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7 .3 Bruchungleichungen

Die Vorzeichenregeln für die Division entsprechen völlig denen für die Multi¬
plikation . Deshalb können wir das graphische Lösungsverfahren auch auf
Bruchungleichungen anwenden , wenn wir sie auf Nullform bringen und Zäh¬
ler und Nenner faktorisieren .

Beispiel:
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Abb . 171 . 1 Vorzeichenverteilung beim Term —- .x (x — 1 ) (x T 1 )
Die roten Striche kennzeichnen die nicht zulässigen x -Werte .

Weil bei Bruchungleichungen Nenner auftreten , die null werden können , müs¬
sen wir auf die Definitionsmenge achten . Am besten streicht man beim graphi¬
schen Lösungsverfahren die nicht zulässigen x -Werte von vornherein weg.
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• 13. a) Für zwei von null verschiedene rationale Zahlen gelte a < b . Welche
1 1

Beziehung besteht dann zwischen den Kehrwerten — und - ?
a b

1
Hinweis : Multipliziere die gegebene Ungleichung mit — und beachte
die nötigen Fallunterscheidungen ,

b) Wende die Regeln aus a an für
1

2) - < - 31) > 1

> - 34) - < 1

7 .4 Ungleichungen mit Absolutbeträgen

Treten in Gleichungen bzw . Ungleichungen Absolutbeträge auf , so musst du
immer eine Fallunterscheidung vornehmen . Dabei musst du , wie du weißt ,
danach unterscheiden , ob der Term zwischen den Betragsstrichen positiv , null
oder negativ ist . Der Term zwischen den Betragsstrichen ist bekanntlich das
Argument der Betragsfunktion .
Ist nun das Argument größer als 0 oder gleich 0 , dann kannst du die Betrags¬
striche durch eine Plusklammer ersetzen . Ist das Argument hingegen kleiner
als 0 , dann musst du die Betragsstriche durch eine Minusklammer ersetzen ,
z . B .

(2x — 3) , falls 2x — 3 0 ,
— (2x — 3) , falls 2x — 3 < 0 .

Üblicherweise gibt man aber die Bedingungen 2x — 3 2: 0 und 2x — 3 < 0 als
Bedingungen für x an und löst die Minusklammer im Kopf auf , nämlich

falls x ^ f ,
| — J | 3 — 2x , falls x < § .

Die Zahl § trennt die beiden Fälle . Sie ist aber auch die Nullstelle des Argu¬
ments . Es ist daher zweckmäßig , zuerst die Nullstelle des Arguments zu be¬
stimmen , um mit ihrer Hilfe die Yorzeichenverteilung des Arguments ermit¬
teln zu können .
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