
Algebra

Barth, Friedrich

München, 1999

7 Ungleichungen

urn:nbn:de:hbz:466:1-83513

https://nbn-resolving.org/urn:nbn:de:hbz:466:1-83513


7 Ungleichungen

Die hydrostatische Waage
Was ist gleich, was ist ungleich ?

König Hieron II . von Syrakus ( * 306 , 275 Tyrann , 265 König , t215 v . Chr .) hatte
einem Goldschmied Gold übergeben , damit er daraus eine Krone für eine Götterstatue
schmiede . Es wurde ihm angezeigt , der Goldschmied habe Gold weggenommen und
Silber beigemengt . Hierons Verwandter und Freund Archimedes ( , um
287 - 212 v . Chr .) , der wohl größte Mathematiker des Altertums , sollte den Verdacht
erhärten oder widerlegen , ohne die Krone zu beschädigen . Im Bade kam Archimedes
die Erleuchtung , die ihn so überwältigte , dass er mit dem Rufe ebprjKa. (heureka ) - » ich
hab ’s gefunden « - nackt nach Hause eilte . Der Goldschmied hatte unterschlagen . -
Überliefert wurde diese Legende von dem Baumeister Marcus Vitruvius Pollio
( 1 . Jh . v . Chr .) in seinen vor 31 v . Chr . verfassten De architectura libri decem, dem einzi¬
gen erhaltenen Lehrwerk der Antike über Architektur und Technik . Im Lösungsheft
wird Vitruvs Bericht wiedergegeben , dessen Übersetzung auf Seite 164 abgedruckt ist .
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7 . 1 Ein graphisches Verfahren zum Lösen linearer
Ungleichungen

Dir ist bekannt , wie man die Lösungsmenge einer linearen Ungleichung mit¬
tels Äquivalenzumformungen bestimmt . Zur Erinnerung

Beispiel 1 :
f x — 6 < 0 | | + 6

x < 6 | |
x < 4 , also L = ]

Für viele Ungleichungen ist dieses Vorgehen das bequemste . Es gibt aber
Ungleichungen , bei denen sich ein graphisches Verfahren lohnt , wie du im
nächsten Abschnitt sehen wirst . Als Vorbereitung dazu dienen die folgenden
Überlegungen .
Du hast in 5 .4 gelernt , dass f x — 6 der Term einer Funktion ist , deren Graph
die Gerade mit der Gleichung y = § x — 6 ist (Abbildung 166 . 1 ) . Die Unglei¬
chung f x — 6 < 0 verlangt von uns , all diejenigen x -Werte zu suchen , für die
die Funktionswerte negativ sind . Um sie zu finden , bestimmen wir zunächst
die Nullstelle dieser Funktion , d . h . die Lösung der Gleichung § x — 6 = 0 . Wir

I

x-Werte mit negativen
Funktionswerten

1 x-Werte mit positiven
Funktionswerten

Abb . 166 . 1 Die Gerade mit der Gleichung y = \ x — 6
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erhalten x = 4 . An dieser Stelle schneidet die Gerade die x-Achse . Da die
Steigung der Geraden den Wert f hat , also positiv ist , verläuft die Gerade von
links unten nach rechts oben . Die Funktionswerte sind somit links von der
Nullstelle 4 negativ , rechts davon positiv. Damit können wir die Lösungsmen¬
ge der Ungleichung direkt ablesen zu L = ] — oo ; 4 [ .

Zur Lösung der Ungleichungfx — 6 < 0 ist es aber gar nicht nötig, die Gerade
zu zeichnen . Es genügt nämlich zu wissen , wo sie die x-Achse schneidet und
welches Steigungsverhaltensie besitzt. Bei einer steigenden Geraden liegen die
negativen Funktionswerte links von der Nullstelle und die positiven rechts
davon ; bei einer fallenden Geraden ist es genau umgekehrt . Diesen Sachver¬
halt geben wir durch Abbildung 167 . 1 wieder :

1 6 — 0 +

Abb . 167 . 1 Vorzeichenverteilung beim Term f x — 6

Aus ihr kann man die Lösungsmengenfolgender vier Ungleichungen sofort
ablesen .
fx — 6 < 0
fx — 6 < 0

L = ] — oo ; 4 [
L = ] — oo ; 4]

f x — 6 > 0
3 .
2 ^fx - 6 > 0

L = ] 4 ; + co [
L = [4 ‘

, + oo [

Beim graphischen Verfahren zur Lösung von Ungleichungen löst man also
durch Rechnen zunächst eine Gleichungund macht dann eine Zeichnung, aus
der man die Lösungsmenge abliest . Zur Einübung ein weiteres Beispiel.

Beispiel 2:
— 7x + 13 A 0
Nullstelle : — 7x + 13 = 0
Steigung = — 7 < 0
Die Vorzeichenverteilung gibt Abbildung 167 .2 wieder . Aus ihr liest man

v _A — n

ab , dass L = ] — oo ; 4T] ist .

- 7x + 13 0
13
7

■X

Abb . 167 .2 Vorzeichenverteilung beim Term — Ix + 13

Das graphische Verfahren ist nur dann anwendbar , wenn eine Seite der Un¬
gleichung den Wert null hat . Andernfalls muss man durch Äquivalenzum¬
formungen erst eine solche Nullform

*

* herstellen . Dazu
* Die erste Nullform einer Gleichung findet sich in der Arithmetica integra ( 1544) des Michael Stifel ( 1487 (?)

bis 1567 ), folium 283r.
Systematischführte die Nullform Thomas Harriot (1560 - 1621) ein. 1631 stellten Freunde , vor allemWalter
Warner , aus seinen hinterlassenen Manuskripten einen dünnen Band Artis analyticaepraxis , ad aequationes
Algebraicasnova , expedita & generali methodo , resolvendas : tractatus zusammen, der starken Einfluss auf
Rene Descartes (1596 - 1650) ausübte . Wir erinnern daran , dass sich in diesem Werk zum ersten Mal die
nicht von Harriot erfundenen Symbole < und > finden. Walter Warner hat Harriots handschriftliche
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Beispiel 3:
0,3 - 3,2x < - 2,7x - l,9 | | + 2,7x + l,9
2,2 — 0,5x < 0
Nullstelle : 2,2 — 0,5x = 0 x = 4,4
Steigung = — 0,5 < 0
L — J 4,4 ; + oo [ .

2,2 - 0,5x +

4,4
■» x

Aufgaben

1 .
2.
3.
4.

5.

a)
a)
a)
a)
b)
a)
b)

2x — 5 < 0 b) 0 < — 3x — 12

3x - 12 < 4 - 3 (1 - ( 1 - x))

12 _ . Abb . 168 . 1 Unterschrift
( 2x — 2 ) > 2x (2x — 1 ) Harriots im Brief an
(0,3 — 2x ) (0,3 + 2x ) < 0,09 — 4x 2 Kepler vom 13 . 7 . 1608

7 .2 . Produktungleichungen

Das graphische Lösungsverfahren von 7 . 1 bewährt sich besonders bei Pro -
duktungleichungen . Unter einer Produktungleichung verstehen wir eine Un¬
gleichung , deren eine Seite ein Produkt und deren andere Seite null ist . Ein
Beispiel hierfür ist

(3x + 5) ( 10 — 2x ) < 0 .
Man könnte diese Ungleichung mittels der Vorzeichenregeln rein rechnerisch
lösen . Das links stehende Produkt ist nämlich nur dann negativ , wenn beide
Faktoren verschiedenes Vorzeichen haben ; dies führt zu folgender Fallunter¬
scheidung : „ ^ ^ ,(1 . Faktor positiv und 2 . Faktor negativ )

oder
(1 . Faktor negativ und 2 . Faktor positiv ) d . h .

Zeichen < und > drucktechnisch zu < und > vereinfacht. - Sir Walter Raleigh sandte 1585 Harriot
nach Amerika , wo er North -Carolina erforschte und kartographierte . Nach seiner Rückkehr nach England
( 1587) tat er sich als Astronom hervor , der mit Johannes Kepler (1571 - 1630) korrespondierte ; er be¬
obachtete die Sonnenflecken und 1610 nach Galileo Galilei (1564 - 1642) die Jupitermonde .
Erst 1734 verband Pierre Bouguer ( 16 . 2 . 1698 Croisic/Bretagne - 15 . 8 . 1758 Paris) die ZeichenWarners mit
dem Gleichheitszeichendes Robert Record (e) ( 1510 (?) — 1558) zu den Symbolen g und ä . Bouguer war
einer der Geodäten , die Frankreich 1735 zur Vermessungeines Meridianbogens nach Peru sandte.
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((3x + 5 > 0) a ( 10 - 2x < 0)) v ((3x + 5 < 0) a (10 - 2x > 0))
(x > — f A X > 5) V (x < — f A X < 5)

x > 5 v x < — f
L = ] - oo ; - f [ u ] 5 ; + oo [
Dieses rein rechnerische Verfahren ist aufwendig und auch unübersichtlich .
Einfacher findet man die Lösungsmenge mit dem graphischen Verfahren . Da¬
zu berechnet man für jeden Faktor zuerst die Nullstelle , zeichnet dann die
dazugehörige Vorzeichenverteilung und ermittelt über die Vorzeichenregeln
die VorzeichenVerteilung des Produkts , aus der man die Lösungsmenge ab¬
liest . Betrachten wir nochmals die Produktungleichung

(3x + 5) (10 — 2x) < 0 .
Nullstellen : 3x + 5 = 0 <̂ x = — f Steigungen : 3 > 0

10 — 2x = 0 <»> x = 5 — 2 < 0

3x + 5 0 + ! +

10 - 2x + ! +
1
0
1

(3x + 5 ) ( 10 — 2x)
i
0
i—

+
1
0
1

Abb . 169 . 1 Vorzeichenverteilung beim Term ( x + 5) ( 10 — 2x )

Aus Abbildung 169 . 1 liest man ab L = ~
\ — oo ; — f [ u ] 5 ; + oo [

Das graphische Verfahren lässt sich im Gegensatz zum rechnerischen Verfah¬
ren mit Leichtigkeit auch auf Produkte mit mehr als zwei Faktoren übertra¬
gen . Hierzu ein

Beispiel: x ( l — x) (2x + 8 ) A 0
Nullstellen : x = 0 Steigungen : 1 > 0

1 — x = 0 <s> x = l — 1 < 0
2x + 8 = 0ox = — 4 2 > 0

X — i
i

— 0
1

+ +

1 — X +
i
ii -1- + 0 -

2x + 8 - 0 +
— —

+ 11- -
+

x

• X

■X

x ( 1 — x) (2x + 8)
0

-> x
- 4

Abb . 169 .2 Vorzeichenverteilung beim Term x ( l — x) (2x + 8)
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Aus Abbildung 169 .2 liest man ab L = ] — oo ; - 4] u [0 ; 1 ]

Wenn eine Ungleichung nicht in Produktform vorliegt , dann kann man sie
manchmal durch Faktorisieren in Produktform bringen und lösen .
Dazu ein

Beispiel: x 3 + 4x

1

2 — 21x > 0
x (x2 + 4x — 21 ) > 0
x (x + 7) (x — 3) > 0 L = ] — 7 ; 0 [u ] 3 ; + oo [

X — 0 + 1
1

+

x + 7
1
0
1 + + +

x — 3
1

— 1 -
— —

-
- -

0 +

x (x + 7) (x — 3) 0
1

+ 0
_

- 0
_

+
H- 1- V
- 7 0 3

Abb . 170 . 1 Vorzeichenverteilungbeim Term x (x + 7) (x — 3 )

Aufgaben

1 . a) (x — 2) (x — 5) < 0
c) (x + 1 ) (x — 1 ) ^ 0

2 . a) (x + 2) 2 > 0
c) (x + 3)2 ^ 0
e) (x + l ) 3 > 0

3 . a) ^ (2x + 6) (x + 3) < 0
c) - 3 (| x - 2) ( - | x - 3) ^ 0

b) x (x — | ) > 0
d) (x + 2) ( - x + 4) ^ 0
b) ( — x — 7) 2 < 0
d) ( - x + 7) 2 ^ 0
f ) (x — 3) 3 < 0
b) 5 (3x + 1 ) (2x — 5) > 0
d) ( fx { fx -f ) ) = 0

4 . a) (x - 1 ) (x - 2) (x - 3) > 0 b) 3x (2x + 9) ( - x + 7) < 0
c) (0,lx — 0,01 ) ( 1,2 — x) ( 1,2 + x) 2: 0 d) (3 ^ - 7x) (3 ^ x - 7) ■x ^ 0

• 5 . a) — 4x (2x — 3) (3 — 2x) (3 + 2x) > 0
b) (ix - 4) (f - 2x) (fx + jfe) (0,1 - 0,001 x) < 0

Sc) — x 2 (0,01x + 10) (x + 1000 ) ^ 0
6 . a) 3x — x2 2: 0

c) 2,89x — l,69x 3 > 0
7 . a) (x — a) (x — b) < 0

c) — x (a — x) (b + x)2 ^ 0

b) 25x 2 - 36 < 0
d) x 3 - 3x2 - lOx g 0
b) (ax — 1 ) (bx — b) > 0
d) — (a2x2 — bA) {ax + b 2) < 0
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7 .3 Bruchungleichungen

Die Vorzeichenregeln für die Division entsprechen völlig denen für die Multi¬
plikation . Deshalb können wir das graphische Lösungsverfahren auch auf
Bruchungleichungen anwenden , wenn wir sie auf Nullform bringen und Zäh¬
ler und Nenner faktorisieren .

Beispiel:
v + 1 2 x2
— - < -
x — 1 x x 2 — 1

x — 1 X x 2 — 1
—

x 3 + 2x 2 + x — 2x 2 + 2 — x 3

x (x — 1 ) (x + 1 )

- ^ - 510
x (x — 1 ) (x + 1 )

D = Q \ {- 1 ; 0 ; 1 }

L = [ - 2 ; - l [ u ] 0 ; l [

x + 2 ® + + + +

X - - + +

X — 1
~~ - - - +

x 1 - + + +

x + 2
x (x — l ) (x + l ) + 1)

—
+ — +

- ►H- - - L
- 2 - 10 1

Abb . 171 . 1 Vorzeichenverteilung beim Term —- .x (x — 1 ) (x T 1 )
Die roten Striche kennzeichnen die nicht zulässigen x -Werte .

Weil bei Bruchungleichungen Nenner auftreten , die null werden können , müs¬
sen wir auf die Definitionsmenge achten . Am besten streicht man beim graphi¬
schen Lösungsverfahren die nicht zulässigen x -Werte von vornherein weg.

Aufgaben

1 . a) - < 0
x

d)

2 . a)

1
2x + 5
x + 1
x — 1

> 0

> 0

b) - ?- > 0
x + 1

e) - + ^ 0
3x + 2

b)
3 — x
x — 5

< 0

c)
x — 3

1

> 0

0,3x + 1,2
. 2 — 3x

C)
3^ S °

> 0
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d)

3 . a)

4 . a)

c)

5 . a)

c)

6 . a)

c)

7. a)

c)

8 . a)

c)

9 . a)

c)

510 . a)

c)

2x — 1
1 — x

< 0

— > — 2
x

1
x (x + 2)

— r > 0

> 0

e)

b)

b)

d)

1^ — 3
3x - ^

< 0 r ,
0,9 + 3x

x + 2
< — 3 c)

0,8 — 2x
>

- 3

(x - 2) (x + 3)
3

> 0

0 + 3)
> 02 =

x 2 — 4
< 0

9x 2 — 16
9x 2 + 16 - 24x

< 0

x — 1

2x — 1

> 1

> - l
4x + 2

1
x < —

X

- 1 1
<

2x + 1 1 4- 2x

2xx
>

x -h 2 2x 4- 1

3x 1 - 2x
2 — 3x 2x — 1

1 1
+ - > 0

x x 4- 1

3 4- x 6

x + - ^
X

1

3 — x

x 2 4- 2
x

1

< 1

- 1

2
4“ '

a = —
x — 2 x 4- 4 x

b)

d)

x 2 4- 6x 4- 9
x z — 6 x 4- 9

> 0

j - x + x 2

\ — x 2 > 0

b) — < 1

d)

b)

d)

b)

d)

b)

x — 1

— 0,2x 4- 0,1
3x 4- 0,6

1 1
> —

< 2

x 4- 1 x
- 0,1 > 0,2

x4 - 0,2 0,2x4 - 1

6x 6x 4- 1
x 4- 1

3x
<

x — 1

1 — 2x
2 — 3x 2x4 - 1

x 4- 1 x — 1
> 0

, 4x - 1 4x4 - 1
d) - - 1- <

x 4- 1 x — 1

b)
x — 1 1 x 2 4- x

d)
5x 2

2 2 4- x -
(x - 2) 2

4x — 56 9 - 2 \ x
— + . _ ,

2
. <

15x 2 — 6x 20x 2 4- 8x
1

6x25x 2 — 4
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• 11 . a) —- — 5S 0
x — a

b)
x — a

< 1
• x — a

S12 . a) 1 > - - - ■ > 0,1
x + 3

b) - <
3x — 5

c) - 1 ^
X

d) - 10 <
2x + 1

• 13. a) Für zwei von null verschiedene rationale Zahlen gelte a < b . Welche
1 1

Beziehung besteht dann zwischen den Kehrwerten — und - ?
a b

1
Hinweis : Multipliziere die gegebene Ungleichung mit — und beachte
die nötigen Fallunterscheidungen ,

b) Wende die Regeln aus a an für
1

2) - < - 31) > 1

> - 34) - < 1

7 .4 Ungleichungen mit Absolutbeträgen

Treten in Gleichungen bzw . Ungleichungen Absolutbeträge auf , so musst du
immer eine Fallunterscheidung vornehmen . Dabei musst du , wie du weißt ,
danach unterscheiden , ob der Term zwischen den Betragsstrichen positiv , null
oder negativ ist . Der Term zwischen den Betragsstrichen ist bekanntlich das
Argument der Betragsfunktion .
Ist nun das Argument größer als 0 oder gleich 0 , dann kannst du die Betrags¬
striche durch eine Plusklammer ersetzen . Ist das Argument hingegen kleiner
als 0 , dann musst du die Betragsstriche durch eine Minusklammer ersetzen ,
z . B .

(2x — 3) , falls 2x — 3 0 ,
— (2x — 3) , falls 2x — 3 < 0 .

Üblicherweise gibt man aber die Bedingungen 2x — 3 2: 0 und 2x — 3 < 0 als
Bedingungen für x an und löst die Minusklammer im Kopf auf , nämlich

falls x ^ f ,
| — J | 3 — 2x , falls x < § .

Die Zahl § trennt die beiden Fälle . Sie ist aber auch die Nullstelle des Argu¬
ments . Es ist daher zweckmäßig , zuerst die Nullstelle des Arguments zu be¬
stimmen , um mit ihrer Hilfe die Yorzeichenverteilung des Arguments ermit¬
teln zu können .
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Beispiel 1 : | — f x —
Nullstelle des Arguments : — f x — = 0

Vorzeichenverteilung :
7
6

Somit gilt:
— t * — falls xrg — jj ,

l ^ + m > falls x > ~ l -
Beachte : An Stelle der Minusklammer — ( — f x — haben wir gleich

t x + io geschrieben .

Kommen nun Absolutbeträge in Gleichungen oder Ungleichungen vor , dann
musst du in den jeweiligen Vorzeichenbereichen die zugehörigen Gleichungen
bzw . Ungleichungen lösen . Die Lösungsmenge der Betrags (un )gleichung ist
dann die Vereinigungsmenge der einzelnen Lösungsmengen . Zwei Beispiele
mögen dir das veranschaulichen .

Beispiel 2 : 13x — 41 :§ 2x — 1
Vorzeichenverteilung : 3x — 4 = 0 o x = §

0 +
x

0 1 f 3

1 . Fall x < f — 3x + 4 2x — 1
5 ^ 5x

=> Z , 1 = [l ; f [
2 . Fall x ^ f 3x - 4 ^ 2x - l

x ^ 3 => L2 = [f ; 3 ]
Somit gilt L = uL 2 = [ 1 ; 3 ] .

Beispiel 3 : I — f x — ^ | > f x
VorzeichenVerteilung: — fx — ^ = 0 <s> x = — g

+ 0

1
2

7
6 10 0 1

l . Fall x < > ix

=> L 1 = ]
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2 . Fall x >= 6 ■( - s * - Ä ) > i x
5 X ^ 10

X > => L2 — [ gj + oo [,
da - i < - b

Somit gilt L = L 1 u L2 =

Schwieriger wird es , wenn mehrere Absolutbeträge Vorkommen . Dann musst
du für jedes Argument die Vorzeichenverteilung feststellen und anschließend
die Zahlengerade so in Intervalle einteilen , dass in keinem der Intervalle ein
Argument das Vorzeichen ändert . Die Nullstellender Argumente trennen die
Intervalle. Wir wollen sie immer zum rechten Intervall dazunehmen. Dazu

Beispiel4: | x | — | x + 1 1 > x

* .
0 +

+
—

O-
1+

1
1

+
1
1

1 . Fall | 2 . Fall
c

1
1
1

_
3 . Fall

1 . Fall

2 . Fall

3 . Fall

- 1

— x — ( — X — 1 ) > X
— X + X + 1 > X

1 > X
X < 1

— x — (x + 1 ) > X
— x — x — 1 > x

- 1 > 3x
X <

x — (x + 1 ) > X
x — X — 1 > X

— 1 > X
x < — 1

Li = ] — oo ; - 1 [

L 2 — \ \ 3 [

L 3 = { }
L — L x u L2 u L 3 — ] co , 3 [ .
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Aufgaben

1 . Bestimme die Lösungsmengen der folgenden Gleichungen:
a) | x | = 0 b) \ x \ = 1 c) | x ] = - 3,75 d) | x | = | - 2f |
e) | x | - 8 = ll f) 3 — | jc | = 7 g) 2 - | x | + 5 = 9 h) 5 + | 3x | = 5
i) | x — 11 = 1,5 k) | x + 41 = 6 1) | 2x + 5 | = 0 m) | 9 - 7x | = 30

2 . Welche Punktmengen auf der Zahlengeraden werden durch die folgenden
Ungleichungen beschrieben ?
a) | * | < 1 b) | x | ^ 2

3 . a) 12x — 11 < 5 *
c) 2 • | * — 0,51 ^ 2x + 1,5
e) — 3 • | { x + 3 ^ | > 10 — x

c) | x - 3 | gl d) | 4x + 10 | > 5

b) | x + 11 ^ 2x — 1
d) — 13 — x | > 3 — x
f) — 2,5 • | 2x — 1,2 | rS 10 — 2x

4 . Bestimme die Lösungsmengen der folgenden Ungleichungen und veran¬
schauliche sie auf der Zahlengeraden.
a) 1 < | x | < 3
c) IX I < X
e) x < 2 < | x |

5 . a) | x | ^ 1 — | x |
c) | 4x - 12 | + 5 ^ 4 - | * + 2 |
e) | 2x — 9 | rg 2x — 9

6 . a) | x | + | x + l | ^ x + 2
c) — | x | + | x + 1 | ^ x + 2

7 . a) | x + 2 | — | 2x — 11 < 2x
b) \ jx + | | — 2 • | fx — j \ < ix +
c)

b) 1 ^ | x - 3 | ^ 4
d) | x | < | x + 31

• f) 5x + 7 > | 2x — 4 | ^ x — 1
b) | 2x + 3 | ^ | 3x - 2 |
d) | x + l | 2: x + | x — 1 |
f) 3 • | x | + 2x + 1 ^ 2 — | 2x — 6 |
b) | x | — | x + 1 [ 2: x + 2
d) — jx | — | x + l | ^ x + 2

12,5 — l,2x | + | 2,4x + 7,51 2: 3,6x + 1,5
8 . a) | x | —L | x —L 11 — | x + 2 | > 0

b) | x — 1,51 + | 2x — 5 | — | 3x + 6 | 4x — 2,5
c) \\ x + 11 — | x + ^ | 2: | fx + 11 — | x + § |
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7 .5 Lineare Ungleichungen mit zwei Variablen

7.5 . 1 Graphische Lösung einer linearen Ungleichung mit zwei Variablen

Die Lösungsmenge einer linearen Gleichung mit zwei Variablen lässt sich geo¬
metrisch in einem Koordinatensystem als Menge von Punkten deuten , die auf
einer Geraden liegen . So ergibt sich als Lösungsmenge für die Gleichung
3x + 2y — 12 = 0 die Gerade der Abbildung 177 . 1 .

Abb . 177 . 1 Die Lösungsmenge der Gleichung 3x + 2y — 12 = 0

Nun betrachten wir statt dieser Gleichung eine Ungleichung , zum Beispiel
3x + 2y — 12 5S 0 . Wie sieht in diesem Fall das geometrische Bild der Lö¬
sungsmenge aus ? Am leichtesten lässt sich diese Frage beantworten , wenn
man die Ungleichung nach y auflöst . Wir erhalten als neue Ungleichung
y — §x + 6 . Wegen des = -Zeichens sind die Punkte der Geraden von Abbil¬
dung 177 . 1 auch Lösung dieser Ungleichung ; so ist z . B . (213) ein Lösungs¬
punkt . Wegen des < -Zeichens ist dann auch jeder Punkt (21 y) mit y < 3,d . h .
jeder Punkt , der unterhalb des Geradenpunkts (213) liegt , ein Lösungspunkt
der Ungleichung (Abbildung 178 . 1 ) . Weil die für den Punkt (2 | 3 ) angestellte
Überlegung für jeden Geradenpunkt richtig ist , können wir sagen : Die Lö¬
sungsmenge der Ungleichung y ^ — §x + 6 ist die Menge aller Punkte unter¬
halb der Geraden mit der Gleichung y = — §x + 6 und die Gerade selbst . Eine
solche Punktmenge heißt Halbebene .
Bei der Ungleichung y < — § x + 6 gehört die Randgerade natürlich nicht zur
Lösungsmenge . Ersetzt man < durch > , dann sind die oberhalb der Geraden
gelegenen Punkte Lösungspunkte . Einen Überblick über die möglichen vier
Fälle gibt dir Abbildung 178 .2 .
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y 5= mx + ty < mx + t

y ä mx + ty > mx + t

Abb . 178 .2 Die Lösungsmengen der Ungleichungen y = mx + t
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Aufgaben

Zeichne die Lösungsmenge !

1 . a) y < x + 3 b) y ^ — jx
2 . a) y < 2 b) y A — 3

3 . a) x + y < 0
c) — 3x + 2y + 4 < 0

c) y > 2x — 5 d) yA — fx + 4

c) x < 0 ( !) d) x A — 2 ( !)
b) 2x + Ay — 6 A 0
d) fx - fy - lfX )

7 .5 .2 Systeme linearer Ungleichungen mit zwei Variablen

Eine Lösung eines Systems linearer Ungleichungen muss jede einzelne dieser
Ungleichungen erfüllen . Sie muss also in jeder der Lösungsmengen der einzel¬
nen Ungleichungen enthalten sein und damit auch in der Schnittmenge dieser
Lösungsmengen . Dazu

Beispiel 1 : I y A \ x + 2 II y ^ — \ x + 4
ist ein System von zwei linearen Ungleichungen mit zwei Variablen . Eine
Lösung dieses Systems muss sowohl der Lösungsmenge L x wie auch der
Lösungsmenge Ln angehören , also Element der Schmttmenge n Ln
sein . In der geometrischen Deutung ist die Lösungsmenge des Systems die
Schnittmenge der beiden Halbebenen Lx und Ln . (Abbildung 179 . 1 )

Abb . 179 . 1 Die Lösungsmenge des Systems von Beispiel 1 als Schnittmenge der Teil-
Lösungsmengen

Auch bei einem System mit mehr als zwei Ungleichungen erhält man die
Lösungsmenge als Schnittmenge aller Teil -Lösungsmengen , geometrisch als
Schnittmenge aller Lösungs -Halbebenen . Es entsteht dabei entweder eine
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konvexe Polygonfläche * (siehe Abbildung 180 . 1 ) oder eine konvexe Punkt¬
menge , die sich ins Unendliche erstreckt (siehe Abbildung 179 . 1 ) oder die leere
Menge (siehe Abbildung 180 .2) .

\ > *

Lt r \ L

Abb . 180 . 1 Die Lösungsmenge des Systems
i y ^ ix + 2

II y ^ - jx + 4
III y ^ 1
ist die rote Dreiecksfläche .

Abb . 180 .2 Die Lösungsmenge des Systems
I y ^ ix + 2

II y ^ - jX + 4
III y ^ 4
ist leer.

* Aus 7toXvg (polys) = viel und dem ionischen tj ycovia (he gonia) = der Winkel , die Ecke wurde in nachklassi¬
scher Zeit, d .h . nach 300 v . Chr ., das Kunstwort xd xoXvycovov (to polygonon) = das Vieleck geprägt.
convexus (lat .) = kesselförmig, gewölbt . Ein Vieleck heißt konvex, wenn die Verbindungsstreckezweier belie¬
biger innerer Punkte ganz im Inneren des Vielecks liegt .
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Je mehr Ungleichungen das System hat , desto mehr Ecken hat im Normalfall
die entstehende Polygonfläche . Dazu

Beispiel 2:
I y ^ jx + 2

II y ^ - jx + 4
III y iS — x + 6
IV y A 0
V x AO

Die Lösungsmenge , eine
Fünfecksfläche , zeigt Ab¬
bildung 181 . 1 .

Aufgaben
Abb . 181 . 1 Zum Beispiel 2

1 . a) I y ^ 3x + 5 II k IIV1 toX
b) I x + y A 0 II X - k ^ O
c) I 2x — y + 3 < 0 II - 3x + 5y < 10
d) I — x + 2y 2 II X - k > 3

2 . a) I k ^ i -x + f II k A — x — 1 III IIV
b) I 2x — y + 2 A 0 II X - 2y - 2 ^ 0 III k + 3 > 0
c) I y ^ 2x + 6 II 3y g - 4x + 12 III k ^ - iv

IV y A — 6 V X 5S 6
d) I y + x - 2 A 0 II k - 2x + 10 A 0 III 3y - x + 18 A 0

IV y AO V X A o

3 . Gib ein System von Ungleichungen an , das diese Lösungsmenge liefert .
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• 4. Bestimme alle Lösungspunkte , deren Koordinaten natürlicheZahlen sind.
a) I 2x — j + 2 A 0 11 x - 2y - 2 ^ 0 III x + j - 5 A 0
b) I .yAx + 3 II ,pA8 llly ^ 2x - 4 1Vy ^ x + % VxAl

7 .5 .3 Lineare Optimierung

Während des Zweiten Weltkriegs und in den darauf folgenden Jahren ist eine
Rechentechnik entstanden , die heute zu einem sehr wichtigen Hilfsmittel mo¬
derner Unternehmensplanung geworden ist . Im Englischen nannte man sie
operations research , was man mit Verfahrensforschung, Verfahrensplanung
oder auch Planungsrechnung verdeutschte . G . B . Dantzig hat im Wesentli¬
chen dieses neue Gebiet der Mathematik begründet ; er nannte es 1949 Line¬
ares Programmieren , da man schematisch mittels so genannter Programme *
Lösungen von linearen Gleichungen und Ungleichungen sucht . Heute spricht
man lieber von linearer Optimierung * *

, weil man im Grunde die beste aller
möglichen Lösungen sucht . Zur Verdeutlichung und Einführung betrachten
wir das einfache , aber doch schon genügend aussagekräftige

Beispiel 1 :

Ein Betrieb stellt zwei verschiedene Produkte X und Y her . Für die Anferti¬
gung von einem Stück X benötigt man 5 Std . und verbraucht Material im Wert
von 5 € , wohingegen ein Y Material im Wert von 0,60 € und eine Herstel¬
lungszeit von 6 Std . benötigt . Pro Tag können bis zu 4000 Arbeitsstunden
von der Belegschaft geleistet werden . Der Finanzplan erlaubt es , täglich bis
zu 1500 € Material einzukaufen . Aus technischen Gründen können von Y
höchstens 550 Stück pro Tag produziert werden . Die Lagerkapazität erlaubt
es nicht , dass die Gesamtproduktion von X und Y 800 Stück überschreitet .
Nun bringt das Produkt X pro Stück einen Gewinn von 8 € , Y hingegen
nur 5 € . Welche Stückzahlen von X und Y soll der Fabrikant pro Tag her -
stellen lassen , damit sein Gewinn maximal * * * wird ?

Lösung : Wir bezeichnen mit x bzw . y die Anzahl der Stücke des Produkts X
bzw . Y, die pro Tag hergestellt werden . Der Gewinn z hängt von diesen Stück¬
zahlen x und y ab ; es gilt nämlich
z (x , y) = 8x + 5j>•
Das Ziel des Fabrikanten ist es , den Gewinn z möglichst groß werden zu
lassen . Daher nennt man z Zielfunktion .

* tö npöypappa (to prögramma ) = die schriftliche Bekanntmachung
** optimus (lat .) = der beste

maximus (lat .) = der größte
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Man erkennt unmittelbar , dass z umso größer wird , je größer x und y werden .
Nun können aber x und y nicht beliebig wachsen , da für sie technische und
wirtschaftliche Einschränkungen bestehen . Diese Einschränkungen heißen
Nebenbedingungen . Lesen wir den Text nochmals durch , so finden wir das
folgende Eingleichungssystem für die Nebenbedingungen .

I x ^ O
II y ^ 0

III y g 550
IV x + y 800
V 5x + 6y ^ 4000

VI 5x + 0,6y ^ 1500

(Nichtnegativität )

(Produktbeschränkung von Y)
(Lagerkapazität )
(Zeitbeschränkung )
(Geldbeschränkung )

Die Lösungsmenge des Systems dieser Nebenbedingungen heißt zulässige
Menge. Aufgrund der Überlegungen des vorigen Abschnitts erhält man die
zulässige Menge als Schnittmenge der Lösungshalbebenen der Ungleichungen
I —VI . Abbildung 184 . 1 zeigt die zulässige Menge als Lünfecksfläche OABCD .
Lür die Eckpunkte errechnet man die Koordinaten

O (010) , A (0 | 550 ) , B ( 1401550 ) , C (244f1462ff ) und D (300 | 0) .

Jetzt kann man für jeden Punkt aus der zulässigen Menge den Gewinn z
berechnen . So erhält man z . B . für A (man stellt nur das Produkt Y her )

z (0 ; 550 ) = 8 • 0 + 5 • 550 = 2750

und für D (man stellt nur das Produkt X her )

z (300 ; 0) = 8 ■ 300 + 5 • 0 = 2400 .

Der Gewinn ist also im letzteren Pall kleiner .
Wählen wir einen Punkt aus dem Inneren der zulässigen Menge , z . B .
P ( 150 | 200) - man stellt 150X und 200Y her - , so ergibt sich

z ( 150 ; 200) = 8 ■ 150 + 5 • 200 = 2200 .

So könnte man fortfahren und für jeden Punkt der zulässigen Menge den
Gewinn ausrechnen , um schließlich den Punkt zu finden , bei dem der Gewinn
maximal wird . Dieser Punkt heißt optimaler Punkt .
Es ist klar , dass du mit dem Ausrechnen nie fertig werden wirst . Daher überle¬
gen wir :
Die Punkte , für die der Gewinn jeweils einen festen Wert z0 hat , liegen auf der
Geraden mit der Gleichung 8x + 5y = z0 . Die Auflösung nach y ergibt

y = - f ^ + sZo-

Die Gerade hat also die Steigung — f und den y-Achsenabschnitt jz 0 . Da die
Steigung nicht von z0 abhängt , sind alle Geraden , die man für verschiedene
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y = 550

Abb . 184 . 1 Die zulässige Menge des Systems der Nebenbedingungen

Werte von z0 erhält , zueinander parallel . Darüber hinaus erkennen wir , dass
bei größtem Gewinn der y -Achsenabschnitt am größten ist (und umgekehrt ) .

Wir müssen also aus unserer Parallelenschar diejenige Gerade bestimmen , die
die zulässige Menge gerade noch trifft und dabei einen möglichst großen
j ’-AchsenabschniU besitzt .

Zeichnerisch kann man wie folgt Vorgehen . Man verschiebt die Gerade mit der
Gleichung y = — fx so weit parallel nach oben , bis sie die zulässige Menge
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gerade noch trifft . Dabei gibt es zwei Möglichkeiten : Die Gerade trifft die
zulässige Menge in einem Eckpunkt oder sie trifft sie in einer ganzen Polygon¬
seite . Im ersten Fall gibt es genau einen optimalen Punkt ; im zweiten Fall ist
jeder Punkt dieser Seite ein optimaler Punkt , es gibt also unendlich viele sol¬
cher optimalen Punkte . In unserem Beispiel gibt es genau einen optimalen
Punkt , weil keine Polygonseite die Steigung — f hat .

Rechnerisch bestimmt man den optimalen Punkt nun so , dass man für alle
Eckpunkte - denn diese kommen nach dem Obigen als optimale Punkte in
Frage - den Gewinn z errechnet . Der Eckpunkt mit dem größten z ist der
optimale Punkt . Gibt es aber zwei Eckpunkte mit größtem z , dann ist die
ganze Yerbindungsstrecke optimal .
Für unser Fünfeck OABCD erhalten wir

O : z (0 ; 0) = 0 ,
A : z (0 ; 550 ) = 2750 , B : z ( 140 ; 550) = 3870,
C : z (244f ; 462ff ) = 4270^ , D : z (300 ; 0) = 2400.
Man erkennt : C ist der optimale Punkt .
Wenn der Produktionsprozess auch die Herstellung von Teilen von Produkten
zulässt , dann sind wir fertig . Der Fabrikant wird dann pro Tag 244| »Stück «
von X und 462ff »Stück « von Y herstellen lassen , um den maximal möglichen
Gewinn von 4270| f € zu erzielen .

Wenn aber nur ganze Produkte möglich sind , dann müssen wir die Gerade
durch den optimalen Punkt C so weit nach unten parallel verschieben , bis sie
zum ersten Mal auf einen Gitterpunkt trifft . Dieser ist dann der optimale
Gitterpunkt , der die Lösung für das ganzzahlige Problem liefert . In unserem
Beispiel ist G (244 | 463 ) der optimale Gitterpunkt (Abbildung 186 . 1 ) .
Der Fabrikant wird jetzt pro Tag 244 Stück von X und 463 Stück von Y
herstellen lassen , um den maximal möglichen Gewinn von 4267 € erzielen
zu können .

Ein Blick auf Abbildung 184 . 1 zeigt übrigens , dass die Nebenbedingung IY
für die Lagerkapazität (x + y A 800 ) überflüssig ist , weil sie die zulässige Men¬
ge nicht beeinflusst .



186 7 Ungleichungen

243 244 245

Abb . 186 . 1 Auffinden des optimalen Gitterpunkts

Aufgaben

1 . Durch die Nebenbedingungen
1x ^ 0 IIjAO Ulx + 2y ^ l2 IV 3x + y ^ 11 Vx ^ 3
Ylx + 2y ^ 2
wird eine zulässige Menge beschrieben . Bestimme für die angegebene Ziel¬
funktion z den optimalen Punkt , sodass dort z maximal wird . Wie groß
ist das Maximum ?
a) z = x + 4y b) z = x + y c) z = 3x + y 9 d) z = x — 2y

2 . Bei manchen Fragestellungen sucht man nicht denjenigen Punkt, bei dem
die Zielfunktion maximal wird , sondern denjenigen , bei dem sie minimal *
wird . (So wird man z . B . bei einem Geschäft versuchen , den Verlust zu
minimieren . ) Löse nun Aufgabe 1 so , dass die Zielfunktion im optimalen
Punkt ihr Minimum annimmt .

minimus (lat .) = der kleinste
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3 . Die Nebenbedingungen
Ix ^ O IlyAO IIIx + 2y ^ l2 IV3x + yAll VxA3
legen eine zulässige Menge fest . In welchen Punkten werden die Zielfunk¬
tionen aus Aufgabe 1
a) maximal , b) minimal?

4. Eine Fabrik stellt ein Gerät in 2 Ausführungen her . Je nach Ausführung ist
die Zusammensetzung der zur Herstellung verwendeten Materialien ver¬
schieden , wie die nachstehende Tabelle zeigt ; diese gibt auch an , über wel¬
che Vorräte in kg die Fabrik verfügt.

Material Typ i Typ 2 Vorrat
a 8 12 620
b 10 4 390
c 5 10 500
d 4 0 140

Wie viele Geräte müssen von jedem Typ hergestellt werden, damit die
Gesamtzahl maximal wird ?

5 . Eine Großbäckerei mit drei Backstuben in verschiedenen Orten bezieht
Mehl von zwei Mühlen. Im nachstehendenDiagramm ist neben der Tages¬
produktion der ersten Mühle der Tagesbedarfder Backstuben, jeweils in t,
eingetragen. Die Tagesproduktion der ersten Mühle wird vollständig an
die drei Backstuben ausgeliefert ; die zweite Mühle liefert den Rest . Auf
den Pfeilen sind die Frachtkosten in € je t verzeichnet . Wie viel t Mehl
muss jede Mühle an jede Backstube liefern , damit die Frachtkosten für
die Großbäckerei minimal werden ? Wie hoch sind sie?
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c) Was ergibt sich bei Aufgabe b , wenn aufgrund eines alten Vertrags
an B2 mindestens so viel liefern muss wie an

d) Was ergibt sich bei Aufgabe b , wenn zusätzlich zur Bedingung aus c
eine weitere Vertragsklausel vorschreibt, dass die Lieferung von an
By zusammenmit dem Doppelten der Lieferungan B2 mindestens241
betragen muss?

6 . Ein Bioladen hat 210 kg Haferflocken, 180 kg Rosinen und 240 kg Tro¬
ckenäpfel lagern. Daraus werden zwei Sorten Müsli gemischt , und zwar
einmal im Verhältnis 4 : 5 : 6 , das andere Mal im Verhältnis 2 : 1 : 2 . Wel¬
che Menge muss der Ladenbesitzer von jeder Sorte herstellen , um den
größtmöglichen Verdienst zu erzielen , wenn er an 1 kg der ersten Sorte
a) 9 € b ) 12 €
und an 1 kg der zweiten Sorte jeweils 10 € verdient?
Wie groß ist in jedem Fall sein Verdienst?

7 . Für jeden Teilnehmer einer Expedition soll eine »eiserne Ration« aus
Vollkornbrot, Wurst und Schokolade zusammengestelltwerden . Sie muss
genau 160 g Eiweiß und mindestens 360 g Kohlenhydrate und darf höchs¬
tens 100 g Fett enthalten . Es gilt folgende Tabelle :
je 100 g
enthalten

g Kohlen¬
hydrate

g Fett g Eiweiß

Vollkornbrot 45 5 20
Wurst 10 20 30
Schokolade 60 10 10
Aus wie viel Gramm von jedem Nahrungsmittel muss die eiserne Ration
bestehen , damit ihr Gesamtgewichtmöglichstklein bleibt? Wie viel wiegt
sie?

8 . Eine Mischung aus Nüssen und Rosinen soll als Studentenfutter verkauft
werden . Die Mischungsoll zu mindestens50 % aus Rosinenund zu minde¬
stens 30 % aus Nüssen bestehen. Der Kaufmann hat einen Vorrat von
10 kg Nüssen und 5 kg Rosinen. Üblicherweise verkauft er die Nüsse für
25 € pro kg , die Rosinen für 10 € pro kg . In welchem Verhältnis muss
er Nüsse und Rosinen mischen , wenn er bei einem Verkaufspreis für 1 kg
Studentenfutter von
a) 15 € b) 13,75 € c) 14,50 €
maximalen Erlös aus dem Verkauf des gesamten Vorrats erzielen will.
Wie groß ist dieser dann?

9 . Eine Familie muss für den Kauf einer Eigentumswohnung 120000 € an
Kredit * aufnehmen. Die Mutter hat sich bei drei Banken nach deren Kon¬
ditionen erkundigt . Für das erste Jahr verlangt die erste Bank 5 % Zinsen
auf die Gesamtschuld und eine Tilgung von 3 % dieser Schuld . Die zweite
Bank verlangt 4 % Zins und 12 % Tilgung . Die dritte Bank fordert 6 %

* creditum (lat .) = das Anvertraute
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Zins und eine Tilgung von 5 % und ist überdies nur bereit, einen Kredit zu
gewähren, der mindestens 12 000 € beträgt . Die Beratung im Familien¬
kreis ergibt, dass nur eine Belastung von höchstens 12200 € pro Jahr
verkraftet werden kann . Bei welcher Aufteilung des Kredits auf die drei
Banken zahlt die Familie die wenigsten Zinsen? Wie hoch sind sie? Wie
viel € werden getilgt?
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