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Ein Bote bringt dem Schatzmeister des Perserkénigs DARIUS einen Sack Geldes von
tributpflichtigen Volkern. Der Schatzmeister hilt in seiner Linken eine Doppeltafel,
auf der wir TAAANTA H (= 100 Talente) entziffern kénnen. Auf ihr sind die Pos-
ten aufgeschrieben, die er nacheinander mit Hilfe von Rechensteinchen (= yngot
[pséphoi]) auf den Rechentisch (= afaxiov [abakion]) tibertragt. Dort lesen wir

M‘flﬁl&fg( T . also 1731 [Drachmen] 4 [oboloi]. Bei M = 10000, < = 3 Obolos und
T = 1Obolos liegen keine Steinchen. 1 Talent = 60 Minen = 6000 Drach-

men = 36000 Obolen. (Siche auch FuBnote auf Seite 67) — Nachzeichnung von der
rotfigurigen Dariusvase von Abbildung 32.1.




Abb. 32.1 Die Dariusvase aus dem Nationalmuseum von Neapel, Hohe 1,3 m, groBter

Umfang 2 m, vermutlich aus dem 4. Jh. v. Chr., gefunden in Canosa, dem alten Canu-

sium, in Apulien. In der oberen Reihe des Hauptkérpers nimmt Zeus mit anderen

Gottern Griechenland in Schutz. In der Mitte sitzt DARIUS 1. (reg. 522-486) auf dem

Thron, vor ihm steht ein Perser, der vor dem Krieg zu warnen scheint. Darunter die
Schatzmeisterszene von Abbildung 31.1.




2 Die Quadratwurzel

2.1 Definition der Quadratwurzel

Besitzt die in Q unlésbare Gleichung x? = 2 in der uns nun zur Verfiigung
stehenden groBeren Zahlenmenge R eine Losung?

Falls es eine positive Losung x, dieser Gleichung gibt, muss fiir sie gelten
(vgl. Seite 11):

g, =22 also x; e[1;2]
14 <x, =1,5 also x,e[1.4:1,5]
1,41 <x, <142 also x;,e[1,41;1,42]
1,414 < x, < 1,415 also x,e[1,414;1,415]

1,4142 < x, < 1,4143 also x,e[1,4142;1,4143] usw.

Man erhilt so eine Intervallschachtelung, welche die Zahl x, festlegt. Um zu
priifen, ob diese Zahl wirklich die Gleichung x* = 2 16st, berechnen wir die
entsprechende Intervallschachtelung fiir x7:

[1%22], [1,4% 1,52, [1,412%;1,42%], [1,4142;1,415%], ...

Da die Intervalle fiir x, gerade so gewihlt wurden, dass die Quadrate der
linken Grenzen kleiner als 2, die der rechten Grenzen grofer als 2 sind, liegt die
Zahl 2 in jedem Intervall der Schachtelung fiir x{. Diese stellt somit die Zahl 2
dar und es gilt tatsdchlich x7 = 2.

Gibt es noch andere Losungen der Gleichung x? = 2? Um dies zu entschei-
den nehmen wir an, x, sei eine von x, verschiedene Losung. Aus x; = 2 und
x3 = 2 folgt x{ — x3 = 0 und damit (x, — x,)(x, + x,) = 0. Da nach unserer
Annahme der 1. Faktor des links stehenden Produktes von null verschieden
ist, erhalten wir x, + x, = 0, also x, = — x,;. Damit ist gezeigt, dass auller x,
nur noch die Gegenzahl — x, als Losung in Frage kommt. Da tatsachlich
(—x,)* = xi =2 gilt, ist L = {x,; —x,} die Losungsmenge der Gleichung.
Ebenso wie bei x* = 2 lisst sich fiir jede Gleichung der Form x* = amita > 0
zeigen, dass sie in der Menge R der reellen Zahlen genau eine positive Losung
x, besitzt. Dazu kommt als negative Losung die Zahl x, = — x,. Die positive
Losung von x? = q, also diejenige positive Zahl, deren Quadrat gleich a 1st,
wird Quadratwurzel von a genannt und mit |/ @ bezeichnet. Auch im Fall der
Gleichung x* = 0 wird fur die einzige Losung x = 0 die Wurzelschreibweise
noch zugelassen, indem man vereinbart, dass |/ 0 = 0 gelten soll. Das ergibt die

Definition 33.1: Der Term }/¢ mit a = 0 bedeutet diejenige nicht negative
Zahl, deren Quadrat den Wert a hat.

Beachte also: [ ist nur fiir a = 0 definiert und es gilt

Va=0 und f l-"a-.]z —a.
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Beispiele:
d=20)635 =15; )k =q

|

ta ]
|

= 1,4142... (irrational); /10 = 3.1622 ... (irrational)

Das Zeichen L heiBt Wurzelzeichen; der unter dem Wurzelzeichen stehende
Term hei3t Radikand. Statt »die Wurzel aus a berechnen« sagt man auch »aus

a die Wurzel ziehen« oder »a radizieren«. |/ @ ist meist eine irrationale Zahl; nur
wenn « das Quadrat einer rationalen Zahl ist, »geht die Wurzel auf«, d. h. ist

auch |/a eine rationale Zahl. .
Die Gleichung x> = @ mit a > 0 hat die Zahl x; = |/a als positive Losung.
Fiir die negative Losung x, = — x; gilt daher: x, = —Va.

Satz 34.1: Die Gleichung x? = a mit a > 0 hat die Losungen
x; =Vaund x, = —Va.

#**7ur Geschichte von »Wurzel« und Wurzelzeichen

Stellt man sich eine Zahl als MaBzahl fiir den Inhalt eines Quadrats vor, so gibt die
Quadratwurzel aus dieser Zahl die Lange der Quadratseite an. Diese Vorstellung liegt
dem Wort nhevpa (pleurd) = Seite zugrunde, womit die Griechen, so z. B. EUKLID (um
300 v.Chr.) in Buch X seiner Elemente, die Quadratwurzel bezeichneten. Durch das
entsprechende lateinische Wort /atus driickten die Agrimensoren, die romischen Feld-
messer, die Quadratwurzel aus. NIKOMACHOS (um 160 n. Chr.) verwendet das griechi-
sche Wort pila (rhiza), das urspriinglich Wurzel einer Pflanze, im iibertragenen Sinn
Grundlage und Ursprung bedeutet, im mathematischen Sinn von Ausgangszahl.
Wortgetreu tibersetzt BOETHIUS (um 480—5247) es mit radix ins Lateinische.

Ob der Inder ARYABHATA I (um 476-? n.Chr.) durch das griechische piCa angeregt
wurde mit dem indischen Wort mizla, das ebenfalls Wurzel einer Pflanze bedeutet, die
Quadratwurzel aus einer Zahl zu bezeichnen, wird wohl immer ungeklirt bleiben miis-
sen. Interessanterweise iibernehmen die Araber, so auch AL-CHARIZMI (um 780 —nach
847) einerseits das griechische mAgvpd (pleura), wenn sie z. B. in ihren geometrischen
Beweisen die Quadratwurzel als Seite eines Quadrats darstellen — sie nennen sie dann
auch dil, das ist ihr Wort fiir Seite —, andererseits das indische miila, dem ihr arabisches
Wort &= (dschidr) entspricht, wenn sie die Quadratwurzel als Zahl auffassen. Leider
verwenden sie aber dschidr auch zur Bezeichnung der Unbekannten selbst, was aller-
hand Verwirrung stiftete und immer noch stiften kann. Denn noch heute verwendet
man in so manchen Lehrbiichern das Wort Wurzel im Sinne von »Quadratwurzel« und
im Sinne von »Losung einer Gleichung«. Wir wollen uns diesem Brauch aber nicht
anschliefien.

GERHARD VON CREMONA (1114-1187), der neben anderen arabischen Abhandlungen
auch das Werk ar-Cuarizmis iibersetzte, wahlte fiir dschidr die wortgetreue Entspre-
.chung radix, das wiederum folgerichtig mit Wurzel ins Deutsche libertragen wurde, so
um 1400 in der Geometria Culmensis und 1461 in der Deutschen Algebra, wo man liest
»wRadix ist die wurcz der zal« (Abbildung 68.1, Zeile 6 von folio 133v). In derselben
Handschrift wird das Wurzelziehen, das mittelalterliche radicem extrahere des JORDA-
NUS NEMORARIUS (T 1237) und des JOHANNES DE SAcro Bosco (1200-1256), mit »zuech
ausz dye wurcz« eingedeutscht. Das Fachwort radizieren erscheint erst 1836 in An-
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angsgriinde der reinen Mathematik fiir den Schulunterricht von Carl KoppE (1803 bis
Jangsg ;

1874), der dort auch das Wort Radikand fiir die »zu radizierende Zahl« pragt.

Ein besonderes Zeichen fiir die Quadratwurzel, nidmlich [, tritt zum ersten Mal bei
den Agyptern auf, z. B. im Papyrus Moskau (19.Jh. v.Chr.). Die Inder kiirzen ihr mula
einfach durch die Silbe mu ab. Die Araber kehren leider zu der vollen Wortalgebra
zuriick, sodass es erst im mittelalterlichen Italien wieder zu einem Zeichen fir die
Quadratwurzel kommt. Man kiirzt das Wort radix durch ein durchgestrichenes R, also
durch R ab, zum ersten Mal belegt bei LEONARDO VON P1sa (um 1170-nach 1240) in
seiner Practica geometriae von 1220. Geronimo CARDANO (1501-1576) und Niccolo
TARTAGLIA (1499—1557) verwenden es, in Deutschland Johannes WIDMANN VON EGER
(um 1460— nach 1500). Frangois VIETE (1540-1603) beniitzt stattdessen, seinem Lands-
mann Petrus Ramus (1515-1572) folgend, /., den Anfangsbuchstaben von latus.
Das heute tibliche Wurzelzeichen stammt aus Deutschland. Im vor 1486 geschriebenen
Algorithmus de Surdis des Codex Dresden C80 setzt der unbekannte Verfasser einen
Punkt in die Mitte vor die Zahl und erklirt: »In extraccione radicis quadrati alicuius
numeri preponatur numero unus punctus« (Zum Auszichen der Quadratwurzel aus
einer Zahl setzt man der Zahl einen Punkt voran). Bald wird dieser viereckig mit
Aufstrich, so im Codex Leipzig 1696 (vermutlich Ende des 15.Jh.s) und auch in der
um 1517 von Adam Ries (1492-1559) niedergeschriecbenen Algebra des INITIUS
ALGEBRAS (Codex Dresden C 349), dann erstmals im Druck 1525 in der Coff Christoff
RupoLFFs (um 1500—vor 1543), auch dort noch gelesen als »Punkt« (dies sogar noch
1551 in Johann ScHEYBLs [1494-1570] Algebra). In Michael StiFeLs (14877-1567)
Arithmetica integra — »Die ganze Arithmetik« — verlangert sich 1544 der Punkt zum
Abwirtsstrich (der in den Flgu:m schon das Ansatzstrichlein hat): Der Wurzelhaken
war geboren.

Es blieb aber bei allen Wurzelzeichen das Problem, ob z. B. |/a + b die Quadratwurzel
aus der Summe a+ b oder die Summe aus dem 1.Summanden /a und dem 2. Summan-
den b bedeuten 90]] Nahezu jeder Mathematiker hatte dafiir eigene Vorschriften. So
erscheinen bei dmcr(rdewnhul 1556 zum ersten Mal runde Klammern im Druck: im
General trattato di numeri, et misure —»Allgemeine Abhandlung tiber Zahlen und Ma-

Be« — des Niccolo TARTAGLIA steht R V. (R 24 piup v2) fUr |/ V24 + /12 . Dabei be-
deutet rrv. radix universalis = Gesamtwurzel, die 1572 Raffaele BoMBELLI (1526 bis
1572) in seiner L 'algebra als radix legata = gebundene Wurzel bezeichnet und durch
R.L ausdriickt. Das Ende der Bindung kennzeichnet ein etwas tiefer gestelltes gespie-
geltes L, also I, sodass bei ihm 14 + 6+ 2alsR.q.L4.p.R.q.6 | p.2 erscheint, wobel
R.q. radix quadrata bedeutet. Aus L und | diirfte unsere eckige Klammer entstanden
sein, In seinem Manuskript driickte BomBELLI 1557/60 die Bindung noch so wie andere
Mathematiker durch Unterstreichen aus. Durchgesetzt hat sich von all den Mé&glich-
keiten aber die Schreibweise von René DESCARTES (1596—1650) aus seiner La Géométrie
von 1637: Er fasste die zusammengehérigen Glieder durch Uberstreichen zusammen,
schrieb also |/ a + b. Verbindet man diesen Querstrich mit dem Wurzelhaken, so hat
man unser Wurzelzeichen, das sich aber sehr langsam verbreitete. SchlieBlich setzte
man den Querstrich auch da, wo er keinerlei Bedeutung hatte; denn bei
Va+ b war es ja elgt.nt lich nicht nétig, Va + b zu schreiben.

LEONARDO VON Pisa BX  Niccolo l:\RIJ\(TI IA R Adam Ries /
WIDMANN vON EGEr B Raffaele BomserLr #/27 ™Y Christoff RupoLrr /
Geronimo CARDANO R Dresdener Codex -2 4= /25  Michael STIFEL

\hb 35.1 \'Cl‘\ﬁ_hlbdenﬂ, Wurzelzeichen. W’L},Ln des Codex Leipzig 1696, s. -’\b!n 70.
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Aufgaben
. Gib die folgenden Zahlen in wurzelfreier Schreibweise an:
a) 1/1 b) 1/16 ¢) |/81 d) 1/36
e) |/ 100 f) /2500 g) L_.f’490000 h) |/ 1000000
) /196 k) /169 D /256 m) |/361
2. Ziehe die Wurzeln:
) /2 WY 9 VsE d) /56860
& /225 0 /529 g ]/0,0289 h) 1/0,000625
3. Berechne und vergleiche:

a) [,:*"'9 +16 und I/ /9 4 lx 16
h) /169 —25 und /169 — /25

Lrsm +49 und /576 + /49
d) /1681 — 1600 und /1681 — ;-""1600
e |/ 1+4+4 und If] +]/4+1
f) /49 +16—1 und L49¢|,16 /1
g) ifm und /196 — /36 +|/9
h) }/961 —25—36 und ]/961 —]/25—/36
Berechne:
a) |/1+3 b) |/1+3+5 ) Y1+3+5+7
d) /1+3+5+7+9 e [/1+3+5+7+9+11

. Beispiel: |/]/25 — 1 = |_..f5 —1= l4 = 2. Verfahre ebenso:

a) /)/16 b) |/)/81 ¢) |/)/625 d) V’l...f"if_ioim

e V1+1/9 0 /4 —_1}’"2'5" g) ;__,f[__.?-"ﬁﬁf)"_éi h) l L" 900 + &

Welche Zahlen diirfen bei den folgenden Wurzeltermen fiir die Variable
eingesetzt werden? Gib jeweils dlL Definitionsmenge des Terms an.

a) |/ 2a b) L-——u c) I;l—.—u d) |/ (S

e) /2|x| f) |/=3x| g) 1,-"’;-3 F 1 h) |/x% 1

) |/1-—x? k) 1/1x]—3 1) m) |/
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. Vereinfache:

+V8)(2-16)

a) (1+1/2)> b (3-V3)> o (2 v
(B3p—V3p)(V3p + 3p)

d (Va—2b)* e (BVx+5y)* D

. Fasse zusammen:

a) 3+5/2—7V2+15 b 2a—9a—5Va+12a
¢) —111/5+8)/3+2—6)/3+7V5

d) 5(1—V7+2V6)—3(3V6+5/T7—5)

e) (4/13 —15) (1 +81/13) —29(13 — 4)/13)

) 3m—Vn)>—@m+Vn)*+12ml/n

Bestimme die Losungsmenge der Gleichung:

a) x2=1225 b) 5x*—320=0 ¢) 16(x*+9) = 144
d) 2x*—4=0 e) 17x% + 61 = 350 f) 121 =49 —4x*

g) 0,2x2—=5=0 h) 3x2—2=3x2+1 i) 0,15=%x*4 x*

k) x2—)/3 =0 D x2+V5=V7 m) x*+)/5—/3=0
Welche Gleichung der Form x* = g hat die angegebene Zahl als Losung?

Wie lautet die Losungsmenge?

D —1 BT 90 & —Vi2 o~ D V05—V

/=

I3

. Wie lang ist die Diagonale eines Quadrats mit dem Flacheninhalt

a) 1m2, b) 8cm?, ¢) 9dm?, d) 450 mm?, e) 1,62a, f) 3km??

Bekanntlich ist /2 eine irrationale Zahl. Stelle bei den folgenden Termen
fest, ob sie rationale oder irrationale Zahlen darstellen.
@D 142 Wi ) 212 d (1+V2)+ (1 —-V2)

0 (/22 0 V2(1-V2) o (1+V2* b (1 +V2)(1-V2)

Bestimme die Losungsmenge:
e) 2V/x+5=3Vx+2 B 11—l =3 =l

g) 23Vx+7)=94+2Vx+5 h) (/x—17)-5—2Vx =3(11 +Vx)
i) 7—(@2Vx —7)-3=2Vx+4(7-2Vx)
Bei einem Fotoapparat wird bekanntlich das zur Bilderzeugung verwen-

dete Lichtbiindel durch eine meist kreisformige Blende begrenzt. Der
Blendendurchmesser d kann verdndert werden, die jeweilige Einstellung

wird durch die Blendenzahl % beschrieben; dabei bedeutet f/ die Brenn-
weite des Objektivs. ‘

a) Wie groB ist bei einem Apparat mit f = 50 mm der Blendendurchmes-
ser, wenn »Blende 8«, also die Blendenzahl 8, eingestellt ist?
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b) Auf der Objektivfassung eines bestimmten Fotoapparats sind sieben
Blendenzahlen angegeben, die kleinste davon heillt 2. Die iibrigen
Blendenzahlen sind so gewiihlt, dass beim Ubergang von einer zur
néchsten sich jeweils die Blendenfliche halbiert. Berechne die iibrigen
Blendenzahlen und gib die ersten beiden Ziffern ihrer Dezimalentwick-
lung an. (Damit erhélt man die auf der Blendenskala angegebenen
Zahlen!)

Hinweis: Beachte, dass die Blendenfliche zu d* proportional ist.

2.2 Berechnung von Quadratwurzeln

Wie findet man zu einer Zahl ¢ > 0 den Wert von [/ a ?

Bei den bisherigen Beispielen war das recht einfach; man konnte meist schnell
eine positive Zahl angeben, deren Quadrat die Zahl @ ergab. Schwieriger wird
diese Aufgabe schon, wenn a eine groBe, uns nicht geldufige Quadratzahl ist.

Wie findet man z. B., dass /33489 bzw. 1/157,7536 den Wert 187 bzw. 12,56
hat? Aber auch das sind noch Sonderfille. Im Allgemeinen ist ja der Radikand
a nicht das Quadrat einer rationalen Zahl; [/« ist dann irrational, und man
muss sich damit begntigen, einen hinreichend genauen Nidherungswert zu
bestimmen.

Dir 1st sicher schon bekannt, dass man solche Aufgaben bequem mit dem
Taschenrechner I6sen kann. Man muss lediglich den Radikanden « eingeben
und die Wurzeltaste {manchmal zwel Tasten) driicken und schon wird ein
(Nédherungs-)Wert von )/ a angezeigt. Wie ist das moglich? Sind die Wurzel-
werte schon im Taschenrechner gespeichert und miissen nur abgerufen wer-
den? Sicherlich nicht, wie du dir leicht klarmachen kannst! Die gesuchte Wur-
zel muss vielmehr jedes Mal neu berechnet werden. Dazu dient ein sehr schnell
ablaufendes Rechenprogramm, das mit dem Driicken der Wurzeltaste gestar-
tet wird. Fur das Berechnen von Quadratwurzeln gibt es verschiedene Verfah-
ren. Im Folgenden sollst du einige kennen lernen.

2.2.1 Intervallschachtelungsverfahren

Bei diesem schon bekannten Verfahren schlie§t man den Wurzelwert zwischen
zwel aufeinander folgende ganze Zahlen ein. Aus diesem Anfangsintervall ge-
winnt man durch Anwendung der Zehnteilungsmethode eine Intervallschach-
telung fir die gesuchte Wurzel. Der Rechenaufwand ist meist ziemlich groB.

2.2.2 Tterationsverfahren

Um zu einer Zahl ¢ > 0 die Quadratwurzel zu berechnen, beginnen wir mit
einem Schéilxwu'l Xp = 0 Dieser ist zu groB3 bzw. zu klein bzw. richtig, wenn
x{ > abzw. x{ < a bzw. x{ = a gilt. Den letzten Fall, in welchem die Bestim-

mung von Va zufallig schon gelungen ist, konnen wir im Folgenden auBer Acht
lassen.
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- _a > a ;
Wegen x? > a < x; > — bzw. x{ < a < x; < — kann man auch durch die
X4 Xq
. a - AL
Berechnung des Quotienten — entscheiden, ob der Schitzwert zu groB3 oder zu
X4
klein ist. In jedem Fall liegt aber der gesuchte Wurzelwert zwischen den Zahlen
a = - - ; ;
x, und —. Als néichsten Ndherungswert x, wihlen wir daher eine Zahl aus
X
1
diesem Intervall, und zwar den einfach zu berechnenden Mittelwert von x;,

a a
und —, also x, = [ x; +— ] : 2.

X X3
b
Ausgehend von x, kann man nun nach derselben Methode einen Néaherungs-
wert x5, dann x,, X5, ... berechnen. Allgemein erhalten wir den (n + 1)ten

Naherungswert x, ., aus x, nach der Formel

Xovq =Xt :2, nelN. (I)

Beispiel 1:
Gesucht ist |,,-"'341.
Wir beginnen (z. B.!) mit dem Schitzwert x; = 30.
Durch Anwendung von (I) erhilt man*:

% =060+%4h:2 < x = 29,016666
und weiter x; = 29,000004; x, = 29; x5 = 29;

Da 292 = 841, hat man mit x, bereits den richtigen Wert der Wurzel
gefunden!

Beispiel 2:

Gesucht ist |/6.

Mit dem Schitzwert x, = 2 erhilt man* nach ()

X, = 2,5; x5 =2,45; x, =2,4494897; x5 = x4 ().
Sobald zwei aufeinander folgende Niherungswerte iibereinstimmen, kann
man die Rechnung abbrechen; der nichste Schritt wire nur eine Wiederho-
lung des vorausgehenden und miisste wieder dasselbe Ergebnis liefern. Dass
dieses Ergebnis die gesuchte Wurzel ist, lisst sich leicht begriinden:
Mit x, . ; = x, folgt aus (I)

a
=i —|ia |25
X5
2 2 7
2% =% +d | —x;

X = d.

Da x, > 0 gilt, ist somit x, = |/ a.

* Die angegebenen Zahlenwerte wurden auf einem Taschenrechner mit achtstelliger Anzeige berechnet.
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Natiirlich gilt in Beispiel 2 die Gleichung xs; = x, nicht exakt, sondern
nur im Rahmen der Anzeigegenauigkeit des verwendeten Taschenrechners.
X4 = 2,4494897 ist deshalb nur der bestmégliche Nidherungswert, der mit die-
sem Rechner fiir die irrationale Zahl [/6 ermittelt werden kann. Dasselbe
Ergebnis erhdlt man, wenn man nach Eingabe von 6 die Wurzeltaste driickt.

Das Besondere an dem hier angewandten Rechenverfahren besteht darin, dass
zur Bestimmung der verschiedenen Naherungswerte immer wieder dieselbe
Regel, hier (I), beniitzt wird. Eine solche Berechnungsmethode bezeichnet
man als Iterationsverfahren.*

Ein Iterationsverfahren ist fiir das praktische Rechnen sehr vorteilhaft: Man
kann beim Taschenrechner immer wieder dieselbe Tastenfolge beniitzen. Die
[terationsregel (I) lasst sich, sobald ein Ndherungswert in der Anzeige steht,
z.B. mit folgender Tastenfolge ausfithren:

Croen) @[ @ (s O @2 O

Nach dem zweiten -Befehl wird der neue Nédherungswert angezeigt. Mit
ihm kann man, wie der Pfeil andeutet, das Verfahren wiederholen. Ein Itera-
tionsverfahren ldsst sich vor allem auf einem programmierbaren Rechner sehr
einfach durchfiihren. Die Abbildungen 40.1 und 40.2 zeigen ein Strukto-
gramm und ein Flussdiagramm fur Programme zur Berechnung von |/a nach
dem Iterationsverfahren (I). Bei den Taschenrechnern ist ein entsprechendes
Programm fest eingebaut.

a (Radikand)
o (Genauigkeit)
x (Startwert)

Fingabe: & (Radikand)
¢ (Genauigkeitsschranke)
' x (Startwert)

Solange |x* —a| > & tue

a
yi= (x + ) 22
X

X=1y

Ausgabe: [/a ~ x Va =~y

Abb. 40.1 Struktogramm zum Itera- Abb.40.2 Flussdiagramm fiir das Ite-
tionsverfahren (I) mit der Abbruchbedin-  rationsverfahren (I) mit der Abbruchbe-
gung |x2 —a|Ze dingung |x,,,—x,| < §

* iterare (lat.) = etwas noch einmal tun, wiederholen; iteratio (lat.) = die Wiederholung,
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Das [terationsverfahren (I) lisst sich auch geometrisch veranschaulichen. Wir
zeichnen dazu den Graphen der Iterationsfunktion, das ist in unserem Fall die
3 ; ; a L L i ;
Funktion mit der Gleichung y = (.r 2k ) :2, xeR™. Sie liefert zu jedem

X
Niherungswert x den ndchsten Nédherungswert y; d.h., setzt man x = Xx,, so
gilty = x, , ;. Umdann die Zahl yals x, , , wieder auf der x-Achse anzutragen
verwendet man die Gerade mit der Gleichung y = x. Der auf ihr liegende
Punkt mit der Ordinate y hat auch die Abszisse y, also x, . ; (Abbildung 41.1).

4

~(er8)

Abb.41.1 Graphische Erzeugung von x,,, aus x,
yA

/ T
‘y:[\:(+?j|.2 y=x

Abb.41.2 Graphische Darstellung des Iterationsverfahrens

Der rote Linienzug in Abbildung 41.2 zeigt, dass die Zahlen x,, x, x,, ... sich
von oben rasch der Abszisse des Schnittpunktes S der beiden Graphen nahern.
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Man kann zeigen, dass dies immer so ist (vgl. Aufgaben 44/4 und 45/7). Da S
die Koordinaten (//a|l/a) hat, strebt die Zahlenfolge x,, x5, x,, ... immer
monoton fallend gegen |/a (vgl. Aufgabe 45/5).

**2.2.3 Divisionsverfahren
Es gibt einen interessanten Algorithmus*, bei dem — dhnlich wie beim Intervallschach-
telungsverfahren — die einzelnen Ziffern der Dezimalentwicklung einer Wurzel nach-
einander berechnet werden, wobei aber der wesentliche Schritt bei der Bestimmung
einer Dezimalen im Ausfiihren einer Division besteht.
Zunichst eine einfache Voriiberlegung zur GréfBe von [ a. Es gilt

lsa<100 = 1 = Ia i sl ‘a hat 1 Stelle vor dem Komma
100 < a < 10000 = 10 <}/a <100, d.h., a hat 2 Stellen vor dem Komma

10*<a<10° = 102<Va<103 d.h., Va hat 3 Stellen vor dem Komma

Usw.

Daraus folgt: Die Zahl der Stellen, die bei der Dezimalbruchentwicklung von |/a mit
a > 1 vor dem Komma stehen, ergibt sich, indem man den Radikanden @ vom Komma
aus nach links in Zweiergruppen einteilt.

Beispiele: L,"fi._jﬂ!-G?-.g hat 2 Stellen vor dem Komma.
L;ﬁfm hat 3 Stellen vor dem Komma.

[,-""10%4169.824 hat 3 Stellen vor dem Komma.

Eine entsprechende Regel ldsst sich auch fiir Radikanden zwischen 0 und 1 aufstellen
(Aufgabe 46/10).
Zur Erklarung des Divisionsverfahrens betrachten wir zunichst das einfache

Beispiel 1: Berechnung von |/ 1369
Das Ergebnis ist eine Zahl mit 2 Stellen vor dem Komma, also |/13(69 = _ _
a) Bestimmung der ersten Ziffer
Man sucht die groBte Ziffer, deren Quadrat kleiner oder gleich 13 ist; Ergebnis
3
Begriindung: Der Radikand enthélt 13 Hunderter (1. Zifferngruppe von links),
liegt also zwischen 900 und 1600. Daher muss die Wurzel einen zwischen 30
und 40 hegenden Wert haben.
b) Bestimmung der nichsten Ziffer
Aus dem Ansatz /1369 =30 +r mit 0 <r < 10
folgt 1369 = (30 + r)?
1369 = 900 + 60r + r?
469 = (60 + r)r

* Algorithmus = Rechenverfahren. Das Wort Algorithmus entstand aus algorismus, einer Verballhornung des
Namens aL-CHARIZMI, der in Vergessenheit geraten war, sodass man unter algorismus die Lehre vom Rechnen
verstand. Erst 1849 hat der Ornientalist Joseph-Toussaint REmvaup den Ursprung dieses Wortes erkannt.
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Der ganzzahlige Teil von r ist die gesuchte Einerziffer. Um sie zu bestimmen
bringen wir die letzte Gleichung auf die Form 469 : (60 + r) = r. Da der Divi-
sor 60 + r zwischen 60 und 70 liegt, kann r nur 7 Ganze enthalten; denn
8- 60> 469 und 6 - 70 < 469.

Somit gilt: /1369 = 37, ...

¢) Bestimmung eventueller weiterer Stellen
Aus dem Ansatz V1369 =37 +s mit 0 =s<1

folgt 1369 = (37 + 5)?
1369 = 1369 + 74s + s*
0=(74+5)s

Wegen s = 0 folgt daraus s = 0.

Die hier durchgefithrte Rechnung lésst sich in einer sehr kurzen Niederschrift
darstellen; zu Beginn des Schrittes b sicht sie etwa so aus:

/13169 = 300,
9 (32=9)
469
60 - 3:2=06)

Die drei roten Kistchen miissen nun mit derselben Ziffer besetzt werden! Ein
Schitzwert fiir diese ergibt sich aus der Rechnung 46 : 6 ~ 7. Wegen 67 - 7 = 469
ist 7 die richtige Einerziffer. Die vollstindige Rechnung lautet damat
/1369 = 37,
-9
469
—469 677
0
Da der neue Rest 0 betrdgt, ist die Rechnung beendet.

Solange die bei diesem Divisionsverfahren auftretenden Reste positiv sind, kann man

die Rechnung fortsetzen und wie bei b die niichste Ziffer ermitteln. Dies gilt auch
beim Uberschreiten des Kommas. Dazu das

Beispiel 2: Berechnung von /40,9

Das Ergebnis hat 1 Stelle vor dem Komma: 409 =6, ...

Aus dem Ansatz l-"";-l-(},‘) =6+4+r mit 0=r<l1
folgt 40,9 = 36 + 12r + r*
49=(124r)r

Die gesuchte niichste Ziffer ist nun der ganzzahlige Teil von 10r. Wir fiihren
deshalb ' = 107 ein. Dazu multiplizieren wir beide Faktoren auf der rechten Seite
mit 10, die ganze Gleichung also mit 100:

490 = (1204 )1’
also 490: (120 +r") = r'.




44

2 Die Quadratwurzel

Als ganzzahliger Teil von * ergibt sich daraus nicht 4, sondern 3. Somit gilt:
/40,9 =6,3...

Ganz entsprechend verfihrt man bei der Bestimmung weiterer Ziffern. Die Kurz-
form der Rechnung sieht dann so aus:

/40,9 = 1/ 40,90 0000... = 6.395 ...
—36 (6% = 36)

490

369 1233 (6-2=12)

12100

~11721 1269-9|  (63:2=126=123+3)

679 00

—~63925 12785-5 (639-2 = 1278 = 1269 + 9)

39 75

Man rechnet so lange, bis die gewiinschte Genauigkeit erreicht ist.

** Zur Geschichte

Das angegebene Divisionsverfahren hat 1540 Reinerus GEMmMa Frisius (1508 -1555)
in seiner um 1536 geschriebenen Arithmeticae practicae methodus facilis veroffentlicht.

Aufgaben

1.

[

7

Bei der Berechnung von /31 nach dem Intervallschachtelungsverfahren
erhilt man [5; 6] als erstes und [5,5; 5.6] als zweites Intervall. Muss man
zur Bestimmung des nédchsten Intervalls die Quadrate aller Zwischenwerte
5,515 5,52; ...; 5,59 berechnen? Wie viele Quadrate sind bei geschicktem
Vorgehen hochstens notwendig? Wie hei3t das dritte Intervall fiir [/31?

- Das funfte Intervall der Schachtelung fiir /21,8 heiBt [4,6690; 4,6691].

Wie entscheidet man am einfachsten, ob der auf vier Stellen nach dem

Komma gerundete Wert von |/21.8 mit der linken oder mit der rechten
Intervallgrenze libereinstimmt?

Berechne nach dem Iterationsverfahren (I) die Naherungswerte x, bis x.
fiir

a) /13 und =3 b) V13 und x, =4,
¢) /6,32 und x, =2, d) /6,32 und x, =25,
e) /3987 und x, = 60, f) /095 und x,=1.
. Zeichne den Graphen der zur Berechnung von [8 gehorenden Iterations-
funktion x — | x + t : 2 1m Intervall 0 < x < 10 und veranschauliche

das Iterationsverfahren wie in Abbildung 41.2. Verwende dabei als (sehr
schlechten!) Anfangswert zuerst 10, dann 0,5.
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5. Beweise, dass die Gerade y = x die Kurve y=(x+—):2, x>0, im
Punkt S(/a|) a) schneidet.

$6. Die halbe Summe zweier Zahlen bezeichnet man als ihr arithmetisches
Mittel*: die Wurzel aus dem Produkt zweier positiver Zahlen heil3t geo-
metrisches Mittel*. Weise nach, dass das geometrische Mittel zweier Zah-
len stets kleiner oder gleich ihrem arithmetischen Mittel ist.

7. a) Bilde das geometrische Mittel der in der Formel des Iterationsverfah-

a _
rens (I) vorkommenden Zahlen x, und —. Zeige, dass fur

X
et e : 2 stets die Ungleichung x, , ; = Va gilt (n € N).
X,
ety : a— : S
b) Bestitige die Beziechung x,,, — x, = S und begriinde damit die
; 2x
Ungleichungen x, = x3 2 x4 = ... 3
: : 5 _ | 2uv i
¢) Die aus zwei positiven Zahlen u und v gebildete Zahl T bezeichnet
H (2]

man als harmonisches Mittel* von « und v.
Beweise, dass fiir die beim Iterationsverfahren (I) auftretenden Zahlen-
| a l o :

— ], ... gilt:
X3

a
paare | x; | — |, | X2
Xy

Xa

Das arithmetische Mittel der Zahlen eines Paars ist die erste Zahl des
nichsten Paars. Das harmonische Mittel der Zahlen eines Paars ist die
zweite Zahl des ndchsten Paars.

* ARCHYTAS, der als Staatsmann, Feldherr, pythagoreischer Philosoph und Mathematiker um 375 v. Chr. in
Tarent wirkte, sagt, dass es in der Musik drei Mittel gebe, und zwar die péon dgiduntikt (mese arithmetike),
das arithmetische Mittel, fiir das v — m = m — v gilt, die péon yeopetpin (mese geometrike), das geometri-
sche Mittel, fiir das u: m = m: v gilt, und schlieBlich die péon tmevavein (mese hypenantie), das kontrire
oder entgegengesetzte Mittel, das auch péom &ppovikn (mese harmoniké), harmonisches Mittel, genannt
wird und fiir das (z — m) : v = (m — v) ; v gilt. Hippasos (Mitte 5. Jh. v. Chr.) soll, anderen Berichten zufolge,

als erster den Ausdruck harmonisches Mittel gebraucht haben. Lést man jeweils nach m auf, dann erhilt man
3

; o U+ v 2
die bekannten Ausdriicke —— bzw. |/uv bzw. —
WU

Die Mittel ergeben sich aus Sonderfillen von Proportionen. Setzt man ndmlich in der arithmetischen Propor-
tion @ — b = ¢ — d bzw. in der geometrischen Proportion a : & = ¢: d die Innenglieder b und c gleich, dann
erhilt man mit den AuBengliedern # und v die oben angegebenen stetigen oder fortlaufenden Proportionen
(siehe Seite 99) u—m = m — v bzw. w:m = m:p. Allméhlich wurde es Brauch, eine solche dreigliedrige
stetige Proportion pesotng (mesotes) = Mittelheit zu nennen. EUKLID (um 300 v, Chr.) verwendet nur die
geometrische Proportion. In Buch VI, Satz 13 der Elemente nennt er |/uv mittlere proportionale Grdfle (ngcov
pévedoc dvikoyov [méson mégethos andlogon]), was JOHANNES DE SACRO Bosco (1200-1256) mit medium
proportionale tibersetzt. Johannes WIDMANN voN EGER (um 1460-nach 1500) bildet 1489 in seinem Re-
chenbuch dafiir eyn mittel zal und Johann ScHEYBL (1494-1570) in seiner Euklidiibersetzung Das sibend/acht
und newnt buch des hochberiimbten Mathematici Euclidis Megarensis von 1555 das mittel proportional zwaier
zalen oder kurz mittel. Den Ausdruck geometrisches Mittel hat anscheinend 1808 Georg Simon KLUGEL
(1739-1812) in seinem Mathematischen Wérterbuch geprigt. Bei Johannes KeEpLER (1571-1630) findet man
1615 meditwm arithmeticum in seiner Nova Stereometria doliorum vinariorim — »Neue Raummesskunst filr
Weinfisser« —, die Eindeutschung arithmetisches Mittel erst im 1. Viertel des 19. Jh.s.

{(Ubrigens verwechselt ScHEYBL wie so mancher andere den Mathematiker EUKLID [um 300 v.Chr.] mit
dem Philosophen EukLip von Megara [um 450—um 370 v. Chr.], einem Schiiler des SokraTES. Federigo
COMMANDING [1509-1575] weist 1572 in seiner Euklidiibersetzung auf diesen Irrtum hin.)
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8.

9.

10.

1.

12.

14.

2 Die Quadratwurzel
Wihle einen Startwert x, und berechne mit dem Iterationsverfahren (I)
die ersten vier geltenden*® Ziffern der Dezimalentwicklung von
a) /8170  b) |/1436 ¢ |/0,088855  d) |/0,000001234.
Wie viel Stellen vor dem Komma hat die Dezimalentwicklung der Wurzel
und wie heif3t die erste Ziffer?

a) /5 b) 1/37.64 ¢) /428 d) 1/3650809

e) |/82145 ) /82145  g) /821,45  h) /82,145
a) Welche Ungleichung fiir Va folgt aus

_ 1 1
1) 1>a=001: 2)0,01>a=0,0001; 3) T

b) Wo steht in der Dezimalentwicklung von 1) | 0,5; 2) //0,025;
3) 170,004 die erste von 0 verschiedene Ziffer und wie heiBt sie?

Wie muss bzw. kann der Anfang der Dezimalentwicklung der Wurzel

aussehen? (Die Punkte bedeuten weggelassene Ziffern.)

a) /0,7... 1) J0,006... o 012... d) |/0,0147...

Berechne nach dem Divisionsverfahren den ganzzahligen Teil der Wurzel.
a) /1000  b) /80656 ¢ |/338725  d) |/3387.25

. Berechne nach dem Divisionsverfahren den auf Hundertstel gerundeten

Wert von a) |/19,  b) |/187.5, ¢) /17,7241,  d) }/0,61%.

Auf der in Abbildung 48.1 gezeigten altbabylonischen Keilschrifttafel
VAT 6598 (um 1600 v. Chr.) wurde zur ndherungsweisen Berechnung von
Quadratwurzeln folgendes Verfahren angewandt, das auch HERON (um 62
n.Chr.) in seinem ITepi puétpwv — »Vermessungslehre« — angibt:

VpP+q~p+ ;; (p>0; p>+q=0)
Welcher Wert ergibt sich damit

a) fiir [f'fi aus der Zerlegung 3 =4 —1;

b) fiir l/? aus der Zerlegung 3 = 2,89 + 0.11;

¢) fiir [,é aus der Zerlegung 6 = 6,25 — 0,25;

d) fir [;""435 aus der Zerlegung 435 = 400 + 35;

e) fiir L/HS aus der Zerlegung 435 = 441 — 6;

f) fir I/-"rlﬂﬂl) aus der Zerlegung 1000 = 1024 — 24?7

Vergleiche das Ergebnis mit dem Nédherungswert des Taschenrechners.

* Die geltenden Ziffern werden von links nach rechts gezihlt. Die erste von 0 verschiedene Ziffer ist dabei die
erste geltende Ziffer.
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15. Welcher Niherungswert x, ergibt sich nach der Formel von Aufgabe 14

fiir |/, wenn man mit Hilfe eines Schétzwertes x; den Radikanden in der
Form a = x2 + (a — x}) darstellt? Vergleiche damit das entsprechende Er-
gebnis beim Iterationsverfahren (I).

16. Von HERON (um 62 n.Chr.) wird angenommen, dass er fir Wurzeln der
Form |/n* —1 mit ne N auch die Niherungsformel
— 1 1
1-" n-—1~n— -+ —  verwandte.
2n—1 2n—1)-2n+1)
a) Zeige, dass die von HERON angegebene Nédherung /'3 ~ 2¢ mit dieser
Formel gewonnen werden kann.
b) Welcher Niherungswert ergibt sich aus obiger Formel fur
1)/ 15, 2) |/ 63, 3) |/ 1207
¢) Vergleiche die HErRoNsche Néherung fiir |/3 mit der von ARCHIMEDES
(um 287-212 v.Chr.) stammenden Abschitzung
265 1351
o < /3 < .
153 780
Vergleiche die Ergebnisse jeweils auch mit den von deinem Taschenrechner
gelieferten Naherungswerten.
17. Die Babylonier rechneten bekanntlich im Sexagesimalsystem™, also im

Stellenwertsystem mit der Grundzahl 60. In den Ubersetzungen ihrer Keil-
schrifttexte werden Zahlen meist in der Form geschrieben, dass hinter die
Ganzen ein Strichpunkt und zwischen Einer, Sechziger, ... bzw. zwischen
Sechzigstel, 3600stel, ... jeweils ein Komma gesetzt wird. Zum Beispiel
bedeutet 4,20:25,08 die Zahl 4-60+ 20 + 25 + 3800-

a) Priife die aus einer babylonischen Wurzeltabelle stammende Gleichung
/038,24 = 0:48.

b) Gib den Wert von 1) |/3.45, 2) |/1;3345. 3) /11 13
im Sexagesimalsystem an.

21

a

18. Die Keilschrifttafel VAT 6598 (Abbildung 48.1) enthiilt folgende Aufga-

be: Ein Tor.  GAR und 2 Ellen Héhe, 2 Ellen Weite. Seine Diagonale ist

was?

a) Wie viel Ellen misst die Diagonale, wenn 1 GAR = 12 Ellen** gilt?

b) Auf der Tafel wird fir die Lidnge der Diagonale der Wert
0:41,15 GAR angegeben. Zeige, dass dies keine exakte Losung ist und
dass sie sich nach der Niherungsformel von Aufgabe 14 ergibt, wenn

* sexagesimus (lat.) = der sechzigste
%%

{ GAR bedeutet etwa 6 Meter, 1 babylonische Elle also etwa 5 dm.
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Abb.48.1 Ruickseite der altbabylonischen Keilschrifttafel VAT 6598, aufbewahrt in
Berlin, Staatliche Museen: Vorderasiatische Abteilung; Tontafeln, samt zugehoriger
Autographie (wortlich: Selbstgeschriebenes), d. h. handschriftlicher Ubertragung der
in den Ton eingedriickten Zeichen

19. a)

eb)

man fiir p* die groBte Quadratzahl wihlt, die im Quadrat der Diagona-
len enthalten ist.

Fir dieselbe Aufgabe wird auf der Tafel auch noch die Losung
0:42,13,20 GAR angegeben. Vergleiche die Genauigkeit der beiden L6-
sungen.

Auf der babylonischen Keilschrifttafel* AO 6484 aus Uruk aus der
Zeit der SELEUKIDEN (321-63 v. Chr.) findet man fiir /2 den sexagesi-
malen Wert 1;25.

1) Aufwie viel Dezimalstellen stimmt dieser Wert mit dem von deinem
Taschenrechner angezeigten Wert iiberein?

2) Man kann nur vermuten, dass die Babylonier diese Nédherung durch
zweimalige Anwendung der Formel von Aufgabe 46/14 gefunden
haben, und zwar beginnend mit p7 = 1; der sich dabei ergebende
Néherungswert wird als p, genommen. Fiihre diese Rechnung
durch.

Auf der altbabylonischen Keilschrifttafel** YBC 7289 (Abbildung
49.1) steht auf der Diagonale eines Quadrats die Sexagesimalzahl
1;24,51,10.

* aufbewahrt im Louvre zu Paris in der Abteilung Antiquités Orientales
** aufbewahrt in der Yale Babylonian Collection in New Haven (USA)
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1) Auf wie viel Dezimalstel-
len stimmt dieser Wert fur
)2 mit dem von deinem
Taschenrechner hierfiir an-
gezeigten Wert tiberein?

2) Wie die Babylonier diesen
recht genauen Wert gefun-
den haben, wissen wir
nicht. Nahe liegend er-
scheinen die beiden folgen-
den Verfahren.

1. Art: Man fihrt zuerst
das in a2 beschriecbene
Naherungsverfahren noch
einen Schritt weiter. S A TR o

2. ‘{!“'[: Man Wt‘,l‘jdE.:l Zusist - Abb.49.1 Autographie der altbabylo-
auf 1;25 das Iterationsver-  pjschen Keilschrifttafel YBC 7289 (um
fﬁli“'en (I) von Seite 38f. 1700 v.Chr.). Auf der Quadratseite links
einmal an. oben liest man <<{ = 30, auf der Diago-
Zeige, dass man jedes Mal nale 7171 als Niherungswert fiir

é{;‘; als Naherungswert 1f2 Darunter steht die entsprechende

erhalt. Rechnet man dann  Liange der Diagonale.

diesen Bruch in eine Sexa-

gesimalzahl um* und bricht nach der 3. Sexagesimalstelle hinter

dem Semikolon ab, so erhilt man die auf der Diagonale stehende

Zahl. Weise dies nach.

| B i 1 i

3) Berechne mit Hilfe dieses Naherungswerts die Linge der Diagona-
le als Sexagesimalzahl, wenn die Quadratseite die Linge 30 hat.
(Abbildung 49.1)

20. Die Schallgeschwindigkeit in trockener Luft von 0°C betragt
¢o = 331,6 m/s. Sie nimmt mit steigender Temperatur zu, und zwar gilt bei

/ 1
der Lufttemperatur ¢ (in °C); c= ¢ |/ 1 + === ¢-
er Lufttemperatur ¢ (1 )iic col/ 33K
a) Wie grol} ist die Schallgeschwindigkeit bei 20°C bzw. 40°C?
b) Bei welcher Temperatur betridgt die Schallgeschwindigkeit 325 m/s?

21. Wenn eine schwingende Saite von der Linge /, dem Querschnitt ¢ und der
Dichte ¢ mit einer Kraft F gespannt ist, dann hat ithr Grundton die Fre-

* Beispiel einer Umrechnung:

3 36 | { | 4
. L 6 - 60
T P R e W R T S

: = = = | = — =—+ + = 0;05,08, ...
35 60 60 60 60 60 60 3600 60 3600 216000
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P : :
quenz* v, = i , der n-te Oberton die Frequenz
9 LT q-o
n i F
= L/ , e N,
g0

a) Eine Stahlsaite (¢ = 7,85 g/cm”) von 1,00 m Linge und 0,50 mm?
Querschnitt, die mit einer Kraft von 160 N gespannt ist, wird ange-
zupft. Welche Frequenz hat der dabei erklingende Grundton? Wie viele
Obertone haben eine Frequenz unter 2 kHz?

b) Die e-Saite einer Violine ist 32,5 cm lang; sie ist 0,35 mm dick und aus
Stahl (¢ = 7,85 g/em?). Mit welcher Kraft muss sie gespannt werden,
damit sie richti 5e&tlmmt ist? (Die Frequenz des Tones e” betrégt
660 Hz.)

¢) Eine Kontrabass-Saite mit ¢ = 7,9 g/cm® und ¢ = 6,2 mm? ist mit
370 N gespannt und gibt beim Anstreichen den Ton ,E (so genanntes
Kontra-E) mit 41 Hz. Wie viel cm ist diese Saite lang?

g/
g

2.3 Rechenregeln fiir Quadratwurzeln

Aus Definition 33.1 folgt unmittelbar, dass (}/a)? = a gilt. Das Zichen der
Quadratwurzel und anschlieBendes Quadrieren heben sich also auf. Gilt das
auch fir die umgekehrte Reihenfolge dieser beiden Rechenschritte? Dass dies
nicht zutrifft, zeigt folgendes

Beispiel: (—2)* = 4; [:1 = 2; also |/(—2) + —
Wegen | — 2| = 2 gilt aber lf( - 2}_3 =|—2|.

Das fiihrt uns zu

Satz 50.1: Fiir jede reelle Zahl a gilt Va? = |a].

Beweis: |/ a? ist nach Definition 33.1 die nicht negative Losung der Gleichung
x* = a?. Diese Gleichung hat fiir a % 0 die beiden Losungen aund —a.
Je nachdem, ob a > 0 oder a < 0 gilt, ist @ oder — a die positive Losung.
Fiir @ = 0 ist x = 0 = }/0? die einzige Losung.
Somit gilt:
a fir a>0
Va? = < —a fir a<0
0 fiir a=0

also [ a? = |a|.

* frequentia (lat.) = die Hiufigkeit; Frequenz = Zahl der Schwingungen pro Sekunde, Einheit 1/s = 1 Hz
(1 Hertz) zu Ehren von Heinrich Herrz (1857-1894), dem Entdecker der elektromagnetischen Wellen
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Die vorausgehende Uberlegung zeigt, dass man die Reihenfolge der beiden
Rechenschritte »Wurzelziehen« und »Quadrieren« im Allgemeinen nicht ver-
tauschen darf. Kann man aber vielleicht das Wurzelziehen mit einer der vier
Grundrechenarten vertauschen?

Beispiele:
) V9+16=)25=>5

- }$L@+m¢rh+mﬁ
VO +V/16=3+4=7

2) V16 -9 =17

/16 — 9 =4—3=1

3) 1/9-16 = /144 = 12

/9116 =3-4 17}:*F916=F5¢16
/Y- plo=3-49=12

B e s = Pl
SIS = A }=$p9n6=L9ﬂ46

V9: V16 =3:4= i

E S ]

Die Beispiele 1 und 2 beweisen, dass man die Reihenfolge von Wurzelziehen
und Addieren bzw. Subtrahieren nicht vertauschen darf. Die beiden anderen
Beispiele lassen jedoch vermuten, dass beim Multiplizieren und Dividieren die
Vertauschung zulissig ist.

Tatsédchlich gilt

| Satz 51.1: '
1) Fira=0und 520 gilt Va-b= Va-Vb. _
2) Fiira=0und b> 0 gilt Va:b= Va:Vb, oder fg=£3_
S [}flb

Beweis von 1: Aus @ = 0 und b = 0 folgt a-b = 0; alle drei Wurzeln sind
definiert.
Aus (Va-Vb)2 =a-b folgt, dass lVa-Vb die nicht negative
Losung der Gleichung x? = ab darstellt, also gleich Vab ist.

= 1]a a
Beweis von 2: Nach 1 gilt |/5 - 1; - ] b b
I gl f

e 1 V/B
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Die Regel 1 von Satz 51.1 ldsst sich natlirlich auch auf mehr als zwei Faktoren
ausdehnen. So gilt z. B.

Vabe =Va(be) =Va-Vbe=Va-Vb-Ve.

Im Sonderfall von n gleichen Faktoren erhalt man

Satz 52.1: Fiir a > 0 und ne N gilt: Va" =(Va)".

Als Anwendungen der bisher gefundenen Rechengesetze treten besonders
hdufig folgende Fille auf:

Teilweises Wurzelziehen (partielles Radizieren): Lisst sich aus dem Radikan-
den ein quadratischer Faktor abspalten, so kann man aus diesem die Wurzel
ziehen.

Beispiele:

V75 =V25-3=V25-1/3 =53

/24 — 4ab + 2b% = L—"E’ (az —2ab + b?) = IZ [a —h)z = |a—b|- 12

Einen Faktor unter die Wurzel nehmen: Es handelt sich hier um die Umkehrung
des partiellen Radizierens.

Beispiele:

7 {mym:pww%:wﬁﬂ falls @ = 0
i Hlilae= e — —
= |a| : i"h = — [-"uz . l;-‘ h=— l.r"a“f}‘ falls a < 0

Beachte also, dass man nur nicht negative Faktoren durch eine Quadratwur-
zel darstellen kann.

Rationalmachen des Nenners: Dabei geht es darum, Wurzeln, die im Nenner
eines Bruches auftreten, zu beseitigen.

Beispiele:
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i GAIIRE Vo) VG
1+V2 (@A+¥2)a—-vz) 1—( 20 =]
_______ VB BN E) 0 L V3 e
Vi-Vs (/T-VS)T+V5) Ti—3
21 +115 1 .
= 5 =§(l21-4-l1‘3]

Vb Vb-Va Vab Vab

3

Va? Va’Va l-""'ffd' a-

Aus a = b folgt, falls ¢ und b nicht negativ sind, die Gleichung Va = [/ b;
umgekehrt erhilt man durch Quadrieren daraus wieder @ = b. Also sind, falls
a=0und b = 0, die beiden Gleichungen a = b und }/a = }/'b dquivalent.
Gilt eine entsprechende Feststellung auch fiir Ungleichungen?

Beispiele:
4 < 49 liefert /4 < 1/49; richtig, weil 2 < 7.
0<5 lefert lf] < I.-"'IS; richtig, denn 0 < 2,23 ...

2,25 > 0,36 liefert /2,25 > 1/0,36 ; richtig, da 1,5 > 0,6.

Vermutlich gilt also

Satz 53.1: Monotoniegesetz des Radizierens

Fira=0und b= 0gil: a<b<>Va<Vb.

|

Beweis: 1) <: Ausder Voraussetzung )/ a < Vb und Va = 0folgtV b > 0. Wir
multiplizieren die Ungleichung //a < Vb mit }/a bzw. |/b:

Va<Vb ||-Va Va<Vb ||-Vb
a= Vab . Vab < b.
Somit ist ¢ = Vab < b, also a < b.

2) =: Vorausgesetzt istnun 0 < a < b. Die Annahme [/ a = |/ b hatte
nach 1 die Ungleichung a = b zur Folge, also einen Wider-
spruch zur Voraussetzung.

Daher gilt: a<b = Va < Vb.
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Aufgaben
1.a) V2-V/8

&) /10 1/1000
g) /101144
k) 10,1 -1/0,4
n) /312
2.2) V21316
) V3-V5-V/5
&) 10,35 -V/6-V2,1
g 13 V5 /175

3. a) V/16-121

/12

d) 1/0,36-2%-52

g) V(@2-33: (5% 25

2 Die Quadratwurzel
b) /3112
e) /107 -)/10°
h) 1/0,625 - /103
D V2,5-1/09

0) Ix Y/ z;c

¢) 1/45-1/20

f) 10,1
i) 1/1960 - /0,1

-1/0,001
m) /0,121 - /4,9

p) /1432 - /113

b) V2-V/5-1/40
d) 1/20-1/0,03 - /15
f 1/1,2-1/0,02-/0,03 -/08

h) /3
b) 1/625 - 49 - 100
e) 1/35-1,69 72
h) V(3-5%-7) 84

4. Vereinfache durch teilweises Radizieren:

a) /32 b) 1/27

e) /216 f) /1250 g)
1/0,00625

i) Fﬁﬂj k) |

th

&
|
=
3

=~

Vereinfache:

a) | ab*
/ 32 b
)V :

8. a) LS—H18=—21

f) 110,294 :

b) Va?b?
[250m>
f) L,/ e

32) - 1/2

L)?vﬁmrﬁz—th4+pﬁﬂ d)

¢) /180
/9000

5
/243
V2,4

c)

g) 10,

€) —: —

/700 /54

o) V25m%3 )

b) (3V/5—V

. L{,—"’z‘z . l.-"ltj

g) L;'

it y
Sl- 15(2)

/7.5 -1/16.,8

/11
¢) 1/0,01-144 -225
) 1/5%-2%-112

i) V(2% 11-3%)-297-

d) /176

h) /2,5

/176
g
/275

098 :1/22.05

LIﬁU rdoi
/450 112025

/2735

J,"’1 21 up? w
192

20 + 1/80) - 21/5

45 +3)/135 —

31/20)
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9. 2) (IV3+V2)(V3-V2) b) (65— 51/6)(5/6—61/5)
o) (V14 —-V3) (V6 +V7) d) (5V/11 —21/10)(-V/55 —2V/2)
10. a) [(2V/5+V2)+V22] - [(2V/5+V2) —V/22]

11.

14.

. Beispiel: — = =

b) [2V/15+ (413 - 2V/7)] - [2V15 — (4V3 = 2V'7)]
a) (5/2+V/18)?

b) (215 —V/18)>

o (V20-3V2)*+(3V/5+V/8)

d) (1320 — 21/70)* — (/240 — 6/10)>

1 1932 02
8

iy

Mache bei den folgenden Quotienten den Nenner rational:

) 1 5 5 | 5] 8 3=
a = — C —— S T
3 /5 /19 7
i3 gl 6+ 101/1,2 V2413 TV5—5/17
) — H o g b
3V 11 51,2 [ 43 157
Mache die Nenner rational.
1 5 &
a) —— = = )
3+ 110 2V7—V3 Ve +17
V2 —1 =1 E5 V7 +V38
d) = & —— = n
V241 2lSi—5)3 314+ V7
Beseitige die Wurzeln im Nenner.
1 2b3 2a
a) —— e ¢) — =
IV a*b V8a2b’c V6a*b?c3
L] Fipha 5. 12tVa
VVa®b Va—Vb pVq+qlVp

. Beispiel: (V2)* = (V2)?-V2 =2)2.

a) (2 BE° 902" 902 o (2)*
D (3)° o (1) W @D H 03 K5
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16.

17.

I8.

19.

20).

21.

o 22.

23.

2 Die Quadratwurzel

Beispiel: /75 = V/7*-7 =72 1/7 = 49//7.

a) |/28 b) 1/3° ¢) 152 d) /82 e) /63
BTt 4 gy 52 Wiv2R P aD 1% v
a) (V2)3 + (V8)* —21/2° b) ((//5)* —3V5) V53

O (V7 +40/ D)/ D* —7-V4?)
d) (41,.--' 3_‘1; B ([_.."2 )5} . (8 “x)w 49 I-":'T)

Vereinfache:

a) (Vo> b (Va)* o (Vo) &) (Vo) e (Va)!

f) Va? g) Va® h) Va* ) Va® k) Va®
Vereinfache:

a) Va® + 2ab + b? b) V2m? —12m + 18

) Vz*+222 +1 d) /9z* —6z2+1

e) V12,1x% + 4.4xy + 0,417 f) V1+2)x|+ 22

Nimm, soweit dies moglich ist, die Faktoren unter die Wurzel. Achte dabei
auf eventuell notwendige Fallunterscheidungen.

a) 32 b) 1/7-5 Q) (—)VB=x" @ (1= 3)/5a

e) xVy f) a®V/x g) 2b3)/y h) (a—b)Va+b
Welche Grollenbeziehung besteht zwischen folgenden Zahlenpaaren?
a) /17 und V16 b) 1/381 und /247

¢) Va®+2und Va® +1 d) /0,75 und |/3

e) /0.1 und /0,01 f) /37 und /0,457

Es sei 0 < a <1 und b > 1. Welche GroBenbeziehung besteht dann zwi-

schen
a) V/a und a, b) /b und b, ¢) Va’ und (Va)B,

d) (Vb)? und Vb5, €) V@b und bl a®, f) Va?h und al/ab??

Welche Ungleichung besteht zwischen

a) /9 + 16 und /9 + /16, b) /52 + 102 und /52 + /102,

¢) /625 —49 und /625 — /49,  d) 1/225 — 25 und /225 — /252




24.

26.

o27.

28.

Lh
|

2.3 Rechenregeln fiir Quadratwurzeln

a) Beweise: [/a + L—""'b = L-":a + b. Wann gilt das Gleichheitszeichen?

b) Beweise: 0 <a<b = Iih — la < IE — a. (Hinweis: Quadriere!)

5. Zeige, dass die Zahlen x und y gleiche Quadrate haben. Warum sind

trotzdem die Zahlen selbst nicht éleich?
a) x =3—2)/3; y=1/21—-12)/3
b) x=]/14—8V3; y=16—2)2

Mit Hilfe von Quadratwurzeln kann man dieselbe Zahl auf sehr unter-
schiedliche Art darstellen. Weise nach, dass die folgenden Gleichungen
richtig sind:

a) |/3-2/2 =121 b)2+1<—|415+9
o) [/9+2V14 =V2417 d) V8 +V2+4=1V8 + /12
Beispiele wie die von Aufgabe 26 lassen sich auf zwei Rechenregeln zu-

riickfithren, die in geometrischer Fassung schon bei EukLID (um 300
v.Chr.) in Buch X seiner Elemente, in algebraischer Form z. B. im arabi-
schen Euklid-Kommentar des AL-NAYRIZI (T 922) und im indischen Bi-
dscha-ganita — »Samen der Rechenkunst« — von BHASKARA IT (1115-nach
1178) vorkommen: Fiir 0 = a < b gilt

Va+ Ih - VIu +b+2Vab und [h — |y = L,-"’a +b—2Vab

a) Beweise diese RL‘”L

b) Warum existiert |, fa+ h — 2V ab fiir beliebige positive Zahlen a und 5?
(Hinweis: Aufeabe 45/6)

¢) Bereits ABU KamiL (um 850-930) berechnet in seinem al-kitab fi al-
dschabr wa-l-mugabala mit diesen Formeln /8 + /18 = /50 und
/18 — |/ 8 = |/ 2. Bestiitige diese Ergebnisse 1) unter Verwendung der
obigen Formeln, 2) ohne Verwendung dieser Formeln.

d) Vereinfache die folgenden Terme mit Hilfe der obigen Formeln:
1) l/ -'[-"'3 + V2 — L..-’EL-"S — /2 (arabisch, um 1100)

2) (11 40 + 6 + 1"{[4{} —6)2  (Luca PacioLi [um 1445-1517],
Summa, 1494)

3) (L—--""iz +V6 +1/12—1/6)*>  (Michael Stirer [14877-1567],
Arithmetica integra, 1544)

Uberpriife die folgenden Beispiele aus der altindischen Mathematik:

a) y"’m + /24 + /40 + /60 = V2 +V3+V/5

b) 16+ V120 +1/72+ V60 + V48 + 140 +124 = V6 +V5+13+12
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*%2.4 Zur Geschichte der irrationalen Zahlen

Eine der groBten Leistungen der griechischen Mathematik ist die Entdeckung der
Inkommensurabilitit zweier Strecken, d.h. der Existenz von Streckenverhiltnissen,
die nicht mehr durch das Verhiiltnis zweier ganzer Zahlen ausgedriickt werden konnen.
Sie fiihrte schlieBlich zum Begriff der irrationalen Zahl. Es iiberrascht, dass die Agyp-
ter, erst recht die Babylonier, die ja bereits um 1800 v. Chr. erhebliche mathematische
Kenntnisse besaBBen — du wirst spiter davon noch mehr horen —, das Problem, ob es zu
zwel Strecken stets ein gemeinsames Mal3 gibt, Giberhaupt nicht erkannten. Es tiber-
rascht noch mehr, dass die Griechen dieses Problem zu einer Zeit erkannten und auch
zu 16sen verstanden, als ihre Mathematik noch in den Kinderschuhen steckte, Noch
erstaunlicher ist es, dass durch kein Dokument belegt ist, wann und durch wen diese
ungeheuere Entdeckung erfolgte, obwohl die Griechen die Tragweite dieser Entde-
ckung erfassten.*

Der fritheste Bericht von dieser Entdeckung ist die Stelle 147¢ des Dialogs Theqdtet. den
PLATON (428348 v. Chr.) im Jahre 368 v. Chr. verfasste, kurz nachdem sein Schiiler,
der Mathematiker THEAITETOS (um 415-369 v. Chr.), in einer Schlacht tédlich verwun-
det worden war. In diesem Dialog, derim Jahre 399 v. Chr., dem Todesjahr des SOKR A-
TES, spielt, zeigt ein alter Mathematiker, nimlich THEODOROS VON K YRENE (um 465 bis
um 385 v. Chr.), dass die Seite eines Quadrats, dessen Inhalt eine der Nichtquadratzah-
len von 3 bis 17 ist, irrational ist. Bei 17, so heilit es, »hielt er zuféllig inne«. Von einem
Quadrat des Inhalts 2 wird nichts gesagt! Also muss der Beweis fiir die Irrationalitit
von [ 2 dlter sein. Der in den meisten Codices als Nachtrag zu Buch X von EUKLIDS
Elementen (um 300 v. Chr.) iiberlieferte arithmetische Beweis fur die Irrationalitit von
}/2 ist sprachlich weitaus schwerfélliger als die sonstige Diktion der Elemente; das weist
darauf hin, dass er aus alter Zeit stammt. Auf alle Fille scheint |2 die erste Zahl zu
sein, deren Irrationalitit arithmetisch und nicht nur geometrisch bewiesen wurde (sie-
he Aufgabe 12/4). Mit groBter Wahrscheinlichkeit wurde aber die Irrationalitit nicht
am Quadrat entdeckt, sondern am regelméBigen Fiinfeck bzw. am Pentagramm (Ab-
bildung 9.1), dem Erkennungszeichen des Geheimbundes der PYTHAGOREER (Aufgabe
13/11).

Einstimmig sind spétantike Autoren der Meinung, dass der Philosoph** Hippasos aus
Metapont/Unteritalien (2. Viertel des 5. Th.s v. Chr.), der noch ein unmittelbarer Schii-
ler des PYTHAGORAS (um 570—um 497 v. Chr.) sein konnte, die Entdeckung des Irratio-
nalen an die Offentlichkeit gebracht hat. Ansonsten wird von ihm noch berichtet, dass
er musikalische Experimente an Metallscheiben verschiedener Dicke und an mit Was-
ser gefiillten Rohren ausgefithrt und sich aullerdem mit Proportionen und Mitteln
(siche Aufgabe 45/6) beschiftigt habe. Aber zurtick zum Irrationalen!

IamBLICHOS aus Chalkis/Koile-Syrien (um 250—um 330 n. Chr,) berichtet uns:
»HippAsos habe als Erster die aus 12 Fiinfecken zusammengesetzte Kugel, d.h. die
Umkugel des Dodekaeders [ Abbildung 59.1], 6ffentlich beschrieben und sei deshalb
wie ein Gofttloser im Meer umgekommen.«

Und an spateren Stellen lesen wir bei ithm:

»Einige sagen auch, ihm sei dies widerfahren, weil er das Geheimnis des Unaussprech-
baren [siche unten] und des Inkommensurablen verraten habe.«

=

* ARISTOTELES (384322 v. Chr.) kommt z. B. nicht weniger als 26-mal in seinen Werken auf die Inkommensu-
rabilitit von Seite und Diagonale im Quadrat zu sprechen.
#* piiocogog (philosophos) ist eine Wortschopfung der PyrHacoreer und bedeutet Freund der Weisheit.
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Abb. 59.1 Das Dodekaeder (= Zwolfflach)*, ein von 12 regelméBigen ebenen Fiinf-
ecken begrenzter Korper, links als Vollkorper, rechts als Hohlkérper, gezeichnet von
LEONARDO DA VINCI (1452-1519) fiir die 1509 erschienene Divina Proportione seines
Freundes Luca PacioLi (um 1445-1517).

»Denjenigen aber, welcher als erster die Natur des Kommensurablen und des Inkom-
mensurablen solchen erdffnete, die nicht wiirdig waren an der Lehre teilzuhaben,
sollen die Pythagoreer so tief verabscheut haben, dass sie ihn nicht nur aus der Lehr-
und Lebensgemeinschaft ausschlossen, sondern ihm [zu Lebzeiten] auch ein Grabmal
errichteten mit der Begriindung, ihr einstiger Gefihrte sei aus dem Leben unter den
Menschen ausgeschieden.«

Nirgends wird also berichtet, dass Hippasos der Entdecker des Irrationalen sei; nur als
Verriter wird er dingfest gemacht. Man neigt jedoch heute dazu, ihn auch fiir den
Entdecker zu halten. Warum aber die ganze Aufregung iiber den Frevler und den
Verrat?

Um die Frage beantworten zu kénnen miissen wir mehr iiber die PYTHAGOREER wis-
sen. In seiner Metaphysik berichtet uns ARISTOTELES (384-322 v.Chr.), die PYTHAGO-
REER »sahen in den [natiirlichen] Zahlen die Eigenschaften und Verhiltnisse der Har-
monie [ ... und da] die Zahlen das erste in der ganzen Natur, so nahmen sie auch an, die
Elemente der Zahlen seien die Elemente alles Seienden und die ganze Welt se1 Harmo-
nie und Zahl. [...] Alles fiihren sie auf die Zahlen zuriick.« Anders ausgedrickt:
PyTHAGORAS und seine Schiiler waren der Meinung, dass irgend zwei Dinge dieser Welt
stets in einem Verhéltnis zueinander stehen, das durch zwei natiirliche Zahlen, d.h.
durch einen Bruch, ausgedriickt werden kann. Als Beispiel diene die Musik: Man
erhiilt die Oktave bzw. die Quint zu einem Ton, wenn man die ihn erzeugende Saite im
Verhiltnis 2 :1 bzw. 3: 2 verkiirzt:

I | | e
f 1 r L

Oktave ! Quint 50
: — : |

[gS ]

* Swdentedpoc (dodekdedros) = zwolfsitzig, mit zwélf Grundlagen aus dhdexa (dodeka) = zwalf und 1) £dpa
(he hédra) = der Sitz, die Grundlage. Das Fachwort dodexaedpov (dodekiedron) verwendet EUKLID in Buch
X1 seiner Elemente.
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Die Entdeckung, dass es Streckenverhélt-
nisse gibt, zu denen es keine (ganzzahli-
gen) Zahlenverhiltnisse gibt, musste not-
gedrungen zu einer Krise unter den Py-
THAGOREERN fiithren; denn sie zerstorte
die Grundlage ithrer Weltanschauung, ihr
»Allesist Zahl«. Du kannst dir sicher vor-
stellen, dass es vielen Mitgliedern des in
Siiditalien auch politisch sehr einflussrei-
chen Geheimbundes lieber gewesen wiire,
wenn diese umwilzende Entdeckung ge-
heim gehalten worden wére. Die grofie
Empdrung eines Teils der Anhédnger tiber
den »Verrat« des Hippasos ist also ver-
stindlich. Die Folge aber war, dass sich
die PYTHAGOREER in zwei Parteien spalte-
ten, die dxovopatikol (akusmatikoi),
d.h. die Horer, die ohne tiefere Einsicht
auf das Wort des Meisters schworen und
der alten Lehre anhingen, und die
podnuatikot (mathematikoi), d.h. die
durch Lernen Einsicht erlangt Habenden,
also die Gruppe um Hippasos, die durch
ihre geistige Schulung in der Lage waren
das Neue zu begreifen.* Bezeichnender-
weise stellten sich die Mathematikoi bei
den Unruhen in Unteritalien um 445
v.Chr. auf die Seite des Volkes, die Akus-
matikoi dagegen auf die Seite des herrschenden Adels. Die wechselhaften Ereignisse
fiihrten schlieBlich dazu, dass zuerst die Akusmatikoi und spiter die Mathematikoi
aus Unteritalien vertrieben wurden, sodass um 350 v. Chr. der pythagoreische Bund
jede Bedeutung verloren hatte.

PLATON lernte 388/387 in Unteritalien bei ARCHYTAS VON TARENT pythagoreisches
Gedankengut kennen. In seinem letzten Werk, den Néuo: (Nomoi) — »Gesetze« —, das
erst nach seinem Tode bekannt wurde, zeigt sich, wie beeindruckt PLATON von der
Entdeckung der irrationalen Verhéltnisse war. Er spricht dort an der Stelle 819/820 von
einer »lidcherlichen und schimpflichen Unwissenheit, die allen Menschen innewohnt«,
che sie davon erfahren haben, und bekennt: »Mich selbst ergriff durchaus Verwunde-
rung, als ich spit [hier iibertreibt er!] davon horte. Es kam mir vor, als wire so etwas
[namlich ein solches Unwissen] bei den Menschen gar nicht méglich, sondern eher bei
einer Herde von Schweinen. Und ich schimte mich, nicht nur fiir mich selbst, sondern
fiir alle Griechen.« In diesen Worten kommt auch zum Ausdruck, dass sich die Kennt-
nis von der Existenz irrationaler Verhiltnisse noch nicht sehr verbreitet hatte. Und
PLATON schliel3t seine Betrachtung iiber das Irrationale mit den Worten: »Das ist eins
von den Dingen, welches nicht zu wissen wir fiir eine grofe Schande erklirten; es aber
zu kennen ist nichts besonders Rithmenswertes!«

Abb.60.1 ARISTOTELES (384 Stagira/
Thrakien — 322 Chalkis/Eubéa). Romi-
sche Kopie nach einem um 325 v. Chr.
entstandenen  griechischen  Original.
Wien, Kunsthistorisches Museum

* daxovelv (aktein) = hdren, vernehmen; Gxovopa (Akusma) = das Gehdrte, die Lehre.
padnpatikog (mathematikos) = lernbegierig, gelehrig kommt von pav3avewv (manthanein) = lernen, erler-
nen, verstehen, einsehen und hiingt zusammen mit padnpa (mathema) = das Gelernte, die Kenntnis, das
Wissen.
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Abb. 61.1 Riickseite zweier Tetradrachmen* aus Abdera (ABdnpa) mit der links
oben beginnenden, im Uhrzeigersinn umlaufenden Umschrift ITYOAT'OPHL
(= Pythagores), geprigt zwischen 430 und 420 v. Chr., vermutlich PYTHAGORAS dar-
stellend. @ = 2,4 cm; links 13,98 g, ** rechts 13,08 g.

Die Entdeckung, dass die Diagonalen des Fiinfecks und des Quadrats nicht durch den
griechischen Zahlbegriff erfasst werden konnen, dass sie aber andererseits als Strecken
exakt vorhanden sind, hatte weit reichende Folgen fiir die weitere Entwicklung der
griechischen Mathematik. Man wandte sich nidmlich von der Arithmetik, der Lehre
von den Zahlen, ab und betrieb Mathematik als Geometrie. In ihr konnte, auch mit
Strecken irrationaler Linge, das von den griechischen Philosophen geforderte Ideal
der Exaktheit verwirklicht werden.

Einen groBen Schritt weiter brachte Eupoxos voN KNipos (um 400 347 v.Chr.) die
Mathematik: Es gelingt ihm, eine geometrische Proportionenlehre auch fir inkom-
mensurable Streckenverhiiltnisse zu schaffen. Dabei fuhrt er bewusst den Begriff der
GroBe (uéyedoc [mégethos]) in die Mathematik ein, was auf eine Erweiterung des
Zahlbegriffs bis hin zur reellen Zahl hinauslduft. EUKLIDS Buch V der Elemente geht
praktisch auf Euboxos zuriick. Im recht schwierigen Buch X, das vermutlich von
THEAITETOS stammt, wird die Theorie der irrationalen GroBen geometrisch weiter
ausgebaut. Aber Eupoxos wurde erst 2000 Jahre spéter voll verstanden. In ihren Be-
weisen schlagen sich die Griechen immer auf die sichere Seite: Sie bevorzugen geome-
trische Beweise vor algebraischen Uberlegungen, da irrationale Zahlen ihnen unvor-
stellbar waren. Auch DIOPHANT (um 250 n. Chr.), der mit seinen Agi3untixdv fif Ao
(Arithmetikon biblia) — »Biicher iiber die Zahlenlehre« — algebraisches Denken wieder
aufnimmt, vermeidet es stets durch entsprechende Wahl der Koeffizienten, dass solche
Zahlen als Losungen einer Gleichung auftreten.

Erst den Arabern gelingt es, langsam die Algebra von ihrer geometrischen Verkleidung
zu befreien. Es ist insbesondere ein Verdienst aL-BAGDADIs (um 1100), dass er in
seinem Kommentar zu Buch X von EUKLIDs Elementen, den GERHARD VON CREMONA
(1114—1187) tibersetzt, Zahlenbeispiele mit Wurzeln vorfiihrt. Es entwickelt sich eine

* Eine Tetradrachme ist ein silbernes Vier-Drachmen-Stiick. Das Monatsgehalt eines Lehrersim 2. Jh. v. Chr.
betrug etwa 12 Tetradrachmen.

#* Diese Miinze ist die erste in einer Reihe dhnlicher Prigungen, bei denen der fiir die Pragung zustindige
Jahresbeamte der Stadt Abdera seinen Namen mit einer beriihmten Gestalt der griechischen Geschichte
oder Sagenwelt in Verbindung brachte. Der Beamte PYTHAGORES wiihlte ein idealisiertes Portrait seines
beriihmten Namensvetters, des Philosophen und Mathematikers PYTHAGORAS.
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Kunst des Rechnens mit Wurzeln, wie du sie in
2.3 gelernt hast. LEONARDO VON Pi1sa (um 1170
bis nach 1240), der sein Wissen von den Arabern
bezog, liel} in seinem [iber abaci (1202) irratio-
nale Zahlen sowohl als Lésungen wie auch als
Koeffizienten von Gleichungen zu (Aufgabe
79/3 und 82/4e, f). Allméhlich wird das Rech-
nen mit irrationalen Zahlen zu einer Selbstver-
stindlichkeit. Schreibt doch um 1460 Frater
FrIDERICUS AMANN® (T 1465) in einem algebrai-
schen Traktat des Codex [latinus monacensis
14908: »Wer mit den surdischen [d.h. irratio-
nalen (siche unten)] Zahlen, threm Addieren
und ihrem Subtrahieren, den Binomen [...Jund  App 621
den anderen irrationalen Gréllen nicht umzu-
gehen weill, der versteht in der Arithmetik
nichts Besonderes.«** Dennoch sind diese sur-
dischen Zahlen fiir thn keine Zahlen. »Surdus
numerus non est numerus« schreibt er. Auch Michael StiFeL (14877-1567) diskutiert
diese Frage 1544 in seiner Arithmetica integra — »Die ganze Arithmetik« —, obwohl
er zu einem vertieften Verstindnis der Irrationalzahl gelangt ist: »So, wie also eine
unendliche Zahl keine Zahl ist, so ist auch eine irrationale Zahl keine wahre Zahl,
weil sie gewissermalen unter einem Nebel der Unendlichkeit verborgen ist.«*** Dieser
Nebel der Unendlichkeit sind wohl die unendlichen Dezimalzahlen, mit denen man
die irrationalen Zahlen darstellen kann. Erst dadurch, dass 1637 René DESCARTES
(1596—-1650) 1in seiner La Géométrie mit Hilfe des Strahlensatzes auch das Produkt
zweiler Strecken a und b wieder als Strecke darstellt (Abbildung 62.2) — bis dahin
wurde dieses Produkt immer als Fliche interpretiert —, gelingt eine Ubertragung der
geometrisch wohl definierten Irrationalititen in die Welt der Zahlen mit ihren Rechen-
gesetzen. Der Durchbruch ist geschafft, die irrationalen Zahlen werden als Zahlen
anerkannt.

Vorderseite der Tetra-
drachme von Abbildung 61.1,
links; dargestellt ist ein Greif.

1 \ 0 \
Abb. 622 Das Produkt ab als Strecke nach DESCARTES

Dennoch blieb es dem 19.Jh. vorbehalten, die irrationalen Zahlen ohne jede geometri-

sche Begriindung auf algebraischem Wege einfithren zu kdnnen. Von verschiedenen

Mathematikern wurden dazu verschiedene Verfahren vorgeschlagen, die alle auf das-
* Seit 1995 weill man, dass die bisher dem FrIDERICUS GERHART (T 1463) zugeschricbenen Abhandlungen

von FRIDERICUS AMANN stammen und umgekehrt.

Qui in surdis atque additis et diminutis et binomiis [. ..] et lineis ceteris irrationalibus agere nescit, nihil in

Arismetrica egregii novit.

Sic igitur infinitus numerus, non est numerus: sic irrationalis numerus non est verus numerus, qui lateat

sub quadam infinitatis nebula.

EEd
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selbe Ergebnis hinauslaufen. Wir nennen hier die Arbeiten Richard DEDEKINDS (1831
bis 1916) und Georg CANTORs (1845-1918), beide aus dem Jahre 1872. Die Definition
der reellen Zahlen durch Intervallschachtelungen, die du kennen gelernt hast, geht auf
die Vorlesungen iiber die Natur der Irrationalzahlen von Paul Gustav Heinrich BACH-
MANN (1837-1920) aus dem Jahre 1892 zurtick.

AbschlieBend wollen wir noch die Entstehung des Fachworts irrational verfolgen.
Nach der Entdeckung der Inkommensurabilitit nannten dic PYTHAGOREER ein Ver-
hiltnis aus zwei ganzen Zahlen, also unsere rationale Zahl, pnrog (rhetds)
= aussprechbar, ein Verhiltnis aber, das sich nicht durch ganze Zahlen ausdriicken
lieB. also unsere irrationale Zahl, &ppnrog (arrhetos) = unaussprechbar. THEODOROS
voN K YRENE (um 465—-um 385), der Lehrer PLATONS, verwendet stattdessen das Gegen-
satzpaar GOUUETPOS — AOOUPETPOG (Symmetros — asymmetros), also gemeinsam messhar

nicht gemeinsam messbar, bezogen auf die Einheit. Sein und PLATONs Schiler THEAI-
TETOS (um 415-369 v. Chr.) betrachtet Verbindungen wie |/a + I/ b und [,r-"t" a. Erstere
ergeben, wenn man sie quadriert, nicht immer eine rationale Zahl. So wird z.B.
(V2 +18)2=2+8+2)/16 =18, also eine rationale Zahl, aber (V2+ Y3yt =
—24+3+21/6=5+26 ecine irrationale Zahl. Fiur GroBen der letzteren Art be-
niitzt THEAITETOS ein altes Wort, nimlich dlovyog (alogos) = sprachlos, stumm, unaus-
sprechbar. EUKLID (um 300 v.Chr.) ibernimmt die Bezeichnung von THEAITETOS, be-
hilt aber das Gegensatzpaar des THEODOROS bei. Dadurch vermischen sich diese drei
Worter in ihrer Bedeutung. Allmihlich setzt sich jedoch bei den griechischen Mathe-
matikern #Aoyog zur Bezeichnung irrationaler GroBen durch.

BoeTHIUS (um 480-5247) iibersetzt cOupetpog mit commensurabilis, der romische
Staatsmann und Gelehrte CASSIODORUS (um 490— um 583), der ebenso wie BOETHIUS in
den Diensten THEODERICHS DES GROSSEN, des Ostgotenkdnigs, stand, tibersetzt das
Gegensatzpaar mit rationalis — irrationalis, womit wir bei unseren Fachwortern sind.
GERHARD VON CREMONA (1114-1187) beniitzt sie, als er den Euklid-Kommentar des
AL-NAYRIZI (1 um 922) tibersetzt. In Michael STIFELs (14877 -1567) Arithmetica integra
von 1544 sind sie feste Fachausdriicke. Das Wort irrational hatte aber lange Zeit
noch einen interessanten Konkurrenten.

Das griechische @hoyog (dlogos) = sprachlos, unaussprechbar wird bei AL-CHARIZMI
(um 780 — nach 847) und anderen arabischen Mathematikern unerklirlicherweise
durch das arabische Wort asamm wiedergegeben, das nicht sprachlos, sondern taub
bedeutet. Als GERHARD voN CREMONA den Euklid-Kommentar des AL-BAGDADI (um
1100), den er dem des AL-NAyRiz1 beifiigt, und die Algebra des AL-CHARIZMI Ubersetzt,
wihlt er fiir asamm die wortgetreue Entsprechung, namlich surdus, das dann auch
LEONARDO VON Pisa (um 1170-nach 1240) gerne verwendet. Michael STIFEL tiber-
nimmt es und verdeutscht die numeri surdi gar zu surdische Zahlen! Bis ins 18. Jh. bleibt
surdus als mathematisches Fachwort lebendig. Im Englischen ist heute noch surd num-
ber als Fachbegriff fiir [rrationalzahl gebrauchlich.

Bei dieser Gelegenheit konnen wir dir jetzt auch den mathematischen Ursprung des
Worts Binom erkliren. Die schon bei THEAITETOS vorkommenden Summen a + /b und
Va + 1/ b, bei denen die Wurzeln keine ganzen Zahlen ergeben, nannte EUKLID in Buch
X seiner Elemente £&x 800 dvopdrov (ek dyo onomaton) = aus zwei Namen, woflr
GERHARD VON CREMONA in seiner AL-NAYRizI-Ubersetzung Kurz binomium sagte. In
der weiteren Entwicklung (siche Algebra 7, Seite 187) wurde die Bedeutung von Binom
verallgemeinert zu »Summe aus zwei Summanden«.
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2.5 Wurzelgleichungen

2.5.1 Einfache Wurzelgleichungen

Eine Gleichung, bei welcher die Unbekannte unter einer Wurzel auftritt, be-
zeichnet man als Wurzelgleichung.

Beispiele:
1) Vx =3 ) V2x—-5=17
3) Védx+5=x+2 4) V/x*+2=3x
5) Yx—1=V12x+3 6) V2x+8 —V5+x =1

Um eine solche Gleichung l6sen zu konnen muss man zunichst alle Wurzeln,
welche die Unbekannte enthalten, beseitigen. Dies geschieht durch Quadrie-
ren der Gleichung. Dabei gilt: Jede Losung der Ausgangsgleichung erfiillt
auch die durch Quadrieren entstehende Hilfsgleichung.

Denn wenn eine Gleichung 7; (x) = T,(x) eine Lésung x, hat, d.h., wenn
T, (x;) = T,(x,) gilt, so folgt daraus AUCH (T (\l))z (75 (g))2; also ist xy
auch eine Losung der Gleichung (7; (x))* = (75 (x))?

Gehort aber umgekehrt auch jede Losung der durch Quadrieren gewonnenen
Hilfsgleichung zur Losungsmenge der Ausgangsgleichung? Wenn ja, wire das
Quadrieren eine Aquivalenzumformung. Um dies zu untersuchen betrachten
wir die obigen Beispiele.

1) //x = 3. Durch Quadrieren erhilt man x = 9.
Probe: LS = /9 = 3 = RS; also L = {9}.

2) V2x—5=7 = 2x—5=49
]

Probe: LS = /227 — 5 = /49 =7 =RS; also L = {27}.

3) Vax+5=x42 = 4x+5=x24+4x+4
2

x" =1
Losungen der Hilfsgleichung: x; =1; x, = — 1.
Probe mit x;: LS = V4-1+5=)9=3RS=1+2=3=1LS.
Probe mit x,: LS = lf""4 (— -_} = |/ = 1: RS=—14+2=1=1S8.
Ergebnis: L = {1; —1}.
4) /x> +2 =3x = x2+2=9x2
Bx% =2
x2=1
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[

Losungen der Hilfsgleichung: x; = 3; x, = —
Probe mit x;: LS =}/ @)?+2=}/2=%3RS=3-4=3=1S.
Probe mit x,: LS = /(=22 +2 = /2=3RS=3-(—4)=—3+LS.

1
g

Ergebnis: L. = |

5) Vx—1=V2x+3 = x—1=2x+3
X = —
Probe: LS = |/ —4 — 1, sinnlos! RS = l-"'_2_-(—- 4) + 3, sinnlos!
Ergebnis: L = { }.

6) V2x+8 —V54+x =1
Die Rechnung gestaltet sich einfacher, wenn man vor dem Quadrieren
die Gleichung so umformt, dass eine der beiden Seiten nur aus einer
Wurzel besteht. Man spricht vom Isolieren der Wurzel.
V2x+8 —V5+x=1

DX B =14V50% = D2xt8=142V5+x+5+%

Da immer noch eine Wurzel vorhanden ist, muss man noch einmal
quadrieren; zuvor aber wird die Wurzel isoliert.

el Bl - 2105 Tl S i

V5+x=Lx+1 = 54+x=4x>+x+1

).
=4
=16,
Die wurzelfreie Hilfsgleichung hat die Losungen x; = 4; x, = —4.

Probe mit x;: LS = /2 - 41+8—V5+4=)16—-)9=1=RS.
(—4)+8—1/5—4=)/0—11=—1=+RS.

Y

Probe mit x,: LS =V
Ergebnis: L = {4}.

Bei den ersten drei Beispielen haben die Ausgangsgleichung und die aus
ihr durch Quadrieren gewonnene Hilfsgleichung jeweils dieselbe Losungs-
menge, nicht jedoch in den iibrigen Beispielen; dort besitzt die Hilfsgleichung
noch zusitzliche Losungen! In Beispiel 4 liegt das daran, dass die beiden
Gleichungen [/x2 + 2 = 3x und }/x? + 2 = — 3x auf dieselbe Hilfsgleichung
x? 42 = 9x? fithren. In deren Losungsmenge sind also die Losungen von
zwei verschiedenen Ausgangsgleichungen enthalten. Entsprechendes gilt auch
im Beispiel 6 (vgl. Aufgabe 67/7). Dagegen hat die Verschiedenheit der beiden
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Loésungsmengen bei Beispiel 5 eine andere Ursache: Die beim Quadrieren
entstehende Gleichung hat ganz R als Definitionsmenge und bcsnzl dort die
Losung x = — 4. Die Wurzelgleichung ist jedoch nur auf D = [1; + co[ defi-
niert und kann daher nicht — 4 als Lésung haben. Dass —4 ¢ D }_.,lll. zeigt sich
bei der Probe am Auftreten sinnloser Terme. g
Beachte also: Das Quadrieren einer Gleichung ist im Allgemeinen keine Aqui-
valenzumformung. Zwar erfiillt jede Losung der Ausgangsgleichung auch die
Hilfsgleichung, es kommt aber vor, dass die Hilfsgleichung noch zusitzliche
Losungen besitzt. Das Quadrieren kann also eine »Gewinnumformung« sein.
Mit anderen Worten: Die Lésungsmenge der Ausgangsgleichung ist eine echte
oder unechte Teilmenge der Losungsmenge der durch Quadrieren entstande-
nen neuen Gleichung. Nachdem man deren Losungen bestimmt hat, muss
man prifen, ob sie auch der Ausgangsgleichung geniigen. Das geschieht im
Allgemeinen durch eine Probe.

Es gibt allerdings einen einfachen Typ von Wurzelgleichungen, bei welchem das
Quddnum die Losungsmenge nicht dndert. Das sind Gleichungen der Form
V' T(x) = ¢ mit ¢ = 0 (vgl. Beispiel 1) und 2)). Durch Quadrieren entsteht ndmlich die
Gleichung T(x) = ¢ mit ¢*> = 0. Wenn x, eine Losung dieser Gleichung ist, gilt
T(x,) = c¢?, also T(x,) = 0. Man kann daher auf beiden Seiten die Wurzel ziechen und
erhilt ) T'(x,) = | ¢|, also, wegen ¢ = 0,1/ T(x,) = ¢, sodass x, auch die Ausgangsglei-
chung I6st. Bei solchen Wurzelgleichungen kann man daher auf die Probe verzichten.

Aufgaben
1. a) /2x =2 b) V1+x =0 ¢) V2x+3—-1=0
d) /3x+7+10=0 ) V8—3x=V14 0 V7x+3+2/7=5
2.a) V2x+1=x+1 b) 3x4+2=112x+5
¢) V3—4x=2x—1 A 14V5x—1=x335
e) Tx=)28x+13—2 f) 4x+V25—16x—2=0
3.a) V4+3x=3x+2 b) x—1=V1—3x
¢) V15x+25=2x+5 d) 2x=1/9—2x+3
e) dx =Vx+4141 f) l8\+~—6\—l°r:0
4. a) Vax2—17 = b) /25—x2 =6
¢) V17T—2x2 =3 d) V5x2—1 =x
e) V6x2+50+2)/2x=0 f) V5+3x%2=x)3
5. a) L-*"zx +5=13x+ b) Vx—8 =V4—2x
¢ V3x+10=V SLT(? d) V2 +7 =V2x2 -2

€) Vax2+9 =V5x+11 ) Vex*+5=15—3x
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— — - —

/% (x—1 ;H—\ /x—5
6. ﬂ) / — = e ) ’f’ = |f==
[ 2x+5 2% 2 3 1 —x
,2 —o [ x+1 / SA 14 fax +6
¢) =|/— d) |, e
3+r X 2 — 6x 8x—3
7. Bestimme die Losungsmengen der folgenden drei Gleichungen und ver-
gleiche die Losungswege:
l.-""_r_i +3x =1+ I x X2+ x - l.-"(xg +3x=1—Vx*+x und
Vx2+3x=—1+Vx>+x
o8.2) Vx+1=1+Vx—4 b) Vx—3—3=V}x—12
¢ Vx+1=3+Vx—35 d Vl+14+2=Vx>+17
ﬂ1h2+15=5—ﬁﬁ+10 0 2= 3= |3 %2
09.2) VaZ+x=1+Vx> b) Vx? —x=Vx2+x—1V2
c) ;_..--"2 X2 Exk 152 —x=35 d) l--""2x‘3 + x = Ll’x—z— b

o10.2) /x> +4x+5=5—Vx2—6x b) Vx2+4x+6+Vx>—2x=3

$11. Am 2. Juni 1461 schreibt der Benediktiner Frater FRIDERICUS, eigentlich
Friedrich AMANN, (T 1465) im Kloster St. Emmeram zu Regensburg die
erste Algebra in deutscher Sprache nieder, die sog. deutsche Algebra aus
dem Codex latinus monacensis 14908, und rechnet dabei die folgende von
AL-CHARIZMI stammende Aufgabe vor (sie steht in Abbildung 68.1,
4. Zeile von unten links bis 1. Zeile oben rechts):
Gib mir ain censum vnd zuech dar von sin wurcz vind von dem daz vber
belyb an dem censu zuech och vB dye wurcz dye czwo wurcz tue zesamen
daz 2 zal dar au3 werden.*

* census ist die wortgetreue lateinische Ubersetzung des arabischen Jle mal, das Vermigen bedeutet. Meist
wird unter census das Quadrat der Unbekannten verstanden. In dieser Aufgabe zeigt sich aber, dass AL-
CrHARIZMI mit mal nicht immer das Quadrat, sondern gelegentlich die Unbekannte selbst bezeichnet. (Vgl.
auch die FuBnote zu Aufgabe 94/11i). Andernfalls wiirde die Aufgabe unnétig schwer.

»Dass»?2 zal daraus werdens, heiBt bei AL-CHARIZMI, »dass »2 Dirhem« daraus werden«. AL-CHarizM hat von
den Indern die Gewohnheit iibernommen, reine Zahlen durch das Wort Dirhem zu kennzeichnen — so hiefien
die von den Kalifen geprigten Silbermiinzen (3,98 g). ArvapHaTA (476-7 n.Chr.) niamlich hatte bekannten
GréBen das Wort rupaka (= mit Zeichen versehene Miinze) beigefiigt, das bald durch ru abgekiirzt wurde. Im
europiischen Mittelalter wurde AL-CrarizwMis Dirhiem durch drachme oder auch durch dragma wiedergege-
ben, was in deutschen Handschriften mit S, einem ¢ mit Schnorkel, gﬂudu auch f;tb"LLulﬂ wurde. SchlieB-
lich wurden dragmaund numerus synonym gebraucht. Letzteres libersetzt der Verfasser der deutschen Algebra
mit zal. Michael STIFeL (14877-1567) war der erste, der im Druck solche Zeichen wegliell und nur mehr die
Zahl alleine schrieb. — Das Wort dirfiem ist eine Arabisierung des griechischen Worts dpayun (drachmé), dem
Namen einer alten Gewichts- und Rechnungseinheit. Man vermutet, dass dieses Wort vom Verbum dpasoeo-
a1 (drassesthai) = fassen, umfassen abgeleitet wurde, weil man tatsdchlich mit einer Hand sechs dfekiorol
(obeliskoi) = Spiefichen umfassen konnte, deren Gewicht eine Drachme ausmachte. Spater nannte man ein
solches SpieBchen dPokog (obolos); es wog in Attika 0,728 g.

Bei GERHARD voN CREMONA (1114-1187) lautet die Aufpabe so: »Est census de quo radicem suam proieci
et addidi radici radicem eius quod remansit, et quod provenit fuit due dragme. Ergo hec radix census et
radix eius quod remansit fuit equale duabus dragmis.«
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Abb. 68.1 Folium 133v und 134r der 3-seitigen deutschen Algebra, geschrieben am
Tag des hl. Erasmus (= 2. Juni) des Jahres 1461, in der Bruchstiicke und eine einzige
Aufgabe aus AL-CHARIZMIS al-kitab al-muchtasar fi hisab al-dschabr wa-"l-mugabala
auf Deutsch wiedergegeben sind. Der Text beginnt so: Machmet in dem puech algebra
vnd almalcobula hat gepruchet dise wort Census - radix - numerus.*
Sammelhandschrift Codex latinus monacensis 14908, Grolle des Schriftblocks
9.7cm X 5,8 cm.

*%2.5.2 Wurzelgleichungen mit Parametern

Das Losen von Wurzelgleichungen, in denen auBer der Unbekannten auch
noch Parameter vorkommen, erfordert im Allgemeinen Fallunterscheidun-
gen. Bei der Untersuchung, ob eine Losung der durch Quadrieren erhaltenen
Hilfsgleichung auch die Ausgangsgleichung erfiillt, ist vor allem auch zu be-
achten, dass die auftretenden Radikanden nicht negativ sein durfen.

Beispiel 1:

Vx+a?2 =V2x+1 = x+a®>=2x+1
x=a*—1
Probe: LS = l.-"'a.z 14a%= ljaz —_]
RS =)2(a>— 1) +1=12d> -1
* Der gesamte von Frater FrIDERICUS AMANN geschriebene Text ist im Losungsheft abgedruckt. Vergleiche

auch die Ubersetzung GERHARD VON CREMONAS in unserer Algebra 7, Seite 10, und im zugehdrigen L-
sungsheft, Seite 4f.
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LS und RS sind jedoch nur definiert, wenn 2a* — 1 = 0 gilt, also
fiir |a| = 4)/2.

Ergebnis: x = a* — 1, falls |a| = 11/2; sonst L = { }.
Beispiel 2:
Vx+8a=Vx+2a = x+8a=x+4a Vx + 4a?

alVx = 2a— a?

Die Auflosung der letzten Gleichung nach //x ist nur fiir @ + 0 moglich.
Also Fallunterscheidung:

a=0| 0-Vx =0; also L =Ry, was auch fiir die Ausgangsgleichung
gilt.

{E=|=U, Vx=2—a = x=2—a)?

Probe: LS = /(2 —a)>+8a=V4+4a+a*=VQ2+a)*=|2+al| =
_{ 24+ fir a=z-2

—(24a) fir a< -2

2L it a=2

RS=V(2—a)*+2a=|2—a|+2a=
Viz—z) ] il {—2—!—3& fir a>2
Fiir a # 0 lautet somit das Ergebnis:

L={2—-a)? fir 0<l|a|£2; L={} fir|a|>2.

Am Losungsbaum lassen sich die verschiedenen Fille Gibersichtlich dar-
stellen (Abbildung 69.1):

—
2

Abb. 69.1 Losungsbaum zu Beispiel Z
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Aufgaben
1. Lose die folgenden Parametergleichungen:
a) L.f'-_x +a?>=a+1 b) l":.l: +a=a—1
o) Vx+a=V5a—x d) Vx+a=Va®—x
e) Vx*+a=Va—x ) Vil—a’=x+a

2. a) Zeige, dass die Gleichung Vx+a+Vx—a=2a genau dann losbar
ist, wenn die Bedingung a = () v a = 0,5 erfullt ist. Wie lautet jeweils
die Losung?

b) Fiir welche Werte von ¢ ist die Gleichung Vx+a —Vx—a = 2a
losbar und wie lautet die Losung?

Zu den Aufgaben 3 bis 5:

Lose die Gleichung und zeichne einen Losungsbaum.

_— = T

/ 1 ; 1 e e s

3.4) |/x*+ s =Vx*—1+ 15 B Py s
a a a g

ed.2) Vax3+3 =3 +a’x b) Vx*+a—Vax2—2=0
5. a) L"j;'_—}- 2a% =a+ Lk + a? b) l-";(s,rz + x = I.--"'Ia,\'2 — =t

So6k 7 S o
B vt witvoMictina ad /78
e g i ol o,

,.31}2.1‘_ e

_\n.s!,“‘ a?&&«g ?’-‘.'l:;- --;.--n

1=
1€ i S f_?'___?____
g_f:'"fﬁf___ ® "'.f‘fﬁ
/ e ni R S
8 G s -~
17 —+ % &y = ji 55
T Tl = g
g s A
P Wl 17 s /'J’

Abb.70.1 Ausschnitt aus folium 64v des Codex Leipzig 1696, vermutlich aus dem
Ende des 15. Jh.s
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