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6 . a) 2x 2 — 28x + 98 = 0
c) — 5u 2 + 120m — 730 = 0

b) - 3z2 + 12z + 63 = 0
d) 8x 2 + 80x + 72 = 0

b) iz z - jz - l = 07 . a) 3x 2 + x — 2 = 0
c) 2 u 2 — 3u + 4 = 0 d) \ ,5y 2 + 2y - 7,5 = 0

b) x 2 + 4ax + a 2 = 08 . a) x 2 + 4A:x — 5A;2 = 0
c) x 2 — 2nx = 6m « + 9m 2 d) rx2 — 2r 2 x = rs — r 3

3 .4 Diskriminante und Lösungsformel

Wenn ein Mathematiker immer wieder gleichartige Aufgaben lösen muss ,
dann wird er dessen bald müde und er beginnt zu überlegen , ob sich nicht eine
Formel finden lässt , mit der er ein für alle Mal alle Aufgaben dieses Typs lösen
kann . Mit Hilfe der quadratischen Ergänzung entwickeln wir nun eine solche
Formel zur Lösung der quadratischen Gleichung .
ax 2 + bx + c = 0 , <2 + 0

1 . Schritt : Herstellen der Normalform

a a
2 . Schritt : Ergänzen zum Quadrat

0 <=>x 4— x +

3 . Schritt : Lösen der rein quadratischen Gleichung durch Faktorisieren
Die Faktorisierung lässt sich nur durchführen , wenn der Term b 2 — 4ac nicht
negativ ist . Ist er negativ , dann gibt es keine Lösung .

Ist er null , dann ist x = — die einzige Lösung .2a
Ist er positiv , dann gibt es zwei Lösungen , die wir durch Faktorisieren finden ,
da man in diesem Fall b 2 — 4ac als (|\/b 2 — 4ac ) 2 schreiben kann . Es gilt dann
also

Vb — 4ac

Vb 2 — 4ac ]/b 2 - 4ac
2a

b + Vb 2 — 4ac n b — ]/b 2 — 4ac
xH- -- = 0 v xH- --
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b + 1/ b 2 — 4ac
2a v v = —b — ]/b 2 — 4ac

2a
— b — Vb 2 — 4 ac — b + \/b 2 — 4 acx = - -- v x = - --

2a 2a

Für diese Oder -Aussageform schreibt man oft kurz unter Verwendung des
1631 von William Oughtred (1574 - 1660 ) in seinem Clavis mathematicae -
»Schlüssel der Mathematik « - eingeführten Zeichens ± , gelesen »plus oder
minus «

— b ± Vb 2 — 4ac
X =

2a '

Damit haben wir einen formelmäßigen Ausdruck für die beiden Lösungen der
allgemeinen quadratischen Gleichung , nämlich

b - Vb 2 - Aac b + Vb 2 - Aac
2a22a

oder kurz

— b± ]/b 2 — 4ac

Über die Existenz von Lösungen und
über ihre Anzahl entscheidet , wie wir
oben gesehen haben , der Term

b 2 — 4ac .
Der englische Mathematiker James
Joseph Sylvester (1814 - 1897 ) gab
ihm deshalb 1851 den Namen Diskri¬
minan te * . Wir kürzen diesen Aus¬
druck mit D ab . Wegen seiner Bedeu¬
tung merken wir uns

Definition 84 . 1 : D -= b 2 — Aac
heißt Diskriminante der
quadratischen Gleichung
ax 2 + bx + c = 0 .

* discriminare (lat .) = trennen , unterscheiden . Dis¬
kriminante ist eine der vielen Wortschöpfungen Abb . 84 . 1 James Joseph SYLVESTER
Sylvesters . (3 . 9 . 1814 London - 15 . 3 . 1897 ebd .)
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Wir fassen unsere Ergebnisse zusammen in

Satz 85 . 1 : Die quadratische Gleichung ax 2 + bx + c = 0 mit a 4= 0 hat

— b± ]/b 2 — 4ac
für D > 0 die Lösungen x 12 =

b
für D = 0 die Lösung x = — —

2a
für D < 0 keine Lösung .

Praktisches Vorgehen bei der Anwendung der Lösungsformel :
1 ) Treten in den Koeffizienten der Gleichung Nenner auf , so beseitigt man

diese durch Multiplikation der Gleichung mit dem Hauptnenner .
2) Ist der Koeffizient des quadratischen Glieds negativ , dann multipliziert

man die Gleichung mit — 1 .
3) Da D die entscheidende Rolle spielt , berechnet man nun D.

Ist D < 0 , so ist man fertig .

Ist D = 0 , so ist x = — ^ die einzige Lösung .2a ,—- b± ]/D
Ist D > 0 , so erhält man die Lösungen x 12 — - z- •

Beispiel 1 :
— 5x 2 + 8x + 21 = 0 | | • ( — 1 )
5x 2 — 8x — 21 = 0 Z> = ( — 8) 2 — 4 - 5 - ( — 21 ) =

= 64 + 420 =
= 484 ;

VD = 22 .
- ( - 8) ±22

Beispiel 2:
Iv2j . 10vJ . 10
6 X T Q A + 27

9x 2 + 12x + 4 = 0 D = 12 2 — 4 • 9 • 4 =
= 144 - 144 = 0 ;

Vd = o .
- 12 + 0

2 - 9
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Beispiel 3:
x 2 + x + 1 = 0 D = l 2 — 4 - 1 - 1 = 1 — 4 = — 3 .
Keine Lösung .

* *Zur Geschichte der Lösungsformel
Der Wunsch nach einer Lösungsformel für eine quadratische Gleichung ist so alt wie
die Gleichung selbst . Solange man aber nicht über eine algebraische Formelsprache
verfügte , konnte man den Lösungsweg nur in Worten angeben . Anhand der Aufgabe
1 der Keilschrifttafel BM 13901 (20. Jh . v. Chr .) zeigen wir dir dieses Vorgehen . Wir
stellen links den babylonischen Text, rechts die moderne algebraische Form unter
Verwendung allgemeiner positiver Koeffizienten B und C dar .

Die Fläche und die Seite meines Quadrats habe
ich addiert , und | ist es .
1 , den Koeffizienten , nimmst du .

Die Hälfte von 1 brichst du ab , es ist j .

j und i, multiplizierst du , es ist

i zu | fügst du hinzu , es ist 1 .

1 hat als Quadratwurzel 1 .

j , das du mit sich multipliziert hast , von
1 subtrahierst du , es ist j ;

und das ist die Quadratseite .

Die gegebene Gleichung hat die Normalform x 2 + x + ( — f ) = 0 , d . h . , a = 1 ,b = 1 = B und c = — f = — C. Mit unserer Formel erhalten wir als positive Lösung

— b + Vb 2 — 4ac

tui
Abb . 86 . 1 Autographie der Aufgabe 1
der Keilschrifttafel BM 13901 ,
aufbewahrt im British Museum
zu London

- B + |/B +

2 - 1

also das Ergebnis der Babylonier .

B + 2

x 2 + x = |
1 = B
B _ 1
2

~
2

4 4
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Nun gab es lange Zeit keine Null und erst recht keine negativen Zahlen , sodass diese
auch nicht als Koeffizienten auftreten konnten . Daher gab es auch nicht eine quadrati¬
sche Gleichung , sondern 5 verschiedene Typen . Und für jeden Typ musste ein eigenes
Lösungsverfahren angegeben werden (siehe unten ) . Wir können fast sicher sein, dass
Diophant (um 250 n . Chr .) über all diese Verfahren verfügte , wenn wir auch keinen
Beleg dafür haben ; denn jedes Mal , wenn bei ihm eine quadratische Gleichung vor¬
kommt , gibt er die Lösung richtig an .
Seine Arithmetik soll 13 Bücher umfasst haben , von denen uns nur 6 auf Griechisch
überliefert wurden . Vor wenigen Jahren fand man eine um 900 angefertigte arabische
Übersetzung von 4 weiteren Büchern . In den nun bekannten 10 Büchern findet man
keine Theorie der quadratischen Gleichungen . Wir können nur hoffen , dass sich die
letzten 3 Bücher auch noch finden !
Durch die Einführung der negativen Zahlen und auch der Null als Koeffizienten war
es den Indern möglich , alle Gleichungen auf eine Standardform zu bringen und zu
lösen . So verlangt Brahmagupta ( 598 - nach 665 ) , jede quadratische Gleichung - in
unserer Schreibweise - auf die Form ax 2 + bx = d zu bringen und dann gemäß

x =
^- - zu lösen . Mit unserem c = — d ist dies fast schon unsere Lösungs -

2a
formel . Es fehlt nur noch das + . Wir müssen sogar annehmen , dass bereits sein Vor¬
gänger Aryabhata I (um 476- ?) auf diese Art quadratische Gleichungen löste (siehe
Aufgabe 101/27) .
Leider übernahmen die Araber von den Indern nicht die negativen Zahlen - ein algebrai¬
scher Rückschritt ! - , sodass es bei ihnen auch keine Standardform mit Lösungsformel
gibt . Einen Überblick über alle möglichen Formen bringt al -Charizmi (um 780 - nach
847) gleich zu Beginn seines al-kitab al-muchtasarfi hisab al-dschabr wa- ’l-muqabala -
»Handbuch über das Rechnen durch Wiederherstellen und Ausgleichen « . Wir müssen
uns dabei erinnern (vgl . Abbildung 68 . 1 ) , dass er darin drei Begriffe verwendet :
- die Wurzel; darunter versteht man alles, was mit sich multipliziert werden kann ;
- das Vermögen ; darunter versteht man alles, was sich durch Multiplizieren der Wur¬

zel mit sich selbst ergibt ;
- die (reine) Zahl ; darunter versteht man alles, was ausgesprochen werden kann ohne

Beziehung zu Wurzel und Vermögen.
Und nun sagt al -Charizmi , dass zunächst je zwei von diesen dreien (oder Vielfache
davon ) untereinander gleich sein können , dass man aber auch jeweils zwei addieren und
der 3 . Art gleichsetzen könne . Dadurch entstehen 6 Typen von Gleichungen , die zur
Grundlage der abendländischen Gleichungslehre wurden . Deutet man »Wurzel« als
Unbekannte x , so wird »Vermögen« zu x2

, und es entstehen quadratische Gleichun¬
gen . * Mit positiven A , B und C können wir den arabischen Text modern umschreiben :
(Al ) Vermögen sind Wurzeln gleich. Ax 2 = Bx
(A2) Vermögen sind einer Zahl gleich. Ax 2 = C
(A3) Wurzeln sind einer Zahl gleich . Bx = C
(Bl ) Vermögen und Wurzeln sind einer Zahl gleich. Ax 2 + Bx = C
(B2 ) Vermögen und Zahl sind Wurzeln gleich . Ax 2 + C = Bx
(B3 ) Wurzeln und Zahl sind Vermögen gleich . Bx + C = Ax 2

Jede dieser 6 Typen führt al -Charizmi an einem Problem vor . Dabei bereiten die

* Natürlich kann man auch »Vermögen « als Unbekannte x wählen , was in vielen Aufgaben zweckmäßig ist .
Weil dies in den Übersetzungen aber fast nie getan wurde , entstanden viele Ungereimtheiten und Missver¬
ständnisse . Siehe z . B . Aufgabe 94/11 i .
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Abb . 88 . 1 Vorderseite der altbabylonischen Keilschrifttafel BM 13901 , ca.
12 cm x 20 cm groß
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Abb . 89 . 1 Autographie der in Abbildung 88 . 1 wiedergegebenen altbabylonischen
Keilschrifttafel BM 13901
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einfachen Gleichungen (Al ) bis (A3 ) keine Schwierigkeiten . (A3) ist sogar linear (Auf¬
gabe 78/15c) . (Al ) wird linear , da man durch x dividieren kann ; denn null ist keine
Lösung bei al -Charizmi (Aufgabe 79/4) . Und (A2 ) ist eine rein quadratische Glei¬
chung , die man durch Wurzelziehen lösen konnte (Aufgabe 78/15 a) .
Auch für die Typen (Bl ) bis (B3 ) , die übrigens bereits von Euklid (siehe Aufgaben
98/26 und 110/25) und Diophant behandelt worden waren , stellt erjeweils ein Problem
(Aufgabe 100/28) , beschreibt den Lösungsweg in Worten und beweist ihn geometrisch
( !) . Übersetzt man den Lösungsweg in unsere Formelsprache , so entstehen drei ver¬
schiedene Ausdrücke als Lösungsformeln , die sich nicht zu einer Formel zusammen¬
fassen lassen , da man eben keine negativen Zahlen kannte (Aufgabe 100/29) . Al -
Charizmi erkennt aber , dass (B2) im Gegensatz zu (Bl ) und (B3 ) unter gewissen Um¬
ständen zwei Lösungen haben kann . Er gibt - natürlich wieder in Worten - die Bedin¬
gung für zwei und für eine einzige Lösung an und sogar dafür , dass »die gestellte
Aufgabe nichtig ist« - wir sagen heute stattdessen , dass sie keine Lösung hat (Aufgabe
100/29) .
Auch die Babylonier kannten bereits diese 3 Typen von quadratischen Gleichungen ,
vermieden aber durch geschickte Umformungen fast immer den Typ (B2 ) , weil sie sich
nicht vorstellen konnten , dass eine Größe zwei Werte annehmen sollte . * Interessanter¬
weise stimmen viele Aufgaben al -Charizmis mit alten babylonischen Aufgaben und
mit Aufgaben Diophants , dessen Werke er nicht kannte , überein , sodass wir auf eine
alte mathematische Tradition schließen dürfen .
Das Werk al -Charizmis wirkte zurück nach Indien (Aufgabe 100/30) und wurde fort¬
gesetzt von arabischen Mathematikern , vor allem von dem in Bagdad wirkenden al -
Karadschi (10 ./11 . Jh .) . Ins Abendland kamen die quadratischen Gleichungen , als der
Italiener Plato von Tivoli (lebte zwischen 1134 und 1145 in Barcelona ) den liber
embadorum - »Buch der Inhalte « - des in Barcelona wirkenden jüdischen Mathemati¬
kers Abraham bar Hijja , genannt Savasorda ( | 1136 ) , aus dem Hebräischen ins La¬
teinische übersetzte . Bald darauf wurde auch das Werk al -Charizmis durch Gerhard
von Cremona ( 1114- 1187) und durch Robert von Chester (um 1145) ins Lateinische
übersetzt . Seitdem werden seine Aufgaben als Standardaufgaben von den Mathemati¬
kern des Mittelalters fast wörtlich übernommen . Sie finden sich auch in deutschen
Handschriftendes 15 . Jh . s . Dabei wird das arabische JL (mal ) = Vermögen lateinisch
mit census (seltener mit substantia ) übersetzt , das j (dschidr ) = Wurzel mit radix .
Census wird als Fremdwort ins Deutsche übernommen , für radix sagt man wurcz .
Mathematisch blieb aber alles beim Alten , nämlich bei den 6 Gleichungstypen . Erst
Gielis van den Hoecke schaffte 1537 einen gewissen Durchbruch , indem er auch
abzuziehende Glieder in den quadratischen Gleichungen zulässt . Genauso verfährt
1544 Michael Stifel (14877- 1567 ) , der sie damit alle auf eine der 3 Formen bringt :
x2 = Bx + C , x2 = — Bx + C , x2 = Bx — C . (B und C positiv )
Nur x 2 = — Bx — C gibt es nicht bei ihm , da er , obwohl er sonst schon mit negativen
Zahlen arbeitet , sich solche noch nicht als Lösung einer quadratischen Gleichung
vorstellen kann . Es gelingt ihm , einen einzigen Lösungsweg anzugeben , dem er den
Merknamen AMASIAS gibt , zusammengesetzt aus den Anfangsbuchstaben seiner
* Beispielsweise kann man die Aufgabe »10 habe ich in zwei Teile geteilt , ihr Produkt ist 21 « nach babylonischer

Art als Gleichungssystem mit zwei Unbekannten zu x + y = 10 a xy = 21 ansetzen . Führt man nur eine
Unbekannte ein , so erhält man aus x (10 - x) = 21 die quadratische Gleichung (B2) x 2 + 21 = lOx . Neu bei
al -Charizmi ist eben , dass er solche Aufgaben als quadratische behandelt . Dann hat er aber zwei Lösungen
für x , nämlich 3 und 7 , was für die Babylonier unverständlich ist . Sie bekommen auch keine zwei ! Denn sie
benützen die Identität 4xy = (x + y) 2 — (x —y)2 und rechnen (x —y) 2 = 100 — 4 • 21 = 16, was , da es nur
positive Zahlen gibt , sofort auf x —y = 4 führt . Mit x + y = 10 ergibt sich x = 7 und y — 3 .
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r Sequfturmodus ifte extrahend/.
Primo * ji . namcvö rabicam incipe, eutn'

cp bimibiatom,
loco etua ponc illtue , quob in loco fuo (fr t,bomc
confumata fit tota operatio .

Secüdo « rriuUtplica .bimibtam illub pofitum, quabrate«
Tertio . Jibbe vel Subtrabe iujcta |tgm abbitotu,aut (tgnt

fubttractorum,erigenttani .
Quarto ^ nucnicnbö eff rabtje quabröta,c )r furnrna abbttt

oute tu* »vcl ep fuBtracttome tu» relicto-
Quinto .^ bbc aut Subtrabe turtafigni auteremplt tui

eplgentiam .
Modum extrahendi hunc tibi, mi boneLeĉ or/ormaui , ita

ut memorix tenadter hzrere poflit adminiculo didionis hu*
ius A m a s i a s .

Abb . 91 . 1 Die AMASIAS -Merkregel aus Michael Stifels Arithmetica integra von
1544 (folium 240 v) - Übersetzung im Lösungsheft

lateinischen Merkregel aus der Arithmetica integra - »Die ganze Arithmetik « - von
1544 (Abbildung 91 . 1 ) . Etwas modernisiert lautet sie für x 2 = ±Bx + C :

1 . Anfänge mit der Anzahl der Wurzeln,

halbiere sie und lass sie stehn .

2 . Multipliziere diese Hälfte mit sich.

3 . Addiere oder Subtrahiere , wie es das Vorzeichen
des konstanten Glieds C fordert .

4 . Itzo die Quadratwurzel zieh.
2

+ c

5 . Addiere oder Subtrahiere das zur Seite gestellte
B
2 ’ wie es das Vorzeichen von B verlangt .

^ B
+ C + -“ ~

2

Geronimo Cardano (1501 - 1576 ) hingegen erkennt in seinem Artis magnae , sive de
regulis algebraicis Uber unus ( 1545 ) - »Das eine Buch über die Große Kunst oder die
algebraischen Regeln« - als Lösungen auch negative Zahlen an . * Simon Stevin (1548
bis 1620 ) schließlich lässt sowohl negative Koeffizienten wie auch negative Lösungen in
seiner L ’Arithmetique (1585) zu . Damit ist der Abschluss erreicht : Es gibt nur eine Form
der quadratischen Gleichung und nur eine Lösungsformel .
* Stifel nannte die negativen Zahlen numeri absurdi oder auch numeri ficti (eingebildete Zahlen ) . Diesen

Ausdruck benützt auch Cardano . Wenngleich dieser in Kapitel I seiner Ars magna von wahren und eingebil¬
deten Lösungen einer quadratischen Gleichung spricht {x 2 + 4x — 21 hat die wahre Lösung 3 und die einge¬
bildete —7) , so führt er bei den in Kapitel V vorgerechneten Beispielen immer nur die wahre , d . h . die positive
Lösung auf .
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Aufgaben
1 . a) 2x 2 — 5x — 3 = 0

c) 3x 2 — 7x — 6 = 0
e) 4x 2 — 12x + 11 = 0
g) 16x 2 — 48x + 36 = 0

b) 5x 2 + 16x — 16 = 0
d) 40x 2 - 89x + 40 = 0
f) 4x 2 — 12x + 5 = 0
h) 14x 2 + 45x — 14 = 0

2 . Aus der Arithmetica Integra (1544 ) des Michael Stifel (14877- 1567 ) :
a) x 2 + 6x = 72
c) x2 = 725 — 4x
e) x 2 + 8x — 12 = 72
g) x 2 — 2x + 24 = 6x + 72
i) x 2 = 8x + 38
k) x 2 = 12x - 18
m) x 2 = 3x + 72

b) x 2 = 6x + 72
d) x2 = x + 35156
f) x 2 + 3x + 18 = 72
h) x 2 = 12x — 36
j) x 2 = 8x — 38
1) x 2 = 12 - 3x
n) x 2 = 6x + 36

3 . Aus dem Artis magnae , sive de regulis algebraicis liber unus (1545 ) des
Geronimo Cardano (1501- 1576 ) :
a) x 2 + 4x = 21
d) x 2 = lOx + 144
g) 6 = lOx + x 2

j) x 2 = ]/l2x + 20
m) x 2 + 16 = lOx

4 . a) x 2 — 2x + 1 = 0
c) 4x 2 + 8x + 1 = 0
e) 5x 2 — 5x + 1 = 0

5 . a) 0,5x 2 — 0,5x — 1 = 0
c) ^x 2 — f x + 2 = 0
e) 2,25x 2 — x + ^ = 0
g) i * 2 - fx + ^ = 0

b) x 2 = 4x + 21
e) 144 = 10x + x 2
h) lOx = x 2 + 6
k) x 2 = Vl2x + 9

c)
f)
i)
1) x 2 = | x + ll

x + 12 = Ix
x 2 = lOx + 6
x 2 = l/l2x + 22

b) x 2 — 2x — 1 = 0
d) 6x 2 — 2x — 1 = 0
f) 12x 2 + 48x + 47 = 0
b) 0,5x 2 + 3,25x + 1,5 = 0
d) 0,1 x 2 + §§x — 1 = 0
f ) fx 2
h) 0,36x 2 + 0,4x - ^ = 0

ff x + 0,5 = 0

6 . Runde die erhaltenen Lösungen auf Tausendstel .
a) x 2 - 37 = 0 b) x 2 - 6x - 11 = 0
c) x 2 + llx + 8 = 0
e) 2 ]/5x + 2 = 0

g) V3x 2 — 6x + 4 ]/3 = 0

d) 16x 2 — 112x + 63 = 0
f) 2 (/ 3x 2 - 12x + 5 ]/3 = 0

3 1/2
2?2

X _ Th) ]/2x 2 - = 0

i) x 2 - (4 + 2l/2 ) x + 6 + 4 )/2 = 0 j) 2x 2 + x ( l - 3j/3 ) + 3 - ]/3 = 0

k) l/8x 2 - 4 )/3x + 21/2 = 0 1) x 2 + }/3x - ]/5x - ]/l5 = 0
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HIERONYMI CAR
DANI , PRÄSTANTISSIMI MATHE -

UATICI , PHILOSOPH r> AC MBDI C 1,

ART IS MAGNA
SIVE DE REGVLIS ALGEBRAICIS ,Lib.unus. Qui &totiusoperisdeArithmcria, quod

OP VS PERFBCTVM
mfcripGr,e/IinonlineDedmus,

^ 53

HAbesinhoclibro,ftudio(eLe<flor,R«gutasAlgebraicasrftali,delaCof
läuocant)noutsadinumüonfbus>acdemonßrailonibiisabAuthorefta

bcupletatas.utpropauculisanteauulgötrüis.famfeptiiagmraeualerim.Ne«
cpfolum, ubitmusnumerusalteri,autdiioimi.uerumeriam,ubiduoduobus,
auttresuniäqualesfiieiint,nodumexplicant. Huncaütlibnimi'deofeor*
fimedrreplacutt.uthocabftnilTfsimo, &planeinexhaüftotoäüsArithmeti
c» thefauroinlucemenico>&quafiintheatroquodamotnnibusadfpeftan
dumexpoGco,Leftoresincitaretur,utreliquosOpen?Perfedblibros,quiper
Tomosedentur,cantoauidiusampIeAancur,acitunorefafhdioperdifcanc-

Abb . 93 . 1 Titelseite der Ars magna des
Geronimo , auch Girolamo Cardano
(24 .9 . 1501 Pavia- 20 .9 . 1576 Rom ) , er¬
schienen 1545 in Nürnberg :
Des Hieronymus Cardanus , des außer¬
ordentlichsten Mathematikers , Philoso¬
phen und Arztes , eine Buch der Großen
Kunst oder über die algebraischen Re¬
geln, das auch der Reihe nach das zehnte
des gesamten Werks über die Arithmetik
ist , dem er den Titel VOLLKOMME¬
NES WERK gab . *

Die Umschrift um sein Bildnis lautet
TÖ |iSAAOV ÖTl YEVf | CTSTCtl £ iq TÖ CpEpTSpOV
xlösi

Halte das Zukünftige , das sich entwickeln
wird , für das Bessere!

7 . Gib vierstellige Näherungen für die Lösungen an , d . h . , berechne die Lö¬
sungen auf vier geltende Ziffern genau (führende Nullen zählen nicht !) .
a) x 2 - 7,9771 x + 7,0802 = 0 b) x 2 + 0,1010x - 0,2411 = 0

c) x 2 + Ttx — 7t 2 = 0 d) x 2 — l/3,14x + 1 — l/5 = 0
e) 3,14x 2 + 2,01x + 0,301 = 0 f) 1509x 2 + 1998x - 7487 = 0

g) 1,23 • 104x 2 - 2,34 • 10 5 x - 1 = 0
3

h) ]/2x 2 + (2 - 2V2 ) x -j— = - — 2 = 0
1/2

a) (x + 5) (2x — 7) = 9
c) (4x — l ) 2 + 2x = 0
e) ( llx - 7) 2 = (10 - 10x ) 2

g) (3x + 2) 2 — (2x + l ) (2x -

b) ( 1 - 3x ) (5x + 2) = 0
d) (2x + 3) (3 - 2x ) + 6x + 1 = 0
f) 4x 2 — x (5 + 3x ) = (6 — 2x ) 2 — 36

l ) + x = ll

* Text unter dem Bildnis :
Du findest in diesem Buch , lernbegieriger Leser , die algebraischen Regeln (die Italiener nennen sie die der
Coß ) , die vom Verfasser durch neue Hinzuerfindungen und Beweise so bereichert wurden , dass an Stelle der
recht wenigen vorher allgemein geläufigen schon siebzig herausgekommen sind . Und sie erklären nicht nur
das Problem , bei dem eine Zahl einer zweiten oder zwei einer , sondern auch das , bei dem zwei zweien oder drei
einer gleich gewesen sind . - Es erschien aber angebracht , dieses Buch deshalb gesondert herauszugeben ,
damit , wenn dieser sehr versteckte und völlig ungehobene Schatz der ganzen Arithmetik ans Licht gebracht
und wie in einem Theater allen zum Anschauen vor Augen geführt wird , die Leser angespornt werden , die
übrigen Bücher des »Vollkommenen Werks « , die bandweise erscheinen werden , umso begieriger aufzuneh¬
men und mit geringerem Widerwillen durchzuarbeiten .
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h) (3 + 5x) 2 - (3x - 2) 2 - (5 - 2x) (5 + 2x ) = 0
i) Aus dem liber abaci (1202 ) des Leonardo von Pisa (um 1170 bis nach

1240) : ( l + fx ) ( l + fx ) = 73

• 9 . a) (4x + l ) (6x — 5) (5x + 2) = (3x + 4) (10x — 17) (4x + 3) — 246
b) (8x - 7) (9x - 16) (7x - 6) = (14x - 13) (12x - ll ) (3x - 5) - 5
c) x (x — 2) (x + 5) + (x — 3) (x — 2) (8 — 3x) = 2x 2 (3 — x) + 208
d) (x — 4) 3 + (x + l ) 3 = (x — l ) (x — 2) (2x + 3) + 61
e) (2x + 3) 3 + (4x - 3) 3 = (2x + l ) (4x + 3) (9x - 25) + 853
f) (3x - 4) 3 - (6x - 7) 3 = (9x + 6) (7x - 12) (7 - 3x) + 620
g) (5x — 9) 3 — (7x — 5) 3 = 4x (14x — 25x 2) — 2x (59x 2 — 45)

6 18
10 . a) x H— = 5 b) x - = 3

x

16
d) 9x H- = 86= 8c) 3x —

x

4
6x + 1

= 5
2x + 5 4x — 4 3x — 4,5

2x — 7
1 7

+ - = - — h) 1 +
x — 12 4x + 12 2x — 6

5x + 1 5x — 8
3 7 5— x + x- 7 = x6x — 2 3x + 1 2

k) Aus dem liber abaci (1202 )
des Leonardo von Pisa :

1) Aus dem Codex latinus
monacensis 14908 (um 1460 ) :

60 „ 20— x = 5 + — 15 17
— + -

x + 2 x

11 . Zur Vertiefung rechnet al -Charizmi in seinem al-kitab al-muchtasar fi
hisab al -dschabr wa - ’l-muqabala u . a . die folgenden Aufgaben vor . Löse die
in moderner Schreibweise wiedergegebenen Gleichungen . Warum sind
nicht alle von dir gefundenen Lösungen auch Lösungen bei al -Charizmi ?
a) (10 — x ) 2 — x 2 = 40 b) (10 — x) 2 + x 2 + (10 — x) — x = 54

10 — x
10 — x

d) -
2 (10 - x)

+ 5x = 50

x (10 - x) cle) (10 — x ) 2 = 81x
10 - 2x
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g) (x - (ix + 3 )) 2 = x

. 12 . a)

c )

e )

g)

SO

7
x + 5 x — 6 x — 1

3 4 6
x — 2 X 1 LO

1 1

6 5 18
3x — 4 4x — 3 2x + 5

18 14 19
2x + 1 3x H- 2 4x -j- 3

8x + 7

h) = 2x7
1 + x

1 1
i)* (x — ix — jx — 4) 2 = x + 12 j) -

x + 1

5 6
b) - 7 +

d)

x — 4 x — 3 x — 6

7 9 40
+

x — 3 x + 5 x + 1

11 18
0 -- 7 +

26

h)

4x — 1 Ix — 3 3x + 4

7 26 57
+

+
lOx - 1

2x — 3 3x — 2 4x — 1

7x + 2
6x 2 — 13x — 5 3 x 2 4- 10x + 3 2x 2 + x — 15

x + 3 x — 1 x — 1
»13 . a) - -—I- —7 — - 7 + 1

x — 3 x + 4 x — 4

„ x + 5 x + 1 5
c) 7 3 x = rx — 3 x — 2 x — 4

x + 11 x + 13
b) — ^ +

x + 2 x + 3 x — 5 + 2

+ 2 x + 5 x + 7 x + 2
d) — 77 + — 77 = - + 1

x + 2 x + 3 x

• 14 . a) x 2 + 4ax + 3 a 2 = 0 b) m 2 x 2 — 5 mnx + 4n 2 = 0 , m + 0
c) x 2 + (p — q) x — pq = 0 d) x 2 + (1 — 2a 2) x — 2a 1 = 0
e) 4« 2x 2 — 4 (« 2 + uv) x + (u + v) 2 = 0 , u + 0

Sf) 2c2 x 1 — 2c 2 x — cdx — 3cd — 6dz = 0 , c + 0
5g ) 4x 2 — 4 (r + ä) x + r 2 + 2« — 1 = 0
Sh) x 2 + ax — 2öx — lab — 2 (a + 26 ) — 4 = 0
Si) (x + 2a) (x + 6 ) (x - a + b ) = (x - 6 ) 3 + b (x - a - b ) 2 + a (66x - a 2)
Sj ) (x + a) 3 — (x — a) 3 = a (2x + a) (2x — b) + 2a 3 + 5a 2 6 + 4a6 2

* Der Text al -Charizmis lautet : »Ein Vermögen , du nimmst ein Drittel davon weg und ein Viertel und 4
Dirhem [siehe Fußnote auf Seite 67] . Dann multiplizierst du den Rest mit sich selbst und das Vermögen ist
wiedergewonnen , vermehrt um 12 Dirhem .«
Setzt man Vermögen = x , so erhält man die obige Gleichung .
Cardano bringt diese Aufgabe als Quaestio I in Kapitel V seiner Ars magna (1545) und verweist auf
al -Charizmi als Autor : »Est numerus , ä cuius quadrato si abieceris | & £ ipsius quadrati , atque insuper 4 .
residuum autem in se duxeris , fiet productum aequale quadrato illius numeri , & etiam 12.«
Würde man numerus = x setzen , so erhielte man (x 2 — £ x 2 — Jx 2 — 4) 2 = x 2 + 12, eine unnötig schwere
Gleichung .
Diese Aufgabe ist ein schönes Beispiel dafür , dass mal = Vermögen nicht immer als Quadrat einer Zahl
gedeutet werden muss . Übrigens gibt sich Cardano mit der Lösung für das Quadrat der Zahl zufrieden , gibt
also die angeblich gesuchte Zahl gar nicht an .
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15 . Führe beim Lösen der folgenden Gleichungen die erforderlichen Fallun¬
terscheidungen durch !
a) x 2 + lax + 1 = 0 • b) x 2 — 4ax + 4a = 0

Sc) x 2 + abx + a 2 b = 0 d) x 2 + (2a + 4b) x + 5a 2 + 5b 2 = 0
. , „ 1 — me) mx — 2x - — = 0

„ x + a x
g) - +

m
■2a

x — a x + a
— 2 -— Z 4

• f) ax 2 +

1
- h)

ax 1
a + 2 a 2 — 4

1 2a

= 2x 2 + x

+
ax + b ax — b a 2 — b 2

16 . Wie muss man bei den folgenden Gleichungen k wählen um die angegebe¬
ne Zahl von Lösungen zu erhalten ?
a) 2x 2 + 6x + k = 0
b) 3x 2 + kx + 21 = 0
c) 6x 2 — 5 kx — k 2 = 0
d) x 2 — kx + 4 = 0
e) 2x 2 + kx — 4k 2x — 2k 3 = 0
f) x 2 — k (2k + 0,5)x — k 2 — 0

2 Lösungen
keine Lösung
1 Lösung
2 Lösungen
1 Lösung
1 Lösung

17 . a) Beweise:
1) Die Gleichung x 2 + px + q = 0 hat im Falle q < 0 stets zwei ver¬

schiedene Lösungen .
2) Die Gleichung ax 2 + bx + c — 0 besitzt , falls a und c entgegenge¬

setzte Vorzeichen haben , stets zwei verschiedene Lösungen .
b) Gilt von diesen Aussagen auch die Umkehrung ?

18 . Die Multiplikation einer Gleichung mit einem Faktor d =f= 0 stellt be¬
kanntlich eine Äquivalenzumformung dar . Zeige für den Fall der quadra¬
tischen Gleichung mit Hilfe der Lösungsformel , dass dabei die Lösungen
tatsächlich gleich bleiben .

19 . Wähle in den folgenden Gleichungen k so , dass die Differenz der Lösun -
gen den angegebenen Wert d hat .
a) 2x 2 — 5x + k = 0 , d = 1,5
b) 6x 2 + 13x + k = 0, d = i
c) x 2 + kx — 11 = 0 , d = 12
d) 9x 2 + k 2x + 2 = 0 , II
e) kx 2 + 15x + 12 = 0 , d = 3
f) kx 2 — 24x — 1 = 0 , d = 1,04

20 . Für welche Werte von k haben die folgenden Gleichungen ganzzahlige
Lösungen ?
a) x 2 + 2x + k 2 = 0
b) kx 2 — 20x + 15 = 0 , keN
c) k (x 2 + lOx) + 48 = 0 , k e Z
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21 . In der Gleichung x 2 — 8x + « = 0 soll die natürliche Zahl n so gewählt
werden , dass eine durch 3 teilbare ganzzahlige Lösung auftritt . Wie viele
Möglichkeiten gibt es?

22 . a) Begründe: Hat die quadratische Gleichung ax 2 + bx + c = 0 mit ra¬
tionalen Koeffizienten die irrationale Lösung r + s ]ft , wobei r und s
rational sind , dann hat sie auch die Lösung r — s ]/t .

b) Eine quadratische Gleichung mit rationalen Koeffizienten habe die

Lösung 3 — 2l/l7 . Wie lautet ihre Normalform ?
c) Die Gleichung 2x 2 — Ix + c = 0 , c rational, soll eine Lösung mit dem

irrationalen Bestandteil 31/5 haben . Bestimme c .
23 . Gilt der Satz aus Aufgabe 22 . a) auch für rationale Lösungen? Bearbeite

dazu :
a) Bestätige, dass 1 + l/4 Lösung der Gleichung x 2 — 7x + 12 = 0 ist . Ist

dann auch 1 — ]/4 Lösung ?

b) Bestätige , dass 3,5 + V\ Lösung der Gleichung x 2 — 7x + 12 = 0 ist .
Ist auch 3,5 — V\ Lösung ?

24 . Im BritischenMuseum zu London wird unter der Signatur BM 13901 eine
der ältesten babylonischen Keilschrifttafeln (ca . 1900 v . Chr .) aufbewahrt .
Sie enthält 24 Aufgaben , die auf quadratische Gleichungen mit einer
(Nr . 1 - 7,16 und 23) , mit zwei oder mehr Unbekannten führen . Offensicht¬
lich handelt es sich bei dieser Tafel um Übungsmaterial für den Mathema¬
tikunterricht ; denn die Aufgaben sind alle vorgerechnet (siehe Seite 86) .
Bestimmt wurde bei den folgenden Aufgaben jeweils die Seite eines Qua¬
drats . Suche sie !

1 ) Die Fläche und die Seite meines Quadrats habe ich addiert , und J ist
es . *

2) Die Seite meines Quadrats von der Fläche habe ich subtrahiert, und
870 ist es .

3) Ein Drittel der Fläche habe ich abgezogen , ein Drittel der Seite meines
Quadrats habe ich zur Fläche hinzugefügt , und §§ ist es .

4) Ein Drittel der Fläche habe ich subtrahiert, und die Fläche und die
Seite meines Quadrats habe ich addiert , und 286f ist es .

5) Die Fläche und die Seite meines Quadrats und den dritten Teil der
Seite meines Quadrats habe ich addiert , und §§ ist es .

6) Die Fläche und zweimal den dritten Teil der Seite meines Quadrats
habe ich addiert , und §§ ist es .

7) Elf Flächen und sieben Seiten meines Quadrats habe ich addiert , und
6| ist es .

* Natürlich kann man Flächen und Seiten nicht addieren . Die Babylonier benützen zwar noch die geometri¬
schen Ausdrücke , meinen damit aber immer nur die Maßzahlen der Fläche und der Seite .
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16) Ein Drittel der Seite meines Quadrats von der Fläche habe ich abgezo¬
gen , und Y2 ist es .

23) Eine Fläche . Die vier Seiten und die Fläche habe ich addiert , und ff ist
es .

25. Aus dem Buch IX des Chiu Chang Suan Shu (2 . Jh . v . Chr .) :
a) Aufgabe 12 : Jetzt habe man eine Tür , deren Flöhe und Breite man

nicht kennt . Beide sind kürzer als die unbekannte Länge einer Bambus¬
stange . Hält man diese horizontal , dann kommt man nicht hindurch ;
denn 4 Fuß ist sie zu lang . Hält man sie vertikal , dann kommt man um
2 Fuß nicht hindurch . Hält man sie aber schräg , dann kommt man
gerade hindurch . Frage : Wie groß sind Höhe , Breite und Diagonale ?
[ 1 Fuß « 23 cm]

b) Aufgabe 20: Jetzt hat man eine Stadt mit quadratischem Grundriss.
Die Seitenlänge kennt man nicht . In der Mitte jeder Seite ist ein offenes
Tor . Geht man aus dem Nordtor 20 Schritt hinaus , dann kommt man
an einen Baum . Geht man aus dem Südtor 14 Schritt hinaus , biegt
ab und geht dann nach Westen 1775 Schritt , dann erblickt man von
dort den Baum . Frage : Wie groß ist die Quadratseite der Stadt ?
[ 1 Schritt = 6Fuß « lim ]

26 . a) Euklid (um 300 v . Chr .) behandelt in
Buch II , Satz 11 seiner Elemente fol¬
gendes Problem : Eine gegebene Stre¬
cke so zu teilen , dass das Rechteck aus
der ganzen Strecke und dem einen Ab¬
schnitt gleich ist dem Quadrat über
dem anderen Abschnitt .
1 ) Berechne die Länge x desjenigen

Teils der Strecke a , über dem das
Quadrat errichtet wird . *

2) Zeige , dass stets x > \ a ist .
b) Zeige durch Berechnen von AD = x,

dass die von Euklid angegebene Kon¬
struktion richtig ist (Abbildung 98 . 1 ) .

c) Die stetige Teilung oder der goldene
Schnitt . Euklid nennt in Buch VI (De¬
finition 3) seiner Elemente eine Strecke
stetig geteilt , wenn sich die ganze Stre¬
cke zum größeren Abschnitt genauso
verhält wie der größere Abschnitt zum
kleineren . Zeige, dass die Aufgabe , eine
Strecke a stetig zu teilen , auf dieselbe

T Q- X

Abb . 98 . 1 T teilt [AB] so , daß
x 2 = a {a — x) .
k(C; CB) liefert D , k (A ; ÄD )
liefert T.

* Die quadratische Gleichung für x ist vom Typ (Bl ) . (Siehe Seite 87)
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Gleichung führt wie die , mit der das Problem von Euklids Satz II/11
aus Aufgabe a gelöst wird . *

d) Die stetige Teilung hat folgende interessante Eigenschaft: Trägt man
den kleineren Abschnitt auf dem größeren Abschnitt ab , so wird dieser
wieder nach dem goldenen Schnitt geteilt , wobei der frühere kleinere
Abschnitt die Rolle des größeren Abschnitts übernimmt . Man kann so
immer weiter fortfahren . Beweise die Behauptung .

* Wenn für 3 Größen a , b , c bzw . für 4 Größen a , b, c , d usw . zutrifft , dass a : b = b : c bzw . a : b = b : c =
= c : d usw . gilt , dann sagten Aristoteles (384 - 322 v . Chr .) und auch Euklid z . B . in Buch VIII seiner
Elemente , es bestehe eine aovexVQ dvaAoyia (syneches analogia ) , eine zusammenhängende ,fortlaufende , bestän¬
dige Verhältnisgleichung . Wörtlich übersetzte dies ins Lateinische Boethius (um 480- 524/5 ) mit proportiona -
litas continua , ins Deutsche der Bamberger Rechenmeister Wolffgang Schmid 1539 in seinem Das erst buch
der Geometria mit ein stäte unzertrente aufeinander volgendeproportz . Der Augsburger Wilhelm Holtzmann
(1532- 1576) , der seinen Namen zu Xylander gräzisierte , sprach 1562 in seiner Euklidübersetzung (Buch V,
Definition 10) von einer stetigen Proportion .
Offensichtlich stehen nach Euklids Definition 3 von Buch VI die ganze Strecke , der größere und der kleinere
Abschnitt in stetiger Proportion zueinander . Es nimmt daher wunder , dass Euklid für diese Teilung einer
Strecke nicht den oben angegebenen Fachausdruck benützte ; stattdessen sagt er , eine Strecke ö.kqov Kai
peoov Xöyov xEfie.iv (akron kai meson lögon temeln ) , was unter Umstellung der Adjektiva mit media et extrema
ratione secare im Mittelalter latinisiert und mit nach dem äußeren und mittleren Verhältnis schneiden in die
deutschen Lehrbücher des 18 . Jh .s einging . Immerhin nennt Xylander die Strecke schon recht kurz Pro -
portzlich zertailt . Erst Johann Friedrich Lorenz übersetzt 1781 Euklids Wendung mit nach stetiger Propor¬
tion geschnitten . Wann daraus die Kurzform stetig geteilt wurde , konnten wir nicht ermitteln .
Man darf annehmen , dass bereits die Pythagoreer Kenntnis von dieser Teilung hatten , die ein unent¬
behrliches Hilfsmittel zur Konstruktion der regulären Körper war . Luca Pacioli (um 1445- 1517) be¬
schäftigte sich mit diesen Körpern und gab wegen
der Wichtigkeit dieser Teilung seiner 1498 verfass¬
ten und 1509 gedruckten diesbezüglichen Schrift ,
für die sein Freund Leonardo da Vinci (1452 bis
1519) die Zeichnungen anfertigte , den Titel Divina
Proportione - »Göttliches Verhältnis « . Dieser Titel
mag zur späteren Mystifizierung beigetragen ha¬
ben . Pacioli selbst gibt fünf Gründe an , warum er
dieses Verhältnis göttlich nennt . Einer davon ist ,
dass es sich genauso wenig durch rationale Größen
ausdrücken läßt wie Gott durch Wörter . Ein ande¬
rer nimmt Bezug auf Platon (438 - 348 v . Chr .) , der
in Timaios (55c) das Dodekaeder , das sich ja ohne
dieses Verhältnis nicht konstruieren lässt , dem
Äther , der quinta essentia , d . h . in christlicher
Sicht der göttlichen Kraft zuordnet . Und wie Pa¬
cioli sieht auch 1569 der französische Mathemati¬
ker , Humanist und Philosoph Petrus Ramus
(1515- 1572) die bei dieser Teilung auftretenden 3
Teile als Sinnbild der Dreifaltigkeit , da sie eine »ge¬
einte Dreiheit und eine dreiartige Einheit « bilden .
Johannes Kepler (1571- 1630) spricht in einem
Brief vom 12. 5 . 1608 mit Hochachtung von dieser
proportio divina . Er sieht darin eine Idee des Schöp¬
fers , die er wegen der in Aufgabe d angesproche¬
nen Eigenschaft selbst für ein Sinnbild des Ewigen
hält . Die Teilung nennt er sectioproportionalis . Der
Ausdruck sectio divina , d . h . göttlicher Schnitt ,
stammt nicht von ihm , wie oft behauptet wird . 1619
schreibt er jedoch in seiner Harmonice mundi -

um 1850

»Weltharmonik « - , dass »die heutigen [Mathema - jffr fr LS
tiker ] sowohl den Schnitt wie auch die Proportion
göttlich nennen wegen ihrer wunderbaren Natur
und ihrer vielfältigen Besonderheiten « . Kepler Abb . 99 . 1 Martin OHM

sagt uns aber nicht , wer diesen Ausdruck geprägt ( 6 . 5 . 1792 Erlangen — 1 .4 . 1872 Berlin )
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27 . Der Inder Aryabhata I (um 476- ? n . Chr .) stellt in Vers 25 des Ganita -
pada - »Abschnitt über die Rechenkunst « - seines Werks Aryabhatiya die
folgende Aufgabe : Eine Summe A ist für einen Monat ausgeliehen und
erbringt dabei den Zins x . Dieser wird anschließend zum gleichen Zinsfuß
p für t Monate ausgeliehen . Der gesamte Zinsertrag hat den Wert B.
a) Wie groß ist der Zins xl Hinweis : Drücke p durch A und x aus .
b) Welchen Wert erhält man für x , wenn man die von einem späteren

Kommentator hinzugefügten Werte A = 100 , t = 16 und B = 16 ein¬
setzt?

28 . Al -Charizmi behandelt als Beispiele für die Gleichungstypen (Bl ) bis
(B3) (siehe Seite 87) die folgenden Probleme :
a) 4 . Problem : Ich habe | einer Sache , vermehrt um 1 Dirhem , mit j der

Sache , vermehrt um 1 Dirhem , multipliziert . Das Produkt ist 20 Dir¬
hem . Wie groß ist die Sache?

b) 5 . Problem : Ich habe 10 in zwei Teile geteilt, dann jeden Teil mit sich
multipliziert . Nachdem ich die entstandenen Produkte addiert hatte ,
ergaben sich 58 Dirhem . Wie groß sind die Teile?

c) 6 . Problem : Ich habe ^ einer Sache mit \ der Sache multipliziert , das
Produkt ist gleich der Sache und 24 Dirhem dazu . Wie groß ist die
Sache?

29 . Für die Normalform x 2 + px + q = 0 wird als Sonderfall von Satz 85 . 1

die Lösungsformel x 12 = — ~ +
richtig ist . *

— ) — q angegeben . Zeige , dass sie

30 . Aus dem Bidscha-ganita - »Samen der Rechenkunst « - des indischen
Mathematikers und Astronomen Bhaskara II (1115 - nach 1178) :

hat . Ebenso offen bleibt diese Frage bei Christian von Wolff (1679- 1754) , der die Bildung sectio divina in
seinen Anfangsgründen Aller Mathematischen Wissenschaften von 1710 (Band IV, Anmerkung 155) wie folgt
erklärt : »Man pfleget es auch divinam sectionem zu nennen/weil (wie aus dem Euclide zu sehen ) man viel aus
dieser Section demonstriret hat .« Im 18 . Jh . ist sectio divina dann zum stehenden Fachausdruck geworden .
1835 schreibt schließlich Martin Ohm (1792- 1872) in der 2 . Auflage seiner Die reine Elementar-Mathematik
recht vage : »Diese Zerteilung [ . . . ] nennt man wohl auch den goldenen Schnitt .« Wer ist »man «? Vielleicht
vermischten sich bei Ohm sectio divina mit regula aurea , wie die Regel vom Dreisatz früher genannt wurde .
Aber schon 1839 findet sich in Johann Friedrich Krolls Grundriß der Mathematik für Gymnasien die Latini -
sierung »sectio divina oder aurea « . Von da ab ist diese Wortschöpfung nicht mehr aufzuhalten .
Die Vorstellung , dass der goldene Schnitt ein in der ganzen Natur waltendes Ordnungsprinzip sei, demzufolge
zwei in einem derartigen Verhältnis stehende Teile ein besonders wohlgefälliges Ganzes ergäben , setzte erst
1854 Adolf Zeising (24 . 9 . 1810 BaIlenstedt - 27 . 4 . 1876 München ), ein anhaitischer Gymnasialprofessor , in
die Welt , und zwar in seinem Werk Neue Lehre von den Proportionen des menschlichen Körpers , aus einem
bisher unbekannt gebliebenen , die ganze Natur und Kunst durchdringenden morphologischen Grundgesetze
entwickelt . Es gibt nämlich in der gesamten Antike bis herauf ins 19 . Jh . keine einzige Quelle , die der stetigen
Teilung irgendeine ästhetische Bedeutung zuerkennen würde .

* Da al -Charizmi immer A = 1 setzte , kannst dü mit Hilfe dieser Formel die Lösungsformeln angeben , die er
- natürlich in Worten - für die drei Gleichungstypen (Bl ) bis (B3) aufstellte , ebenso seine Bedingung dafür ,
dass (B2 ) genau eine bzw . keine Lösung hat .
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a) § 139 : Der achte Teil einer Herde Alfen , quadriert, sprang lustig in
einem Walde herum , die 12 restlichen waren auf einem Hügel zu sehen ,
wo sie vergnügt schnatterten . Wie viele waren es im Ganzen ?

b) § 140 : Der fünfte Teil einer Herde weniger drei , quadriert, ging in eine
Höhle ; ein Affe war noch zu sehen . Wie viele waren es? - Warum ver¬
wirft Bhäskara II eine Lösung ?

31 . Aus Kapitel V der Ars magna (1545 ) des Geronimo Cardano (1501 bis
1576 ) :
a) Aufgabe II: Es waren einmal zwei Heerführer, von denen jeder 48 Du¬

katen an seine Soldaten austeilte . Einer hatte 2 Soldaten mehr als der
andere . Der , der weniger Soldaten hatte , gab jedem seiner Soldaten 4
Dukaten mehr , als der andere seinen Soldaten gab . Wie viele Soldaten
hatte jeder ?

b) Aufgabe III: Zwei Vereine , von denen einer 3 Mitglieder mehr als der
andere hatte , verteilten gleich viele Goldstücke an ihre Mitglieder ,
nämlich 93 und dazu noch so viele, wie beide Vereine Mitglieder hatten .
Auf jedes Mitglied des kleineren Vereins entfielen 6 Goldstücke mehr
als auf jedes Mitglied des größeren Vereins . Wie viele Mitglieder hatte
jeder Verein?

Die Aufgaben 32 bis 39 stammen aus
der Vollständigen Anleitung zur Al¬
gebra von Leonhard Euler (1707 bis
1783 ) aus dem Jahre 1770 . *

32 . Ich habe zwei Zahlen, die eine ist
um 6 größer als die andere , und
ihr Produkt macht 91 . Welches
sind diese Zahlen ?

33 . Suche eine Zahl, dass, wenn ich
von ihrem Quadrat 9 subtrahiere ,
so viel über 100 bleiben , als die
gesuchte Zahl weniger ist als 23 ;
welche Zahl ist es?

34 . Suche zwei Zahlen, von denen
eine doppelt so groß ist als die
andere , die so beschaffen sind ,
dass , wenn ich ihre Summe zu
ihrem Produkt addiere , 90 her¬
auskommt .

* Aufgaben I , II , IV, V, VII - X aus 2 . Teil, 1. Ab -
schnitt , Kapitel 6 . Siehe auch Seite 78 .

** ** *

Abb . 101 . 1 Leonhard Euler (15 . 4 . 1707
Basel- 18 . 9 . 1783 St . Petersburg ) - Kup¬
ferstich von Samuel Gottlob Kütner
(1747- 1828 ) nach dem Gemälde von
Joseph Friedrich August Darbes
(1747- 1810)
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35 . Jemand kauft ein Pferd für einige Reichstaler , verkauft es wieder für 119
Reichstaler und gewinnt daran so viel Prozent , wie das Pferd gekostet
hat . Nun ist die Frage , wie teuer dasselbe eingekauft worden ist .

36 . Jemand kauft einige Tücher für 180 Reichstaler . Wären der Tücher für
dasselbe Geld 3 Stück mehr gewesen , so wäre ihm das Stück um 3 Reichs¬
taler wohlfeiler gekommen . Wie viel Tücher sind es gewesen?

37 . Zwei Gesellschafter legen in ihr Geschäft zusammen 100 Reichstaler ein .
Der erste lässt sein Geld 3 Monate lang , der zweite aber 2 Monate lang
stehen , und es zieht jeder mit Kapital und Gewinn 99 Reichstaler ein .
Wie viel hat jeder eingelegt?

38 . Zwei Bäuerinnen tragen zusammen 100 Eier auf den Markt , die eine mehr
als die andere , und lösen doch beide gleich viel Geld . Nun sagt die erste zu
der andern : »Hätte ich deine Eier gehabt , so hätte ich 15 Kreuzer * gelöst .«
Darauf antwortete die andere : »Hätte ich deine Eier gehabt , so hätte ich
daraus 6| Kreuzer gelöst .« Wie viele hat jede gehabt ?

39. Zwei Schnittwarenhändler verkaufen etliche Ellen Zeug * *
, der zweite 3

Ellen mehr als der erste , und lösen zusammen 35 Reichstaler . Der erste
sagt zum zweiten : »Aus deinem Zeuge würde ich gelöst haben 24 Reichs¬
taler« , und es antwortet der zweite: »Ich aber hätte aus deinem 12j Reichs¬
taler gelöst .« Wie viele Ellen hat jeder gehabt ?

3.5 Der Satz von VlETA

Wendet man für D > 0 die Lösungsformel von Satz 85 . 1 auf x 2 + px + q = 0
an , dann ergibt sich

p + Vp 2 - 4q
2

- p - Vp 2 - 4q und x2 =

Addiert man bzw . multipliziert man diese Lösungen , dann gibt es eine Überra¬
schung :

p - 1/ p 2 ~ 4q — p + Vp 2 ~ 4q
2Xi + x2 = ~ P

( ~ P - Vp 2 - 4q)( ~ p + Vp 2 ~ 4q) p 2 - (p 2 - 4q) 4q
4 2

* Ursprünglich eine ab 1271 in Tirol geprägte Silbermünze mit einem charakteristischen Doppelkreuz , ab
dem 17 ./18 . Jh . auch als Kupfermünze weit verbreitet , 1871 aus dem Verkehr gezogen .** Zeug , aus dem althochdeutschen giziugi , bedeutet Stoff . Elle , altes Längenmaß , in Bayern 58,4 cm , in
Russland 71 cm .
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