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2 Die Quadratwurzel
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Ein Bote bringt dem Schatzmeister des Perserkönigs Darius einen Sack Geldes von
tributpflichtigen Völkern . Der Schatzmeister hält in seiner Linken eine Doppeltafel ,
auf der wir TAAANTA H ( = 100 Talente) entziffern können . Auf ihr sind die Pos¬
ten aufgeschrieben , die er nacheinander mit Hilfe von Rechensteinchen ( = yfjcpoi
[psephoi]) auf den Rechentisch ( = dßdKiov [abäkion ] ) überträgt . Dort lesen wir

MYTiAP 0 < T , also 1731 [Drachmen ] 4 [oboloi ] . Bei M = 10000, < = y Obolos und
O > oo » «© L9 O OO

T = ] Obolos liegen keine Steinchen . - 1 Talent = 60 Minen = 6000 Drach¬
men = 36000 Obolen . (Siehe auch Fußnote auf Seite 67) - Nachzeichnung von der

rotfigurigen Dariusvase von Abbildung 32 . 1 .
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Abb . 32 . 1 Die Dariusvase aus dem Nationalmuseum von Neapel , Höhe 1,3 m , größter
Umfang 2 m , vermutlich aus dem 4 . Jh . v . Chr . , gefunden in Canosa , dem alten Canu -
sium , in Apulien . In der oberen Reihe des Hauptkörpers nimmt Zeus mit anderen
Göttern Griechenland in Schutz . In der Mitte sitzt Darius I . (reg . 522- 486) auf dem
Thron , vor ihm steht ein Perser , der vor dem Krieg zu warnen scheint . Darunter die

Schatzmeisterszene von Abbildung 31 . 1 .



2 Die Quadratwurzel

2 . 1 Definition der Quadratwurzel

Besitzt die in Q unlösbare Gleichung x 2 = 2 in der uns nun zur Verfügung
stehenden größeren Zahlenmenge [R eine Lösung ?
Falls es eine positive Lösung x 1 dieser Gleichung gibt , muss für sie gelten
(vgl . Seite 11) :

1 < Xi < 2 also Xi ed ; 2 ]

1,4 < Xl < 1,5 also Xl e [ 1,4 ; 1,5]
1,41 < Xi < 1,42 also Xl e [ 1,41 ; 1,42 ]

1,414 < Xi < 1,415 also Xl e [1,414; 1,415 ]
1,4142 < Xl < 1,4143 also Xl e [1,4142; 1,4143]

Man erhält so eine Intervallschachtelung , welche die Zahl x 1 festlegt . Um zu
prüfen , ob diese Zahl wirklich die Gleichung x 2 = 2 löst , berechnen wir die
entsprechende Intervallschachtelung für x 2 :

[ l 2
; 2 2] , [ 1,4 2

; 1,5 2] , [ 1,41 2
; 1,42 2] , [1,4142

; 1,415 2] , . . .
Da die Intervalle für x 1 gerade so gewählt wurden , dass die Quadrate der
linken Grenzen kleiner als 2 , die der rechten Grenzen größer als 2 sind , liegt die
Zahl 2 in jedem Intervall der Schachtelung für x 2

. Diese stellt somit die Zahl 2
dar und es gilt tatsächlich x \ = 2 .
Gibt es noch andere Lösungen der Gleichung x 2 = 2? Um dies zu entschei¬
den nehmen wir an , x 2 sei eine von x , verschiedene Lösung . Aus x 2 = 2 und
x\ = 2 folgt x 2 — x 2 = 0 und damit (x x

— x 2) (x 1 + x2) = 0 . Da nach unserer
Annahme der 1 . Faktor des links stehenden Produktes von null verschieden
ist , erhalten wir x x + x2 = 0 , also x 2 = — x, . Damit ist gezeigt , dass außer x 1
nur noch die Gegenzahl — x 1 als Lösung in Frage kommt . Da tatsächlich
( — xQ 2 = x 2 = 2 gilt , ist L = {x x ; — xj die Lösungsmenge der Gleichung .
Ebenso wie bei x 2 = 2 lässt sich für jede Gleichung der Form x 2 = a mit a > 0
zeigen, dass sie in der Menge [R der reellen Zahlen genau eine positive Lösung
Xj besitzt . Dazu kommt als negative Lösung die Zahl x 2 = — x, . Die positive
Lösung von x 2 = a , also diejenige positive Zahl , deren Quadrat gleich a ist ,
wird Quadratwurzel von a genannt und mit 1fa bezeichnet . Auch im Fall der
Gleichung x 2 = 0 wird für die einzige Lösung x = 0 die Wurzelschreibweise
noch zugelassen , indem man vereinbart , dass ]/Ö = 0 gelten soll . Das ergibt die

Definition33. 1 : Der Term ]fa mit a A 0 bedeutet diejenigenicht negative
Zahl , deren Quadrat den Wert a hat .

Beachte also : 1fa ist nur für a ^ 0 definiert und es gilt
]fa ^ 0 und ( lfaf = a .
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Beispiele:
1/4 = 2 ; ]/6Ö5 = 2,5 ; V& = £ ;

l/2 = 1,4142 . . . (irrational ) ; / lO = 3,1622 . . . (irrational )

Das Zeichen \T heißt Wurzelzeichen; der unter dem Wurzelzeichen stehende
Term heißt Radikand . Statt »die Wurzel aus a berechnen « sagt man auch »aus
a die Wurzel ziehen« oder »a radizieren « . \/a ist meist eine irrationale Zahl ; nur
wenn a das Quadrat einer rationalen Zahl ist , »geht die Wurzel auf« , d . h . ist
auch lfa eine rationale Zahl .
Die Gleichung x 2 = a mit a > 0 hat die Zahl x , = Va als positive Lösung .
Für die negative Lösung x2 = — x 1 gilt daher : x2 = — Va.

Satz 34 . 1 : Die Gleichung x 2 = a mit a > 0 hat die Lösungen
x l = Va und x2 = — 1fa .

* *Zur Geschichte von »Wurzel« und Wurzelzeichen

Stellt man sich eine Zahl als Maßzahl für den Inhalt eines Quadrats vor , so gibt die
Quadratwurzel aus dieser Zahl die Länge der Quadratseite an . Diese Vorstellung liegt
dem Wort nAsupa (pleurä ) = Seite zugrunde , womit die Griechen , so z . B . Euklid (um
300 v . Chr .) in Buch X seiner Elemente , die Quadratwurzel bezeichneten . Durch das
entsprechende lateinische Wort latus drückten die Agrimensoren , die römischen Feld¬
messer , die Quadratwurzel aus . Nikomachos (um 160 n . Chr .) verwendet das griechi¬
sche Wort plQ/. (rhiza ) , das ursprünglich Wurzel einer Pflanze , im übertragenen Sinn
Grundlage und Ursprung bedeutet , im mathematischen Sinn von Ausgangszahl .
Wortgetreu übersetzt Boethius (um 480 - 524?) es mit radix ins Lateinische .
Ob der Inder Aryabhata I (um 476 - ? n . Chr .) durch das griechische piQi angeregt
wurde mit dem indischen Wort müla , das ebenfalls Wurzel einer Pflanze bedeutet , die
Quadratwurzel aus einer Zahl zu bezeichnen , wird wohl immer ungeklärt bleiben müs¬
sen . Interessanterweise übernehmen die Araber , so auch al -Charizmi (um 780 - nach
847) einerseits das griechische -nAeupd (pleurä ) , wenn sie z . B . in ihren geometrischen
Beweisen die Quadratwurzel als Seite eines Quadrats darstellen - sie nennen sie dann
auch dil, das ist ihr Wort für Seite - , andererseits das indische müla, dem ihr arabisches
Wort j .L=- (dschidr) entspricht , wenn sie die Quadratwurzel als Zahl auffassen . Leider
verwenden sie aber dschidr auch zur Bezeichnung der Unbekannten selbst , was aller¬
hand Verwirrung stiftete und immer noch stiften kann . Denn noch heute verwendet
man in so manchen Lehrbüchern das Wort Wurzel im Sinne von »Quadratwurzel « und
im Sinne von »Lösung einer Gleichung « . Wir wollen uns diesem Brauch aber nicht
anschließen .
Gerhard von Cremona (1114- 1187 ) , der neben anderen arabischen Abhandlungen
auch das Werk al -Charizmis übersetzte , wählte für dschidr die wortgetreue Entspre¬
chung radix , das wiederum folgerichtig mit Wurzel ins Deutsche übertragen wurde , so
um 1400 in der Geometria Culmensisund 1461 in der Deutschen Algebra , wo man liest
»Radix ist die wurcz der zal« (Abbildung 68 . 1 , Zeile 6 von folio 133v ) . In derselben
Handschrift wird das Wurzelziehen , das mittelalterliche radicem extrahere des Jorda -
nus Nemorarius (t 1237) und des Johannes de Sacro Bosco (1200 - 1256), mit »zuech
ausz dye wurcz« eingedeutscht . Das Fachwort radizieren erscheint erst 1836 in An -
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fangsgründe der reinen Mathematik für den Schulunterricht von Carl Koppe (1803 bis
1874) , der dort auch das Wort Radikand für die »zu radizierende Zahl « prägt .
Ein besonderes Zeichen für die Quadratwurzel , nämlich ff

“
, tritt zum ersten Mal bei

den Ägyptern auf , z . B . im Papyrus Moskau (19 . Jh . v . Chr .) . Die Inder kürzen ihr müla
einfach durch die Silbe mü ab . Die Araber kehren leider zu der vollen Wortalgebra
zurück , sodass es erst im mittelalterlichen Italien wieder zu einem Zeichen für die
Quadratwurzel kommt . Man kürzt das Wort radix durch ein durchgestrichenes R , also
durch fr ab , zum ersten Mal belegt bei Leonardo von Pisa (um 1170 -nach 1240 ) in
seiner Practica geometriae von 1220 . Geronimo Cardano (1501- 1576) und Niccolö
Tartaglia (1499 - 1557) verwenden es , in Deutschland Johannes Widmann von Eger
(um 1460 - nach 1500 ) . Franqois Viete (1540 - 1603 ) benützt stattdessen , seinem Lands¬
mann Petrus Ramus (1515 - 1572 ) folgend , /. , den Anfangsbuchstaben von latus .
Das heute übliche Wurzelzeichen stammt aus Deutschland . Im vor 1486 geschriebenen
Algorithmus de Surdis des Codex Dresden C80 setzt der unbekannte Verfasser einen
Punkt in die Mitte vor die Zahl und erklärt : »In extraccione radicis quadrati alicuius
numeri preponatur numero unus punctus « (Zum Ausziehen der Quadratwurzel aus
einer Zahl setzt man der Zahl einen Punkt voran ) . Bald wird dieser viereckig mit
Aufstrich , so im Codex Leipzig 1696 (vermutlich Ende des 15 . Jh .s) und auch in der
um 1517 von Adam Ries (1492- 1559) niedergeschriebenen Algebra des Initius
Algebras (Codex Dresden C 349 ) , dann erstmals im Druck 1525 in der Coß Christoff
Rudolffs (um 1500 - vor 1543 ) , auch dort noch gelesen als »Punkt « (dies sogar noch
1551 in Johann Scheybls [1494 - 1570] Algebra) . In Michael Stifels (14877- 1567)
Arithmetica Integra - »Die ganze Arithmetik « - verlängert sich 1544 der Punkt zum
Abwärtsstrich (der in den Figuren schon das Ansatzstrichlein hat ) : Der Wurzelhaken
war geboren .
Es blieb aber bei allen Wurzelzeichen das Problem , ob z . B . |/ a + b die Quadratwurzel
aus der Summe a + b oder die Summe aus dem 1 . Summanden / a und dem 2 . Summan¬
den b bedeuten soll . Nahezu jeder Mathematiker hatte dafür eigene Vorschriften . So
erscheinen bei dieser Gelegenheit 1556 zum ersten Mal runde Klammern im Druck : im
General trattato di numeri, et misure - »Allgemeine Abhandlung über Zahlen und Ma¬
ße« - des Niccolö Tartaglia steht fr v . ( fr 24 piu fr 12 ) für j/l/24 + V+2 . Dabei be¬
deutet fr v . radix universalis = Gesamtwurzel, die 1572 Raffaele Bombelli (1526 bis
1572) in seiner L ’algebra als radix legata — gebundene Wurzel bezeichnet und durch
R .L ausdrückt . Das Ende der Bindung kennzeichnet ein etwas tiefer gestelltes gespie¬
geltes L , also J , sodass bei ihm j/4 + ]/6 + 2 als R . q . L4 .p . R . q .6 j p .2 erscheint , wobei
R .q . radix quadrata bedeutet . Äus L und J dürfte unsere eckige Klammer entstanden
sein . In seinem Manuskript drückte Bombelli 1557/60 die Bindung noch so wie andere
Mathematiker durch Unterstreichen aus . Durchgesetzt hat sich von all den Möglich¬
keiten aber die Schreibweise von Rene Descartes (1596 - 1650 ) aus seiner La Geometrie
von 1637 : Er fasste die zusammengehörigen Glieder durch Überstreichen zusammen ,
schrieb also ]/ a + b . Verbindet man diesen Querstrich mit dem Wurzelhaken , so hat
man unser Wurzelzeichen , das sich aber sehr langsam verbreitete . Schließlich setzte
man den Querstrich auch da , wo er keinerlei Bedeutung hatte ; denn bei
Va + b war es ja eigentlich nicht nötig , ]fa + b zu schreiben .

Leonardo von Pisa W- Niccolö Tartaglia fr Adam Ries V
'

Widmann von Eger Raffaele Bombelli fy l em r <M7 Christoff Rudolff J
Geronimo Cardano ri Dresdener Codex • 2 ^ = ]/25 Michael Stifel ^

Abb . 35 . 1 Verschiedene Wurzelzeichen . - Wegen des Codex Leipzig 1696 , s . Abb . 70 .1
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Aufgaben
1 . Gib die folgenden Zahlen in wurzelfreier Schreibweise an :

a) 1A
e) l/lÖÖ
i) 1/196

b) l/l6
f) 1/25ÖÖ
k) l/l69

c) ]/81
g) 1/490000
1) 1/256

d) 1/36
h) 1/1000000
m) l/361

2 . Ziehe die Wurzeln :
a) ]/M b) 1/ m c) l/s¥ d) l/ioooo
e) 1//25 f) 1/^ 29 g) l/Ö^ 289 h) 1/0,000625

3 . Berechne und vergleiche :
a) l/9 + 16 und j/9 + l/l6
b) ]/169 — 25 und j/l69 —

]/25
c) j/576 + 49 und ]/576 + ]/49
d) ]/1681 - 1600 und ]/l681 - l/l60Ö
e) j/l + 4 + 4 und j/l + ]/4 + j/4
f) 1/49 + 16 - 1 und l/49 + l/l6 - ]/T
g) ]/196 — 36 + 9 und ]/l96 — l/36 + ]/9
h) ]/961 - 25 - 36 und ]/ % I - j/25 - J/36

4 . Berechne :
a) ]/l + 3 b) ]/l + 3 + 5 c) ]/l + 3 + 5 + 7

d) j/1 + 3 + 5 + 7 + 9 e) l/l + 3 + 5 + 7 + 9 + ll

5 . Beispiel: ]/j/25 —T = |/5 — 1 = j/4 = 2 . Verfahre ebenso :

a) i/j/n b) j/j/ü c) i/pi5 d) 1/1/10000

e) 1/1 + 1/9 f) l/ü - 1/25 g) l/1/400 — 4 h) yfMTl

i) l/l/l
"
+ l/576 k) / l/4 + l/S 1) l/l/ilf - l/ ®

6 . Welche Zahlen dürfen bei den folgenden Wurzeltermen für die Variable
eingesetzt werden ? Gib jeweils die Definitionsmenge des Terms an .
a) l/2u b) j/ ^ ä c) l/l + a d) l/5 - 2a

e) ]/2 \ x \ f) j/ — 3 | x | g) ]/x
2 + l h) 1/ x 2 - l

i) J/l - x 2 k) l/l ^ | - 3 » l/ /
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7 . Vereinfache :
a) ( l + l/2 ) 2 b) (3 — l/3 ) 2 c) (2 + 1/6) (2 - 1/6)
d) (/ä - 26) 2 e) (3/x + 5^) 2 f) (3p - ]/3p ) (/3

~

p + 3p)

8 . Fasse zusammen :
a) 3 + 5/2 - 7/2 + 15 b) 2a - 9 ]/a - 5 ]fä + 12a

c) - 111/5 + 81/3 + 2 - 61/3 + 71/5
d) 5 ( 1 - Vl + 21/6) — 3 (31/6 + 5/7 - 5)
e) (4/13 - 15) ( 1 + 81/13 ) - 29 (13 - 41/13)
f) (3m — ]/n ) 2 — (3m + Yn) 2 + 12m ]/n

9 . Bestimme die Lösungsmenge der Gleichung :
a) x 2 = 1225 b) 5x 2 - 320 = 0
d) 2x 2 — 4 = 0
g) 0,2x 2 - 5 = 0
k) x 2 - V3 = 0

e) 17x 2 + 61 = 350
h) fx 2 - 2 = fx 2 + 1
1) x 2 + l/5

"
= l/7

c) 16 (x 2 + 9) = 144
f) 121 = 49 - 4x 2

i) 0,15 = fx 2 + x 2

m) x 2 + l/5 - / 3 = 0

10. Welche Gleichung der Form x 2 = a hat die angegebene Zahl als Lösung?
Wie lautet die Lösungsmenge ?

a) - 1 b) 1/7 c) 0 d) — l/l/2 e) 4 = f) 1/0,5 - / /
l/3

11 . Wie lang ist die Diagonale eines Quadrats mit dem Flächeninhalt
a) 1 m 2

, b) 8 cm2
, c) 9 dm 2

, d) 450 mm 2
, e) 1,62 a , f ) 3 km 2 ?

12. Bekanntlich ist / 2 eine irrationale Zahl . Stelle bei den folgenden Termen
fest , ob sie rationale oder irrationale Zahlen darstellen .
a) 1 + 1/2 b) 1 — 1/2 c) 2/2 d) ( 1 + 1/2 ) + ( 1 - /2 )
e) (/2 ) 2 i) 1/2 ( 1 - 1/2) g) ( 1 + /2 ) 2 h) ( l + /2 ) ( l - /2 )

13 . Bestimme die Lösungsmenge:
a) j/x = 2 b) 2/x = 6 c) / x — 1 = 0 d) / je + 1 = 0
e) 2// + 5 = 3/x + 2 f) ll - 5/x = 3 - 7j/x

g) 2 (3/ / + 7) = 9 + 2// + 5 h) (// - 17) - 5 - 2/ / = 3 ( 11 + /x )
i) 7 — (2/x — 7) ■ 3 = 2/x + 4 (7 — 2/x )

14. Bei einem Fotoapparat wird bekanntlich das zur Bilderzeugung verwen¬
dete Lichtbündel durch eine meist kreisförmige Blende begrenzt . Der
Blendendurchmesser d kann verändert werden , die jeweilige Einstellung

/
d

beschrieben ; dabei bedeutet / die Brenn¬wird durch die Blendenzahl
weite des Objektivs ,
a) Wie groß ist bei einem Apparat mit/ = 50 mm der Blendendurchmes¬

ser, wenn »Blende 8 « , also die Blendenzahl 8 , eingestellt ist?
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b) Auf der Objektivfassung eines bestimmten Fotoapparats sind sieben
Blendenzahlen angegeben , die kleinste davon heißt 2 . Die übrigen
Blendenzahlen sind so gewählt , dass beim Übergang von einer zur
nächsten sich jeweils die Blendenfläche halbiert . Berechne die übrigen
Blendenzahlen und gib die ersten beiden Ziffern ihrer Dezimalentwick¬
lung an . (Damit erhält man die auf der Blendenskala angegebenen
Zahlen !)
Hinweis : Beachte , dass die Blendenfläche zu d 2 proportional ist .

2 .2 Berechnung von Quadratwurzeln

Wie findet man zu einer Zahl a > 0 den Wert von ]fa ?
Bei den bisherigen Beispielen war das recht einfach ; man konnte meist schnell
eine positive Zahl angeben , deren Quadrat die Zahl a ergab . Schwieriger wird
diese Aufgabe schon , wenn a eine große , uns nicht geläufige Quadratzahl ist .
Wie findet man z . B . , dass [/33489 bzw . ]/157,7536 den Wert 187 bzw . 12,56
hat ? Aber auch das sind noch Sonderfälle . Im Allgemeinen ist ja der Radikand
a nicht das Quadrat einer rationalen Zahl ; ]fa ist dann irrational , und man
muss sich damit begnügen , einen hinreichend genauen Näherungswert zu
bestimmen .
Dir ist sicher schon bekannt , dass man solche Aufgaben bequem mit dem
Taschenrechner lösen kann . Man muss lediglich den Radikanden a eingeben
und die Wurzeltaste (manchmal zwei Tasten ) drücken und schon wird ein
(Näherungs -)Wert von V

~
a angezeigt . Wie ist das möglich ? Sind die Wurzel¬

werte schon im Taschenrechner gespeichert und müssen nur abgerufen wer¬
den? Sicherlich nicht , wie du dir leicht klarmachen kannst ! Die gesuchte Wur¬
zel muss vielmehr jedes Mal neu berechnet werden . Dazu dient ein sehr schnell
ablaufendes Rechenprogramm , das mit dem Drücken der Wurzeltaste gestar¬
tet wird . Für das Berechnen von Quadratwurzeln gibt es verschiedene Verfah¬
ren . Im Folgenden sollst du einige kennen lernen .

2 .2 . 1 Intervallschachtelungsverfahren

Bei diesem schon bekannten Verfahren schließt man den Wurzelwert zwischen
zwei aufeinander folgende ganze Zahlen ein . Aus diesem Anfangsintervall ge¬
winnt man durch Anwendung der Zehnteilungsmethode eine Intervallschach -
telung für die gesuchte Wurzel . Der Rechenaufwand ist meist ziemlich groß .

2 .2 .2 Iterationsverfahren
Um zu einer Zahl a > 0 die Quadratwurzel zu berechnen , beginnen wir mit
einem Schätzwert x l > 0 . Dieser ist zu groß bzw . zu klein bzw . richtig , wenn
xf > a bzw . x \ < a bzw . x \ = a gilt . Den letzten Fall , in welchem die Bestim¬
mung von Vä zufällig schon gelungen ist , können wir im Folgenden außer Acht
lassen .
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Wegen x \ > a o x , > — bzw . x 2 < a o x , < — kann man auch durch die
X x X xa

Berechnung des Quotienten — entscheiden , ob der Schätzwert zu groß oder zu
Xi

klein ist . In jedem Fall liegt aber der gesuchte Wurzelwert zwischen den Zahlen
a

x x und — . Als nächsten Näherungswert x 2 wählen wir daher eine Zahl aus
•W

diesem Intervall , und zwar den einfach zu berechnenden Mittelwert von x 1

und — , also x2 =
X, :

Ausgehend von x 2 kann man nun nach derselben Methode einen Näherungs¬
wert x 3 , dann x4 , x 5 , . . . berechnen . Allgemein erhalten wir den (n + l )ten
Näherungswert x„ + 1 aus x„ nach der Formel

(I)

Beispiel 1 :
Gesucht ist
Wir beginnen (z . B . !) mit dem Schätzwert x , = 30 .
Durch Anwendung von (I) erhält man * :

( a \
: 2 , n e !Kl .X„ + 1 = X „ H-

V xJ

1/841 .

x2 = (30 + f ) : 2 ^ r 2 = 29,016666
und weiter x 3 = 29,000004 ; x4 = 29 ; x 5 = 29 ; . . .
Da 29 2 = 841 , hat man mit x4 bereits den richtigen Wert der Wurzel
gefunden !

Beispiel 2 :
Gesucht ist |/6 .
Mit dem Schätzwert x x = 2 erhält man * nach (I)

x2 = 2,5 ; x 3 = 2,45 ; x4 = 2,4494897 ; x 5 = x4 ( !) .

Sobald zwei aufeinander folgende Näherungswerte übereinstimmen , kann
man die Rechnung abbrechen ; der nächste Schritt wäre nur eine Wiederho¬
lung des vorausgehenden und müsste wieder dasselbe Ergebnis liefern . Dass
dieses Ergebnis die gesuchte Wurzel ist , lässt sich leicht begründen :
Mit x „ + 1 = x „ folgt aus (I)

x „
=

( * " + : 2 II ' 2x n

2x 2 = x 2 + a II ~ xl
x„

2 = a .
Da x„ > 0 gilt , ist somit x„ = Jfa .
* Die angegebenen Zahlenwerte wurden auf einem Taschenrechner mit achtstelliger Anzeige berechnet .
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Natürlich gilt in Beispiel 2 die Gleichung x 5 = x4 nicht exakt , sondern
nur im Rahmen der Anzeigegenauigkeit des verwendeten Taschenrechners .
x4 = 2,4494897 ist deshalb nur der bestmögliche Näherungswert , der mit die¬
sem Rechner für die irrationale Zahl ]/ö ermittelt werden kann . Dasselbe
Ergebnis erhält man , wenn man nach Eingabe von 6 die Wurzeltaste drückt .
Das Besondere an dem hier angewandten Rechenverfahren besteht darin , dass
zur Bestimmung der verschiedenen Näherungswerte immer wieder dieselbe
Regel , hier (I) , benützt wird . Eine solche Berechnungsmethode bezeichnet
man als Iterationsverfahren . *
Ein Iterationsverfahren ist für das praktische Rechnen sehr vorteilhaft : Man
kann beim Taschenrechner immer wieder dieselbe Tastenfolge benützen . Die
Iterationsregel (I) lässt sich, sobald ein Näherungswert in der Anzeige steht ,
z . B . mit folgender Tastenfolge ausführen :

speichern J | a |V
* _

Speicherinhalt
aufrufen ) eom

Nach dem zweiten - Befehl wird der neue Näherungswert angezeigt . Mit
ihm kann man , wie der Pfeil andeutet , das Verfahren wiederholen . Ein Itera¬
tionsverfahren lässt sich vor allem auf einem programmierbaren Rechner sehr
einfach durchführen . Die Abbildungen 40 . 1 und 40 .2 zeigen ein Strukto -
gramm und ein Flussdiagramm für Programme zur Berechnung von ]/o

~nach
dem Iterationsverfahren (I) . Bei den Taschenrechnern ist ein entsprechendes
Programm fest eingebaut .

Eingabe : a (Radikand )
e (Genauigkeitsschranke )
x (Startwert )

Solange | x2 — a | > £ tue

X := J

Ausgabe : ]/a ~ x

a (Radikand)
<5 (Genauigkeit )
x (Startwert )

nein x — y | > <5

Abb . 40 . 1 Struktogramm zum Itera¬
tionsverfahren (I) mit der Abbruchbedin¬
gung \x2

n - a | g e

Abb . 40 .2 Flussdiagramm für das Ite¬
rationsverfahren (I) mit der Abbruchbe¬
dingung | x „ + 1 - x„ | ^ S

iterare (lat .) = etwas noch einmal tun , wiederholen ; iteratio (lat .) = die Wiederholung .
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Das Iterationsverfahren (I) lässt sich auch geometrisch veranschaulichen . Wir
zeichnen dazu den Graphen der Iterationsfunktion , das ist in unserem Fall die

Funktion mit der Gleichung y = f x + — ) : 2 , x e (R +
. Sie liefert zu jedem

\ x J
Näherungswert x den nächsten Näherungswert y ; d . h . , setzt man x = xn , so
gilt t = x„ + 1 . Um dann die Zahl y als x n + 1 wieder auf der x -Achse anzutragen
verwendet man die Gerade mit der Gleichung y = x . Der auf ihr liegende
Punkt mit der Ordinate y hat auch die Abszisse y , also xn + 1 (Abbildung 41 . 1 ) .

Abb. 41 . 1 Graphische Erzeugung von x„ + 1 aus x,

x + A

Abb . 41 .2 Graphische Darstellung des Iterationsverfahrens

Der rote Linienzug in Abbildung 41 .2 zeigt , dass die Zahlen x2 , x 3 , x4 , . . . sich
von oben rasch der Abszisse des Schnittpunktes S der beiden Graphen nähern .
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Man kann zeigen , dass dies immer so ist (vgl . Aufgaben 44/4 und 45/7 ) . Da S
die Koordinaten ( ]/ä \ ]/ä ) hat , strebt die Zahlenfolge x 2 , x 3 , x 4 , . . . immer
monoton fallend gegen ]fa (vgl . Aufgabe 45/5 ) .

* *2 .2 .3 Divisionsverfahren

Es gibt einen interessanten Algorithmus *
, bei dem - ähnlich wie beim Intervallschach -

telungsverfahren - die einzelnen Ziffern der Dezimalentwicklung einer Wurzel nach¬
einander berechnet werden , wobei aber der wesentliche Schritt bei der Bestimmung
einer Dezimalen im Ausführen einer Division besteht .
Zunächst eine einfache Vorüberlegung zur Größe von ]/a . Es gilt

1 ^ a < 100 => 1 iS ]fa < 10 , d . h . , \/a hat 1 Stelle vor dem Komma

100 51 a < 10000 => 10 ?£ Va < 100 , d . h . , ]/a hat 2 Stellen vor dem Komma

104 :£ a < 10 6 => 102 ^ Va < 10 3
, d . h . , ]Va hat 3 Stellen vor dem Komma

usw.
Daraus folgt : Die Zahl der Stellen, die bei der Dezimalbruchentwicklung von 1fa mit
a > 1 vor dem Komma stehen , ergibt sich, indem man den Radikanden a vom Komma
aus nach links in Zweiergruppen einteilt .

Beispiele: j/l3 |67,5 hat 2 Stellen vor dem Komma .

]/6 | 15 ]34 hat 3 Stellen vor dem Komma .

j/l0 |47 |69,824 hat 3 Stellen vor dem Komma .

Eine entsprechende Regel lässt sich auch für Radikanden zwischen 0 und 1 aufstellen
(Aufgabe 46/10) .
Zur Erklärung des Divisionsverfahrens betrachten wir zunächst das einfache

Beispiel 1 : Berechnung von 1/1369
Das Ergebnis ist eine Zahl mit 2 Stellen vor dem Komma , also |/l 3 ]69 = _ _ , . . .

a) Bestimmung der ersten Ziffer
Man sucht die größte Ziffer, deren Quadrat kleiner oder gleich 13 ist ; Ergebnis
3 .
Begründung : Der Radikand enthält 13 Hunderter ( 1 . Zifferngruppe von links) ,
liegt also zwischen 900 und 1600 . Daher muss die Wurzel einen zwischen 30
und 40 liegenden Wert haben .

b) Bestimmung der nächsten Ziffer
Aus dem Ansatz l/l369 = 30 + r mit 0 r < 10
folgt 1369 = (30 + r) 2

1369 = 900 + 60 r + r2
469 = (60 + r) r

Algorithmus = Rechenverfahren . Das Wort Algorithmus entstand aus algorismus , einer Verballhornung des
Namens al -Charizmi , der in Vergessenheit geraten war , sodass man unter algorismus die Lehre vom Rechnen
verstand . Erst 1849 hat der Orientalist Joseph -Toussaint Reinaud den Ursprung dieses Wortes erkannt .



2 .2 Berechnung von Quadratwurzeln 43

Der ganzzahlige Teil von r ist die gesuchte Einerziffer . Um sie zu bestimmen
bringen wir die letzte Gleichung auf die Form 469 : (60 + r) = r . Da der Divi¬
sor 60 + r zwischen 60 und 70 liegt , kann r nur 7 Ganze enthalten ; denn
8 • 60 > 469 und 6 • 70 < 469 .
Somit gilt : (/1369 = 37, . . .

c) Bestimmung eventueller weiterer Stellen
Aus dem Ansatz ]/1369 = 37 + ,v mit 0 + s < 1
folgt 1369 = (37 + s) 2

1369 = 1369 + 74j + j 2

0 = (74 + j ) j
Wegen s ^ 0 folgt daraus .v = 0 .

Wir erhalten somit das Ergebnis : ]/l369 = 37 .

Die hier durchgeführte Rechnung lässt sich in einer sehr kurzen Niederschrift
darstellen ; zu Beginn des Schrittes b sieht sie etwa so aus :

]/l3 |69 = 3 d ,
- 9 _ (3 2 = 9)

469
6 □ • □ (3 - 2 = 6)

Die drei roten Kästchen müssen nun mit derselben Ziffer besetzt werden ! Ein
Schätzwert für diese ergibt sich aus der Rechnung 46 : 6 « 7 . Wegen 67 ■7 + 469
ist 7 die richtige Einerziffer . Die vollständige Rechnung lautet damit

1/1369 = 37 ,
- 9

469
- 469 67 - 7

0
Da der neue Rest 0 beträgt , ist die Rechnung beendet .

Solange die bei diesem Divisionsverfahren auftretenden Reste positiv sind , kann man
die Rechnung fortsetzen und wie bei b die nächste Ziffer ermitteln . Dies gilt auch
beim Überschreiten des Kommas . Dazu das

Beispiel 2 : Berechnung von l/4ff9
Das Ergebnis hat 1 Stelle vor dem Komma : j/40,9 = 6 , . . .

Aus dem Ansatz 1/4 (09 = 6 + r mit 0 + r < 1

folgt 40,9 = 36 + 12r + r2

4,9 = (12 + r) r

Die gesuchte nächste Ziffer ist nun der ganzzahlige Teil von lOr . Wir führen
deshalb r ' = lOr ein . Dazu multiplizieren wir beide Faktoren auf der rechten Seite
mit 10, die ganze Gleichung also mit 100 :

490 = ( 120 + r ') r'

490 : (120 + r ') = r ' .also
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Als ganzzahliger Teil von r' ergibt sich daraus nicht 4 , sondern 3 . Somit gilt:
V4ÖJ = 6,3 . . .
Ganz entsprechend verfährt man bei der Bestimmung weiterer Ziffern . Die Kurz¬
form der Rechnung sieht dann so aus :

V4Öfi = V 40,90 00 00 . . . = 6,395
- 36

4 90
- 3 69 123 - 3

1 21 00
- 1 17 21 1269 - 9

6 79 00
- 6 39 25 12785 • 5

39 75

(6 2 = 36)

(6 - 2 = 12)

(63 • 2 = 126 = 123 + 3)

(639 • 2 = 1278 = 1269 + 9)

Man rechnet so lange , bis die gewünschte Genauigkeit erreicht ist .
* * Zur Geschichte

Das angegebene Divisionsverfahren hat 1540 Reinerus Gemma Frisius (1508 - 1555 )
in seiner um 1536 geschriebenen Arithmeticae practicae methodusfacilis veröffentlicht .

Aufgaben
1 . Bei der Berechnung von ]/31 nach dem Intervallschachtelungsverfahren

erhält man [5 ; 6] als erstes und [5,5 ; 5,6] als zweites Intervall . Muss man
zur Bestimmung des nächsten Intervalls die Quadrate aller Zwischenwerte
5,51 ; 5,52 ; . . . ; 5,59 berechnen ? Wie viele Quadrate sind bei geschicktem
Vorgehen höchstens notwendig ? Wie heißt das dritte Intervall für l/3T?

2 . Das fünfte Intervall der Schachtelung für ]/21,8 heißt [4,6690 ; 4,6691 ] ,
Wie entscheidet man am einfachsten , ob der auf vier Stellen nach dem
Komma gerundete Wert von 1/21,8 mit der linken oder mit der rechten
Intervallgrenze übereinstimmt ?

3.

4 .

Berechne nach dem Iterationsverfahren (I) die Näherungswerte x2 bis x 5für

a) l/l3 und x x
— 3 , b) ]/l3 und x x = 4 ,

c) l/6,32 und x 1 = 2 , d) ]/ö,32 und x t = 2,5,
e) 1/3987 und x t = 60 , f ) l/0,95 und Xj = l .
Zeichne den Graphen der zur Berechnung von j/8 gehörenden Iterations¬
funktion x 1—>■ ( x + — ) : 2 im Intervall 0 < x ^ 10 und veranschauliche

\ x J
~~

das Iterationsverfahren wie in Abbildung 41 .2 . Verwende dabei als (sehr
schlechten !) Anfangswert zuerst 10 , dann 0,5 .
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5 . Beweise, dass die Gerade y = x die Kurve y = : 2 , x > 0 , im
Punkt S ( l/a | l/ä ) schneidet .

^

• 6 . Die halbe Summe zweier Zahlen bezeichnet man als ihr arithmetisches
Mittel*

; die Wurzel aus dem Produkt zweier positiver Zahlen heißt geo¬
metrisches Mittel* . Weise nach, dass das geometrische Mittel zweier Zah¬
len stets kleiner oder gleich ihrem arithmetischen Mittel ist .

7 . a) Bilde das geometrische Mittel der in der Formel des Iterationsverfah -
a

rens (I) vorkommenden Zahlen x n und — . Zeige , dass für
n

n + 1 x n + —
j : 2 stets die Ungleichung x n _, x 2: Va gilt (n e N) .

Q _ ^

die Beziehung xn + 1 — x„ = — — — und begründe damit die
^

b) Bestätige die Beziehung xn + 1 — x„ = — — — und
Ungleichungen x2 ^ x 3 ^ x4 ^ . . .

”

c) Die aus zwei positiven Zahlen u und v gebildete Zahl

x2 ^ x 3 ^ x4 ^ . . .
2 uv

i positiven Zahlen u und v gebildete Zahl - bezeichnet
man als harmonisches Mittel * von u und v .

u -tv
Beweise, dass für die beim Iterationsverfahren (I) auftretenden Zahlen¬

paare

Das arithmetische Mittel der Zahlen eines Paars ist die erste Zahl des
nächsten Paars . Das harmonische Mittel der Zahlen eines Paars ist die
zweite Zahl des nächsten Paars .

* Archytas , der als Staatsmann , Feldherr , pythagoreischer Philosoph und Mathematiker um 375 v . Chr . in
Tarent wirkte , sagt , dass es in der Musik drei Mittel gebe , und zwar die pEap aQiOpr |TiKf| (mese arithmetike ) ,
das arithmetische Mittel , für das u — m = m — v gilt , die pecrq ye&psTpiKri (mese geometrl ke) , das geometri¬
sche Mittel , für das u : m = m : v gilt , und schließlich die psar ] imsvavrir ) (mese hypenantie ) , das konträre
oder entgegengesetzte Mittel , das auch piaTj appoviKTj (mese harmonike ) , harmonisches Mittel , genannt
wird und für das (u — m) : u = (m — v) : v gilt . Hippasos (Mitte 5 . Jh . v . Chr .) soll , anderen Berichten zufolge ,
als erster den Ausdruck harmonisches Mittel gebraucht haben . Löst man jeweils nach m auf , dann erhält man

die bekannten Ausdrücke
U

bzw . ]/üv bzw . —UV
.2 y u + v

Die Mittel ergeben sich aus Sonderfallen von Proportionen . Setzt man nämlich in der arithmetischen Propor¬
tion a — b — c — d bzw . in der geometrischen Proportion a : b = c : d die Innenglieder b und c gleich , dann
erhält man mit den Außengliedern u und v die oben angegebenen stetigen oder fortlaufenden Proportionen
(siehe Seite 99) u — m = m — v bzw . u : m = m : v. Allmählich wurde es Brauch , eine solche dreigliedrige
stetige Proportion peaÖTriq (mesötes ) = Mittelheit zu nennen . Euklid (um 300 v . Chr .) verwendet nur die

geometrische Proportion . In Buch VI , Satz 13 der Elemente nennt er |/ uv mittlere proportionale Größe (psaov
(isyeOog dvaXoyov [meson megethos anälogon ] ) , was Johannes de Sacro Bosco ( 1200- 1256) mit medium

proportionale übersetzt . Johannes Widmann von Eger (um 1460- nach 1500) bildet 1489 in seinem Re¬
chenbuch dafür eyn mittel zal und Johann Scheybl (1494- 1570) in seiner Euklidübersetzung Das sibend/acht
und neunt buch des hochberümbten Mathematici Euclidis Megarensis von 1555 das mittel proportional zwaier
zalen oder kurz mittel . Den Ausdruck geometrisches Mittel hat anscheinend 1808 Georg Simon Klügel
(1739- 1812) in seinem Mathematischen Wörterbuch geprägt . Bei Johannes Kepler (1571- 1630) findet man
1615 medium arithmeticum in seiner Nova Stereometria doliorum vinariorum - »Neue Raummesskunst für
Weinfässer « die Eindeutschung arithmetisches Mittel erst im 1. Viertel des 19 . Jh .s .
(Übrigens verwechselt Scheybl wie so mancher andere den Mathematiker Euklid [um 300 v . Chr .] mit
dem Philosophen Euklid von Megara [ um 450 - um 370 v. Chr .] , einem Schüler des Sokrates . Federigo
Commandino [ 1509- 1575] weist 1572 in seiner Euklidübersetzung auf diesen Irrtum hin .)
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8 . Wähle einen Startwert x L und berechne mit dem Iterationsverfahren (I)
die ersten vier geltenden * Ziffern der Dezimalentwicklung von
a) ]/817Ö b) ]/14,36 c) \/0 ,088855 d) j/0,000001234 .

9 . Wie viel Stellen vor dem Komma hat die Dezimalentwicklung der Wurzel
und wie heißt die erste Ziffer?

a) ]/5 b) |/37,64 c) j/428 d) ]/3650809

e) |/82145 f) j/8214,5 g) l/821,45 h) l/82,145
10 . a) Welche Ungleichung für ]fa folgt aus

l ) l > a £ 0,01 ; 2) 0,01 > a ^ . 0,0001 ; 3) ^ > a ^

b) Wo steht in der Dezimalentwicklung von 1) / f/5 ; 2) 1/0,025 ;
3) 1/0,004 die erste von 0 verschiedene Ziffer und wie heißt sie?

11 . Wie muss bzw. kann der Anfang der Dezimalentwicklung der Wurzel
aussehen ? (Die Punkte bedeuten weggelassene Ziffern .)
a) 1/0,7 . . . b) 1/0,006 Z7 c) 1/0,12 . . . d) l/0,0147 . . .

12 . Berechne nach dem Divisionsverfahren den ganzzahligen Teil der Wurzel ,
a) l/lOÖÖ b) 1/80656 c) j/338725 d) 1/3387,25

13 . Berechne nach dem Divisionsverfahren den auf Hundertstel gerundeten
Wert von a) j/l9 , b) l/l87,5 , c) j/l 7,7241 , d) |/0,6196 .

14 . Auf der in Abbildung 48 . 1 gezeigten altbabylonischen Keilschrifttafel
YAT 6598 (um 1600 v . Chr .) wurde zur näherungsweisen Berechnung von
Quadratwurzeln folgendes Verfahren angewandt , das auch Heron (um 62
n . Chr .) in seinem Ilepi pkzjxnv - »Vermessungslehre « - angibt :

1/ p 2 + q » P + ~ Cp > 0 ; p 1 + q ^ 0)

Welcher Wert ergibt sich damit

a) für l/3 aus der Zerlegung 3 = 4 — 1 ;
b) für l/3 aus der Zerlegung 3 = 2,89 + 0,11 ;
c) für j/ö aus der Zerlegung 6 = 6,25 — 0,25;
d) für l/435 aus der Zerlegung 435 = 400 + 35;
e) für l/435 aus der Zerlegung 435 = 441 — 6;
f) für l/l000 aus der Zerlegung 1000 = 1024 — 24?

Vergleiche das Ergebnis mit dem Näherungswert des Taschenrechners .
* Die geltenden Ziffern werden von links nach rechts gezählt . Die erste von 0 verschiedene Ziffer ist dabei die

erste geltende Ziffer .
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15 . Welcher Näherungswert x2 ergibt sich nach der Formel von Aufgabe 14
für 1fa , wenn man mit Hilfe eines Schätzwertes x , den Radikanden in der
Form a = x\ + (a — x { ) darstellt ? Vergleiche damit das entsprechende Er¬
gebnis beim Iterationsverfahren (I) .

16 . Von Heron (um 62 n . Chr .) wird angenommen , dass er für Wurzeln der

Form |/ n 2 — 1 mit ne \Kl auch die Näherungsformel

]/n 2 — 1 ä n - 1- - verwandte .v In - 1 (2n - 1 ) • {In + 1 )

a) Zeige , dass die von Heron angegebene Näherung 1/3 » ff mit dieser
Formel gewonnen werden kann .

b) Welcher Näherungswert ergibt sich aus obiger Formel für

1) |/l5 , 2) j/63 , 3) l/l20 ?

c) Vergleiche die HERONsche Näherung für ]/
~
3 mit der von Archimedes

(um 287- 212 v . Chr .) stammenden Abschätzung

265 1351- < V3 < - .
153 780

Vergleiche die Ergebnisse jeweils auch mit den von deinem Taschenrechner
gelieferten Näherungswerten .

17. Die Babylonier rechneten bekanntlich im Sexagesimalsystem*
, also im

Stellenwertsystem mit der Grundzahl 60 . In den Übersetzungen ihrer Keil¬
schrifttexte werden Zahlen meist in der Form geschrieben , dass hinter die
Ganzen ein Strichpunkt und zwischen Einer , Sechziger, . . . bzw . zwischen
Sechzigstel , 3600stel, . . . jeweils ein Komma gesetzt wird . Zum Beispiel
bedeutet 4,20 ;25,08 die Zahl 4 • 60 + 20 + + 3^ 0.

a) Prüfe die aus einer babylonischen Wurzeltabelle stammende Gleichung

j/0 ; 38,24 = 0 ;48 .
b) Gib den Wert von 1) ]/%45 , 2) ]/l ;33,45 , 3) ]/ll ; 13,21

im Sexagesimalsystem an .
18 . Die Keilschrifttafel VAT 6598 (Abbildung 48 . 1 ) enthält folgende Aufga¬

be : Ein Tor . \ GAR und 2 Ellen Höhe , 2 Ellen Weite . Seine Diagonale ist
was?
a) Wie viel Ellen misst die Diagonale , wenn 1 GAR = 12 Ellen * * gilt?

b) Auf der Tafel wird für die Länge der Diagonale der Wert
0 ;41,15 GAR angegeben . Zeige , dass dies keine exakte Lösung ist und
dass sie sich nach der Näherungsformel von Aufgabe 14 ergibt , wenn

* sexagesimus (lat .) = der sechzigste
** 1 GAR bedeutet etwa 6 Meter , 1 babylonische Elle also etwa 5 dm .
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Abb . 48 . 1 Rückseite der altbabylonischen Keilschrifttafel VAT 6598 , aufbewahrt in
Berlin, Staatliche Museen : Vorderasiatische Abteilung ; Ton tafeln , samt zugehöriger
Autographie (wörtlich : Selbstgeschriebenes) , d . h . handschriftlicher Übertragung der
in den Ton eingedrückten Zeichen

man für p 2 die größte Quadratzahl wählt , die im Quadrat der Diagona¬
len enthalten ist .

c) Für dieselbe Aufgabe wird auf der Tafel auch noch die Lösung
0 ;42,13,20 GAR angegeben . Vergleiche die Genauigkeit der beiden Lö¬
sungen .

19 . a) Auf der babylonischen Keilschrifttafel* AO 6484 aus Uruk aus der
Zeit der Seleukiden (321- 63 v . Chr .) findet man für f/2 den sexagesi-
malen Wert 1 ;25 .
1 ) Auf wie viel Dezimalstellen stimmt dieser Wert mit dem von deinem

Taschenrechner angezeigten Wert überein ?
2) Man kann nur vermuten , dass die Babylonierdiese Näherung durch

zweimalige Anwendung der Formel von Aufgabe 46/14 gefunden
haben , und zwar beginnend mit pf = 1 ; der sich dabei ergebende
Näherungswert wird als p 2 genommen . Führe diese Rechnung
durch .

• b) Auf der altbabylonischen Keilschrifttafel * * YBC 7289 (Abbildung
49 . 1 ) steht auf der Diagonale eines Quadrats die Sexagesimalzahl
1 ;24,51,10.

* aufbewahrt im Louvre zu Paris in der Abteilung Antiquites Orientales
** aufbewahrt in der Yale Babylonian Collection in New Haven (USA)



2 .2 Berechnung von Quadratwurzeln 49

1 ) Auf wie viel Dezimalstel¬
len stimmt dieser Wert für
]fl mit dem von deinem
Taschenrechner hierfür an¬
gezeigten Wert überein ?

2) Wie die Babylonier diesen
recht genauen Wert gefun¬
den haben , wissen wir
nicht . Nahe hegend er¬
scheinen die beiden folgen¬
den Verfahren .
1 . Art : Man führt zuerst
das in a 2 beschriebene
Näherungs verfahren noch
einen Schritt weiter .
2 . Art : Man wendet zuerst
auf 1 ;25 das Iterationsver¬
fahren (I) von Seite 38 f.
einmal an .
Zeige , dass man jedes Mal
1 als Näherungswert
erhält . Rechnet man dann
diesen Bruch in eine Sexa-
gesimalzahl um * und bricht
dem Semikolon ab , so erhält
Zahl . Weise dies nach .

Abb . 49 . 1 Autographie der altbabylo¬
nischen Keilschrifttafel YBC 7289 (um
1700 v . Chr .) . Auf der Quadratseite links
oben liest man « < = 30 , auf der Diago¬
nale J « 7 <v f < als Näherungswert für
j/2 . Darunter steht die entsprechende
Länge der Diagonale .

nach der 3 . Sexagesimalstelle hinter
man die auf der Diagonale stehende

3) Berechne mit Hilfe dieses Näherungswerts die Länge der Diagona¬
le als Sexagesimalzahl , wenn die Quadratseite die Länge 30 hat .
(Abbildung 49 . 1 )

20 . Die Schallgeschwindigkeit in trockener Luft von 0 °C beträgt
c0 = 331,6 m/s . Sie nimmt mit steigender Temperatur zu , und zwar gilt bei

der Lufttemperatur t (in °C) : c = c0 1 +
1

273,2 K

a) Wie groß ist die Schallgeschwindigkeit bei 20 ° C bzw. 40 °C?
b) Bei welcher Temperatur beträgt die Schallgeschwindigkeit 325 m/s?

21 . Wenn eine schwingende Saite von der Länge l, dem Querschnitt q und der
Dichte q mit einer Kraft F gespannt ist , dann hat ihr Grund ton die Fre -

* Beispiel einer Umrechnung :

3
35

36
T
6Ö

5
6Ö

1

60
:

60

60
+ 3600

:
60

+
3600

60

216000
= 0 :05,08 ,
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quenz * v0 21 j q ■q
, der « - te Oberton die Frequenz

n + 1 - , n e IM .
q - Q

F

a) Eine Stahlsaite ( ß = 7,85 g/cm 3 ) von 1,00 m Länge und 0,50 mm 2
Querschnitt , die mit einer Kraft von 160 N gespannt ist , wird ange¬
zupft . Welche Frequenz hat der dabei erklingende Grundton ? Wie viele
Obertöne haben eine Frequenz unter 2 kHz ?

b) Die e-Saite einer Violine ist 32,5 cm lang ; sie ist 0,35 mm dick und aus
Stahl (g = 7,85 g/cm 3) . Mit welcher Kraft muss sie gespannt werden ,
damit sie richtig gestimmt ist? (Die Frequenz des Tones e" beträgt
660 Hz .)

c) Eine Kontrabass -Saite mit q = 7,9 g/cm 3 und q = 6,2 mm 2 ist mit
370 N gespannt und gibt beim Anstreichen den Ton 1E (so genanntes
Kontra -E) mit 41 Hz . Wie viel cm ist diese Saite lang ?

2 .3 Rechenregeln für Quadratwurzeln

Aus Definition 33 . 1 folgt unmittelbar , dass ( Vä) 2 — a gilt . Das Ziehen der
Quadratwurzel und anschließendes Quadrieren heben sich also auf . Gilt das
auch für die umgekehrte Reihenfolge dieser beiden Rechenschritte ? Dass dies
nicht zutrifft , zeigt folgendes

Beispiel: ( — 2) 2 = 4 ; j/4 = 2 ; also j/ ( — 2) 2 4= — 2 .

Wegen | — 2 \ = 2 gilt aber ]/ ( — 2) 2 = | — 2 | .

Das führt uns zu

Satz 50 . 1 : Für jede reelle Zahl a gilt Vä2 = \ a \ .

Beweis: Va2 ist nach Definition 33 . 1 die nicht negative Lösung der Gleichung
x 2 = a 2

. Diese Gleichung hat für a + 0 die beiden Lösungen a und — a .
Je nachdem , ob a > 0 oder a < 0 gilt , ist a oder — a die positive Lösung .
Für a = 0 ist x = 0 = l/Ö2 die einzige Lösung .
Somit gilt :

a > 0
a < 0

\j i ui ci —— 0

also l/ö 2 = \ a \ .

* frequentia (lat .) = die Häufigkeit ; Frequenz = Zahl der Schwingungen pro Sekunde , Einheit 1/s = 1 Hz
( 1 Hertz ) zu Ehren von Heinrich Hertz (1857- 1894) , dem Entdecker der elektromagnetischen Wellen
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Die vorausgehende Überlegung zeigt , dass man die Reihenfolge der beiden
Rechenschritte »Wurzelziehen « und »Quadrieren « im Allgemeinen nicht ver¬
tauschen darf . Kann man aber vielleicht das Wurzelziehen mit einer der vier
Grundrechenarten vertauschen ?

Beispiele :
1) 1/9 + 16 = j/25

j/9 + |/l6 = 3 +
1/9 + 16 * 1/9 + 1/16

2) 1/16 - 9 = l/7
l/l6 — 9 * l/l6 — l/9

l/l6 - l/9 = 4 - 3 = 1

3) 1/9 - 16 = 1/144
l/9 • l/i6 = 3 - 4

1/9 - 16 = 1/9 - 1/16

4) I/ 9 TT6 = l/ ^
l/9 ; l/l6 = 3 : 4

=> 1/9 : 16 = l/9 : ]/l6

Die Beispiele 1 und 2 beweisen, dass man die Reihenfolge von Wurzelziehen
und Addieren bzw . Subtrahieren nicht vertauschen darf . Die beiden anderen
Beispiele lassen jedoch vermuten , dass beim Multiplizieren und Dividieren die
Vertauschung zulässig ist .
Tatsächlich gilt

Satz 51 . 1 :

1) Für a 2: 0 und b A 0 gilt V a • b = Ya ' Yb .

2) Für a ^ 0 und b > 0 gilt Vu : b = Ya : Yb , oder =
o Yb

Beweis von 1 : Aus a A 0 und 5 ^ 0 folgt a - b ^ O ; alle drei Wurzeln sind
definiert .
Aus ( l/fl • Yb)2 = a ■b folgt , dass Ya ■Yb die nicht negative
Lösung der Gleichung x 2 = ab darstellt , also gleich Yäb ist .

Beweis von 2 : gib ]/b •
]/ | =

]
Tbgüt 1ß •

Yb - Ya , | | : Yb

Y
~
a

1Tb
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Die Regel 1 von Satz 51 . 1 lässt sich natürlich auch auf mehr als zwei Faktoren
ausdehnen . So gilt z . B .

1/ abc = 1/ a (bc) = ]fa ■Vbc = Va ■ Vb ■ ]/c .
Im Sonderfall von n gleichen Faktoren erhält man

Satz 52 . 1 : Für a ^ 0 und n e INI gilt: Va " = (Vä)" .

Als Anwendungen der bisher gefundenen Rechengesetze treten besonders
häufig folgende Fälle auf :
Teilweises Wurzelziehen (partielles Radizieren ) : Lässt sich aus dem Radikan¬
den ein quadratischer Faktor abspalten , so kann man aus diesem die Wurzel
ziehen .
Beispiele:

l/75 = l/25 • 3 = |/25 - 1/3 = 51/3

]/a 2 b 3 c 4 = ]/a 2 b 2 c 4 ■ b = ]/a 2 b 2 c 4 - ]/b = \ a \ ■ \ b \ ■ c 2Vb

l/2 a 2 — 4ab + 2b 2 = ]/l (a 2 — lab + b 2) = ]/2 (a — b )
2 = \ a — b \ ■]/2

Einen Faktor unter die Wurzel nehmen: Es handelt sich hier um die Umkehrung
des partiellen Radizierens .
Beispiele:

2 • l/7 = V2 2 ■j/7 = V2 27 ! = l/28

— 5 • l/3 = — V5 2 - 1/3 = — 1/5 2 • 3 = — 1/75

r- f | a | • 1fb = W - Vb = ]/a 2 b , falls a ^ 0
a • ]/ b = < __ _ ,_

l - \ a \ - Vb = - Va2 - Vb = - VcVb , falls u < 0

Beachte also , dass man nur nicht negative Faktoren durch eine Quadratwur¬
zel darstellen kann .

Rationalmachen des Nenners : Dabei geht es darum , Wurzeln , die im Nenner
eines Bruches auftreten , zu beseitigen .
Beispiele:

1 1 • 1/2 _ l/ 2 1/2 _ 1 ^
1/8 l/8 • 1/2 j/16 4 4
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1
_

1 - 1/2 1 - 1/2
.._ l - V

/2
_ lA t

1 + 1/2 ( 1 + 1/5) ( 1 - 1/5) 1 — (]/2 ) 2 - 1

l/3 l/3 (l/7 + 1/5) V3 - ]/l + V3 - V5

1/7 — l/5
~~

(1/7 — 1/5 ) 0/7 + 1/5 )
~~

7 - 5

= I^ 1 + IÜ5 = 1
(^ I + |^ )

1fb Vb ' Ya 1fab lfab

1fäf
~~

l/ö ^l/ö
~

lV
~

Aus a = b folgt , falls a und b nicht negativ sind , die Gleichung \/a = Yb ;
umgekehrt erhält man durch Quadrieren daraus wieder a = b . Also sind , falls
a ^ 0 und b + 0 , die beiden Gleichungen a = b und Ya = \/b äquivalent .
Gilt eine entsprechende Feststellung auch für Ungleichungen ?

Beispiele:
4 < 49 liefert j/4 < ]/49 ; richtig , weil 2 < 7 .

0 < 5 liefert j/Ö < ]/5 ; richtig , denn 0 < 2,23 . . .

2,25 > 0,36 liefert 1/5/25 > j/0,36 ; richtig , da 1,5 > 0,6.

Vermutlich gilt also

Satz 53. 1 : Monotoniegesetz des Radizierens

Für a ^ 0 und b ^ 0 gilt : a < b o Ya < Yb .

Beweis : 1) <= : Aus der Voraussetzung 1/ a < \fb und \/a + 0 folgt 1fb > 0 . Wir
multiplizieren die Ungleichung Ya < Yb mit 1fa bzw . Yb :

Ya < Vb H - 1/a Ya < Vb \ \ - fb

a ^ Yäb . Yäb < b .

Somit ist a ^ Yäb < b , also a < b .

2) => : Vorausgesetzt ist nun 0 V a < 6 . Die Annahme 1/a + \/
'
b hätte

nach 1 die Ungleichung a 2; b zur Folge , also einen Wider¬
spruch zur Voraussetzung .

Daher gilt : a < b => Ya < Yb .
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Aufgaben

1 . a) 1/2 • 1/8

d) l/lÖ • l/lÖOÖ

g) ]/IÖ - ]/l 4Ä

k) 1/04 - VÖA

n) l/f - l/f

2 . a) l/2 • l/3 • Yl

c) l/3 • l/5 • l/5 ■l/l2

e) VÖJ5 • ]/6 • l/ 24

g) vf - j/f - 1/1775

b) l/3 • l/l2

e) VYtf - VW

h) 1/0,625 • 1/TÖ3

1) 1//5 - /Ö4
o)

c) 1/45 • 1/20

f ) 1/ Ö4 • 1/0,001

i) 1/196Ö • l/Ojf

in) j/0,121 • l/44

p) YWs - V^ l

b) l/2 - 1/5 • 1/4Ö

d) ]/2Ö • l/043 • l/l5

f ) l/l ^2 • l/Ö4)2 ■ l/Ö4) 3
^

- l/Ö^

h ) ]/4 • ]/iä ■VW - VWs ■ i/Im

3 . a) 1/16 ■ 121 b) 1/625 - 49 - 100 c) 1/0,01 • 144 • 225

d) 1/0,36 • 2 4 • 5 2 e) 1/3 6 • 1,69 ■ 7 2 f) l/5 4 - 2 8 - ll 2

g) 1/ (2 • 3 2) • (5 6 • 2 3 ) h) 1/ (3 • 5 2 • 7) • 84 i) l/ (2 3 • 11 • 3 5) • 297 • 8

4 . Vereinfache durch teilweises Radizieren :

a) 1/32 b) 1/27 c) 1/18Ö d) ]/l76

e) j/216 0 ]/l25Ö g) l/9ÖÖÖ h) l/24

i)

5 . a)

I/ 4Ö4

/ /

1/2
b)

e) 1/324 : l/Ö4

k) 1/0,00625

l/48 / 27

l/3
C

1/243

f ) 1/0,294 : l/24

d)
l/l76

V275

g) 1/0,098 : 1/22,05

^ ^
1/18 1/27

* 3
l/75 l/32

b)
l/63 l/96

l/24 1/700

1/244 6 l/l6Ö 1/4Ö5

l/l92
~ '

i/54
d)

1/ 45O
'
TIE !

7 . Vereinfache :

a) l/öz4 b) Va 2 b 2 c) l/25m 10n 3 d) V21x s y 4

/ 32 b / 250m 3 2« 2
e) / a 2 25

1) / n 2 m 2 g)
/1,21m ; 2 w4

192

8 . a) (l/8 - 3j/l8 + 21/32 ) • l/2 b) (31/5 - l/2Ö + / 8Ö) ■ 2 ]ß
1 1

c) - l/6 (8l/l2 — 21/24 + l/75 ) d) - 1/15 (2/45 + 3 1/ I 35 - 3l/2Ö)
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9 . a) (]/3 + l/2 ) (l/3 - 1/2) b) (6/5 - 5/6 ) (5/6 - 6 ]ß )

c) (1/14 — / 3 ) (l/6 + 1/7 ) d) (51/11 - 2l/lÖ ) ( — 1/55 — 21/2)

10. a) [ (2/5 + V2) + 1/22] • [ (2 )/5 + )/2 ) - 1/22]

b) [ 21/15 + (4 ]/3 - 2/7 )] • [ 2/15 - (41/3 - 2/7 )]

11 . a) (5/2 + / 18 ) 2

b) (2/5 — l/l8 ) 2

c) (J/20 - 3/2 ) 2 + (3/5 + / 8) 2

d) (/32Ö — 2/70 ) 2 — (/24Ö — ö/lÖ )

/ 21 1
12 . Beispiel : — = — _

K2 V2 - V2 2 2

Mache bei den folgenden Quotienten den Nenner rational :

1 5 - 2 1/7 — 1
a) —j= b) - = c) - == d) j=—

1/3/5 V\ 9 / 7

, 2 ^ 6 + 10/1/2 ^ / 2 + 1/3 7/5 - 51/7
e)

31Ü1
0

5l/lJ
8) 1

Vs - V7

13 . Mache die Nenner rational .
1 ^ 5

a)
3 + 1/iö

b)
21/7 - /3

l/2 - l 1 - /15
'

/S + l
C

2/5 - 5/3

1/6 + 1/7

l/7 + 1/8
3/14 + / 7

14 . Beseitige die Wurzeln im Nenner .

a)

d)

b)

e)

2b 2

/ 8 a 2 b 5 c

1
Ya - Vb

c)
2a3

/ 6u4 6 3 c 3

f)
/ p + / g

/>/ ? + ? / ?

15 . Beispiel: (/2 ) 3 = (/2 ) 2 • Yl = 2/2 .

a) (l/2 ) 4 b) (l/2 ) 10 c) (/2 ) 11 d) (]/2 ) 15 e) (/2 ) 18

f) (/3 ) 3 g) (/ll ) 2 h) (l/7 ) 5 i) (/3 ) 8 k) (/5 ) 9
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16 . Beispiel: |/7 * = Vl 4 • 7 = 7 2 : l/7 = 49 ^ 7.

a) b) j/iU <0 1/5 * d) 1/8 1 e) l/ö 3

f) l/IT* g) l/3 ® h) 1/21 “ i) l/? 3 k) 1/2 ^ °

17 . a) {Vl ) 5 + (V8) 4 - 2 ]/^ b) ((3/5) 3 _ 3/5 ) . !/53

c) (1/7 4 + 4 (l/7 ) 3) ((l/7 ) 5 — 7 - 1/4^)
d) (41/3^ + (l/2 ) 5) : (8 (l/3 ) 7 + 91/2 7)

18 . Vereinfache :
a) (]/ä ) 3 b) (]Az) 4 c) ( lA/) 7

f) lAz 2 g) l/ö 3 h) 1A24
d) 0/ä ) 2" e) ( l/ a) 2m + 1

i) 1/ö 3 k) lAz ®

19 . Vereinfache :
a) ]Az2 + 2a6 + b 2

c) / z4 + 2z2 + 1

e) l/l2,lx 2 + 4,4xy + 0,4j>2

b) ]/2 «7
2 — 12m + 18

d) j/9z 4 - 6z2 + 1

f) / l + 2 | x | + x 2

20 . Nimm , soweit dies möglich ist , die Faktoren unter die Wurzel . Achte dabei
auf eventuell notwendige Fallunterscheidungen .
a) 31/2 b) l/7 • 5 c) ( - 2) 1/3 - x d) (7 - 3) l/5Ö

e) xl/y f) a 2 Vx g) 27>3 j/y h) (a — b ) Va + b

21 . Welche Größenbeziehung besteht zwischen folgenden Zahlenpaaren?
a) l/l7 und l/l6 b) 1^ 81 und 1/247

c) ]/a 2 + 2 und Va2 + 1 d) l/0,75 und |/f

e) l/ÖJ und (/ (Uff f) / f 7 und lA) ,457

• 22 . Es sei 0 < a < 1 und b > i . Welche Größenbeziehung besteht dann zwi¬
schen

a) lAz und a , b) Vb und b , c) l/ö 7 und ( j/ö )8 ,
d) ( ]/ö ) 3 und 1AA, e) 1/ a 3 b2 und Z>]AA , f ) l/öÄ > und aYab 2 !

23 . Welche Ungleichung besteht zwischen
a) 1/9 + 16 und j/9 + l/l6 , b) l/5 2 + 102 und Aö2 + / lö 2 ,
c) 1/625 - 49 und l/625 - 1/49 , d) 1/225 - 25 und l/225 - ^ 25 ?
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24 . a) Beweise: \fa + ]/b 'S: \/a + b . Wann gilt das Gleichheitszeichen ?

b) Beweise: 0 < a < b => // > — / ö < Vb — a . (Hinweis : Quadriere !)

25 . Zeige , dass die Zahlen x und y gleiche Quadrate haben . Warum sind
trotzdem die Zahlen selbst nicht gleich?

a) x = 3 — 2 ]/3 ; y = j/n - 12/3

b) x = ]/l4 — 81/T ; = l/6 — 2l/2

26 . Mit Hilfe von Quadratwurzeln kann man dieselbe Zahl auf sehr unter¬
schiedliche Art darstellen . Weise nach , dass die folgenden Gleichungen
richtig sind :

a) 1/3 - 21/2 = l/2 - l b) 2 + 1/5 = l/4l/5
“
+ 9

c) 1/9 + 2/14 = / 2 + 1/7 d) l/l/8 + 1/2 + 4 = / /F + 1/W
• 27 . Beispiele wie die von Aufgabe 26 lassen sich auf zwei Rechenregeln zu¬

rückführen , die in geometrischer Fassung schon bei Euklid (um 300
v . Chr .) in Buch X seiner Elemente , in algebraischer Form z . B . im arabi¬
schen Euklid -Kommentar des al -Nayrizi (f 922 ) und im indischen Bi-
dscha-ganita - »Samen der Rechenkunst « - von Bhäskara 11 (1115 - nach
1178 ) Vorkommen : Für 0 A a 5S b gilt

Za + Vb = / a + b + 2 \/ab und Yb — j/a = ]/a + b — 2 ]/ä /

a) Beweise diese Regeln .
b) Warum existiert ]/a + b — 2 Yob für beliebige positive Zahlen a und bl

(Hinweis : Aufgabe 45/6)
c) Bereits Abu Kamil (um 850- 930 ) berechnet in seinem al-kitab fi al-

dschabr wa - ’l-muqabala mit diesen Formeln j/8 + /l8 = /5Ö und
/ l8 — / 8 = 1/2 . Bestätige diese Ergebnisse 1) unter Verwendung der
obigen Formeln , 2) ohne Verwendung dieser Formeln .

d) Vereinfache die folgenden Terme mit Hilfe der obigen Formeln :

1) ]//3 + / 2 — l/l/3
“

— / / (arabisch , um 1100)

2) ( //
'40 + 6 + / /4 (T- 6 ) 2 (Luca Pacioli [um 1445 - 1517] ,

Summa , 1494)

3) (/l2 + / 6 + ]/l2 — l/ö
"

) 2 (Michael Stifel [ 1487 ?- 1567] ,
Arithmetica integra , 1544 )

28 . Überprüfe die folgenden Beispiele aus der altindischen Mathematik :

a) 1/1O + / 24 + / 4Ö + I/6Ö
“

= l/2 + l/3 + l/5

b) ]/l 6 + / 12Ö + / 72 + / 6Ö + / 48 + / 4Ö + 1/24 = j/6 + / 5 + |/3 + l/2
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* * 2 .4 Zur Geschichte der irrationalen Zahlen

Eine der größten Leistungen der griechischen Mathematik ist die Entdeckung der
Inkommensurabilität zweier Strecken , d . h . der Existenz von Streckenverhältnissen ,
die nicht mehr durch das Verhältnis zweier ganzer Zahlen ausgedrückt werden können .
Sie führte schließlich zum Begriff der irrationalen Zahl . Es überrascht , dass die Ägyp¬
ter , erst recht die Babylonier , die ja bereits um 1800 v . Chr . erhebliche mathematische
Kenntnisse besaßen - du wirst später davon noch mehr hören - , das Problem , ob es zu
zwei Strecken stets ein gemeinsames Maß gibt , überhaupt nicht erkannten . Es über¬
rascht noch mehr , dass die Griechen dieses Problem zu einer Zeit erkannten und auch
zu lösen verstanden , als ihre Mathematik noch in den Kinderschuhen steckte . Noch
erstaunlicher ist es , dass durch kein Dokument belegt ist , wann und durch wen diese
ungeheuere Entdeckung erfolgte , obwohl die Griechen die Tragweite dieser Entde¬
ckung erfassten .*
Der früheste Bericht von dieser Entdeckung ist die Stelle 147c des Dialogs Theätet , den
Platon (428 - 348 v . Chr .) im Jahre 368 v . Chr . verfasste , kurz nachdem sein Schüler ,
der Mathematiker Theaitetos (um 415 - 369 v . Chr .) , in einer Schlacht tödlich verwun¬
det worden war . In diesem Dialog , der im Jahre 399 v . Chr . , dem Todesjahr des Sokra¬
tes , spielt , zeigt ein alter Mathematiker , nämlich Theodoros von Kyrene (um 465 bis
um 385 v . Chr .) , dass die Seite eines Quadrats , dessen Inhalt eine der Nichtquadratzah¬
len von 3 bis 17 ist , irrational ist . Bei 17, so heißt es , »hielt er zufällig inne« . Von einem
Quadrat des Inhalts 2 wird nichts gesagt ! Also muss der Beweis für die Irrationalität
von V2 älter sein. Der in den meisten Codices als Nachtrag zu Buch X von Euklids
Elementen (um 300 v . Chr .) überlieferte arithmetische Beweis für die Irrationalität von
1/2 ist sprachlich weitaus schwerfälliger als die sonstige Diktion der Elemente; das weist
daraufhin , dass er aus alter Zeit stammt . Auf alle Fälle scheint V2. die erste Zahl zu
sein, deren Irrationalität arithmetisch und nicht nur geometrisch bewiesen wurde (sie¬
he Aufgabe 12/4) . Mit größter Wahrscheinlichkeit wurde aber die Irrationalität nicht
am Quadrat entdeckt , sondern am regelmäßigen Fünfeck bzw . am Pentagramm (Ab¬
bildung 9 . 1 ) , dem Erkennungszeichen des Geheimbundes der Pythagoreer (Aufgabe
13/11 ) .
Einstimmig sind spätantike Autoren der Meinung , dass der Philosoph * * Hippasos aus
Metapont/Unteritalien (2 . Viertel des 5 . Jh . s v . Chr .) , der noch ein unmittelbarer Schü¬
ler des Pythagoras (um 570- um 497 v . Chr .) sein könnte , die Entdeckung des Irratio¬
nalen an die Öffentlichkeit gebracht hat . Ansonsten wird von ihm noch berichtet , dass
er musikalische Experimente an Metallscheiben verschiedener Dicke und an mit Was¬
ser gefüllten Röhren ausgeführt und sich außerdem mit Proportionen und Mitteln
(siehe Aufgabe 45/6) beschäftigt habe . Aber zurück zum Irrationalen !
Iamblichos aus Chalkis/Koile -Syrien (um 250- um 330 n . Chr .) berichtet uns :
»Hippasos habe als Erster die aus 12 Fünfecken zusammengesetzte Kugel , d . h . die
Umkugel des Dodekaeders [Abbildung 59 . 1] , öffentlich beschrieben und sei deshalb
wie ein Gottloser im Meer umgekommen .«
Und an späteren Stellen lesen wir bei ihm:
»Einige sagen auch , ihm sei dies widerfahren , weil er das Geheimnis des Unaussprech¬
baren [siehe unten ] und des Inkommensurablen verraten habe .«

* Aristoteles (384- 322 v . Chr .) kommt z . B . nicht weniger als 26-mal in seinen Werken auf die Inkommensu¬
rabilität von Seite und Diagonale im Quadrat zu sprechen .

** (piXoGocpoq (philosophos ) ist eine Wortschöpfung der Pythagoreer und bedeutet Freund der Weisheit .
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Abb . 59 . 1 Das Dodekaeder ( = Zwölfflach) *
, ein von 12 regelmäßigen ebenen Fünf¬

ecken begrenzter Körper , links als Vollkörper , rechts als Hohlkörper , gezeichnet von
Leonardo da Vinci (1452 - 1519 ) für die 1509 erschienene Divina Proportione seines
Freundes Luca Pacioli (um 1445- 1517) .

»Denjenigen aber , welcher als erster die Natur des Kommensurablen und des Inkom¬
mensurablen solchen eröffnete , die nicht würdig waren an der Lehre teilzuhaben ,
sollen die Pythagoreer so tief verabscheut haben , dass sie ihn nicht nur aus der Lehr -
und Lebensgemeinschaft ausschlossen , sondern ihm [zu Lebzeiten] auch ein Grabmal
errichteten mit der Begründung , ihr einstiger Gefährte sei aus dem Leben unter den
Menschen ausgeschieden .«
Nirgends wird also berichtet , dass Hippasos der Entdecker des Irrationalen sei ; nur als
Verräter wird er dingfest gemacht . Man neigt jedoch heute dazu , ihn auch für den
Entdecker zu halten . Warum aber die ganze Aufregung über den Frevler und den
Verrat?
Um die Frage beantworten zu können müssen wir mehr über die Pythagoreer wis¬
sen . In seiner Metaphysik berichtet uns Aristoteles (384- 322 v . Chr .) , die Pythago¬
reer »sahen in den [natürlichen ] Zahlen die Eigenschaften und Verhältnisse der Har¬
monie [ . . . und da] die Zahlen das erste in der ganzen Natur , so nahmen sie auch an , die
Elemente der Zahlen seien die Elemente alles Seienden und die ganze Welt sei Harmo¬
nie und Zahl . [ . . . ] Alles führen sie auf die Zahlen zurück .« Anders ausgedrückt :
Pythagoras und seine Schüler waren der Meinung , dass irgend zwei Dinge dieser Welt
stets in einem Verhältnis zueinander stehen , das durch zwei natürliche Zahlen , d . h.
durch einen Bruch , ausgedrückt werden kann . Als Beispiel diene die Musik : Man
erhält die Oktave bzw. die Quint zu einem Ton , wenn man die ihn erzeugende Saite im
Verhältnis 2 : 1 bzw . 3 : 2 verkürzt :

Oktave 2 : 1 Quint 3 : 2

* öcoSexdsSpoc; (dodekäedros ) = zwölfsitzig , mit zwölf Grundlagen aus 5cb5£xct (dodeka ) = zwölf und f | §5pa
(he hedra) = der Sitz, die Grundlage. Das Fachwort 6co5eKae5pov (dodekäedron ) verwendetEuklid in Buch
XI seiner Elemente.
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Die Entdeckung , dass es Streckenverhält¬
nisse gibt , zu denen es keine (ganzzahli¬
gen) Zahlenverhältnisse gibt , musste not¬
gedrungen zu einer Krise unter den Py-
thagoreern führen ; denn sie zerstörte
die Grundlage ihrer Weltanschauung , ihr
»Alles ist Zahl « . Du kannst dir sicher vor¬
stellen , dass es vielen Mitgliedern des in
Süditalien auch politisch sehr einflussrei¬
chen Geheimbundes lieber gewesen wäre ,
wenn diese umwälzende Entdeckung ge¬
heim gehalten worden wäre . Die große
Empörung eines Teils der Anhänger über
den »Verrat « des Hippasos ist also ver¬
ständlich . Die Folge aber war , dass sich
die Pythagoreer in zwei Parteien spalte¬
ten , die ctKOUCTpaxiKoi (akusmatiköi ) ,
d . h . die Hörer , die ohne tiefere Einsicht
auf das Wort des Meisters schworen und
der alten Lehre anhingen , und die
puüripaTiKoi (mathematiköi ) , d . h . die
durch Lernen Einsicht erlangt Habenden ,
also die Gruppe um Hippasos , die durch
ihre geistige Schulung in der Lage waren
das Neue zu begreifen . * Bezeichnender¬
weise stellten sich die Mathematiköi bei
den Unruhen in Unteritalien um 445
v . Chr . auf die Seite des Volkes, die Akus -
matikoi dagegen auf die Seite des herrschenden Adels . Die wechselhaften Ereignisse
führten schließlich dazu , dass zuerst die Akusmatiköi und später die Mathematiköi
aus Unteritalien vertrieben wurden , sodass um 350 v . Chr . der pythagoreische Bund
jede Bedeutung verloren hatte .
Platon lernte 388/387 in Unteritalien bei Archytas von Tarent pythagoreisches
Gedankengut kennen . In seinem letzten Werk, den Nö/ioi (Nomoi ) - »Gesetze« - , das
erst nach seinem Tode bekannt wurde , zeigt sich, wie beeindruckt Platon von der
Entdeckung der irrationalen Verhältnisse war . Er spricht dort an der Stelle 819/820 von
einer »lächerlichen und schimpflichen Unwissenheit , die allen Menschen innewohnt «,
ehe sie davon erfahren haben , und bekennt : »Mich selbst ergriff durchaus Verwunde¬
rung , als ich spät [hier übertreibt er !] davon hörte . Es kam mir vor , als wäre so etwas
[nämlich ein solches Unwissen] bei den Menschen gar nicht möglich , sondern eher bei
einer Herde von Schweinen . Und ich schämte mich , nicht nur für mich selbst , sondern
für alle Griechen .« In diesen Worten kommt auch zum Ausdruck , dass sich die Kennt¬
nis von der Existenz irrationaler Verhältnisse noch nicht sehr verbreitet hatte . Und
Platon schließt seine Betrachtung über das Irrationale mit den Worten : » Das ist eins
von den Dingen , welches nicht zu wissen wir für eine große Schande erklärten ; es aber
zu kennen ist nichts besonders Rühmenswertes !«

Abb . 60 . 1 Aristoteles (384 Stagira /
Thrakien - 322 Chalkis/Euböa ) . Römi¬
sche Kopie nach einem um 325 v . Chr .
entstandenen griechischen Original .
Wien , Kunsthistorisches Museum

* dKOueiv (aküein ) = hören , vernehmen ; äKOixjjaa (akusma ) = das Gehörte , die Lehre .
|L(Xv)t | jrttTiKÖ^ (mathematikös ) = lernbegierig , gelehrig kommt von [lavödvsiv (manthänein ) = lernen , erler¬
nen , verstehen , einsehen und hängt zusammen mit |L<x$r)na (mäthema ) = das Gelernte , die Kenntnis , das
Wissen.
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Abb . 61 . 1 Rückseite zweier Tetradrachmen * aus Abdera ( 'Äß8r | pa) mit der links
oben beginnenden , im Uhrzeigersinn umlaufenden Umschrift ITY©ArOPH2
( = Pythagores ) , geprägt zwischen 430 und 420 v . Chr . , vermutlich Pythagoras dar¬
stellend . 0 = 2,4 cm ; links 13,98 g, * * rechts 13,08 g .

Die Entdeckung , dass die Diagonalen des Fünfecks und des Quadrats nicht durch den
griechischen Zahlbegriff erfasst werden können , dass sie aber andererseits als Strecken
exakt vorhanden sind , hatte weit reichende Folgen für die weitere Entwicklung der
griechischen Mathematik . Man wandte sich nämlich von der Arithmetik , der Lehre
von den Zahlen , ab und betrieb Mathematik als Geometrie . In ihr konnte , auch mit
Strecken irrationaler Länge , das von den griechischen Philosophen geforderte Ideal
der Exaktheit verwirklicht werden .
Einen großen Schritt weiter brachte Eudoxos von Knidos (um 400- 347 v . Chr .) die
Mathematik : Es gelingt ihm , eine geometrische Proportionenlehre auch für inkom¬
mensurable Streckenverhältnisse zu schaffen . Dabei führt er bewusst den Begriff der
Größe (peysOoi; [megethos ] ) in die Mathematik ein, was auf eine Erweiterung des
Zahlbegriffs bis hin zur reellen Zahl hinausläuft . Euklids Buch V der Elemente geht
praktisch auf Eudoxos zurück . Im recht schwierigen Buch X , das vermutlich von
Theaitetos stammt , wird die Theorie der irrationalen Größen geometrisch weiter

ausgebaut . Aber Eudoxos wurde erst 2000 Jahre später voll verstanden . In ihren Be¬
weisen schlagen sich die Griechen immer auf die sichere Seite: Sie bevorzugen geome¬
trische Beweise vor algebraischen Überlegungen , da irrationale Zahlen ihnen unvor¬
stellbar waren . Auch Diophant (um 250 n . Chr .) , der mit seinen Ägi &fir]xiKmv ßiß/Ja
(Arithmetikön biblia ) - »Bücher über die Zahlenlehre « - algebraisches Denken wieder
aufnimmt , vermeidet es stets durch entsprechende Wahl der Koeffizienten , dass solche
Zahlen als Lösungen einer Gleichung auftreten .
Erst den Arabern gelingt es , langsam die Algebra von ihrer geometrischen Verkleidung
zu befreien . Es ist insbesondere ein Verdienst al -Bagdadis (um 1100), dass er in
seinem Kommentar zu Buch X von Euklids Elementen, den Gerhard von Cremona
(1114 - 1187 ) übersetzt , Zahlenbeispiele mit Wurzeln vorführt . Es entwickelt sich eine

* Eine Tetradrachme ist ein silbernes Vier -Drachmen -Stück . Das Monatsgehalt eines Lehrers im 2 . Jh . v . Chr .
betrug etwa 12 Tetradrachmen .

** Diese Münze ist die erste in einer Reihe ähnlicher Prägungen , bei denen der für die Prägung zuständige
Jahresbeamte der Stadt Abdera seinen Namen mit einer berühmten Gestalt der griechischen Geschichte
oder Sagenwelt in Verbindung brachte . Der Beamte Pythagores wählte ein idealisiertes Portrait seines
berühmten Namensvetters , des Philosophen und Mathematikers Pythagoras .
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Kunst des Rechnens mit Wurzeln , wie du sie in
2 .3 gelernt hast . Leonardo von Pisa (um 1170
bis nach 1240 ) , der sein Wissen von den Arabern
bezog , ließ in seinem Uber abaci (1202 ) irratio¬
nale Zahlen sowohl als Lösungen wie auch als
Koeffizienten von Gleichungen zu (Aufgabe
79/3 und 82/4e , f ) . Allmählich wird das Rech¬
nen mit irrationalen Zahlen zu einer Selbstver¬
ständlichkeit . Schreibt doch um 1460 Frater
Fridericus Amann * (f 1465 ) in einem algebrai¬
schen Traktat des Codex latinus monacensis
14908 : »Wer mit den surdischen [d . h . irratio¬
nalen (siehe unten )] Zahlen , ihrem Addieren
und ihrem Subtrahieren , den Binomen [ . . .] und
den anderen irrationalen Größen nicht umzu¬
gehen weiß, der versteht in der Arithmetik
nichts Besonderes .« * * Dennoch sind diese sur¬
dischen Zahlen für ihn keine Zahlen . »Surdus
numerus non est numerus « schreibt er . Auch Michael Stifel (14877- 1567 ) diskutiert
diese Frage 1544 in seiner Arithmetica integra - »Die ganze Arithmetik « - , obwohl
er zu einem vertieften Verständnis der Irrationalzahl gelangt ist : » So , wie also eine
unendliche Zahl keine Zahl ist , so ist auch eine irrationale Zahl keine wahre Zahl ,
weil sie gewissermaßen unter einem Nebel der Unendlichkeit verborgen ist .« * * * Dieser
Nebel der Unendlichkeit sind wohl die unendlichen Dezimalzahlen , mit denen man
die irrationalen Zahlen darstellen kann . Erst dadurch , dass 1637 Rene Descartes
( 1596 - 1650 ) in seiner La Geometrie mit Hilfe des Strahlensatzes auch das Produkt
zweier Strecken a und b wieder als Strecke darstellt (Abbildung 62 .2) - bis dahin
wurde dieses Produkt immer als Fläche interpretiert - , gelingt eine Übertragung der
geometrisch wohl definierten Irrationalitäten in die Welt der Zahlen mit ihren Rechen¬
gesetzen . Der Durchbruch ist geschafft , die irrationalen Zahlen werden als Zahlen
anerkannt .

Abb . 62 .2 Das Produkt ab als Strecke nach Descartes

Dennoch blieb es dem 19 . Jh . Vorbehalten , die irrationalen Zahlen ohne jede geometri¬
sche Begründung auf algebraischem Wege einführen zu können . Von verschiedenen
Mathematikern wurden dazu verschiedene Verfahren vorgeschlagen , die alle auf das-

* Seit 1995 weiß man , dass die bisher dem Fridericus Gerhart (f 1463) zugeschriebenen Abhandlungen
von Fridericus Amann stammen und umgekehrt .

** Qui in surdis atque additis et diminutis et binomiis [ . . .] et lineis ceteris irrationalibus agere nescit , nihil in
Arismetrica egregii novit .

*** Sic igitur infinitus numerus , non est numerus : sic irrationalis numerus non est verus numerus , qui lateat
sub quadam infinitatis nebula .

Abb . 62 . 1 Vorderseite der Tetra¬
drachme von Abbildung 61 . 1 ,
links ; dargestellt ist ein Greif .
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selbe Ergebnis hinauslaufen . Wir nennen hier die Arbeiten Richard Dedekinds (1831
bis 1916 ) und Georg Cantors (1845 - 1918 ) , beide aus dem Jahre 1872 . Die Definition
der reellen Zahlen durch Intervallschachtelungen , die du kennen gelernt hast , geht auf
die Vorlesungen über die Natur der Irrationalzahlen von Paul Gustav Heinrich Bach¬
mann (1837 - 1920) aus dem Jahre 1892 zurück .

Abschließend wollen wir noch die Entstehung des Fachworts irrational verfolgen .
Nach der Entdeckung der Inkommensurabilität nannten die Pythagoreer ein Ver¬
hältnis aus zwei ganzen Zahlen , also unsere rationale Zahl , pprot ; (rhetos )
= aussprechbar , ein Verhältnis aber , das sich nicht durch ganze Zahlen ausdrücken
ließ, also unsere irrationale Zahl , ctpppxoc (ärrhetos ) = unaussprechbar . Theodoros
von Kyrene (um 465 - um 385) , der Lehrer Platons , verwendet stattdessen das Gegen¬
satzpaar CTÜ(i [texpo !; - amjppsxpoi; (symmetros - asymmetros ) , also gemeinsam messbar
- nicht gemeinsam messbar , bezogen auf die Einheit . Sein und Platons Schüler Theai -

tetos (um 415 - 369 v . Chr .) betrachtet Verbindungen wie Va + Vb und j/f a . Erstere

ergeben , wenn man sie quadriert , nicht immer eine rationale Zahl . So wird z . B .

(]/2 + V &) 2 = 2 + 8 + 2l/l6 = 18 , also eine rationale Zahl , aber fl/2 + ]/3 ) 2 =
= 2 + 3 + 2 ]/6 = 5 + 21/6 eine irrationale Zahl . Für Größen der letzteren Art be¬
nützt Theaitetos ein altes Wort , nämlich äXoyoq (älogos ) = sprachlos , stumm, unaus¬
sprechbar . Euklid (um 300 v . Chr .) übernimmt die Bezeichnung von Theaitetos , be¬
hält aber das Gegensatzpaar des Theodoros bei . Dadurch vermischen sich diese drei
Wörter in ihrer Bedeutung . Allmählich setzt sich jedoch bei den griechischen Mathe¬
matikern üLoyoq zur Bezeichnung irrationaler Größen durch .

Boethius (um 480 - 524?) übersetzt avppczpoq mit commensurabilis , der römische
Staatsmann und Gelehrte Cassiodorus (um 490- um 583) , der ebenso wie Boethius in
den Diensten Theoderichs des Grossen , des Ostgotenkönigs , stand , übersetzt das
Gegensatzpaar mit rationalis - irrationalis , womit wir bei unseren Fachwörtern sind .
Gerhard von Cremona (1114- 1187) benützt sie , als er den Euklid -Kommentar des
al -Nayrizi (t um 922) übersetzt . In Michael Stifels (1487 ?- 1567 ) Arithmetica integra
von 1544 sind sie feste Fachausdrücke . Das Wort irrational hatte aber lange Zeit
noch einen interessanten Konkurrenten .
Das griechische otLoyoq (älogos) = sprachlos , unaussprechbar wird bei al -Charizmi
(um 780 - nach 847) und anderen arabischen Mathematikern unerklärlicherweise
durch das arabische Wort asamm wiedergegeben , das nicht sprachlos , sondern taub
bedeutet . Als Gerhard von Cremona den Euklid -Kommentar des al -Bagdadi (um
1100 ) , den er dem des al -Nayrizi beifügt , und die Algebra des al -Charizmi übersetzt ,
wählt er für asamm die wortgetreue Entsprechung , nämlich surdus , das dann auch
Leonardo von Pisa (um 1170- nach 1240 ) gerne verwendet . Michael Stifel über¬
nimmt es und verdeutscht die numeri surdi gar zu surdische Zahlen \ Bis ins 18 . Jh . bleibt
surdus als mathematisches Fachwort lebendig . Im Englischen ist heute noch surd num -
ber als Fachbegriff für Irrationalzahl gebräuchlich .

Bei dieser Gelegenheit können wir dir jetzt auch den mathematischen Ursprung des
Worts Binomerklären . Die schon bei Theaitetos vorkommenden Summen a + Yb und
\fa + ]/b , bei denen die Wurzeln keine ganzen Zahlen ergeben , nannte Euklid in Buch
X seiner Elemente sk 8üo övopaxcov (ek dyo onomäton ) = aus zwei Namen , wofür
Gerhard von Cremona in seiner AL -NAYRizi-Übersetzung kurz binomium sagte . In
der weiteren Entwicklung (siehe Algebra 7 , Seite 187) wurde die Bedeutung von Binom
verallgemeinert zu »Summe aus zwei Summanden « .
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2 .5 Wurzelgleichungen

2 .5 . 1 Einfache Wurzelgleichungen

Eine Gleichung , bei welcher die Unbekannte unter einer Wurzel auftritt , be¬
zeichnet man als Wurzelgleichung .

Beispiele:

l ) Vx = 3 2) ^2x - 5 = 7

3) ]/4x + 5 = x + 2 4) ]/x 2 + 2 = 3x

5) }/x — 1 = Vlx -\- 3 6) \/2x + 8 — ]/5 + x = 1

Um eine solche Gleichung lösen zu können muss man zunächst alle Wurzeln ,
welche die Unbekannte enthalten , beseitigen . Dies geschieht durch Quadrie¬
ren der Gleichung . Dabei gilt : Jede Lösung der Ausgangsgleichung erfüllt
auch die durch Quadrieren entstehende Hilfsgleichung .
Denn wenn eine Gleichung 7j (x) — T2 (x) eine Lösung x 1 hat , d . h . , wenn
7i (x i ) = T2 (x i ) gilt , so folgt daraus auch ( 7j (xQ ) 2 = ( ^ (xQ ) 2

; also ist x 1
auch eine Lösung der Gleichung ( 7j (x) )

2 = (J 2 (x)) 2 .
Gehört aber umgekehrt auch jede Lösung der durch Quadrieren gewonnenen
Hilfsgleichung zur Lösungsmenge der Ausgangsgleichung ? Wenn ja , wäre das
Quadrieren eine Äquivalenzumformung . Um dies zu untersuchen betrachten
wir die obigen Beispiele.

1) ]fx = 3 . Durch Quadrieren erhält man x = 9 .
Probe : LS = ]/9 = 3 = RS ; also L = { 9 } .

2) ]/2x — 5 = 7 2x — 5 = 49
x = 27

Probe : LS = ^ 2 - 27 - 5 = j/49 = 7 = RS ; also L = { 27 } .

3) ]/4x 5 ~ x 2 4x 4” 5 = x 2 -f 4x 4- 4
x 2 = 1

Lösungen der Hilfsgleichung : x 1 = 1 ; x 2 = — 1 .

Probe mit x 1 : LS = ]/4 ■ 1 4- 5 = }/9 = 3 ; RS = l4 - 2 = 3 = LS.

Probe mit x2 : LS = l/4 - ( — 1 ) + 5 = j/l = 1 ; RS = - 1 + 2 = 1 = LS.
Ergebnis : L = { 1 ; — 1 } .

4) Vx2 + 2 = 3x => x 2 4- 2 = 9x 2
8x 2 = 2
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Lösungen der Hilfsgleichung : x t = b x i =

Probe mit x t : LS = |/ ® 2 + 2 = RS = 3 • ^ = ^ = LS .

Probe mit x2 : LS = ]/ ( — j ) 2 + 2 = ]/f = f ; RS = 3 • ( — ■j ) = — f =t= LS.

Ergebnis : L = {| } .

5) 1.4 ' - 1 = j/2x + 3 x - 1 = 2x + 3
x = — 4

Probe : LS = V — 4 — 1 , sinnlos ! RS = 4 • ( — 4) + 3 , sinnlos !

Ergebnis : L = { } .

6) l/2x + 8 - J/5 + x = 1
Die Rechnung gestaltet sich einfacher , wenn man vor dem Quadrieren
die Gleichung so umformt , dass eine der beiden Seiten nur aus einer
Wurzel besteht . Man spricht vom Isolieren der Wurzel .

]/2x + 8 - \/5 + x = 1

l4x + 8 = 1 + V5 + x => 2x + 8 = 1 + 2l/5 + x + 5 + x

Da immer noch eine Wurzel vorhanden ist , muss man noch einmal
quadrieren ; zuvor aber wird die Wurzel isoliert .

2x + 8 = 1 + 2l/5 + x + 5 + x

j/5 + x = jx + 1 => 5 + x = jx 2 + x + l
ix 2 = 4

x 2 = 16 .

Die wurzelfreie Hilfsgleichung hat die Lösungen x t = 4 ; x2 = — 4 .

Probe mit x + LS = l/2 • 4 + 8 — ]/5 + 4 = l/l6 — = 1 = RS .

Probe mit x 2 : LS = |/2 • ( — 4) + 8 — j/5 — 4 = l/Ö — l/l = — 1 + RS .
Ergebnis : L = { 4 } .

Bei den ersten drei Beispielen haben die Ausgangsgleichung und die aus
ihr durch Quadrieren gewonnene Hilfsgleichung jeweils dieselbe Lösungs¬
menge , nicht jedoch in den übrigen Beispielen ; dort besitzt die Hilfsgleichung
noch zusätzliche Lösungen ! In Beispiel 4 liegt das daran , dass die beiden
Gleichungen Vx2 + 2 = 3x und 1Fx2 + 2 = — 3x auf dieselbe Hilfsgleichung
x 2 + 2 = 9x 2 führen . In deren Lösungsmenge sind also die Lösungen von
zwei verschiedenen Ausgangsgleichungen enthalten . Entsprechendes gilt auch
im Beispiel 6 (vgl . Aufgabe 67/7) . Dagegen hat die Verschiedenheit der beiden
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Lösungsmengen bei Beispiel 5 eine andere Ursache : Die beim Quadrieren
entstehende Gleichung hat ganz IR als Definitionsmenge und besitzt dort die
Lösung x = — 4 . Die Wurzelgleichung ist jedoch nur auf D = [ 1 ; + co [ defi¬
niert und kann daher nicht — 4 als Lösung haben . Dass — 4 <£ D gilt , zeigt sich
bei der Probe am Auftreten sinnloser Terme.
Beachte also : Das Quadrieren einer Gleichung ist im Allgemeinen keine Äqui¬
valenzumformung . Zwar erfüllt jede Lösung der Ausgangsgleichung auch die
Hilfsgleichung , es kommt aber vor , dass die Hilfsgleichung noch zusätzliche
Lösungen besitzt . Das Quadrieren kann also eine »Gewinnumformung« sein.
Mit anderen Worten : Die Lösungsmenge der Ausgangsgleichung ist eine echte
oder unechte Teilmenge der Lösungsmenge der durch Quadrieren entstande¬
nen neuen Gleichung . Nachdem man deren Lösungen bestimmt hat , muss
man prüfen , ob sie auch der Ausgangsgleichung genügen . Das geschieht im
Allgemeinen durch eine Probe .
Es gibt allerdings einen einfachen Typ von Wurzelgleichungen , bei welchem das
Quadrieren die Lösungsmenge nicht ändert . Das sind Gleichungen der Form
VT(x) = c mit c ^ O (vgl . Beispiel 1) und 2)) . Durch Quadrieren entsteht nämlich die
Gleichung T (x) = c 2 mit c 2 jg 0 . Wenn x t eine Lösung dieser Gleichung ist , gilt
T(x v) = c 2

, also T (x x) S: 0 . Man kann daher auf beiden Seiten die Wurzel ziehen und
erhält ]/ T(x r ) = \ c | , also , wegen c ^ 0,1/ T(x t ) = c , sodass auch die Ausgangsglei¬
chung löst . Bei solchen Wurzelgleichungen kann man daher auf die Probe verzichten .

Aufgaben
1 . a) -c<NII + x = (1 c) l/2x + 3 - 1 = 0

d) ]/3x + 7 + 10 = 0 e) 1/8 — 3x = l/l4 f) ]/lx + 3 + 21/7 = 5

2 . a) |/2x “b 1 — X ~b 1 b) 3x + 2 — |/l2x + 5

c) 1/3 - 4* = 2* - 1 d) 1 + l/5x - 1 = x + 3,5

e) Ix = l/28x + 13 — 2 f) 4x + 1/25 - 16x - 2 = 0

3 . a) ]/4 3x = 3x + 2 b) x — 1 = j/l — 3x

c) l/l5x + 25 = 2x + 5 d) 2x = l/9 — 2x + 3

e) 4x = ]/ x + 5 + \ f » l/8x + 3 - 6x - 1/3 = 0

4 . a) ]/4x 2 - 7 = 3 b) 1/25 - x 2 = 6

c) V \ 1 - 2x 2 = 3 d) l/5x 2 — 1 = x

e) V6x 2 + 50 + 2 ]/2x = 0 f > l/5 + 3x 2 = xl/3

5 . a) 1/2* + 5 = 1/3 * + 3 b) l/x - 8 = 1/4 - 2x

c) 1/ 3 * + io = y x + 6 d) l/x 2 + 7 = l/2x 2 - 2

e) }J4x 2 + 9 = l/5x 2 + u f) l/6x 2 + 5 = 1/5 - 3x
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6 . a)
x

2.x "h 5
x — 1

2x + 2
b)

13 - x
3x + 1

x - 5
1 — x

/ 2 — x / x + 1
/ 3 + x / 3x + 2

d)
5x — 14
7 — 6x

4x + 6
8x ^ 73

7 . Bestimme die Lösungsmengen der folgenden drei Gleichungen und ver¬
gleiche die Lösungswege :

j/x 2 + 3x = 1 + l/x 2 + x ,
l/x 2 + 3x = — 1 + ]/x 2 + x

• 8 . a) l/x + 1 = 1 + l/x — 4

c) l/x + 1 = 3 + l/x — 5

e) l/x 2 + 15 = 5 — l/x 2 + 10

• 9 . a) l/x 2 + x = 1 + l/x 2 — x

c) l/2x 2 + x + l/2x 2 — x = 5

10. a) l/x 2 + 4x + 5 = 5 — ]/x 2 — 6x

l/x 2 + 3x = 1 — l/x 2 + x und

b) l/x - 3 - 3 = l/x - 12

d) l/x 2 + T + 2 = j/x 2 4- 17

f ) 1/12 - x 2 - 3 = ]/3 - x 2

b) l/x 2 — x = l/x 2 + x — l/2

d) l/2x 2 + x — l/2x 2 — x = 5

b) l/x 2 + 4x + 6 + l/x 2 — 2x = 3

* 11 . Am 2 . Juni 1461 schreibt der Benediktiner Frater Fridericus , eigentlich
Friedrich Amann , (f 1465) im Kloster St . Emmeram zu Regensburg die
erste Algebra in deutscher Sprache nieder , die sog . deutsche Algebra aus
dem Codex latinus monacensis 14908, und rechnet dabei die folgende von
al -Charizmi stammende Aufgabe vor (sie steht in Abbildung 68 . 1 ,
4 . Zeile von unten links bis 1 . Zeile oben rechts ) :
Gib mir ain censum vnd zuech dar von sin wurcz vnd von dem daz vber
belyb an dem censu zuech och vß dye wurcz dye czwo wurcz tue zesamen
daz 2 zal dar auß werden .

*
* census ist die wortgetreue lateinische Übersetzung des arabischen JL , mal . das Vermögen bedeutet . Meist

wird unter census das Quadrat der Unbekannten verstanden . In dieser Aufgabe zeigt sich aber , dass al -
Charizmi mit mal nicht immer das Quadrat , sondern gelegentlich die Unbekannte selbst bezeichnet . (Vgl .
auch die Fußnote zu Aufgabe 94/11 i) . Andernfalls würde die Aufgabe unnötig schwer .
»Dass >2 zal<daraus werden « , heißt bei al -Charizmi , »dass >2 Dirhem <daraus werden « . Al -Charizmi hat von
den Indern die Gewohnheit übernommen , reine Zahlen durch das Wort Dirhem zu kennzeichnen - so hießen
die von den Kalifen geprägten Silbermünzen (3,98 g) . Aryabhata (476- ? n . Chr .) nämlich hatte bekannten
Größen das Wort rupaka ( = mit Zeichen versehene Münze ) beigefügt , das bald durch ru abgekürzt wurde . Im

europäischen Mittelalter wurde al -Charizmis Dirhem durch drachme oder auch durch dragma wiedergege¬
ben , was in deutschen Handschriften mit ^ einem rfmit Schnörkel , ^ oder auch jpabgekürzt wurde . Schließ¬
lich wurden dragma und numerus synonym gebraucht . Letzteres übersetzt der Verfasser der deutschen Algebra
mit zal . Michael Stifel (14877- 1567) war der erste , der im Druck solche Zeichen wegließ und nur mehr die
Zahl alleine schrieb . - Das Wort dirhem ist eine Arabisierung des griechischen Worts öpaxpf | (drachme ) , dem
Namen einer alten Gewichts - und Rechnungseinheit . Man vermutet , dass dieses Wort vom Verbum öpaacreo -
9ai (drässesthai ) = fassen , umfassen abgeleitet wurde , weil man tatsächlich mit einer Hand sechs ößcTicncoi
(obeliskoi ) = Spießchen umfassen konnte , deren Gewicht eine Drachme ausmachte . Später nannte man ein
solches Spießchen ößo/ .ö^ (obolös ) ; es wog in Attika 0,728 g.
Bei Gerhard von Cremona (1114 - 1187) lautet die Aufgabe so : »Est census de quo radicem suam proieci
et addidi radici radicem eius quod remansit , et quod provenit fuit due dragme . Ergo hec radix census et
radix eius quod remansit fuit equale duabus dragmis .«
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Abb . 68 . 1 Folium 133v und 134r der 3 -seitigen deutschen Algebra , geschrieben am
Tag des hl . Erasmus ( = 2 . Juni ) des Jahres 1461 , in der Bruchstücke und eine einzige
Aufgabe aus al -Charizmis al-kitab al-muchtasar fi hisab al-dschabr wa - ’l-muqabala
auf Deutsch wiedergegeben sind . Der Text beginnt so : Machmet in dem puech algebra
vnd almalcobula hat gepruchet dise wort Census • radix ■numerus . *
Sammelhandschrift Codex latinus monacensis 14908 , Größe des Schriftblocks
9,7 cm x 5 ; 8 cm.

* *2 .5 .2 Wurzelgleichungen mit Parametern

Das Lösen von Wurzelgleichungen , in denen außer der Unbekannten auch
noch Parameter Vorkommen , erfordert im Allgemeinen Fallunterscheidun¬
gen . Bei der Untersuchung , ob eine Lösung der durch Quadrieren erhaltenen
Hilfsgleichung auch die Ausgangsgleichung erfüllt , ist vor allem auch zu be¬
achten , dass die auftretenden Radikanden nicht negativ sein dürfen .

Beispiel 1 :

]/x + a 2 = VlxTT => x + a 2 = 2x + 1
x = a 2 — 1

Probe : LS = ]/a 2 — 1 + a 2 = j/2 a 2 — 1

RS = ]/2 (a 2 - l ) + l = 1/2a 2 - 1

* Der gesamte von Frater Fridericus Amann geschriebene Text ist im Lösungsheft abgedruckt . Vergleiche
auch die Übersetzung Gerhard von Cremonas in unserer Algebra 7, Seite 10, und im zugehörigen Lö¬
sungsheft , Seite 4f .



2 . 5 Wurzelgleichungen 69

LS und RS sind jedoch nur definiert , wenn 2a 2 — 1 ^ 0 gilt , also
für \ a \ ^ Wl .

Ergebnis : x = a 2 — 1 , falls \ a \ ^ \ sonst L = { } .

Beispiel 2:

]/x + 8 a = 1fx + 2a => x + 8a = x + 4a ]/x + 4a 2

a ]/x = 2a — a2

Die Auflösung der letzten Gleichung nach ]fx ist nur für 0 möglich .
Also Fallunterscheidung :

a - 1= 0

0 • ]/x = 0 ; also L = [R/ , was auch für die Ausgangsgleichung
gilt .

]/x — 2 — a => x = (2 — ö)2

Probe : LS = V(2 — fl) 2 + 8fl = ]/4 + 4a + a 2 — ]/ (2 + fl) 2 — 12 + fl | —
f 2 + fl für fl ^ — 2

[ — (2 + a) für fl < — 2

RS = ]/ (2 - a) 2 + 2 a = 12 - a | + 2a =
2 + a für fl 5S 2
2 + 3a für a > 2

Für a 4= 0 lautet somit das Ergebnis :

L = {(2 — a) 2
} für 0 < | a | ^ 2 ; L = { } für | a \ > 2 .

Am Lösungsbaum lassen sich die verschiedenen Fälle übersichtlich dar¬
stellen (Abbildung 69 . 1 ) :

x = (2 — a)

Abb . 69 . 1 Lösungsbaum zu Beispiel 2
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Aufgaben
1 . Löse die folgenden Parametergleichungen :

a) ]/x + a 2 = a + 1 b) ]/x + a = a — 1

c) vx + a = V5a — x d) ]/x + a = ]/a 2 — x

e) ]/x 2 + a = ]/a — x f) Vx2 — a 2 — x + a

2 . a) Zeige, dass die Gleichung Vx + a + Vx — a = 2 a genau dann lösbar
ist , wenn die Bedingung a = 0 v a ^ 0,5 erfüllt ist . Wie lautet jeweils
die Lösung ?

b) Für welche Werte von a ist die Gleichung vx + a — \fx — a = 2a
lösbar und wie lautet die Lösung ?

Zu den Aufgaben 3 bis 5 :

Löse die Gleichung und zeichne einen Lösungsbaum .

3 . a) x 2 + 1 +
1

a a

, 4 . a) Vax 3 + 3 = j/3 + a 3 x

15. a) Vx + 2 a 2 = a + Vx + a2

b) x -\— —
a

1 1
* -

2 = -
a a

b) Vx2 + a — Vax 2 — 2 = 0

b) Vax 2 + x = Vax 2 — x + 1

^
yi1“ fjr*

s -f-

.y -
; i

7 ^
! •» ! 7

Abb . 70 . 1 Ausschnitt aus folium 64v des Codex Leipzig 1696 , vermutlich aus dem
Ende des 15 . Jh .s
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