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b) Auf der Objektivfassung eines bestimmten Fotoapparats sind sieben
Blendenzahlen angegeben , die kleinste davon heißt 2 . Die übrigen
Blendenzahlen sind so gewählt , dass beim Übergang von einer zur
nächsten sich jeweils die Blendenfläche halbiert . Berechne die übrigen
Blendenzahlen und gib die ersten beiden Ziffern ihrer Dezimalentwick¬
lung an . (Damit erhält man die auf der Blendenskala angegebenen
Zahlen !)
Hinweis : Beachte , dass die Blendenfläche zu d 2 proportional ist .

2 .2 Berechnung von Quadratwurzeln

Wie findet man zu einer Zahl a > 0 den Wert von ]fa ?
Bei den bisherigen Beispielen war das recht einfach ; man konnte meist schnell
eine positive Zahl angeben , deren Quadrat die Zahl a ergab . Schwieriger wird
diese Aufgabe schon , wenn a eine große , uns nicht geläufige Quadratzahl ist .
Wie findet man z . B . , dass [/33489 bzw . ]/157,7536 den Wert 187 bzw . 12,56
hat ? Aber auch das sind noch Sonderfälle . Im Allgemeinen ist ja der Radikand
a nicht das Quadrat einer rationalen Zahl ; ]fa ist dann irrational , und man
muss sich damit begnügen , einen hinreichend genauen Näherungswert zu
bestimmen .
Dir ist sicher schon bekannt , dass man solche Aufgaben bequem mit dem
Taschenrechner lösen kann . Man muss lediglich den Radikanden a eingeben
und die Wurzeltaste (manchmal zwei Tasten ) drücken und schon wird ein
(Näherungs -)Wert von V

~
a angezeigt . Wie ist das möglich ? Sind die Wurzel¬

werte schon im Taschenrechner gespeichert und müssen nur abgerufen wer¬
den? Sicherlich nicht , wie du dir leicht klarmachen kannst ! Die gesuchte Wur¬
zel muss vielmehr jedes Mal neu berechnet werden . Dazu dient ein sehr schnell
ablaufendes Rechenprogramm , das mit dem Drücken der Wurzeltaste gestar¬
tet wird . Für das Berechnen von Quadratwurzeln gibt es verschiedene Verfah¬
ren . Im Folgenden sollst du einige kennen lernen .

2 .2 . 1 Intervallschachtelungsverfahren

Bei diesem schon bekannten Verfahren schließt man den Wurzelwert zwischen
zwei aufeinander folgende ganze Zahlen ein . Aus diesem Anfangsintervall ge¬
winnt man durch Anwendung der Zehnteilungsmethode eine Intervallschach -
telung für die gesuchte Wurzel . Der Rechenaufwand ist meist ziemlich groß .

2 .2 .2 Iterationsverfahren
Um zu einer Zahl a > 0 die Quadratwurzel zu berechnen , beginnen wir mit
einem Schätzwert x l > 0 . Dieser ist zu groß bzw . zu klein bzw . richtig , wenn
xf > a bzw . x \ < a bzw . x \ = a gilt . Den letzten Fall , in welchem die Bestim¬
mung von Vä zufällig schon gelungen ist , können wir im Folgenden außer Acht
lassen .
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Wegen x \ > a o x , > — bzw . x 2 < a o x , < — kann man auch durch die
X x X xa

Berechnung des Quotienten — entscheiden , ob der Schätzwert zu groß oder zu
Xi

klein ist . In jedem Fall liegt aber der gesuchte Wurzelwert zwischen den Zahlen
a

x x und — . Als nächsten Näherungswert x 2 wählen wir daher eine Zahl aus
•W

diesem Intervall , und zwar den einfach zu berechnenden Mittelwert von x 1

und — , also x2 =
X, :

Ausgehend von x 2 kann man nun nach derselben Methode einen Näherungs¬
wert x 3 , dann x4 , x 5 , . . . berechnen . Allgemein erhalten wir den (n + l )ten
Näherungswert x„ + 1 aus x„ nach der Formel

(I)

Beispiel 1 :
Gesucht ist
Wir beginnen (z . B . !) mit dem Schätzwert x , = 30 .
Durch Anwendung von (I) erhält man * :

( a \
: 2 , n e !Kl .X„ + 1 = X „ H-

V xJ

1/841 .

x2 = (30 + f ) : 2 ^ r 2 = 29,016666
und weiter x 3 = 29,000004 ; x4 = 29 ; x 5 = 29 ; . . .
Da 29 2 = 841 , hat man mit x4 bereits den richtigen Wert der Wurzel
gefunden !

Beispiel 2 :
Gesucht ist |/6 .
Mit dem Schätzwert x x = 2 erhält man * nach (I)

x2 = 2,5 ; x 3 = 2,45 ; x4 = 2,4494897 ; x 5 = x4 ( !) .

Sobald zwei aufeinander folgende Näherungswerte übereinstimmen , kann
man die Rechnung abbrechen ; der nächste Schritt wäre nur eine Wiederho¬
lung des vorausgehenden und müsste wieder dasselbe Ergebnis liefern . Dass
dieses Ergebnis die gesuchte Wurzel ist , lässt sich leicht begründen :
Mit x „ + 1 = x „ folgt aus (I)

x „
=

( * " + : 2 II ' 2x n

2x 2 = x 2 + a II ~ xl
x„

2 = a .
Da x„ > 0 gilt , ist somit x„ = Jfa .
* Die angegebenen Zahlenwerte wurden auf einem Taschenrechner mit achtstelliger Anzeige berechnet .
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Natürlich gilt in Beispiel 2 die Gleichung x 5 = x4 nicht exakt , sondern
nur im Rahmen der Anzeigegenauigkeit des verwendeten Taschenrechners .
x4 = 2,4494897 ist deshalb nur der bestmögliche Näherungswert , der mit die¬
sem Rechner für die irrationale Zahl ]/ö ermittelt werden kann . Dasselbe
Ergebnis erhält man , wenn man nach Eingabe von 6 die Wurzeltaste drückt .
Das Besondere an dem hier angewandten Rechenverfahren besteht darin , dass
zur Bestimmung der verschiedenen Näherungswerte immer wieder dieselbe
Regel , hier (I) , benützt wird . Eine solche Berechnungsmethode bezeichnet
man als Iterationsverfahren . *
Ein Iterationsverfahren ist für das praktische Rechnen sehr vorteilhaft : Man
kann beim Taschenrechner immer wieder dieselbe Tastenfolge benützen . Die
Iterationsregel (I) lässt sich, sobald ein Näherungswert in der Anzeige steht ,
z . B . mit folgender Tastenfolge ausführen :

speichern J | a |V
* _

Speicherinhalt
aufrufen ) eom

Nach dem zweiten - Befehl wird der neue Näherungswert angezeigt . Mit
ihm kann man , wie der Pfeil andeutet , das Verfahren wiederholen . Ein Itera¬
tionsverfahren lässt sich vor allem auf einem programmierbaren Rechner sehr
einfach durchführen . Die Abbildungen 40 . 1 und 40 .2 zeigen ein Strukto -
gramm und ein Flussdiagramm für Programme zur Berechnung von ]/o

~nach
dem Iterationsverfahren (I) . Bei den Taschenrechnern ist ein entsprechendes
Programm fest eingebaut .

Eingabe : a (Radikand )
e (Genauigkeitsschranke )
x (Startwert )

Solange | x2 — a | > £ tue

X := J

Ausgabe : ]/a ~ x

a (Radikand)
<5 (Genauigkeit )
x (Startwert )

nein x — y | > <5

Abb . 40 . 1 Struktogramm zum Itera¬
tionsverfahren (I) mit der Abbruchbedin¬
gung \x2

n - a | g e

Abb . 40 .2 Flussdiagramm für das Ite¬
rationsverfahren (I) mit der Abbruchbe¬
dingung | x „ + 1 - x„ | ^ S

iterare (lat .) = etwas noch einmal tun , wiederholen ; iteratio (lat .) = die Wiederholung .
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Das Iterationsverfahren (I) lässt sich auch geometrisch veranschaulichen . Wir
zeichnen dazu den Graphen der Iterationsfunktion , das ist in unserem Fall die

Funktion mit der Gleichung y = f x + — ) : 2 , x e (R +
. Sie liefert zu jedem

\ x J
Näherungswert x den nächsten Näherungswert y ; d . h . , setzt man x = xn , so
gilt t = x„ + 1 . Um dann die Zahl y als x n + 1 wieder auf der x -Achse anzutragen
verwendet man die Gerade mit der Gleichung y = x . Der auf ihr liegende
Punkt mit der Ordinate y hat auch die Abszisse y , also xn + 1 (Abbildung 41 . 1 ) .

Abb. 41 . 1 Graphische Erzeugung von x„ + 1 aus x,

x + A

Abb . 41 .2 Graphische Darstellung des Iterationsverfahrens

Der rote Linienzug in Abbildung 41 .2 zeigt , dass die Zahlen x2 , x 3 , x4 , . . . sich
von oben rasch der Abszisse des Schnittpunktes S der beiden Graphen nähern .
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Man kann zeigen , dass dies immer so ist (vgl . Aufgaben 44/4 und 45/7 ) . Da S
die Koordinaten ( ]/ä \ ]/ä ) hat , strebt die Zahlenfolge x 2 , x 3 , x 4 , . . . immer
monoton fallend gegen ]fa (vgl . Aufgabe 45/5 ) .

* *2 .2 .3 Divisionsverfahren

Es gibt einen interessanten Algorithmus *
, bei dem - ähnlich wie beim Intervallschach -

telungsverfahren - die einzelnen Ziffern der Dezimalentwicklung einer Wurzel nach¬
einander berechnet werden , wobei aber der wesentliche Schritt bei der Bestimmung
einer Dezimalen im Ausführen einer Division besteht .
Zunächst eine einfache Vorüberlegung zur Größe von ]/a . Es gilt

1 ^ a < 100 => 1 iS ]fa < 10 , d . h . , \/a hat 1 Stelle vor dem Komma

100 51 a < 10000 => 10 ?£ Va < 100 , d . h . , ]/a hat 2 Stellen vor dem Komma

104 :£ a < 10 6 => 102 ^ Va < 10 3
, d . h . , ]Va hat 3 Stellen vor dem Komma

usw.
Daraus folgt : Die Zahl der Stellen, die bei der Dezimalbruchentwicklung von 1fa mit
a > 1 vor dem Komma stehen , ergibt sich, indem man den Radikanden a vom Komma
aus nach links in Zweiergruppen einteilt .

Beispiele: j/l3 |67,5 hat 2 Stellen vor dem Komma .

]/6 | 15 ]34 hat 3 Stellen vor dem Komma .

j/l0 |47 |69,824 hat 3 Stellen vor dem Komma .

Eine entsprechende Regel lässt sich auch für Radikanden zwischen 0 und 1 aufstellen
(Aufgabe 46/10) .
Zur Erklärung des Divisionsverfahrens betrachten wir zunächst das einfache

Beispiel 1 : Berechnung von 1/1369
Das Ergebnis ist eine Zahl mit 2 Stellen vor dem Komma , also |/l 3 ]69 = _ _ , . . .

a) Bestimmung der ersten Ziffer
Man sucht die größte Ziffer, deren Quadrat kleiner oder gleich 13 ist ; Ergebnis
3 .
Begründung : Der Radikand enthält 13 Hunderter ( 1 . Zifferngruppe von links) ,
liegt also zwischen 900 und 1600 . Daher muss die Wurzel einen zwischen 30
und 40 liegenden Wert haben .

b) Bestimmung der nächsten Ziffer
Aus dem Ansatz l/l369 = 30 + r mit 0 r < 10
folgt 1369 = (30 + r) 2

1369 = 900 + 60 r + r2
469 = (60 + r) r

Algorithmus = Rechenverfahren . Das Wort Algorithmus entstand aus algorismus , einer Verballhornung des
Namens al -Charizmi , der in Vergessenheit geraten war , sodass man unter algorismus die Lehre vom Rechnen
verstand . Erst 1849 hat der Orientalist Joseph -Toussaint Reinaud den Ursprung dieses Wortes erkannt .
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Der ganzzahlige Teil von r ist die gesuchte Einerziffer . Um sie zu bestimmen
bringen wir die letzte Gleichung auf die Form 469 : (60 + r) = r . Da der Divi¬
sor 60 + r zwischen 60 und 70 liegt , kann r nur 7 Ganze enthalten ; denn
8 • 60 > 469 und 6 • 70 < 469 .
Somit gilt : (/1369 = 37, . . .

c) Bestimmung eventueller weiterer Stellen
Aus dem Ansatz ]/1369 = 37 + ,v mit 0 + s < 1
folgt 1369 = (37 + s) 2

1369 = 1369 + 74j + j 2

0 = (74 + j ) j
Wegen s ^ 0 folgt daraus .v = 0 .

Wir erhalten somit das Ergebnis : ]/l369 = 37 .

Die hier durchgeführte Rechnung lässt sich in einer sehr kurzen Niederschrift
darstellen ; zu Beginn des Schrittes b sieht sie etwa so aus :

]/l3 |69 = 3 d ,
- 9 _ (3 2 = 9)

469
6 □ • □ (3 - 2 = 6)

Die drei roten Kästchen müssen nun mit derselben Ziffer besetzt werden ! Ein
Schätzwert für diese ergibt sich aus der Rechnung 46 : 6 « 7 . Wegen 67 ■7 + 469
ist 7 die richtige Einerziffer . Die vollständige Rechnung lautet damit

1/1369 = 37 ,
- 9

469
- 469 67 - 7

0
Da der neue Rest 0 beträgt , ist die Rechnung beendet .

Solange die bei diesem Divisionsverfahren auftretenden Reste positiv sind , kann man
die Rechnung fortsetzen und wie bei b die nächste Ziffer ermitteln . Dies gilt auch
beim Überschreiten des Kommas . Dazu das

Beispiel 2 : Berechnung von l/4ff9
Das Ergebnis hat 1 Stelle vor dem Komma : j/40,9 = 6 , . . .

Aus dem Ansatz 1/4 (09 = 6 + r mit 0 + r < 1

folgt 40,9 = 36 + 12r + r2

4,9 = (12 + r) r

Die gesuchte nächste Ziffer ist nun der ganzzahlige Teil von lOr . Wir führen
deshalb r ' = lOr ein . Dazu multiplizieren wir beide Faktoren auf der rechten Seite
mit 10, die ganze Gleichung also mit 100 :

490 = ( 120 + r ') r'

490 : (120 + r ') = r ' .also
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Als ganzzahliger Teil von r' ergibt sich daraus nicht 4 , sondern 3 . Somit gilt:
V4ÖJ = 6,3 . . .
Ganz entsprechend verfährt man bei der Bestimmung weiterer Ziffern . Die Kurz¬
form der Rechnung sieht dann so aus :

V4Öfi = V 40,90 00 00 . . . = 6,395
- 36

4 90
- 3 69 123 - 3

1 21 00
- 1 17 21 1269 - 9

6 79 00
- 6 39 25 12785 • 5

39 75

(6 2 = 36)

(6 - 2 = 12)

(63 • 2 = 126 = 123 + 3)

(639 • 2 = 1278 = 1269 + 9)

Man rechnet so lange , bis die gewünschte Genauigkeit erreicht ist .
* * Zur Geschichte

Das angegebene Divisionsverfahren hat 1540 Reinerus Gemma Frisius (1508 - 1555 )
in seiner um 1536 geschriebenen Arithmeticae practicae methodusfacilis veröffentlicht .

Aufgaben
1 . Bei der Berechnung von ]/31 nach dem Intervallschachtelungsverfahren

erhält man [5 ; 6] als erstes und [5,5 ; 5,6] als zweites Intervall . Muss man
zur Bestimmung des nächsten Intervalls die Quadrate aller Zwischenwerte
5,51 ; 5,52 ; . . . ; 5,59 berechnen ? Wie viele Quadrate sind bei geschicktem
Vorgehen höchstens notwendig ? Wie heißt das dritte Intervall für l/3T?

2 . Das fünfte Intervall der Schachtelung für ]/21,8 heißt [4,6690 ; 4,6691 ] ,
Wie entscheidet man am einfachsten , ob der auf vier Stellen nach dem
Komma gerundete Wert von 1/21,8 mit der linken oder mit der rechten
Intervallgrenze übereinstimmt ?

3.

4 .

Berechne nach dem Iterationsverfahren (I) die Näherungswerte x2 bis x 5für

a) l/l3 und x x
— 3 , b) ]/l3 und x x = 4 ,

c) l/6,32 und x 1 = 2 , d) ]/ö,32 und x t = 2,5,
e) 1/3987 und x t = 60 , f ) l/0,95 und Xj = l .
Zeichne den Graphen der zur Berechnung von j/8 gehörenden Iterations¬
funktion x 1—>■ ( x + — ) : 2 im Intervall 0 < x ^ 10 und veranschauliche

\ x J
~~

das Iterationsverfahren wie in Abbildung 41 .2 . Verwende dabei als (sehr
schlechten !) Anfangswert zuerst 10 , dann 0,5 .
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5 . Beweise, dass die Gerade y = x die Kurve y = : 2 , x > 0 , im
Punkt S ( l/a | l/ä ) schneidet .

^

• 6 . Die halbe Summe zweier Zahlen bezeichnet man als ihr arithmetisches
Mittel*

; die Wurzel aus dem Produkt zweier positiver Zahlen heißt geo¬
metrisches Mittel* . Weise nach, dass das geometrische Mittel zweier Zah¬
len stets kleiner oder gleich ihrem arithmetischen Mittel ist .

7 . a) Bilde das geometrische Mittel der in der Formel des Iterationsverfah -
a

rens (I) vorkommenden Zahlen x n und — . Zeige , dass für
n

n + 1 x n + —
j : 2 stets die Ungleichung x n _, x 2: Va gilt (n e N) .

Q _ ^

die Beziehung xn + 1 — x„ = — — — und begründe damit die
^

b) Bestätige die Beziehung xn + 1 — x„ = — — — und
Ungleichungen x2 ^ x 3 ^ x4 ^ . . .

”

c) Die aus zwei positiven Zahlen u und v gebildete Zahl

x2 ^ x 3 ^ x4 ^ . . .
2 uv

i positiven Zahlen u und v gebildete Zahl - bezeichnet
man als harmonisches Mittel * von u und v .

u -tv
Beweise, dass für die beim Iterationsverfahren (I) auftretenden Zahlen¬

paare

Das arithmetische Mittel der Zahlen eines Paars ist die erste Zahl des
nächsten Paars . Das harmonische Mittel der Zahlen eines Paars ist die
zweite Zahl des nächsten Paars .

* Archytas , der als Staatsmann , Feldherr , pythagoreischer Philosoph und Mathematiker um 375 v . Chr . in
Tarent wirkte , sagt , dass es in der Musik drei Mittel gebe , und zwar die pEap aQiOpr |TiKf| (mese arithmetike ) ,
das arithmetische Mittel , für das u — m = m — v gilt , die pecrq ye&psTpiKri (mese geometrl ke) , das geometri¬
sche Mittel , für das u : m = m : v gilt , und schließlich die psar ] imsvavrir ) (mese hypenantie ) , das konträre
oder entgegengesetzte Mittel , das auch piaTj appoviKTj (mese harmonike ) , harmonisches Mittel , genannt
wird und für das (u — m) : u = (m — v) : v gilt . Hippasos (Mitte 5 . Jh . v . Chr .) soll , anderen Berichten zufolge ,
als erster den Ausdruck harmonisches Mittel gebraucht haben . Löst man jeweils nach m auf , dann erhält man

die bekannten Ausdrücke
U

bzw . ]/üv bzw . —UV
.2 y u + v

Die Mittel ergeben sich aus Sonderfallen von Proportionen . Setzt man nämlich in der arithmetischen Propor¬
tion a — b — c — d bzw . in der geometrischen Proportion a : b = c : d die Innenglieder b und c gleich , dann
erhält man mit den Außengliedern u und v die oben angegebenen stetigen oder fortlaufenden Proportionen
(siehe Seite 99) u — m = m — v bzw . u : m = m : v. Allmählich wurde es Brauch , eine solche dreigliedrige
stetige Proportion peaÖTriq (mesötes ) = Mittelheit zu nennen . Euklid (um 300 v . Chr .) verwendet nur die

geometrische Proportion . In Buch VI , Satz 13 der Elemente nennt er |/ uv mittlere proportionale Größe (psaov
(isyeOog dvaXoyov [meson megethos anälogon ] ) , was Johannes de Sacro Bosco ( 1200- 1256) mit medium

proportionale übersetzt . Johannes Widmann von Eger (um 1460- nach 1500) bildet 1489 in seinem Re¬
chenbuch dafür eyn mittel zal und Johann Scheybl (1494- 1570) in seiner Euklidübersetzung Das sibend/acht
und neunt buch des hochberümbten Mathematici Euclidis Megarensis von 1555 das mittel proportional zwaier
zalen oder kurz mittel . Den Ausdruck geometrisches Mittel hat anscheinend 1808 Georg Simon Klügel
(1739- 1812) in seinem Mathematischen Wörterbuch geprägt . Bei Johannes Kepler (1571- 1630) findet man
1615 medium arithmeticum in seiner Nova Stereometria doliorum vinariorum - »Neue Raummesskunst für
Weinfässer « die Eindeutschung arithmetisches Mittel erst im 1. Viertel des 19 . Jh .s .
(Übrigens verwechselt Scheybl wie so mancher andere den Mathematiker Euklid [um 300 v . Chr .] mit
dem Philosophen Euklid von Megara [ um 450 - um 370 v. Chr .] , einem Schüler des Sokrates . Federigo
Commandino [ 1509- 1575] weist 1572 in seiner Euklidübersetzung auf diesen Irrtum hin .)
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8 . Wähle einen Startwert x L und berechne mit dem Iterationsverfahren (I)
die ersten vier geltenden * Ziffern der Dezimalentwicklung von
a) ]/817Ö b) ]/14,36 c) \/0 ,088855 d) j/0,000001234 .

9 . Wie viel Stellen vor dem Komma hat die Dezimalentwicklung der Wurzel
und wie heißt die erste Ziffer?

a) ]/5 b) |/37,64 c) j/428 d) ]/3650809

e) |/82145 f) j/8214,5 g) l/821,45 h) l/82,145
10 . a) Welche Ungleichung für ]fa folgt aus

l ) l > a £ 0,01 ; 2) 0,01 > a ^ . 0,0001 ; 3) ^ > a ^

b) Wo steht in der Dezimalentwicklung von 1) / f/5 ; 2) 1/0,025 ;
3) 1/0,004 die erste von 0 verschiedene Ziffer und wie heißt sie?

11 . Wie muss bzw. kann der Anfang der Dezimalentwicklung der Wurzel
aussehen ? (Die Punkte bedeuten weggelassene Ziffern .)
a) 1/0,7 . . . b) 1/0,006 Z7 c) 1/0,12 . . . d) l/0,0147 . . .

12 . Berechne nach dem Divisionsverfahren den ganzzahligen Teil der Wurzel ,
a) l/lOÖÖ b) 1/80656 c) j/338725 d) 1/3387,25

13 . Berechne nach dem Divisionsverfahren den auf Hundertstel gerundeten
Wert von a) j/l9 , b) l/l87,5 , c) j/l 7,7241 , d) |/0,6196 .

14 . Auf der in Abbildung 48 . 1 gezeigten altbabylonischen Keilschrifttafel
YAT 6598 (um 1600 v . Chr .) wurde zur näherungsweisen Berechnung von
Quadratwurzeln folgendes Verfahren angewandt , das auch Heron (um 62
n . Chr .) in seinem Ilepi pkzjxnv - »Vermessungslehre « - angibt :

1/ p 2 + q » P + ~ Cp > 0 ; p 1 + q ^ 0)

Welcher Wert ergibt sich damit

a) für l/3 aus der Zerlegung 3 = 4 — 1 ;
b) für l/3 aus der Zerlegung 3 = 2,89 + 0,11 ;
c) für j/ö aus der Zerlegung 6 = 6,25 — 0,25;
d) für l/435 aus der Zerlegung 435 = 400 + 35;
e) für l/435 aus der Zerlegung 435 = 441 — 6;
f) für l/l000 aus der Zerlegung 1000 = 1024 — 24?

Vergleiche das Ergebnis mit dem Näherungswert des Taschenrechners .
* Die geltenden Ziffern werden von links nach rechts gezählt . Die erste von 0 verschiedene Ziffer ist dabei die

erste geltende Ziffer .
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15 . Welcher Näherungswert x2 ergibt sich nach der Formel von Aufgabe 14
für 1fa , wenn man mit Hilfe eines Schätzwertes x , den Radikanden in der
Form a = x\ + (a — x { ) darstellt ? Vergleiche damit das entsprechende Er¬
gebnis beim Iterationsverfahren (I) .

16 . Von Heron (um 62 n . Chr .) wird angenommen , dass er für Wurzeln der

Form |/ n 2 — 1 mit ne \Kl auch die Näherungsformel

]/n 2 — 1 ä n - 1- - verwandte .v In - 1 (2n - 1 ) • {In + 1 )

a) Zeige , dass die von Heron angegebene Näherung 1/3 » ff mit dieser
Formel gewonnen werden kann .

b) Welcher Näherungswert ergibt sich aus obiger Formel für

1) |/l5 , 2) j/63 , 3) l/l20 ?

c) Vergleiche die HERONsche Näherung für ]/
~
3 mit der von Archimedes

(um 287- 212 v . Chr .) stammenden Abschätzung

265 1351- < V3 < - .
153 780

Vergleiche die Ergebnisse jeweils auch mit den von deinem Taschenrechner
gelieferten Näherungswerten .

17. Die Babylonier rechneten bekanntlich im Sexagesimalsystem*
, also im

Stellenwertsystem mit der Grundzahl 60 . In den Übersetzungen ihrer Keil¬
schrifttexte werden Zahlen meist in der Form geschrieben , dass hinter die
Ganzen ein Strichpunkt und zwischen Einer , Sechziger, . . . bzw . zwischen
Sechzigstel , 3600stel, . . . jeweils ein Komma gesetzt wird . Zum Beispiel
bedeutet 4,20 ;25,08 die Zahl 4 • 60 + 20 + + 3^ 0.

a) Prüfe die aus einer babylonischen Wurzeltabelle stammende Gleichung

j/0 ; 38,24 = 0 ;48 .
b) Gib den Wert von 1) ]/%45 , 2) ]/l ;33,45 , 3) ]/ll ; 13,21

im Sexagesimalsystem an .
18 . Die Keilschrifttafel VAT 6598 (Abbildung 48 . 1 ) enthält folgende Aufga¬

be : Ein Tor . \ GAR und 2 Ellen Höhe , 2 Ellen Weite . Seine Diagonale ist
was?
a) Wie viel Ellen misst die Diagonale , wenn 1 GAR = 12 Ellen * * gilt?

b) Auf der Tafel wird für die Länge der Diagonale der Wert
0 ;41,15 GAR angegeben . Zeige , dass dies keine exakte Lösung ist und
dass sie sich nach der Näherungsformel von Aufgabe 14 ergibt , wenn

* sexagesimus (lat .) = der sechzigste
** 1 GAR bedeutet etwa 6 Meter , 1 babylonische Elle also etwa 5 dm .
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Abb . 48 . 1 Rückseite der altbabylonischen Keilschrifttafel VAT 6598 , aufbewahrt in
Berlin, Staatliche Museen : Vorderasiatische Abteilung ; Ton tafeln , samt zugehöriger
Autographie (wörtlich : Selbstgeschriebenes) , d . h . handschriftlicher Übertragung der
in den Ton eingedrückten Zeichen

man für p 2 die größte Quadratzahl wählt , die im Quadrat der Diagona¬
len enthalten ist .

c) Für dieselbe Aufgabe wird auf der Tafel auch noch die Lösung
0 ;42,13,20 GAR angegeben . Vergleiche die Genauigkeit der beiden Lö¬
sungen .

19 . a) Auf der babylonischen Keilschrifttafel* AO 6484 aus Uruk aus der
Zeit der Seleukiden (321- 63 v . Chr .) findet man für f/2 den sexagesi-
malen Wert 1 ;25 .
1 ) Auf wie viel Dezimalstellen stimmt dieser Wert mit dem von deinem

Taschenrechner angezeigten Wert überein ?
2) Man kann nur vermuten , dass die Babylonierdiese Näherung durch

zweimalige Anwendung der Formel von Aufgabe 46/14 gefunden
haben , und zwar beginnend mit pf = 1 ; der sich dabei ergebende
Näherungswert wird als p 2 genommen . Führe diese Rechnung
durch .

• b) Auf der altbabylonischen Keilschrifttafel * * YBC 7289 (Abbildung
49 . 1 ) steht auf der Diagonale eines Quadrats die Sexagesimalzahl
1 ;24,51,10.

* aufbewahrt im Louvre zu Paris in der Abteilung Antiquites Orientales
** aufbewahrt in der Yale Babylonian Collection in New Haven (USA)
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1 ) Auf wie viel Dezimalstel¬
len stimmt dieser Wert für
]fl mit dem von deinem
Taschenrechner hierfür an¬
gezeigten Wert überein ?

2) Wie die Babylonier diesen
recht genauen Wert gefun¬
den haben , wissen wir
nicht . Nahe hegend er¬
scheinen die beiden folgen¬
den Verfahren .
1 . Art : Man führt zuerst
das in a 2 beschriebene
Näherungs verfahren noch
einen Schritt weiter .
2 . Art : Man wendet zuerst
auf 1 ;25 das Iterationsver¬
fahren (I) von Seite 38 f.
einmal an .
Zeige , dass man jedes Mal
1 als Näherungswert
erhält . Rechnet man dann
diesen Bruch in eine Sexa-
gesimalzahl um * und bricht
dem Semikolon ab , so erhält
Zahl . Weise dies nach .

Abb . 49 . 1 Autographie der altbabylo¬
nischen Keilschrifttafel YBC 7289 (um
1700 v . Chr .) . Auf der Quadratseite links
oben liest man « < = 30 , auf der Diago¬
nale J « 7 <v f < als Näherungswert für
j/2 . Darunter steht die entsprechende
Länge der Diagonale .

nach der 3 . Sexagesimalstelle hinter
man die auf der Diagonale stehende

3) Berechne mit Hilfe dieses Näherungswerts die Länge der Diagona¬
le als Sexagesimalzahl , wenn die Quadratseite die Länge 30 hat .
(Abbildung 49 . 1 )

20 . Die Schallgeschwindigkeit in trockener Luft von 0 °C beträgt
c0 = 331,6 m/s . Sie nimmt mit steigender Temperatur zu , und zwar gilt bei

der Lufttemperatur t (in °C) : c = c0 1 +
1

273,2 K

a) Wie groß ist die Schallgeschwindigkeit bei 20 ° C bzw. 40 °C?
b) Bei welcher Temperatur beträgt die Schallgeschwindigkeit 325 m/s?

21 . Wenn eine schwingende Saite von der Länge l, dem Querschnitt q und der
Dichte q mit einer Kraft F gespannt ist , dann hat ihr Grund ton die Fre -

* Beispiel einer Umrechnung :

3
35

36
T
6Ö

5
6Ö

1

60
:

60

60
+ 3600

:
60

+
3600

60

216000
= 0 :05,08 ,
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