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3 .7 Gleichungen, die sich auf quadratische Gleichungen
zurückführen lassen

Es gibt Gleichungen , die sich durch geeignete Umformungen auf quadratische
zurückführen lassen . Einige der wichtigsten Typen wollen wir im Folgenden
betrachten .

3 .7 . 1 Wurzelgleichungen

Wie in 2 .5 gezeigt , kann man Wurzelgleichungen durch das Verfahren » Isolie¬
ren - Quadrieren « lösen . In der Definitionsmenge der Wurzelgleichung ist
Quadrieren eine Äquivalenzumformung , wenn beide Seiten gleiches Vorzei¬
chen haben ; andernfalls muss man die Probe machen , weil womöglich die
Lösungsmenge vergrößert wurde . Kennt man die Definitionsmenge nicht ,
dann muss man die Probe auf alle Fälle machen .

Beispiel 1 :

5 ]/x - 1 - 2 ]/2x + 5 = l/3x - 5 ; D = [f ; + oo [

=> 25 (x — 1 ) + 4 (2x + 5) — 20l/ (x — l ) (2x + 5) = 3x — 5

- 20/2x 2 + 3x - 5 = - 30x

2l/2x 2 + 3x — 5 = 3x . Wir erkennen , x kann nicht negativ sein.
4 (2x 2 + 3x — 5) = 9x 2

x 2 — 12x + 20 = 0
x 1 = 10 ; x2 = 2

Probe :
x 1 = 10:
LS = 51/10 — 1 — 21/2 - 10 + 5 = 5 - 3 — 2 - 5
RS = 1/3 - 10 — 5 = 5
x2 = 2 :
LS = 5/2 - 1 - 21/2 - 2 + 5 = 5 - 1 — 2 - 3 =
RS = 1/3 ■2 - 5 = 1

Lösungsmenge L = { 10}

Beispiel 2 :
Aufgabe IX aus Kapitel V der Ars Magna (1545 ) des Geronimo Cardano
(1501 - 1576 ) :
Zerlege die Zahl 10 so in zwei Teile , dass der größere , vermindert um das
Doppelte seiner Wurzel , gleich ist dem kleineren , vermehrt um das Dop¬
pelte seiner Wurzel .

= 5
10 ist Lösung .

1 ) 2 ist keine
Lösung .



118 3 Die quadratische Gleichung

Bezeichnen wir den größeren Teil mit x , dann muss gelten :

x - 2Vx = (10 - x) + 2 ]/10 - x ; D = [0 ; 10]

]/l0 — x = (x — 5) — l/x

=> 10 — x = (x — 5) 2 — 2 (x — 5) ]/x + x

2 (x — 5) Vx = (x — 5) 2 + 2x — 10

(x — 5) (2 ]/x — (x — 5) — 2) = 0

(x — 5) (2 ]/x — x + 3 ) = 0

x = 5 v 2 ]fx = x — 3 . Für x ^ 3 gilt weiter :
4x = x 2 — 6x + 9
x 2 — lOx + 9 = 0
(x — 9) (x — 1 ) = 0
x = 9

Beachte : x — 1 kann nicht null werden , da x ^ 3 gilt
Probe :

jCi = 5 : LS = 5 - 21/5
RS = (10 - 5) + 21/10 - 5 = 5 + 2 ]/5 ,

x 2 = 9 : LS = 9 - 2l/9 = 9 - 6 = 3

RS = (10 - 9) + 21/10 - 9 = 1 + 2 = 3

Die gesuchte Zerlegung lautet also : 10 = 9 + 1 .

5 ist keine Lösung .

9 ist Lösung .

Beispiel 3:

Vä + x — Va — x = 2 l/a — b ; D = [0 ; ä] für a ^ 0 ; für a < 0 ist die Glei¬
chung unsinnig . Wegen a — b ^ 0 muss b ^ a sein . Für xeD sind beide
Seiten nicht negativ und wir ändern die Lösungsmenge beim Quadrieren
nicht :

a + x + a — x — 2 ]/a 2 — x 2 = A (a — b)
2b — a = 1/ a 2 — x 2

Für a > 2b gibt es keine Lösung . Für 0 5S b ^ a iS 2b erhält man durch
Quadrieren der letzten Gleichung (Äquivalenzumformung !):
4Z>2 + a 2 — Aab = a 2 — x 2
x 2 = Ab (a — b)
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Die rechte Seite ist unter unseren Voraussetzungen sicher nicht negativ ,
also ergibt sich

| x | = 2 Vb (a - b )

Wegen x e D ist x ^ 0 , und es gilt schließlich

x = 21/ b {a — b ) .
Einen Überblick über die betrachteten Fälle gibt der Lösungsbaum :

keine Lösung

keine Lösung

keine Lösung

Manchmal ist es von Vorteil , eine Wurzel durch eine neue Variable zu ersetzen
und die Gleichung mit der neuen Variablen zu lösen . Eine solche Ersetzung
heißt Substitution * .

Beispiel 4:

2x — 5Vx — 12 = 0 Substitution : u — ]fx
2 u 2 — 5u — 12 = 0

5 ± 1/25 + 96 5 + 1/121 5 + 11

M = 4 V w = — f .

Um x zu erhalten machen wir die Substitution rückgängig . Die letzte
Zeile liefert die beiden Gleichungen
Vx = 4 v Yx = - f .
Die zweite ist widersprüchlich , die erste liefert x = 16 .
Also : L = { 16}

substituere (lat .) = an die Stelle einer Person oder Sache setzen
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Beispiel 5:

x — 1 x + 1 5
/ " 1 / , ^ — 0 Substitution : « =—/ X + 1 ^ x - 1 2

Ix — 1
x + 1

1 5 „u -\- — 0
u 2

2 u 2 — 5u + 2 = 0

u = 5 ± 1/25 — 16 5 + 3

u = 2 v u = j

1 . Fall :
x — 1
X + 1

= 2 2 . Fall :
x - 1 _ 1
x + 1 2

x — 1 = 4x + 4 4x - 4 = x + 1
— 5 = 3x 3x = 5
- f = x x = f

Weil vor dem Quadrieren jeweils beide Seiten positiv waren , können wir
auf die Probe verzichten ; es gilt also L = {f ; —

Aufgaben
1 . a) j/ll - 5x = 3 - x b) ]/3x + 7 + x = 7

2 . a) ]/4x - 15 = 3 - x b) j/2x + 3 = x + 1

3 . a) l/2x + 9 + x + 3 = 2 ^ 2x + 9 b) 3 • l/3x + 1 - 2x = 6 - l/3x + 1

4 . a) l/4x + 3 - 3 = 3x - 2j/3 + 4x

b) 2j/l9 + 5x - 2x + 4 ]/5x + 19 = j/5x + 19 + 22

• b) ]/x 2 — 3x + 3 = 4x + 7

b) l/3x 2 — 16x + 3 = 3x — 2

b) V2x + l + 2 = 3 - 2l/x + 9

b) 2 — 3 ]/x + 2 = 2l/2x + 3 - 3
9 . a) ]/x 1 + Vlx - 1 = l/3x + 10 b) j/5x - 1 - 2 ]/3 - x = Vx - 1

5 . a) l/5x 2 + 2x + 6 = x + 4

6 . a) ]/l2x 2 + 20x + 3 = 4x + 2

7 . a) ]/2x + 1 + 2 = 2 ]/x + 9 — 3

8 . a) ]/3x + 4 + 1/5 - 4x = 4
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10 . a) Vx + 2 + 2 ]fx - l/l3x + 3 = 0 b) l/x - 1 + j/2x - 5 - 2l/2 - x = 0

11 . a) ]/x + 4 + ]/3x - 5 = 3 b) ]/ \/x - l5 + l - x = 4

12 . a) l/7,5 + x - l/5 + 4x = 2,5 b) ]/3 + ]/3 - 2x + x = 2

13 . a) j/2x + 5 + l/x 2 + 3x + 3 = 2 b) j/V3x 2 + 5x - 1 - 0,5x = 0,5

14 . a) )/x 2 + 2 + l/7 — 6x + x = 1

b) ]/4x 2 — x + 2 — 0,2 • V5x 2 + 8x + 12 = 2 — 2x

Führe bei den folgenden Aufgaben die notwendigen Fallunterscheidungen durch.

• 15 . a) Vax 2 + 2x + 1 = 2x — 1 b) ]/2x 2 + 2ax + a 2 = x + 2a

c) V5x 2 + ax + 3 = 2x d) V x 2 + 4x + a = 3x + 2

• 16 . a) ]/l + a + 2x + l/1 + a — 2x = 2 b) l/1 + a + 2x — ]/l + a — 2x = 2

• 17 . a) ]/x + a2 = x — a b) Vax + a =b) Vax + a = ax — a= x —

• 18 . a) 1/ x + a + Vx + b = V2x + a + b

b) l/3 a — 2b — x + l/3 a — 2b + x = ]/l2 a — 8b + 2x

• 19 . a) ]/x + Vx + a = ]/2x

• b) ]/Va 2 x 2 + abx + 1) 2 — ax = Vax + b

20 . Angeregt durch die Practica Arithmeticaeet Mensurandi singularis - »Ein¬
zigartige Handhabung der Arithmetik und des Messens « - des Geronimo
Cardano (1501 - 1576 ) aus dem Jahre 1539 stellte Michael Stifel ( 1487 ?
bis 1567 ) in seiner Arithmetica Integra - »Die ganze Arithmetik « - 1544
folgende Aufgabe :
Ein Spieler gewinnt am 1 . Tag so viel, wie er hatte , am 2 . Tag die Quadrat¬
wurzel aus dem Ganzen und dazu noch 2 Gulden , am 3 . Tag das Quadrat
dessen , was er am 2 . Tag hatte , sodass er schließlich 5550 Gulden besaß .
Wie viel hatte er anfangs ?

21 . Aufgabe IV aus Kapitel V der Ars Magna ( 1545 ) des Geronimo Cardano
(1501- 1576 ) :
Addiert man zu einer Zahl das Doppelte ihrer Wurzel und dazu die dop¬
pelte Wurzel dieser Summe , dann erhält man 15 . Wie heißt diese Zahl ?

*

*

22 . a) x - 2l/x + 1 = 0 b) x + 5 ]/x = 14 c) 3l/x = - 2 - x

Ix 2 + 2x 2 — x
Ix 2 + 2x2 — x

* In der Originalaufgabe von Cardano steht 10 statt 15 . Wer Mut hat , rechne die Aufgabe mit diesem Wert .



122 3 Die quadratische Gleichung

7
X "t" 1

+ 5
24 . a) 2

1 — x
+ 5 = 3

1 — x
b)

7 t
x

5

= 6

x + 1

25 . Aus dem über abaci (1202) des Leonardo von Pisa (um 1170 - nach 1240 ) :
a) x — (-j^ x + 4) = ]fx b) 3x + 4 ]/x 2 — 3x = 20

c) 3x + 4 ]fx 2 — 3x = x 2 + 4 d) x 2 = (/6xl/5x + lOx + 20

26 . Aus Lilavati - »Die Schöne « - von Bhaskara II (1115 - nach 1178 ) :
a) § 67 : Ardschuna , Prithas Sohn , im Kampf gereizt , schoss einen Köcher

Pfeile um Karna zu töten . Mit der Hälfte seiner Pfeile parierte er die
seines Gegners , mit dem Vierfachen der Wurzel seines Köcherinhalts
tötete er dessen Pferde , mit 6 Pfeilen Salya , und mit 3 Pfeilen zerstörte
er Schirm , Standarte und Bogen , mit einem schließlich trennte er den
Kopf seines Feindes vom Rumpf . Wie viele Pfeile ließ Ardschuna flie¬
gen ?

b) § 68 : Die Wurzel aus der Hälfte eines Bienenschwarms flog zu einem
Jasminbusch , § des Schwarms blieben im Stock . Ein Weibchen schließ¬
lich umschwirrte eine Lotosblume , in der ein Männchen gefangen saß ,
das vom Duft zur Nachtzeit angelockt worden war *

. Sag mir , wunder¬
schöne Frau , die Anzahl der Bienen !

c) § 69 : Eine Zahl , vermehrt um ihr Drittel und um das 18fache ihrer
Wurzel , ergibt 1200 . Wie heißt die Zahl ?

3 .7 .2 Die biquadratische Gleichung

Eine Gleichung der Form ax 4 + bx 2 + c = 0 mit a + 0 lässt sich
durch die Substitution u -= x 2 auf eine quadratische Gleichung der Form
au 2 + bu \ c = 0 zurückführen . Weil u 2 = (x 2) 2 ist , nennen wir und auch
andere Autoren eine solche Gleichung biquadratisch * * . Gleichungen dieser
Art lösten bereits die Babylonier im Zusammenhang mit Gleichungssystemen
(siehe 3 .8) . Die folgenden zwei Beispiele stammen aus Kapitel I der Ars magna
(1545 ) des Geronimo Cardano (1501- 1576 ) .

* Der Lotos öffnet sich nachts und schließt sich bei Tage .
** bis (lat .) = zweimal , auf doppelte Weise . - Bei Descartes (1596- 1650) findet man 1628/29 biquadratum

an Stelle von quadratumquadratum zur Bezeichnung der 4 . Potenz , bei Christian von Wolff (1679
bis 1754) in seinen Die Anfangsgründe Aller Mathematischen Wissenschaften 1710 den Ausdruck biquadrati¬
sche Aequation als Bezeichnung für eine allgemeine Gleichung 4 . Grades , also eine Gleichung der Form
ax x + bx 3 + cx 2 4- dx -f- e = 0, wie es auch heute noch bei manchen Autoren üblich ist . In der 2 . Auf¬
lage erfolgte dann die Eindeutschung biquadratische Gleichung .
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Beispiel 1 :

x4 + 12 = Ix 2 Substitution : u ■■= x 2

u 2 — lu + 12 = 0

w = i (7±l/T ) = i (7±l )
u = 3 v u = 4 .
Somit muss gelten
x 2 = 3 v x 2 = 4

| x | = l/3 v | x | = 2

x = — j/3 v x = l/3 vx = - 2vi = 2 .

Wir erhalten eine 4-elementige Lösungsmenge : { — 2 , — |/3 , l/3 , 2 } .

Beispiel 2:

x 4 + 3x 2 = 28 Substitution : u ■■= x 2

u 2 + 3u — 28 = 0

« = i ( — 3 ±1/121 ) = i ( — 3 ± 11)
u = — 7 v u = 4 .
Somit muss gelten
x 2 = — 7 v x 2 = 4
x 2 = — 7 v | x | = 2 .
Da die erste Gleichung widersprüchlich ist , erhalten wir eine 2-elemen -
tige Lösungsmenge , nämlich L = { } u { — 2 ; 2 } = { — 2 ; 2 } .

Mit einiger Übung kann man sich die Schreibarbeit der Substitution ersparen ,
wenn man gleich x 2 als neue Variable nimmt . Dann schreibt sich Beispiel 1 wie
folgt :

x 4 — 7x 2 + 12 = 0
(x 2) 2 — 7x 2 + 12 = 0

x 2 = i (7 + ]/l )
x 2 = 3 vx 2 = 4 , woraus man wie oben erhält

| x | = 1/3 v | x | = 2 , also L = { - 2, - l/3 , l/3 , 2 } .

Manchmal lassen sich auch Gleichungen höheren Grades durch eine geeignete
Substitution auf eine quadratische Gleichung zurückführen . Auch hierzu wie¬
der ein Beispiel von Geronimo Cardano , diesmal aus Kapitel VI seiner Ars
magna .
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Beispiel 3:
x 8 + x 4 = 12 Substitution : u — x4
u 2 + u — 12 = 0

u = H ~ 1 ± 1/49 ) = i ( — 1 ± 7)

u = — 4 v w = 3 .
Somit muss gelten
x 4 = — 4 v x 4 = 3 | | radizieren

x 2 = l/3 | | radizieren

| x | = |/i/3

X = — j/j/J V X = j/j/J .

Da x4 = - 4 eine widersprüchliche Gleichung ist , erhält man als Lö¬
sungsmenge { — l//3 , l/j/T } .

Aufgaben
1 . Aus der Arithmetica integra (1544) des Michael Stifel (14877- 1567 ) :

a) 2x 4 = 1450 - 8x 2 b) x 4 = 18x 2 + 648 c) x 4 - 4x 2 = 2205
d) (x 2 + 5) (x 2 - 5) = 2538 e) x 8 = 214651 701 - 20x 4
f) x 8 = 2000x 4 + 185076881 g) x 8 = 20000x 4 - 78461119

2 . Aus Kapitel I , YI und XXIV der Ars magna (1545) das Geronimo Carda -
no (1501 - 1576 ) :
a) x 4 + 12 = 7x 2 b) x 4 + 12 = 6x 2
d) x 4 + x 2 = 12 e) x4 + 2x 2 = 10

3 . a) x4 - 5x 2 + 4 = 0 b) x 4 - 4x 2 - 5 = 0
e) x 4 - 20x 2 = 125

c) x 4 = 2x 2 + 8

c) 4x 4 - 25x 2 + 36 = 0
f ) 12x4 — 81x 2 — 21 = 0

c) 2x 4 — llx 2 + 16 = 0

d) x 4 - 10x 2 + 9 = 0
4 . a) 3x 4 + 2x 2 + 1 = 0 b) 9x 4 + 64x 2 = - 7
5 . a) 2x 5 - 39x 3 - 245x = 0 b) 32x 4 - 82x 2 - 405 = 0
6 . Aus dem liber abaci (1202 ) des Leonardo von Pisa (um 1170 - nach 1240) :

(| x 2 + l ) (^x 2 + 2) = x 2 + 13

• 7 . a)
9x 4 — 325x 2 + 36

3x 2 + 17x — 6
b)

x 6 — 16x2

5x 4 - 19x 2 - 4

8 . a) Beweise: Wenn die drei Koeffizienten einer biquadratischenGleichung
dasselbe Vorzeichen haben , dann ist L = { } .

b) Ist der vorausgehende Satz über biquadratischeGleichungen umkehr¬
bar ? (Vgl . Aufgabe 2a und 4c .)
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* *3 .7 .3 Kubische Gleichungen
Eine Gleichung der Form ax 3 + bx 2 + cx + d = 0 mit a 4= 0 heißt kubische
Gleichung * oder Gleichung 3 . Grades . Wenn man eine Lösung einer kubischen
Gleichung schon kennt oder errät , dann lässt sich die kubische Gleichung auf
eine quadratische Gleichung zurückführen . Zum Nachweis folgen wir einem
Gedankengang , den Geronimo Cardano (1501- 1576 ) in Regel 6 von Kapitel
XXY seiner Ars magna 1545 anspricht und den Frangois Viete ( 1540 - 1603 ) in
seinem Tractatus de emendatione aequationum (erschienen 1615 ) erweitert .
Sei x0 eine Lösung der Gleichung ax 3 + bx 2 + cx + d = 0 , dann gilt
ax o + bxl + cx0 + d = 0 .
Dies verwenden wir nun um das auf der linken Seite der kubischen Gleichung
stehende Polynom 3 . Grades umzuformen :

ax 3 + bx 2 + cx + d =
= ax 3 + bx 2 + cx + d — 0 =
= ax 3 + bx 2 + cx + d — ax $ — bx % — cx0 — d —
= fl (x 3 — xl ) + b {x 2 — Xq ) + c (x — x0) .
Nun ist aber x 3 — Xq = (x — x0) (x 2 + xx 0 + Xq ) , sodass wir im zuletzt erhal¬
tenen Ausdruck x — x 0 ausklammern können . Wir erhalten

(x — x0) [fl (x 2 + xx 0 + Xq ) + b (x + x0) + c] =
= (x — x0) [ax 2 + (ax 0 + b) x + (öXq + bx 0) + c] =
= (x — x0) (Ax 2 + Bx + C) mit A — a

B ■■= ax 0 + b
C — AXg + bx 0 + c .

Man erkennt , wie man , ausgehend von a , schrittweise A , B und C aufbauen
kann :
A = a , B = Ax 0 + b , C = Bx 0 + c .
Wir halten das Ergebnis dieser Umformung fest in

Satz 125 . 1 : Ist x0 eine Lösung der kubischen Gleichung ax 3 + bx 2 +
+ cx + d = 0 , so lässt sich die linke Seite faktorisieren zu

ax 3 + bx2 + cx + d = (x — x0) ( 4̂x 2 + Bx + C)
mit A = fl , B = Ax 0 + b , C = Bx 0 + c .

* Eine Zahl der Form a 3 heißt bei Euklid (um 300 v . Chr .) Kußoq (kybos ) = Würfel , was wohl auf die Pytha -
goreer zurückgeht . Heron von Alexandria - von seinen Lebensdaten wissen wir nur , dass er eine Mondfins¬
ternis des Jahres 62 n . Chr . beschreibt - bezeichnet mit KÜßoq die 3 . Potenz . Bei Diophant (um 250 n . Chr .)
gewinnt Küßot; dann auch die Bedeutung »3 . Potenz der Unbekannten « , wofür die Araber <r ot5

"’
(kaaba )

sagen , was wieder nichts anderes als Würfel bedeutet . (So heißt heute noch das seit 703 unveränderte quader¬
förmige Gebäude [ 12 m x 10 m x 15 m] in Mekka , das Ziel der muslimischen Pilgerfahrten .) Als im 12. Jh .
die arabischen mathematischen Schriften ins Lateinische übertragen wurden , übersetzte man kaaba wortge¬
treu mit cubus . Im Mathematischen Lexicon von 1716 des Christian von Wolff (1679- 1754) erscheint der
Fachausdruck kubische Gleichung , der 1710 in den Anfangsgründen noch kubische Aequation lautete .
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Aus Satz 125 . 1 ergibt sich als wichtige
Folgerung : Eventuelle weitere Lösungen der kubischen Gleichung
ax 3 + hx2 + cx + d = 0 müssen Lösungen der quadratischen Gleichung
Ax2 + Bx + C = 0 sein.
Dazu

Beispiel 1 : 3x 3 — 7.x 2 — 23 .x + 30 = 0
Durch Probieren mit den Werten 0 , + 1 , ±2 usw . findet man , dass
die Zahl 2 eine Lösung ist . Also gilt A = 3 , .8 = 3 - 2 — 2 = 4 und C =
= 4 - 2 — 23 = — 15 . Eventuelle weitere Lösungen der Gleichung
3x 3 — 2x2 — 23x + 30 = 0 müssen also Lösungen der quadratischen
Gleichung 3x 2 + 4x — 15 = 0 sein . Wir erhalten
* = K - 4±l/T96 ) = £ ( — 4 + 14)
x = — 3vx = f .

Wer sich nicht die Ausdrücke für A , B und C merken will, erhält den quadrati¬
schen Faktor Ax 2 + Bx + C des kubischen Terms ax 3 + bx 2 + cx + d, indem
er letzteren durch x — x0 dividiert . Da der kubische Term ein Polynom und
auch x — x0 ein Polynom in x ist , nennt man eine solche Division Polynomdivi¬
sion . Wie sie praktisch abläuft , zeigen wir am Polynom von Beispiel 1 ; dabei ist
x0 = 2 .

Beispiel 2 : Die Polynomdivision
(3x3 - 2x 2 - 23x + 30) : (x - 2)
Wir beginnen mit der Division bei den Termen mit den höchsten Poten¬
zen von x , also mit 3x 3 : x = 3x 2 .
Das Ergebnis 3x 2 schreiben wir rechts vom Gleichheitszeichen als ersten
Summanden an und multiplizieren damit den Divisor x — 2 . Das erhalte¬
ne Produkt 3x 3 — 6x 2 ziehen wir vom Dividendenpolynom ab . Dieses
Verfahren setzen wir mit dem Restpolynom so lange fort , bis sich als Rest
null ergibt :

(3x 3 - 2x 2 - 23x + 30) : (x - 2) = 3x 2 + 4x - 15
— (3x 3 — 6x 2)

4x 2 — 23x + 30
— (4x 2 — 8x)

- 15x + 30
— ( — 15x + 30)

0

Beachte : Ergibt sich nicht 0 als Rest , so hast du entweder beim Probieren
einen Fehler gemacht und dein x0 ist gar keine Lösung , oder du hast
dich beim Dividieren verrechnet .
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Man komm t ohne Polynomdivision schneller zum quadratischen Faktor ,
wenn man vorher ein wenig kopfrechnet . Setzt man nämlich auf Grund der
obigen Überlegungen an
(3x 3 — 2x 2 — 23x + 30) = (x — 2) (Ax 2 + Bx + C)
und multipliziert in Gedanken aus , so erkennt man sofort , dass A = 3 und
C = — 15 sein müssen . Also kann man stattdessen gleich mit dem Ansatz
(3x 3 — 2x 2 — 23x + 30) = (x - 2) (3x 2 + Bx - 15)
beginnen . Vergleicht man die Koeffizienten der quadratischen Glieder auf
beiden Seiten - rechts muss man in Gedanken ausmultiplizieren - , so ergibt
sich — 2 = — 6 — 2 B , also B = 4 ,
und damit der quadratische Faktor wie oben zu 3x 2 + 4x — 15 .

Aufgaben
1 . Zur Polynomdivision

a) Fehlen bei den Polynomen Glieder , so rät Michael Stifel (1487 ?
bis 1567 ) in seiner Arithmetica Integra (1544) , die fehlenden Poten¬
zen mit dem Koeffizienten null zu versehen und sie im Polynom mit¬
zuführen , also die Division (x 3 + 1 ) : (x + 1 ) in der Form
(x 3 + 0x 2 + Ox + 1 ) : (x + 1 ) auszuführen . Mach es und verfahre
ebenso bei den folgenden Aufgaben .

b) (x 3 — 1 ) : (x — 1 ) c) (x 3 + 8 ) : (x + 2)
d) (8x 3 + 125) : (2x + 5) e) (16x4 - 81 ) : (2x - 3)

2 . Auf einer babylonischen Keilschrifttafel , deren einer Teil in London (BM
85200) und deren anderer in Berlin (VAT 6599) liegt , finden sich mehrere
kubische Gleichungen :
a) Aufgabe 5 : z 3 + z 2 = 252 b) Aufgabe 20 : z 3 + 7z 2 = 8

3 . Bei den Griechen findet sich die erste nicht geometrisch gelöste kubische
Gleichung bei Diophant (um 250 n . Chr .) in Buch VI seiner ÄgiSfirjuKärv
ßißMa bei der Behandlung des folgenden Problems (Nr . 17) :
Eine Quadratseite ist um 2 Längeneinheiten größer als die Kante eines
Würfels , dessen Volumenmaßzahl aber um 2 größer ist als die Flächen¬
maßzahl des Quadrats . Wie groß sind Quadratseite und Würfelkante ? -
Diophant bezeichnete die Würfelkantenlänge mit x — 1 . Verfahre ebenso !

4 . Bei Bhäskara II (1115 - nach 1178 ) findet sich im Bidscha -ganita (§ 137)
die Gleichung 12x + x 3 = 6x 2 + 35 .

5 . Christoff Rudolff (um 1500 Jauer/Schlesien - vor 1543 Wien ?) hat
1525 in seiner Behend und Hübsch Rechnung durch die kunstreichen regeln
Algebre so gemeinicklich die Coßgenennt werdeneinige kubische Gleichun¬
gen gelöst ohne den Lösungsweg anzugeben .
a) 63 + x 3 = 10x 2 b) 605 + \ x 2 = \ x 3 c) x 3 + 75x 2 + 1875x = 27250
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Zu den Aufgaben 6 bis 10 . Die größte Leistung auf dem Gebiet der kubischen
Gleichungen vollbrachte Geronimo Cardano (1501 - 1576 ) , der für sie eine
allgemeine Lösungsformel beweisen konnte (Näheres in Algebra 10) . Viele
Kapitel seiner Ars magna (1545) , der mit Ausna hm e von 8h die folgenden
Aufgaben entnommen sind , beschäftigen sich mit kubischen Gleichungen .
Wie damals üblich schreibt Cardano noch keine negativen Koeffizienten ,
sodass er den Lösungsgang für die dadurch verschiedenen möglichen Typen
vorführen muss . Cardano erkennt aber , dass eine , zwei oder drei Lösungen
auftreten können , wofür er auch Fallunterscheidungen angibt .
6 . a) x 3 + 6x = 20
7 . a) x 3 + 22\ x 2 = 98
8 . a) x 3 = 3x 2 + 20x + 6

c) x 3 + 21 x = 9x 2 + 5
e) x 3 + 6x 2 + x = 14
g) x 3 + 3x + 18 = 6x 2

b) x 3 + 16 = 12x c) x 3 = 19x + 30
b) x 3 + 48 = 10x 2 c) x 3 = 3x 2 + 16
b) x 3 + 6x 2 = 20x + 56
d) x 3 + 9 = 6x 2 + 24x
f) x 3 + 6x 2 + 12 = 31x
h) * 25 + 4x 2 + 2x 3 = 16x + 55

9 . a) x 6 + 3x 4 = 20 b) x 6 + 3x 4 + 10 = 15x2

10 . Bei den Gleichungen vom Typ x 3 = px + q und x 3 + q = px versagte ge¬
rade dann die von Cardano bewiesene Formel , wenn - wie wir heute
wissen - es 3 Lösungen gibt . Das ist der Fall , wie Cardano entdeckte ,
wenn (gp) 3 > (^q) 2 ist . Man nannte diesen Fall später casus irreducibilis ,
d . h . unzurückführbarer Fall . Im Kapitel XXV seiner Ars magna , das er
mit De Capitulis imperfectis et specialibus - »Über die unvollkommenen
und nur in Sonderfällen brauchbaren Regeln « - überschreibt , gibt er da¬
her besondere Verfahren zur Lösung solcher Gleichungen an . Ihm entneh¬
men wir mit Ausnahme von a) die folgenden Gleichungen * * ,
a) x 3 = 9x + 10 b) x 3 = 32x + 24 c) x 3 = 16x + 21
d) x 3 + 12 = 34x e) x 3 + 18 = 19x f) x 3 + 8 = 18x

11 . Von Framjois Viete (1540 - 1603 ) stammen aus dem
a) Responsum ad problema quod omnibus mathematicis totius orbis con-

struendumproposuit Adrianus Romanus von 1595 * * * : 3x — x 3 = j/2
b) Tractatus de aequationum recognitione (1615 gedruckt) :

1) 8x — x 3 = 7 2) 9x 2 — x 3 = 8

* Michael Stifel bringt diese Aufgabe in seiner Arithmetica integra 1544 auf Blatt 317 . Er hat sie Cardanos
Practica Arithmeticae von 1539 entnommen , in der sich jener auch schon mit kubischen Gleichungen
beschäftigt hatte . Stifel empfiehlt dieses Buch seinen Lesern wärmstens , rät ihnen aber , statt der umständ¬
lichen Bezeichnungen Cardanos seine viel bequemeren zu verwenden .

** Mit der in a wiedergegebenen Gleichung teilte Cardano seine Entdeckung des casus irreducibilis Tarta -
glia in einem Brief mit , den dieser am 4 . 8 . 1539 erhalten hat .

*** »Antwort auf das Problem , das Adriaen van Roomen [ 1561 - 1615] allen Mathematikern des ganzen
Erdkreises [ 1593] zur Lösung stellte « . Viete konnte die gestellte Gleichung 45 . Grades lösen .
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* *3 .7 .4 Reziproke Gleichungen
Abraham de Moivre (1667 - 1754)
stieß bei seinen Arbeiten zur Wahr¬
scheinlichkeitsrechnung auf einen be¬
sonderen Typ von Gleichungen , den
er 1711 in seiner Abhandlung De
mensura sortis - »Über ein Maß des
Zufalls « - beschrieb und für den er
1730 in seinen Miscellanea Analytica
- »Allerlei zur Analysis « - wichtige
Sätze herleitete . 1733 beschäftigte
sich Leonhard Euler (1707 - 1783 )
mit diesen Gleichungen und nannte
sie wegen einer wichtigen Eigen¬
schaft , die wir gleich beweisen wol¬
len , reziproke Gleichungen . Da sie ei¬
ner Verallgemeinerung fähig sind ,
fügt man heute noch » 1 . Art « bei.
Unter Benützung der von de Moivre
gegebenen Beschreibung legen wir
also fest

1736

Abb . 129 . 1 Abraham de Moivre
(26 . 5 . 1667 Vitry -le-Franfois bis
27 . 11 . 1754 London ) - Gemälde
von Joseph Highmore (1692- 1780)

Definition 139 . 1 : Eine Gleichung heißt reziproke Gleichung 1 . Art , wenn
die vom Anfang und vom Ende des Gleichungspolynoms gleich
weit entfernten Koeffizienten jeweils gleich sind .

Beispiele:
1 ) 3 .x 2 + 5x + 3 = 0 Der erste und der letzte Koeffizient sind gleich.
2) - ix 3 + 3x 2 + 3x — i = 0 | Der erste und der letzte Koeffi-

r zient sind gleich , ebenso der zweite
3) 5x — 3x — 2x — 3x + 5 = 0 J und der vorletzte.

Offensichtlich kann 0 nicht Lösung einer reziproken Gleichung sein , da der
letzte Koeffizient gleich dem ersten Koeffizienten und damit ungleich null ist .
Der folgende Satz macht nun den von Euler gegebenen Namen verständlich .

Satz 129 . 1 : Ist r Lösung einer reziproken Gleichung 1 . Art, so ist auch
1

der reziproke Wert — Lösung dieser Gleichung .
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Beweis: Der Beweis sei beispielhaft für eine Gleichung 4 . Grades vorgeführt.
Der allgemeine Beweis verläuft analog .
ax 4 + bx 3 + cx 2 + bx + a = 0 (mit a 4= 0) ist eine reziproke Gleichung 1 . Art
vom Grad 4 . Wenn r Lösung dieser Gleichung ist , dann gilt
ar 4 + br 3 + er 2 + br + a = 0 .
Da r 4= 0 ist , können wir r4 ausklammern und erhalten

Da r 4 nicht null werden kann , muss die Klammer null sein . In der Klammer
steht aber , von rechts nach links gelesen , der gegebene Gleichungsterm , in

1 1
den an Stelle von x der Wert — eingesetzt wurde . Also ist - Lösung , was zu
zeigen war .

r r

Wie findet man aber nun die Lösungsmenge einer reziproken Gleichung
1 . Art ? Auch hier wollen wir das Wesentliche wieder anhand von Beispielen
zeigen.

Beispiel 1 : Der Grad der reziproken Gleichung 1 . Art ist gerade .
6x 4 + 5x 3 — 38x 2 + 5x + 6 = 0
Da null keine Lösung ist , dürfen wir durch x 2 dividieren und erhalten

6x 2 + 5x — 38 + 5 - — K 6 = 0
x x

6 ( x 2
H— Tr ) + 5 ( x +

x
38 = 0

Joseph Louis de Lagrange
(1736 - 1813 ) schlug 1770 die
Substitution

1
x H— — z vor .x
Durch Quadrieren erhält man

1
x 2 + 2 4— =■ = z 2

, sodass die
x 2

letzte Gleichung übergeht in

6 (z2 — 2) + 5z — 38 = 0
6z2 + 5z — 50
z =

0
1
2 •

Machen wir die Substitution
wieder rückgängig , dann erhal¬
ten wir

Abb . 130 . 1 Joseph Louis de Lagrange
(25 . 1 .1736 Turin- 10 .4 . 1813 Paris)

VK ; =■
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1 10 15
x + - = - — vx + - = - ,x 3 x 2
was durch Multiplikation mit dem Hauptnenner auf zwei reziproke qua¬
dratische Gleichungen führt :
3x 2 + lOx + 3 = 0 v 2x 2 — 5x + 2 = 0
x = — 3vx = — j v x = \ v x = 2 .
Die gesuchte Lösungsmenge lautet somit L = { — 3 , — j , 2} .

Ist der Grad einer reziproken Gleichung 1 . Art ungerade , dann gilt

Satz 131 . 1 : Eine reziproke Gleichung 1 . Art ungeraden Grades hat stets
die Lösung — 1 .

Beweis : ax 3 + bx 2 + bx + a = 0 ist eine reziproke Gleichung 1 . Art vom Grad
3 . Setzt man — 1 ein , so erhält man — a + b — b + a = 0 , was zu zeigen war .
Der allgemeine Beweis verläuft analog .
In Satz 125 . 1 haben wir gezeigt, dass man eine kubische Gleichung faktorisieren
kann , wenn man eine Lösung kennt . Dieser Satz gilt allgemein , wenn der
Gleichungsterm ein Polynom ist . * Damit lässt sich eine reziproke Gleichung
1 . Art ungeraden Grades auf eine Gleichung kleineren Grades reduzieren . Dazu

Beispiel 2 : 12x 5 + 8x 4 — 45x 3 — 45x 2 + 8x + 12 = 0
Die Division durch (x — ( — 1 )) liefert
12x5 + 8x4 - 45x 3 - 45x2 + 8x + 12 =
= (x + l ) (12x4 — 4x 3 — 41x 2 — 4x + 12) ,
wie du leicht nachrechnen kannst . Setzen wir den 2 . Faktor null , so haben
wir in 12x4 — 4x 3 — 41x 2 — 4x + 12 = 0 wieder eine reziproke Glei¬
chung 1 . Art vor uns . Dieser Sachverhalt gilt allgemein , wie man bewei-

1
sen kann . Wie in Beispiel 1 substituiert man z --= x -1— und erhält
12z 2 - 4z - 65 = 0 o z = - fvz = f .

*

Daraus gewinnt man , indem man die Substitution rückgängig macht ,
schließlich die beiden quadratischen reziproken Gleichungen 1 . Art
6x2 + 13x + 6 = 0 v 2x2 — 5x + 2 = 0
mit { — § , — | } bzw . { j , 2 } als Lösungsmengen , sodass man nun die Lö¬
sungsmenge der Ausgangsgleichung 5 . Grades angeben kann zu
L = { — b — - f >b 2 } -

* Beweis : Dividiert man ein Polynom P (x) durch (x — x0) , so erhält man ein Polynom Q (x) und einen Rest R;
es gilt also P (x) = (x — x0) Q (x) + R . Den Rest R kann man aber leicht bestimmen . Setzt man nämlich an
Stelle von x den Wert x0 ein , so erhält man P (x0) = (x0 — x0) ß (x0) + R = 0 + R = R , d . h ., R ist der Wert
des Polynoms P (x) an der Stelle x0. Ist nun x0 eine Nullstelle des Polynoms , dann ist P (x0) = 0 , also auch
R = 0, und es gilt P (x ) = (x — x0) 2 (x) ; das Polynom ist faktorisiert .
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Die eingangs angekündigte Erweiterung des Begriffs der reziproken Glei¬
chung liefert

Definition 132 . 1 : Eine Gleichung heißt reziproke Gleichung 2 . Art , wenn
die vom Anfang und vom Ende des Gleichungspolynoms gleich
weit entfernten Koeffizienten dem Betrage nach jeweils gleich sind ,
aber verschiedenes Vorzeichen haben .

Folgerung : Ist der Grad einer reziproken Gleichung 2 . Art gerade , z . B . 2k , so
muss für den mittleren Koeffizienten ak gelten a k = — ak , d . h . , der mittlere
Koeffizient muss den Wert null haben .

Beispiele:
1) 3x 2 — 3 = 0 Der erste und der letzte Koeffizient

unterscheiden sich nur im Vorzeichen .
2) — £x 3 + 3x 2 — 3x + ^ = 0 3 Der erste und der letzte Koeffizient

> unterscheiden sich nur im Vorzeichen ,
3) 5 X4 _ 3 x 3 + 3 x — 5 = 0 J ebenso der zweite und der vorletzte.

Satz 129 . 1 gilt auch für reziproke Gleichungen 2 . Art , wie du selbst leicht
beweisen kannst (Aufgabe 133/1) . An Stelle von Satz 131 . 1 gilt

Satz 132 . 1 : Jede reziproke Gleichung 2 . Art hat die Lösung + 1 .

Von der Richtigkeit dieses Satzes kannst du dich durch Einsetzen in die obigen
Beispiele überzeugen ; der Beweis ist leicht (Aufgabe 133/2) .
Dividiert man eine reziproke Gleichung 2 . Art durch x — 1 , so erhält man
immer , wie man zeigen kann , eine reziproke Gleichung 1 . Art . Wir begnügen
uns zum Nachweis auch hier mit einem Beispiel , nämlich
Beispiel 3:

x 4 — 6x 3 + 6x — 1 = 0 ist eine reziproke Gleichung 2 . Art . Somit lässt
sich der links stehende Term durch x — 1 dividieren und man erhält die
Faktorisierung
(x — l ) (x 3 — 5x 2 — 5x — 1 ) = 0 .
Setzt man die Klammer null , so erhält man eine reziproke Gleichung
1 . Art vom Grad 3 . Diese hat — 1 als Lösung . Daher kann man das
Polynom in der Klammer durch x + 1 dividieren und erhält die Faktori¬
sierung
(x — 1 ) (x + 1 ) (x 2 + 6x + 1 ) = 0 .
Setzt man nun den 3 . Faktor null , so erhält man eine quadratische Glei¬
chung - sie ist reziprok von 1 . Art - mit den Lösungen 3 + j/8 . Die Aus¬
gangsgleichung x4 — 6x 3 + 6x — 1 = 0 hat also die Lösungsmenge
L = (3 - 1/8 , - 1 , 1 , 3 + 1/8 } .
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Aufgaben
1 . Beweise die Gültigkeit von Satz 129 . 1 für eine reziproke Gleichung 2 . Art .

Unterscheide dabei , ob sie geraden oder ungeraden Grades ist , und führe
den Beweis für eine Gleichung 3 . und für eine Gleichung 4 . Grades .

2 . Zeige , dass eine reziproke Gleichung 2 . Art stets 1 als Lösung besitzt.
Führe den Beweis für eine Gleichung 3 . und für eine Gleichung 4 . Grades .

3 . a) 12x 3 - 13x 2 - 13x + 1 = 0 b) x 3 — 5x 2 + 5x + 1 = 0

4 . a) 20x 4 + 19x 3 — 402x 2 + 19x + 20 = 0
b) 20x 4 - 189x 3 + 482x 2 - 189x + 20 = 0

5 . a) 18x4 + 51x 3 — 334x 2 + 51x + 18 = 0
b) 36x4 — 9x 3 -- 103x 2 — 9x + 36 = 0

6 . a) 7x 4 + 36x 3 -- 86x 2 + 36x + 7 = 0
b) 10x4 — 29x 3 + 20x 2 - 29x + 10 = 0

7 . a) x 4 - 2x 3 + 2x 2 — 2x + 1 = 0
b) 20x 4 + o\ XW+ 19x 2 + 16x + 20 = 0

8 . a) x4 + 2x 3 — 13x 2 + 2x + 1 = 0 b) x4 — 8x 3 + 9x 2 — 8x + 1 = 0

9 . a) 16x4 — 72x 3 + 113x 2 — 72x + 16 = 0
b) 2x 4 — 9x 3 + 15x 2 — 9x + 2 = 0

10 . Beweise für reziproke Gleichungen 1 . Art vom Grad 4 :
a) Die Lösungsmenge einer solchen Gleichung ist genau dann nicht leer ,

wenn die durch die Substitution z — x + ^ gewonnene Hilfsgleichung
mindestens eine Lösung hat , welche die Bedingung | z | ^ 2 erfüllt .

b) Eine Doppellösung tritt genau dann auf, wenn die Hilfsgleichung die
Lösung 2 oder — 2 hat . Wie heißt die zugehörige Doppellösung ?

c) Löst z 1 die Hilfsgleichung, so haben die zugehörigen Lösungen der
Ausgangsgleichung stets dasselbe Vorzeichen wie zu wenn | z , | > 2 ist .

11 . a) 12x 5 + 23x 4 - 135x 3 - 135x 2 + 23x + 12 = 0
b) 2x 5 — 7x 4 + 5x 3 + 5x 2 — 7x + 2 = 0
c) 2x 6 - 13x 5 + 34x4 - 46x 3 + 34x 2 - 13x + 2 = 0

12 . a) 3x 3 + Ix 2 — Ix — 3 = 0 b) x 3 — x 2 + x — 1 = 0

13 . a) 3x 4 - 10x 3 + lOx - 3 = 0 b) x4 - 10x 3 + lOx - 1 = 0
c) x4 - 1 = 0

14 . a) 12x 5 — 16x4 — 37x 3 + 37x 2 + 16x — 12 = 0
b) 5x 5 — 31x4 + 36x 3 — 36x 2 + 31x — 5 = 0 c) x 5 — 1 = 0

15 . a) x 6 — 4x 5 + 5x4 — 5x 2 + 4x — 1 = 0
b) 2x 8 — 5x 7 — 4x 6 + 15x 5 — 15x 3 + 4x 2 + 5x — 2 = 0
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