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Pentagramm — Siegel Salomonis — Drudenful3
Gipsschnittstukkatur aus Marokko
Das magische Zeichen, das 5-mal A, das grofe griechische Alpha, enthilt und deswegen
auch Pentalpha heiBt, symbolisiert das Weltall, die Vollkommenheit und auch die
Gesundbheit. Es diente den PYTHAGOREERN (500-350 v. Chr.) und spiter den NEUPLA-
TONIKERN (3.—6. Jh. n. Chr.) als Zeichen ihres Bundes. — SALomo, K6nig von Israel und
Juda (um 965-926 v. Chr.), galt in den ersten Jahrhunderten unserer Zeitrechnung bis
ins Mittelalter hinein als groBer Zauberer; das Pentagramm wurde zu seinem Siegel.
Die Drude ist eine Hexe, ein weiblicher Nachtgeist, der fiir Alptriume und Magen-
dricken verantwortlich ist. Thr FuBabdruck, der DrudenfuB, ist, auf die Schwelle ge-
zeichnet, ein Abwehrsymbol gegen Druden, spiter ein allgemeines Bannzeichen gegen
Geister und den Teufel (siche GOETHE, Faust 1. Teil, Vers 1394fF.)
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1.1 Das Problem der Quadratverdoppelung

Der griechische Philosoph PLATON
(428348 v.Chr.) beschreibt in sei-
nem vor 389 v. Chr. verfassten Dialog
Menon (82b-85b) die Lehrmethode
seines berithmten Lehrers SOKRATES
(470-399 v. Chr.). Er schildert, wie
SOKRATES einem mathematisch unge-
bildeten Sklaven seines Freundes
MEeNoN dazu verhilft, die folgende
Aufgabe zu losen:
Zu einem gegebenen Quadrat soll
ein zweites Quadrat gefunden wer-
den. dessen Flicheninhalt doppelt
so grof} ist.
Der Sklave schliigt zundchst vor jede
Seite des gegebenen Quadrats (Abbil-
dung 10.2) zu verdoppeln, erkennt
dann aber, dass sich dabei der Fla-
cheninhalt vervierfacht (Abbildung
10.3). Das gesuchte Quadrat darf nur
halb so grof sein; man muss also die
Fliche des groBen Quadrates halbie-
ren. Die Losung, zu der SOKRATES den
Sklaven anleitet, beruht darauf, dass
von jedem der vier Teilquadrate die
Hilfte weggenommen wird, indem
man sie, wie Abbildung 10.4 zeigt,

r

Abb.10.1 PrartON, eigentlich ARISTO-
KLES (428 Athen oder Agina — 348 Athen)
K aiserzeitliche romische Kopie nach dem
Werk des SILANION, entstanden wohl bald
nach 348 v. Chr. Miinchen, Glyptothek

durch Diagonalen zerschneidet. ABCD ist dann das gesuchte Quadrat. Seine
Seite ist die Diagonale des gegebenen Quadrats.
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Abb. 10.2
gegebenes Quadrat

Abb.10.3 Quadrat mit
doppelter Seitenldnge

Abb.10.4 Quadrat mit
doppeltem Flicheninhalt
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Uns interessiert die Frage, wie lang die Seite des Losungsquadrats ist. Das
hangt naturlich von der GroBe des gegebenen Quadrats ab. Zur Verein-
fachung setzen wir voraus, dass es sich um das Einheitsquadrat handelt, also
um das Quadrat mit der Seitenldnge 1 (d.h. 1 Langeneinheit). Sein Flichen-
inhalt ist damit ebenfalls 1 (d.h. 1 Flidcheneinheit). Da somit das Losungs-
quadrat ABCD den Flacheninhalt 2 besitzt, muss fiir seine Seitenldnge x
gelten: ‘ee = D ikyrs x> = 0.
Um die Liange der Diagonale des Einheitsquadrats angeben zu kénnen
muss man also diese Gleichung 16sen. Man erkennt leicht, dass x eine Zahl
zwischen 1 und 2 sein muss, denn esist 1> < 2 und 2% > 2; alsomuss 1 < x < 2
gelten. Eine genauere Eingrenzung von x erhilt man, indem man die Qua-
drate von 1,1; 1,2; 1,3; ... berechnet; wegen 1.4*> =1,96 und 1,52 = 2,25 gilt:
1,4 < x < 1,5. Ebenso findet man mit Hilfe des Taschenrechners schnell die
Ergebnisse
141 <x <142
1,414 < x < 1,415
1,4142 < x < 1,4143.

Konnen wir auf diesem Wege den genauen Wert von x finden?
Sicherlich nicht! Denn wenn man einen Dezimalbruch mit einer, zwei, drei, . ..
Stellen nach dem Komma quadriert, erhédlt man eine Zahl mit zwei, vier, sechs,
... Stellen nach dem Komma, also niemals eine ganze Zahl.* Die Gleichung
x* = 2 kann somit keinen endlichen Dezimalbruch als Losung haben.
Neben den ganzen Zahlen und den endlichen Dezimalbriichen gehoren zu der
uns zur Verfligung stehenden Menge Q der rationalen Zahlen auch Briiche,
deren Dezimalentwicklung unendlich und periodisch ist. Das sind bekannt-
lich diejenigen Briiche, deren Nenner nach vollstindigem Kiirzen noch einen
von 2 und 5 verschiedenen Primfaktor enthalten. Gibt es unter ihnen eine
Losung von x? = 27
Angenommen, x = P mit P, q € IN wire eine solche Losung; dabei sei dieser
4
Bruch vollstindig gekiirzt. Da x keine ganze Zahl ist, muss ¢ > 1 gelten.
Durch Quadrieren erhilt man x* = ::::: Dieser Bruch kann aber keine
ganze Zahl sein; denn, da p und ¢ teilerfremd sind, ldsst er sich nicht kiirzen,
und wegen ¢ > 1 ist sein Nenner von 1 verschieden. Das hei3t aber: Es gibt
keinen Bruch, dessen Quadrat den Wert 2 hat.
Das Ergebnis unserer Uberlegungen lautet somit: Die Gleichung x? = 2 ist
mit rationalen Zahlen nicht l6sbar. Wir sind mit den uns zur Verfiigung ste-
henden Zahlen nicht in der Lage die Linge der Diagonale des Einheitsqua-
drats anzugeben. Man erkennt leicht, dass es neben x? = 2 noch viele andere,
ebenso einfache Gleichungen gibt, die in Q nicht I6sbar sind. Weitere Beispiele
findest du in den folgenden Aufgaben.

* Wir setzen dabei voraus, dass die letzte Stelle der zu quadrierenden Zahl jeweils nicht 0 ist.
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Aufgaben

I. Zeige: Die folgenden Gleichungen haben keine rationalen Losungen.
a) x*’=3 b) x*=6 c) x2=8 d) x* =500
Die folgenden Gleichungen sind in ©Q 16sbar. Gib alle Losungen an.
ay x*=1 "'bh ¥*=4 ¢) x> =121 d) x%2=0625
e *=1 0O x*=2% g) x*=0,64 h) x2=0,0004

e 3. Beweise: Die Gleichung x? = n, n e N, ist genau dann in Q 18sbar, wenn »n
eine Quadratzahl ist.

[

4. Der folgende auf den Begriff »gerade Zahl« sich stiitzende Beweis fiir die
Unlosbarkeit der Gleichung x? = 2 in der Menge © wurde bereits von
ARISTOTELES (384322 v. Chr.) in seinen Analytica priora (1.23.41a. 23—
27) angedeutet und ist als Anhang zu Buch X der Elemente des EUKLID
(um 300 v.Chr.) iiberliefert.

Angenommen, der vollstindig gekiirzte Bruch E sel eine Losung der
Gleichung x? = 2. Dann gilt q

A ;
(f) =2 |
q

pE_:ZqZ

Daher ist p* und somit auch p eine gerade Zahl. Man kann deshalb
p = 2n setzen, mit ne IN.
(2n)* = 242 |z 2

9

2nt =g
Also ist auch ¢* und damit ¢ eine gerade Zahl.

Begrunde die angewandten Schliisse. Erklire, wieso die Annahme zu ei-
nem Widerspruch gefiihrt hat und somit falsch ist.

5. Der Beweis von Aufgabe 4, bei dem die Teilbarkeit durch den Primfaktor 2
die entscheidende Rolle spielt, lisst sich auch auf andere Primfaktoren
Ubertragen. Zeige nach dieser Methode, dass auch die folgenden Glei-
chungen in Q unlosbar sind: a) x> =7 b) x2=12 ¢) x2=15

6. Die Gleichung x* = % hat keine rationale Losung. Das kann man so be-
weisen: Aus x? = § erhilt man (3x)? = 2 - 3 (Multiplikation mit 32). Mit
der Substitution z = 3x wird daraus z? = 6, eine in Q unldsbare Glei-
chung (vgl. Aufgabe 1b).

Begriinde mit dieser Methode die Unldsbarkeit der Gleichungen
a) x? =1, b) x* =22, ¢) x2=10,.2, d) x*=125
in der Grundmenge ©Q.

: . ; P I .
¢ 7. Beweise: Die Gleichung x> ==, p,ge N, ist in Q genau dann l5sbar,

wenn p - g eine Quadratzahl ist. (Hinweis: Beachte die Aufgaben 6 und 3.)
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8. Gegeben ist ein Quadrat mit der Seitenldnge a, ae Q™.
a) Bestimme die Seitenlinge eines Quadrats, dessen Flicheninhalt
1) 4-mal, 2) 49-mal, 3) 2,25-mal, 4) £2-mal so groB ist.
b) Gibt es eine rationale Zahl, welche die Seitenldnge eines Quadrats mit
dem 1) 5fachen, 2) 16fachen, 3) 1,6fachen Fldacheninhalt angibt?

9. Kannst du mit Hilfe rationaler Zahlen angeben, wie lang die Seiten folgen-
der Figur sind?
a) Quadrat mit 1) 15m?, 2) 16 cm?, 3) 2,3 dm? Flidcheninhalt
b) Rechteck mit dem Seitenverhiltnis 2 : 3 und 1) 36 cm?, 2) 324 mm?,
3) 0,24 m? Flicheninhalt

10. Dem Problem der Quadratverdoppelung entspricht bei den Korpern das
der Wiurfelverdoppelung:
Zu einem gegebenen Wiirfel soll ein zweiter Wiirfel gefunden werden,
dessen Rauminhalt doppelt so grob ist.
Diese Aufgabe wird als delisches Problem bezeichnet aufgrund einer Er-
ziahlung des ERATOSTHENES (3. Jh. v.Chr.):
Als auf der Insel Delos die Pest wiitete, wandten sich die Bewohner Hilfe
suchend an Apollo. Sie erhielten den Auftrag, den wurfelformigen Altar
in seinem Heiligtum zu verdoppeln, aber dabei die Gestalt zu bewahren.
a) Zeige, dass die Kantenldnge x eines Wiirfels, dessen Volumen doppelt
so groB ist wie das des Einheitswiirfels, die Gleichung x® = 2 erfiillen
Muss.
eb) Begriinde nach der bei x* = 2 angewandten Methode, dass auch die
Gleichung x* = 2 in Q nicht lésbar ist.

e11. Die Tatsache, dass es Streckenpaa- 0
re gibt, deren Verhaltnis sich nicht T
durch eine rationale Zahl ausdrii-
cken ldsst, wurde zuerst von den
Griechen erkannt. Die PYTHAGO-
REER, deren Bundeszeichen das re-
gelmafBige Flnfeck war (vgl. Ab-
bildung 9.1), entdeckten gerade an
diesem Flinfeck, dass — ebenso wie
beim Quadrat — Seite und Diago-
nale kein rationales Verhéltnis ha-
ben.

Aus der Ahnlichkeit der Fiinfecke
ABCDE und AB'C'D'E’ in Ab-
bildung 13.1 folgt, dass das Ver-
haltnis von Seite und Diagonale in
beiden Fillen gleich ist. Abb.13.1 Das regelmiBige Fiinfeck
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Es gilt also

d d .
=—. (1)

5 &
a) Weise nach, dass sich d' und s" folgendermafBlen durch ¢ und s aus-
driicken lassen:
d=d-—s und s =25—-4d (2)
(Hinweis: Welche besondere Eigenschaft haben die Vierecke ABCB’,
ABA'E, C'E'CA’ und C'E'B'E?)
Begriinde sodann die Abschidtzung

s=d=<28s. (3)
b) Zeige mit Hilfe von (2), dass die Gleichung (1) durch die Substitution
e — ‘,:( folgende Form erhilt:
x—1
Tt e (4)

Welche Abschétzung fiir x ergibt sich aus (3)?

¢) Ausder Annahme, ein Bruch 2 mit teillerfremden natiirlichen Zahlen p

q
und ¢ sei Losung der Gleichung (4), ldsst sich folgende Gleichung
herleiten:
2
P
g = — 5
p+q 7 (3)

Fiihre die Herleitung aus.

d) Begriinde anhand der Gleichung (5), dass die in ¢ gemachte Annahme
falsch ist und dass demnach Seite und Diagonale des regelméBigen
Fiinfecks kein rationales Verhiltnis haben.

1.2 Irrationale Zahlen; Intervallschachtelungen

Wir mussten feststellen, dass die rationalen Zahlen schon zum Ldsen von
so einfachen Gleichungen wie x* = 2 nicht ausreichen. Dazu bendtigen wir
also neue, nicht rationale Zahlen.

Jede rationale Zahl lasst sich, wie wir wissen, als Dezimalzahl schreiben.
Sofern es sich nicht um eine ganze Zahl handelt, erhdlt man dabei entweder
eine endliche oder eine unendliche periodische Dezimalzahl.

Beispiele:
H=015; 2=1056; 23 = 1,318; Jee =001
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Natiirlich kann man sich auch Dezimalzahlen vorstellen, bei denen die Zif-
fernfolge hinter dem Komma unendlich und nicht periodisch ist, zum Beispiel
0,63633633363333... oder

5,18118811188811118888...,

wobei man sich die Ziffernfolge nach der leicht erkennbaren GesetzméBigkeit
endlos fortgesetzt denken muss. Dass man auch mit solchen Gebilden ebenso
rechnen kann wie mit den rationalen Zahlen, ist keineswegs selbstverstand-
lich. Darauf soll erst im ndchsten Abschnitt niher eingegangen werden.
Diese neuen nicht rationalen Zahlen werden in der mathematischen Fach-
sprache als irrationale® Zahlen bezeichnet. Es gilt also

nicht periodisch ist, heil3t irrationale Zahl.

Es ist nicht schwer, sich eine Vorstellung davon zu machen, wie die neuen
irrationalen Zahlen in die bekannten rationalen Zahlen einzuordnen sind. Als
Beispiel betrachten wir die irrationale Zahl z = 0,636336333 ... und verglei-
chen sie mit geeigneten rationalen Zahlen. Die Ziffer 0 vor dem Komma sagt
uns, dass z zwischen den ganzen Zahlen 0 und 1, also im Intervall [0; 1]
liegen soll:

0=z=1 dh zel[0:1]

Nimmt man die erste Stelle nach dem Komma hinzu, so ergibt sich die Ab-
schitzung
06 <z=<0,7 d.h. :ze[0,6;07].

Indem man so fortfihrt und jeweils eine weitere Ziffer der unendlichen Dezi-
malzahl beriicksichtigt, erhdlt man

0,63=<z=0,64 d.h. ze[0,63;0,64],
0,636 < z < 0,637 d.h. ze[0,636;0.637],
0,6363 = z £ 0,6364 d.h. ze[0,6363;0,6364],
0,63633 < z £ 0,63634 d.h. ze[0,63633;0,63634], usw.

Man erreicht so eine immer schiirfere Eingrenzung von z durch rationale Zah-

len. Die Folge der Intervalle fiir z muss man sich ohne Ende fortgesetzt denken.
l].EiE\1 0,64

0 06 11 07 1

Abb.15.1 Intervalle fir z = 0,636336333 ...

*

irrational = nicht rational. Zur Geschichte dieses Wortes siche Seite 63.
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Man erkennt leicht (Abbildung 15.1), dass diese Intervalle »ineinander ge-
schachtelt« sind, d. h., dass das jeweils nichste ganz im vorausgehenden ent-
haltenist. Die Langen dieser Intervalle sind der Reihe nach 1, 15, 166- to60s - - - :
sie nehmen schnell ab und werden beliebig klein, d. h., jede positive Zahl, auch
wenn sie noch so klein ist, wird von den Intervalllingen schlieBlich unterschrit-
ten. Fur eine solche Intervallfolge fithrt man eine passende Bezeichnung ein:

Definition 16.1: Eine Folge von unendlich vielen abgeschlossenen Inter-
vallen, ber welcher

(1) jedes Intervall in allen vorangehenden enthalten ist und

(2) die Intervallangen beliebig klein werden,

heil3t Intervallschachtelung. [

Das vorausgehende Beispiel zeigt, dass und wie man zu einer irrationalen Zahl
eine Intervallschachtelung angeben kann. Aber auch fur rationale Zahlen gibt
es Intervallschachtelungen. Das zeigen die folgenden

Beispiele:
1) $=10,6
Intervallschachtelung: [0;1], [0,6;0,7], [0,66;0,67], [0,666;0,667], ...
2) 15— 1,318
Intervallschachtelung:
(12200 FL, 35040, 04, 3154032 1, F 1 318:4 319011 318 1:4.3182] ...
3) 2.3 =2,30()
Intervallschachtelung: [2;3], [2,3;2.4], [2,30;2,31], [2.300;2,3017, ...

Man kann also fir alle Zahlen, gleichgiiltig ob rational oder irrational, Inter-
vallschachtelungen angeben. Wichtig ist, dass durch eine solche Schachtelung
die entsprechende Zahl eindeutig bestimmt ist. Es konnen ndamlich niemals
zwel verschiedene Zahlen allen Intervallen einer Intervallschachtelung ange-
horen. Denn ein Intervall, in dem zwei verschiedene Zahlen z, und z, liegen,
muss mindestens eine Linge |z, — z,| haben. Diese positive Zahl wird aber
bei einer Intervallschachtelung von den Intervalllingen schlieBlich unter-
schritten, da diese ja beliebig klein werden (Abbildung 16.1).

L

Abb.16.1 Die Intervalllingen werden kleiner als |z, — z,|.

Es gilt also

Satz 16.1: Jede rationale oder irrationale Zahl kann man durch eine
Intervallschachtelung eindeutig festlegen.

s
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Aufgaben
1. Entwickle die folgenden Zahlen in Dezimalbriche:
7 91 &5 8 9
a) 3s b) 53 ¢) o1 d) 15 €) is
L5 1 10 L 2.3 54
) 3 g8) 17 h) 947 i) %0 k) 360

(3]

[ 1]
(%]

e 6.

o7.

. Gib drei neue Beispiele fur unendliche nicht periodische Dezimalbriiche

an. Beschreibe jeweils die Regel, nach der die Ziffernfolge sich endlos
fortsetzen soll.

. Begriinde, dass die folgenden unendlichen Dezimalzahlen irrational sind.

(Hinweis: Untersuche das Auftreten der Ziffer 0. Gibt es beliebig lange

Abschnitte, die nur aus Nullen bestehen?)

a) x = 0,12345678910111213...; d.h., die Ziffernfolge nach dem Kom-
ma entsteht durch »Hintereinanderschreiben aller natiirlichen Zah-
len«.

b) y = 0,149162536496481100121...; d.h., die Ziffernfolge nach dem
Komma entsteht durch »Hintereinanderschreiben aller Quadratzah-
len«.

¢) z=0,126241207205040...; der k-te Abschnitt der Ziffernfolge nach
dem Komma ergibt sich hier durch die Berechnung des Produkts
1-2-3-... k, wofir man kurz k! schreibt, gelesen »k Fakultit«.

. Welche der folgenden Dezimalzahlen stellen irrationale Zahlen dar? (Die

Ziffernfolge soll sich nach der erkennbaren GesetzméaBigkeit endlos fort-
setzen.)

a) 0,367999. .. b) —1.343443444 ... «¢) 5,211221122211...
d) —7,727727727... e) 0,204080160... f) —4,32100000...

. Stelle fest, ob die angegebene Intervallfolge eine Intervallschachtelung ist.

a) [5:6],[5.6;5,7], [5.66; 5,671, [5.666; 5,667], ...

b) [0:2],[0,9;1,17, [0,99;1,01], [0,999;1,0017, ...

¢) [3:3,51, [3;3.,05], [3:3.005], [3:3.,0005], ...

d) [1:21:[2:2.11.[3:3.011. [4; 4.0017; ...

el 2 A 9 [~ 24 =199 P=2 111 = 1.999]. .
N [—1;2],[-0,1;0,2], [—0,01;0,02], [—0,001;0,002], ...

a) Gib eine Intervallschachtelung fiir die Zahl 0,9 an.

b) Begriinde, dass 1 die einzige Zahl ist, die in allen Intervallen dieser
Schachtelung liegt, und dass somit 0.9 =1 gilt.

¢) Begriinde entsprechend: 0,09 = 0,1; 0,009 = 0,01.

d) Schreibe als endlichen Dezimalbruch: 1,19; 0,409; —9.9.

e¢) Verwandle in unendliche Dezimalbriiche, ohne die Ziffer 0 als Periode
zu verwenden: 2,5; —0,89; 11; —2,011.

Bei den bisher betrachteten Beispielen von Intervallschachtelungen ent-

stand das jeweils ndchste Intervall durch Zehnteilung des vorausgehen-
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den. Manchmal werden auch andere Unterteilungsverfahren beniitzt.
a) Beschreibe die Regel, nach der die Intervallfolge [0; 1], [3:3]. [5:3].
[13:14], (2% 417 konstruiert ist. Stelle die ersten vier Intervalle auf

einer Zahlengeraden mit der Langeneinheit 9 cm dar.

b) Begriinde, dass die in a angegebene Intervallfolge eine Intervallschach-
telung ist. Welche Zahl wird durch sie festgelegt?

¢) Vom »Halbierungsverfahren« spricht man, wenn das jeweils nachste
Intervall eine der Hilften des vorausgehenden ist. Berechne die ersten
fiinf Intervalle einer Intervallschachtelung fiir die Zahl 3, indem du mit
[0; 1] beginnst und die weiteren Intervalle nach dem Halbierungsver-
fahren bestimmst,

8. Gib Intervalle der Lange 1; 0,1; 0,01 und 0,001 an, in denen eine positive
Losung der Gleichung
a) x* =3, b) x2 = 0,5, ¢) x? = 200, d) x2 =4
liegen miuBte.

9. Bestimme Intervalle mit den Langen 1; 0,1; 0,01 und 0,001, in denen die
Kantenlange eines Wiirfels liegen miisste, dessen Volumen n-mal so grof3
wie das des Einheitswiirfels ist.

a) n=2 b) n =10 ¢) n= 100

*%1.3. Rechnen mit Intervallschachtelungen

Wir haben schon erwidhnt, dass man auch mit den irrationalen Zahlen sinnvoll
rechnen kann. Das ist keineswegs selbstverstindlich. Schon bei der Frage, wie
mit thnen die verschiedenen Rechenarten auszufithren sind, stoBt man auf
Schwierigkeiten. Da es sich um unendliche Dezimalzahlen handelt, kann man
ja z. B. beim Addieren nicht wie bei endlichen Dezimalzahlen mit der letzten
Stelle beginnen. Bei den periodischen Dezimalzahlen umgeht man dieses Pro-
blem, indem man sie durch die entsprechenden gewohnlichen Briiche ersetzt,
z.B. 0,6 durch 3. Bei den unendlichen nicht periodischen Dezimalzahlen schei-
det diese Moglichkeit aus. Fiir das Rechnen mit ihnen benotigen wir andere
Hilfsmittel. Als solche eignen sich z. B. die Intervallschachtelungen. Mit ihnen
kann man die Rechenoperationen auch fiir irrationale Zahlen definieren und
die weitere Giiltigkeit der Rechengesetze nachweisen. Dies soll fur die Addi-
tion ndher erldutert werden. Zunichst betrachten wir ein Beispiel mit zwei
rationalen Summanden.

Beispiel 1:
a=%b=23=a+b=%2+23=%2+4+23= i
Intervallschachtelungen fiir @ und b haben wir bereits im vorausgehenden
Abschnitt angegeben (vgl. Seite 16). Aus deren ersten Intervallen erkennt
man, dass 0 = ¢ = 1 und 2 = b =< 3 gilt. Durch Addition dieser Unglei-
chungen erhélt man
2<a+b=4 d.h, a+be[2;4].
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Analog erhilt man aus den zweiten, dritten, vierten, ... Intervallen
0,6 +23<a+bh=07+24 d.h. a+be[2)9;3.1]
0,66 +230=<a+b=0,67+231 d.h. a+be[2,96;2,98]

0,666 +2300<a-+b=<0,667+2301 d.h. a+be[2,966;2968] usw.

Man erkennt leicht, dass die rechts stehenden Intervalle fiir a + b wieder
eine Intervallschachtelung bilden. Durch sie ist die Zahl a + b eindeutig
festgelegt. Aus der Dezimalentwicklung von a + b = 222 = 2,96 erkennt
man ebenfalls, dass a + b jedem Intervall dieser Schachtelung angehort.

Das vorausgehende Beispiel zeigt, wie man aus Intervallschachtelungen fiir
zwel Zahlen ¢ und b durch Addition entsprechender Intervallgrenzen wieder
eine Intervallschachtelung fiir die Summe «a + b erhilt. Der Vorteil dieser an
sich umstiindlichen Additionsmethode liegt darin, dass man sie auch auf irra-
tionale Summanden anwenden kann.

Beispiel 2:
z, = 0,636336333...; z,=5,181188111888...
Intervallschachtelung fiir z:
[0:1],[0,6;0,7],[0,63; 0,64], [0,636,0,637], [0,6363;0,6364], ...
Intervallschachtelung fiir z,:
[5:6], 154521, [ 518 5197, [5.181; 5,482, [5181 1 5,1812],". ..
Durch Addieren entsprechender Intervallgrenzen erhdlt man die Inter-
vallfolge
[5: 7], [5.7;5.9], [5.81;5.83], [5,817;5,819], [5,8174;5,8176], ...
Dies ist wieder eine Intervallschachtelung, durch welche die Summe
z, + z, bestimmt ist. [hre Dezimalentwicklung beginnt mit 5,817; man
kann durch fortgesetzte Intervalladdition beliebig viele weitere Dezima-
len berechnen.

Allgemein gilt: Zwei Zahlen a und b kann man addieren, indem man fiir sie
Intervallschachtelungen [ay; 4,], [a; 451, [as; As],... bzw. [by; B;].
[b,; B,], [bs; B3], ... aufstellt und aus den Intervallpaaren [a,; 4,1, [b,; B,],
n=1,2,3,..., die Intervalle [a, + b,; A, + B,] berechnet. Diese bilden wie-
der eine Intervallschachtelung, wie du anhand der Aufgabe 20/6 begriinden
kannst.

Da aus den Ungleichungen a, £ a = A, und b, =< b < B, die Doppelunglei-
chung a, + b, < a+ b < A, + B, folgt, liegt die Summe @ + b in jedem der
Intervalle [a, + b,; 4, + B,] und ist damit durch diese Intervallschachtelung
eindeutig bestimmt.

Da die bei Vertauschung der Summanden a und & erhaltenen Intervalle
[b,+a,; B,+ A,],n=1,2,3, ..., dieselbe Intervallschachtelung liefern, gilt
a+b = b+ a, d.h. das Kommutativgesetz der Addition fiir beliebige, also
auch fiir irrationale Zahlen. Ebenso kann man zeigen, dass auch die Gibrigen
Rechengesetze der Addition giiltig bleiben.
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Auch die Multiplikation von rationalen und irrationalen Zahlen kann man
mit Hilfe von Intervallschachtelungen durchfiihren. Es zeigt sich, dass auch
fur sie die bekannten Rechengesetze giiltig bleiben (vgl. die Aufgaben 20/7
bis 21/10).

Aufgaben

-2

Gib fiir a und b Intervallschachtelungen an und berechne daraus die ersten
fiinf Intervalle einer Schachtelung fiir @ + b. Gib die Dezimalentwicklung
von a + b an, soweit sie durch die berechneten Intervalle gesichert ist.
a)hr =10373373337. 0l umd =t

b) a = 2,0408016... und b = 1,505505550...

¢) a=2,039 und b= —1,808008000...
d) a=-—0771771177111... und b= —3,141144111444...

. Die Subtraktion zweier Zahlen ldsst sich nach der Regela — b = a + (— b)

auf die Addition zuriickfiihren. Berechne so die ersten fiinf Intervalle
einer Schachtelung fiir ¢ — b mit den Zahlen
a) von Aufgabe 1a, b) von Aufgabe 1d.

. a) Berechne die Summe der Irrationalzahlen z, = 0,151151115... und

z, = 2,626626662... Ist das Ergebnis wieder eine irrationale Zahl?
b) Gib zwel irrationale Zahlen an, deren Summe null ist.

4. a) Welche Zahl muss man zu 0,585585558 ... addieren um 1 zu erhalten?

e0.

7.

Ist die gesuchte Zahl rational oder irrational?

b) Welche Zahl muss man von 0,585585558... subtrahieren um
0,252252225... zu erhalten? Handelt es sich wieder um eine irrationale
Zahl?

. Beweise, dass die Summe aus einer rationalen und einer irrationalen Zahl

stets irrational ist. (Hinweis: Welche Folgerung fiir b ergibt sich aus

a+ b = ¢, wenn man annimmt, dass ¢ und ¢ rational sind?)

la,: A,] bzw. [b,; B,], n =1,2,3, ..., seien Intervallschachtelungen.

a) Beweise, dass fir jede natiirliche Zahl n gilt: Das Intervall
[a,+1+b,+4 4,41+ B, ,] liegt ganz in [a,+ b,; A, + B_].

b) Zeige, dass die Linge des Intervalls [a, + b,: A, + B, ] die Summe der
Langen von [a,; 4,] und [b,; B,] ist.
Begriinde damit, dass die Langen der Intervalle [a,+ b,; a, + B,] mit
wachsendem n beliebig klein werden.

a) Berechne mit den auf Seite 16 angegebenen Intervallschachtelungen
fira = 3 und b = 2,3 die Intervalle [a,* b,; A, - B,] fiirn =1 bisn = 4.
Priife, ob sie ineinander geschachtelt sind und ob die Zahl ¢ b in
jedem dieser Intervalle liegt.
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b) Berechne die Ldngen der in a bestimmten Intervalle.

¢) Sprechen die Ergebnisse von a und b dafiir, dass die Intervalle
[a,-b,; A,- B,] eine Intervallschachtelung fir a - b bilden?

8. a) Stelle fiir die beiden Irrationalzahlen @ = 1,505505550. .. und
b = 0,20406080. .. Intervallschachtelungen auf und berechne die Inter-
valle [a,- b,; A, B,] bisn =4.
b) Zeige, dass diese Intervalle ineinander geschachtelt sind, und berechne
thre Langen.

298
=

. Wenn [a,; 4,] und [b,; B,], n=1, 2,3, ..., Intervallschachtelungen mit
positiven Intervallgrenzen sind, dann bilden die Intervalle [a, - b,; 4,, - B,]
wieder eine Intervallschachtelung. Der nicht ganz einfache Beweis dafur
beruht auf den folgenden Schliissen. Erldutere sie!

a) Aus a, < A, und b, < B, folgt a,b, < A, B,; also ist [a,b,; 4,8,] ein
Intervall.

b) Ausa,=a..,undb <bh.. folgt g b, =< a,. by qyaUs Ay = Ay g
und B, = B, folgt 4,B, = 4,,,B,;,.
Daher gilt: [a, 30, sl vy Baaqll © [a;0,: 4,8.)

¢) Fir die Linge des Intervalls [a,b,; 4, B,] gilt:
A B —ab,=A,(B,—b,)+b,(A,—a,) <AB,—b,)+ B,(4,—a,)
Da mit wachsendem n die Werte der geklammerten Terme beliebig
klein werden, gilt dies auch fiir die Intervallinge.

10. Welche einfachere Form ergibt sich fiir die Abschitzung in Aufgabe 9e¢,
wenn die beiden Intervallschachtelungen nach der Zehnteilungsmethode
konstruiert sind und die ersten Intervalle die Linge 1 haben?

e11. a) Gibfiira = —%und b = — 3,6 Intervallschachtelungen an und berech-
ne daraus die ersten vier Intervalle fir das Produkt a - b.

b) Erklire, warum bei Intervallschachtelungen mit negativen Intervall-

grenzen die Intervalle der Produktschachtelung die Form

[A4,- B, a,-b,] haben.

1.4 Die Menge der reellen Zahlen

Die rationalen und die irrationalen Zahlen werden unter dem gemeinsamen
Namen reelle Zahlen* zusammengefasst.

=

Das Fachwort reell geht auf René DESCARTES (1596-1650) zuriick. Er unterteilte 1637 in seiner La Géoméirie
die Losungen von nicht linearen Gleichungen (wie z.B. ax® + bx + ¢ = 0) in wirkliche und nur denkbare.
Das franzdsische Wort fiir wirklich ist réel, das auf ein erst im Mittelalter auftauchendes lateinisches realis
zuriickgeht, das zu res = Sache gebildet worden war. Mit realis wird DESCARTES' réel 1649 in der lateinischen
Ubersetzung seiner La Géométrie wiedergegeben. Wann aus realis das deutsche Fachwort reell entstand,

konnten wir nicht feststellen. Nach 1831 ist es auf alle Fille bei Carl Friedrich Gauss (1777-1853) belegt.
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Man verwendet folgende Bezeichnungen:

Definition 22.1:
1%

= Menge der reellen Zahlen
R™ = Menge der positiven reellen Zahlen
R~ = Menge der negativen reellen Zahlen

IRy = Menge der nicht negativen reellen Zahlen

Fiir das Rechnen mit den reellen Zahlen gelten die schon bekannten Rechen-
gesetze, die wir in der folgenden Tabelle noch einmal zusammenstellen.

Fiir reelle Zahlen a, b, ¢ gelten folgende Rechengesetze:

Gesetze der Addition

Gesetze der Multiplikation

Bezeichnungen

(E,) a+beR

(E.) a-beR

Existenz der
Summe/des
Produkts

(K.)

a+b=b+a

(K.) ab=b-a

Kommutativ-
gesetz

(A4)

(a+b)+c=
=a+((b+0o)

(A) (@b):c=a(bo

Assoziativ-
gesetz

(N4)

a+0=a

(N)) a'1=a

Existenz des
neutralen
Flements

(1)

a+(—a)=0

1
(1) a-;: 1, falls a % 0

Existenz des
inversen
Elements

(D)

(a+b)yrec=a-c+b-c

Distributiv-
gesetz

a<bh = a+c<h+c

a<bh

==g-e<b-¢c
c>10)

Monotonie-
gesetz

a<b

=g =>hc
c<0

Umkehrung
der Monotonie

Jede reelle Zahl x lasst sich durch eine Intervallschachtelung darstellen. Da
deren Intervalle beliebig klein werden, ziehen sie sich auf der Zahlengeraden
auf einen Punkt zusammen, den wir ebenfalls mit x bezeichnen. Jeder reellen
Zahl ist somit eindeutig ein Punkt der Zahlengeraden zugeordnet.
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Es stellt sich nun die Frage:

Gehért umgekehrt auch zu jedem Punkt der Zahlengeraden eine Zahl?
Solange man nur die rationalen Zahlen zur Verfugung hatte, musste man
diese Frage verneinen! Zum Beispiel zeigt Abbildung 23.1 die Konstruktion
eines Punktes P der Zahlengeraden, zu dem keine rationale Zahl gehort.

L L —
T T i3

=1 0 g P 3

Abb. 23.1 Konstruktion eines »nicht rationalen Punktes«

Nach der Einfithrung der irrationalen Zahlen muss aber die oben gestellte
Frage anders beantwortet werden: Zu jedem Punkt P der Zahlengeraden ge-
hort eine reelle Zahl.

Dies kann man so begriinden:

Wir betrachten zunéchst die den ganzen Zahlen zugeordneten Punkte. Es kann sein,
dass P einer von ihnen ist; dann gehdrt zu P eine ganze Zahl. Andernfalls liegt P
zwischen zwei derartigen Punkten; wir bezeichnen sie mit nund # + 1, wobein € Z gilt.
Wir zerlegen nun [#; n + 1] in zehn gleiche Teile. Falls P einer der Teilpunkte ist, gehort

. : k. ; . ey
zu thm eine Zahl n + 0 mit k € {1,2,...,9}. Andernfalls liegt P zwischen zwei Teil-

punkten. Das von diesen begrenzte Intervall zerlegen wir wieder in zehn gleiche Teile
USW.

Es gibt nun zwei Mdglichkeiten:

Entweder: P fillt irgendwann mit einem Teilungspunkt zusammen; dann gehort zu ihm
eine Zahl mit einer endlichen Dezimaldarstellung.

Oder: P wird niemals ein Teilungspunkt; dann erhélt man eine Intervallschachtelung,
die sich auf den Punkt P zusammenzieht. Zu ihr, und damit zu P, gehort eine Zahl mit
einer unendlichen Dezimalentwicklung.

Somit gilt

Satz 23.1: Jeder reellen Zahl ist eindeutig ein Punkt der Zahlengeraden
zugeordnet und umgekehrt ist jedem Punkt der Zahlengeraden ein-
deutig eine reelle Zahl zugeordnet.

Aufgaben

Kennzeichne auf der Zahlengeraden die Zahlenmenge
. a) R™, b) R™, ¢) Ry .
Beschreibe die folgenden Zahlenmengen méoglichst einfach:
2. a) R*nZ b) Rf nZ ¢) R-uUR* d) R\Q
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1 Die reellen Zahlen

Bei den bisher betrachteten Inter-
vallschachtelungen haben wir je-
weils rationale Zahlen als Inter-
vallgrenzen beniitzt. Man kann
nva auch Intervallschachtelun-
gen bilden, bei denen die Inter-
vallgrenzen beliebige reelle Zah-
len sind. Kann man damit noch
einmal neue Zahlen erzeugen?
Mache dir den Sachverhalt an der
Zahlengeraden klar.

Begriinde die folgenden Aussa-

gen durch Widerspruchsbeweise:

a) Das Produkt einer von 0 ver-
schiedenen rationalen Zahl
mit einer irrationalen Zahl ist
irrational.

b) Der Kehrwert einer irrationa-
len Zahl ist irrational.

a) Gib eine rationale Zahl an,
die zwischen den irrationalen
Zahlen g = 0,414114111...
und b = 0.414414441. .. liegt.

b) Zu zwei verschiedenen reellen

1868

it Dbl r—

Abb. 24.1
Julius Wilhelm Richard DEDEKIND
(6.10.1831 Braunschweig-12.2.1916 ebd.)

b)

c)

Zahlen kann man immer rationale Zahlen angeben, die dazwischen
liegen. Begriinde diese Aussage.

Gib eine irrationale Zahl an, die

1) zwischen 1.5 und 1,6 2) zwischen %3 und 3§ liegt.

Gib eineirrationale Zahl an, die zwischen den Zahlen von Aufgabe5s a
liegt.

Zu zwel verschiedenen reellen Zahlen kann man immer eine irrationale
Zahl angeben, die dazwischen liegt. Begriindung!

Wenn bei einer Zahlenmenge M fir die Addition und die Multiplikation
die Rechengesetze E, K, A, N, I und D gelten, spricht man von einem
Zahlenkorper (M; +,-).*

a)

Du kennst nunmehr zwei verschiedene Zahlenkdrper. Welche sind
dies?

sb) Fiir die Menge der irrationalen Zahlen gilt:

(R\Q; +, -) ist kein Zahlenkorper. Welche Rechengesetze sind in die-
sem Fall nicht giiltig?

* Den Begriff Kirper priigte 1871 Richard Depexinp (1831-1916): seine Verwendung im heutigen Sinn (seit
1893) geht auf Heinrich WEBER (1842-1913) zuriick.
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1.5 Ein Vergleich der Zahlenmengen ©Q und R
**1.,5 Ein Vergleich der Zahlenmengen Q und R

In welchem Mafe hat sich durch die Einfithrung der irrationalen Zahlen unser
Zahlenvorrat vergroBert? Ist die Menge* der irrationalen Zahlen »groBer«
oder »kleiner« als Q7

Diese Frage ist nicht leicht zu beantworten, da ja beide Mengen unendlich
viele Elemente haben. Beim Vergleichen konnen wir uns auf die positiven
Zahlen beschrinken; da die negativen Zahlen die Gegenzahlen der positiven
sind, liefert bei ihnen ein Vergleich der rationalen mit den irrationalen dasselbe
Ergebnis.

Die Zahlen der Menge © * kann man nicht der Grofe nach geordnet aufzih-
len. Dennoch ist es moglich, sie in eine bestimmte Reihenfolge zu bringen und
dadurch abzuzihlen. Georg CANTOR (1845-1918) erfuhr dies bereits als Stu-
dent in einem Seminar bei seinem groBen Lehrer Karl WEIERSTRASS (1815 bis
1897) und erwihnte diese Moglichkeit im Brief vom 29.11.1873 an Richard
DEDEKIND (1831-1916). Vorgefiithrt hat es CANTOR aber erst in einem sehr
ausfithrlichen Brief vom 18.6.1886 an den Berliner Gymnasiallehrer
F. GoLpSCHEIDER. Veranschaulichen kann man dieses Abzdhlen durch ein
Verfahren, das auf Augustin Louis CAucHY (1789-1857) zuriickgeht und das
1. Diagonalverfahren heil3t. In Abbildung 25.1 ist es dargestellt.
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Abb. 251 Abzahlen der rationalen Zahlen nach dem 1. Diagonalverfahren

* Der Philosoph, Theologe und Mathematiker Bernard Borzano (1781-1848) verwendete das Wort Menge als
mathematischen Begriff in seiner um 1835 geschriebenen Grafienlehre, die erst 1975 verdffentlicht wurde, und
auch in den 1847 verfassten und 1851 gedruckten Paradoxien des Unendlichen. Georg CANTOR (1845-1918),
der diese Schrift sehr bewunderte, bentitzte das Wort Menge erst ab 1895; bis dahin sprach er von Mannigfal-
tigheit oder Inbegriff.
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Wir betrachten die Gitterpunkte im
1. Quadranten eines Koordinatensy-
stems und ordnen dem Punkt P (x| y)

mit x € N und y € N den Bruch X
v
Dann durchlaufen wir von + aus die
Gitterpunkte in der durch die rote Li-
nie angegebenen Weise und numme-
rieren dabei die Briiche. | ist also der
erste Bruch, 3 der zweite, ¢ der dritte
usw. (vgl. die roten Nummern in Ab-
bildung 25.1). # kénnen wir iiberge-
hen, da dieser Bruch wieder dieselbe
Zahl wie 1 darstellt. Auch § (= 3), 3
(=1), 5 (= 3) liefern keine neuen ra-
tionalen Zahlen; man erkennt, dass
alle kiirzbaren Briiche beim Numme-
rieren uUbergangen werden konnen ¢
(vgl. dazu Aufgabe 28/2). Wenn man um 1870
dieses Durchlaufen der Gitterpunkte - Lo
ohne Ende fortsetzt, wird jede Zahl —ﬁd’f’ﬁ' Cq/;r\—/t;:—
aus Q" genau einmal mit einer Num-
e ‘.\J?ISEh?nﬁ Wir h‘;?bl?l ddm]l .dlL Abb.26.1 Georg Ferdinand Ludwig
positiven rationalen Zahlen in f'.mle Philipp CANTOR (3. 3. 1845 Petersburg bis
blcstlmmtc Relhenf_olge gebracht; sie ¢4 {913 Halle)
sind durchnummeriert. Das Erstaun-
liche daran 1st. dass die naturlichen
Zahlen, die ja eine echte Teilmenge von Q" bilden, ausreichen um alle Zahlen
der Menge @ zu nummerieren. Man sagt dazu: »Die Mengen QF und N
sind von gleicher Michtigkeit.« Eine Menge, welche dieselbe Machtigkeit
wie IN hat, nennt man abzahlbar.* Damit kann man als Ergebnis des 1. Dia-
gonalverfahrens festhalten:

Satz 26.1: Die Menge Q * der positiven rationalen Zahlen ist abziihlhar.—‘

Nun betrachten wir alle positiven reellen Zahlen auf dem Zahlenstrahl
10; + oo[ und fiihren folgendes Gedankenexperiment aus: Ein Papierstreifen
von beliebiger Linge s wird in zwei Stiicke der Lédnge §s zerschnitten (Abbil-
dung 27.1). Mit einer der Hélften verdecken wir den Punkt 1 auf dem Zahlen-
strahl. 1 ist bei der von uns in Abbildung 25.1 eingefithrten Nummerierung die
erste rationale Zahl! Auch die tibrigen rationalen Punkte** werden sodann in

* Das Fachwort Michtigkeit hat CanTOR 1878 bei dem grofien Geometer Jakob STEINER (1796-1863) ent-
lehnt und auf seine heutige Bedeutung erweitert. Im gleichen Jahr verwendete er erstmals den Begriff
abzihlbar im oben angegebenen Sinn.

** Punkte der Zahlengeraden, denen eine rationale Zahl zugeordnet ist, nennen wir kurz »rationale Punkte«.
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der durch die Nummerierung festgelegten Reihenfolge abgedeckt. indem man
immer wieder folgende Anweisung ausfiihrt: »Halbiere den verbliebenen Teil
des Streifens und verdecke mit einer Hilfte denjenigen Punkt des Zahlen-
strahls, welcher zu der ndchsten rationalen Zahl gehort.«

e g
i I Papierstreifen
|
.III ll
/ |
= [_1_1
— : r .
g T 2 3 A X
Al 5
2

Abb. 27.1 Die rationalen Punkte werden verdeckt.

Natiirlich werden durch das fortgesetzte Halbieren die Streifenstiicke immer
schmiler, aber zum Abdecken von Punkten, die ja die Breite null haben,
reichen sie immer wieder aus. Wir konnen auf diese Weise alle rationalen
Punkte des Zahlenstrahls (und nicht nur sie!) bedecken. Zu den nicht verdeck-
ten Punkten des Zahlenstrahls gehoren nur noch irrationale Zahlen. Da aber
die abgedeckten Teile des Zahlenstrahls zusammen hochstens die Lange s
haben und s zudem beliebig klein sein darf, bleibt fast der ganze Zahlenstrahl
unbedeckt. Man erkennt daraus, dass die Menge der rationalen Zahlen im
Vergleich zu derjenigen der irrationalen verschwindend klein ist! Durch die
Einfiihrung der irrationalen Zahlen hat sich also unser Zahlenvorrat ganz
gewaltig vergroBert.

[st dann vielleicht die Menge der reellen Zahlen nicht mehr abzidhlbar? Mit
dieser Frage beschaftigte sich Georg CANTOR, und er richtete sie auch in dem
oben erwiahnten Brief vom 29.11.1873 an Richard DEDEKIND. Dieser wusste
darauf keine Antwort, und CANTOR meinte am 2.12.1873, dass »sie kein be-
sonderes praktisches Interesse [...] hat und [...] nicht zu viel Miihe verdient.
Es wire nur schon, wenn sie beantwortet werden konnte.« Und schon am
7.12.1873 schickt CANTOR seinen Beweis dafiir, dass [R nicht abzahlbar ist, an
DEDEKIND. Am 8.12.1873 gratuliert DEDEKIND und schickt eine stark verein-
fachte Fassung des Beweises an CANTOR, der diese fast wortlich in seine im
Jahre 1874 erschienene Abhandlung tibernimmt. In Aufgabe 29/10 kannst du
selbst einen Beweis fithren fiir

Satz 27.1: Die Menge R der reellen Zahlen ist nicht mehr abzédhlbar.
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Aufgaben

ol.

2.

a) Wo liegen in Abbildung 25.1 die Gitterpunkte, denen die positiven

w2 ST,
Bruchzahlen mit — < 1 zugeordnet sind?
q
Gib 1n einer Zeichnung einen Weg an, auf dem man alle diese Punkte
durchlaufen und die verschiedenen Bruchzahlen nummerieren kann.
Fiihre dies bis zur Nummer 10 durch. p
b) Gib fiir die Gitterpunkte, denen die Briiche mit~ = 1 zugeordnet sind,
q
einen sie durchlaufenden Weg an und nummeriere die ersten zehn
Bruchzahlen in der damit festgelegten Reihenfolge.

a) Welche GesetzmiBigkeit erkennt man, wenn man bei den Briichen, die
in Abbildung 25.1 den Gitterpunkten einer bestimmten Diagonallinie
zugeordnet sind, die Summe aus Zihler und Nenner bildet?

b) Wie dndert sich diese Summe beim Ubergang zur néichsten Diagona-
len?

¢) Wie dndert sich die Summe aus Zahler und Nenner, wenn ein Bruch
gekiirzt wird?

ed) Begriinde nun, dass bei der in Abbildung 25.1 festgelegten Reihenfolge

3.

-

jedem kurzbaren Bruch einer mit gleichem Wert vorausgeht und somit
die entsprechende rationale Zahl bereits nummeriert ist.

Zeichne ein Koordinatensystem und betrachte alle Gitterpunkte der obe-
ren Halbebene, also die Punkte (x|y) mit xe Z und ye N, und ordne
X

jedem Punkt die Zahl — zu. Beweise die Abzihlbarkeit aller rationalen

)
Zahlen, indem du einen von (0] 1) ausgehenden Weg angibst, der alle Git-
terpunkte durchliuft. Wie lauten die ersten zehn rationalen Zahlen bei der
so erzeugten Anordnung?

Die folgenden Mengen sind abzidhlbar. Gib zum Beweis dafiir eine ent-
sprechende Zuordnung ihrer Elemente zu den natiirlichen Zahlen, also
eine Nummerierung an. Beschreibe diese Zuordnung als Funktion
ni— f(n),neN.

a) die Menge der geraden natiirlichen Zahlen

b) die Menge der ungeraden natiirlichen Zahlen

¢) die Menge N, d) die Menge Z

e) die Menge der Stammbriiche 1, ne N

f)* die Menge der Quadratzahlen n?, ne N

. Zwel Mengen heillen genau dann gleichmiichtig, wenn man ihre Elemente

eineindeutig einander zuordnen kann.
Begriinde folgende Aussagen:

* Dieses Beispiel findet sich bereits in den Discorsi (1638) des Galileo GALILEI (1564—1642)
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a) A=1{1,2,3,...,60} und B = {neN|77 < n < 138} sind gleichméichti-
ge Zahlenmengen.

b) Die Menge Paller zweistelligen Primzahlen und die Menge V' der durch
4 teilbaren zweistelligen Zahlen sind nicht gleichmachtig.

¢) Zweiendliche Mengen sind genau dann gleichméchtig, wenn sie diesel-
be Anzahl von Elementen haben.

6. Beweise die Gleichméchtigkeit der Mengen 4 und B:
a) A=0":B—107 b) A={xeQ|0<x<1}; B={yeQ|y>1}
oc) A={xeQ|0<x<1}; B=0Q"

7. Wenn man in Aufgabe 6 jeweils © durch R ersetzt, sind die neuen Mengen
A und B ebenfalls gleichmiéchtig. Begriinde dies.

8. Die von Bernard BoLzaNo (1781—1848) in seinen Paradoxien des Unendli-
chen (1847) klar herausgestellte Tatsache, dass bei unendlichen Mengen
eine echte Teilmenge dieselbe Michtigkeit wie die ganze Menge haben
kann, wird oft als eine Paradoxie* der Mengenlehre bezeichnet.

In welchen Teilaufgaben a) von Aufgabe 4, b) von Aufgabe 6
finden sich solche Paradoxien?

9. a) Begriinde mit Hilfe der in Ab-
bildung 30.1 angegebenen Zu-
ordnung P +— P’, dass die
Strecken [AB] und [CD]
gleichmichtige Punktmengen
sind.

b) In Abbildung 30.2 ist M der
Mittelpunkt der  Strecke
[AB], A das Spiegelbild von
A beziiglich g und Z der Mit-
telpunkt von [AB]. Beweise
mit Hilfe der Zuordnung
P. — P/, dass die Strecke [AB]
ohne ihre Endpunkte und die
Gerade g gleichmichtige
Punktmengen sind.

10. Georg CANTOR (1845-1918) ge-

lang 1873 der Nachweis, dass die 1839

]

Menge der reellen Zahlen tiberab- U 5’("&{5{}7/“& j%

e - - g 2 £ A
zihlbar, d.h. nicht mehr abzihl- e
bar ist. Einen Beweis dafiir

kannst du anhand der folgenden Abb. 29.1 Bernard BoLzaNO
Teilaufgaben erbringen. (5.10.1781 Prag—18.12.1848 ebd.)

* Die Paradoxie oder das Paradoxon = eine (echte oder scheinbare) Widersinnigkeit; paradox = widersinnig.
Zugrunde liegt das griechische Adjektiv napddoEog (parddoxos) = unerwartet.
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Abb. 30.1

a)

b)

d)

Zu Aufgabe 9a Abb. 30.2 Zu Aufgabe 9b

Wenn man von einer Teilmenge M von R xcig:n kann, dass sie tiber-
abzdahlbar ist, dann gilt das erst recht fiir R selbst. Erldutere dies.
(Nimm z.B. an, R wére abzahlbar!)

Die Zahlen der Menge M := {x e R|0 < x < 1} kann man in eindeuti-
ger Weise als unendliche Dezimalzahlen darstellen, wenn man dabei
Dezimalzahlen mit der Periode 0 verbietet. Wie lautet dann die
Schreibweise fiir folgende Zahlen? (Beachte Aufgabe 17/6.)

0,5; 0.71; 3. o0

Wir nehmen nun an, die Zahlenmenge M sei abzidhlbar. Dann kann
man ihre Elemente durchnummerieren; sie sollen der Reihe nach mit
X1, X5, X5. ... bezeichnet sein. Wir denken uns diese Zahlen als unend-
liche Dezimalzahlen untereinander geschrieben:

Xy = {}.\a\{ a,asa, ... (a;,b;, c;, ... bedeuten die einzelnen Ziffern
x, =0,bk,byb, ... der Dezimalzahldarstellung)
Y
Y3 —_— U, ('| {‘2\1'::\-&{‘4 10
usw. \
Nun bilden wir eine unendliche Dezimalzahl z = 0, z, z,z3z, ... nach

folgender Regel: Aus der Ziffernmenge {1, 2, ..., 8} wihlen wir
— fiir z, eine von a, verschiedene Ziffer,

fiir z, eine von b, verschiedene Ziffer,
— fiir z5 eine von ¢, verschiedene Ziffer usw.,
d.h., man wahlt allgemein eine Ziffer z; aus {1, 2, ..., 8}, welche von
der i-ten Dezimalen der Zahl x;, also von der auf der roten Diagonalli-
nie stehenden Ziffer verschieden ist.*
Begrunde, dass die so gewonnene Zahl z zwar zur Menge M gehort,
aber mit keiner der Zahlen x,, x,, x;, ... Gibereinstimmt.
Das Ergebnis von ¢ bedeutet, dass die Annahme, die Menge M sei
db.{dh]bdl falsch ist. Erldutere dies und folgere daraus auch die Nicht-
abzahlbarkeit von [R.

* Man bezeichnet die Auswahlregel fiir die Ziffern z; als 2. oder Cantor’sches Diagonalverfahren. CanNTOR hat
es 1890 entwickelt.
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