UNIVERSITATS-
BIBLIOTHEK
PADERBORN

®

Algebra

Barth, Friedrich
Munchen, 1999

7 Ungleichungen

urn:nbn:de:hbz:466:1-83513

Visual \\Llibrary


https://nbn-resolving.org/urn:nbn:de:hbz:466:1-83513

7 Ungleichungen

Die hydrostatische Waage
fas ist gleich, was ist ungleich?

Konig HiEroN 11. von Syrakus (*306, 275 Tyrann, 265 Konig, 1215 v.Chr.) hatte
einem Goldschmied Gold iibergeben, damit er daraus eine Krone fiir eine Gotterstatue
schmiede. Es wurde ihm angezeigt, der Goldschmied habe Gold weggenommen und
Silber beigemengt. Hierons Verwandter und Freund ARCHIMEDES (»1<:/:,:u;r)r;u um
287212 v.Chr.), der wohl gréBte Mathematiker des Altertums, sollte den Verdacht
erhiirten oder widerlegen, ohne die Krone zu beschidigen. Im Bade kam ARCHIMEDES
die Erleuchtung, die ihn so iiberwiltigte, dass er mit dem Rufe ebpnru (hetureka) — »ich
hab’s gefunden« — nackt nach Hause eilte. Der Goldschmied hatte unterschlagen. -
Uberliefert wurde diese Legende von dem Baumeister Marcus Vitruvius Pollio
(1.Jh. v. Chr.) in seinen vor 31 v. Chr. verfassten De architectura libri decem, dem einzi-
gen erhaltenen Lehrwerk der Antike iiber Architektur und Technik. Im Losungsheft
wird VITRUVS Bericht wiedergegeben, dessen Ubersetzung auf Seite 164 abgedruckt ist.




7 Ungleichungen

7.1 Ein graphisches Verfahren zum Losen linearer
Ungleichungen

Dir ist bekannt, wie man die Losungsmenge einer linearen Ungleichung mit-
tels Aquivalenzumformungen bestimmt. Zur Erinnerung

Beispiel 1:
5x—6<0 ||+6
3x<6 -3
x<4, also L=]—o0;4[.

Fir viele Ungleichungen ist dieses Vorgehen das bequemste. Es gibt aber
Ungleichungen, bei denen sich ein graphisches Verfahren lohnt, wie du im
nachsten Abschnitt sehen wirst. Als Vorbereitung dazu dienen die folgenden
Uberlegungen.

Du hast in 5.4 gelernt, dass 3x — 6 der Term einer Funktion ist, deren Graph
die Gerade mit der Gleichung y = 3x — 6 ist (Abbildung 166.1). Die Unglei-
chung 3 x — 6 < 0 verlangt von uns, all diejenigen x-Werte zu suchen, fiir die
die Funktionswerte negativ sind. Um sie zu finden, bestimmen wir zunidchst
die Nullstelle dieser Funktion, d. h. die Losung der Gleichung3 x — 6 = 0. Wir

y i
11 x-Werte mit positiven
; Funktionswerten
. s 1 |
x-Werte mit negativen 1 L ¥

Funktionswerten

Abb. 166.1 Die Gerade mit der Gleichung y =3x — 6
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erhalten x = 4. An dieser Stelle schneidet die Gerade die x-Achse. Da die
Steigung der Geraden den Wert 3 hat, also positiv ist, verlduft die Gerade von
links unten nach rechts oben. Die Funktionswerte sind somit links von der
Nullstelle 4 negativ, rechts davon positiv. Damit konnen wir die Losungsmen-
ge der Ungleichung direkt ablesen zu L = ] —o0; 4[.

Zur Lésung der Ungleichung 3 x — 6 < 0 istes aber gar nicht notig, die Gerade
zu zeichnen. Es geniigt nimlich zu wissen, wo sie die x-Achse schneidet und
welches Steigungsverhalten sie besitzt. Bei einer steigenden Geraden liegen die
negativen Funktionswerte links von der Nullstelle und die positiven rechts
davon: bei einer fallenden Geraden ist es genau umgekehrt. Diesen Sachver-
halt geben wir durch Abbildung 167.1 wieder:

ix—6 iy 0 5
e I e ‘\.
4

Abb. 167.1 Vorzeichenverteilung beim Term 3x — 6
Aus ihr kann man die Lésungsmengen folgender vier Ungleichungen sofort
ablesen.
ix—6<0=L=]—00;4[

2 X 0= L=14+o[
3Ix—6<0=L=]—00;4]

— 6>
x—6=0=L=[4,+0]

b B2

Beim graphischen Verfahren zur Losung von Ungleichungen 16st man also
durch Rechnen zunichst eine Gleichung und macht dann eine Zeichnung, aus
der man die Losungsmenge abliest. Zur Einiibung ein weiteres Beispiel.

Beispiel 2:
—T7x+13 =0
Nullstelle: —7x+13=0<= x=%
Steigung = —7<0
Die Vorzeichenverteilung gibt Abbildung 167.2 wieder. Aus ihr liest man
ab, dass L =] — oo; ] ist.

_ | X
13

[

-~
-

Abb. 167.2 Vorzeichenverteilung beim Term —7x + 13

Das graphische Verfahren ist nur dann anwendbar, wenn eine Seite der Un-
gleichung den Wert null hat. Andernfalls muss man durch Aquivalenzum-
formungen erst eine solche Nullform* herstellen. Dazu

* Die erste Nullform einer Gleichung findet sich in der Arithmetica integra (1544) des Michael STIFEL (1487(?)
bis 1567), folium 283r.
Systematisch fithrte die Nullform Thomas Harrior (1560-1621) ein. 1631 stellten Freunde, vor allem Walter
WARNER, aus seinen hinterlassenen Manuskripten einen diinnen Band Artis analyticae praxis, ad aequationes
Algebraicas nova, expedita & generali methodo, resolvendas. wactatus zusammen, der starken Einfluss auf
Rene DESCARTES (1596 —1630) ausiibte. Wir erinnern daran, dass sich in diesem Werk zum ersten Mal die
nicht von HarrioT erfundenen Symbole < und > finden. Walter Warner hat HarrioTs handschriftliche
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Beispiel 3:
03—32x<—-27x—19 ||+
2,2—0,5x<0
Nullstelle: 2.2
Steigung = — 0,5<0
L=144;+[.

)

22 — 0.5x + 0 T
= — - X
4.4
Aufgaben
I. a) 2x—5<0 b) 0 <—3x—12
2. a) 31 —2x>0 b) 0> —24x + 74

(&9
)
S
L

56x—049>0 b) 0<1—0,001x ﬂ
Sr—1=a_3d ) (Z

4. a) 3x
b) 82x+3(—1zx+5) = 44x—6(11 —3ix) EEay
Abb. 168.1 nterschrift
< : 152 - : A R
5. a) (2x— 2] >2x(2x—1) Harriors im Brief an
b) (0,3 —2x)(0,3 +2x) < 0,09 — 4x? KEPLER vom 13.7. 1608

7.2. Produktungleichungen

Das graphische Losungsverfahren von 7.1 bewihrt sich besonders bei Pro-
duktungleichungen. Unter einer Produktungleichung verstehen wir eine Un-
gleichung, deren eine Seite ein Produkt und deren andere Seite null ist. Ein
Beispiel hierfiir ist

Bx+35)(10—-2x)<0.

Man konnte diese Ungleichung mittels der Vorzeichenregeln rein rechnerisch
I6sen. Das links stehende Produkt ist ndmlich nur dann negativ, wenn beide
Faktoren verschiedenes Vorzeichen haben; dies fiihrt zu folgender Fallunter-
scheidung: i ;
(1. Faktor positiv und 2. Faktor negativ)

oder
(1. Faktor negativ und 2. Faktor positiv) d.h.

Zeichen <€ und > drucktechnisch zu < und > vereinfacht. — Sir Walter RALEIGH sandte 1585 HARRIOT
nach Amerika, wo er North-Carolina erforschte und kartographierte. Nach seiner Riickkehr nach England
(1587) tat er sich als Astronom hervor, der mit Johannes KEPLER (1571-1630) korrespondierte; er be-
obachtete die Sonnenflecken und 1610 nach Galileo GavLiLEr (1564 1642) die Jupitermonde,

Erst 1734 verband Pierre BouGuer (16.2. 1698 Croisic/Bretagne — 15.8.1758 Paris) die Zeichen WARNERS mit
dem Gleichheitszeichen des Robert RECORD(E) (1510(7) — 1558) zu den Symbolen =< und =. BOUGUER war
einer der Geoditen, die Frankreich 1735 zur Vermessung eines Meridianbogens nach Peru sandte,
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(Hr+5b®AUﬁ—l¥(Mmﬂh\+ﬁ<Mm (10 — 2x > 0))
(x> —3Ax>5 v (x<—3AXx<5)

XN .\'ﬁi—_;

L=]—00; —3[ w5 +oof

Dieses rein rechnerische Verfahren ist aufwendig und auch uniibersichtlich.
Einfacher findet man die Losungsmenge mit dem graphischen Verfahren. Da-
zu berechnet man fir jeden Faktor zuerst die Nullstelle, zeichnet dann die
dazugehorige Vorzeichenverteilung und ermittelt iiber die Vorzeichenregeln
die Vorzeichenverteilung des Produkts, aus der man die Losungsmenge ab-
liest. Betrachten wir nochmals die Produktungleichung

(Gx+5) (10 — 2x) <0

Nullstellen: 3x4+5=0<x=—3 Steigungen: 3>0
10—2x=0<=x=95 —2<0
355 — 0 A +
A | . == X
10 — 2x 4 i _
! X
— 0 + 0 -
(3 5) (10 — 2x) |l i -
—3 5

3
Abb. 169.1 Vorzeichenverteilung beim Term (x + 5) (10 — 2 x)

Aus Abbildung 169.1 liest man ab L= ]—o00; — 2[ v ]5; + o[

Das graphische Verfahren ldsst sich im Gegensatz zum rechnerischen Verfah-
ren mit Leichtigkeit auch auf Produkte mit mehr als zwei Faktoren tibertra-
gen, Hierzu ein

Beispiel: x(1—x)(2x+8)=0

Nullstellen: x =0 Steigungen: 1>10
=x=l=x—1 —-1<0
2x4+8=0<=x=—4 2=>0

1 = ? + + :

1 — X = ¥ (|]I I X

2x + 8 sl 0 e + .
= | | =3 b

( - 0 0 -

x(1—x)2x+8) st Il | g JI x

4 0 1

Abb. 169.2 Vorzeichenverteilung beim Term x(1 — x) (2x + 8)
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Aus Abbildung 169.2 liest manab L=]—o00; —4]u[0:1]

Wenn eine Ungleichung nicht in Produktform vorliegt, dann kann man sie
manchmal durch Faktorisieren in Produktform bringen und losen.
Dazu ein

Beispiel: x° +4x? —21x>0
Aefaetiol et 9= ()

xX(x+N(x—=3)>0 L=1-7:0[u]3; +o0[
X o = (Il =+
| X
S — 0 + ' +
K] 1 oo
. = Z =0
x—3 S { | 0 sl
| - 0 + 0 — 0 +
I —3
x(x+ Hix—3) I b . } ———— X
—7 0 3
Abb.170.1 Vorzeichenverteilung beim Term x(x + 7) (x — 3)
Aufgaben
1. a} 2} ". ﬂ < U h) _\'{\' — l'} = {}
) (x+1DEx—-1=Z0 d) (x+2)(—x+ 4)20
2. a) (x+2)°>0 b) ( — ==
C){\H}f“ﬂ d) —\;7)5
e) (x+1)72>0 f) (x—3Y <0
3. a) 12x+6)(x+3)<0 b) 53x+1)2x—=5)>0
¢) —33x—2)(—3x—-3)=<0 d) —(—3x—H(=3x+H=0
4. @) (x—1) D(x—3)>0 b) 3x2x+9)(—x+7)<0

c) {0.1_\—0,{}1](1.,_ x)(1,24x)=20 d) B3—-7x)Bix—=7):x=<0

o5. a) —4x(2x—3)(3 —2x)(3+2x)>0

o0

b) Gx—4)(%—2x)Ex++%) (0,1 — 0,001x) <0
20 —.1‘2((].()1_1. 4 I(J){.\ +1000) = 0

6. a) 3x—x*=20 b) 25x> —36<0
¢) 2,89x—1,69x*>0 d) x‘* —3x2 —10x=<0
7. a) (x—a)(x—5)<0 b) (ax—1)(bx —b)> 0

) —x(a—x)(b+x)*=0 d) —(a®*x* —b*) (ax+b*) <0
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7.3 Bruchungleichungen

Die Vorzeichenregeln fiir die Division entsprechen vollig denen fiir die Multi-
plikation. Deshalb konnen wir das graphische Losungsverfahren auch auf
Bruchungleichungen anwenden, wenn wir sie auf Nullform bringen und Zih-
ler und Nenner faktorisieren.

Beispiel:

x+1 2 o :

i g S D = Q\{~1;0;1}

x — 1 x x-—1

x4 2 e

S AR TR

x—1 x x"—1

‘\_i_z 2 _22 2 3

B e U A

x(x—1)(x+1) =
gl 0 L=[-2—1[U]0;1[

2 < L =—=2:—1Tw]0;

x(x—=1)(x+1) s

X 1.4 i ? & | ¥ ! - X

X __ B == + X

x —1 ayia i B = ‘ i X
| :

X 1 & L : : + +—> X

x+2
x(x —1)(x+1) i ? 2 + L ___—+, X
—2 1 0 1

x+2
x(x—1)(x+1)
Die roten Striche kennzeichnen die nicht zuldssigen x-Werte.

Abb.171.1 Vorzeichenverteilung beim Term

Weil bei Bruchungleichungen Nenner auftreten, die null werden konnen, miis-
sen wir auf die Definitionsmenge achten. Am besten streicht man beim graphi-
schen Losungsverfahren die nicht zuldssigen x-Werte von vornherein weg.

Aufgaben
1 RS — 1
1.a) — <0 b) >0 ) =0
X x + 1 X —4
disee ) =8 .4 f) i > ()
)2_\—1—‘3 i 3x+2 = 03x+12 "
x+1 3—x 2 —3x
2. a >0 b) < () c) <0
) x — 1 X — 3 Ix—2 —
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2X = lx—3 5 I) =0 X
< o G < =
d 1l—x = ¢) 3x — 3 0,9+ 3x
: 8 o ; 2het ; & A ——
2eit) X HE ) e B 08 —2x " £
4. a) 1 > () b) 2 =)
s > ) =
= x(x -+ 2) (x—=2)(x+3) —
—1 3
¢)—— >0 d) - — =)
X (x +3)°
X x> L 6x+9 _
I <0 b =0
5. a) ) ( ) Z——
9%x2 — 16 i Ch—x+x*
P <0 i 54
Ox* + 16 — 24x T— X
X x+ 1
6. a) =] b) <1
x—1 x—1
i —\(2
0 2x 1 . d) 0,2x+ 0,1 =7
4x4+ 2 — 3x+ 0,6
1 1 1
7.a) x < b) — =
X x+1 " x
—1 1 0.1 0.2
c) - < d) =
2x+1 | +2x x+02  02x+41
X 2x 6x 6x+1
8.a = b <
)1'+]_2_\'+| }.1'—!—1_,1‘—1
3x 1 —2x 3x 1 —2x
C d — <
) 2 S aniDna i ) 2= 3% = 2x +1
1 1 2 [y SR
9.a) — + =0 b) - =0
X -~ 1 i e j v i —
3+ x 6 ) 4x—1 4x+1 _
c) S =1 d) + <8
X 3—x x+1 x—1
b extdq-2 x—1 1 x* 4 x
Ca) - — = S e L > J
L X S : ) x—2 24 x = (x—2)°
1 1 = 2 d) 5x°—6 ! 9—23x _ 4x—5
Rkt =l h _ i = A
S = 252 —4 " 152 —6%  20x2+ 8%

1
b6x



X = , X e X =
11. a) =<0 b) <1 gc) -<a
xX—a x—a = X —da
I : 1 2
12.a) 1> > (.1 b) - < — <2
e, 5 3x-—5
2 _ 10 i
¢c) —1=—£252 d —10< =3
b s 2x+ 1
13. a) Fiir zwei von null verschiedene rationale Zahlen gelte a < b. Welche
: . I 1
Bezichung besteht dann zwischen den Kehrwerten — und ; ?
a ?

Hinweis: Multipliziere die gegebene Ungleichung mit ; und beachte
HESS v . : ab
die notigen Fallunterscheidungen.

b) Wende die Regeln aus a an fiir

1 i 3

1) —>1 2) —<—3 3) s 10
X b 2%
l | " 1

4) — <1 5) > —3 6) < 4
x 2% =

7.4 Ungleichungen mit Absolutbetriagen

Treten in Gleichungen bzw. Ungleichungen Absolutbetrage auf, so musst du
immer eine Fallunterscheidung vornehmen. Dabei musst du, wie du weilt,
danach unterscheiden, ob der Term zwischen den Betragsstrichen positiv, null
oder negativ ist. Der Term zwischen den Betragsstrichen ist bekanntlich das
Argument der Betragsfunktion.

Ist nun das Argument groBer als 0 oder gleich 0, dann kannst du die Betrags-
striche durch eine Plusklammer ersetzen. Ist das Argument hingegen kleiner
als 0, dann musst du die Betragsstriche durch eine Minusklammer ersetzen.
z.B.

)

( 2x—3), falls 2x—3=0,
& | A ~ 2 —

|—(2x—3), falls 2x—3<0.

-

Jblicherweise gibt man aber die Bedingungen 2x —3 = Ound 2x —3 <O als
Bedingungen fir x an und 16st die Minusklammer im Kopf auf, nimlich

[y - r 3
- = | E2X— D '.{.1.].1.“ X "_;: 2 s
=X =2 =5 o) fy 3
13—2x, falls x<s.

Die Zahl 3 trennt die beiden Fille. Sie ist aber auch die Nullstelle des Argu-
ments. Es ist daher zweckmiBig. zuerst die Nullstelle des Arguments zu be-
stimmen. um mit ihrer Hilfe die Vorzeichenverteilung des Arguments ermit-
teln zu konnen.
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Beispiel 1: |—2x — 5]
Nullstelle des Arguments: —3x — 15 =0

x=—1

g

Vorzeichenverteilung: |

Somit gilt:

X—q5; dalls x=—1.

5 7
| —3x — 15| =

Lhitd: Lnjts

X +1g, falls x>—Z.

Beachte: An Stelle der Minusklammer — (— 2x — 1) haben wir gleich
3 x + 15 geschrieben.

Kommen nun Absolutbetrige in Gleichungen oder Ungleichungen vor, dann
musst du in den jeweiligen Vorzeichenbereichen die zugehorigen Gleichungen
bzw. Ungleichungen 16sen. Die Losungsmenge der Betrags(un)gleichung ist
dann die Vereinigungsmenge der einzelnen Losungsmengen. Zwei Beispiele
mogen dir das veranschaulichen.

Beispiel 2: |3x—4| <2x—1
Vorzeichenverteilung: 3x —4=0 < x =3

|
s ——
1% =

T r o
0 1 3
1.Fall [x<%] —3x+4<2x—1
|
5= 5x
l=x = L, =[1 i[
2.Fall [x=% Sx —4 =<2x—1
= =3 = L, =57
Somit gilt L =L, UL, = [1:3].
Beispiel 3: |—2x— 5| > %x
Vorzeichenverteilung: —2x—5=0 < x = —
4 0 —
' =y !'—. = = —1—* X
SR P 10 0 1
1. Fall !_\<_;; —3x—>2x
— X > 1
X<—35 = Ly =]—00; —¢[
da —1<-—%.



Somit gilt L =

J,_.] L, Lz = II;I'

Schwieriger wird es, wenn mehrere Absolutbetrige vorkommen. Dann musst
du fiir jedes Argument die Vorzeichenverteilung feststellen und anschlieBend
die Zahlengerade so in Intervalle einteilen, dass in keinem der Intervalle ein
Argument das Vorzeichen dndert. Die Nullstellen der Argumente trennen die
Intervalle. Wir wollen sie immer zum rechten Intervall dazunehmen. Dazu

Beispiel 4:
Vorzeichenverteilung:

bJ

Fall | —1<x<0

Fall[o=x

L

] =[x+ 1]>x

L: LEI\“—)IJ_-)I\.JIL.‘:.:]—-L:I‘-: _:ii[,

7 9 0 +
: } ! — - X
x4+ 1 T 0 7+
} - X
1. Fall 2. Fall 3. Fall
E E b X
—1 0 1
—x—(—Xx—1)=>&
—x+x+1>x
=
x| by =1—w;—1[
—x—(x+1)>x
—x—x—1>x
-1>3x
X<—3 L,=[—-1;—3[
x—(x+1)>x
x—x—1>x
—1>x
xr=—1 Ly=1{ }
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Aufgaben

LN

Bestimme die Losungsmengen der folgenden Gleichungen:

a) |x|=0 b) |x|=1 c) |x|==3.75 d) |x|=]—24]
e |x|—8=11 f) 3—|x|=7 g) 2:|x|+5=9h) 5+4|3x|]=5
) |x—1]=15 K) |x+4|=6 D [2x+5/=0 m)|9—7x|=30

Welche Punktmengen auf der Zahlengeraden werden durch die folgenden
Ungleichungen beschrieben?

a) |x| <1 b) |x|=2 ¢ |x—3|<1 d) |4x+10|>5
a) [2x—1|<35x b) [x+1|=2x—1

¢) 2-|x—-05|=2x+1.5 d) —|3—x|>3—x

e) —3:|ix+33>10—x f) —2,5-|12x—1,2|=10—2x

Bestimme die Losungsmengen der folgenden Ungleichungen und veran-
schauliche sie auf der Zahlengeraden.

a) 1<|x|<3 b) 1<|x—3|<4

c) |x|=x d) |x|<|x+ 3]

e) x<2<|x| of) 5x+7>|2x—4|=x—1
a) |x|=1-—|x| b) |2x+4+ 3| = |3x — 2|

¢) [4x—12|+5=4—|x+2 d [x+1|=x+|x—1]|

e) |2x—9|=2x—9 B 3o b2l =0 — | 2 —16
ay x| e+ 1= 02 b) |x|—|x+1|=Zx+2
=Rl =2 d) —|x|—|x+1|l=2x+2
a) | x+2|—|2x—1|<2x

b) |3x+2|—2-|3x—3|<1x+3

¢) |12,5—12x|+|24x+7.5|=3.6x+1.5

a) |x|+|x+1|—=|x+2]|>0

b) |x—1.5|+|2x—5]—|3x+6|L4x—2,5

Lad|bd

O [ix+1]—|x+41213x+1]—|x+
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7.5 Lineare Ungleichungen mit zwei Variablen

7.5.1 Graphische Losung einer linearen Ungleichung mit zwei Variablen

Die Losungsmenge einer linearen Gleichung mit zwei Variablen ldsst sich geo-
metrisch in einem Koordinatensystem als Menge von Punkten deuten, die auf
einer Geraden liegen. So ergibt sich als Losungsmenge fiir die Gleichung
3x + 2y — 12 = 0 die Gerade der Abbildung 177.1.

I |

Abb.177.1 Die Losungsmenge der Gleichung 3x +2y—12=0

Nun betrachten wir statt dieser Gleichung eine Ungleichung, zum Beispiel
3x + 2y — 12 £ 0. Wie sieht in diesem Fall das geometrische Bild der L&-
sungsmenge aus? Am leichtesten lasst sich diese Frage beantworten, wenn
man die Ungleichung nach y auflost. Wir erhalten als neue Ungleichung
y < —3x + 6. Wegen des =-Zeichens sind die Punkte der Geraden von Abbil-
dung 177.1 auch Losung dieser Ungleichung; so ist z.B. (2|3) ein Losungs-
punkt. Wegen des <-Zeichens ist dann auch jeder Punkt (2| y) mit y < 3,d.h.
jeder Punkt, der unterhalb des Geradenpunkts (2|3) liegt, ein Lésungspunkt
der Ungleichung (Abbildung 178.1). Weil die fiir den Punkt (2|3) angestellte
Uberlegung fiir jeden Geradenpunkt richtig ist, konnen wir sagen: Die Lo-
sungsmenge der Ungleichung y < — 3x + 6 ist die Menge aller Punkte unter-
halb der Geraden mit der Gleichung y = — 3 x + 6 und die Gerade selbst. Eine
solche Punktmenge heil3t Halbebene.

Bei der Ungleichung y < — 3 x + 6 gehort die Randgerade natiirlich nicht zur
Losungsmenge. Ersetzt man < durch >, dann sind die oberhalb der Geraden
gelegenen Punkte Losungspunkte. Einen Uberblick iiber die mdglichen vier
Fille gibt dir Abbildung 178.2.
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S

Abb. 178.1 Die Losungsmenge der Ungleichung 3x + 2y

¥y

y By
o

yEmx+t

y yi

y y
/ X

: yZmx +t

[ y>mx+ i

Abb. 178.2 Die Losungsmengen der Ungleichungen y = mx + ¢

>
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Aufgaben

Zeichne die Losungsmenge!

l. a) y<x+3 b) y < —3x ¢) y>2x—5 d)y=—3x+4
2. a) y=12 b) y=-—3 ¢) x<0 () d) x=-2()
3. a) x+y<0 b) 2x+4y—6=0

¢) —3x+2y+4<0 d 2x—-%y—1%2>0

7.5.2 Systeme linearer Ungleichungen mit zwei Variablen

Eine Losung eines Systems linearer Ungleichungen muss jede einzelne dieser
Ungleichungen erfiillen. Sie muss also in jeder der Losungsmengen der einzel-
nen Ungleichungen enthalten sein und damit auch in der Schnittmenge dieser
Losungsmengen. Dazu

Beispiel 1: I y<3ix+2 Iy —35x+4
ist ein System von zwei linearen Ungleichungen mit zwei Variablen. Eine
Losung dieses Systems muss sowohl der Losungsmenge L, wie auch der
Losungsmenge L; angehdren, also Element der Schnittmenge L;n Ly
sein. In der geometrischen Deutung ist die Losungsmenge des Systems die
Schnittmenge der beiden Halbebenen L, und L;. (Abbildung 179.1)

Abb. 179.1 Die Losungsmenge des Systems von Beispiel 1 als Schnittmenge der Teil-
Losungsmengen

Auch bei einem System mit mehr als zwei Ungleichungen erhilt man die
Losungsmenge als Schnittmenge aller Teil-Losungsmengen, geometrisch als
Schnittmenge aller Losungs-Halbebenen. Es entsteht dabei entweder eine
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konvexe Polygonfliche* (sieche Abbildung 180.1) oder eine konvexe Punkt-
menge, die sich ins Unendliche erstreckt (siche Abbildung 179.1) oder die leere
Menge (sieche Abbildung 180.2).

Fs

-

-
2*‘#{

y

X
\ ok

5
Y=l

ik

Abb. 180.1 Die Losungsmenge des Systems
[ y<ix+2
IIy<—3x+4
[ y =1
ist die rote Dreiecksfléche.
yi
wx
\.1—? TE T+
Abb. 180.2 Die Losungsmenge des Systems
[ py<ix+2
I y=—3x+4
I y = 4
ist leer.

* Aus moiiig (polys) = viel und dem ionischen ff yeoviz (he gonia) = der Winkel, die Ecke wurde in nachklassi-
scher Zeit, d.h. nach 300 v.Chr., das Kunstwort d noliyevey (to polygonon) = das Vieleck gepriigt.
convexus (lat.) = kesselfarmig, gewdlbt. Ein Vieleck heilit konvex, wenn die Verbindungsstrecke zweier belie-
biger innerer Punkte ganz im Inneren des Vielecks liegt.



7.5 Lineare Ungleichungen mit zwei Variablen 181

Je mehr Ungleichungen das System hat, desto mehr Ecken hat im Normalfall
die entstehende Polygonfliche. Dazu

Beispiel 2: \”
[ y<ix+2 4 e
- —_ \\_ i
I ys—3x+4
Il y=—x+6
IV y=0
Vo=

Die Losungsmenge, eine

Fiinfecksflache, zeigt Ab- 1 X
bildung 181.1. : \\

t e

e Abb. 181.1 Zum Beispiel 2
1. a) I y=3x+5 1T y=—2x
b)) I x+y=0 [Ix—y=<0
¢) I 2x—yp+3<0 II —3x+5y<10
d) I —x+2y=2 [I x—yp>3
2. a [ y=ix+3 Mmy=—x—1 I y > x
b) I 2x—y+2=0 Il x—2y—-2=<0 [T y+3=0
¢) Il y=2x+6 I 3py<—4x+12 1l y=—3x
IV y=—6 Vx=6
dIly+x—-2=0 I y—2x4+10=0 III 3y—x+18<50
IV y=0 ¥V x=0

3. Gib ein System von Ungleichungen an, das diese Losungsmenge liefert.
y
a) v) b) ‘

2 £ s

c) yi d) (1)




J .
182 7 Ungleichungen

e 4. Bestimme alle Losungspunkte, deren Koordinaten natiirliche Zahlen sind.
sl i =i I x—2y—2=0 HI x4+ y—5=20
b) [ y=<x+3 Il y<8 I y=2x—4 IV yzix+i V x=1

7.5.3 Lineare Optimierung

Wihrend des Zweiten Weltkriegs und in den darauf folgenden Jahren ist eine
Rechentechnik entstanden, die heute zu einem sehr wichtigen Hilfsmittel mo-
derner Unternehmensplanung geworden ist. Im Englischen nannte man sie
operations research, was man mit Verfahrensforschung, Verfahrensplanung
oder auch Planungsrechnung verdeutschte. G.B. DANTZIG hat im Wesentli-
chen dieses neue Gebiet der Mathematik begriindet; er nannte es 1949 Line-
ares Programmieren, da man schematisch mittels so genannter Programme*
Losungen von linearen Gleichungen und Ungleichungen sucht. Heute spricht
man lieber von linearer Optimierung**, weil man im Grunde die beste aller
moglichen Losungen sucht. Zur Verdeutlichung und Einfiithrung betrachten
wir das einfache, aber doch schon geniigend aussagekriftige

Beispiel 1:

Ein Betrieb stellt zwei verschiedene Produkte X und Y her. Fiir die Anferti-
gung von einem Stiick X bendétigt man 5 Std. und verbraucht Material im Wert
von 5 €, wohingegen ein Y Material im Wert von 0,60 € und eine Herstel-
lungszeit von 6 Std. bendtigt. Pro Tag kénnen bis zu 4000 Arbeitsstunden
von der Belegschaft geleistet werden. Der Finanzplan erlaubt es, tiglich bis
zu 1500 € Material einzukaufen. Aus technischen Griinden kénnen von Y
hochstens 550 Stiick pro Tag produziert werden. Die Lagerkapazitit erlaubt
es nicht, dass die Gesamtproduktion von X und Y 800 Stuck uberschreitet.
Nun bringt das Produkt X pro Stuck einen Gewinn von 8€. Y hingegen
nur 5 €. Welche Stiickzahlen von X und Y soll der Fabrikant pro Tag her-
stellen lassen, damit sein Gewinn maximal *** wird?

Losung: Wir bezeichnen mit x bzw. y die Anzahl der Stiicke des Produkts X
bzw. Y, die pro Tag hergestellt werden. Der Gewinn z hiingt von diesen Stiick-
zahlen x und y ab; es gilt ndmlich

z(x,y) =8x+ 5y.

Das Ziel des Fabrikanten ist es, den Gewinn z moglichst groB werden zu
lassen. Daher nennt man z Zielfunktion.

&

6 wpoypappa (to programma) = die schriftliche Bekanntmachung
optimus (lat.) = der beste
maximus (lat.) = der groBte

L

ok
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Man erkennt unmittelbar, dass z umso groBBer wird, je groBBer x und y werden.
Nun konnen aber x und y nicht beliebig wachsen, da fiir sie technische und
wirtschaftliche Einschrinkungen bestehen. Diese Einschrankungen heilien
Nebenbedingungen. Lesen wir den Text nochmals durch, so finden wir das
folgende Ungleichungssystem fiir die Nebenbedingungen.

ez . T

I : ; ; (Nichtnegativitat)
[II y =< 550 (Produktbeschrinkung von Y)
IV x+y < 800 (Lagerkapazitit)

V 5x+ 6y <4000 (Zeitbeschrankung)
VI 5x+ 0,6y <1500 (Geldbeschrinkung)

Die Losungsmenge des Systems dieser Nebenbedingungen heilit zulidssige
Menge. Aufgrund der Uberlegungen des vorigen Abschnitts erhiilt man die
zuldssige Menge als Schnittmenge der Lésungshalbebenen der Ungleichungen
[-VI. Abbildung 184.1 zeigt die zulassige Menge als Fuinfecksfliche OABCD.
Fir die Eckpunkte errechnet man die Koordinaten

0(0]0), A(0]550), B(140|550), C(244%]46228) und D(300(0).

Jetzt kann man fir jeden Punkt aus der zuldssigen Menge den Gewinn z
berechnen. So erhdlt man z. B. fiir A (man stellt nur das Produkt Y her)

z(0; 550) = 8:-045-550 = 2750
und fur D (man stellt nur das Produkt X her)
2(300; 0) = 8-300+ 5-0 = 2400.

Der Gewinn ist also im letzteren Fall kleiner.
Waihlen wir einen Punkt aus dem Inneren der zuldssigen Menge, z.B.
P(150]|200) — man stellt 150X und 200Y her —, so ergibt sich

z(150; 200) = 8 - 150 + 5 - 200 = 2200.

So konnte man fortfahren und fiir jeden Punkt der zuldssigen Menge den
Gewinn ausrechnen, um schlieBlich den Punkt zu finden, bei dem der Gewinn
maximal wird. Dieser Punkt heil3t optimaler Punkt.

Esist klar, dass du mit dem Ausrechnen nie fertig werden wirst. Daher iiberle-
gen wir:

Die Punkte, fiir die der Gewinn jeweils einen festen Wert z,, hat, liegen auf der
Geraden mit der Gleichung 8x + 5y = z,. Die Auflésung nach y ergibt

Zg-

L=

8.
y=—zx+

Die Gerade hat also die Steigung — £ und den y-Achsenabschnitt £ z,. Da die

=

Steigung nicht von z, abhingt, sind alle Geraden, die man fiir verschiedene
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X

Abb. 184.1 Die zuldssige Menge des Systems der Nebenbedingungen

Werte von z, erhdlt, zueinander parallel. Dariiber hinaus erkennen wir. dass
bei grélitem Gewinn der y-Achsenabschnitt am groBten ist (und umgekehrt).

Wir mussen also aus unserer Parallelenschar diejenige Gerade bestimmen. die
die zuldssige Menge gerade noch trifft und dabei einen moglichst groBen
y-Achsenabschnitt besitzt.

Zeichnerisch kann man wie folgt vorgehen. Man verschiebt die Gerade mit der
Gleichung y = — £ x so weit parallel nach oben, bis sie die zuldssige Menge
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gerade noch trifft. Dabei gibt es zwei Moglichkeiten: Die Gerade trifft die
zuldssige Menge in einem Eckpunkt oder sie trifft sie in einer ganzen Polygon-
seite. Im ersten Fall gibt es genau einen optimalen Punkt; im zweiten Fall ist
jeder Punkt dieser Seite ein optimaler Punkt, es gibt also unendlich viele sol-
cher optimalen Punkte. In unserem Beispiel gibt es genau einen optimalen
Punkt, weil keine Polygonseite die Steigung — 2 hat.

Rechnerisch bestimmt man den optimalen Punkt nun so, dass man fiir alle
Eckpunkte — denn diese kommen nach dem Obigen als optimale Punkte in
Frage — den Gewinn z errechnet. Der Eckpunkt mit dem grofBten z ist der
optimale Punkt. Gibt es aber zwei Eckpunkte mit grofBtem z, dann ist die
ganze Verbindungsstrecke optimal.

Fir unser Funfeck OABCD erhalten wir

0: z(0; 0) = 0,
A: z(0; 550) = 2750, B: z(140; 550) = 3870,
C: z(244%; 46228) = 427049, D: z(300; 0) = 2400.

Man erkennt: C ist der optimale Punkt.

Wenn der Produktionsprozess auch die Herstellung von Teilen von Produkten
zuldsst, dann sind wir fertig. Der Fabrikant wird dann pro Tag 244 »Stiick«
von X und 462352 »Stiick« von Y herstellen lassen, um den maximal méglichen
Gewinn von 42703% € zu erzielen.

Wenn aber nur ganze Produkte moglich sind, dann miissen wir die Gerade
durch den optimalen Punkt C so weit nach unten parallel verschieben, bis sie
zum ersten Mal auf einen Gitterpunkt trifft. Dieser ist dann der optimale
Gitterpunkt, der die Losung fiir das ganzzahlige Problem liefert. In unserem
Beispiel ist G(244|463) der optimale Gitterpunkt (Abbildung 186.1).

Der Fabrikant wird jetzt pro Tag 244 Stiick von X und 463 Stiick von Y
herstellen lassen, um den maximal moglichen Gewinn von 4267 € erzielen
zu konnen.

Ein Blick auf Abbildung 184.1 zeigt uibrigens, dass die Nebenbedingung IV
fiir die Lagerkapazitat (x + y = 800) iiberfliissig ist, weil sie die zuldssige Men-
ge nicht beeinflusst.
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Abb. 186.1 Auffinden des optimalen Gitterpunkts

Aufgaben

1.

Durch die Nebenbedingungen

[ x=0 [Iy=0 [I x4+ 2y <12 IV 3x -+ p=11 Vix =3
Vix+2y=2

wird eine zuldssige Menge beschrieben. Bestimme fiir die angegebene Ziel-
funktion z den optimalen Punkt, sodass dort z maximal wird. Wie grof3
ist das Maximum?

a) z=x+4y b) z=x+y ) z=3x+y od) z=x—2y

Bei manchen Fragestellungen sucht man nicht denjenigen Punkt, bei dem
die Zielfunktion maximal wird, sondern denjenigen, bei dem sie minimal*
wird. (So wird man z. B. bei einem Geschéft versuchen, den Verlust zu
minimieren.) Lose nun Aufgabe 1 so, dass die Zielfunktion im optimalen
Punkt thr Minimum annimmt.

* minimus (lat.) = der kleinste
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4.
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Die Nebenbedingungen

izl TMy=0 " SHEczp 10 " axdye il “Vixag
legen eine zuldssige Menge fest. In welchen Punkten werden die Zielfunk-
tionen aus Aufgabe 1

a) maximal, b) minimal?

Eine Fabrik stellt ein Gerdtin 2 Ausfithrungen her. Je nach Ausfithrung ist
die Zusammensetzung der zur Herstellung verwendeten Materialien ver-
schieden, wie die nachstehende Tabelle zeigt; diese gibt auch an, tiber wel-
che Vorrite in kg die Fabrik verfiigt.

Material | Typ1 | Typ 2 | Vorrat
a 8 12 620
b 10 4 390
C 5 10 500
d 4 0 140

Wie viele Gerite miissen von jedem Typ hergestellt werden, damit die
Gesamtzahl maximal wird?

Eine GroBbickerei mit drei Backstuben in verschiedenen Orten bezieht
Mehl von zwei Mithlen. Im nachstehenden Diagramm ist neben der Tages-
produktion der ersten Miihle der Tagesbedarf der Backstuben, jeweilsin t,
eingetragen. Die Tagesproduktion der ersten Miihle wird vollstindig an
die drei Backstuben ausgeliefert; die zweite Miihle liefert den Rest. Auf
den Pfeilen sind die Frachtkosten in € je t verzeichnet. Wie viel t Mehl
muss jede Miihle an jede Backstube liefern, damit die Frachtkosten fir
die GroBbickerei minimal werden? Wie hoch sind sie?
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¢) Was ergibt sich bei Aufgabe b, wenn M, aufgrund eines alten Vertrags
an B, mindestens so viel liefern muss wie an B,?

d) Was ergibt sich bei Aufgabe b, wenn zusiitzlich zur Bedingung aus ¢
eine weitere Vertragsklausel vorschreibt, dass die Lieferung von M, an
B, zusammen mit dem Doppelten der Lieferung an B, mindestens 24 t
betragen muss?

Ein Bioladen hat 210 kg Haferflocken, 180 kg Rosinen und 240 kg Tro-
ckendpfel lagern. Daraus werden zwei Sorten Miisli gemischt, und zwar
einmal im Verhiltnis 4 : 5: 6, das andere Mal im Verhiltnis 2: 1 : 2. Wel-
che Menge muss der Ladenbesitzer von jeder Sorte herstellen. um den
grolitmoglichen Verdienst zu erzielen, wenn er an 1 kg der ersten Sorte
a) 9€ b) 12€

und an 1 kg der zweiten Sorte jeweils 10 € verdient?

Wie groB3 ist in jedem Fall sein Verdienst?

Fur jeden Teilnehmer einer Expedition soll eine »eiserne Ration« aus
Vollkornbrot, Wurst und Schokolade zusammengestellt werden. Sie muss
genau 160 g Eiweil3 und mindestens 360 g Kohlenhydrate und darf hochs-
tens 100 g Fett enthalten. Es gilt folgende Tabelle:

je 100 g g Kohlen- | g Fett | g Eiweil3
enthalten hydrate

Vollkornbrot 45 5 20
Wurst 10 20 30
Schokolade 60 10 10

Aus wie viel Gramm von jedem Nahrungsmittel muss die eiserne Ration
bestehen, damit ithr Gesamtgewicht moglichst klein bleibt? Wie viel wiegt

i)
SIS

Eine Mischung aus Niissen und Rosinen soll als Studentenfutter verkauft
werden. Die Mischung soll zu mindestens 50 % aus Rosinen und zu minde-
stens 30 % aus Niissen bestehen. Der Kaufmann hat einen Vorrat von
10 kg Niissen und 5 kg Rosinen. Ublicherweise verkauft er die Niisse fiir
25 € pro kg, die Rosinen fiir 10 € pro kg. In welchem Verhaltnis muss
er Nusse und Rosinen mischen, wenn er bei einem Verkaufspreis fiir 1 kg
Studentenfutter von

a) 15€ b) 13,75 € c) 14,50 €

maximalen Erlés aus dem Verkauf des gesamten Vorrats erzielen will.
Wie groB ist dieser dann?

Eine Familie muss fiir den Kauf einer Eigentumswohnung 120000 € an
Kredit* autnehmen. Die Mutter hat sich bei drei Banken nach deren Kon-
ditionen erkundigt. Fiir das erste Jahr verlangt die erste Bank 5% Zinsen
auf die Gesamtschuld und eine Tilgung von 3 % dieser Schuld. Die zweite
Bank verlangt 4% Zins und 12% Tilgung. Die dritte Bank fordert 6%

* creditum (lat.) = das Anvertraute
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Zins und eine Tilgung von 5% und ist iiberdies nur bereit, einen Kredit zu
gewihren, der mindestens 12000 € betrdgt. Die Beratung im Familien-
kreis ergibt, dass nur eine Belastung von hochstens 12200 € pro Jahr
verkraftet werden kann. Beil welcher Aufteilung des Kredits auf die drei
Banken zahlt die Familie die wenigsten Zinsen? Wie hoch sind sie? Wie
viel € werden getilgt?
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