
Algebra

Barth, Friedrich

München, 2001

3.7.4 Reziproke Gleichungen

urn:nbn:de:hbz:466:1-83526

https://nbn-resolving.org/urn:nbn:de:hbz:466:1-83526
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* *3 .7 .4 Reziproke Gleichungen
Abraham de Moivre (1667 - 1754)
stieß bei seinen Arbeiten zur Wahr¬
scheinlichkeitsrechnung auf einen be¬
sonderen Typ von Gleichungen , den
er 1711 in seiner Abhandlung De
mensura sortis - »Über ein Maß des
Zufalls « - beschrieb und für den er
1730 in seinen Miscellanea Analytica
- »Allerlei zur Analysis « - wichtige
Sätze herleitete . 1733 beschäftigte
sich Leonhard Euler (1707 - 1783 )
mit diesen Gleichungen und nannte
sie wegen einer wichtigen Eigen¬
schaft , die wir gleich beweisen wol¬
len , reziproke Gleichungen . Da sie ei¬
ner Verallgemeinerung fähig sind ,
fügt man heute noch » 1 . Art « bei.
Unter Benützung der von de Moivre
gegebenen Beschreibung legen wir
also fest

1736

Abb . 129 . 1 Abraham de Moivre
(26 . 5 . 1667 Vitry -le-Franfois bis
27 . 11 . 1754 London ) - Gemälde
von Joseph Highmore (1692- 1780)

Definition 139 . 1 : Eine Gleichung heißt reziproke Gleichung 1 . Art , wenn
die vom Anfang und vom Ende des Gleichungspolynoms gleich
weit entfernten Koeffizienten jeweils gleich sind .

Beispiele:
1 ) 3 .x 2 + 5x + 3 = 0 Der erste und der letzte Koeffizient sind gleich.
2) - ix 3 + 3x 2 + 3x — i = 0 | Der erste und der letzte Koeffi-

r zient sind gleich , ebenso der zweite
3) 5x — 3x — 2x — 3x + 5 = 0 J und der vorletzte.

Offensichtlich kann 0 nicht Lösung einer reziproken Gleichung sein , da der
letzte Koeffizient gleich dem ersten Koeffizienten und damit ungleich null ist .
Der folgende Satz macht nun den von Euler gegebenen Namen verständlich .

Satz 129 . 1 : Ist r Lösung einer reziproken Gleichung 1 . Art, so ist auch
1

der reziproke Wert — Lösung dieser Gleichung .
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Beweis: Der Beweis sei beispielhaft für eine Gleichung 4 . Grades vorgeführt.
Der allgemeine Beweis verläuft analog .
ax 4 + bx 3 + cx 2 + bx + a = 0 (mit a 4= 0) ist eine reziproke Gleichung 1 . Art
vom Grad 4 . Wenn r Lösung dieser Gleichung ist , dann gilt
ar 4 + br 3 + er 2 + br + a = 0 .
Da r 4= 0 ist , können wir r4 ausklammern und erhalten

Da r 4 nicht null werden kann , muss die Klammer null sein . In der Klammer
steht aber , von rechts nach links gelesen , der gegebene Gleichungsterm , in

1 1
den an Stelle von x der Wert — eingesetzt wurde . Also ist - Lösung , was zu
zeigen war .

r r

Wie findet man aber nun die Lösungsmenge einer reziproken Gleichung
1 . Art ? Auch hier wollen wir das Wesentliche wieder anhand von Beispielen
zeigen.

Beispiel 1 : Der Grad der reziproken Gleichung 1 . Art ist gerade .
6x 4 + 5x 3 — 38x 2 + 5x + 6 = 0
Da null keine Lösung ist , dürfen wir durch x 2 dividieren und erhalten

6x 2 + 5x — 38 + 5 - — K 6 = 0
x x

6 ( x 2
H— Tr ) + 5 ( x +

x
38 = 0

Joseph Louis de Lagrange
(1736 - 1813 ) schlug 1770 die
Substitution

1
x H— — z vor .x
Durch Quadrieren erhält man

1
x 2 + 2 4— =■ = z 2

, sodass die
x 2

letzte Gleichung übergeht in

6 (z2 — 2) + 5z — 38 = 0
6z2 + 5z — 50
z =

0
1
2 •

Machen wir die Substitution
wieder rückgängig , dann erhal¬
ten wir

Abb . 130 . 1 Joseph Louis de Lagrange
(25 . 1 .1736 Turin- 10 .4 . 1813 Paris)

VK ; =■
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1 10 15
x + - = - — vx + - = - ,x 3 x 2
was durch Multiplikation mit dem Hauptnenner auf zwei reziproke qua¬
dratische Gleichungen führt :
3x 2 + lOx + 3 = 0 v 2x 2 — 5x + 2 = 0
x = — 3vx = — j v x = \ v x = 2 .
Die gesuchte Lösungsmenge lautet somit L = { — 3 , — j , 2} .

Ist der Grad einer reziproken Gleichung 1 . Art ungerade , dann gilt

Satz 131 . 1 : Eine reziproke Gleichung 1 . Art ungeraden Grades hat stets
die Lösung — 1 .

Beweis : ax 3 + bx 2 + bx + a = 0 ist eine reziproke Gleichung 1 . Art vom Grad
3 . Setzt man — 1 ein , so erhält man — a + b — b + a = 0 , was zu zeigen war .
Der allgemeine Beweis verläuft analog .
In Satz 125 . 1 haben wir gezeigt, dass man eine kubische Gleichung faktorisieren
kann , wenn man eine Lösung kennt . Dieser Satz gilt allgemein , wenn der
Gleichungsterm ein Polynom ist . * Damit lässt sich eine reziproke Gleichung
1 . Art ungeraden Grades auf eine Gleichung kleineren Grades reduzieren . Dazu

Beispiel 2 : 12x 5 + 8x 4 — 45x 3 — 45x 2 + 8x + 12 = 0
Die Division durch (x — ( — 1 )) liefert
12x5 + 8x4 - 45x 3 - 45x2 + 8x + 12 =
= (x + l ) (12x4 — 4x 3 — 41x 2 — 4x + 12) ,
wie du leicht nachrechnen kannst . Setzen wir den 2 . Faktor null , so haben
wir in 12x4 — 4x 3 — 41x 2 — 4x + 12 = 0 wieder eine reziproke Glei¬
chung 1 . Art vor uns . Dieser Sachverhalt gilt allgemein , wie man bewei-

1
sen kann . Wie in Beispiel 1 substituiert man z --= x -1— und erhält
12z 2 - 4z - 65 = 0 o z = - fvz = f .

*

Daraus gewinnt man , indem man die Substitution rückgängig macht ,
schließlich die beiden quadratischen reziproken Gleichungen 1 . Art
6x2 + 13x + 6 = 0 v 2x2 — 5x + 2 = 0
mit { — § , — | } bzw . { j , 2 } als Lösungsmengen , sodass man nun die Lö¬
sungsmenge der Ausgangsgleichung 5 . Grades angeben kann zu
L = { — b — - f >b 2 } -

* Beweis : Dividiert man ein Polynom P (x) durch (x — x0) , so erhält man ein Polynom Q (x) und einen Rest R;
es gilt also P (x) = (x — x0) Q (x) + R . Den Rest R kann man aber leicht bestimmen . Setzt man nämlich an
Stelle von x den Wert x0 ein , so erhält man P (x0) = (x0 — x0) ß (x0) + R = 0 + R = R , d . h ., R ist der Wert
des Polynoms P (x) an der Stelle x0. Ist nun x0 eine Nullstelle des Polynoms , dann ist P (x0) = 0 , also auch
R = 0, und es gilt P (x ) = (x — x0) 2 (x) ; das Polynom ist faktorisiert .
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Die eingangs angekündigte Erweiterung des Begriffs der reziproken Glei¬
chung liefert

Definition 132 . 1 : Eine Gleichung heißt reziproke Gleichung 2 . Art , wenn
die vom Anfang und vom Ende des Gleichungspolynoms gleich
weit entfernten Koeffizienten dem Betrage nach jeweils gleich sind ,
aber verschiedenes Vorzeichen haben .

Folgerung : Ist der Grad einer reziproken Gleichung 2 . Art gerade , z . B . 2k , so
muss für den mittleren Koeffizienten ak gelten a k = — ak , d . h . , der mittlere
Koeffizient muss den Wert null haben .

Beispiele:
1) 3x 2 — 3 = 0 Der erste und der letzte Koeffizient

unterscheiden sich nur im Vorzeichen .
2) — £x 3 + 3x 2 — 3x + ^ = 0 3 Der erste und der letzte Koeffizient

> unterscheiden sich nur im Vorzeichen ,
3) 5 X4 _ 3 x 3 + 3 x — 5 = 0 J ebenso der zweite und der vorletzte.

Satz 129 . 1 gilt auch für reziproke Gleichungen 2 . Art , wie du selbst leicht
beweisen kannst (Aufgabe 133/1) . An Stelle von Satz 131 . 1 gilt

Satz 132 . 1 : Jede reziproke Gleichung 2 . Art hat die Lösung + 1 .

Von der Richtigkeit dieses Satzes kannst du dich durch Einsetzen in die obigen
Beispiele überzeugen ; der Beweis ist leicht (Aufgabe 133/2) .
Dividiert man eine reziproke Gleichung 2 . Art durch x — 1 , so erhält man
immer , wie man zeigen kann , eine reziproke Gleichung 1 . Art . Wir begnügen
uns zum Nachweis auch hier mit einem Beispiel , nämlich
Beispiel 3:

x 4 — 6x 3 + 6x — 1 = 0 ist eine reziproke Gleichung 2 . Art . Somit lässt
sich der links stehende Term durch x — 1 dividieren und man erhält die
Faktorisierung
(x — l ) (x 3 — 5x 2 — 5x — 1 ) = 0 .
Setzt man die Klammer null , so erhält man eine reziproke Gleichung
1 . Art vom Grad 3 . Diese hat — 1 als Lösung . Daher kann man das
Polynom in der Klammer durch x + 1 dividieren und erhält die Faktori¬
sierung
(x — 1 ) (x + 1 ) (x 2 + 6x + 1 ) = 0 .
Setzt man nun den 3 . Faktor null , so erhält man eine quadratische Glei¬
chung - sie ist reziprok von 1 . Art - mit den Lösungen 3 + j/8 . Die Aus¬
gangsgleichung x4 — 6x 3 + 6x — 1 = 0 hat also die Lösungsmenge
L = (3 - 1/8 , - 1 , 1 , 3 + 1/8 } .
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Aufgaben
1 . Beweise die Gültigkeit von Satz 129 . 1 für eine reziproke Gleichung 2 . Art .

Unterscheide dabei , ob sie geraden oder ungeraden Grades ist , und führe
den Beweis für eine Gleichung 3 . und für eine Gleichung 4 . Grades .

2 . Zeige , dass eine reziproke Gleichung 2 . Art stets 1 als Lösung besitzt.
Führe den Beweis für eine Gleichung 3 . und für eine Gleichung 4 . Grades .

3 . a) 12x 3 - 13x 2 - 13x + 1 = 0 b) x 3 — 5x 2 + 5x + 1 = 0

4 . a) 20x 4 + 19x 3 — 402x 2 + 19x + 20 = 0
b) 20x 4 - 189x 3 + 482x 2 - 189x + 20 = 0

5 . a) 18x4 + 51x 3 — 334x 2 + 51x + 18 = 0
b) 36x4 — 9x 3 -- 103x 2 — 9x + 36 = 0

6 . a) 7x 4 + 36x 3 -- 86x 2 + 36x + 7 = 0
b) 10x4 — 29x 3 + 20x 2 - 29x + 10 = 0

7 . a) x 4 - 2x 3 + 2x 2 — 2x + 1 = 0
b) 20x 4 + o\ XW+ 19x 2 + 16x + 20 = 0

8 . a) x4 + 2x 3 — 13x 2 + 2x + 1 = 0 b) x4 — 8x 3 + 9x 2 — 8x + 1 = 0

9 . a) 16x4 — 72x 3 + 113x 2 — 72x + 16 = 0
b) 2x 4 — 9x 3 + 15x 2 — 9x + 2 = 0

10 . Beweise für reziproke Gleichungen 1 . Art vom Grad 4 :
a) Die Lösungsmenge einer solchen Gleichung ist genau dann nicht leer ,

wenn die durch die Substitution z — x + ^ gewonnene Hilfsgleichung
mindestens eine Lösung hat , welche die Bedingung | z | ^ 2 erfüllt .

b) Eine Doppellösung tritt genau dann auf, wenn die Hilfsgleichung die
Lösung 2 oder — 2 hat . Wie heißt die zugehörige Doppellösung ?

c) Löst z 1 die Hilfsgleichung, so haben die zugehörigen Lösungen der
Ausgangsgleichung stets dasselbe Vorzeichen wie zu wenn | z , | > 2 ist .

11 . a) 12x 5 + 23x 4 - 135x 3 - 135x 2 + 23x + 12 = 0
b) 2x 5 — 7x 4 + 5x 3 + 5x 2 — 7x + 2 = 0
c) 2x 6 - 13x 5 + 34x4 - 46x 3 + 34x 2 - 13x + 2 = 0

12 . a) 3x 3 + Ix 2 — Ix — 3 = 0 b) x 3 — x 2 + x — 1 = 0

13 . a) 3x 4 - 10x 3 + lOx - 3 = 0 b) x4 - 10x 3 + lOx - 1 = 0
c) x4 - 1 = 0

14 . a) 12x 5 — 16x4 — 37x 3 + 37x 2 + 16x — 12 = 0
b) 5x 5 — 31x4 + 36x 3 — 36x 2 + 31x — 5 = 0 c) x 5 — 1 = 0

15 . a) x 6 — 4x 5 + 5x4 — 5x 2 + 4x — 1 = 0
b) 2x 8 — 5x 7 — 4x 6 + 15x 5 — 15x 3 + 4x 2 + 5x — 2 = 0
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