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Aufgaben

Zeichne die Losungsmenge!

l. a) y<x+3 b) y < —3x ¢) y>2x—5 d)y=—3x+4
2. a) y=12 b) y=-—3 ¢) x<0 () d) x=-2()
3. a) x+y<0 b) 2x+4y—6=0

¢) —3x+2y+4<0 d 2x—-%y—1%2>0

7.5.2 Systeme linearer Ungleichungen mit zwei Variablen

Eine Losung eines Systems linearer Ungleichungen muss jede einzelne dieser
Ungleichungen erfiillen. Sie muss also in jeder der Losungsmengen der einzel-
nen Ungleichungen enthalten sein und damit auch in der Schnittmenge dieser
Losungsmengen. Dazu

Beispiel 1: I y<3ix+2 Iy —35x+4
ist ein System von zwei linearen Ungleichungen mit zwei Variablen. Eine
Losung dieses Systems muss sowohl der Losungsmenge L, wie auch der
Losungsmenge L; angehdren, also Element der Schnittmenge L;n Ly
sein. In der geometrischen Deutung ist die Losungsmenge des Systems die
Schnittmenge der beiden Halbebenen L, und L;. (Abbildung 179.1)

Abb. 179.1 Die Losungsmenge des Systems von Beispiel 1 als Schnittmenge der Teil-
Losungsmengen

Auch bei einem System mit mehr als zwei Ungleichungen erhilt man die
Losungsmenge als Schnittmenge aller Teil-Losungsmengen, geometrisch als
Schnittmenge aller Losungs-Halbebenen. Es entsteht dabei entweder eine
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konvexe Polygonfliche* (sieche Abbildung 180.1) oder eine konvexe Punkt-
menge, die sich ins Unendliche erstreckt (siche Abbildung 179.1) oder die leere
Menge (sieche Abbildung 180.2).
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Abb. 180.1 Die Losungsmenge des Systems
[ y<ix+2
IIy<—3x+4
[ y =1
ist die rote Dreiecksfléche.
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Abb. 180.2 Die Losungsmenge des Systems
[ py<ix+2
I y=—3x+4
I y = 4
ist leer.

* Aus moiiig (polys) = viel und dem ionischen ff yeoviz (he gonia) = der Winkel, die Ecke wurde in nachklassi-
scher Zeit, d.h. nach 300 v.Chr., das Kunstwort d noliyevey (to polygonon) = das Vieleck gepriigt.
convexus (lat.) = kesselfarmig, gewdlbt. Ein Vieleck heilit konvex, wenn die Verbindungsstrecke zweier belie-
biger innerer Punkte ganz im Inneren des Vielecks liegt.
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Je mehr Ungleichungen das System hat, desto mehr Ecken hat im Normalfall
die entstehende Polygonfliche. Dazu

Beispiel 2: \”
[ y<ix+2 4 e
- —_ \\_ i
I ys—3x+4
Il y=—x+6
IV y=0
Vo=

Die Losungsmenge, eine

Fiinfecksflache, zeigt Ab- 1 X
bildung 181.1. : \\
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e Abb. 181.1 Zum Beispiel 2
1. a) I y=3x+5 1T y=—2x
b)) I x+y=0 [Ix—y=<0
¢) I 2x—yp+3<0 II —3x+5y<10
d) I —x+2y=2 [I x—yp>3
2. a [ y=ix+3 Mmy=—x—1 I y > x
b) I 2x—y+2=0 Il x—2y—-2=<0 [T y+3=0
¢) Il y=2x+6 I 3py<—4x+12 1l y=—3x
IV y=—6 Vx=6
dIly+x—-2=0 I y—2x4+10=0 III 3y—x+18<50
IV y=0 ¥V x=0

3. Gib ein System von Ungleichungen an, das diese Losungsmenge liefert.
y
a) v) b) ‘

2 £ s

c) yi d) (1)
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e 4. Bestimme alle Losungspunkte, deren Koordinaten natiirliche Zahlen sind.
sl i =i I x—2y—2=0 HI x4+ y—5=20
b) [ y=<x+3 Il y<8 I y=2x—4 IV yzix+i V x=1

7.5.3 Lineare Optimierung

Wihrend des Zweiten Weltkriegs und in den darauf folgenden Jahren ist eine
Rechentechnik entstanden, die heute zu einem sehr wichtigen Hilfsmittel mo-
derner Unternehmensplanung geworden ist. Im Englischen nannte man sie
operations research, was man mit Verfahrensforschung, Verfahrensplanung
oder auch Planungsrechnung verdeutschte. G.B. DANTZIG hat im Wesentli-
chen dieses neue Gebiet der Mathematik begriindet; er nannte es 1949 Line-
ares Programmieren, da man schematisch mittels so genannter Programme*
Losungen von linearen Gleichungen und Ungleichungen sucht. Heute spricht
man lieber von linearer Optimierung**, weil man im Grunde die beste aller
moglichen Losungen sucht. Zur Verdeutlichung und Einfiithrung betrachten
wir das einfache, aber doch schon geniigend aussagekriftige

Beispiel 1:

Ein Betrieb stellt zwei verschiedene Produkte X und Y her. Fiir die Anferti-
gung von einem Stiick X bendétigt man 5 Std. und verbraucht Material im Wert
von 5 €, wohingegen ein Y Material im Wert von 0,60 € und eine Herstel-
lungszeit von 6 Std. bendtigt. Pro Tag kénnen bis zu 4000 Arbeitsstunden
von der Belegschaft geleistet werden. Der Finanzplan erlaubt es, tiglich bis
zu 1500 € Material einzukaufen. Aus technischen Griinden kénnen von Y
hochstens 550 Stiick pro Tag produziert werden. Die Lagerkapazitit erlaubt
es nicht, dass die Gesamtproduktion von X und Y 800 Stuck uberschreitet.
Nun bringt das Produkt X pro Stuck einen Gewinn von 8€. Y hingegen
nur 5 €. Welche Stiickzahlen von X und Y soll der Fabrikant pro Tag her-
stellen lassen, damit sein Gewinn maximal *** wird?

Losung: Wir bezeichnen mit x bzw. y die Anzahl der Stiicke des Produkts X
bzw. Y, die pro Tag hergestellt werden. Der Gewinn z hiingt von diesen Stiick-
zahlen x und y ab; es gilt ndmlich

z(x,y) =8x+ 5y.

Das Ziel des Fabrikanten ist es, den Gewinn z moglichst groB werden zu
lassen. Daher nennt man z Zielfunktion.

&

6 wpoypappa (to programma) = die schriftliche Bekanntmachung
optimus (lat.) = der beste
maximus (lat.) = der groBte
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