf der Insel Delos die Pest wütete , wandten sich die Bewohner Hilfe
suchend an Apollo . Sie erhielten den Auftrag , den würfelförmigen Altar
in seinem Heiligtum zu verdoppeln , aber dabei die Gestalt zu bewahren ,
a) Zeige, dass die Kantenlänge x eines Würfels, dessen Volumen doppelt

so groß ist wie das des Einheitswürfels , die Gleichung x 3 = 2 erfüllen
muss .

• b) Begründe nach der bei x 2 = 2 angewandten Methode , dass auch die
Gleichung x 3 = 2 in Q nicht lösbar ist .

• 11 . Die Tatsache , dass es Streckenpaa¬
re gibt , deren Verhältnis sich nicht
durch eine rationale Zahl ausdrü -
cken lässt , wurde zuerst von den
Griechen erkannt . Die Pythago -
reer , deren Bundeszeichen das re¬
gelmäßige Fünfeck war (vgl . Ab¬
bildung 9 . 1 ) , entdeckten gerade an
diesem Fünfeck , dass - ebenso wie
beim Quadrat - Seite und Diago¬
nale kein rationales Verhältnis ha¬
ben .
Aus der Ähnlichkeit der Fünfecke
ABCDE und A' B ' C ' D ' E ' in Ab¬
bildung 13 . 1 folgt , dass das Ver¬
hältnis von Seite und Diagonale in
beiden Fällen gleich ist . Abb . 13 . 1 Das regelmäßige Fünfeck

D
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Es gilt also

d d'
~
s

=
7 ' ( i )

a) Weise nach, dass sich d ' und s ' folgendermaßen durch d und s aus -
drücken lassen :

d’ und s ’ = 2s — d (2)

(Hinweis : Welche besondere Eigenschaft haben die Vierecke ABCB ' ,
ABA ' E , C ' E ' CA ' und C ' E ' B ' E?)
Begründe sodann die Abschätzung
s < d < 2s . (3)

b) Zeige mit Hilfe von (2) , dass die Gleichung ( 1 ) durch die Substitution
d

x ■■= - folgende Form erhält :
s
x — 1

x (4)

Welche Abschätzung für x ergibt sich aus (3)?
c) Aus der Annahme , ein Bruch - mit teilerfremdennatürlichen Zahlen p

q
und q sei Lösung der Gleichung (4) , lässt sich folgende Gleichung
herleiten :

P2
p + q = — (5)q
Führe die Herleitung aus .

d) Begründe anhand der Gleichung (5) , dass die in c gemachte Annahme
falsch ist und dass demnach Seite und Diagonale des regelmäßigen
Fünfecks kein rationales Verhältnis haben .

1 .2 Irrationale Zahlen; Intervallschachtelungen
Wir mussten feststellen , dass die rationalen Zahlen schon zum Lösen von
so einfachen Gleichungen wie x 2 = 2 nicht ausreichen . Dazu benötigen wir
also neue , nicht rationale Zahlen .
Jede rationale Zahl lässt sich, wie wir wissen , als Dezimalzahl schreiben .
Sofern es sich nicht um eine ganze Zahl handelt , erhält man dabei entweder
eine endliche oder eine unendliche periodische Dezimalzahl .

Beispiele:
1 = 0,75 ; 1 = 0 , 6 ; 1 = 1,318 ; 3lö = 3,07
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Natürlich kann man sich auch Dezimalzahlen vorstellen , bei denen die Zif¬
fernfolge hinter dem Komma unendlich und nicht periodisch ist , zum Beispiel
0,63633633363333 . . . oder
5,18118811188811118888 . . . ,
wobei man sich die Ziffernfolge nach der leicht erkennbaren Gesetzmäßigkeit
endlos fortgesetzt denken muss . Dass man auch mit solchen Gebilden ebenso
rechnen kann wie mit den rationalen Zahlen , ist keineswegs selbstverständ¬
lich . Darauf soll erst im nächsten Abschnitt näher eingegangen werden .
Diese neuen nicht rationalen Zahlen werden in der mathematischen Fach¬
sprache als irrationale * Zahlen bezeichnet . Es gilt also

Definition 15 . 1 : Eine Zahl, deren Dezimalentwicklung unendlich und
nicht periodisch ist , heißt irrationale Zahl .

Es ist nicht schwer , sich eine Vorstellung davon zu machen , wie die neuen
irrationalen Zahlen in die bekannten rationalen Zahlen einzuordnen sind . Als
Beispiel betrachten wir die irrationale Zahl z = 0,63 633 6333 . . . und verglei¬
chen sie mit geeigneten rationalen Zahlen . Die Ziffer 0 vor dem Komma sagt
uns , dass z zwischen den ganzen Zahlen 0 und 1 , also im Intervall [0 ; 1 ]
liegen soll:

O ^ z ^ l d . h . ze [0 ; 1 ]
Nimmt man die erste Stelle nach dem Komma hinzu , so ergibt sich die Ab¬
schätzung

0,6 ^ z 0,7 d . h . ze [0,6 ; 0,7] .
Indem man so fortfährt und jeweils eine weitere Ziffer der unendlichen Dezi-
malzahl berücksichtigt , erhält man

0,63 ^ z ^ 0,64 d . h. z e [0,63 ; 0,64] ,
0,636 ^ z ^ 0,637 d . h. ze [0,636 ; 0,637] ,

0,6363 ^ z ^ 0,6364 d . h. ze [0,6363 ; 0,6364] ,
0,63633 ^ z ^ 0,63634 d . h. ze [0,63633 ; 0,63634] ,

Man erreicht so eine immer schärfere Eingrenzung von z durch rationale Zah¬
len . Die Folge der Intervalle für z muss man sich ohne Ende fortgesetzt denken .

0,63 0,64
\ /

0,6 1 07

Abb . 15 . 1 Intervalle für z = 0,636336333 . . .
irrational = nicht rational . Zur Geschichte dieses Wortes siehe Seite 63.
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Man erkennt leicht (Abbildung 15 . 1 ) , dass diese Intervalle »ineinander ge¬
schachtelt « sind , d . h . , dass das jeweils nächste ganz im vorausgehenden ent¬
halten ist . Die Längen dieser Intervalle sind der Reihe nach 1 , jq , y^ , j ^qö ,
sie nehmen schnell ab und werden beliebig klein , d . h . , jede positive Zahl , auch
wenn sie noch so klein ist , wird von den Intervalllängen schließlich unterschrit¬
ten . Für eine solche Intervallfolge führt man eine passende Bezeichnung ein :

Definition 16 . 1 : Eine Folge von unendlich vielen abgeschlossenen Inter¬
vallen , bei welcher

( 1 ) jedes Intervall in allen vorangehenden enthalten ist und
(2) die Intervallängen beliebig klein werden ,
heißt Intervallschachtelung .

Das vorausgehende Beispiel zeigt , dass und wie man zu einer irrationalen Zahl
eine Intervallschachtelung angeben kann . Aber auch für rationale Zahlen gibt
es Intervallschachtelungen . Das zeigen die folgenden

Beispiele:
1 ) I = 0,6

Intervallschachtelung : [0 ; 1 ] , [0,6 ; 0,7] , [0,66 ; 0,67] , [0,666 ; 0,667] , .
2) l £ = 1,318

Intervallschachtelung :
[ 1 ; 2] , [13 ; 1,4] , [ 1,31 ; 1,32] , [ 1,318 ; 1,319 ] , [ 1,3181 ; 1,3182] , . . .

3) 2,3 = 2,30 ( !)
Intervallschachtelung : [2 ; 3] , [2,3 ; 2,4] , [2,30 ; 2,31 ] , [2,300 ; 2,301 ] , .

Man kann also für alle Zahlen , gleichgültig ob rational oder irrational , Inter¬
vallschachtelungen angeben . Wichtig ist , dass durch eine solche Schachtelung
die entsprechende Zahl eindeutig bestimmt ist . Es können nämlich niemals
zwei verschiedene Zahlen allen Intervallen einer Intervallschachtelung ange¬
hören . Denn ein Intervall , in dem zwei verschiedene Zahlen z y und z2 liegen,
muss mindestens eine Länge \z 1

— z2 \ haben . Diese positive Zahl wird aber
bei einer Intervallschachtelung von den Intervalllängen schließlich unter¬
schritten , da diese ja beliebig klein werden (Abbildung 16 . 1 ) .

— ^
Z1 Z 2

Abb . 16 . 1 Die Intervalllängen werden kleiner als \z x — z2 1.

Es gilt also

Satz 16 . 1 : Jede rationale oder irrationale Zahl kann man durch eine
Intervallschachtelung eindeutig festlegen.
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Aufgaben
1 . Entwickle die folgenden Zahlen in Dezimalbrüche :

a) Ä b) M c) ff d) & e) YS
f) ü g) ^7 h) i) ^ k) ^

2 . Gib drei neue Beispiele für unendliche nicht periodische Dezimalbrüche
an . Beschreibe jeweils die Regel , nach der die Ziffernfolge sich endlos
fortsetzen soll.

• 3 . Begründe , dass die folgenden unendlichen Dezimalzahlen irrational sind .
(Hinweis : Untersuche das Auftreten der Ziffer 0 . Gibt es beliebig lange
Abschnitte , die nur aus Nullen bestehen ?)
a) v = 0,12345678910111213 . . . ; d . h . , die Ziffernfolge nach dem Kom¬

ma entsteht durch »Hintereinanderschreiben aller natürlichen Zah¬
len« .

b) y = 0,149162536496481100121 . . . ; d . h . , die Ziffernfolge nach dem
Komma entsteht durch »Hintereinanderschreiben aller Quadratzah¬
len« .

c) z = 0,126241207205040 . . . ; der k -te Abschnitt der Ziffernfolge nach
dem Komma ergibt sich hier durch die Berechnung des Produkts
1 • 2 • 3 • . . . • k , wofür man kurz A; ! schreibt , gelesen »k Fakultät « .

4 . Welche der folgenden Dezimalzahlen stellen irrationale Zahlen dar ? (Die
Ziffernfolge soll sich nach der erkennbaren Gesetzmäßigkeit endlos fort¬
setzen .)
a) 0,367999 . . . b) - 1,343443444 . . . c) 5,211221122211 . . .
d) - 7,727727727 . . . e) 0,204080160 . . . f ) - 4,32100000 . . .

5 . Stelle fest , ob die angegebene Intervallfolge eine Intervallschachtelung ist .
a) [5 ; 6] , [5,6 ; 5,7] , [5,66 ; 5,67 ] , [5,666; 5,667] , . . .
b) [0 ; 2] , [0,9 ; 1,1 ] , [0,99 ; 1,01] , [0,999 ; 1,001 ] , . . .
c) [3 ; 3,5] , [3 ; 3,05 ] , [3 ; 3,005] , [3 ; 3,0005] , . . .
d) [ 1 ; 2] , [2 ; 2,1 ] , [3 ; 3,01 ] , [4 ; 4,001 ] , . . .
e) [ - 2 ; - 1 ] , [ - 2,1 ; - 1,9] , [ - 2,11 ; - 1,99] , [ - 2,111 ; - 1,999 ] , . . .
f) [ — 1 ; 2] , [ - 0,1 ; 0,2] , [ - 0,01 ; 0,02] , [ - 0,001 ; 0,002] , . . .

• 6 . a) Gib eine Intervallschachtelung für die Zahl 0,9 an .
b) Begründe, dass 1 die einzige Zahl ish die in allen Intervallen dieser

Schachtelung liegt , und dass somit 0,9 = 1 gilt .
c) Begründe entsprechend : 0,09 = 0,1 ; 0,009 = 0,01 .
d) Schreibe als endlichen Dezimalbruch: 1,19 ; 0,409 ; — 9,9.
e) Verwandle in unendliche Dezimalbrüche, ohne die Ziffer 0 als Periode

zu verwenden : 2,5 ; — 0,89 ; 11 ; — 2,011 .
• 7 . Bei den bisher betrachteten Beispielen von Intervallschachtelungen ent¬

stand das jeweils nächste Intervall durch Zehnteilung des vorausgehen -
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den . Manchmal werden auch andere Unterteilungsverfahren benützt .
a) Beschreibe die Regel , nach der die Intervallfolge [0 ; 1 ] , [| ; §] , [f ; f ] ,

[Ml 27] ’ [so 8il > • • • konstruiert ist . Stelle die ersten vier Intervalle auf
einer Zahlengeraden mit der Längeneinheit 9 cm dar .

b) Begründe, dass die in a angegebene Intervallfolge eine Intervallschach-
telung ist . Welche Zahl wird durch sie festgelegt?

c) Vom »Halbierungsverfahren« spricht man, wenn das jeweils nächste
Intervall eine der Hälften des vorausgehenden ist . Berechne die ersten
fünf Intervalle einer Intervallschachtelung für die Zahl f , indem du mit
[0 ; 1 ] beginnst und die weiteren Intervalle nach dem Halbierungsver¬
fahren bestimmst .

8 . Gib Intervalle der Länge 1 ; 0,1 ; 0,01 und 0,001 an , in denen eine positive
Lösung der Gleichung
a) x 2 = 3 , b) x 2 = 0,5 , c) x 2 = 200, d) x 2 =
liegen müßte .

• 9 . Bestimme Intervalle mit den Längen 1 ; 0,1 ; 0,01 und 0,001 , in denen die
Kantenlänge eines Würfels liegen müsste , dessen Volumen « -mal so groß
wie das des Einheitswürfels ist .
a) n = 2 b) n = 10 c) n = 100

* * 1 .3 . Rechnen mit Intervallschachtelungen
Wir haben schon erwähnt , dass man auch mit den irrationalen Zahlen sinnvoll
rechnen kann . Das ist keineswegs selbstverständlich . Schon bei der Frage , wie
mit ihnen die verschiedenen Rechenarten auszuführen sind , stößt man auf
Schwierigkeiten . Da es sich um unendliche Dezimalzahlen handelt , kann man
ja z . B . beim Addieren nicht wie bei endlichen Dezimalzahlen mit der letzten
Stelle beginnen . Bei den periodischen Dezimalzahlen umgeht man dieses Pro¬
blem , indem man sie durch die entsprechenden gewöhnlichen Brüche ersetzt ,
z . B . 0,6 durch f . Bei den unendlichen nicht periodischen Dezimalzahlen schei¬
det diese Möglichkeit aus . Für das Rechnen mit ihnen benötigen wir andere
Hilfsmittel . Als solche eignen sich z . B . die Intervallschachtelungen . Mit ihnen
kann man die Rechenoperationen auch für irrationale Zahlen definieren und
die weitere Gültigkeit der Rechengesetze nachweisen . Dies soll für die Addi¬
tion näher erläutert werden . Zunächst betrachten wir ein Beispiel mit zwei
rationalen Summanden .

Beispiel 1 :
a = \ \ b = 2,3 => a + b = § + 2,3 = f + 2^ = 2§§
Intervallschachtelungen für a und b haben wir bereits im vorausgehenden
Abschnitt angegeben (vgl . Seite 16) . Aus deren ersten Intervallen erkennt
man , dass 0 a ^ 1 und 2 ^ b 3 gilt . Durch Addition dieser Unglei¬
chungen erhält man
li ^ a + b ^ A d . h . , a + be \_2 ; 4] .
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Analog erhält man aus den zweiten , dritten , vierten , . . . Intervallen
0,6 + 2,3 g a + b ^ 0,7 + 2,4 d . h . a + b e [2,9 ; 3,1 ]

0,66 + 2,30 ^ a + b ^ 0,67 + 2,31 d . h . a + b e [2,96 ; 2,98 ]
0,666 + 2,300 Sa + b ^ 0,667 + 2,301 d . h . a + be [2,966 ; 2,968] usw.

Man erkennt leicht , dass die rechts stehenden Intervalle für a + b wieder
eine Intervallschachtelung bilden . Durch sie ist die Zahl a + b eindeutig
festgelegt . Aus der Dezimalentwicklung von a + b = 2 §§ = 2,96 erkennt
man ebenfalls , dass a + b jedem Intervall dieser Schachtelung angehört .

Das vorausgehende Beispiel zeigt , wie man aus Intervallschachtelungen für
zwei Zahlen a und b durch Addition entsprechender Intervallgrenzen wieder
eine Intervallschachtelung für die Summe a + b erhält . Der Vorteil dieser an
sich umständlichen Additionsmethode liegt darin , dass man sie auch auf irra¬
tionale Summanden anwenden kann .

Beispiel 2:
z x = 0,636336333 . . . ; z2 = 5,181188111888 . . .
Intervallschachtelung für z+.
[0 ; 1 ] , [0,6 ; 0,7] , [0,63 ; 0,64] , [0,636 ; 0,637] , [0,6363 ; 0,6364] , . . .
Intervallschachtelung für z2 :
[5 ; 6] , [5,1 ; 5,2] , [5,18 ; 5,19 ] , [5,181 ; 5,182] , [5,1811 ; 5,1812] , . . .
Durch Addieren entsprechender Intervallgrenzen erhält man die Inter¬
vallfolge
[5 ; 7] , [5,7 ; 5,9] , [5,81 ; 5,83 ] , [5,817; 5,819] , [5,8174; 5,8176] , . . .
Dies ist wieder eine Intervallschachtelung , durch welche die Summe
Zi + z2 bestimmt ist . Ihre Dezimalentwicklung beginnt mit 5,817; man
kann durch fortgesetzte Intervalladdition beliebig viele weitere Dezima¬
len berechnen .

Allgemein gilt : Zwei Zahlen a und b kann man addieren , indem man für sie
Intervallschachtelungen [n ^ AJ , [a2 ; A2] , [a 3 ; A 3] , . . . bzw . [b ^ B^ ,
[b 2 , B2

~
\ , [/; 3 ; 5 3] , . . . aufstellt und aus den Intervallpaaren [a„ ; A „] , [6 „ ; ß „] ,

n = 1 , 2 , 3, . . . , die Intervalle [c/„ + bn ; An + B„] berechnet . Diese bilden wie¬
der eine Intervallschachtelung , wie du anhand der Aufgabe 20/6 begründen
kannst .
Da aus den Ungleichungen an S a S A n und bn + b + Bn die Doppelunglei¬
chung an + i>n = a + b ^ An + Bn folgt , liegt die Summe a + b in jedem der
Intervalle [a„ + bn \ An + 2?„] und ist damit durch diese Intervallschachtelung
eindeutig bestimmt .
Da die bei Vertauschung der Summanden a und b erhaltenen Intervalle
[ bn + an ; Bn + A„] , n = 1 , 2 , 3, . . . , dieselbe Intervallschachtelung liefern , gilt
a + b = b + a , d . h . das Kommutativgesetz der Addition für beliebige , also
auch für irrationale Zahlen . Ebenso kann man zeigen , dass auch die übrigen
Rechengesetze der Addition gültig bleiben .
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Auch die Multiplikation von rationalen und irrationalen Zahlen kann man
mit Hilfe von Intervallschachtelungen durchführen . Es zeigt sich , dass auch
für sie die bekannten Rechengesetze gültig bleiben (vgl . die Aufgaben 20/7
bis 21/10 ) .

Aufgaben
1 . Gib für a und b Intervallschachtelungen an und berechne daraus die ersten

fünf Intervalle einer Schachtelung für a + b . Gib die Dezimalentwicklung
von a + b an , soweit sie durch die berechneten Intervalle gesichert ist .
a) a = 0,373373337 . . . und b = -fr
b) a = 2,0408016 . . . und 6 = 1,505505550 . . .
c) a = 2,039 und b = - 1,808008000 . . .
d) a = - 0,771771177111 . . . und b = - 3,141144111444 . . .

2 . Die Subtraktion zweier Zahlen lässt sich nach der Regel a — b = a + ( — b)
auf die Addition zurückführen . Berechne so die ersten fünf Intervalle
einer Schachtelung für a — b mit den Zahlen
a) von Aufgabe 1 a , b) von Aufgabe 1 d .

3 . a) Berechne die Summe der Irrationalzahlen z x = 0,151151115 . . . und
z2 = 2,626626662 . . . Ist das Ergebnis wieder eine irrationale Zahl ?

b) Gib zwei irrationale Zahlen an , deren Summe null ist .
4 . a) Welche Zahl muss man zu 0,585585558 . . . addieren um 1 zu erhalten ?

Ist die gesuchte Zahl rational oder irrational ?
b) Welche Zahl muss man von 0,585585558 . . . subtrahieren um

0,252252225 . . . zu erhalten ? Handelt es sich wieder um eine irrationale
Zahl ?

• 5 . Beweise, dass die Summe aus einer rationalen und einer irrationalen Zahl
stets irrational ist . (Hinweis : Welche Folgerung für b ergibt sich aus
a + b = c , wenn man annimmt , dass a und c rational sind?)

16 . [ fl A„] bzw . [6„ ; ß „ ] , n = 1 , 2 , 3, . . . , seien Intervallschachtelungen .
a) Beweise, dass für jede natürliche Zahl n gilt : Das Intervall

K + i + bn + u A„ + 1 + ß „ + J liegt ganz in [a „ + b„ ; An + ßj .
b) Zeige , dass die Länge des Intervalls [a „ + bn , A n + ßj die Summe der

Längen von [a „ ; A „ ] und [b„ ; Bn] ist .
Begründe damit , dass die Längen der Intervalle [a„ + bn : an + ß n ] mit
wachsendem n beliebig klein werden .

7 . a) Berechne mit den auf Seite 16 angegebenen Intervallschachtelungen
für a = f und b = 2,3 die Intervalle \an

■ bn ; An
■ ßj für n = 1 bis n = 4 .

Prüfe , ob sie ineinander geschachtelt sind und ob die Zahl a ■ b in
jedem dieser Intervalle liegt .
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b) Berechne die Längen der in a bestimmten Intervalle.
c) Sprechen die Ergebnisse von a und b dafür, dass die Intervalle

[ö„
• bn ; An

■ Bn ] eine Intervallschachtelung für a - b bilden ?

8 . a) Stelle für die beiden Irrationalzahlen a = 1,505505550 . . . und
b = 0,20406080 . . . Intervallschachtelungen auf und berechne die Inter¬
valle \_an

■ b„ ; An
■ 5 „] bis n = 4 .

b) Zeige, dass diese Intervalle ineinander geschachtelt sind , und berechne
ihre Längen .

• 9 . Wenn [a„ ; A„] und [b„ ; /i „] , n — 1 , 2 , 3, . . . , Intervallschachtelungen mit
positiven Intervallgrenzen sind , dann bilden die Intervalle [a„

• bn , An
■ B,J

wieder eine Intervallschachtelung . Der nicht ganz einfache Beweis dafür
beruht auf den folgenden Schlüssen . Erläutere sie !
a) Aus a„ < A „ und bn < B„ folgt an bn < An Bn ; also ist [_an bn ; AnB„] ein

Intervall .
b) Aus an ^ an + 1 und bn ^ b„ + 1 folgt an bn ^ a„ + 1 bn + 1 , aus A„ ^ A„ + 1

und Bn ^ B„ + 1 folgt A„ B„ ^ A„ + 1 Bn + 1 .
Daher gilt : [an + 1 Z>„ + 1 ; A„ + 1 ß „ + 1] c [an b„ ; An Bn

~
] .

c) Für die Länge des Intervalls \_a„ bn, An B„] gilt:
An B„

- an bn = An (Bn
- bn) + bn (A n

- an) < A 1 (Bn
— b„) + B x (A n

- a„)
Da mit wachsendem n die Werte der geklammerten Terme beliebig
klein werden , gilt dies auch für die Intervallänge .

10 . Welche einfachere Form ergibt sich für die Abschätzung in Aufgabe 9c ,
wenn die beiden Intervallschachtelungen nach der Zehnteilungsmethode
konstruiert sind und die ersten Intervalle die Länge 1 haben ?

• 11 . a) Gib für a = — f und b = — 3,6 Intervallschachtelungen an und berech¬
ne daraus die ersten vier Intervalle für das Produkt a ■ b .

b) Erkläre , warum bei Intervallschachtelungen mit negativen Intervall¬
grenzen die Intervalle der Produktschachtelung die Form
[A„

■ Bn ; an
■ b „] haben .

1 .4 Die Menge der reellen Zahlen

Die rationalen und die irrationalen Zahlen werden unter dem gemeinsamen
Namen reelle Zahlen * zusammengefasst .

* Das Fachwort reell geht auf Rene Descartes (1596- 1650) zurück . Er unterteilte 1637 in seiner La Geometrie
die Lösungen von nicht linearen Gleichungen (wie z . B . ax 2 -F bx + c = 0) in wirkliche und nur denkbare .
Das französische Wort für wirklich ist reel , das auf ein erst im Mittelalter auftauchendes lateinisches realis
zurückgeht , das zu res = Sache gebildet worden war . Mit realis wird Descartes ’ reel 1649 in der lateinischen
Übersetzung seiner La Geometrie wiedergegeben . Wann aus realis das deutsche Fachwort reell entstand ,
konnten wir nicht feststellen . Nach 1831 ist es auf alle Fälle bei Carl Friedrich Gauss (1777- 1855) belegt .
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Man verwendet folgende Bezeichnungen :

Definition 22 . 1 :
[R = Menge der reellen Zahlen
[R + = Menge der positiven reellen Zahlen
IR

“ = Menge der negativen reellen Zahlen
[Ro = Menge der nicht negativen reellen Zahlen

Für das Rechnen mit den reellen Zahlen gelten die schon bekannten Rechen¬
gesetze , die wir in der folgenden Tabelle noch einmal zusammenstellen .

Für reelle Zahlen a, b, c gelten folgende Rechengesetze :

Gesetze der Addition Gesetze der Multiplikation Bezeichnungen

(E + ) a + AelR (E . ) « • Ae IR Existenz der
Summe/des
Produkts

(K + ) a + b = b + a (K . ) a • A = b ■ a Kommutativ -
gesetz

(A + ) (a + b) + c =
= a + (b + c)

(A . ) (fl • A) • c = a • (A • c) Assoziativ¬
gesetz

(N + ) a + 0 = a (N . ) a • 1 = a Existenz des
neutralen
Elements

(I + ) « + ( — «) = o (I ) a • — = 1 , falls a # 0
a

Existenz des
inversen
Elements

(D) (a + b) - c = a - c + b - c Distributiv¬
gesetz

fl < b => a + c < b + c
a C A |
c > 0j

^ a c < b ' c
Monotonie¬
gesetz

a < b )
S => a - c > b - c

c < OJ
Umkehrung
der Monotonie

Jede reelle Zahl x lässt sich durch eine Intervallschachtelung darstellen . Da
deren Intervalle beliebig klein werden , ziehen sie sich auf der Zahlengeraden
auf einen Punkt zusammen , den wir ebenfalls mit x bezeichnen . Jeder reellen
Zahl ist somit eindeutig ein Punkt der Zahlengeraden zugeordnet .
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Es stellt sich nun die Frage :
Gehört umgekehrt auch zu jedem Punkt der Zahlengeraden eine Zahl ?
Solange man nur die rationalen Zahlen zur Verfügung hatte , musste man
diese Frage verneinen ! Zum Beispiel zeigt Abbildung 23 . 1 die Konstruktion
eines Punktes P der Zahlengeraden , zu dem keine rationale Zahl gehört .

- 1 0 1 P 2 3

Abb . 23 . 1 Konstruktion eines »nicht rationalen Punktes «

Nach der Einführung der irrationalen Zahlen muss aber die oben gestellte
Frage anders beantwortet werden : Zu jedem Punkt P der Zahlengeraden ge¬
hört eine reelle Zahl .
Dies kann man so begründen :
Wir betrachten zunächst die den ganzen Zahlen zugeordneten Punkte . Es kann sein,
dass P einer von ihnen ist ; dann gehört zu P eine ganze Zahl . Andernfalls liegt P
zwischen zwei derartigen Punkten ; wir bezeichnen sie mit n und n + 1 , wobei neZ gilt.
Wir zerlegen nun [» ; n + 1 ] in zehn gleiche Teile . Falls P einer der Teilpunkte ist , gehört

k
zu ihm eine Zahl n + — mit k e { 1,2, . . . , 9 } . Andernfalls liegt P zwischen zwei Teil¬

punkten . Das von diesen begrenzte Intervall zerlegen wir wieder in zehn gleiche Teile
usw .
Es gibt nun zwei Möglichkeiten :
Entweder : P fällt irgendwannmit einemTeilungspunktzusammen; dann gehört zu ihm
eine Zahl mit einer endlichen Dezimaldarstellung .
Oder: P wird niemals ein Teilungspunkt; dann erhält man eine Intervallschachtelung,
die sich auf den Punkt P zusammenzieht . Zu ihr , und damit zu P , gehört eine Zahl mit
einer unendlichen Dezimalentwicklung .

Somit gilt

Satz 23 . 1 : Jeder reellen Zahl ist eindeutig ein Punkt der Zahlengeraden
zugeordnet und umgekehrt ist jedem Punkt der Zahlengeraden ein¬
deutig eine reelle Zahl zugeordnet .

Aufgaben
Kennzeichne auf der Zahlengeraden die Zahlenmenge

1 . a) IR +
, b) IR

“
, c) IR0

+ .

Beschreibe die folgenden Zahlenmengen möglichst einfach :
2 . a) IR + nZ b) [R 0

+ nZ c) [R
' u (R + d) [R \ <Q
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2 3 . Bei den bisher betrachtetenInter¬
vallschachtelungen haben wir je¬
weils rationale Zahlen als Inter¬
vallgrenzen benützt . Man kann
nun auch Intervallschachtelun¬
gen bilden , bei denen die Inter¬
vallgrenzen beliebige reelle Zah¬
len sind . Kann man damit noch
einmal neue Zahlen erzeugen ?
Mache dir den Sachverhalt an der
Zahlengeraden klar .

4 . Begründe die folgenden Aussa¬
gen durch Widerspruchsbeweise :
a) Das Produkt einer von 0 ver¬

schiedenen rationalen Zahl
mit einer irrationalen Zahl ist
irrational .

b) Der Kehrwert einer irrationa¬
len Zahl ist irrational .

5 . a) Gib eine rationale Zahl an,
die zwischen den irrationalen
Zahlen a = 0,414114111 . . .
und b = 0,414414441 . . . liegt ,

b) Zu zwei verschiedenen reellen
Zahlen kann man immer rationale Zahlen angeben , die dazwischen
liegen . Begründe diese Aussage .

• 6 . a) Gib eine irrationale Zahl an , die
1) zwischen 1,5 und 1,6 2) zwischen ff und ff liegt.

b) Gib eine irrationaleZahl an , die zwischenden Zahlen von Aufgabe 5 a
liegt .

c) Zu zwei verschiedenenreellen Zahlen kann man immereine irrationale
Zahl angeben , die dazwischen liegt . Begründung !

7 . Wenn bei einer Zahlenmenge M für die Addition und die Multiplikationdie Rechengesetze E , K , A , N , I und D gelten , spricht man von einem
Zahlenkörper (M ; + , • ) . *
a) Du kennst nunmehr zwei verschiedene Zahlenkörper. Welche sind

dies?
2 b) Für die Menge der irrationalen Zahlen gilt:

( [R \ Q ; + , • ) ist kein Zahlenkörper . Welche Rechengesetze sind in die¬
sem Fall nicht gültig?

1868

Abb . 24 . 1
Julius Wilhelm Richard Dedekind
(6 . 10 .1831 Braunschweig 12 .2 . 1916 ebd .)

* Den Begriff Körper prägte 1871 Richard Dedekind (1831- 1916) ; seine Verwendung im heutigen Sinn (seit
1893) geht auf Heinrich Weber (1842- 1913) zurück .
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** 1 .5 Ein Vergleich der Zahlenmengen Q und IR

In welchem Maße hat sich durch die Einführung der irrationalen Zahlen unser
Zahlen Vorrat vergrößert ? Ist die Menge * der irrationalen Zahlen »größer «
oder »kleiner « als <Q?
Diese Frage ist nicht leicht zu beantworten , da ja beide Mengen unendlich
viele Elemente haben . Beim Vergleichen können wir uns auf die positiven
Zahlen beschränken ; da die negativen Zahlen die Gegenzahlen der positiven
sind , liefert bei ihnen ein Vergleich der rationalen mit den irrationalen dasselbe
Ergebnis .
Die Zahlen der Menge Q + kann man nicht der Größe nach geordnet aufzäh¬
len . Dennoch ist es möglich , sie in eine bestimmte Reihenfolge zu bringen und
dadurch abzuzählen . Georg Cantor (1845 - 1918 ) erfuhr dies bereits als Stu¬
dent in einem Seminar bei seinem großen Lehrer Karl Weierstrass (1815 bis
1897) und erwähnte diese Möglichkeit im Brief vom 29 . 11 . 1873 an Richard
Dedekind ( 1831 - 1916 ) . Vorgeführt hat es Cantor aber erst in einem sehr
ausführlichen Brief vom 18 . 6 . 1886 an den Berliner Gymnasiallehrer
F. Goldscheider . Veranschaulichen kann man dieses Abzählen durch ein
Verfahren , das auf Augustin Louis Cauchy (1789 - 1857 ) zurückgeht und das
1 . Diagonalverfahren heißt . In Abbildung 25 . 1 ist es dargestellt.

Abb . 25 . 1 Abzählen der rationalen Zahlen nach dem 1 . Diagonalverfahren

* Der Philosoph , Theologe und Mathematiker Bernard Bolzano (1781 - 1848) verwendete das Wort Menge als
mathematischen Begriff in seiner um 1835 geschriebenen Größenlehre , die erst 1975 veröffentlicht wurde , und
auch in den 1847 verfassten und 1851 gedruckten Paradoxien des Unendlichen . Georg Cantor (1845 - 1918) ,
der diese Schrift sehr bewunderte , benützte das Wort Menge erst ab 1895; bis dahin sprach er von Mannigfal¬
tigkeit oder Inbegriff .
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Wir betrachten die Gitterpunkte im
1 . Quadranten eines Koordinatensy¬
stems und ordnen dem Punkt P (x | y)

xmit x e [Kl und y e [Kl den Bruch — zu.
T

Dann durchlaufen wir von y aus die
Gitterpunkte in der durch die rote Li¬
nie angegebenen Weise und numme¬
rieren dabei die Brüche , y ist also der
erste Bruch , \ der zweite , f der dritte
usw . (vgl . die roten Nummern in Ab¬
bildung 25 . 1 ) . § können wir überge¬
hen , da dieser Bruch wieder dieselbe
Zahl wie y darstellt . Auch § ( = y) , f
( = i ) , i ( = 2 ) liefern keine neuen ra¬
tionalen Zahlen ; man erkennt , dass
alle kürzbaren Brüche beim Numme¬
rieren übergangen werden können
(vgl . dazu Aufgabe 28/2) . Wenn man
dieses Durchlaufen der Gitterpunkte
ohne Ende fortsetzt , wird jede Zahl
aus Q + genau einmal mit einer Num¬
mer versehen . Wir haben damit die
positiven rationalen Zahlen in eine
bestimmte Reihenfolge gebracht ; sie
sind durchnummeriert . Das Erstaun¬
liche daran ist , dass die natürlichen
Zahlen , die ja eine echte Teilmenge von Q+ bilden , ausreichen um alle Zahlen
der Menge Q + zu nummerieren . Man sagt dazu : »Die Mengen Q + und INI
sind von gleicher Mächtigkeit .« Eine Menge , welche dieselbe Mächtigkeit
wie [Kl hat , nennt man abzählbar . * Damit kann man als Ergebnis des 1 . Dia¬
gonalverfahrens festhalten :

um 1870

Abb . 26 . 1 Georg Ferdinand Ludwig
Philipp Cantor (3 . 3 . 1845 Petersburgbis
6 . 1 . 1918 Halle)

Satz 26. 1 : Die Menge Q + der positiven rationalen Zahlen ist abzählbar.

Nun betrachten wir alle positiven reellen Zahlen auf dem Zahlenstrahl
] 0 ; + 00 [ und führen folgendes Gedankenexperiment aus : Ein Papierstreifen
von beliebiger Länge s wird in zwei Stücke der Länge js zerschnitten (Abbil¬
dung 27 . 1 ) . Mit einer der Hälften verdecken wir den Punkt 1 auf dem Zahlen¬
strahl . 1 ist bei der von uns in Abbildung 25 . 1 eingeführten Nummerierung die
erste rationale Zahl ! Auch die übrigen rationalen Punkte * * werden sodann in

* Das Fachwort Mächtigkeit hat Cantor 1878 bei dem großen Geometer Jakob Steiner (1796- 1863) ent¬
lehnt und auf seine heutige Bedeutung erweitert . Im gleichen Jahr verwendete er erstmals den Begriff
abzahlbar im oben angegebenen Sinn .

** Punkte der Zahlengeraden , denen eine rationale Zahl zugeordnet ist , nennen wir kurz »rationale Punkte « .



1 .5 Ein Vergleich der Zahlenmengen C und IR 27

der durch die Nummerierung festgelegten Reihenfolge abgedeckt , indem man
immer wieder folgende Anweisung ausführt : »Halbiere den verbliebenen Teil
des Streifens und verdecke mit einer Hälfte denjenigen Punkt des Zahlen¬
strahls , welcher zu der nächsten rationalen Zahl gehört .«

Papierst reifen

i- ^ i r- l
i- h-M—i—i- 1- 1- 1- »-
0 l—i L- 1 2 3 4 x

1 1
2

Abb . 27 . 1 Die rationalen Punkte werden verdeckt .

Natürlich werden durch das fortgesetzte Halbieren die Streifenstücke immer
schmäler , aber zum Abdecken von Punkten , die ja die Breite null haben ,
reichen sie immer wieder aus . Wir können auf diese Weise alle rationalen
Punkte des Zahlenstrahls (und nicht nur sie !) bedecken . Zu den nicht verdeck¬
ten Punkten des Zahlenstrahls gehören nur noch irrationale Zahlen . Da aber
die abgedeckten Teile des Zahlenstrahls zusammen höchstens die Länge s
haben und s zudem beliebig klein sein darf , bleibt fast der ganze Zahlenstrahl
unbedeckt . Man erkennt daraus , dass die Menge der rationalen Zahlen im
Vergleich zu derjenigen der irrationalen verschwindend klein ist ! Durch die
Einführung der irrationalen Zahlen hat sich also unser Zahlenvorrat ganz
gewaltig vergrößert .
Ist dann vielleicht die Menge der reellen Zahlen nicht mehr abzählbar ? Mit
dieser Frage beschäftigte sich Georg Cantor , und er richtete sie auch in dem
oben erwähnten Brief vom 29 . 11 . 1873 an Richard Dedekind . Dieser wusste
darauf keine Antwort , und Cantor meinte am 2 . 12 . 1873 , dass »sie kein be¬
sonderes praktisches Interesse [ . . .] hat und [ . . .] nicht zu viel Mühe verdient .
Es wäre nur schön , wenn sie beantwortet werden könnte .« Und schon am
7 . 12 . 1873 schickt Cantor seinen Beweis dafür , dass IR nicht abzählbar ist , an
Dedekind . Am 8 . 12 . 1873 gratuliert Dedekind und schickt eine stark verein¬
fachte Fassung des Beweises an Cantor , der diese fast wörtlich in seine im
Jahre 1874 erschienene Abhandlung übernimmt . In Aufgabe 29/10 kannst du
selbst einen Beweis führen für

Satz 27 . 1 : Die Menge IR der reellen Zahlen ist nicht mehr abzählbar .
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Aufgaben
• 1 . a) Wo liegen in Abbildung 25 . 1 die Gitterpunkte , denen die positiven

Bruchzahlen mit — < 1 zugeordnet sind?
9

Gib in einer Zeichnung einen Weg an , auf dem man alle diese Punkte
durchlaufen und die verschiedenen Bruchzahlen nummerieren kann .
Führe dies bis zur Nummer 10 durch .

b) Gib für die Gitterpunkte, denen die Brüche mit - A 1 zugeordnet sind ,
9

einen sie durchlaufenden Weg an und nummeriere die ersten zehn
Bruchzahlen in der damit festgelegten Reihenfolge .

2 . a) Welche Gesetzmäßigkeit erkenntman, wenn man bei den Brüchen, die
in Abbildung 25 . 1 den Gitterpunkten einer bestimmten Diagonallinie
zugeordnet sind , die Summe aus Zähler und Nenner bildet ?

b) Wie ändert sich diese Summe beim Übergang zur nächsten Diagona¬
len?

c) Wie ändert sich die Summe aus Zähler und Nenner , wenn ein Bruch
gekürzt wird?

• d) Begründe nun , dass bei der in Abbildung 25 . 1 festgelegten Reihenfolge
jedem kürzbaren Bruch einer mit gleichem Wert vorausgeht und somit
die entsprechende rationale Zahl bereits nummeriert ist .

3 . Zeichne ein Koordinatensystem und betrachte alle Gitterpunkte der obe¬
ren Halbebene , also die Punkte (x \y) mit xe Z und y e IN , und ordne

x
jedem Punkt die Zahl — zu . Beweise die Abzählbarkeit aller rationalen

y
Zahlen , indem du einen von (011) ausgehenden Weg angibst , der alle Git¬
terpunkte durchläuft . Wie lauten die ersten zehn rationalen Zahlen bei der
so erzeugten Anordnung ?

4 . Die folgenden Mengen sind abzählbar. Gib zum Beweis dafür eine ent¬
sprechende Zuordnung ihrer Elemente zu den natürlichen Zahlen , also
eine Nummerierung an . Beschreibe diese Zuordnung als Funktion
n i—►/(«) , n e IN .
a) die Menge der geraden natürlichen Zahlen
b) die Menge der ungeraden natürlichen Zahlen
c) die Menge IN 0 d) die Menge Z
e) die Menge der Stammbrüche n e IN
f) * die Menge der Quadratzahlen n 2

, n e IN
5 . Zwei Mengen heißen genau dann gleichmächtig , wenn man ihre Elemente

eineindeutig einander zuordnen kann .
Begründe folgende Aussagen :

Dieses Beispiel findet sich bereits in den Discorsi (1638) des Galileo Galilei (1564- 1642) .
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a) A = { 1,2,3 , . . . , 60 } und 5 = {« gIkI | 77 < u < 138 } sind gleichmächti¬
ge Zahlenmengen .

b) Die Menge P aller zweistelligen Primzahlenund die Menge Vder durch
4 teilbaren zweistelligen Zahlen sind nicht gleichmächtig .

c) Zwei endliche Mengen sind genau dann gleichmächtig, wenn sie diesel¬
be Anzahl von Elementen haben .

6 . Beweise die Gleichmächtigkeit der Mengen A und B :
a) A = Q +

; Ü = Q _ b) A = {xGQ | 0 < x < l } ; 5 = {_yeQ | >' > l }
• c) A = { xeQ | 0 < x < l } ; ß = Q +

7 . Wenn man in Aufgabe 6 jeweils Q durch [R ersetzt , sind die neuen Mengen
A und B ebenfalls gleichmächtig . Begründe dies .

8 . Die von Bernard Bolzano (1781 - 1848 ) in seinen Paradoxien des Unendli¬
chen (1847 ) klar herausgestellte Tatsache , dass bei unendlichen Mengen
eine echte Teilmenge dieselbe Mächtigkeit wie die ganze Menge haben
kann , wird oft als eine Paradoxie * der Mengenlehre bezeichnet .
In welchen Teilaufgaben a) von Aufgabe 4 , b) von Aufgabe 6
finden sich solche Paradoxien ?

9 . a) Begründemit Hilfe der in Ab¬
bildung 30 . 1 angegebenen Zu¬
ordnung P i—>■ P '

, dass die
Strecken [AB] und [CD ]
gleichmächtige Punktmengen
sind .

b) In Abbildung 30 .2 ist M der
Mittelpunkt der Strecke
[AB] , Ä das Spiegelbild von
A bezüglich g und Z der Mit¬
telpunkt von [ÄB] . Beweise
mit Hilfe der Zuordnung
P; i—>■P/ , dass die Strecke [AB]
ohne ihre Endpunkte und die
Gerade g gleichmächtige
Punktmengen sind .

10 . Georg Cantor (1845 - 1918 ) ge¬
lang 1873 der Nachweis , dass die
Menge der reellen Zahlen überab-
zählbar , d . h . nicht mehr abzähl¬
bar ist . Einen Beweis dafür
kannst du anhand der folgenden
Teilaufgaben erbringen .

Abb . 29 . 1 Bernard Bolzano
(5 .10 .1781 Prag - 18 .12 .1848 ebd .)
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Die Paradoxie oder das Paradoxon = eine (echte oder scheinbare ) Widersinnigkeit ; paradox = widersinnig .
Zugrunde liegt das griechische Adjektiv TiapaSo^cx; (parädoxos ) — unerwartet .



30 1 Die reellen Zahlen

A

Abb . 30 . 1 Zu Aufgabe 9 a Abb . 30 .2 Zu Aufgabe 9 b

a) Wenn man von einer Teilmenge M von IR zeigen kann, dass sie über -
abzählbar ist , dann gilt das erst recht für R selbst . Erläutere dies.
(Nimm z . B . an , R wäre abzählbar !)

b) Die Zahlen der Menge M — {xeR | 0 < x < l } kann man in eindeuti¬
ger Weise als unendliche Dezimalzahlen darstellen , wenn man dabei
Dezimalzahlen mit der Periode 0 verbietet . Wie lautet dann die
Schreibweise für folgende Zahlen ? (Beachte Aufgabe 17/6 .)
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c) Wir nehmen nun an , die Zahlenmenge M sei abzählbar . Dann kann
man ihre Elemente durchnummerieren ; sie sollen der Reihe nach mit
x 1 , x2 , x 3 , . . . bezeichnet sein . Wir denken uns diese Zahlen als unend¬
liche Dezimalzahlen untereinander geschrieben :
x 1 = 0 ,

'di a2 a 3 a4 . . . (ah b t , c ; , . . . bedeuten die einzelnen Ziffern
x 2 = 0 , b ^%2 b 3 b4 . . . der Dezimalzahldarstellung )
x 3 = 0 , c x c2\ x c4 . . .
usw . \
Nun bilden wir eine unendliche Dezimalzahl z = 0 , z 1 z2 z3 z4 . . . nach
folgender Regel : Aus der Ziffernmenge { 1 , 2, . . . , 8 } wählen wir
- für Zj eine von a 1 verschiedene Ziffer,
- für z2 eine von b 2 verschiedene Ziffer,
- für z 3 eine von c 3 verschiedene Ziffer usw . ,
d . h . , man wählt allgemein eine Ziffer zt aus { 1 , 2, . . . , 8 } , welche von
der z-ten Dezimalen der Zahl xh also von der auf der roten Diagonalli¬
nie stehenden Ziffer verschieden ist . *
Begründe , dass die so gewonnene Zahl z zwar zur Menge M gehört ,
aber mit keiner der Zahlen x t , x 2 , x 3 , . . . übereinstimmt .

d) Das Ergebnis von c bedeutet , dass die Annahme , die Menge M sei
abzählbar , falsch ist . Erläutere dies und folgere daraus auch die Nicht¬
abzählbarkeit von R .

* Man bezeichnet die Auswahlregel für die Ziffern z, als 2 . oder Cantor ’sches Diagonalverfahren . Cantor hat
es 1890 entwickelt .
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