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Ausschnitt von Seite 128 aus den 1615 erschienenen Abhandlungen De aequationum
recognitione et emendatione tractatus duo des Frangois Viete (1540 - 1603) . Propositio I

ist der berühmte Satz von Vieta für eine Gleichung zweiten Grades .



3 Die quadratische Gleichung

3 . 1 Was ist eine quadratische Gleichung?

Du hast bisher meist nur mit linearen Gleichungen zu tun gehabt , die man auf

die Form ax + b = 0 bringen kann . Für a 4= 0 ergibt sich - als einzige Lö¬
tz

sung . Gelegentlich sind dir aber auch schon Gleichungen wie z . B . x 2 = 4 oder
x (x — 2) = 0 begegnet . Sie sind einfache Sonderfälle so genannter quadrati¬
scher Gleichungen .

Definition 72 . 1 : Eine Gleichung der Form ax 2 + bx + c = 0 mit a 4= 0
heißt quadratische Gleichung für x oder auch Gleichung zweiten
Grades in x.

Wegen a + 0 kommt x 2 in dieser Gleichung auch wirklich vor , und zwar als
höchste Potenz der Unbekannten ; daher der Name quadratische Gleichung
bzw . Gleichung zweiten Grades . In Analogie dazu nennt man eine lineare
Gleichung auch Gleichung ersten Grades .
Bei einer quadratischen Gleichung sind folgende Bezeichnungen üblich :
ax 2 heißt quadratisches Glied, bx lineares Glied und c die Konstante * der
quadratischen Gleichung .
a , b und c sind die Koeffizienten der quadratischen Gleichung . Dividiert man
die Gleichung durch a , dann ergibt sich die Normalform der quadratischen

b c
Gleichung , nämlich x 2 4— x H— = 0 . Dafür schreibt man gerne auch
x 2 + px + q = 0 .

a a

* *Zur Geschichte der quadratischen Gleichung
Aus der frühen Zeit der ägyptischen Mathematik sind uns nur ganz einfache quadrati¬sche Gleichungen des Typs ax 2 = b überliefert (siehe Aufgabe 78/14) . Im berühmten
Papyrus Rhind wird überhaupt keine quadratische Gleichung behandelt .
Von den alten Babyloniern blieben uns hingegen aus der gleichen Zeit (ca . 20 .- 19 . Jh .
v . Chr .) viele Tontafeln in Keilschrift erhalten , die sich mit quadratischen Gleichungenmit einer Unbekannten beschäftigen (Aufgabe 97/24) , viel öfter aber mit Gleichungs¬
systemen mit zwei und mehr Unbekannten , wobei mindestens eine der auftretenden
Gleichungen quadratisch ist (siehe 3 .8) . Neben der Lösung ist auf vielen Tafeln auch
der Lösungsweg angegeben (siehe Seite 86) . Der geometrische Ursprung dieser Aufga¬
ben ist aus den verwendeten Bezeichnungen wie »Länge « , »Breite« und »Fläche « er¬
sichtlich . Die Babylonier haben sich aber sehr früh von dieser geometrischen Begriffs¬welt gelöst und verstehen unter diesen Wörtern , die bezeichnenderweise auch nicht
dekliniert werden , meist nur mehr - modern ausgedrückt - die Unbekannten x und yund ihr Produkt xy . Wie wäre es sonst verständlich , dass sie eine Fläche und eine Seite
* Das Wort Konstante hat 1692 Gottfried Wilhelm Leibniz (1646- 1716) in die Mathematik eingeführt .
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addierten und eine Zahl erhielten ! Sie haben bereits in früher Zeit eine Mathematik
geschaffen, die nur mit Zahlen umgeht , anders als im alten Indien oder Ägypten , wo
Mathematik im Gewände der Geometrie getrieben wurde . So sollen die ägyptischen
Harpedonapten * durch Spannen von Seilen geometrische Konstruktionen und auch
Beweise ausgeführt haben * * .
Dieses geometrische Wissen brachten sowohl Thales (um 625 um 547 v . Chr .) wie
auch Pythagoras (um 570- um 497 v . Chr .) von ihren ägyptischen Studienaufenthal¬
ten mit . Pythagoras - so berichtet uns der Volksredner Isokrates (436- 338 v . Chr .) -
soll dabei 525 anlässlich der Eroberung Ägyptens durch den Perserkönig Kambyses II .
(reg . 529- 522) nach Babylon verschleppt worden sein, wo er - dem Bericht des Neupla -
tonikers Iamblichos von Chalkis (um 250- um 330 n . Chr .) zufolge - 7 Jahre ver¬
brachte und dort in die Lehre von den Zahlen und der Musik eingeführt wurde . Die
Entdeckung der Pythagoreer , daß z . B . x 2 = 2 im Bereich der Brüche nicht exakt
lösbar ist , dass aber andererseits immer exakt eine Strecke konstruiert werden kann ,
sodass das darüber errichtete Quadrat den Flächeninhalt 2 hat , ließ die Griechen eine
»geometrische Algebra « * * * entwickeln , in der Flächen und Längen wie physikalische
Größen behandelt werden . Die Exoiyda (Stoicheia) - »Elemente « - und die Aeöofisva
(Dedomena ) , lateinisch Data - »Gegebenes« - Euklids (um 300 v . Chr .) bezeugen,
dass alle quadratischen Gleichungen mit positiven Lösungen - und nur solche waren
zugelassen - durch geometrische Konstruktionen exakt gelöst werden konnten .
Natürlich ist die babylonische Zahlenmathematik nicht verloren gegangen . Man über¬
ließ sie aber den Praktikern , d . h . den Land - und Himmelsvermessern . So soll der
berühm te Astronom Hipparch (Mitte des 2 . Jh .s v . Chr .) , arabischen Berichten zufol¬
ge , ein Lehrbuch über quadratische Gleichungen geschrieben haben . Mit Diophant
(um 250 n . Chr .) gelangte die alte babylonische Tradition des Rechnens mit Zahlen zu
neuer Blüte . In seinen ÄQiQuqxiK &v ßißXia (Arithmetikön biblia ) - »Bücher über die
Zahlenlehre « - finden sich viele Aufgaben von derselben Art wie auf den babyloni¬
schen Keilschrifttafeln .
Quadratische Gleichungen werden auch im letzten der »Neun Bücher arithmetischer
Technik« , dem Chiu Chang Suan Shu (China , 2 . Jh . v . Chr .) , gelöst , dem wir Aufgabe
98/25 entnommen haben .
Die Leistungen der Inder und Araber , von denen das mittelalterliche Europa das
Rechnen mit quadratischen Gleichungen lernte , schildern wir auf Seite 86ff.
Auch unsere Fachwörter haben ihre Geschichte .
Das griechische fooocnq (isosis) Diophants (um 250 n . Chr .) wurde zum lateinischen
aequatio , das Leonardo von Pisa (um 1170- nach 1240 ) in seinem Uber abaci (1202) als
Fachwort verwendet . Die Eindeutschung führt über Vorgleichung - 1518/21 Heinrich
Schreyber , genannt Grammateus (1492/967 - 1525 ) in seinem Rechenbüchlein -
schließlich zu Gleichung, belegt 1695 bei Henrich Horch in seinem Werk Anfangs-
Gründe einer Vernunfft - und Schrifft-übenden Zahl - und Buchstab-Rechenkunst / Deren
diese sonst Algebra heisset . Christian von Wolff (1679 - 1754) übernimmt das Wort
Gleichung in Die Anfangsgründe Aller Mathematischen Wissenschaften 1710 , wo sich
auch der Fachausdruck quadratische Gleichung findet .
Mit dem Wort gradus bezeichnet 1591 Franyois Viete (1540- 1603) in seiner In artem
analyticem Isagoge die Höhe einer Potenz . Vom Grad einer Gleichung spricht dann
1675 Jean Prestet (1652- 1690 ) in seinen Elemens des Mathematiques .

* = Seilverknüpfer , von äpnsSovri (harpedöne ) = Seil und airreiv (häptein ) = anknüpfen
** Clemens von Alexandria (150- 215) schreibt in seinen Stromateis (1,15 ) diese Behauptung Demokrit (um

460 - um 370 v . Chr .) zu .
*** Den Ausdruck führte 1886 der dänische Mathematiker Hieronymus Georg Zeuthen (1839- 1920) ein .

1925 entdeckte man in Bologna ein zwischen 1574 und 1587 geschriebenes Manuskript des Paolo
Bonasoni (f nach 1593) mit dem Titel Algebra geometrica .
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Aufgaben
1 . Entscheide , ob eine quadratische Gleichung vorliegt . Bringe sie gegebe¬

nenfalls auf eine Form ax 2 + bx + c = 0 mit positivem a und gib das
lineare Glied und die Konstante an .
a) 3 - x 2 = x
c) x (x — x 2 ) = 0
e) (0,5* + 4) 2 = 0

b) 3x 2 — 1 = x 2
d) (x — 1 ) (1 — x) = 3
f ) x 2 - 1 = (x - l ) 2

2 . Entscheide , für welche Unbekannte eine quadratische Gleichung vorliegt .
Gib jeweils das lineare Glied und die Konstante an .
a) x 2 y = — 1
c) xy + y 2 = 3x 2

e) a 3 b 2 — abx 2 + 2 = 0

b) x_y
2 = 3x + y 2

d) x 2 — xy 2 + y 3 = 1
f) (a + b) (a — b) = (a — b) 2

3 . Stelle die Normalform her .
a) 3x 2 — 6x + 15 = 0
c) — l,5x 2 + 4,5x = 2,1 x 2 — 8,1

e) (| - | x) 2 = (i - | x) 2

b) 1 — x 2 = 3x
d) ( 1 — 5x) 2 = 5x — 1

f) Yix = i/ö . Vi

3 .2 Spezialfälle von quadratischen Gleichungen

Einfache Spezialfälle der quadratischen Gleichung ax 2 + bx + c = 0 hegen
vor , wenn ein Koeffizient der quadratischen Gleichung null ist . a selbst kann
aber nicht null sein; denn sonst hätte man keine quadratische Gleichung .

3 .2 . 1 Die rein quadratische Gleichung

Wenn b = 0 ist , fehlt das lineare Glied bx in der quadratischen Gleichung .
Sie hat dann die Gestalt ax 2 + c = 0 . Eine Gleichung dieser Bauart heißt

£
rein quadratisch . Wegen a 4= 0 gewinnt man ihre Normalform zu x 2 + - = 0
bzw . x 2 + q = 0 .

a

Für q > 0 ist die linke Seite sicher positiv ; die Gleichung hat daher keine
Lösung . Für q = 0 ergibt sich die Gleichung x 2 = 0 . Sie hat die Lösung 0 .
Für q < 0 kann man mit Hilfe der 3 . binomischen Formel die linke Seite
faktorisieren . Wir zeigen es dir für q = — 49 :

x 2 - 49 = 0
x 2 - 7 2 = 0
(x + 7) (x — 7) = 0
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Wie wir wissen , kann ein Produkt nur null sein, wenn mindestens ein Faktor
null ist . Aus der letzten Zeile entsteht die Oder -Aussageform

x + 7 = 0vr - 7 = 0 bzw.
x = — 7 vi = 7 .
Wir erhalten also zwei Lösungen , nämlich x x = — 7 und x2 = 7 .
Selbstverständlich kann man die Methode des Faktorisierens auch anwenden ,
wenn — q keine Quadratzahl ist . Nehmen wir als Beispiel q = — 5 :

x 2 — 5 = 0

x 2 - (]/5 ) 2 = 0

(x + V5) (x - V5) = 0

x = — 1/5 v i = l/5 . Also x x = — 1/5 und x2 = ]f $ -

Merke : Die rein quadratische Gleichung x 2 + q = 0 hat entweder keine , ge¬
nau eine oder zwei Lösungen , je nachdem ob q > 0 , q = 0 oder q < 0
ist .

Die Lösungen der rein quadratischen Gleichung kann man aber statt durch
Faktorisieren auch durch Radizieren finden . Es gilt nämlich

Satz 75. 1 : Sind die beiden Seiten einer Gleichung nicht negativ und
radiziert man beide Seiten , so entsteht eine äquivalente Gleichung ;
kurz :

Für 7j A 0 und T2 A 0 gilt : 7j = F2 <=> L
7 7j = ]/t 2

Beweis:
1 ) Ist u eine Lösung der Gleichung 7j = T2 mit 7j (u) A 0 , dann gilt 7j (u) =
= T2 (u) , also auch wegen der Eindeutigkeit der Wurzel ]/ 7j (u ) = VT2 (u) .
Damit ist u auch eine Lösung der Gleichung ]/l \ = \!' t 2 . Es gehen also beim
Radizieren keine Lösungen verloren .

2) Ist nun umgekehrt v eine Lösung der Gleichung 1/
~
TX — dann gilt

YfJv ) = VrJv \ woraus sich wegen der Eindeutigkeit des Quadrats
7j (v) = T2 (v) ergibt . Das bedeutet aber , dass v auch eine Lösung der Glei¬
chung Tx = T2 ist . Es kann also beim Radizieren auch keine Lösung hinzu¬
gekommen sein.
Da somit beim Radizieren weder Lösungen hinzugekommen noch verloren
gegangen sind , stimmt die Lösungsmenge der Gleichung 7j = T2 mit der Lö¬

sungsmenge der Gleichung Yl \ = ]fr 2 überein . Radizieren ist also eine Äqui¬
valenzumformung .
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Wir wenden Satz 75 . 1 auf unsere beiden obigen Beispiele an :

X2 - 49 = 0 x 2 - 5 = 0

x 2 = 49 \\ ]T x 2 = 5 \ \ ]T

1* 1 = 7 \ x \ = Vs

IIX>1IIK x = — 1/5 v x = l/5 .

Du siehst , beim Radizieren von Quadraten entstehen Absolutbeträge , die sich
durch Fallunterscheidungen wieder beseitigen lassen . Betrachten wir dazu
allgemein die Gleichung

x 2 = d 2
| | ]T

\ x \ = \ d \ .
Weil zwei Zahlen mit gleichem Absolutbetrag entweder gleich oder entgegen¬
gesetzt gleich sind , bedeutet die letzte Gleichung dasselbe wie
x = d v x = — d .

Merke: | x | = | </ | <s > x = d v x = - d

Aufgaben
1 . a) x 2 = 169

d) x 2 - 0,0324 = 0
g) 144 .x 2 = 1225

2 . a) 2x 2 = 8

d) 28 - 63x 2 = 0

, 13 78x 2
g) T

“
^

b) x 2 - 1024 = 0
e) 16 = 0,64x 2
h) 22500 - 2025x 2 = 0
b) 0,5x 2 = 8

e) — = —
12 27
22 24x 2

' 3 11

c) x 2 = 6,25
f) 2,56x 2 - 40,96 = 0
i) 10,89x 2 = 0,1936
c) 5x 2 — 45 = 0

_ x 2 7
^ 35

~
125

~ °

0,125x 2 M
4

Beachte bei den folgenden Aufgaben die Definitionsmengen!

3 . a)

c)

4x — 1 x — 1
x + 1 4x + 1

x -)- 10 5x -(- 4
2x — 5 x + 7
3x + 2 7x + 3
x 4 1 2x 4“ 2
16x — 1 4x + 25
x + 4 2 — 9x

2x — 5 X
3x + 10 2x -f- 10

X ~h 10 5x — 4
2x + 5 x + 7
2x + 7 2x -{- 2
4x — 6 1,5 — X
3x + 2 llx + 8
2x — 3 5x — 9
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2x 2 — 5 „ 3x 2 + 5
4 . a) - -- + 2 =

6
7x 2 + 1 1 4x 2 — 2

b) 4
~

2
+ 3

c)

e)

1
3x 2 — 2 17x 2 — 7

x - 4
+

5 . a)

x 2 — 1 x + 1

4 =

= 0

x + 2

6x — 8
c) — - h 2x =

3x

x — 2

3x + 4

d)

0

b)

+ 2 = 0
10 - 2x 2

8 — 20x x + 6
+9x 2 — 4 3x — 2

= 1

1 4 „ „+ - r + 7 = 0
5x + 2 x — 1

— x
x + 1 x — 1

d) - r +
x — 1 X + 1 x 2 — 1 + 2

»6 . Führe die notwendigen Fallunterscheidungen durch .
, 2

a) ax 2 =

x 6
c) - = -

a x

b)
x
a

2 „ 2

— a 2 = 0

d) a 2 x 2 — a = b 2 x 2 — b

e) (3x — 2a) 2 — (2x — 3a) 2 = 4a 2 f)
(bx — ä) 2 2bx — a- - 1- = b

87 . Führe die notwendigen Fallunterscheidungen durch ,
a) x 2 + a = b b) ax 2 = b
c) (x + 2a) 2 + (2x - a) 2 = 5a d) (3x - 2a) 2 + 64 = (x — 6a) 2

1
e) a (x — b ) 2 + ax (x + 2b) = -

f) (ax + b ) 2 + (bx + a) 2 = 2a 2 + 2abx (x + 2)

8 . a) (x — 7) 2 = 9
d) (0,5x — 1,5) 2 = 2,25
g) (x - a) 2 = b 2

9. a)
x x- 1-

x — a x + a
= 2|

b) (x + 2i ) 2 = f
e) (x — 3) 2 = — 3
h) (x + a) 2 = (2x + a)

x — a x + a

c) (x + 2) 2 = 2
f) (3 — x) 2 = 3

2 (q4 + 1 )
a2 (x 2 — a2)

10 . Multipliziert man 3^ einer Zahl mit derselben Zahl, dann ergibt sich
40733 . Wie heißt die Zahl ?

11 . Länge und Breite eines Rechtecks verhalten sich wie 7 : 5 , der Flächenin¬
halt ist 2240. Wie breit ist das Rechteck ?



78 3 Die quadratische Gleichung

12 . Zerlege die Zahl 11532 in zwei Faktoren , die sich wie 3 zu 4 verhalten.
13 . Zerlege die Zahl z in zwei Faktoren , die sich wie a : b verhalten.

(a , b , z 4= 0)
14 . Aufgabe6 aus dem PapyrusMoskau (18 . Jh . v . Chr . nach einer Vorlage des

19 . Jh .s v . Chr .) : Ein Rechteck hat den Flächeninhalt 12 . Für die Breite
nimm \ der Länge + \ der Länge . Bestimme seine Seiten .

15 . Al -Charizmi (um 780 - nach 847) löste in seiner Algebra folgende Auf¬
gaben :
a) Das zweite der 6 Probleme (siehe Seite 87) : Ich habe 10 in zwei Teile

geteilt . Multipliziere ich den ersten Teil mit sich selbst und das Erhalte¬
ne mit 2^, dann ergibt sich dasselbe , wie wenn ich 10 mit sich selbst
multipliziere . Wie groß sind die Teile?

b) Multipliziere eine Zahl mit sich selbst , nimm das Vierfache , und du
hast 20 . Wie groß ist die Zahl ?

c) Das dritte der 6 Probleme: Ich habe 10 in zwei Teile geteilt. Dann habe
ich den einen durch den anderen dividiert und 4 erhalten . Wie groß sind
die Teile?

Zu den Aufgaben 16 bis 19 : Leonhard Euler (1707 - 1783 ) veröffentlichte 1770
in Petersburg seine Vollständige Anleitung zur Algebra (bereits 1768 auf rus¬
sisch erschienen ) , der wir die folgenden Aufgaben entnommen haben . *

16 . Es wird eine Zahl gesucht, deren Hälfte , mit ihrem Drittel multipliziert, 24
gibt .

17 . Es wird eine Zahl von der Beschaffenheit gesucht, dass, wenn man zu
derselben 5 addiert und ebenso von ihr auch 5 subtrahiert , jene Summe
mit dieser Differenz multipliziert 96 beträgt .

• 18 . Von 3 Personen besitzt die erste so oft 7 Reichstaler wie die zweite 3 Reichs¬
taler hat ; und so oft die zweite 17 Reichstaler besitzt , hat die dritte 5 Reichs¬
taler . Wenn man aber das Geld der ersten mit dem Gelde der zweiten und
das Geld der zweiten mit dem Gelde der dritten und endlich das Geld der
dritten mit dem Gelde der ersten multipliziert , hierauf diese drei Produkte
addiert , so ist die Summe 3830| . Wie viel Geld hat nun jede gehabt ?

19 . Einige Kaufleutebestellen einen Faktor [ = Leiter einer Handelsniederlas¬
sung] und schicken ihn nach Archangel , um daselbst einen Handel abzu¬
schließen . Jeder von ihnen hat zehnmal so viel Reichstaler eingelegt , wie es
Personen sind . Nun gewinnt der Faktor an je 100 Reichstalern zweimal
so viel, wie die Anzahl der Personen ist . Wenn man dann den 100 . Teil des
ganzen Gewinns mit 2 § multipliziert , so kommt die Zahl der Gesellschaf¬
ter heraus . Wie viel sind ihrer gewesen?

2 . Teil , 1. Abschnitt , Kapitel 5, Aufgaben I , II , IV und V
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3 .2 .2 Die Konstante ist null

Ist die Konstante null,d . h . ,gilt c = 0 , dann hat die quadratische Gleichung die
Gestalt ax 2 + bx = 0 .
Man löst sie durch Faktorisieren :

ax 2 + bx = 0
x (ax + b) = 0
x = 0vax + b = 0

x = 0 v x = - (a =t= 0) .
a b

Wir erhalten also zwei Lösungen , nämlich x 1 = 0 und x 2 = - .a
Für b = 0 ergibt sich 0 als einzige Lösung .
Beim Gleichungstyp ax 2 + bx = 0 ist also 0 immer eine Lösung .
Diese Lösung ginge verloren , wenn jemand glaubte , er könne die Gleichung
ax 2 + bx = 0 dadurch vereinfachen , dass er durch die Variable x dividiert
und nur noch ax + b = 0 löst .

Merke: Durch einen Term darf man nur dividieren, wenn er nicht null ist .

Aufgaben
1 . a) x 2 — 5x = 0 b) 3x 2 + 8x = 0

d) 14x 2 + 3 ^x = 0 e) x 2 = x
c) 15x 2 = 18x
f) x 2 = ~ x

2 . a) 0,12x 2 + 2x = 3,08x

c) 3x 2 — V3x = x — ]/3x 2

e) ]/lÖx 2 + ]/5x = 0

b) V2x + 5x 2 = 0

d) \ x 2 + ]/ §x = — j ]/5x 2 + j ]/6x

f)
j/27
Vsx 2

3 . Aus dem liber abaci (1202 ) des Leonardo von Pisa (um 1170 - nach 1240) :

a) x (x + l/lÖ) = 9x 2 b) x (x + l/lÖ) = 9x

4 . Das erste der 6 Probleme des al -Charizmi aus seiner Algebra (siehe Seite
87) : Ich habe 10 in zwei Teile geteilt und den einen mit dem anderen multi¬
pliziert . Multipliziere ich aber den einen Teil mit sich selbst , dann erhalte
ich viermal so viel wie zuvor . Wie groß sind die Teile?
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5 . Al -Charizmi behandelt weitere Beispiele quadratischer Gleichungen . In
moderner Schreibweise lauten sie :

l . i
4 5

c) ix : • ix

Bestimme die Lösungen .

6 . a) x 2 — lax = 0 x = 0

d) a 2 x 2 — 2bx = 4 b 2 x 2 — ax

3 .3 Die quadratische Ergänzung

Quadratische Gleichungen vom Typ ax 2 + c = 0 und ax 2 + bx = 0 können
wir schon lösen . Was aber machen wir bei einer allgemeinen quadratischen
Gleichung ? Gelingt es , die linke Seite durch Probieren zu faktorisieren , dann
ist das Problem gelöst . Dazu

Beispiel 1 : Beispiel 2:
x 2 + 4x — 5 = 0 Ix 2 — 5x + 3 = 0
(x + 5) (x — 1 ) = 0
x + 5 = 0vx - l = 0
x = — 5 v x = 1 .

(2x — 3 ) (x — 1 ) = 0
2x — 3 = 0vx — 1 = 0
X = f V X = 1 .

Leider wird dieses Probier -Verfahren nur in den seltensten Fällen zum Ziel
führen . Wenn es gelingt , dann ist es aber auch das schnellste Verfahren . Wir
brauchen jedoch eine Methode , die immer zum Ziel führt .
Dazu formen wir die Gleichung schrittweise so um , dass eine rein quadra¬
tische Gleichung entsteht , die wir schon lösen können . Wir zeigen es dir an¬
hand einer Gleichung , die al -Charizmi (um 780 - nach 847 ) in seinem al-kitab
al-muchtasar fi hisab al-dschabr wa - ’l-muqabala - »Handbuch über das Rech¬
nen durch Wiederherstellen und Ausgleichen « - behandelt , und verfolgen
seinen Lösungsweg .

Beispiel 3 : \ x 2 + 5x = 28
1 . Schritt : Herstellen der Normalform
x 2 + lOx — 56 = 0
2 . Schritt: Ergänzen zum Quadrat
Wir fassen den Term x 2 + lOx als Anfang der linken Seite der 1 . binomi¬
schen Formel x 2 + lux + u 2 = (x + u)2 auf . Der Koeffizient von x muss
dann lu sein . Es gilt also lu = 10 und damit u = 5 . Wir ergänzen nun das
fehlende u 2

, d . h . 5 2
, und ziehen es gleich wieder ab , um die Konstante

nicht zu verändern :
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x 2 + lOx + 5 2 — 25 — 56 = 0 .
Die ersten drei Glieder ergeben ein Quadrat :
(x 2 + lOx + 5 2) — 81 = 0
(x + 5) 2 — 81 = 0 .
Das ist eine rein quadratische Gleichung für (x + 5) .
3 . Schritt: Lösen der rein quadratischen Gleichung
durch Faktorisieren oder

(x + 5) 2 - 9 2 = 0
[(x + 5) + 9] [ (x + 5) — 9] = 0
(x + 14) (x — 4) = 0
x = — 14 v x = 4 .

durch Radizieren

(x + 5) 2 = 81 | | lA
| x + 5 | = 9
x + 5 = — 9 v x + 5 = 9
x = — 14 v x = 4 .

Das vorgeführte Lösungsverfahren heißt Lösen durch quadratische Ergän¬
zung .
Als »quadratische Ergänzung « bezeichnet man aber nicht nur das Lösungs¬
verfahren , sondern auch den Term u 2

, mit dem man ergänzt .

Merke: Man halbiert den Koeffizienten des linearen Glieds, quadriert und
ergänzt .

Wie du schon weißt , hat die rein quadratische Gleichung zwei, eine oder gar
keine Lösung . Dasselbe gilt natürlich dann auch für jede quadratische Glei¬
chung , wenn wir sie in eine äquivalente rein quadratische Gleichung umfor¬
men können .
Al - Charizmi zeigt seinen Lesern mittels eines geometrischen Beweises (vgl . Abbildung
82 . 1 ) - er hatte ja noch keine Buchstabenrechnung - , dass die Methode der quadrati¬
schen Ergänzung richtig ist . Vielleicht helfen dir seine Gedanken auch zu einem besse¬
ren Verständnis dieses Verfahrens . Er schreibt : *
Wir gehen aus vom Quadrat ABCD , dessen Flächeninhalt gleich der gesuchten Qua¬
dratzahl x2 ist . Unser nächstes Anliegen ist es , ihm eine Fläche vom Inhalt 10-mal der
gesuchten Zahl , also lOx , hinzuzufügen . Zu diesem Zweck halbieren wir die 10 , das
ergibt 5 , und konstruieren an zwei Seiten des Quadrats ABCD zwei Rechtecke , näm¬
lich CBGH und DCFE , und zwar so , dass jeweils die Längsseite 5 misst - das ist die
Hälfte des Koeffizienten 10 von x - , wohingegen die Breite jeweils gleich der Quadrat¬
seite x ist . Dabei entsteht an der Ecke C ein Quadrat , nämlich FCHI . Dessen Inhalt ist
5 mit sich multipliziert : Diese 5 ist die Hälfte des Koeffizienten der Unbekannten x , die
wir an jeder Seite des Ausgangsquadrats als Strecken [BG] und [DE ] angefügt haben .
Jetzt können wir sagen , dass das erste Quadrat mit dem Inhalt x 2 und die zwei Recht¬
ecke an seinen Seiten , die zusammen lOx haben , insgesamt 56 ausmachen . Um nun
zum großen Quadrat AGIE vervollständigen zu können , fehlt uns nur mehr die Qua -

* Wir haben den Text nur wenig modernisieren und dem Beispiel 3 anpassen müssen . Natürlich gibt es bei al -
Charizmi noch keinen Buchstaben x ; auch »Koeffizient « drückt er umständlicher aus . Quadrate und Recht¬
ecke werden nur durch die Diagonalecken - wie bei Euklid - bezeichnet ; das Quadrat ABCD heißt also nur
AC usw . Seine Figur stimmt übrigens genau mit der Euklids aus Buch II der Elemente überein ; nur der
mathematische Inhalt dazu wird anders formuliert . So lautet der zugehörige Satz 4 bei Euklid : »Wird eine
Strecke beliebig geteilt , so ist ihr Quadrat gleich der Summe der Quadrate der beiden Teilstrecken , vermehrt
um ihr doppeltes Rechteck .« Teilen wir also [AE ] in D , so gilt

AE 2 = AD 2 + EÜE2 + 2 • AD • DE .
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dratzahl , die aus 5 mit sich multipliziert entsteht , also 25 . Diese addieren wir zu 56 und
haben damit zum großen Quadrat AGIE ergänzt . Als Summe erhalten wir 81 . Wir
ziehen die Wurzel , das ergibt 9 , und das ist die Seite des großen Quadrats . Ziehen wir
davon dasselbe ab , was wir vorher hinzugezählt haben , nämlich 5 , dann erhalten wir
als Rest 4 . Dies ist die Seite des Quadrats ABCD , die man gesucht hat .

A x D 5 E

x2

c

5x

5x 25

x 2 + lOx = 56
x 2 + 2 ■^ x = 56
x 2 + 2 ■ (5x) = 56
x 2 + 2 ■(5x) + 5 2 = 56 + 25
(x + 5) 2 = 81

G H I
Abb . 82 . 1 Die Zeichnung des al -Charizmi zum Beweis der quadratischen Ergän¬
zung

Aufgaben
1 . Löse durch Faktorisieren .

a) x 2 — 5x + 6 = 0
c) y 2 + y — 20 = o

b) z2 + 6z + 8 = 0
d) n 2 — 5/t — 24 — 0

2 . Ergänze zum Quadrat ,
a) x 2 + 4x b)
d) x 2 — 0,6x e)
g) x 2 + l,3x h)

x 2 — 8x
x 2 + l,8x
x 2 + fx

3 . Ergänze zum Quadrat .
a) x 2 + 3 \ x b) x 2 — 3jx

c) x 2 — 24x
f) x 2 — 0,5x
i) x 2 — fx

c) x 2 + 2yx

d) x 2 — 3ax

g) x 2 + 10 ]/7x

e)

h)

, a + b
x + -

T
~ *

x 2 - 7j/IÖx

f) x 2 - 3
2a - 3b

- x

i) x 2 — fl/l5 .X

4 . a) x 2 — 3x + 2 = 0
c) x 2 + 11 x + 28 = 0
e)* x (x + ]/l0 ) = 20

5 . a) x 2 + lOx + 30 = 0
c) u 2 + 7 = 8w

b) x 2 — 2x — 3 = 0
d) x 2 + 12x + 36 == 0
f) * x 2 - (20 + j/iÖ) x + 100 = 0
b) y 2 + 4y = 1
d) v 2 = 3 — 2v

aus dem Uber abaci (1202) des Leonardo von Pisa (um 1170- nach 1240)
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6 . a) 2x 2 — 28x + 98 = 0
c) — 5u 2 + 120m — 730 = 0

b) - 3z2 + 12z + 63 = 0
d) 8x 2 + 80x + 72 = 0

b) iz z - jz - l = 07 . a) 3x 2 + x — 2 = 0
c) 2 u 2 — 3u + 4 = 0 d) \ ,5y 2 + 2y - 7,5 = 0

b) x 2 + 4ax + a 2 = 08 . a) x 2 + 4A:x — 5A;2 = 0
c) x 2 — 2nx = 6m « + 9m 2 d) rx2 — 2r 2 x = rs — r 3

3 .4 Diskriminante und Lösungsformel

Wenn ein Mathematiker immer wieder gleichartige Aufgaben lösen muss ,
dann wird er dessen bald müde und er beginnt zu überlegen , ob sich nicht eine
Formel finden lässt , mit der er ein für alle Mal alle Aufgaben dieses Typs lösen
kann . Mit Hilfe der quadratischen Ergänzung entwickeln wir nun eine solche
Formel zur Lösung der quadratischen Gleichung .
ax 2 + bx + c = 0 , <2 + 0

1 . Schritt : Herstellen der Normalform

a a
2 . Schritt : Ergänzen zum Quadrat

0 <=>x 4— x +

3 . Schritt : Lösen der rein quadratischen Gleichung durch Faktorisieren
Die Faktorisierung lässt sich nur durchführen , wenn der Term b 2 — 4ac nicht
negativ ist . Ist er negativ , dann gibt es keine Lösung .

Ist er null , dann ist x = — die einzige Lösung .2a
Ist er positiv , dann gibt es zwei Lösungen , die wir durch Faktorisieren finden ,
da man in diesem Fall b 2 — 4ac als (|\/b 2 — 4ac ) 2 schreiben kann . Es gilt dann
also

Vb — 4ac

Vb 2 — 4ac ]/b 2 - 4ac
2a

b + Vb 2 — 4ac n b — ]/b 2 — 4ac
xH- -- = 0 v xH- --
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b + 1/ b 2 — 4ac
2a v v = —b — ]/b 2 — 4ac

2a
— b — Vb 2 — 4 ac — b + \/b 2 — 4 acx = - -- v x = - --

2a 2a

Für diese Oder -Aussageform schreibt man oft kurz unter Verwendung des
1631 von William Oughtred (1574 - 1660 ) in seinem Clavis mathematicae -
»Schlüssel der Mathematik « - eingeführten Zeichens ± , gelesen »plus oder
minus «

— b ± Vb 2 — 4ac
X =

2a '

Damit haben wir einen formelmäßigen Ausdruck für die beiden Lösungen der
allgemeinen quadratischen Gleichung , nämlich

b - Vb 2 - Aac b + Vb 2 - Aac
2a22a

oder kurz

— b± ]/b 2 — 4ac

Über die Existenz von Lösungen und
über ihre Anzahl entscheidet , wie wir
oben gesehen haben , der Term

b 2 — 4ac .
Der englische Mathematiker James
Joseph Sylvester (1814 - 1897 ) gab
ihm deshalb 1851 den Namen Diskri¬
minan te * . Wir kürzen diesen Aus¬
druck mit D ab . Wegen seiner Bedeu¬
tung merken wir uns

Definition 84 . 1 : D -= b 2 — Aac
heißt Diskriminante der
quadratischen Gleichung
ax 2 + bx + c = 0 .

* discriminare (lat .) = trennen , unterscheiden . Dis¬
kriminante ist eine der vielen Wortschöpfungen Abb . 84 . 1 James Joseph SYLVESTER
Sylvesters . (3 . 9 . 1814 London - 15 . 3 . 1897 ebd .)
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Wir fassen unsere Ergebnisse zusammen in

Satz 85 . 1 : Die quadratische Gleichung ax 2 + bx + c = 0 mit a 4= 0 hat

— b± ]/b 2 — 4ac
für D > 0 die Lösungen x 12 =

b
für D = 0 die Lösung x = — —

2a
für D < 0 keine Lösung .

Praktisches Vorgehen bei der Anwendung der Lösungsformel :
1 ) Treten in den Koeffizienten der Gleichung Nenner auf , so beseitigt man

diese durch Multiplikation der Gleichung mit dem Hauptnenner .
2) Ist der Koeffizient des quadratischen Glieds negativ , dann multipliziert

man die Gleichung mit — 1 .
3) Da D die entscheidende Rolle spielt , berechnet man nun D.

Ist D < 0 , so ist man fertig .

Ist D = 0 , so ist x = — ^ die einzige Lösung .2a ,—- b± ]/D
Ist D > 0 , so erhält man die Lösungen x 12 — - z- •

Beispiel 1 :
— 5x 2 + 8x + 21 = 0 | | • ( — 1 )
5x 2 — 8x — 21 = 0 Z> = ( — 8) 2 — 4 - 5 - ( — 21 ) =

= 64 + 420 =
= 484 ;

VD = 22 .
- ( - 8) ±22

Beispiel 2:
Iv2j . 10vJ . 10
6 X T Q A + 27

9x 2 + 12x + 4 = 0 D = 12 2 — 4 • 9 • 4 =
= 144 - 144 = 0 ;

Vd = o .
- 12 + 0

2 - 9



86 3 Die quadratische Gleichung

Beispiel 3:
x 2 + x + 1 = 0 D = l 2 — 4 - 1 - 1 = 1 — 4 = — 3 .
Keine Lösung .

* *Zur Geschichte der Lösungsformel
Der Wunsch nach einer Lösungsformel für eine quadratische Gleichung ist so alt wie
die Gleichung selbst . Solange man aber nicht über eine algebraische Formelsprache
verfügte , konnte man den Lösungsweg nur in Worten angeben . Anhand der Aufgabe
1 der Keilschrifttafel BM 13901 (20. Jh . v. Chr .) zeigen wir dir dieses Vorgehen . Wir
stellen links den babylonischen Text, rechts die moderne algebraische Form unter
Verwendung allgemeiner positiver Koeffizienten B und C dar .

Die Fläche und die Seite meines Quadrats habe
ich addiert , und | ist es .
1 , den Koeffizienten , nimmst du .

Die Hälfte von 1 brichst du ab , es ist j .

j und i, multiplizierst du , es ist

i zu | fügst du hinzu , es ist 1 .

1 hat als Quadratwurzel 1 .

j , das du mit sich multipliziert hast , von
1 subtrahierst du , es ist j ;

und das ist die Quadratseite .

Die gegebene Gleichung hat die Normalform x 2 + x + ( — f ) = 0 , d . h . , a = 1 ,b = 1 = B und c = — f = — C. Mit unserer Formel erhalten wir als positive Lösung

— b + Vb 2 — 4ac

tui
Abb . 86 . 1 Autographie der Aufgabe 1
der Keilschrifttafel BM 13901 ,
aufbewahrt im British Museum
zu London

- B + |/B +

2 - 1

also das Ergebnis der Babylonier .

B + 2

x 2 + x = |
1 = B
B _ 1
2

~
2

4 4
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Nun gab es lange Zeit keine Null und erst recht keine negativen Zahlen , sodass diese
auch nicht als Koeffizienten auftreten konnten . Daher gab es auch nicht eine quadrati¬
sche Gleichung , sondern 5 verschiedene Typen . Und für jeden Typ musste ein eigenes
Lösungsverfahren angegeben werden (siehe unten ) . Wir können fast sicher sein, dass
Diophant (um 250 n . Chr .) über all diese Verfahren verfügte , wenn wir auch keinen
Beleg dafür haben ; denn jedes Mal , wenn bei ihm eine quadratische Gleichung vor¬
kommt , gibt er die Lösung richtig an .
Seine Arithmetik soll 13 Bücher umfasst haben , von denen uns nur 6 auf Griechisch
überliefert wurden . Vor wenigen Jahren fand man eine um 900 angefertigte arabische
Übersetzung von 4 weiteren Büchern . In den nun bekannten 10 Büchern findet man
keine Theorie der quadratischen Gleichungen . Wir können nur hoffen , dass sich die
letzten 3 Bücher auch noch finden !
Durch die Einführung der negativen Zahlen und auch der Null als Koeffizienten war
es den Indern möglich , alle Gleichungen auf eine Standardform zu bringen und zu
lösen . So verlangt Brahmagupta ( 598 - nach 665 ) , jede quadratische Gleichung - in
unserer Schreibweise - auf die Form ax 2 + bx = d zu bringen und dann gemäß

x =
^- - zu lösen . Mit unserem c = — d ist dies fast schon unsere Lösungs -

2a
formel . Es fehlt nur noch das + . Wir müssen sogar annehmen , dass bereits sein Vor¬
gänger Aryabhata I (um 476- ?) auf diese Art quadratische Gleichungen löste (siehe
Aufgabe 101/27) .
Leider übernahmen die Araber von den Indern nicht die negativen Zahlen - ein algebrai¬
scher Rückschritt ! - , sodass es bei ihnen auch keine Standardform mit Lösungsformel
gibt . Einen Überblick über alle möglichen Formen bringt al -Charizmi (um 780 - nach
847) gleich zu Beginn seines al-kitab al-muchtasarfi hisab al-dschabr wa- ’l-muqabala -
»Handbuch über das Rechnen durch Wiederherstellen und Ausgleichen « . Wir müssen
uns dabei erinnern (vgl . Abbildung 68 . 1 ) , dass er darin drei Begriffe verwendet :
- die Wurzel; darunter versteht man alles, was mit sich multipliziert werden kann ;
- das Vermögen ; darunter versteht man alles, was sich durch Multiplizieren der Wur¬

zel mit sich selbst ergibt ;
- die (reine) Zahl ; darunter versteht man alles, was ausgesprochen werden kann ohne

Beziehung zu Wurzel und Vermögen.
Und nun sagt al -Charizmi , dass zunächst je zwei von diesen dreien (oder Vielfache
davon ) untereinander gleich sein können , dass man aber auch jeweils zwei addieren und
der 3 . Art gleichsetzen könne . Dadurch entstehen 6 Typen von Gleichungen , die zur
Grundlage der abendländischen Gleichungslehre wurden . Deutet man »Wurzel« als
Unbekannte x , so wird »Vermögen« zu x2

, und es entstehen quadratische Gleichun¬
gen . * Mit positiven A , B und C können wir den arabischen Text modern umschreiben :
(Al ) Vermögen sind Wurzeln gleich. Ax 2 = Bx
(A2) Vermögen sind einer Zahl gleich. Ax 2 = C
(A3) Wurzeln sind einer Zahl gleich . Bx = C
(Bl ) Vermögen und Wurzeln sind einer Zahl gleich. Ax 2 + Bx = C
(B2 ) Vermögen und Zahl sind Wurzeln gleich . Ax 2 + C = Bx
(B3 ) Wurzeln und Zahl sind Vermögen gleich . Bx + C = Ax 2

Jede dieser 6 Typen führt al -Charizmi an einem Problem vor . Dabei bereiten die

* Natürlich kann man auch »Vermögen « als Unbekannte x wählen , was in vielen Aufgaben zweckmäßig ist .
Weil dies in den Übersetzungen aber fast nie getan wurde , entstanden viele Ungereimtheiten und Missver¬
ständnisse . Siehe z . B . Aufgabe 94/11 i .
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einfachen Gleichungen (Al ) bis (A3 ) keine Schwierigkeiten . (A3) ist sogar linear (Auf¬
gabe 78/15c) . (Al ) wird linear , da man durch x dividieren kann ; denn null ist keine
Lösung bei al -Charizmi (Aufgabe 79/4) . Und (A2 ) ist eine rein quadratische Glei¬
chung , die man durch Wurzelziehen lösen konnte (Aufgabe 78/15 a) .
Auch für die Typen (Bl ) bis (B3 ) , die übrigens bereits von Euklid (siehe Aufgaben
98/26 und 110/25) und Diophant behandelt worden waren , stellt erjeweils ein Problem
(Aufgabe 100/28) , beschreibt den Lösungsweg in Worten und beweist ihn geometrisch
( !) . Übersetzt man den Lösungsweg in unsere Formelsprache , so entstehen drei ver¬
schiedene Ausdrücke als Lösungsformeln , die sich nicht zu einer Formel zusammen¬
fassen lassen , da man eben keine negativen Zahlen kannte (Aufgabe 100/29) . Al -
Charizmi erkennt aber , dass (B2) im Gegensatz zu (Bl ) und (B3 ) unter gewissen Um¬
ständen zwei Lösungen haben kann . Er gibt - natürlich wieder in Worten - die Bedin¬
gung für zwei und für eine einzige Lösung an und sogar dafür , dass »die gestellte
Aufgabe nichtig ist« - wir sagen heute stattdessen , dass sie keine Lösung hat (Aufgabe
100/29) .
Auch die Babylonier kannten bereits diese 3 Typen von quadratischen Gleichungen ,
vermieden aber durch geschickte Umformungen fast immer den Typ (B2 ) , weil sie sich
nicht vorstellen konnten , dass eine Größe zwei Werte annehmen sollte . * Interessanter¬
weise stimmen viele Aufgaben al -Charizmis mit alten babylonischen Aufgaben und
mit Aufgaben Diophants , dessen Werke er nicht kannte , überein , sodass wir auf eine
alte mathematische Tradition schließen dürfen .
Das Werk al -Charizmis wirkte zurück nach Indien (Aufgabe 100/30) und wurde fort¬
gesetzt von arabischen Mathematikern , vor allem von dem in Bagdad wirkenden al -
Karadschi (10 ./11 . Jh .) . Ins Abendland kamen die quadratischen Gleichungen , als der
Italiener Plato von Tivoli (lebte zwischen 1134 und 1145 in Barcelona ) den liber
embadorum - »Buch der Inhalte « - des in Barcelona wirkenden jüdischen Mathemati¬
kers Abraham bar Hijja , genannt Savasorda ( | 1136 ) , aus dem Hebräischen ins La¬
teinische übersetzte . Bald darauf wurde auch das Werk al -Charizmis durch Gerhard
von Cremona ( 1114- 1187) und durch Robert von Chester (um 1145) ins Lateinische
übersetzt . Seitdem werden seine Aufgaben als Standardaufgaben von den Mathemati¬
kern des Mittelalters fast wörtlich übernommen . Sie finden sich auch in deutschen
Handschriftendes 15 . Jh . s . Dabei wird das arabische JL (mal ) = Vermögen lateinisch
mit census (seltener mit substantia ) übersetzt , das j (dschidr ) = Wurzel mit radix .
Census wird als Fremdwort ins Deutsche übernommen , für radix sagt man wurcz .
Mathematisch blieb aber alles beim Alten , nämlich bei den 6 Gleichungstypen . Erst
Gielis van den Hoecke schaffte 1537 einen gewissen Durchbruch , indem er auch
abzuziehende Glieder in den quadratischen Gleichungen zulässt . Genauso verfährt
1544 Michael Stifel (14877- 1567 ) , der sie damit alle auf eine der 3 Formen bringt :
x2 = Bx + C , x2 = — Bx + C , x2 = Bx — C . (B und C positiv )
Nur x 2 = — Bx — C gibt es nicht bei ihm , da er , obwohl er sonst schon mit negativen
Zahlen arbeitet , sich solche noch nicht als Lösung einer quadratischen Gleichung
vorstellen kann . Es gelingt ihm , einen einzigen Lösungsweg anzugeben , dem er den
Merknamen AMASIAS gibt , zusammengesetzt aus den Anfangsbuchstaben seiner
* Beispielsweise kann man die Aufgabe »10 habe ich in zwei Teile geteilt , ihr Produkt ist 21 « nach babylonischer

Art als Gleichungssystem mit zwei Unbekannten zu x + y = 10 a xy = 21 ansetzen . Führt man nur eine
Unbekannte ein , so erhält man aus x (10 - x) = 21 die quadratische Gleichung (B2) x 2 + 21 = lOx . Neu bei
al -Charizmi ist eben , dass er solche Aufgaben als quadratische behandelt . Dann hat er aber zwei Lösungen
für x , nämlich 3 und 7 , was für die Babylonier unverständlich ist . Sie bekommen auch keine zwei ! Denn sie
benützen die Identität 4xy = (x + y) 2 — (x —y)2 und rechnen (x —y) 2 = 100 — 4 • 21 = 16, was , da es nur
positive Zahlen gibt , sofort auf x —y = 4 führt . Mit x + y = 10 ergibt sich x = 7 und y — 3 .
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r Sequfturmodus ifte extrahend/.
Primo * ji . namcvö rabicam incipe, eutn'

cp bimibiatom,
loco etua ponc illtue , quob in loco fuo (fr t,bomc
confumata fit tota operatio .

Secüdo « rriuUtplica .bimibtam illub pofitum, quabrate«
Tertio . Jibbe vel Subtrabe iujcta |tgm abbitotu,aut (tgnt

fubttractorum,erigenttani .
Quarto ^ nucnicnbö eff rabtje quabröta,c )r furnrna abbttt

oute tu* »vcl ep fuBtracttome tu» relicto-
Quinto .^ bbc aut Subtrabe turtafigni auteremplt tui

eplgentiam .
Modum extrahendi hunc tibi, mi boneLeĉ or/ormaui , ita

ut memorix tenadter hzrere poflit adminiculo didionis hu*
ius A m a s i a s .

Abb . 91 . 1 Die AMASIAS -Merkregel aus Michael Stifels Arithmetica integra von
1544 (folium 240 v) - Übersetzung im Lösungsheft

lateinischen Merkregel aus der Arithmetica integra - »Die ganze Arithmetik « - von
1544 (Abbildung 91 . 1 ) . Etwas modernisiert lautet sie für x 2 = ±Bx + C :

1 . Anfänge mit der Anzahl der Wurzeln,

halbiere sie und lass sie stehn .

2 . Multipliziere diese Hälfte mit sich.

3 . Addiere oder Subtrahiere , wie es das Vorzeichen
des konstanten Glieds C fordert .

4 . Itzo die Quadratwurzel zieh.
2

+ c

5 . Addiere oder Subtrahiere das zur Seite gestellte
B
2 ’ wie es das Vorzeichen von B verlangt .

^ B
+ C + -“ ~

2

Geronimo Cardano (1501 - 1576 ) hingegen erkennt in seinem Artis magnae , sive de
regulis algebraicis Uber unus ( 1545 ) - »Das eine Buch über die Große Kunst oder die
algebraischen Regeln« - als Lösungen auch negative Zahlen an . * Simon Stevin (1548
bis 1620 ) schließlich lässt sowohl negative Koeffizienten wie auch negative Lösungen in
seiner L ’Arithmetique (1585) zu . Damit ist der Abschluss erreicht : Es gibt nur eine Form
der quadratischen Gleichung und nur eine Lösungsformel .
* Stifel nannte die negativen Zahlen numeri absurdi oder auch numeri ficti (eingebildete Zahlen ) . Diesen

Ausdruck benützt auch Cardano . Wenngleich dieser in Kapitel I seiner Ars magna von wahren und eingebil¬
deten Lösungen einer quadratischen Gleichung spricht {x 2 + 4x — 21 hat die wahre Lösung 3 und die einge¬
bildete —7) , so führt er bei den in Kapitel V vorgerechneten Beispielen immer nur die wahre , d . h . die positive
Lösung auf .
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Aufgaben
1 . a) 2x 2 — 5x — 3 = 0

c) 3x 2 — 7x — 6 = 0
e) 4x 2 — 12x + 11 = 0
g) 16x 2 — 48x + 36 = 0

b) 5x 2 + 16x — 16 = 0
d) 40x 2 - 89x + 40 = 0
f) 4x 2 — 12x + 5 = 0
h) 14x 2 + 45x — 14 = 0

2 . Aus der Arithmetica Integra (1544 ) des Michael Stifel (14877- 1567 ) :
a) x 2 + 6x = 72
c) x2 = 725 — 4x
e) x 2 + 8x — 12 = 72
g) x 2 — 2x + 24 = 6x + 72
i) x 2 = 8x + 38
k) x 2 = 12x - 18
m) x 2 = 3x + 72

b) x 2 = 6x + 72
d) x2 = x + 35156
f) x 2 + 3x + 18 = 72
h) x 2 = 12x — 36
j) x 2 = 8x — 38
1) x 2 = 12 - 3x
n) x 2 = 6x + 36

3 . Aus dem Artis magnae , sive de regulis algebraicis liber unus (1545 ) des
Geronimo Cardano (1501- 1576 ) :
a) x 2 + 4x = 21
d) x 2 = lOx + 144
g) 6 = lOx + x 2

j) x 2 = ]/l2x + 20
m) x 2 + 16 = lOx

4 . a) x 2 — 2x + 1 = 0
c) 4x 2 + 8x + 1 = 0
e) 5x 2 — 5x + 1 = 0

5 . a) 0,5x 2 — 0,5x — 1 = 0
c) ^x 2 — f x + 2 = 0
e) 2,25x 2 — x + ^ = 0
g) i * 2 - fx + ^ = 0

b) x 2 = 4x + 21
e) 144 = 10x + x 2
h) lOx = x 2 + 6
k) x 2 = Vl2x + 9

c)
f)
i)
1) x 2 = | x + ll

x + 12 = Ix
x 2 = lOx + 6
x 2 = l/l2x + 22

b) x 2 — 2x — 1 = 0
d) 6x 2 — 2x — 1 = 0
f) 12x 2 + 48x + 47 = 0
b) 0,5x 2 + 3,25x + 1,5 = 0
d) 0,1 x 2 + §§x — 1 = 0
f ) fx 2
h) 0,36x 2 + 0,4x - ^ = 0

ff x + 0,5 = 0

6 . Runde die erhaltenen Lösungen auf Tausendstel .
a) x 2 - 37 = 0 b) x 2 - 6x - 11 = 0
c) x 2 + llx + 8 = 0
e) 2 ]/5x + 2 = 0

g) V3x 2 — 6x + 4 ]/3 = 0

d) 16x 2 — 112x + 63 = 0
f) 2 (/ 3x 2 - 12x + 5 ]/3 = 0

3 1/2
2?2

X _ Th) ]/2x 2 - = 0

i) x 2 - (4 + 2l/2 ) x + 6 + 4 )/2 = 0 j) 2x 2 + x ( l - 3j/3 ) + 3 - ]/3 = 0

k) l/8x 2 - 4 )/3x + 21/2 = 0 1) x 2 + }/3x - ]/5x - ]/l5 = 0
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HIERONYMI CAR
DANI , PRÄSTANTISSIMI MATHE -

UATICI , PHILOSOPH r> AC MBDI C 1,

ART IS MAGNA
SIVE DE REGVLIS ALGEBRAICIS ,Lib.unus. Qui &totiusoperisdeArithmcria, quod

OP VS PERFBCTVM
mfcripGr,e/IinonlineDedmus,

^ 53

HAbesinhoclibro,ftudio(eLe<flor,R«gutasAlgebraicasrftali,delaCof
läuocant)noutsadinumüonfbus>acdemonßrailonibiisabAuthorefta

bcupletatas.utpropauculisanteauulgötrüis.famfeptiiagmraeualerim.Ne«
cpfolum, ubitmusnumerusalteri,autdiioimi.uerumeriam,ubiduoduobus,
auttresuniäqualesfiieiint,nodumexplicant. Huncaütlibnimi'deofeor*
fimedrreplacutt.uthocabftnilTfsimo, &planeinexhaüftotoäüsArithmeti
c» thefauroinlucemenico>&quafiintheatroquodamotnnibusadfpeftan
dumexpoGco,Leftoresincitaretur,utreliquosOpen?Perfedblibros,quiper
Tomosedentur,cantoauidiusampIeAancur,acitunorefafhdioperdifcanc-

Abb . 93 . 1 Titelseite der Ars magna des
Geronimo , auch Girolamo Cardano
(24 .9 . 1501 Pavia- 20 .9 . 1576 Rom ) , er¬
schienen 1545 in Nürnberg :
Des Hieronymus Cardanus , des außer¬
ordentlichsten Mathematikers , Philoso¬
phen und Arztes , eine Buch der Großen
Kunst oder über die algebraischen Re¬
geln, das auch der Reihe nach das zehnte
des gesamten Werks über die Arithmetik
ist , dem er den Titel VOLLKOMME¬
NES WERK gab . *

Die Umschrift um sein Bildnis lautet
TÖ |iSAAOV ÖTl YEVf | CTSTCtl £ iq TÖ CpEpTSpOV
xlösi

Halte das Zukünftige , das sich entwickeln
wird , für das Bessere!

7 . Gib vierstellige Näherungen für die Lösungen an , d . h . , berechne die Lö¬
sungen auf vier geltende Ziffern genau (führende Nullen zählen nicht !) .
a) x 2 - 7,9771 x + 7,0802 = 0 b) x 2 + 0,1010x - 0,2411 = 0

c) x 2 + Ttx — 7t 2 = 0 d) x 2 — l/3,14x + 1 — l/5 = 0
e) 3,14x 2 + 2,01x + 0,301 = 0 f) 1509x 2 + 1998x - 7487 = 0

g) 1,23 • 104x 2 - 2,34 • 10 5 x - 1 = 0
3

h) ]/2x 2 + (2 - 2V2 ) x -j— = - — 2 = 0
1/2

a) (x + 5) (2x — 7) = 9
c) (4x — l ) 2 + 2x = 0
e) ( llx - 7) 2 = (10 - 10x ) 2

g) (3x + 2) 2 — (2x + l ) (2x -

b) ( 1 - 3x ) (5x + 2) = 0
d) (2x + 3) (3 - 2x ) + 6x + 1 = 0
f) 4x 2 — x (5 + 3x ) = (6 — 2x ) 2 — 36

l ) + x = ll

* Text unter dem Bildnis :
Du findest in diesem Buch , lernbegieriger Leser , die algebraischen Regeln (die Italiener nennen sie die der
Coß ) , die vom Verfasser durch neue Hinzuerfindungen und Beweise so bereichert wurden , dass an Stelle der
recht wenigen vorher allgemein geläufigen schon siebzig herausgekommen sind . Und sie erklären nicht nur
das Problem , bei dem eine Zahl einer zweiten oder zwei einer , sondern auch das , bei dem zwei zweien oder drei
einer gleich gewesen sind . - Es erschien aber angebracht , dieses Buch deshalb gesondert herauszugeben ,
damit , wenn dieser sehr versteckte und völlig ungehobene Schatz der ganzen Arithmetik ans Licht gebracht
und wie in einem Theater allen zum Anschauen vor Augen geführt wird , die Leser angespornt werden , die
übrigen Bücher des »Vollkommenen Werks « , die bandweise erscheinen werden , umso begieriger aufzuneh¬
men und mit geringerem Widerwillen durchzuarbeiten .
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h) (3 + 5x) 2 - (3x - 2) 2 - (5 - 2x) (5 + 2x ) = 0
i) Aus dem liber abaci (1202 ) des Leonardo von Pisa (um 1170 bis nach

1240) : ( l + fx ) ( l + fx ) = 73

• 9 . a) (4x + l ) (6x — 5) (5x + 2) = (3x + 4) (10x — 17) (4x + 3) — 246
b) (8x - 7) (9x - 16) (7x - 6) = (14x - 13) (12x - ll ) (3x - 5) - 5
c) x (x — 2) (x + 5) + (x — 3) (x — 2) (8 — 3x) = 2x 2 (3 — x) + 208
d) (x — 4) 3 + (x + l ) 3 = (x — l ) (x — 2) (2x + 3) + 61
e) (2x + 3) 3 + (4x - 3) 3 = (2x + l ) (4x + 3) (9x - 25) + 853
f) (3x - 4) 3 - (6x - 7) 3 = (9x + 6) (7x - 12) (7 - 3x) + 620
g) (5x — 9) 3 — (7x — 5) 3 = 4x (14x — 25x 2) — 2x (59x 2 — 45)

6 18
10 . a) x H— = 5 b) x - = 3

x

16
d) 9x H- = 86= 8c) 3x —

x

4
6x + 1

= 5
2x + 5 4x — 4 3x — 4,5

2x — 7
1 7

+ - = - — h) 1 +
x — 12 4x + 12 2x — 6

5x + 1 5x — 8
3 7 5— x + x- 7 = x6x — 2 3x + 1 2

k) Aus dem liber abaci (1202 )
des Leonardo von Pisa :

1) Aus dem Codex latinus
monacensis 14908 (um 1460 ) :

60 „ 20— x = 5 + — 15 17
— + -

x + 2 x

11 . Zur Vertiefung rechnet al -Charizmi in seinem al-kitab al-muchtasar fi
hisab al -dschabr wa - ’l-muqabala u . a . die folgenden Aufgaben vor . Löse die
in moderner Schreibweise wiedergegebenen Gleichungen . Warum sind
nicht alle von dir gefundenen Lösungen auch Lösungen bei al -Charizmi ?
a) (10 — x ) 2 — x 2 = 40 b) (10 — x) 2 + x 2 + (10 — x) — x = 54

10 — x
10 — x

d) -
2 (10 - x)

+ 5x = 50

x (10 - x) cle) (10 — x ) 2 = 81x
10 - 2x
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g) (x - (ix + 3 )) 2 = x

. 12 . a)

c )

e )

g)

SO

7
x + 5 x — 6 x — 1

3 4 6
x — 2 X 1 LO

1 1

6 5 18
3x — 4 4x — 3 2x + 5

18 14 19
2x + 1 3x H- 2 4x -j- 3

8x + 7

h) = 2x7
1 + x

1 1
i)* (x — ix — jx — 4) 2 = x + 12 j) -

x + 1

5 6
b) - 7 +

d)

x — 4 x — 3 x — 6

7 9 40
+

x — 3 x + 5 x + 1

11 18
0 -- 7 +

26

h)

4x — 1 Ix — 3 3x + 4

7 26 57
+

+
lOx - 1

2x — 3 3x — 2 4x — 1

7x + 2
6x 2 — 13x — 5 3 x 2 4- 10x + 3 2x 2 + x — 15

x + 3 x — 1 x — 1
»13 . a) - -—I- —7 — - 7 + 1

x — 3 x + 4 x — 4

„ x + 5 x + 1 5
c) 7 3 x = rx — 3 x — 2 x — 4

x + 11 x + 13
b) — ^ +

x + 2 x + 3 x — 5 + 2

+ 2 x + 5 x + 7 x + 2
d) — 77 + — 77 = - + 1

x + 2 x + 3 x

• 14 . a) x 2 + 4ax + 3 a 2 = 0 b) m 2 x 2 — 5 mnx + 4n 2 = 0 , m + 0
c) x 2 + (p — q) x — pq = 0 d) x 2 + (1 — 2a 2) x — 2a 1 = 0
e) 4« 2x 2 — 4 (« 2 + uv) x + (u + v) 2 = 0 , u + 0

Sf) 2c2 x 1 — 2c 2 x — cdx — 3cd — 6dz = 0 , c + 0
5g ) 4x 2 — 4 (r + ä) x + r 2 + 2« — 1 = 0
Sh) x 2 + ax — 2öx — lab — 2 (a + 26 ) — 4 = 0
Si) (x + 2a) (x + 6 ) (x - a + b ) = (x - 6 ) 3 + b (x - a - b ) 2 + a (66x - a 2)
Sj ) (x + a) 3 — (x — a) 3 = a (2x + a) (2x — b) + 2a 3 + 5a 2 6 + 4a6 2

* Der Text al -Charizmis lautet : »Ein Vermögen , du nimmst ein Drittel davon weg und ein Viertel und 4
Dirhem [siehe Fußnote auf Seite 67] . Dann multiplizierst du den Rest mit sich selbst und das Vermögen ist
wiedergewonnen , vermehrt um 12 Dirhem .«
Setzt man Vermögen = x , so erhält man die obige Gleichung .
Cardano bringt diese Aufgabe als Quaestio I in Kapitel V seiner Ars magna (1545) und verweist auf
al -Charizmi als Autor : »Est numerus , ä cuius quadrato si abieceris | & £ ipsius quadrati , atque insuper 4 .
residuum autem in se duxeris , fiet productum aequale quadrato illius numeri , & etiam 12.«
Würde man numerus = x setzen , so erhielte man (x 2 — £ x 2 — Jx 2 — 4) 2 = x 2 + 12, eine unnötig schwere
Gleichung .
Diese Aufgabe ist ein schönes Beispiel dafür , dass mal = Vermögen nicht immer als Quadrat einer Zahl
gedeutet werden muss . Übrigens gibt sich Cardano mit der Lösung für das Quadrat der Zahl zufrieden , gibt
also die angeblich gesuchte Zahl gar nicht an .
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15 . Führe beim Lösen der folgenden Gleichungen die erforderlichen Fallun¬
terscheidungen durch !
a) x 2 + lax + 1 = 0 • b) x 2 — 4ax + 4a = 0

Sc) x 2 + abx + a 2 b = 0 d) x 2 + (2a + 4b) x + 5a 2 + 5b 2 = 0
. , „ 1 — me) mx — 2x - — = 0

„ x + a x
g) - +

m
■2a

x — a x + a
— 2 -— Z 4

• f) ax 2 +

1
- h)

ax 1
a + 2 a 2 — 4

1 2a

= 2x 2 + x

+
ax + b ax — b a 2 — b 2

16 . Wie muss man bei den folgenden Gleichungen k wählen um die angegebe¬
ne Zahl von Lösungen zu erhalten ?
a) 2x 2 + 6x + k = 0
b) 3x 2 + kx + 21 = 0
c) 6x 2 — 5 kx — k 2 = 0
d) x 2 — kx + 4 = 0
e) 2x 2 + kx — 4k 2x — 2k 3 = 0
f) x 2 — k (2k + 0,5)x — k 2 — 0

2 Lösungen
keine Lösung
1 Lösung
2 Lösungen
1 Lösung
1 Lösung

17 . a) Beweise:
1) Die Gleichung x 2 + px + q = 0 hat im Falle q < 0 stets zwei ver¬

schiedene Lösungen .
2) Die Gleichung ax 2 + bx + c — 0 besitzt , falls a und c entgegenge¬

setzte Vorzeichen haben , stets zwei verschiedene Lösungen .
b) Gilt von diesen Aussagen auch die Umkehrung ?

18 . Die Multiplikation einer Gleichung mit einem Faktor d =f= 0 stellt be¬
kanntlich eine Äquivalenzumformung dar . Zeige für den Fall der quadra¬
tischen Gleichung mit Hilfe der Lösungsformel , dass dabei die Lösungen
tatsächlich gleich bleiben .

19 . Wähle in den folgenden Gleichungen k so , dass die Differenz der Lösun -
gen den angegebenen Wert d hat .
a) 2x 2 — 5x + k = 0 , d = 1,5
b) 6x 2 + 13x + k = 0, d = i
c) x 2 + kx — 11 = 0 , d = 12
d) 9x 2 + k 2x + 2 = 0 , II
e) kx 2 + 15x + 12 = 0 , d = 3
f) kx 2 — 24x — 1 = 0 , d = 1,04

20 . Für welche Werte von k haben die folgenden Gleichungen ganzzahlige
Lösungen ?
a) x 2 + 2x + k 2 = 0
b) kx 2 — 20x + 15 = 0 , keN
c) k (x 2 + lOx) + 48 = 0 , k e Z
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21 . In der Gleichung x 2 — 8x + « = 0 soll die natürliche Zahl n so gewählt
werden , dass eine durch 3 teilbare ganzzahlige Lösung auftritt . Wie viele
Möglichkeiten gibt es?

22 . a) Begründe: Hat die quadratische Gleichung ax 2 + bx + c = 0 mit ra¬
tionalen Koeffizienten die irrationale Lösung r + s ]ft , wobei r und s
rational sind , dann hat sie auch die Lösung r — s ]/t .

b) Eine quadratische Gleichung mit rationalen Koeffizienten habe die

Lösung 3 — 2l/l7 . Wie lautet ihre Normalform ?
c) Die Gleichung 2x 2 — Ix + c = 0 , c rational, soll eine Lösung mit dem

irrationalen Bestandteil 31/5 haben . Bestimme c .
23 . Gilt der Satz aus Aufgabe 22 . a) auch für rationale Lösungen? Bearbeite

dazu :
a) Bestätige, dass 1 + l/4 Lösung der Gleichung x 2 — 7x + 12 = 0 ist . Ist

dann auch 1 — ]/4 Lösung ?

b) Bestätige , dass 3,5 + V\ Lösung der Gleichung x 2 — 7x + 12 = 0 ist .
Ist auch 3,5 — V\ Lösung ?

24 . Im BritischenMuseum zu London wird unter der Signatur BM 13901 eine
der ältesten babylonischen Keilschrifttafeln (ca . 1900 v . Chr .) aufbewahrt .
Sie enthält 24 Aufgaben , die auf quadratische Gleichungen mit einer
(Nr . 1 - 7,16 und 23) , mit zwei oder mehr Unbekannten führen . Offensicht¬
lich handelt es sich bei dieser Tafel um Übungsmaterial für den Mathema¬
tikunterricht ; denn die Aufgaben sind alle vorgerechnet (siehe Seite 86) .
Bestimmt wurde bei den folgenden Aufgaben jeweils die Seite eines Qua¬
drats . Suche sie !

1 ) Die Fläche und die Seite meines Quadrats habe ich addiert , und J ist
es . *

2) Die Seite meines Quadrats von der Fläche habe ich subtrahiert, und
870 ist es .

3) Ein Drittel der Fläche habe ich abgezogen , ein Drittel der Seite meines
Quadrats habe ich zur Fläche hinzugefügt , und §§ ist es .

4) Ein Drittel der Fläche habe ich subtrahiert, und die Fläche und die
Seite meines Quadrats habe ich addiert , und 286f ist es .

5) Die Fläche und die Seite meines Quadrats und den dritten Teil der
Seite meines Quadrats habe ich addiert , und §§ ist es .

6) Die Fläche und zweimal den dritten Teil der Seite meines Quadrats
habe ich addiert , und §§ ist es .

7) Elf Flächen und sieben Seiten meines Quadrats habe ich addiert , und
6| ist es .

* Natürlich kann man Flächen und Seiten nicht addieren . Die Babylonier benützen zwar noch die geometri¬
schen Ausdrücke , meinen damit aber immer nur die Maßzahlen der Fläche und der Seite .
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16) Ein Drittel der Seite meines Quadrats von der Fläche habe ich abgezo¬
gen , und Y2 ist es .

23) Eine Fläche . Die vier Seiten und die Fläche habe ich addiert , und ff ist
es .

25. Aus dem Buch IX des Chiu Chang Suan Shu (2 . Jh . v . Chr .) :
a) Aufgabe 12 : Jetzt habe man eine Tür , deren Flöhe und Breite man

nicht kennt . Beide sind kürzer als die unbekannte Länge einer Bambus¬
stange . Hält man diese horizontal , dann kommt man nicht hindurch ;
denn 4 Fuß ist sie zu lang . Hält man sie vertikal , dann kommt man um
2 Fuß nicht hindurch . Hält man sie aber schräg , dann kommt man
gerade hindurch . Frage : Wie groß sind Höhe , Breite und Diagonale ?
[ 1 Fuß « 23 cm]

b) Aufgabe 20: Jetzt hat man eine Stadt mit quadratischem Grundriss.
Die Seitenlänge kennt man nicht . In der Mitte jeder Seite ist ein offenes
Tor . Geht man aus dem Nordtor 20 Schritt hinaus , dann kommt man
an einen Baum . Geht man aus dem Südtor 14 Schritt hinaus , biegt
ab und geht dann nach Westen 1775 Schritt , dann erblickt man von
dort den Baum . Frage : Wie groß ist die Quadratseite der Stadt ?
[ 1 Schritt = 6Fuß « lim ]

26 . a) Euklid (um 300 v . Chr .) behandelt in
Buch II , Satz 11 seiner Elemente fol¬
gendes Problem : Eine gegebene Stre¬
cke so zu teilen , dass das Rechteck aus
der ganzen Strecke und dem einen Ab¬
schnitt gleich ist dem Quadrat über
dem anderen Abschnitt .
1 ) Berechne die Länge x desjenigen

Teils der Strecke a , über dem das
Quadrat errichtet wird . *

2) Zeige , dass stets x > \ a ist .
b) Zeige durch Berechnen von AD = x,

dass die von Euklid angegebene Kon¬
struktion richtig ist (Abbildung 98 . 1 ) .

c) Die stetige Teilung oder der goldene
Schnitt . Euklid nennt in Buch VI (De¬
finition 3) seiner Elemente eine Strecke
stetig geteilt , wenn sich die ganze Stre¬
cke zum größeren Abschnitt genauso
verhält wie der größere Abschnitt zum
kleineren . Zeige, dass die Aufgabe , eine
Strecke a stetig zu teilen , auf dieselbe

T Q- X

Abb . 98 . 1 T teilt [AB] so , daß
x 2 = a {a — x) .
k(C; CB) liefert D , k (A ; ÄD )
liefert T.

* Die quadratische Gleichung für x ist vom Typ (Bl ) . (Siehe Seite 87)
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Gleichung führt wie die , mit der das Problem von Euklids Satz II/11
aus Aufgabe a gelöst wird . *

d) Die stetige Teilung hat folgende interessante Eigenschaft: Trägt man
den kleineren Abschnitt auf dem größeren Abschnitt ab , so wird dieser
wieder nach dem goldenen Schnitt geteilt , wobei der frühere kleinere
Abschnitt die Rolle des größeren Abschnitts übernimmt . Man kann so
immer weiter fortfahren . Beweise die Behauptung .

* Wenn für 3 Größen a , b , c bzw . für 4 Größen a , b, c , d usw . zutrifft , dass a : b = b : c bzw . a : b = b : c =
= c : d usw . gilt , dann sagten Aristoteles (384 - 322 v . Chr .) und auch Euklid z . B . in Buch VIII seiner
Elemente , es bestehe eine aovexVQ dvaAoyia (syneches analogia ) , eine zusammenhängende ,fortlaufende , bestän¬
dige Verhältnisgleichung . Wörtlich übersetzte dies ins Lateinische Boethius (um 480- 524/5 ) mit proportiona -
litas continua , ins Deutsche der Bamberger Rechenmeister Wolffgang Schmid 1539 in seinem Das erst buch
der Geometria mit ein stäte unzertrente aufeinander volgendeproportz . Der Augsburger Wilhelm Holtzmann
(1532- 1576) , der seinen Namen zu Xylander gräzisierte , sprach 1562 in seiner Euklidübersetzung (Buch V,
Definition 10) von einer stetigen Proportion .
Offensichtlich stehen nach Euklids Definition 3 von Buch VI die ganze Strecke , der größere und der kleinere
Abschnitt in stetiger Proportion zueinander . Es nimmt daher wunder , dass Euklid für diese Teilung einer
Strecke nicht den oben angegebenen Fachausdruck benützte ; stattdessen sagt er , eine Strecke ö.kqov Kai
peoov Xöyov xEfie.iv (akron kai meson lögon temeln ) , was unter Umstellung der Adjektiva mit media et extrema
ratione secare im Mittelalter latinisiert und mit nach dem äußeren und mittleren Verhältnis schneiden in die
deutschen Lehrbücher des 18 . Jh .s einging . Immerhin nennt Xylander die Strecke schon recht kurz Pro -
portzlich zertailt . Erst Johann Friedrich Lorenz übersetzt 1781 Euklids Wendung mit nach stetiger Propor¬
tion geschnitten . Wann daraus die Kurzform stetig geteilt wurde , konnten wir nicht ermitteln .
Man darf annehmen , dass bereits die Pythagoreer Kenntnis von dieser Teilung hatten , die ein unent¬
behrliches Hilfsmittel zur Konstruktion der regulären Körper war . Luca Pacioli (um 1445- 1517) be¬
schäftigte sich mit diesen Körpern und gab wegen
der Wichtigkeit dieser Teilung seiner 1498 verfass¬
ten und 1509 gedruckten diesbezüglichen Schrift ,
für die sein Freund Leonardo da Vinci (1452 bis
1519) die Zeichnungen anfertigte , den Titel Divina
Proportione - »Göttliches Verhältnis « . Dieser Titel
mag zur späteren Mystifizierung beigetragen ha¬
ben . Pacioli selbst gibt fünf Gründe an , warum er
dieses Verhältnis göttlich nennt . Einer davon ist ,
dass es sich genauso wenig durch rationale Größen
ausdrücken läßt wie Gott durch Wörter . Ein ande¬
rer nimmt Bezug auf Platon (438 - 348 v . Chr .) , der
in Timaios (55c) das Dodekaeder , das sich ja ohne
dieses Verhältnis nicht konstruieren lässt , dem
Äther , der quinta essentia , d . h . in christlicher
Sicht der göttlichen Kraft zuordnet . Und wie Pa¬
cioli sieht auch 1569 der französische Mathemati¬
ker , Humanist und Philosoph Petrus Ramus
(1515- 1572) die bei dieser Teilung auftretenden 3
Teile als Sinnbild der Dreifaltigkeit , da sie eine »ge¬
einte Dreiheit und eine dreiartige Einheit « bilden .
Johannes Kepler (1571- 1630) spricht in einem
Brief vom 12. 5 . 1608 mit Hochachtung von dieser
proportio divina . Er sieht darin eine Idee des Schöp¬
fers , die er wegen der in Aufgabe d angesproche¬
nen Eigenschaft selbst für ein Sinnbild des Ewigen
hält . Die Teilung nennt er sectioproportionalis . Der
Ausdruck sectio divina , d . h . göttlicher Schnitt ,
stammt nicht von ihm , wie oft behauptet wird . 1619
schreibt er jedoch in seiner Harmonice mundi -

um 1850

»Weltharmonik « - , dass »die heutigen [Mathema - jffr fr LS
tiker ] sowohl den Schnitt wie auch die Proportion
göttlich nennen wegen ihrer wunderbaren Natur
und ihrer vielfältigen Besonderheiten « . Kepler Abb . 99 . 1 Martin OHM

sagt uns aber nicht , wer diesen Ausdruck geprägt ( 6 . 5 . 1792 Erlangen — 1 .4 . 1872 Berlin )
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27 . Der Inder Aryabhata I (um 476- ? n . Chr .) stellt in Vers 25 des Ganita -
pada - »Abschnitt über die Rechenkunst « - seines Werks Aryabhatiya die
folgende Aufgabe : Eine Summe A ist für einen Monat ausgeliehen und
erbringt dabei den Zins x . Dieser wird anschließend zum gleichen Zinsfuß
p für t Monate ausgeliehen . Der gesamte Zinsertrag hat den Wert B.
a) Wie groß ist der Zins xl Hinweis : Drücke p durch A und x aus .
b) Welchen Wert erhält man für x , wenn man die von einem späteren

Kommentator hinzugefügten Werte A = 100 , t = 16 und B = 16 ein¬
setzt?

28 . Al -Charizmi behandelt als Beispiele für die Gleichungstypen (Bl ) bis
(B3) (siehe Seite 87) die folgenden Probleme :
a) 4 . Problem : Ich habe | einer Sache , vermehrt um 1 Dirhem , mit j der

Sache , vermehrt um 1 Dirhem , multipliziert . Das Produkt ist 20 Dir¬
hem . Wie groß ist die Sache?

b) 5 . Problem : Ich habe 10 in zwei Teile geteilt, dann jeden Teil mit sich
multipliziert . Nachdem ich die entstandenen Produkte addiert hatte ,
ergaben sich 58 Dirhem . Wie groß sind die Teile?

c) 6 . Problem : Ich habe ^ einer Sache mit \ der Sache multipliziert , das
Produkt ist gleich der Sache und 24 Dirhem dazu . Wie groß ist die
Sache?

29 . Für die Normalform x 2 + px + q = 0 wird als Sonderfall von Satz 85 . 1

die Lösungsformel x 12 = — ~ +
richtig ist . *

— ) — q angegeben . Zeige , dass sie

30 . Aus dem Bidscha-ganita - »Samen der Rechenkunst « - des indischen
Mathematikers und Astronomen Bhaskara II (1115 - nach 1178) :

hat . Ebenso offen bleibt diese Frage bei Christian von Wolff (1679- 1754) , der die Bildung sectio divina in
seinen Anfangsgründen Aller Mathematischen Wissenschaften von 1710 (Band IV, Anmerkung 155) wie folgt
erklärt : »Man pfleget es auch divinam sectionem zu nennen/weil (wie aus dem Euclide zu sehen ) man viel aus
dieser Section demonstriret hat .« Im 18 . Jh . ist sectio divina dann zum stehenden Fachausdruck geworden .
1835 schreibt schließlich Martin Ohm (1792- 1872) in der 2 . Auflage seiner Die reine Elementar-Mathematik
recht vage : »Diese Zerteilung [ . . . ] nennt man wohl auch den goldenen Schnitt .« Wer ist »man «? Vielleicht
vermischten sich bei Ohm sectio divina mit regula aurea , wie die Regel vom Dreisatz früher genannt wurde .
Aber schon 1839 findet sich in Johann Friedrich Krolls Grundriß der Mathematik für Gymnasien die Latini -
sierung »sectio divina oder aurea « . Von da ab ist diese Wortschöpfung nicht mehr aufzuhalten .
Die Vorstellung , dass der goldene Schnitt ein in der ganzen Natur waltendes Ordnungsprinzip sei, demzufolge
zwei in einem derartigen Verhältnis stehende Teile ein besonders wohlgefälliges Ganzes ergäben , setzte erst
1854 Adolf Zeising (24 . 9 . 1810 BaIlenstedt - 27 . 4 . 1876 München ), ein anhaitischer Gymnasialprofessor , in
die Welt , und zwar in seinem Werk Neue Lehre von den Proportionen des menschlichen Körpers , aus einem
bisher unbekannt gebliebenen , die ganze Natur und Kunst durchdringenden morphologischen Grundgesetze
entwickelt . Es gibt nämlich in der gesamten Antike bis herauf ins 19 . Jh . keine einzige Quelle , die der stetigen
Teilung irgendeine ästhetische Bedeutung zuerkennen würde .

* Da al -Charizmi immer A = 1 setzte , kannst dü mit Hilfe dieser Formel die Lösungsformeln angeben , die er
- natürlich in Worten - für die drei Gleichungstypen (Bl ) bis (B3) aufstellte , ebenso seine Bedingung dafür ,
dass (B2 ) genau eine bzw . keine Lösung hat .
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a) § 139 : Der achte Teil einer Herde Alfen , quadriert, sprang lustig in
einem Walde herum , die 12 restlichen waren auf einem Hügel zu sehen ,
wo sie vergnügt schnatterten . Wie viele waren es im Ganzen ?

b) § 140 : Der fünfte Teil einer Herde weniger drei , quadriert, ging in eine
Höhle ; ein Affe war noch zu sehen . Wie viele waren es? - Warum ver¬
wirft Bhäskara II eine Lösung ?

31 . Aus Kapitel V der Ars magna (1545 ) des Geronimo Cardano (1501 bis
1576 ) :
a) Aufgabe II: Es waren einmal zwei Heerführer, von denen jeder 48 Du¬

katen an seine Soldaten austeilte . Einer hatte 2 Soldaten mehr als der
andere . Der , der weniger Soldaten hatte , gab jedem seiner Soldaten 4
Dukaten mehr , als der andere seinen Soldaten gab . Wie viele Soldaten
hatte jeder ?

b) Aufgabe III: Zwei Vereine , von denen einer 3 Mitglieder mehr als der
andere hatte , verteilten gleich viele Goldstücke an ihre Mitglieder ,
nämlich 93 und dazu noch so viele, wie beide Vereine Mitglieder hatten .
Auf jedes Mitglied des kleineren Vereins entfielen 6 Goldstücke mehr
als auf jedes Mitglied des größeren Vereins . Wie viele Mitglieder hatte
jeder Verein?

Die Aufgaben 32 bis 39 stammen aus
der Vollständigen Anleitung zur Al¬
gebra von Leonhard Euler (1707 bis
1783 ) aus dem Jahre 1770 . *

32 . Ich habe zwei Zahlen, die eine ist
um 6 größer als die andere , und
ihr Produkt macht 91 . Welches
sind diese Zahlen ?

33 . Suche eine Zahl, dass, wenn ich
von ihrem Quadrat 9 subtrahiere ,
so viel über 100 bleiben , als die
gesuchte Zahl weniger ist als 23 ;
welche Zahl ist es?

34 . Suche zwei Zahlen, von denen
eine doppelt so groß ist als die
andere , die so beschaffen sind ,
dass , wenn ich ihre Summe zu
ihrem Produkt addiere , 90 her¬
auskommt .

* Aufgaben I , II , IV, V, VII - X aus 2 . Teil, 1. Ab -
schnitt , Kapitel 6 . Siehe auch Seite 78 .

** ** *

Abb . 101 . 1 Leonhard Euler (15 . 4 . 1707
Basel- 18 . 9 . 1783 St . Petersburg ) - Kup¬
ferstich von Samuel Gottlob Kütner
(1747- 1828 ) nach dem Gemälde von
Joseph Friedrich August Darbes
(1747- 1810)



102 3 Die quadratische Gleichung

35 . Jemand kauft ein Pferd für einige Reichstaler , verkauft es wieder für 119
Reichstaler und gewinnt daran so viel Prozent , wie das Pferd gekostet
hat . Nun ist die Frage , wie teuer dasselbe eingekauft worden ist .

36 . Jemand kauft einige Tücher für 180 Reichstaler . Wären der Tücher für
dasselbe Geld 3 Stück mehr gewesen , so wäre ihm das Stück um 3 Reichs¬
taler wohlfeiler gekommen . Wie viel Tücher sind es gewesen?

37 . Zwei Gesellschafter legen in ihr Geschäft zusammen 100 Reichstaler ein .
Der erste lässt sein Geld 3 Monate lang , der zweite aber 2 Monate lang
stehen , und es zieht jeder mit Kapital und Gewinn 99 Reichstaler ein .
Wie viel hat jeder eingelegt?

38 . Zwei Bäuerinnen tragen zusammen 100 Eier auf den Markt , die eine mehr
als die andere , und lösen doch beide gleich viel Geld . Nun sagt die erste zu
der andern : »Hätte ich deine Eier gehabt , so hätte ich 15 Kreuzer * gelöst .«
Darauf antwortete die andere : »Hätte ich deine Eier gehabt , so hätte ich
daraus 6| Kreuzer gelöst .« Wie viele hat jede gehabt ?

39. Zwei Schnittwarenhändler verkaufen etliche Ellen Zeug * *
, der zweite 3

Ellen mehr als der erste , und lösen zusammen 35 Reichstaler . Der erste
sagt zum zweiten : »Aus deinem Zeuge würde ich gelöst haben 24 Reichs¬
taler« , und es antwortet der zweite: »Ich aber hätte aus deinem 12j Reichs¬
taler gelöst .« Wie viele Ellen hat jeder gehabt ?

3.5 Der Satz von VlETA

Wendet man für D > 0 die Lösungsformel von Satz 85 . 1 auf x 2 + px + q = 0
an , dann ergibt sich

p + Vp 2 - 4q
2

- p - Vp 2 - 4q und x2 =

Addiert man bzw . multipliziert man diese Lösungen , dann gibt es eine Überra¬
schung :

p - 1/ p 2 ~ 4q — p + Vp 2 ~ 4q
2Xi + x2 = ~ P

( ~ P - Vp 2 - 4q)( ~ p + Vp 2 ~ 4q) p 2 - (p 2 - 4q) 4q
4 2

* Ursprünglich eine ab 1271 in Tirol geprägte Silbermünze mit einem charakteristischen Doppelkreuz , ab
dem 17 ./18 . Jh . auch als Kupfermünze weit verbreitet , 1871 aus dem Verkehr gezogen .** Zeug , aus dem althochdeutschen giziugi , bedeutet Stoff . Elle , altes Längenmaß , in Bayern 58,4 cm , in
Russland 71 cm .
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Ist D = 0 , dann hat nach Satz 85. 1 die einzige Lösung den Wert — \ p . Diesen
Wert erhält man aber auch formal sowohl für x 1 wie auch für x2 , wenn man in

x lt2 = - für D null setzt . Wegen dieses formal doppelten Auftretens

von — \ p spricht man auch von einer Doppellösung der quadratischen Glei¬
chung . Mit M = x 2 = — \ p ergibt sich auch hier

Xi + x 2 = ( ~ ip ) + ( - jp ) = ~ P
x 1

- x 2 = ( - \ p) ( - \ p ) = \ p 2 = q wegen D = p 2 - 4q = 0 .

Damit haben wir für D ^ 0 einen Zusammenhang zwischen den Koeffizienten
einer in Normalform geschriebenen quadratischen Gleichung und ihren Lö¬
sungen gefunden . Wir merken uns :

Satz 103 . 1 : Sind x 1 und x 2 die Lösungen einer quadratischen Gleichung
in Normalform x 2 + px + q = 0 , dann gilt
x x + x2 = — p und x x

■ x2 = q .

Bemerkung : Für die allgemeine quadratische Gleichung ax 2 + bx + c = 0
mit den Lösungen xl und x 2 gilt dann :

b c
x i + x2 = - und x 1

■x 2 = - .a a
Von Fran 5ois Viete (1540 - 1603 ) stammt die 1615 postum veröffentlichte *
Umkehrung dieses Satzes :

Satz 103 .2 : Gelten für die Zahlen p , q , x 1 und x2 die Beziehungen
p = ~ (x 1 + x 2 ) und q = x t

■x2 , dann hat die quadratische Glei¬
chung x 2 + px + q = 0 die Zahlen x , und x2 als Lösungen .

* Der Bedeutung des Satzes wegen und um dir den Stil Vietes zu zeigen , bringen wir den Originaltext mit einer
Übersetzung und einer modernen Umschrift . Auf Seite 71 findest du ein Faksimile des Originals .

Text Vietes Übersetzung moderne Umschrift

Si B + D in A —A quad . aeque -
tur B in D .
A explicabilis est de qualibet illa -
rum duarum B vel D .

Propositio I .
Wenn

(B + D ) ' A - A 2 = B - D
ist , dann kann A jedes der beiden
B oder D sein .

Satz I . Satz I .
Wenn

{B + D ) • x - x 2 = B ■D ,
d . h ., wenn
x 2 — (B + D ) • x + B ■D = 0 ist ,
dann gilt
x = B v x = D .

[Beispiel ]
3N .- 1Q . aequetur 2.
fit IN 1. vel 2.

3N - 1Q = 2
bewirkt IN 1 oder 2.

3x —x 2 — 2, d . h .,
x 2 — 3x + 2 = 0
hat zur Folge
x = 1 v x = 2 .
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Abb . 104 . 1 Frangois Viete , latinisiert
zu Vieta (1540 Fontenay - le-
Comte/Vendee - 1603 Paris)

FRANCISCI
VIETAE

fontenaeensis ,
DE iE QV ATIONVM

RECOGNITIONE
E T

EMENDATIONE

T ^ ACTATVS DVO .
Quibtts nihil in hoc(jenenßmileaut ßctindum ,

hüte4uo haäenw vifem .

PARISIIS ,
ExTypographialoannisLa <̂ v e h a y in Monte

D. HiLnij. in Area Albretia.
c I o Ion xv .

f ^ triLEGlO RCC1S.

Abb . 104 .2 Titelblatt der »Zwei Ab¬
handlungen des Frangois Viete aus Fon -
tenay über die Prüfung und Vervoll¬
kommnung von Gleichungen , worüber
nichts in dieser Art Ähnliches oder Besse¬
res diesem von Ewigkeit her bis jetzt zu
Gesicht gekommen .«

Beweis: Setzt man x2 = — x 1 — p in x 1 x2 = q ein , so erhält man
x ^ — x x

— p ) = q o — x \ — px -t = q <s> x\ + px x + q = 0 ;
d . h . aber , dass x 1 Lösung der quadratischen Gleichung x 2 + px + q = 0 ist .
Ebenso weist man nach , dass x2 diese Gleichung löst .
Bemerkung 1 : Mit Hilfe dieses Satzes kann man zu zwei gegebenen Zahlen x1und x 2 sofort eine quadratische Gleichung in Normalform angeben , die genau
diese beiden Zahlen als Lösungen hat , nämlich x 2 — (xj + x2) x + x 1

■x 2 = 0 .
Bemerkung 2 : Die Methode , Lösungen einer quadratischenGleichung in Nor¬
malform mit ganzzahligen Koeffizienten durch Probieren zu finden , lässt sich
mit den Beziehungen von Viete vereinfachen . Als ganzzahlige Lösungen kom¬
men wegen x 1

• x 2 = q nur Teiler des konstanten Glieds q in Frage .

Auf Grund des einfachen Beweisesvon Satz 103 .2 erscheint Vietes Erkenntnis
als nicht sehr tief schürfend . Dem muss entgegengehalten werden , dass Viete
einen analogen Sachverhalt auch für Gleichungen höheren Grades entdeckt
hat , sodass unser Satz 103 .2 nur ein Sonderfall eines allgemeineren Satzes ist .
Zu Ehren Vietes werden daher die beiden letzten Sätze zusammengefasst zum
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Satz 105 . 1 : Satz von VlETA .
Bei einer quadratischen Gleichung in Normalform mit D 5: 0 gilt :
Die Summe der beiden Lösungen ist die Gegenzahl des Koeffizien¬
ten des linearen Glieds , und das Produkt der beiden Lösungen ist
das konstante Glied .
Umgekehrt gilt :
Nimmt man die Gegenzahl der Summe zweier Zahlen als Koeffi¬
zienten des linearen Glieds und das Produkt dieser Zahlen als kon¬
stantes Glied einer quadratischen Gleichung in Normalform , dann
sind diese Zahlen die Lösungen dieser Gleichung .

Beispiele :
1) Wie lautet eine quadratische Gleichung , deren Lösungen — 3 und 5

sind?
Nach Vieta ergeben sich die Koeffizienten der Normalform zu
p = — ( — 3 + 5) = — 2 und q = { — 3) • 5 = — 15 . Die zugehörige
Gleichung lautet also x 2 — 2x — 15 = 0 .

2) Wie lautet eine quadratische Gleichung , deren Lösungen \ — j |/5 und
j + ^ l/5 sind?
Nach Vieta ergeben sich die Koeffizienten der Normalform zu

P = - ( 2 - + i + il/5 ) = - 1 und

q = (i ~ i ^ 5 ) ‘ (i + il/5 ) = i - f = - 1 .
Die zugehörige Gleichung lautet also x2 — x — 1 = 0 .

3) Mit Hilfe des Satzes von Vieta sollen die Lösungen der Gleichung
x2 — 18jc + 17 = 0 erraten werden .
Nach Vieta muss das Produkt der beiden Lösungen 17 sein . Falls es
ganzzahlige Lösungen gibt , kommen nur x 1 = — 1 und x2 = — 17
oder Xy = 1 und x 2 = 17 in Frage . Die Summe der beiden Lösungen
ergibt dann — 18 bzw . 18 . Nun ist die Gegenzahl des Koeffizienten des
linearen Glieds 18 , also gleich dem Wert der zweiten Summe . Somit
besitzt die Gleichung x2 — 18x + 17 = 0 die ganzzahligen Lösungen
Xy = 1 und x2 = 17 .

4) Mit Hilfe des Satzes von Vieta sollen die Lösungen der Gleichung
3x2 + 3x — 18 = 0 erraten werden .
Um den Satz von Vieta anwenden zu können benötigen wir die Nor¬
malform der gegebenen Gleichung . Wir dividieren durch 3 und erhal¬
ten x 2 + x — 6 = 0 . Das Produkt der beiden Lösungen muss also — 6
sein . Dafür gibt es nur die folgenden ganzzahligen Möglichkeiten :

( — 1 ) • 6 , 1 - ( — 6) , ( - 2) - 3 und 2 - ( - 3) .
Die entsprechenden Summen sind 5 , — 5,1 und — 1 .
Weil die Gegenzahl des Koeffizienten des linearen Gliedes — 1 ist , sind
Xy — — 3 und x2 = 2 die Lösungen der Gleichung 3x 2 + 3x — 18 = 0 .
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Eine einfache Folgerung des Satzes von Vieta ist

Satz 106 .2 : Der Faktorisierungssatz.
Sind x , und x2 die Lösungen der Gleichung ax 2 + bx + c = 0 ,
dann gilt

ax 2 + bx + c = a (x — x x) (x — x2) .

Bemerkung : Weil (x — x, ) und (x — x2) linear sind , sagt man auch, der qua¬
dratische Term ax 2 + bx + c ist in Linearfaktoren zerlegt .

b cBeweis : Nach Vieta gilt: x 1 + x2 = — und x ,
■x 2 = - , also ist

a a
a (x — Xi) (x — x2) = ax 2 — a {x l + x2) x + ax l x2 =

= ax 2 — af - ] x + ö - - = ax 2 + bx + c .
\ aj a

Für eine Doppellösung x0 gilt

ax 2 + bx + c = a (x — x0) (x — x0) = a (x — x0) 2 .

Der Faktor (x — x0) tritt also doppelt auf , was erneut die Bezeichnung Dop¬
pellösung rechtfertigt .

Beispiele:
1) Der Term 3x2 + 5x — 2 soll in Linearfaktoren zerlegt werden . Dazu

lösen wir die zugehörige quadratische Gleichung 3x 2 + 5x — 2 = 0 .
Ihre Diskriminante ergibt sich zu D = 25 + 24 = 49 . Somit ist

- 5 + 7
x 1 2 = - t- , d . h . x 1 = — 2 und x2 = Nach dem Faktorisie -

6
rungssatz erhält man also
3x2 + 5x — 2 = 3 (x + 2) (x — | ) = (x + 2) (3x — 1 ) .

2) Der Term }/3x 2 — 6x + 3 ]/3 soll in Linearfaktoren zerlegt werden .
Dazu lösen wir die zugehörige quadratische Gleichung
l/3x 2 — 6x + 3 j/3 = 0 . Ihre Diskriminante ergibt sich zu
D = 36 - 36 = 0 .
Das ergibt die Doppellösung x0
rungssatz erhält man also

6
2l/3

l/3 . Nach dem Faktorisie -

l/3x 2 — 6x + 31/3 = l/3 (x — l/3 ) 2 .
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Aufgaben
1 . Wie lautet die Normalform einer quadratischen Gleichung mit folgenden

Lösungen ?
a) Xj = — 2 ; x 2 — 3
c) Xj = — 8 ; x 2 = — 1
e) x 1 = 1 ; x2 = 2,5
g) Xl = - 4,3 ; x2 = - 4,2
i) Xi = | ; x 2 = |

b) x t = 0 ; x2 = 5
d) Xjl = — 3 ; x2 = — 3
f) Xi = — 3,1 ; x2 = 7
h) x t = — j , x 2 = 7

2 . Welche quadratische Gleichung in Normalform hat folgende Lösungen ?

a) Xj = l/2 ; x2 = 4 b) x 1 = 1,5 ; x2 = 2 ]/3

c) x , = - 2,3 ; x2 = 1 + ]/7 d) x , = 2 - ]/2 ; x2 = 1 + l/2

e) x x = 3 + ]/5 ; x 2 = V3 + 5 f) x, = ]/3 - / 2 ; x 2 = ]/2 + ]/3

3 . Bestimme den fehlenden Koeffizienten und die zweite Lösung der Glei¬
chung x 2 + px + q = 0 , wenn gegeben ist :
a) p = 3 ; x x = 2 b) p = — 5 ; x 1 = 5 c) p = 2,5 ; x 1 = — 4
d) p = 9 ; Xi = — 4,5 e) p = 0 ; x x = 2,37 f) q = 6 ; Xj = 4
g) q = 3,5 ; x t = — 7 h) q = 6,25 ; x x = — 2,5 i) q = 0 ; Xi = 17

4 . Berechne mit Hilfe der gegebenen Lösung den unbekannten Koeffizienten
und die zweite Lösung der Gleichung .
a) 2x z — 4x + c = 0 ; x x = 1 b) 5x 2 + 4x + c = 0 ; x t = 0,2
c) 0,1 x 2 — x + c = 0 ; x t = — 7 d) 3x 2 + bx + 6 = 0 ; x x = 2
e) 12x 2 + 6x — 27 = 0 ; x t = 1,5 f) jx 2 + bx — \ = 0 ; x l = — |
g) ax 2 + 7x — 14 = 0 ; Xi = — 2 h) ax 2 — l,8x — 0,12 = 0 ; x 1 = — 0,6

5 . Bestimme zu dem gegebenen Koeffizienten der Gleichung
ax 2 + bx + c = 0 die beiden fehlenden so , dass die vorgeschriebenen Lö¬
sungen auftreten .
a) a = 2 ; x x = — 2 ; x2 = 5 b) a = f ; x t = — 7 ; x 2 = — 4
c) b = 3 ; Xj = — 4 ; x2 = 5 d) 6 = 31 ; x x = 1,7 ; x2 = 4,5
e) c = 2 ; x r = — 2 ; x2 = 2 f) c = — 8 ; Xj = — 2,8 ; x 2 = f

6 . Versuche mit Hilfe des Satzes von Vieta , die Lösungen der Gleichung zu
erraten .
a) x 2 — 8x + 15 = 0 b) x 2 + 2x — 15 = 0 c) x 2 — 2x — 15 = 0
d) x 2 + 8x + 15 = 0 e) x 2 + lOx — 11 = 0
g) 2x 2 + 26x + 44 = 0 h) ^x 2 — x — 12 = 0

f) x 2 — 9x + 14 = 0
i) 4X 2 + 3x — 16 = 0
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7 . Zerlege die folgenden Polynome zweiten Grades in Linearfaktoren ,
a) x 1 — 4 b) x 2 — 3x + 2 c) x 2 — 3x — 40
d) x 2 + 3,5x — 15 e) x 2 — 16,7x + 67 f) x 2 — 2x — 6
g) 5x 2 - 12x - 81 h) 30x 2 + 73x + 33 i) 25x 2 - 10 |/Tlx + 3

8 . Bestimme zwei Zahlen mit der Summe u und dem Produkt v .
a) u = 3 ; v = — 18 b) u = — 6 ; v = 5 c) « = 14 ; v = 49
d) u = 13,4 ; v = — 24 e) « = 8 ; v = 15,75 f) « = 6 ; v = 6

9 . Gib , ohne die Lösungen selbst zu berechnen , folgende Mittelwerte an :
a) das arithmetische Mittel der Lösungen von 2x 2 + 13x — 143 = 0 ;
b) das geometrische Mittel der Lösungen von 8x 2 — 29x + 18 = 0 ;
c) das harmonische Mittel der Lösungen von 9x 2 — 24x + 10 = 0 ;
d) das arithmetische Mittel der Lösungen von x 2 + x + 1 = 0 ( !) .

10 . Berechne das arithmetische Mittel*
a) aus den Lösungen der Gleichung x 2 + 9x + 0,91 = 0 und der Zahl 12;
b) aus den Lösungen der Gleichung 6x 2 — 45x + 53 = 0 und den Zahlen

f , 5 und l -
c) aus den Lösungen der Gleichungen x 2 — 7x — 13 = 0 und

3x 2 + x — 7 = 0 .
11 . Bestimme k so , dass das arithmetische Mittel*

a) aus 7 und den Lösungen der Gleichung 10x 2 + kx + 10 = 0 den Wert 3
hat ;

b) aus der kleinsten und der größten zweistelligen Zahl und den Lösungen
der Gleichung kx 2 — 2,75x — 1,5 = 0 gleich 30 ist ;

c) aus den Lösungen der Gleichungen kx 2 — 63x + 104 = 0 und
3x 2 — kx — 30 = 0 den Wert 2,5 hat .

: i2 . a) Kann man in der Gleichung x 2 + bx + 9 = 0 den Koeffizienten b so
wählen , dass zwei Lösungen mit vorgeschriebenem arithmetischem
Mittelwert m vorhanden sind ? Gib die Menge aller Mittelwerte an , für
welche die Aufgabe lösbar ist .

b) Wie ist die in a gestellte Frage bei der Gleichung x 2 + bx — 9 = 0 zu
beantworten ?

13 . Welcher quadratischen Gleichung in Normalform genügen die beiden
Zahlen , deren arithmetisches Mittel 4,5 und deren harmonisches Mittel 4
ist? Um welche Zahlen handelt es sich?

14 . Berechne mit Hilfe einer quadratischen Gleichung die beiden Zahlen, de¬
ren arithmetisches Mittel 10,5 und deren geometrisches Mittel 6 ]/3 ist .

1* Das arithmetische Mittel von n Zahlen x l , x 2, . . . ,x n ist definiert zu - (x : + x 2 + . . . + x„) .
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15 . Berechne die unbekannten Koeffizienten, wenn gelten soll:
a) Die Lösungen der Gleichung x 2 — 5x + q = 0 sollen sich um 3 unter¬

scheiden .
b) Die Lösungen von x 2 + px + 96 = 0 sollen sich wie 2 : 3 verhalten.
c) Die Lösungen von 0,2x 2 + bx + 3 = 0 sollen auch die Gleichung

x x + 2x 2 = 11 erfüllen .

16 . Bestimme diejenige quadratische Gleichung in Normalform , deren Lö¬
sungen folgende Bedingungen erfüllen :
a) x 1 + x 2 = 17 und x 2 — x t = 8
b) x x + x 2 = 24 und x2 : x x = 5 : 3
c) x2 — x x = 2 und x 1 : x 2 = 2 : 3

17. Welche Gleichung der Form x 2 + px + q = 0 erfüllt die Bedingung
a) p = 2q und hat als eine Lösung — 1 ;
b) 2p = q und hat als eine Lösung 2;
c) 3p = 2q — 5 und hat als eine Lösung 1 ?

18 . Wie lautet diejenige quadratische Gleichung in Normalform , deren Lö¬
sungen
a) die Kehrwerte der Lösungen von 6x 2 + x — 2 = 0 sind ,
b) die Quadrate der Lösungen von 2x 2 — 7x — 30 = 0 sind,
c) jeweils um 4 größer sind als das Sechsfache der entsprechendenLösun¬

gen von 3x 2 — 4x — 15 = 0?

19 . a) Was für eine Beziehung besteht zwischen den Lösungen einer Glei¬
chung der Form x 2 + px + 1 = 0 ?

b) Die Lösungen einer quadratischen Gleichung ax2 + bx + c = 0 sind
reziprok zueinander . Was kann man über die Koeffizienten a und c
dieser Gleichung sagen?

820 . Bestimmezur Gleichung x2 + 5x + 2 = 0 ohne Berechnungder Lösungen
eine zweite quadratische Gleichung y 2 + py + q = 0 so , dass zwischen
entsprechenden Lösungen der beiden Gleichungen folgender Zusammen¬
hang besteht :

a) y = x — 1

d) y = l
X + 1

b) y = x 2 + 3

. *
e) y = —ttx + 1

c) y = x 3 — 1
2x — 1io y =

X

21 . Bestimme bei den folgenden Gleichungen k so , dass zwei Lösungen vor¬
handen sind , die das angegebene Verhältnis besitzen ,
a) x 2 + 14x + k = 0 , 3 : 4 b) A:x 2 — 6x — 21 = 0 , 7 : ( — 5)
c) x 2 + kx + 18 = 0 , 2 : 1 d) x 2 + kx + 45k = 0 , ( — 2) : 3
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22 . Wie lautet die Normalform einer quadratischen Gleichung mit rationalen
Koeffizienten , die folgende irrationale Lösung hat ? Beachte Aufgabe
97/22 a.
a) ]/2 b) 1 - 1/3 c) 3,5 + l/l7 d) - 3 - 2/5

e) 0,6 - 1/Ö/7 f)
2 + 1/3

• g)
1 — 1/2

TT . h>1/3 + 2/6
1/12

23 . Bestimme in den folgenden Gleichungen den rationalen Koeffizienten k
so , dass eine Lösung der angegebenen Art existiert (r sei eine rationale
Zahl ) . Beachte Aufgabe 97/22 a.
a) x 2 + 6x + k = 0 ; r + Vl b) x 2 — 22x + k = 0 ; r — 41/TT

c) x 2 + kx — 16 = 0 ; r + 2l/5 d) x 2 + kx — 0,25 = 0 ; r + ]/0,5

e) kx 2 - lOx - 10 = 0 ; r - j/3 f) kx 2 + 16x + 120 = 0 ; r + 6 ]/6

24 . Eine quadratische Gleichung mit rationalen Koeffizienten habe als eine
Lösung 5 — 3l/2 . Bestimme unter Beachtung von Aufgabe 97/22 a eine
Gleichung y 2 + py + d = 0 , für deren Lösungen gilt :
a) y 1 = M + *2 und f 2 = * 1

' *2
1 1

b) = - 1- und y2 = x \ + xf
Xi x2

825 . Das Anlegen von Flächen - llupaßu/ .civ xcöv '/oipioiv (parabaleln tön
chorion ) - geht auf die Pythagoreer zurück . Im Wesentlichen handelt es
sich darum , die beiden Seiten eines Rechtecks zu bestimmen , dessen Flä¬
cheninhalt einer bestimmten Forderung unterworfen wird . Die Grundauf¬
gabe behandelt Euklid (um 300 v . Chr .) im 1 . Buch der Elemente als Satz
44 . Sie besteht darin , an eine gegebene Strecke b ein Rechteck so anzule¬
gen , dass sein Flächeninhalt einem vorgegebenen Wert c gleich wird . Sie
heißt daher Anlegen mit Gleichheit (itapaßoLf ) [parabole ] , lateinisch ae-
qualitas , zu Deutsch Parabel ) und führt auf die Gleichung bx = c , die sich
leicht durch Flächenverwandlung geometrisch lösen lässt , wie du im Geo¬
metrieunterricht lernst ; dabei denkt man sich c durch die Fläche eines
Quadrats dargestellt . *
Weitaus schwieriger hingegen sind die folgenden beiden Aufgaben , die
Euklid im 6 . Buch als Satz 28 und 29 behandelt . * * Mit diesen beiden
Sätzen konnte man dann auf geometrische Weise die quadratischen Glei¬
chungen vom Typ (Bl ) bis (B3) (siehe Seite 87) lösen ,
a) Anlegen mit Fehlen (sAAenj/n ; [elleipsis] , lateinisch defectus , zu

Deutsch Ellipse ; Abbildung 111 . 1 ) : An eine gegebene Strecke b ist ein
Rechteck gegebenen Flächeninhalts c so anzulegen , dass ein Quadrat

* Mehr darüber noch im Abschnitt 5.2.
** Euklid löst die Aufgabe weitaus allgemeiner ; er spricht nur von Parallelogrammen .
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D F C

A E b B A b E B

Abb . 111 . 1 Flächenanlegung eines Rechtecks AEFD mit Inhalt c an [AB] mit Feh¬
len : Das Quadrat EBCF fehlt zum Rechteck ABCD .

zum Rechteck gleicher Breite über ganz b fehlt . Zeige , dass die einer
Rechtecksseite gleiche Quadratseite und die andere Rechtecksseite die
Lösungen einer Gleichung vom Typ (B2) sind .

b) Konstruiere die Quadratseite, für die es nach Abbildung 111 . 1 zwei
Möglichkeiten gibt . Wähle b = 10 cm und c = 11 cm2 .

c) Anlegen mit Überschuss (örcepßoLq [hyperbole] , lateinisch excessus,
zu Deutsch Hyperbel , Abbildung 111 .2) : An eine gegebene Strecke b
ist ein Rechteck gegebenen Flächeninhalts c so anzulegen , dass als
überschießendes Stück ein Quadrat entsteht . Zeige , dass
1) die einer Rechtecksseite gleiche Quadratseite und die negativ ge¬

nommene andere Rechtecksseite die Lösungen einer quadratischen
Gleichung vom Typ (Bl ) sind ;

2) eine Rechtecksseite und die negativ genommene Quadratseite, die
der anderen Rechtecksseite gleich ist , die Lösungen einer Gleichung
vom Typ (B3) sind .

d) Konstruiere für b = 10 cm und c = 11 cm2
1) die Quadratseite gemäß c 1 ,
2) die Rechtecksseite gemäß c 2 .

D C F

c

A b BE

Abb . 111 .2 Flächenanlegung eines Rechtecks AEFD mit Inhalt c an [AB] mit Über¬
schuss : Das Quadrat BEFC schießt über das Rechteck ABCD hinaus .
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3 .6 Weitere Textaufgaben

1 . a) Gibt es zwei Zahlen , deren Summe denselben Wert hat wie ihr Produkt
und wie die Differenz ihrer Quadrate ?

b) Zwei Zahlen sind zu finden , deren Summe, Produkt und Summe der
Quadrate einander gleich ist .

2 . In einer Proportion , deren äußere Glieder 4 (a) und 10 (b ) sind , ist die
Summe der inneren Glieder 13 (c) . Wie heißen diese?

3 . Eine zweiziffrigeZahl verhält sich zu ihrer Quersumme wie die Quersum¬
me zu 3 . Vertauscht man in der gesuchten Zahl die beiden Ziffern , so
entsteht eine um 45 größere Zahl .

4 . Aus einer gewissen zweistelligen Zahl wird durch Umstellen ihrer Ziffern
eine neue Zahl gebildet . Die Summe der beiden Zahlen hat den Wert 165 ,
ihr Produkt den Wert 6786.

5 . Welche Zahl muss man von a subtrahierenund zu a addieren, sodass die
Summe der Quadrate der beiden Ergebnisse wieder a ergibt ? Für welche
a gibt es Lösungen ? Wann gibt es nur eine Lösung und wie heißt sie?
Welche Lösungen gibt es für a = 0,01 ?

6 . Man addiert zu einer Zahl 42 und man subtrahiert von derselben Zahl 42 .
Der Quotient Summe durch Differenz ergibt 12,5 % der Zahl . Wie heißt
sie?

7 . Bestimme zu a eine Zahl x so , dass das arithmetische Mittel der Zahlen
a + x , a — x , ax und - wieder a ist .x

8 . Aus einer dreistelligen Zahl (erste Zahl ) bildet man eine zweite Zahl , in¬
dem man die Einerziffer wegnimmt und vor die beiden anderen Ziffern
setzt . Vor die drei Ziffern der zweiten Zahl schreiben wir noch eine 1 und
erhalten so eine dritte Zahl . Wie heißen die drei Zahlen , wenn das Produkt
aus der ersten und zweiten den Wert 655 371 hat und die dritte Zahl um 946
größer als die erste ist?

9 . Die Wurzel aus einer zweistelligen Zahl ist um 2 kleinerals die Quersumme
der Zahl . Vertauscht man die beiden Ziffern , so ist die neue Zahl um 3
größer als das Quadrat ihrer Quersumme .

10 . Welches Vieleck hat 65 Diagonalen? Welches hat 4850 Diagonalen ?
11 . Bei einem Schachturnierspieltjeder gegenjeden . Wie viele Spieler nahmen

teil , wenn 253 Partien gespielt wurden ?
12 . Auf einem Blatt mit vielen Geraden zählt man 153 Schnittpunkte. Wie

viele Gerade sind es mindestens ?
13 . Auf einem Blatt sind eine Vielzahl von Punkten markiert . Man zeichnet

990 Gerade , die je zwei Punkte verbinden . Wie viele Punkte sind es min¬
destens ?
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14 . a) Wie viel Ecken hat ein Polygon , in welchem die Anzahl der Diagonalen
gleich der Eckenzahl ist?

b) Wie viele Telefonanschlüsse sind in einer Stadt vorhanden , wenn
499 500 gegenseitige Gesprächsverbindungen möglich sind?

15 . 289 Geldstücke lassen sich in zwei Quadrate ordnen. Auf der Seite des
einen Quadrates befinden sich 7 Geldstücke mehr als auf der des anderen .
Wie viel Stücke enthält die Seite des einen Quadrates ?

16 . In einem Garten sind 90 Bäume in mehreren Reihen so gepflanzt, dass die
Zahl der Bäume einer Reihe um 9 größer ist als die Anzahl der Baumrei¬
hen . Wie viel Reihen sind es , und wie viel Bäume stehen in einer Reihe ?

17 . In einer Familie ist der Sohn um 5 Jahre älter als die Tochter. Das Alter des
Vaters verhält sich zu dem des Sohnes wie das Alter des Sohnes zu dem¬
jenigen der Tochter . In drei Jahren wird der Vater dreimal so alt sein wie
Sohn und Tochter zusammen . Wie alt sind Vater , Sohn und Tochter heute ?

18 . Auf einem Konto lagen zu Beginn eines Jahres 800 € . Am Jahresende
wurden die Zinsen nicht abgehoben . Im darauf folgenden Jahr gewährte
die Bank einen um f % höheren Zinssatz . Beim Jahresabschluss ergab
sich mit den Zinsen ein Kontostand von 861,12 € . Wie hoch war demnach
der Zinsfuß im 1 . bzw . 2 . Jahr ?

19 . Jemand nimmt ein Darlehen von 3000 € zu 6 % auf und verpflichtet sich
es durch regelmäßig zu zahlende Raten von 120 € wiederzuerstatten . Mit
einer Rate wird jeweils zunächst der seit der letzten Zahlung angefallene
Zins beglichen ; der Rest dient zur Tilgung . Nach dem Einzahlen der 2 . Ra¬
te berechnet sich die Restschuld zu 2878,80 € .
Wie viel Monate beträgt demnach die Zeit zwischen 2 aufeinander fol¬
genden Ratenzahlungen ?

20 . Ein Zwischenhändlerbezieht eine Ware direkt von der Fabrik und gibt sie
an den Einzelhandel weiter . Dabei verlangt er einen Preis , der um einen
bestimmten Prozentsatz über seinem eigenen Einkaufspreis liegt . Der Ein¬
zelhändler veranschlagt bei der Berechnung des Endpreises eine doppelt
so hohe Gewinnspanne wie der Zwischenhändler . Dadurch steigt der Preis
der Ware auf ff des vom Zwischenhändler für sie bezahlten Betrages .
Wie viel Prozent betrug jeweils der Preisaufschlag ?

21 . In 600 cm3 Wasser schüttet man etwas Salz und verrührt . Da die Lösung
noch zu schwach ist , gibt man noch einmal 15g Salz dazu . Dadurch steigt
die Konzentration der Lösung um 2 \ % . Wie viel Gramm Salz wurden
zuerst in das Wasser geschüttet ?

22 . In einem Glas Wasser löst man einen Esslöffel voll Zucker. Durch die
Zugabe von weiteren 20 g Zucker erhöht sich die Konzentration der Lö¬
sung um 5 % . Da die Lösung nun aber zu konzentriert ist , verdünnt man
wieder mit 95 cm 3 Wasser . Nun beträgt der Zuckergehalt 8 % . Wie viel
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Wasser befand sich anfangs im Glas und wie viel Zucker wurde mit dem
Löffel dazugegeben ?
{Anmerkung : Sind x Gramm und y Gramm die gesuchten Größen , so
empfiehlt sich eine Vereinfachung des Gleichungssystems durch die Sub¬
stitution z = x + y .)

23 . Der Umfang eines rechtwinkligen Dreiecks, dessen kürzeste und längste
Seite sich um 8 cm unterscheiden , beträgt 3 dm . Berechne die Dreiecks¬
seiten .

24 . In einem rechtwinkligen Dreieck von 36 mm Höhe ist die Hypotenuse
78 mm lang . In welchem Verhältnis wird letztere durch den Höhenfuß¬
punkt geteilt?

25 . In einem rechtwinkligen Dreieck beträgt der Längenunterschied der Ka¬
theten 5 cm und derjenige der Hypotenusenabschnitte 7 cm . Berechne die
Seiten .

26 . In welchen rechtwinkligenDreiecken ist die Höhe um 5 mm länger als das
Doppelte des kleinen Hypotenusenabschnittes und um 30 mm kürzer als
der größere Hypotenusenabschnitt ?

27 . Ein rechtwinkligesDreieck mit 14 cm Umfang hat 7 cm2 Inhalt. Berechne
die Seiten .

28 . In einem Drachenviereck mit 2 rechten Winkeln sind die Diagonalen
48 mm und 60 mm lang . In welche Abschnitte wird die längere durch den
Diagonalenschnittpunkt zerlegt?

29. Welche Rechtecke haben folgende Eigenschaft:
Wird die erste Seite um die Hälfte der zweiten verlängert und die zweite um
die Hälfte der ersten verkürzt , so nimmt der Umfang um 8 cm und die
Fläche um 67 cm 2 zu .

30 . In einer Ecke eines eingezäunten rechteckigen Grundstücks wurde ein
rechteckiger Gemüsegarten von 120 m 2 angelegt . Zu seiner Abgrenzung
wurden noch einmal 23,5 m Maschendraht benötigt . Berechne Länge und
Breite .

31 . Zum Einzäunen eines rechteckigen Gartens von 540 m 2 Fläche , der auf
einer Seite von einer Hauswand begrenzt ist , waren 30 Pfosten notwendig .
Die Pfosten wurden in Abständen von je 3 m aufgestellt ; der erste und der
letzte Pfosten standen unmittelbar an der Hauswand . Berechne Länge und
Breite des Gartens .

32 . In einen Kreis vom Radius r wird eine Sehne der Länge fr eingezeichnet.
In welche Abschnitte zerlegt sie den zu ihr senkrechten Durchmesser ?

33 . In einem Kreis mit r = 7 cm ist durch einen Punkt P, der vom Mittelpunkt
4,2 cm entfernt ist , eine Sehne von 13 cm Länge gezogen . In welche Ab¬
schnitte wird die Sehne durch P zerlegt?
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34 . Durch zwei konzentrische Kreise mit den Radien ^ = 13 mm und
r2 = 37 mm soll eine Gerade so gelegt werden , dass die Kreise auf ihr
Sehnen ausschneiden , deren Längenunterschied 6 cm beträgt . Welchen
Abstand vom Mittelpunkt muss die Gerade haben ?

35 . Um die Punkte und M2 , deren Abstand 1 cm beträgt, sind Kreise mit
den Radien r1 = 2 cm und r2 = 1cm geschlagen . Senkrecht zur Verbin¬
dungsgeraden der beiden Mittelpunkte verläuft eine Sekante so , dass die
vom 1 . Kreis auf ihr ausgeschnittene Sehne durch die Schnittpunkte mit
dem 2 . Kreis in 3 gleiche Teile zerlegt wird . Welche Abstände hat die
Sekante von M x und M 2 ? Wie lang sind die ausgeschnittenen Sehnen ?

36 . 2 Punkte A und B haben einen Abstand von 7 cm . Um A wird ein Kreis
mit r = 5 cm geschlagen und durch B eine Sekante gezogen , auf welcher
der Kreis eine Sehne der Länge r ausschneidet . Welche Abstände haben
die Endpunkte der Sehne von B?

37 . Um welche Strecke x muss man den Durchmesser eines Kreises mit Ra¬
dius r verlängern , damit die vom Endpunkt aus an den Kreis gezogene
Tangentenstrecke die Länge a) x , b) nx , c) r , d) nr hat ?

38 . Eine Strecke der Länge 10 wird so geteilt, dass sich das kleinere Stück zum
größeren so verhält wie dieses zur ganzen Strecke . Wie lang ist das größere
Stück ? (Goldener Schnitt )

39 . Einem Kreis ist ein Drachenviereck so einbeschrieben, dass die Diago¬
nalen die Längen 15 und 17 haben . Wie groß ist der Radius ? In welche
Teilstücke zerlegt der Diagonalenschnittpunkt die Diagonalen ?

40 . Von einem Würfel schneidet man parallel zu einer Seitenflächezuerst eine
Scheibe von 2 cm Dicke ab und darauf durch einen senkrecht zum ersten
verlaufenden zweiten Schnitt noch einmal eine Scheibe von 1 cm Dicke . Es
ergibt sich ein Restkörper von 412 cm2 Oberfläche . Um wie viel cm3
wurde der Rauminhalt verkleinert ?

41 . Die Entfernung München- Köln beträgt in Luftlinie 460 km . Von Mün¬
chen fliegt ein Flugzeug nach Köln . Es legt in 1 Stunde 540 km zurück .
Ihm begegnet ein Flugzeug , das zur gleichen Zeit in Köln startete . Wäre
jedes der beiden Flugzeuge um 20 km/h schneller geflogen , so hätte die
Begegnung 1 j Minuten früher stattgefunden . Welche Geschwindigkeit hat
das zweite Flugzeug , und nach welcher Flugzeit erfolgte die Begegnung?

42 . Zwei Verkehrsflugzeuge , die im Gegenverkehrauf der Strecke Frankfurt -
London eingesetzt sind , starten gleichzeitig und fliegen normalerweise mit
gleicher Geschwindigkeit . An einem gewissen Tag wird jedoch von Lon¬
don aus eine Maschine eingesetzt , die eine um 60 km/h höhere Reisege¬
schwindigkeit entwickelt , während das in Frankfurt startende Flugzeug
wegen Gegenwind seine Normalgeschwindigkeit um 30 km/h unterschrei¬
tet . Die Flugzeuge begegnen sich 1 Minute früher als sonst und an einem
Ort , der vom gewöhnlichen Treffpunkt 26,25 km entfernt ist . Berechne die
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Geschwindigkeiten der Flugzeuge und den Luftweg von Frankfurt nach
London .

43. Ein Flugzeug konnte seine Flugzeit für eine 960 km lange Strecke um 10
Minuten verringern , indem es seine Geschwindigkeit um 24 km/h steiger¬
te . Wie groß war dann die Geschwindigkeit , und wie lange dauerte der
Flug ?

44. Ein die 24 km lange Seestrecke von A nach B fahrendes Schiff sollte laut
Fahrplan um 16 .30 Uhr in B eintreffen . Da sich die Abfahrt in A um 15
Minuten verzögerte , erhöhte das Schiff seine Geschwindigkeit um 4 km/h .
Es traf um 16 . 33 Uhr in B ein . Wie groß war seine Geschwindigkeit ? Wann
hätte es nach dem Fahrplan in A abfahren sollen?

45 . Auf den Schenkeln eines rechten Winkels bewegen sich zwei Körper mit
gleicher konstanter Geschwindigkeit vom Scheitel weg . Der erste startet
im Scheitel , der zweite 10 s später im Abstand 10 m vom Scheitel . 20 s nach
dem Start des ersten Körpers haben die beiden Körper eine Entfernung
von 20 m . Welche Geschwindigkeit haben sie?

46 . Zwei Schiffe , A und B, fahren Kurs NO bzw . NW mit konstanten Ge¬
schwindigkeiten . A ist 2 kn schneller als B . 1 sm ( = 1,852 km) hinter A
kreuzt B die Bahn von A . Eine halbe Stunde später beträgt ihre Entfer¬
nung 10 sm . Wie viele kn (1 kn = 1 sm/h ) betragen ihre Geschwindigkei¬
ten?

47 . Auf einer Strecke von 450 m macht das Vorderrad eines Wagens 120 Um¬
drehungen mehr als das Hinterrad ; das Vorderrad eines anderen Wagens,
dessen Räder je 0,5 m mehr Umfang haben , macht auf derselben Strecke
75 Umdrehungen mehr als sein Hinterrad . Welchen Umfang haben die
Räder des ersten Wagens?

48 . In einer Gasmenge, deren Volumen konstant gehalten wurde , stieg der
Druck um 160 hPa , während sich die Temperatur um 60 K erhöhte . Als
danach das Gas in Eiswasser auf 0 °C abgekühlt wurde , ging der Druck
wieder um 232 hPa zurück . Wie groß waren am Anfang Druck und Tem¬
peratur ?

49 . Ein 1 m langes Glasrohr (innerer Durchmesseretwa 3 mm) wird 52 cm tief
senkrecht in Petroleum (o = 0,8 g/cm 3) getaucht . Dann wird die obere
Öffnung luftdicht verschlossen und das Rohr aus der Flüssigkeit gehoben .
Welche Höhe hat die im Rohr zurückbleibende Flüssigkeitssäule , wenn
der äußere Luftdruck 1000 hPa beträgt ?

50 . Bei einem Luftdruck von 960 hPa wird ein einseitig verschlossenes Rohr
von 50 cm Länge (innen !) mit der Öffnung nach unten senkrecht in Wasser
getaucht . Die Rohröffnung befindet sich im Endzustand 2,5 m unter dem
Wasserspiegel . Wie weit ist dann das Wasser von unten her in das Rohr
eingedrungen ? (Luft - und Wassertemperatur sollen als gleich angenom¬
men werden ) .
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3 .7 Gleichungen, die sich auf quadratische Gleichungen
zurückführen lassen

Es gibt Gleichungen , die sich durch geeignete Umformungen auf quadratische
zurückführen lassen . Einige der wichtigsten Typen wollen wir im Folgenden
betrachten .

3 .7 . 1 Wurzelgleichungen

Wie in 2 .5 gezeigt , kann man Wurzelgleichungen durch das Verfahren » Isolie¬
ren - Quadrieren « lösen . In der Definitionsmenge der Wurzelgleichung ist
Quadrieren eine Äquivalenzumformung , wenn beide Seiten gleiches Vorzei¬
chen haben ; andernfalls muss man die Probe machen , weil womöglich die
Lösungsmenge vergrößert wurde . Kennt man die Definitionsmenge nicht ,
dann muss man die Probe auf alle Fälle machen .

Beispiel 1 :

5 ]/x - 1 - 2 ]/2x + 5 = l/3x - 5 ; D = [f ; + oo [

=> 25 (x — 1 ) + 4 (2x + 5) — 20l/ (x — l ) (2x + 5) = 3x — 5

- 20/2x 2 + 3x - 5 = - 30x

2l/2x 2 + 3x — 5 = 3x . Wir erkennen , x kann nicht negativ sein.
4 (2x 2 + 3x — 5) = 9x 2

x 2 — 12x + 20 = 0
x 1 = 10 ; x2 = 2

Probe :
x 1 = 10:
LS = 51/10 — 1 — 21/2 - 10 + 5 = 5 - 3 — 2 - 5
RS = 1/3 - 10 — 5 = 5
x2 = 2 :
LS = 5/2 - 1 - 21/2 - 2 + 5 = 5 - 1 — 2 - 3 =
RS = 1/3 ■2 - 5 = 1

Lösungsmenge L = { 10}

Beispiel 2 :
Aufgabe IX aus Kapitel V der Ars Magna (1545 ) des Geronimo Cardano
(1501 - 1576 ) :
Zerlege die Zahl 10 so in zwei Teile , dass der größere , vermindert um das
Doppelte seiner Wurzel , gleich ist dem kleineren , vermehrt um das Dop¬
pelte seiner Wurzel .

= 5
10 ist Lösung .

1 ) 2 ist keine
Lösung .
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Bezeichnen wir den größeren Teil mit x , dann muss gelten :

x - 2Vx = (10 - x) + 2 ]/10 - x ; D = [0 ; 10]

]/l0 — x = (x — 5) — l/x

=> 10 — x = (x — 5) 2 — 2 (x — 5) ]/x + x

2 (x — 5) Vx = (x — 5) 2 + 2x — 10

(x — 5) (2 ]/x — (x — 5) — 2) = 0

(x — 5) (2 ]/x — x + 3 ) = 0

x = 5 v 2 ]fx = x — 3 . Für x ^ 3 gilt weiter :
4x = x 2 — 6x + 9
x 2 — lOx + 9 = 0
(x — 9) (x — 1 ) = 0
x = 9

Beachte : x — 1 kann nicht null werden , da x ^ 3 gilt
Probe :

jCi = 5 : LS = 5 - 21/5
RS = (10 - 5) + 21/10 - 5 = 5 + 2 ]/5 ,

x 2 = 9 : LS = 9 - 2l/9 = 9 - 6 = 3

RS = (10 - 9) + 21/10 - 9 = 1 + 2 = 3

Die gesuchte Zerlegung lautet also : 10 = 9 + 1 .

5 ist keine Lösung .

9 ist Lösung .

Beispiel 3:

Vä + x — Va — x = 2 l/a — b ; D = [0 ; ä] für a ^ 0 ; für a < 0 ist die Glei¬
chung unsinnig . Wegen a — b ^ 0 muss b ^ a sein . Für xeD sind beide
Seiten nicht negativ und wir ändern die Lösungsmenge beim Quadrieren
nicht :

a + x + a — x — 2 ]/a 2 — x 2 = A (a — b)
2b — a = 1/ a 2 — x 2

Für a > 2b gibt es keine Lösung . Für 0 5S b ^ a iS 2b erhält man durch
Quadrieren der letzten Gleichung (Äquivalenzumformung !):
4Z>2 + a 2 — Aab = a 2 — x 2
x 2 = Ab (a — b)
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Die rechte Seite ist unter unseren Voraussetzungen sicher nicht negativ ,
also ergibt sich

| x | = 2 Vb (a - b )

Wegen x e D ist x ^ 0 , und es gilt schließlich

x = 21/ b {a — b ) .
Einen Überblick über die betrachteten Fälle gibt der Lösungsbaum :

keine Lösung

keine Lösung

keine Lösung

Manchmal ist es von Vorteil , eine Wurzel durch eine neue Variable zu ersetzen
und die Gleichung mit der neuen Variablen zu lösen . Eine solche Ersetzung
heißt Substitution * .

Beispiel 4:

2x — 5Vx — 12 = 0 Substitution : u — ]fx
2 u 2 — 5u — 12 = 0

5 ± 1/25 + 96 5 + 1/121 5 + 11

M = 4 V w = — f .

Um x zu erhalten machen wir die Substitution rückgängig . Die letzte
Zeile liefert die beiden Gleichungen
Vx = 4 v Yx = - f .
Die zweite ist widersprüchlich , die erste liefert x = 16 .
Also : L = { 16}

substituere (lat .) = an die Stelle einer Person oder Sache setzen
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Beispiel 5:

x — 1 x + 1 5
/ " 1 / , ^ — 0 Substitution : « =—/ X + 1 ^ x - 1 2

Ix — 1
x + 1

1 5 „u -\- — 0
u 2

2 u 2 — 5u + 2 = 0

u = 5 ± 1/25 — 16 5 + 3

u = 2 v u = j

1 . Fall :
x — 1
X + 1

= 2 2 . Fall :
x - 1 _ 1
x + 1 2

x — 1 = 4x + 4 4x - 4 = x + 1
— 5 = 3x 3x = 5
- f = x x = f

Weil vor dem Quadrieren jeweils beide Seiten positiv waren , können wir
auf die Probe verzichten ; es gilt also L = {f ; —

Aufgaben
1 . a) j/ll - 5x = 3 - x b) ]/3x + 7 + x = 7

2 . a) ]/4x - 15 = 3 - x b) j/2x + 3 = x + 1

3 . a) l/2x + 9 + x + 3 = 2 ^ 2x + 9 b) 3 • l/3x + 1 - 2x = 6 - l/3x + 1

4 . a) l/4x + 3 - 3 = 3x - 2j/3 + 4x

b) 2j/l9 + 5x - 2x + 4 ]/5x + 19 = j/5x + 19 + 22

• b) ]/x 2 — 3x + 3 = 4x + 7

b) l/3x 2 — 16x + 3 = 3x — 2

b) V2x + l + 2 = 3 - 2l/x + 9

b) 2 — 3 ]/x + 2 = 2l/2x + 3 - 3
9 . a) ]/x 1 + Vlx - 1 = l/3x + 10 b) j/5x - 1 - 2 ]/3 - x = Vx - 1

5 . a) l/5x 2 + 2x + 6 = x + 4

6 . a) ]/l2x 2 + 20x + 3 = 4x + 2

7 . a) ]/2x + 1 + 2 = 2 ]/x + 9 — 3

8 . a) ]/3x + 4 + 1/5 - 4x = 4
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10 . a) Vx + 2 + 2 ]fx - l/l3x + 3 = 0 b) l/x - 1 + j/2x - 5 - 2l/2 - x = 0

11 . a) ]/x + 4 + ]/3x - 5 = 3 b) ]/ \/x - l5 + l - x = 4

12 . a) l/7,5 + x - l/5 + 4x = 2,5 b) ]/3 + ]/3 - 2x + x = 2

13 . a) j/2x + 5 + l/x 2 + 3x + 3 = 2 b) j/V3x 2 + 5x - 1 - 0,5x = 0,5

14 . a) )/x 2 + 2 + l/7 — 6x + x = 1

b) ]/4x 2 — x + 2 — 0,2 • V5x 2 + 8x + 12 = 2 — 2x

Führe bei den folgenden Aufgaben die notwendigen Fallunterscheidungen durch.

• 15 . a) Vax 2 + 2x + 1 = 2x — 1 b) ]/2x 2 + 2ax + a 2 = x + 2a

c) V5x 2 + ax + 3 = 2x d) V x 2 + 4x + a = 3x + 2

• 16 . a) ]/l + a + 2x + l/1 + a — 2x = 2 b) l/1 + a + 2x — ]/l + a — 2x = 2

• 17 . a) ]/x + a2 = x — a b) Vax + a =b) Vax + a = ax — a= x —

• 18 . a) 1/ x + a + Vx + b = V2x + a + b

b) l/3 a — 2b — x + l/3 a — 2b + x = ]/l2 a — 8b + 2x

• 19 . a) ]/x + Vx + a = ]/2x

• b) ]/Va 2 x 2 + abx + 1) 2 — ax = Vax + b

20 . Angeregt durch die Practica Arithmeticaeet Mensurandi singularis - »Ein¬
zigartige Handhabung der Arithmetik und des Messens « - des Geronimo
Cardano (1501 - 1576 ) aus dem Jahre 1539 stellte Michael Stifel ( 1487 ?
bis 1567 ) in seiner Arithmetica Integra - »Die ganze Arithmetik « - 1544
folgende Aufgabe :
Ein Spieler gewinnt am 1 . Tag so viel, wie er hatte , am 2 . Tag die Quadrat¬
wurzel aus dem Ganzen und dazu noch 2 Gulden , am 3 . Tag das Quadrat
dessen , was er am 2 . Tag hatte , sodass er schließlich 5550 Gulden besaß .
Wie viel hatte er anfangs ?

21 . Aufgabe IV aus Kapitel V der Ars Magna ( 1545 ) des Geronimo Cardano
(1501- 1576 ) :
Addiert man zu einer Zahl das Doppelte ihrer Wurzel und dazu die dop¬
pelte Wurzel dieser Summe , dann erhält man 15 . Wie heißt diese Zahl ?

*

*

22 . a) x - 2l/x + 1 = 0 b) x + 5 ]/x = 14 c) 3l/x = - 2 - x

Ix 2 + 2x 2 — x
Ix 2 + 2x2 — x

* In der Originalaufgabe von Cardano steht 10 statt 15 . Wer Mut hat , rechne die Aufgabe mit diesem Wert .
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7
X "t" 1

+ 5
24 . a) 2

1 — x
+ 5 = 3

1 — x
b)

7 t
x

5

= 6

x + 1

25 . Aus dem über abaci (1202) des Leonardo von Pisa (um 1170 - nach 1240 ) :
a) x — (-j^ x + 4) = ]fx b) 3x + 4 ]/x 2 — 3x = 20

c) 3x + 4 ]fx 2 — 3x = x 2 + 4 d) x 2 = (/6xl/5x + lOx + 20

26 . Aus Lilavati - »Die Schöne « - von Bhaskara II (1115 - nach 1178 ) :
a) § 67 : Ardschuna , Prithas Sohn , im Kampf gereizt , schoss einen Köcher

Pfeile um Karna zu töten . Mit der Hälfte seiner Pfeile parierte er die
seines Gegners , mit dem Vierfachen der Wurzel seines Köcherinhalts
tötete er dessen Pferde , mit 6 Pfeilen Salya , und mit 3 Pfeilen zerstörte
er Schirm , Standarte und Bogen , mit einem schließlich trennte er den
Kopf seines Feindes vom Rumpf . Wie viele Pfeile ließ Ardschuna flie¬
gen ?

b) § 68 : Die Wurzel aus der Hälfte eines Bienenschwarms flog zu einem
Jasminbusch , § des Schwarms blieben im Stock . Ein Weibchen schließ¬
lich umschwirrte eine Lotosblume , in der ein Männchen gefangen saß ,
das vom Duft zur Nachtzeit angelockt worden war *

. Sag mir , wunder¬
schöne Frau , die Anzahl der Bienen !

c) § 69 : Eine Zahl , vermehrt um ihr Drittel und um das 18fache ihrer
Wurzel , ergibt 1200 . Wie heißt die Zahl ?

3 .7 .2 Die biquadratische Gleichung

Eine Gleichung der Form ax 4 + bx 2 + c = 0 mit a + 0 lässt sich
durch die Substitution u -= x 2 auf eine quadratische Gleichung der Form
au 2 + bu \ c = 0 zurückführen . Weil u 2 = (x 2) 2 ist , nennen wir und auch
andere Autoren eine solche Gleichung biquadratisch * * . Gleichungen dieser
Art lösten bereits die Babylonier im Zusammenhang mit Gleichungssystemen
(siehe 3 .8) . Die folgenden zwei Beispiele stammen aus Kapitel I der Ars magna
(1545 ) des Geronimo Cardano (1501- 1576 ) .

* Der Lotos öffnet sich nachts und schließt sich bei Tage .
** bis (lat .) = zweimal , auf doppelte Weise . - Bei Descartes (1596- 1650) findet man 1628/29 biquadratum

an Stelle von quadratumquadratum zur Bezeichnung der 4 . Potenz , bei Christian von Wolff (1679
bis 1754) in seinen Die Anfangsgründe Aller Mathematischen Wissenschaften 1710 den Ausdruck biquadrati¬
sche Aequation als Bezeichnung für eine allgemeine Gleichung 4 . Grades , also eine Gleichung der Form
ax x + bx 3 + cx 2 4- dx -f- e = 0, wie es auch heute noch bei manchen Autoren üblich ist . In der 2 . Auf¬
lage erfolgte dann die Eindeutschung biquadratische Gleichung .
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Beispiel 1 :

x4 + 12 = Ix 2 Substitution : u ■■= x 2

u 2 — lu + 12 = 0

w = i (7±l/T ) = i (7±l )
u = 3 v u = 4 .
Somit muss gelten
x 2 = 3 v x 2 = 4

| x | = l/3 v | x | = 2

x = — j/3 v x = l/3 vx = - 2vi = 2 .

Wir erhalten eine 4-elementige Lösungsmenge : { — 2 , — |/3 , l/3 , 2 } .

Beispiel 2:

x 4 + 3x 2 = 28 Substitution : u ■■= x 2

u 2 + 3u — 28 = 0

« = i ( — 3 ±1/121 ) = i ( — 3 ± 11)
u = — 7 v u = 4 .
Somit muss gelten
x 2 = — 7 v x 2 = 4
x 2 = — 7 v | x | = 2 .
Da die erste Gleichung widersprüchlich ist , erhalten wir eine 2-elemen -
tige Lösungsmenge , nämlich L = { } u { — 2 ; 2 } = { — 2 ; 2 } .

Mit einiger Übung kann man sich die Schreibarbeit der Substitution ersparen ,
wenn man gleich x 2 als neue Variable nimmt . Dann schreibt sich Beispiel 1 wie
folgt :

x 4 — 7x 2 + 12 = 0
(x 2) 2 — 7x 2 + 12 = 0

x 2 = i (7 + ]/l )
x 2 = 3 vx 2 = 4 , woraus man wie oben erhält

| x | = 1/3 v | x | = 2 , also L = { - 2, - l/3 , l/3 , 2 } .

Manchmal lassen sich auch Gleichungen höheren Grades durch eine geeignete
Substitution auf eine quadratische Gleichung zurückführen . Auch hierzu wie¬
der ein Beispiel von Geronimo Cardano , diesmal aus Kapitel VI seiner Ars
magna .
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Beispiel 3:
x 8 + x 4 = 12 Substitution : u — x4
u 2 + u — 12 = 0

u = H ~ 1 ± 1/49 ) = i ( — 1 ± 7)

u = — 4 v w = 3 .
Somit muss gelten
x 4 = — 4 v x 4 = 3 | | radizieren

x 2 = l/3 | | radizieren

| x | = |/i/3

X = — j/j/J V X = j/j/J .

Da x4 = - 4 eine widersprüchliche Gleichung ist , erhält man als Lö¬
sungsmenge { — l//3 , l/j/T } .

Aufgaben
1 . Aus der Arithmetica integra (1544) des Michael Stifel (14877- 1567 ) :

a) 2x 4 = 1450 - 8x 2 b) x 4 = 18x 2 + 648 c) x 4 - 4x 2 = 2205
d) (x 2 + 5) (x 2 - 5) = 2538 e) x 8 = 214651 701 - 20x 4
f) x 8 = 2000x 4 + 185076881 g) x 8 = 20000x 4 - 78461119

2 . Aus Kapitel I , YI und XXIV der Ars magna (1545) das Geronimo Carda -
no (1501 - 1576 ) :
a) x 4 + 12 = 7x 2 b) x 4 + 12 = 6x 2
d) x 4 + x 2 = 12 e) x4 + 2x 2 = 10

3 . a) x4 - 5x 2 + 4 = 0 b) x 4 - 4x 2 - 5 = 0
e) x 4 - 20x 2 = 125

c) x 4 = 2x 2 + 8

c) 4x 4 - 25x 2 + 36 = 0
f ) 12x4 — 81x 2 — 21 = 0

c) 2x 4 — llx 2 + 16 = 0

d) x 4 - 10x 2 + 9 = 0
4 . a) 3x 4 + 2x 2 + 1 = 0 b) 9x 4 + 64x 2 = - 7
5 . a) 2x 5 - 39x 3 - 245x = 0 b) 32x 4 - 82x 2 - 405 = 0
6 . Aus dem liber abaci (1202 ) des Leonardo von Pisa (um 1170 - nach 1240) :

(| x 2 + l ) (^x 2 + 2) = x 2 + 13

• 7 . a)
9x 4 — 325x 2 + 36

3x 2 + 17x — 6
b)

x 6 — 16x2

5x 4 - 19x 2 - 4

8 . a) Beweise: Wenn die drei Koeffizienten einer biquadratischenGleichung
dasselbe Vorzeichen haben , dann ist L = { } .

b) Ist der vorausgehende Satz über biquadratischeGleichungen umkehr¬
bar ? (Vgl . Aufgabe 2a und 4c .)
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* *3 .7 .3 Kubische Gleichungen
Eine Gleichung der Form ax 3 + bx 2 + cx + d = 0 mit a 4= 0 heißt kubische
Gleichung * oder Gleichung 3 . Grades . Wenn man eine Lösung einer kubischen
Gleichung schon kennt oder errät , dann lässt sich die kubische Gleichung auf
eine quadratische Gleichung zurückführen . Zum Nachweis folgen wir einem
Gedankengang , den Geronimo Cardano (1501- 1576 ) in Regel 6 von Kapitel
XXY seiner Ars magna 1545 anspricht und den Frangois Viete ( 1540 - 1603 ) in
seinem Tractatus de emendatione aequationum (erschienen 1615 ) erweitert .
Sei x0 eine Lösung der Gleichung ax 3 + bx 2 + cx + d = 0 , dann gilt
ax o + bxl + cx0 + d = 0 .
Dies verwenden wir nun um das auf der linken Seite der kubischen Gleichung
stehende Polynom 3 . Grades umzuformen :

ax 3 + bx 2 + cx + d =
= ax 3 + bx 2 + cx + d — 0 =
= ax 3 + bx 2 + cx + d — ax $ — bx % — cx0 — d —
= fl (x 3 — xl ) + b {x 2 — Xq ) + c (x — x0) .
Nun ist aber x 3 — Xq = (x — x0) (x 2 + xx 0 + Xq ) , sodass wir im zuletzt erhal¬
tenen Ausdruck x — x 0 ausklammern können . Wir erhalten

(x — x0) [fl (x 2 + xx 0 + Xq ) + b (x + x0) + c] =
= (x — x0) [ax 2 + (ax 0 + b) x + (öXq + bx 0) + c] =
= (x — x0) (Ax 2 + Bx + C) mit A — a

B ■■= ax 0 + b
C — AXg + bx 0 + c .

Man erkennt , wie man , ausgehend von a , schrittweise A , B und C aufbauen
kann :
A = a , B = Ax 0 + b , C = Bx 0 + c .
Wir halten das Ergebnis dieser Umformung fest in

Satz 125 . 1 : Ist x0 eine Lösung der kubischen Gleichung ax 3 + bx 2 +
+ cx + d = 0 , so lässt sich die linke Seite faktorisieren zu

ax 3 + bx2 + cx + d = (x — x0) ( 4̂x 2 + Bx + C)
mit A = fl , B = Ax 0 + b , C = Bx 0 + c .

* Eine Zahl der Form a 3 heißt bei Euklid (um 300 v . Chr .) Kußoq (kybos ) = Würfel , was wohl auf die Pytha -
goreer zurückgeht . Heron von Alexandria - von seinen Lebensdaten wissen wir nur , dass er eine Mondfins¬
ternis des Jahres 62 n . Chr . beschreibt - bezeichnet mit KÜßoq die 3 . Potenz . Bei Diophant (um 250 n . Chr .)
gewinnt Küßot; dann auch die Bedeutung »3 . Potenz der Unbekannten « , wofür die Araber <r ot5

"’
(kaaba )

sagen , was wieder nichts anderes als Würfel bedeutet . (So heißt heute noch das seit 703 unveränderte quader¬
förmige Gebäude [ 12 m x 10 m x 15 m] in Mekka , das Ziel der muslimischen Pilgerfahrten .) Als im 12. Jh .
die arabischen mathematischen Schriften ins Lateinische übertragen wurden , übersetzte man kaaba wortge¬
treu mit cubus . Im Mathematischen Lexicon von 1716 des Christian von Wolff (1679- 1754) erscheint der
Fachausdruck kubische Gleichung , der 1710 in den Anfangsgründen noch kubische Aequation lautete .
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Aus Satz 125 . 1 ergibt sich als wichtige
Folgerung : Eventuelle weitere Lösungen der kubischen Gleichung
ax 3 + hx2 + cx + d = 0 müssen Lösungen der quadratischen Gleichung
Ax2 + Bx + C = 0 sein.
Dazu

Beispiel 1 : 3x 3 — 7.x 2 — 23 .x + 30 = 0
Durch Probieren mit den Werten 0 , + 1 , ±2 usw . findet man , dass
die Zahl 2 eine Lösung ist . Also gilt A = 3 , .8 = 3 - 2 — 2 = 4 und C =
= 4 - 2 — 23 = — 15 . Eventuelle weitere Lösungen der Gleichung
3x 3 — 2x2 — 23x + 30 = 0 müssen also Lösungen der quadratischen
Gleichung 3x 2 + 4x — 15 = 0 sein . Wir erhalten
* = K - 4±l/T96 ) = £ ( — 4 + 14)
x = — 3vx = f .

Wer sich nicht die Ausdrücke für A , B und C merken will, erhält den quadrati¬
schen Faktor Ax 2 + Bx + C des kubischen Terms ax 3 + bx 2 + cx + d, indem
er letzteren durch x — x0 dividiert . Da der kubische Term ein Polynom und
auch x — x0 ein Polynom in x ist , nennt man eine solche Division Polynomdivi¬
sion . Wie sie praktisch abläuft , zeigen wir am Polynom von Beispiel 1 ; dabei ist
x0 = 2 .

Beispiel 2 : Die Polynomdivision
(3x3 - 2x 2 - 23x + 30) : (x - 2)
Wir beginnen mit der Division bei den Termen mit den höchsten Poten¬
zen von x , also mit 3x 3 : x = 3x 2 .
Das Ergebnis 3x 2 schreiben wir rechts vom Gleichheitszeichen als ersten
Summanden an und multiplizieren damit den Divisor x — 2 . Das erhalte¬
ne Produkt 3x 3 — 6x 2 ziehen wir vom Dividendenpolynom ab . Dieses
Verfahren setzen wir mit dem Restpolynom so lange fort , bis sich als Rest
null ergibt :

(3x 3 - 2x 2 - 23x + 30) : (x - 2) = 3x 2 + 4x - 15
— (3x 3 — 6x 2)

4x 2 — 23x + 30
— (4x 2 — 8x)

- 15x + 30
— ( — 15x + 30)

0

Beachte : Ergibt sich nicht 0 als Rest , so hast du entweder beim Probieren
einen Fehler gemacht und dein x0 ist gar keine Lösung , oder du hast
dich beim Dividieren verrechnet .
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Man komm t ohne Polynomdivision schneller zum quadratischen Faktor ,
wenn man vorher ein wenig kopfrechnet . Setzt man nämlich auf Grund der
obigen Überlegungen an
(3x 3 — 2x 2 — 23x + 30) = (x — 2) (Ax 2 + Bx + C)
und multipliziert in Gedanken aus , so erkennt man sofort , dass A = 3 und
C = — 15 sein müssen . Also kann man stattdessen gleich mit dem Ansatz
(3x 3 — 2x 2 — 23x + 30) = (x - 2) (3x 2 + Bx - 15)
beginnen . Vergleicht man die Koeffizienten der quadratischen Glieder auf
beiden Seiten - rechts muss man in Gedanken ausmultiplizieren - , so ergibt
sich — 2 = — 6 — 2 B , also B = 4 ,
und damit der quadratische Faktor wie oben zu 3x 2 + 4x — 15 .

Aufgaben
1 . Zur Polynomdivision

a) Fehlen bei den Polynomen Glieder , so rät Michael Stifel (1487 ?
bis 1567 ) in seiner Arithmetica Integra (1544) , die fehlenden Poten¬
zen mit dem Koeffizienten null zu versehen und sie im Polynom mit¬
zuführen , also die Division (x 3 + 1 ) : (x + 1 ) in der Form
(x 3 + 0x 2 + Ox + 1 ) : (x + 1 ) auszuführen . Mach es und verfahre
ebenso bei den folgenden Aufgaben .

b) (x 3 — 1 ) : (x — 1 ) c) (x 3 + 8 ) : (x + 2)
d) (8x 3 + 125) : (2x + 5) e) (16x4 - 81 ) : (2x - 3)

2 . Auf einer babylonischen Keilschrifttafel , deren einer Teil in London (BM
85200) und deren anderer in Berlin (VAT 6599) liegt , finden sich mehrere
kubische Gleichungen :
a) Aufgabe 5 : z 3 + z 2 = 252 b) Aufgabe 20 : z 3 + 7z 2 = 8

3 . Bei den Griechen findet sich die erste nicht geometrisch gelöste kubische
Gleichung bei Diophant (um 250 n . Chr .) in Buch VI seiner ÄgiSfirjuKärv
ßißMa bei der Behandlung des folgenden Problems (Nr . 17) :
Eine Quadratseite ist um 2 Längeneinheiten größer als die Kante eines
Würfels , dessen Volumenmaßzahl aber um 2 größer ist als die Flächen¬
maßzahl des Quadrats . Wie groß sind Quadratseite und Würfelkante ? -
Diophant bezeichnete die Würfelkantenlänge mit x — 1 . Verfahre ebenso !

4 . Bei Bhäskara II (1115 - nach 1178 ) findet sich im Bidscha -ganita (§ 137)
die Gleichung 12x + x 3 = 6x 2 + 35 .

5 . Christoff Rudolff (um 1500 Jauer/Schlesien - vor 1543 Wien ?) hat
1525 in seiner Behend und Hübsch Rechnung durch die kunstreichen regeln
Algebre so gemeinicklich die Coßgenennt werdeneinige kubische Gleichun¬
gen gelöst ohne den Lösungsweg anzugeben .
a) 63 + x 3 = 10x 2 b) 605 + \ x 2 = \ x 3 c) x 3 + 75x 2 + 1875x = 27250
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Zu den Aufgaben 6 bis 10 . Die größte Leistung auf dem Gebiet der kubischen
Gleichungen vollbrachte Geronimo Cardano (1501 - 1576 ) , der für sie eine
allgemeine Lösungsformel beweisen konnte (Näheres in Algebra 10) . Viele
Kapitel seiner Ars magna (1545) , der mit Ausna hm e von 8h die folgenden
Aufgaben entnommen sind , beschäftigen sich mit kubischen Gleichungen .
Wie damals üblich schreibt Cardano noch keine negativen Koeffizienten ,
sodass er den Lösungsgang für die dadurch verschiedenen möglichen Typen
vorführen muss . Cardano erkennt aber , dass eine , zwei oder drei Lösungen
auftreten können , wofür er auch Fallunterscheidungen angibt .
6 . a) x 3 + 6x = 20
7 . a) x 3 + 22\ x 2 = 98
8 . a) x 3 = 3x 2 + 20x + 6

c) x 3 + 21 x = 9x 2 + 5
e) x 3 + 6x 2 + x = 14
g) x 3 + 3x + 18 = 6x 2

b) x 3 + 16 = 12x c) x 3 = 19x + 30
b) x 3 + 48 = 10x 2 c) x 3 = 3x 2 + 16
b) x 3 + 6x 2 = 20x + 56
d) x 3 + 9 = 6x 2 + 24x
f) x 3 + 6x 2 + 12 = 31x
h) * 25 + 4x 2 + 2x 3 = 16x + 55

9 . a) x 6 + 3x 4 = 20 b) x 6 + 3x 4 + 10 = 15x2

10 . Bei den Gleichungen vom Typ x 3 = px + q und x 3 + q = px versagte ge¬
rade dann die von Cardano bewiesene Formel , wenn - wie wir heute
wissen - es 3 Lösungen gibt . Das ist der Fall , wie Cardano entdeckte ,
wenn (gp) 3 > (^q) 2 ist . Man nannte diesen Fall später casus irreducibilis ,
d . h . unzurückführbarer Fall . Im Kapitel XXV seiner Ars magna , das er
mit De Capitulis imperfectis et specialibus - »Über die unvollkommenen
und nur in Sonderfällen brauchbaren Regeln « - überschreibt , gibt er da¬
her besondere Verfahren zur Lösung solcher Gleichungen an . Ihm entneh¬
men wir mit Ausnahme von a) die folgenden Gleichungen * * ,
a) x 3 = 9x + 10 b) x 3 = 32x + 24 c) x 3 = 16x + 21
d) x 3 + 12 = 34x e) x 3 + 18 = 19x f) x 3 + 8 = 18x

11 . Von Framjois Viete (1540 - 1603 ) stammen aus dem
a) Responsum ad problema quod omnibus mathematicis totius orbis con-

struendumproposuit Adrianus Romanus von 1595 * * * : 3x — x 3 = j/2
b) Tractatus de aequationum recognitione (1615 gedruckt) :

1) 8x — x 3 = 7 2) 9x 2 — x 3 = 8

* Michael Stifel bringt diese Aufgabe in seiner Arithmetica integra 1544 auf Blatt 317 . Er hat sie Cardanos
Practica Arithmeticae von 1539 entnommen , in der sich jener auch schon mit kubischen Gleichungen
beschäftigt hatte . Stifel empfiehlt dieses Buch seinen Lesern wärmstens , rät ihnen aber , statt der umständ¬
lichen Bezeichnungen Cardanos seine viel bequemeren zu verwenden .

** Mit der in a wiedergegebenen Gleichung teilte Cardano seine Entdeckung des casus irreducibilis Tarta -
glia in einem Brief mit , den dieser am 4 . 8 . 1539 erhalten hat .

*** »Antwort auf das Problem , das Adriaen van Roomen [ 1561 - 1615] allen Mathematikern des ganzen
Erdkreises [ 1593] zur Lösung stellte « . Viete konnte die gestellte Gleichung 45 . Grades lösen .
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* *3 .7 .4 Reziproke Gleichungen
Abraham de Moivre (1667 - 1754)
stieß bei seinen Arbeiten zur Wahr¬
scheinlichkeitsrechnung auf einen be¬
sonderen Typ von Gleichungen , den
er 1711 in seiner Abhandlung De
mensura sortis - »Über ein Maß des
Zufalls « - beschrieb und für den er
1730 in seinen Miscellanea Analytica
- »Allerlei zur Analysis « - wichtige
Sätze herleitete . 1733 beschäftigte
sich Leonhard Euler (1707 - 1783 )
mit diesen Gleichungen und nannte
sie wegen einer wichtigen Eigen¬
schaft , die wir gleich beweisen wol¬
len , reziproke Gleichungen . Da sie ei¬
ner Verallgemeinerung fähig sind ,
fügt man heute noch » 1 . Art « bei.
Unter Benützung der von de Moivre
gegebenen Beschreibung legen wir
also fest

1736

Abb . 129 . 1 Abraham de Moivre
(26 . 5 . 1667 Vitry -le-Franfois bis
27 . 11 . 1754 London ) - Gemälde
von Joseph Highmore (1692- 1780)

Definition 139 . 1 : Eine Gleichung heißt reziproke Gleichung 1 . Art , wenn
die vom Anfang und vom Ende des Gleichungspolynoms gleich
weit entfernten Koeffizienten jeweils gleich sind .

Beispiele:
1 ) 3 .x 2 + 5x + 3 = 0 Der erste und der letzte Koeffizient sind gleich.
2) - ix 3 + 3x 2 + 3x — i = 0 | Der erste und der letzte Koeffi-

r zient sind gleich , ebenso der zweite
3) 5x — 3x — 2x — 3x + 5 = 0 J und der vorletzte.

Offensichtlich kann 0 nicht Lösung einer reziproken Gleichung sein , da der
letzte Koeffizient gleich dem ersten Koeffizienten und damit ungleich null ist .
Der folgende Satz macht nun den von Euler gegebenen Namen verständlich .

Satz 129 . 1 : Ist r Lösung einer reziproken Gleichung 1 . Art, so ist auch
1

der reziproke Wert — Lösung dieser Gleichung .
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Beweis: Der Beweis sei beispielhaft für eine Gleichung 4 . Grades vorgeführt.
Der allgemeine Beweis verläuft analog .
ax 4 + bx 3 + cx 2 + bx + a = 0 (mit a 4= 0) ist eine reziproke Gleichung 1 . Art
vom Grad 4 . Wenn r Lösung dieser Gleichung ist , dann gilt
ar 4 + br 3 + er 2 + br + a = 0 .
Da r 4= 0 ist , können wir r4 ausklammern und erhalten

Da r 4 nicht null werden kann , muss die Klammer null sein . In der Klammer
steht aber , von rechts nach links gelesen , der gegebene Gleichungsterm , in

1 1
den an Stelle von x der Wert — eingesetzt wurde . Also ist - Lösung , was zu
zeigen war .

r r

Wie findet man aber nun die Lösungsmenge einer reziproken Gleichung
1 . Art ? Auch hier wollen wir das Wesentliche wieder anhand von Beispielen
zeigen.

Beispiel 1 : Der Grad der reziproken Gleichung 1 . Art ist gerade .
6x 4 + 5x 3 — 38x 2 + 5x + 6 = 0
Da null keine Lösung ist , dürfen wir durch x 2 dividieren und erhalten

6x 2 + 5x — 38 + 5 - — K 6 = 0
x x

6 ( x 2
H— Tr ) + 5 ( x +

x
38 = 0

Joseph Louis de Lagrange
(1736 - 1813 ) schlug 1770 die
Substitution

1
x H— — z vor .x
Durch Quadrieren erhält man

1
x 2 + 2 4— =■ = z 2

, sodass die
x 2

letzte Gleichung übergeht in

6 (z2 — 2) + 5z — 38 = 0
6z2 + 5z — 50
z =

0
1
2 •

Machen wir die Substitution
wieder rückgängig , dann erhal¬
ten wir

Abb . 130 . 1 Joseph Louis de Lagrange
(25 . 1 .1736 Turin- 10 .4 . 1813 Paris)

VK ; =■
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1 10 15
x + - = - — vx + - = - ,x 3 x 2
was durch Multiplikation mit dem Hauptnenner auf zwei reziproke qua¬
dratische Gleichungen führt :
3x 2 + lOx + 3 = 0 v 2x 2 — 5x + 2 = 0
x = — 3vx = — j v x = \ v x = 2 .
Die gesuchte Lösungsmenge lautet somit L = { — 3 , — j , 2} .

Ist der Grad einer reziproken Gleichung 1 . Art ungerade , dann gilt

Satz 131 . 1 : Eine reziproke Gleichung 1 . Art ungeraden Grades hat stets
die Lösung — 1 .

Beweis : ax 3 + bx 2 + bx + a = 0 ist eine reziproke Gleichung 1 . Art vom Grad
3 . Setzt man — 1 ein , so erhält man — a + b — b + a = 0 , was zu zeigen war .
Der allgemeine Beweis verläuft analog .
In Satz 125 . 1 haben wir gezeigt, dass man eine kubische Gleichung faktorisieren
kann , wenn man eine Lösung kennt . Dieser Satz gilt allgemein , wenn der
Gleichungsterm ein Polynom ist . * Damit lässt sich eine reziproke Gleichung
1 . Art ungeraden Grades auf eine Gleichung kleineren Grades reduzieren . Dazu

Beispiel 2 : 12x 5 + 8x 4 — 45x 3 — 45x 2 + 8x + 12 = 0
Die Division durch (x — ( — 1 )) liefert
12x5 + 8x4 - 45x 3 - 45x2 + 8x + 12 =
= (x + l ) (12x4 — 4x 3 — 41x 2 — 4x + 12) ,
wie du leicht nachrechnen kannst . Setzen wir den 2 . Faktor null , so haben
wir in 12x4 — 4x 3 — 41x 2 — 4x + 12 = 0 wieder eine reziproke Glei¬
chung 1 . Art vor uns . Dieser Sachverhalt gilt allgemein , wie man bewei-

1
sen kann . Wie in Beispiel 1 substituiert man z --= x -1— und erhält
12z 2 - 4z - 65 = 0 o z = - fvz = f .

*

Daraus gewinnt man , indem man die Substitution rückgängig macht ,
schließlich die beiden quadratischen reziproken Gleichungen 1 . Art
6x2 + 13x + 6 = 0 v 2x2 — 5x + 2 = 0
mit { — § , — | } bzw . { j , 2 } als Lösungsmengen , sodass man nun die Lö¬
sungsmenge der Ausgangsgleichung 5 . Grades angeben kann zu
L = { — b — - f >b 2 } -

* Beweis : Dividiert man ein Polynom P (x) durch (x — x0) , so erhält man ein Polynom Q (x) und einen Rest R;
es gilt also P (x) = (x — x0) Q (x) + R . Den Rest R kann man aber leicht bestimmen . Setzt man nämlich an
Stelle von x den Wert x0 ein , so erhält man P (x0) = (x0 — x0) ß (x0) + R = 0 + R = R , d . h ., R ist der Wert
des Polynoms P (x) an der Stelle x0. Ist nun x0 eine Nullstelle des Polynoms , dann ist P (x0) = 0 , also auch
R = 0, und es gilt P (x ) = (x — x0) 2 (x) ; das Polynom ist faktorisiert .
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Die eingangs angekündigte Erweiterung des Begriffs der reziproken Glei¬
chung liefert

Definition 132 . 1 : Eine Gleichung heißt reziproke Gleichung 2 . Art , wenn
die vom Anfang und vom Ende des Gleichungspolynoms gleich
weit entfernten Koeffizienten dem Betrage nach jeweils gleich sind ,
aber verschiedenes Vorzeichen haben .

Folgerung : Ist der Grad einer reziproken Gleichung 2 . Art gerade , z . B . 2k , so
muss für den mittleren Koeffizienten ak gelten a k = — ak , d . h . , der mittlere
Koeffizient muss den Wert null haben .

Beispiele:
1) 3x 2 — 3 = 0 Der erste und der letzte Koeffizient

unterscheiden sich nur im Vorzeichen .
2) — £x 3 + 3x 2 — 3x + ^ = 0 3 Der erste und der letzte Koeffizient

> unterscheiden sich nur im Vorzeichen ,
3) 5 X4 _ 3 x 3 + 3 x — 5 = 0 J ebenso der zweite und der vorletzte.

Satz 129 . 1 gilt auch für reziproke Gleichungen 2 . Art , wie du selbst leicht
beweisen kannst (Aufgabe 133/1) . An Stelle von Satz 131 . 1 gilt

Satz 132 . 1 : Jede reziproke Gleichung 2 . Art hat die Lösung + 1 .

Von der Richtigkeit dieses Satzes kannst du dich durch Einsetzen in die obigen
Beispiele überzeugen ; der Beweis ist leicht (Aufgabe 133/2) .
Dividiert man eine reziproke Gleichung 2 . Art durch x — 1 , so erhält man
immer , wie man zeigen kann , eine reziproke Gleichung 1 . Art . Wir begnügen
uns zum Nachweis auch hier mit einem Beispiel , nämlich
Beispiel 3:

x 4 — 6x 3 + 6x — 1 = 0 ist eine reziproke Gleichung 2 . Art . Somit lässt
sich der links stehende Term durch x — 1 dividieren und man erhält die
Faktorisierung
(x — l ) (x 3 — 5x 2 — 5x — 1 ) = 0 .
Setzt man die Klammer null , so erhält man eine reziproke Gleichung
1 . Art vom Grad 3 . Diese hat — 1 als Lösung . Daher kann man das
Polynom in der Klammer durch x + 1 dividieren und erhält die Faktori¬
sierung
(x — 1 ) (x + 1 ) (x 2 + 6x + 1 ) = 0 .
Setzt man nun den 3 . Faktor null , so erhält man eine quadratische Glei¬
chung - sie ist reziprok von 1 . Art - mit den Lösungen 3 + j/8 . Die Aus¬
gangsgleichung x4 — 6x 3 + 6x — 1 = 0 hat also die Lösungsmenge
L = (3 - 1/8 , - 1 , 1 , 3 + 1/8 } .
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Aufgaben
1 . Beweise die Gültigkeit von Satz 129 . 1 für eine reziproke Gleichung 2 . Art .

Unterscheide dabei , ob sie geraden oder ungeraden Grades ist , und führe
den Beweis für eine Gleichung 3 . und für eine Gleichung 4 . Grades .

2 . Zeige , dass eine reziproke Gleichung 2 . Art stets 1 als Lösung besitzt.
Führe den Beweis für eine Gleichung 3 . und für eine Gleichung 4 . Grades .

3 . a) 12x 3 - 13x 2 - 13x + 1 = 0 b) x 3 — 5x 2 + 5x + 1 = 0

4 . a) 20x 4 + 19x 3 — 402x 2 + 19x + 20 = 0
b) 20x 4 - 189x 3 + 482x 2 - 189x + 20 = 0

5 . a) 18x4 + 51x 3 — 334x 2 + 51x + 18 = 0
b) 36x4 — 9x 3 -- 103x 2 — 9x + 36 = 0

6 . a) 7x 4 + 36x 3 -- 86x 2 + 36x + 7 = 0
b) 10x4 — 29x 3 + 20x 2 - 29x + 10 = 0

7 . a) x 4 - 2x 3 + 2x 2 — 2x + 1 = 0
b) 20x 4 + o\ XW+ 19x 2 + 16x + 20 = 0

8 . a) x4 + 2x 3 — 13x 2 + 2x + 1 = 0 b) x4 — 8x 3 + 9x 2 — 8x + 1 = 0

9 . a) 16x4 — 72x 3 + 113x 2 — 72x + 16 = 0
b) 2x 4 — 9x 3 + 15x 2 — 9x + 2 = 0

10 . Beweise für reziproke Gleichungen 1 . Art vom Grad 4 :
a) Die Lösungsmenge einer solchen Gleichung ist genau dann nicht leer ,

wenn die durch die Substitution z — x + ^ gewonnene Hilfsgleichung
mindestens eine Lösung hat , welche die Bedingung | z | ^ 2 erfüllt .

b) Eine Doppellösung tritt genau dann auf, wenn die Hilfsgleichung die
Lösung 2 oder — 2 hat . Wie heißt die zugehörige Doppellösung ?

c) Löst z 1 die Hilfsgleichung, so haben die zugehörigen Lösungen der
Ausgangsgleichung stets dasselbe Vorzeichen wie zu wenn | z , | > 2 ist .

11 . a) 12x 5 + 23x 4 - 135x 3 - 135x 2 + 23x + 12 = 0
b) 2x 5 — 7x 4 + 5x 3 + 5x 2 — 7x + 2 = 0
c) 2x 6 - 13x 5 + 34x4 - 46x 3 + 34x 2 - 13x + 2 = 0

12 . a) 3x 3 + Ix 2 — Ix — 3 = 0 b) x 3 — x 2 + x — 1 = 0

13 . a) 3x 4 - 10x 3 + lOx - 3 = 0 b) x4 - 10x 3 + lOx - 1 = 0
c) x4 - 1 = 0

14 . a) 12x 5 — 16x4 — 37x 3 + 37x 2 + 16x — 12 = 0
b) 5x 5 — 31x4 + 36x 3 — 36x 2 + 31x — 5 = 0 c) x 5 — 1 = 0

15 . a) x 6 — 4x 5 + 5x4 — 5x 2 + 4x — 1 = 0
b) 2x 8 — 5x 7 — 4x 6 + 15x 5 — 15x 3 + 4x 2 + 5x — 2 = 0
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* *3.8 Gleichungssysteme, die auf quadratische Gleichungen führen
Im letzten Jahr hast du lineare Gleichungssysteme mit mehreren Unbekann¬
ten kennen gelernt . Dabei kamen die Variablen nur in der 1 . Potenz vor und ,
ohne dass es dir vielleicht aufgefallen ist , auch nicht durch Multiplikation
miteinander verbunden . Tritt also ein Term der Form x 2

, y 2 oder xy auf , dann
handelt es sich um ein quadratisches und nicht mehr um ein lineares Glei¬
chungssystem . Besonders einfach sind solche Systeme , die aus einer linearen
und einer quadratischen Gleichung bestehen . Dass die Lösung solcher Syste¬
me erst mit Hilfe von quadratischen Gleichungen möglich ist , zeigt

Beispiel 1 :
Auf Seite I des Keilschrifttextes AO 8862, der um 2000 v . Chr . entstanden
ist und zu den ältesten babylonischen Texten gehört *

, steht :
Nisaba [ Schutzpatronin der Wissenschaften ] Länge , Breite . Länge und
Breite habe ich multipliziert und so die Fläche gemacht . Was die Länge
über die Breite hinausgeht , habe ich zur Fläche addiert , und es macht 183 .
Wiederum Länge und Breite addiert , gibt 27 . Länge , Breite und Fläche ist
was?
Der Text führt zu Beginn die beiden Unbekannten »Länge « und »Breite«
ein ; ihr Produkt heißt »Fläche « . Wählen wir x für »Länge « und y für
»Breite« , so erhalten wir das Gleichungssystem

I xy + (x — y) = 183
II x + y = 27 Nebenbedingung : x > y

Hier löst man am besten II z . B . nach
y auf und setzt y = 21 — x in I ein.
I ' x (27 - x) + (x - 27 + x) = 183

II ' y = 27 - x
I ' x 2 - 29x + 210 = 0

II ' y = 27 - x
I ' x = 14 v x = 15

II ' y = 27 - x
Die Lösungsmenge Lv kann in einem
x-y-Koordinatensystem (Abbildung
134 . 1 ) durch ein Parallelenpaar dar¬
gestellt werden , L]V durch eine Gera¬
de . Die Lösungsmenge L des Glei¬
chungssystems ergibt sich als Schnitt¬
menge Lv n L lv zu
L = { (14 j 13) , (15 | 12)} .

y = 27- x

( 15 | 12)

Abb. 134 . 1 Die Lösungsmenge
von Beispiel 1

gefunden in Larsa , aufbewahrt in Paris im Louvre in der Abteilung Antiquites Orientales . Es handelt sich um
ein vierseitiges , auf allen Seiten beschriebenes Prisma der Höhe 16,8 cm und der Basisseite 7,3 cm .



3 .8 Gleichungssysteme, die auf quadratische Gleichungen führen 135

Praktisch geht man so vor , dass man zu jedem aus I ' erhaltenen x -Wert
den zugehörigen y-Wert aus II ' errechnet :
x = 14 => y = 13 und x = 15 => y = 12 .
Die Lösungsmenge des Gleichungssystems besteht also aus 2 Paaren . Wir
erhalten somit zwei verschiedene Antworten auf die gestellte Frage :
Lösung 1 : Länge = 14 , Breite = 13 , Fläche = 182 ,
Lösung 2 : Länge = 15 , Breite = 12 , Fläche = 180 .
Die Nebenbedingung ist jedesmal erfüllt . Eine Probe ist nicht nötig , da
nur Äquivalenzumformungen vorgenommen wurden . - Auf der Keil¬
schrifttafel ist übrigens nur Lösung 2 angegeben .

Der hier eingeschlagene Lösungsweg führt bei jedem derartigen Gleichungs¬
system zum Ziel . Die lineare Gleichung wird nach einer der beiden Unbekann¬
ten aufgelöst und der gefundene Ausdruck in die quadratische Gleichung
eingesetzt . Man hat dann als neues äquivalentes System im Allgemeinen eine
quadratische Gleichung mit nur einer Unbekannten und die lineare Glei¬
chung . Je nachdem , ob die quadratische Gleichung zwei, eine oder keine Lö¬
sung hat , besteht die Lösungsmenge des Systems aus zwei, einem oder keinem
Zahlenpaar .
Besteht hingegen das System aus zwei quadratischen Gleichungen , dann kann
der Lösungsweg schließlich bis zu einer Gleichung 4 . Grades für eine Unbe¬
kannte führen , die du unter Umständen nicht lösen kannst . Sehr leicht lassen
sich dagegen Systeme lösen , in deren Gleichungen nur die Quadrate der Unbe¬
kannten Vorkommen . Dazu die folgenden beiden Beispiele.

Beispiel 2:
I 2x 2 - y 2 = - 7

II 6x 2 + ly 2 = 104

Durch die Substitution u — x 2
, v ~ y2

wird daraus ein lineares System:

I ' 2u — v = — 7
IF 6u + 2v = 104
I " u = 9

II " v = 25

Das Ausgangssystem ist also äquivalent
mit

I " x2 = 9
II " y 2 = 25
I " x = — 3 v x = 3

II " y = — 5 v y = 5 .

(-315 )

y

( 315 )

1 -

(- 31 - 5 )

1 X

(3 | —5 )

Abb . 135 . 1 Die Lösungsmenge
von Beispiel 2

Lv - Lw,
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Lv . lässt sich als Parallelenpaar zur y -Achse , L w , als Parallelenpaar zur
x-Achse graphisch darstellen (Abbildung 135 . 1 ) . Für L erhält man
L = Lv , n L lv . = {( - 31 - 5) , ( - 315) , (31 - 5) , (315)} .

Ebenso wie in Beispiel 2 geht man vor in

Beispiel 3:

I 3x 2 — 5y 2 = 20 I ' x 2 = 5
II 7x 2 + 9y 2 = 26

^
II ' y 2 = — 1

Da Lu , = { } , ist auch L = Lv n Lw = { } .
Zum Abschluss behandeln wir noch ein Gleichungssystem , das auf eine bi-
quadratische Gleichung führt . Es stammt von der altbabylonischen Keil¬
schrifttafel VAT 8390.

Beispiel 4:
Länge und Breite habe ich multipliziert , 600 ist die Fläche . Die Länge
habe ich mit sich selbst multipliziert . Das ergibt eine Fläche , die das
9 fache der Fläche ist , die man erhält , wenn man das , was die Länge über
die Breite hinausgeht , mit sich selbst multipliziert . Länge und Breite ist
was?
Bedeute x die »Länge « und y die »Breite« , dann erhält man
I xy = 600

II x 2 = 9 (x — y) 2

I ' y =
600
x

II ' 8x 4 - 10 800x 2 + 3 240 000 = 0
"7 6ÖÖ

II ' x 2 = 450 v x 2 = 900 -«> x = + 15 ]/2 v x = + 30
L = {( - 301 - 20) , ( - 15V2 | - 20 ]/2 ) , (15 ]/2 | 20j/2 ) , (30120)} .
Die Babylonier haben nur die Lösung (30120) angegeben , da für sie x und
y positiv waren und außerdem x > y gelten sollte .

Insgesamt hat man bisjetzt an die 650 Aufgaben von diesem Typ gefunden , bei
denen vor allem Gleichung II immer wieder verändert wird . Alle aber haben
die Lösung (30120) . Die 6,5 cm x 9,5 cm großen Täfelchen sind durchnumme¬
riert .

*

* Es handelt sich offenbar um einen Satz von Übungsaufgaben , der einst
* Da sie aus Raubgrabungen stammen , lassen sie sich nur schwer datieren . Man 'vermutet , dass sie mittelbaby¬lonisch sind , d . h . aus der Zeit der Kassiten stammen (ca . 1530- 1160 v . Chr .) . Sie enthalten fast keinen

Worttext mehr , sondern nur mehr mathematische Zeichen , stellen also eine Art babylonischer Zeichenal¬
gebra dar .
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aus mindestens 14 solcher Täfelchen bestand . Wir dürfen daraus wohl schlie¬
ßen , dass bereits die Babylonier erkannt hatten , dass Mathematik nur dadurch
gelernt werden kann , dass man viel übt . Für dich folgt daher eine Reihe von

Aufgaben
1 . a) x + y = 7

xy = 10

2 . a) xy = 9 + x
2x — y = 2

b) xy = 6
3x — y = 3

b) 2xy — x + 2y = 1
x + 2y = 0

c) x + 3 = 4 + y
xy = 2

c) 3x + 2y — 4xy = — 5
5x + 2y = 12

3. Seite I und Seite III des Keilschrifttextes AO 8862 liefern die Systeme
a) 2x + + xy = 15 b) x + y = xy

x + y = 1 x + y + xy = 9

4 . In Susa fand man folgende Keilschrifttexte aus altbabylonischer Zeit:
a) * ^x + ^y + jxy = 2 h) xy + x + y = 1

x + y = 5f tt (3x + 4y) + y = j
5 . Eine interessante Aufgabe enthält der altbabylonische Keilschrifttext* *

VAT 7528 , der , auf unser Maßsystem umgerechnet , lautet :
Gebaut wurde ein kleiner Kanal von 2160 m Länge und f m Tiefe . Sein
Querschnitt ist trapezförmig und misst oben 1 m , unten \ m . Ein Arbeiter
konnte täglich 6 m 3 Erde ausheben . Die Anzahl der Arbeiter zu der der
Arbeitstage addiert ergibt 29Wie viele Leute haben wie viele Tage gear¬
beitet ?

6 . YAT 8512, ebenfalls altbabylonisch , stellt folgendes Problem : Ein recht¬
winkliges Dreieck wird durch eine Parallele zu einer Kathete der Länge 30
in ein Dreieck und ein Trapez so zerlegt , dass die Trapezfläche um 420
größer ist als die Dreiecksfläche . Die Kathete zerfällt dabei in zwei Teile ;
der Teil , der zum Dreieck gehört , ist um 20 größer als derjenige , der zum
Trapez gehört . Wie groß sind diese beiden Teile , die beiden Flächen und
die parallele Strecke?

7 . Aus einer arabischen Handschrift aus der 1 . Hälfte des 11 . Jh . s : In einem
Quadrat ABCD der Seitenlänge 10 werden die Mittelparallele [EF ] zu
[AB] und von A aus eine Gerade so gezogen , dass diese die Mittelparallele
in S und die Seite [BC] in T schneidet . Wie groß sind TF und SF , wenn
die Fläche von ASTF sich zur Quadratfläche wie 2 : 25 verhält (F e BC)?

8 . Der Seite II des Keilschriftprismas AO 8862 entnehmen wir : Länge , Brei¬
te . Länge und Breite habe ich multipliziert und so die Fläche gemacht . Was
die Länge über die Breite hinausgeht , habe ich mit der Summe aus Länge

* SKT 362, Straßburger Keilschrift -Texte , aufbewahrt in Straßburg , Bibliotheque Nationale et Universitaire .
** aufbewahrt in Berlin , Staatliche Museen : Vorderasiatische Abteilung ; Tontafeln .
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und Breite multipliziert ; dazu habe ich meine Fläche addiert . Es macht
4400 . Dann habe ich Länge und Breite addiert , das ergibt 100 .

9 . Die Aufgaben 8 - 10 , 14 und 19 aus der altbabylonischen Keilschrifttafel
BM 13901 (siehe Seite 88f . und Aufgabe 97/24) :
a) x 2 + y 2 = 1300

x + y = 50

d) x 2 + y 2 = 1525
y = fx + 5

b) x 2 + y 2 = 1300 c) x 2 + y 2 = 21 ^
x — y = 10 y — x = — jx

e) x 2 + y 2 + (x — y) 2 = 1400
x + y = 50

10 . Aus der altbabylonischen Keilschrifttafel SKT 363 :
a) x 2 + y 2 = 1000 b) x 2 + y 2 = 2225 c) x 2 + y 2 = 3125

y = f * — 10

11 . a) x 2 — 3x + y = 2
x + 3y = 6

c) 3x + 2y = 3
2x 2 - y 2 = - l

y = i (x — 10) + 5 y = f (x — 20)

b) 2y 2 — 5x + 3y = 0
— 2x + ly = 5

d) 4x - 3y = 11
2x 2 + 3y2 = 11

12 . a) Aus dem Uber abaci (1202 ) des Leonardo von Pisa
(um 1170 - nach 1240 ) :

xyx + y = 10 a
x - y

b) ^ x 2 + iy 2 = 1

y - 1,8 9
x - 4 20

13 . a) x 2 — 2xy — y 2 = — 4

= V6 -

x — 5y = 6
14 . a) 2x 2 + xy + y 2 — 2x + y = 6

2x — 3y = 9
b) 41 x 2 - 24xy + 34y2 - 24x + 68y - 41 = 0

x — 2y — 5 = 0
15 . a) x 2 + 2y 2 = 9

3x 2 — y 2 = — 1

16 . a) Ix 2 - 2y 2 + 32 = 0
3x 2 + 5y 2 - 80 = 0

17 . a) llx 2 — ly 2 = 0
- 8x 2 + 5y2 = 0

Mache die Probe !

c) &x 2 - $y 2 = 1

y + 4 _ 3
x - 4

~
4

( ! ) b) x 2 — 2xy + y 2 + 4 = 0
x — 5y — 6 = 0

b) 2x 2 + 5y 2 = 47
5x 2 + 2y 2 = 23

b) 6x 2 + 2y 2 = 6
4x 2 - 3y 2 = 43

b) llx 2 - ly 2 = - 2
— 8x 2 + 5y2 = 0
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18 . a) x 2 + 3y 2 = 3
6x 2 — 2y 2 = 13

19 . a) 3x 2 - 5y 2 = 0
2x 2 — ly 2 = 11

• 20 . a) 2x 2 — 3x + 2y — 3 = 0
5x 2 — 0,5x + 3y — 7 = 0

c) (x - 2) 2 + {y - l ) 2 = 9
(x + 2) 2 + {y — 7) 2 = 25

21 . a) x 2 + 2x + 4y - 47 = 0
5x 2 — 25x + 6y — 18 = 0

c) y 2 + 2xy + 3y = 0
3y 2 — 3 xy — y = 30

b) 5x 2 + 9y 2 - 32,2 = 0
4x 2 - 3y2 + W = 0

b) 4x 2 — 3y 2 = 7
3x 2 + 5y 2 = 56

b) 2x + 5y + 2xy = 3
x — 3y — 4xy = 33

d) x + Ix 2 + 3y — 6y 2 = 28
x — x 2 — 2y + 3y 2 = — 20

b) 2x 2 + y 2 — 10x = 13
5x 2 — 2y 2 + 15x = 0

• d) (x — 2) 2 — iy + l ) 2 = - 24
3x 2 + y 2 — 12x + 2y = 87

22 . Die auf Seite 136 erwähnte Aufgabensammlung aus kassitischer Zeit be¬
findet sich fast vollständig in der Yale Babylonian Collection von New
Haven (USA ) . Die auf der Tafel YBC 4697 angegebenen Gleichungssyste¬
me löst man am besten mit der Substitution x -— u + v und y -= u — v .
Die erste Gleichung heißt immer xy = 600 , die zweite dagegen
a) ! (x + y) + 6d (x — y) 2 = 18 § ,
b) i (x + y) — 6d (x - k) 2 = 15 ,
c) i - U x + y ) + <k (x ~ y)2 = H -

23 . a) x 2 + y 2 = 10
x 2 y 2 = 9

c) x4 — 3x 2 + 2y 2 = 6
4x 2 — 5y 2 = - 16

24 . a) (x + l ) 2 + 3 (y + 3 ) 2 = 12
2 (x + l ) — 7 (y + 3) = — 1

Sb) 2 (2x — 3y + 7) 2 — 3 (4x — 2y + 5) 2 = 5
5 (2x - 3y + 7) 2 - 7 (4x - 2y + 5) 2 = 13

b) x 2 — 8y 2 = 23
4 (xy ) 2 = 25

d) x 4 - y 4 = 65
2x 2 + 3y2 = 30

1 1
25 . a) 3 • - - 2 • - = 4

x y
1 1

3 ■ —Tr + 8 ■ = 5
x 2 y 2

1 1
►b) \ % . - - i - — = 2

x 2 y

, 1 . 1
6 ■ —^—h 3

x 2 y 2 3

26 . a) Aufgabe 12 aus dem Keilschrifttext BM 13901 ergibt das System
x 2 + y 2 = 1300 a xy = 600 .
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b) Aufgabe 22 der Tafel YBC 4668 aus kassitischer Zeit ergibt
x
y = 2| a xy = 600 .

c) Aufgabe 25 der Tafel YBC 4668 aus kassitischer Zeit ergibt
x
y

2/x
Hk xy = 600 .

27 . In Susa fand man auf einer Keilschrifttafel den Text XIX , Problem D :
xy = 1200 a x - x 2 Vx2 + y 2 = 3200000 .

28. a) x + 2 = y — 1
j/3x + 2y = 2x

29 . a) Vx + y - Vx ^ y = 2

• b) ]/3x + y + ]/2x — y = ]/lx + 2y

b) 2 - 2x = (y + 4) 2

Vx2 Ty 2 = 7 - x

Vx2 — 6x — y 2 = ^y

]/j/4x 2 + y 2 + 4xy — 2x — 3 + x — y = l/3x ■

30 . Besteht ein Gleichungssystem mit zwei Variablen nur aus einer Gleichung ,
so ist es unterbestimmt . Stelle die Lösungsmengen der folgenden unterbe¬
stimmten Systeme graphisch dar .

x 2 + y 2 = 0
x —

a)
c)
e) x (x

y 2 = 0
- 2y) = 0

g) Vx2 + y = 1

b)
d)
f)

. h)

(x - 3 ) 2 + (y + 2) 2 = 0
(x + y) 2 = 4
y 2 — 3 xy + 2y = 0^

Tky 2 = 1

•31 . Die beiden folgenden ersten Aufgaben sind die Nr . 94 bzw . 96 aus Kapitel
LXVI der 1539 erschienenen Practica Arithmeticae des Geronimo Carda -
no ( 1501 - 1576 ) . Michael Stifel (14877 - 1567 ) bringt sie 1544 in seiner
Arithmetica integra und fügt als weitere Beispiele die beiden anderen Auf¬
gaben an . - Zur Lösung raten wir , zuerst xy zu berechnen .
a) (x — y) 2 = xy b) x + y = xy

x 2 + y 2 = 20 x 2 + y 2 + (x + y) = 20
c) x 2 + y 2 = 52

xy — x — y = 14
d) x 2 + y 2 = 52

xy + x + y = 34
32 . In Kapitel LXI seiner Practica Arithmeticae behandelt Cardano ein über¬

bestimmtes Gleichungssystem , für das Stifel bessere Zahlen wählt , damit
die Aufgabe aufgeht :
Zerlege 468 in zwei Summanden . Das Produkt aus dem größeren Teil und
dem Quadrat des kleineren Teils soll 5359375 ergeben , das Produkt aus
dem kleineren Teil und dem Quadrat des größeren hingegen 14706125 .
Wie heißen die Summanden ?
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Die folgenden Aufgaben ergeben Gleichungssystemefür 3 und mehr Unbekann¬
te . Sie stammen aus Kapitel LXVI der Practica Arithmeticae(1539 ) des Gero-
nimo Cardano (1501 - 1576) . Michael Stifel (14877- 1567 ) fand sie so interes¬
sant , dass er sie ganz am Ende seiner Arithmetica integra (1544) bringt . Ange¬
regt durch sie , fügt er gelegentlich ergänzende Aufgaben hinzu .
33 . Aufgabe 78: Zerlege 14 so in 3 Summanden, dass sie in stetigerProportion

zueinander stehen * und dass die Summe aus dem 2fachen des ersten ,
dem 3fachen des zweiten und dem 4fachen des dritten 36 ergibt .

HIERONIMI
CCARDAN1 MEDICI MEDIOLA

NENSIS , PRACTICA ARITH -
merice, & Menfurandifingulans.In qua

quepceter«Kascotfacatn̂retfa
paginat>anonftrabt4

A/iPW ^m ' trnvr ' CArdptAHtr -

Abb . 141 . 1 Titelblatt der Practica
Arithmeticae von 1539 des Geronimo
Cardano ( 1501 - 1576 ) * * und dessen

Unterschrift .

ARITHMETI
CA ' INTEGRA .

Authore Michaile Safelio.

Cum pnc& ione Philippi Mdanchthoni «.

Norimberg * apud Iohan . Petreiuni«
Anno Chrifti m. d. xliiii .

Cum gracia & priuilegio Carlarco
atcj Regio ad Scxcnnium .

/ V/w ^ .vv /
/üjrf

Abb . 141 .2 Titelblatt der Arithmetica
integra - »Die ganze Arithmetik « - (1544)
von Michael Stifel (1487 ? Esslingen bis
19 . 4 . 1567 Jena ) und dessen Unterschrift .
Ein Bildnis ist nicht überliefert . * * *

* 3 Größen a , b , c bzw . 4 Größen a , b , c , d stehen in stetiger Proportion zueinander oder verhalten sich
stetig , wenn a : b = b : c bzw . a : b = b : c = c : d gilt .

** Des Hieronimus C . Cardanus mailändischen Arztes , einzigartige Handhabung der Arithmetik und des
Messens . Was in ihr unter anderen enthalten ist , legt er auf der nächsten Seite dar .
Die Umschrift NEMO PROPHETA ACCEPTUS IN PATRIA um das Bildnis ist eine Anspielung auf
Matth . 13,57 , das im Deutschen zu »Der Prophet gilt nichts in seinem Vaterlande « verkürzt wird .

*** Auf dem Titelblatt liest man ferner : Mit einem Vorwort Philipp Melanchthons . Zu Nürnberg bei Johann
Petreius . Im Jahre Christi 1544 . Mit der Gunst und dem kaiserlichen und königlichen Privileg für einen
Zeitraum von sechs Jahren . Die Umschrift um das Flammenschwert lautet SERMO DEIIGNITUS ET
PENETRANTIOR QUOVIS GLADIO ANCIPITI , d . h . : Die Sprache Gottes ist feurig und durchdrin¬
gender als jedes zweischneidige Schwert . - Am Ende schreibt Stifel , dass er das Manuskript mehr als
ein Jahrfünft zurückgehalten habe ; es war also bereits 1539 fertig . - Die in der 1. und 2 . Auflage wie¬
dergegebene Unterschrift ist kein Autograph Stifels .
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34 . Michael Stifel verwandelt die vorstehende Aufgabe in :
Zerlege 182 so in 3 Summanden , dass sie in stetiger Proportion zueinander
stehen * . Bildet man dann die Summe der 3 möglichen Produkte aus je
zweien von ihnen , so erhält man 7644 . Wie heißen die Teile?

35 . Michael Stifel ergänzt die vorstehende Aufgabe durch :
Zerlege 78 in 3 Summanden , die sich stetig verhalten * und für die gilt :
Teilt man 78 durch jeweils einen der Summanden , so ist die Summe dieser
drei Quotienten 18jj . Wie groß sind die Summanden ?

• 36 . Aufgabe 110 : Das Produkt der Katheten eines rechtwinkligen Dreiecks
hat den Wert 10 ; die Katheten und die Hypotenuse verhalten sich stetig * .
Bestimme sie .

37 . Aufgabe 28 : Die Summe dreier Zahlen , die sich stetig verhalten *
, ist so

groß wie ihr Produkt . Teilt man 25 durch jeweils eine von ihnen , so ergibt
auch die Summe der drei Quotienten die Summe dieser drei Zahlen . Wie
groß sind sie?

38 . Von Michael Stifel stammt: Zerlege 76 in drei Summanden, die sich stetig
zueinander verhalten *

, sodass das Produkt aus dem mittleren Glied mit
der Summe der beiden äußeren Glieder 1248 ergibt . Wie groß sind die
Summanden ?

839 . Aufgabe 112 : Vier Zahlen verhalten sich stetig zueinander * . Ihr Produkt
hat den Wert 81 , das Produkt der beiden ersten den Wert 6 . Wie heißen sie?

§ 40 . Aufgabe 95 hat Stifel verbessert , sodass sie aufgeht . In Klammern stehen
die ursprünglichen Werte Cardanos :
Die Summe von vier Zahlen , die in stetiger Proportion zueinander ste¬
hen *

, hat den Wert 45 (10) ; die Summe ihrer Quadrate ist 765 (60) . Wie
groß sind sie?

* 3 Größen a , b , c bzw . 4 Größen a , b, c , d stehen in stetiger Proportion zueinander oder verhalten sich stetig ,
wenn a : b — b : c bzw . a : b — b : c = c : d gilt .
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