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Titelblatt von Nova Scientia - »Neue Wissenschaft « die Niccolö Tartaglia (1499
bis 1557 ) im Jahre 1537 herausbrachte , weil Sultan Sulaiman II . der Prächtige
(reg . 1520- 1556 ) weiter zum Krieg gegen die Christenheit rüstete .
Das Buch handelt vorwiegend von der Schießkunst . Tartaglia beweist darin , dass
man am weitesten schießen könne , wenn das Geschütz 45 ° über den Horizont aufge¬richtet wird . Die im Titelbild dargestellte Flugbahn des Geschosses sieht wie eine
Parabel aus . Tartaglia wusste aber noch nicht , dass Geschosse sich wirklich auf einer
Parabel bewegen (Abbildung 159) . Erst Galileo Galilei (1564 - 1642 ) erbrachte rund
70 Jahre später den Beweis dafür (siehe Seite 174) .
Die beiden Wappen sind nicht sehr genau gezeichnet . Das linke ist das Wappen von
Franz Maria I . (1490- 1538 ) aus dem Hause della Rovere . Er war Herzog von
Urbino (1508- 1538 ) und Generalkapitän von Venedig, ferner Autor der Discorsi mili¬
tari . An ihn ist der Brief gerichtet , der das Werk einleitet . Das rechte Wappen ist das
seiner Ehefrau Eleonore (f 1570) aus dem Hause Gonzaga , das in Mantua regierte .
Der Wahlspruch aurum probatur igni , et Ingenium mathematicis - Gold wird
auf Echtheit geprüft durch das Feuer , der Geist durch die Mathematik - sei , so
Luca Pacioli (um 1445 - 1517) in seiner Divina Proportione (1498 , gedruckt 1509),unter den Gelehrten sprichwörtlich geworden um auszudrücken , dass »mathematische
Begabung hervorragend für jede andere Wissenschaft geeignet mache « .
Der Ausspruch der mathematischen Wissenschaften , die, durch Damen symbolisiert ,in einem Garten stehen , ist ein Distichon , das Vergils (70- 19 v . Chr .) rerum cognoscere
causas - das Wesen der Welt erkennen - (Georgica II , 490 - »Landleben «) aufgreift .

Die mathematischen Wissenschaften sprechen :
Ihr , die Ihr den Wunsch habt , die mannigfaltigen Ursachen der Dinge zu erkennen ,Lernet uns ; für alle ist hierher nur ein einziger Weg gangbar .
Spielt Tartaglia damit vielleicht auf den Spruch des Menaichmos (Mitte 4 . Jh .
v . Chr .) an - du ündest ihn auf der Titelseite dieses Buches - , dass es in der Mathematik
keinen Königsweg , sondern nur einen Weg für alle gibt ? *
Tartaglia selbst steht in diesem Garten , zu dem Euklid einlässt , umgeben von der
Musik , der Arithmetik , der Geometrie , der Perspektive und der Astronomie . Auf den
Spruchbändern sind noch die Architektur und die Astrologie entzifferbar , darüber
hinaus die verschiedenen Künste des Wahrsagens , so die durch das Los (sortilegio ) , die
durch Befragung der Seelen Verstorbener (necromantia ) , die durch Beschau des Opfer¬
feuers (pyromantia ), der Leber der Opfertiere (aruspitio ) , des Fluges der Wahrsagevö¬
gel (auspitio ) , die durch Beobachtung der Mäuse (myomanteia ) und schließlich die
Wahrsagung durch Beobachtung und Deutung von Wahrzeichen (augurio ) .
Der Zugang zur Philosophie ist nur möglich über Aristoteles und Platon , auf dessen
Band wir nemo huc geometriae expers ingrediatur
lesen, die lateinische Version jener Inschrift , die über dem Eingangstor seiner Akade¬
mie geschrieben stand * * :

ATEßMETPHTOE MHAEIE EIEITß

Kein der Mathematik Unkundiger trete hier ein
* Dem Distichon stellt Luca Pacioli in der Divina Proportione die Zeile »Corpora loquuntur « (Die Körper

sprechen ) voran .
** dyscojLexpq'rot; pqfieiq eioixco (ageometretos medeis eisitö ) - Die von Platon (428- 348 v . Chr .) um

385 v . Chr . gegründete Philosophenschule ist nach einem in der Nähe befindlichen Heiligtum des Helden
Akademos benannt . Geschlossen wurde sie 529 n . Chr . durch Kaiser Justinian (reg . 527- 565) . Die Inschrift
überlieferte uns Elias Philosophus (6 . Jh . n . Chr .) in seinen Ad Aristotelis Categorias commentaria . -
Nicolaus Copernicus (1473- 1543) wählte sie als Motto seines De revolutionibus orbium coelestium (1543) .



4 Quadratfunktion und Wurzelfunktion

4 . 1 Quadratfunktion und Normalparabel

Die Lösungen einer quadratischen Gleichung ax 2 + bx + c = 0 kann man als
die Nullstellen einer Funktion / mit dem Term f (x) = ax 2 + bx + c deuten .
Da f {x) ein quadratischer Term ist , heißt / quadratische Funktion . Die ein¬
fachste quadratische Funktion hat den Term f (x) = x 2

. Man gibt ihr einen
besonderen Namen :

Definition 145 . 1 : Die Funktion/ : x i—>■x 2
, Df = [R , heißt Quadratfunk¬

tion , ihr Graph heißt Normalparabel* .

Um die Normalparabel zeichnen zu können berechnen wir eine Wertetabelle :
- 3 - 2 - 1,5 - 1 - 0,5 - 0,3 0 0,3 0,5 1 1,5 2 3

y 9 4 2,25 1 0,25 0,09 0 0,09 0,25 1 2,25 4 9

Abbildung 145 . 1 gibt die Normalparabel wieder . Da man sie sehr oft zeichnen
muss , lohnt sich eine Zeichenschablone * * .

Wir stellen einige wichtige Eigenschaf¬
ten der Normalparabel zusammen :
1 . Die Normalparabel ist eine ge¬

krümmte Kurve , die sich nach oben
öffnet .
Sie ist symmetrisch zur y-Achse ,
da zu entgegengesetzten Abszissen
x und — x wegen ( — x)2 = x2
gleiche Ordinaten gehören . Die

i) jiap « ßo/ -f| (he parabole ) = die Nebeneinanderstel¬
lung , die Vergleichung, die Gleichheit . Das Wort wurde
bereits von den Pythagoreern benutzt (siehe Aufga¬
be 110/25 ) . Den Graphen der Funktion x h-> ax 1 be¬
zeichnte als erster Apollonios von Perge (um 262
bis um 190 v . Chr .) in seinen Kwvikö (Konikä ) - »Die
Kegelschnitte « - als Parabel (siehe 5.2) .
Das Adjektiv normal erscheint in Deutschland zu An¬
fang des 18 . Jh . s . Es geht zurück auf das lateinische
normalis , das zum Substantiv norma gehört . Dieses
bedeutete ursprünglich Winkelmaß , später dann aber
auch - so z . B . bei Cicero (106- 43 v . Chr .) - Richt¬
schnur , Regel , Vorschrift , sodass normalis im übertra¬
genen Sinn der Regel entsprechend bedeutet .
Das französische Wort echantillon (Probe , Muster ) gelangt an den Niederrhein und ergibt unter Einfluss des
mittelniederländischen scampen (behauen ) in Kleve 1477 sc (h) amplioen , im 16 . Jh . niederdeutsch schampe -
lün im Sinne von Vorbild, Muster , Modell . Unter dem Einfluss des Verbums schaben verliert es sein m . Die
Form Schabion ist 1783 in Berlin belegt .

Abb . 145 . 1 Die Normalparabel
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y-Achse heißt Symmetrieachse oder kurz Achse* der Normalparabel .
2 . Ausy = x 2 A 0 folgt , dass es keine Kurvenpunkte unter der x -Achse gibt .

Auf der x -Achse liegt nur der tiefste Kurvenpunkt (0 [ 0) . Er ist auch der
Schnittpunkt der Achse mit der Normalparabel und heißt Scheitel * * der
Normalparabel .

3 . Aus 0 ^ x x < x 2 folgt 0 < x2 — x x . Multipliziert man mit x 2 + x l5 dann
ergibt sich 0 < xf — x 2 und somit 0 fS x \ < x\ , d . h . , mit wachsenden posi¬
tiven Abszissen nehmen auch die entsprechenden Ordinaten zu . Die Kurve
steigt im 1 . Quadranten und fällt auf Grund ihrer Symmetrie im 2 . Qua¬
dranten .

4 . Wenn x beliebig groß wird , dann wird erst recht x 2 beliebig groß . Also
erstreckt sich die Normalparabel nach oben ins Unendliche . Die Werte¬
menge der Quadratfunktion ist demnach nicht nach oben beschränkt . Sie
besteht aus allen nicht negativen reellen Zahlen , weil man aus jeder nicht
negativen reellen Zahl die Wurzel ziehen kann , deren Quadrat wieder die
Zahl liefert (Abbildung 147 . 1 ) . Also gilt W = [Rq .

Aufgaben
1 . Zeichne den Graphen der Quadratfunktion in verschiedenen Koordina¬

tensystemen . Wähle als Einheiten auf den beiden Achsen
a) je 1 cm , b) je 5 cm.

2 . Zeichne den Graphen der Quadratfunktion in einem Koordinatensystem
mit verschiedenen Einheiten auf den Achsen , und zwar
a) auf der x -Achse 1 cm, auf der j -Achse 5 cm;
b) auf der x-Achse 5 cm, auf der y -Achse 1 cm.

3 . Begründe die Konstruktion von Punkten P der Normalparabel , die in
Abbildung 147 .2 vorgeführt ist .

* Den Fachbegriff Achse findet man bei Euklid (um 300 v . Chr .) als 6 ä ^cov (ho äxön ) lediglich in den
Definitionen 15 , 19 und 22 von Buch XI der Elemente für diejenige Gerade , um die sich ein Halbkreis , ein
Dreieck oder ein Parallelogramm drehen müssen , damit eine Halbkugel , ein Kegel oder ein Zylinder ent¬
steht . Das zugehörige lateinische axis wird durch Conradt von Megenburg 1349 in seiner Übersetzung der
De sphaera mundi des Johannes de Sacro Bosco (12007- 1256?) als achs wiedergegeben , das aus dem
althochdeutschen ahsa herkommt . Apollonios (um 262- um 190 v .Ohr .) benützt i&fsfj = Achse in unserem
Sinn .

** Archimedes (um 287 - 212 v . Chr .) nannte diesen Punkt f| Koptxpij (he koryphe ) = Spitze , Gipfel , Scheitel ,
was Johann Christoph Sturm (1635- 1703) mit Scheitelpunkt in seinem 1670 erschienenen Des Unvergleichli¬
chen Archimedes Kunst -Bücher , Teutscher Archimedes übersetzte .
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Abb . 147 . 1 Quadrieren und Radizieren Abb . 147 .2 Konstruktion von Punkten
mit Hilfe der Normalparabel der Normalparabel

4.2 Normalparabel und Gerade

Ein graphisches Verfahren zur Lösung der quadratischen Gleichung
ax 2 + bx + c = 0 mit a =1= 0 beruht auf der Umformung

_ b
ax + bx + c = 0 <t> ;»r = c

- x - .a a

Wir fassen die beiden Seiten als Ter¬
me von zwei Funktionen / und g auf ,
nämlich

/ (x ) = x 2

c
ag (x) = - - X

a
Der Graph von/ist die Normalpara¬
bel , der von g eine Gerade mit der

Steigung - und dem v-Achsenab -
a

schnitt — - . (Siehe Abbildung 147 . 3 .)
a

y ,
/ y = x 2

S 7 / ^
^

blL^ y = - x -
0

sA ^

^ i \
i \ V

^
/ l

/ 1
/ 1

/ 1
y 1 m

* 1 x 2 X

Abb . 147 .3 Graphische Lösung
der Gleichung ax 2 + bx + c = 0
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Für die Abszissen x x und x 2 der Schnittpunkte S x (x t | jq ) und S 2 {x2 \y2) gilt
b c

/ (x t ) = g (x i ) > also x i = - x i - und
a a
b c

R xl ) = g (x2) , alsO x\ = ~ ~ x2 ~ ~ -a a

Sie sind daher die Lösungen der quadratischen Gleichung ax 2 + bx + c = 0 .
Auf Grund dieser Überlegungen kann man quadratische Gleichungen also
auch graphisch näherungsweise lösen : Man zeichnet mit der Schablone die
Normalparabel und bringt sie mit der zugehörigen Geraden zum Schnitt .
Dabei treten die uns schon bekannten drei Fälle auf :
Parabel und Gerade haben zwei, einen oder keinen Punkt gemeinsam . Da¬
durch kommt zum Ausdruck , dass die quadratische Gleichung zwei, eine oder
keine Lösung hat . Abbildung 148 . 1 zeigt die drei Fälle .

y = 2x -= 2x -

Abb . 148 . 1 Zur Anzahl der Lösungen einer quadratischen Gleichung
x 1

II

— 2x — 3 = 0 x 2 — 2x + 1 = 0 x 2 — 2x + 2 = 0
x 2 = 2x + 3 x 2 = 2x — 1 x 2 = 2x — 2

Wir haben damit ein algebraisches Problem geometrisch gelöst . Umgekehrt
kann man aber auch geometrische Probleme algebraisch lösen . Als Beispiel
hierfür betrachten wir : Berechne die Schnittpunkte der Normalparabel mit
einer gegebenen Geraden . Die Koordinaten der Schnittpunkte müssen das
Gleichungssystem

1 y = * 2
erfüllen , das mit V x * ~ mx ~ { = 0

II y = mx + t II ' y = mx + t
äquivalent ist .
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Je nachdem , ob die Diskriminante D = m 2 + 4t der Gleichung I ' größer ,
gleich oder kleiner als null ist , gibt es zwei, einen oder keinen Schnittpunkt . Im
Fall D > 0 heißt die Gerade Sekante , im Fall D < 0 heißt sie Passante ; im Fall
D = 0 nennt man die Gerade Tangente * .
Wir sagen , die Tangente berührt die Parabel im Berührpunkt . Die Abszisse des
Berührpunkts ist Doppellösung der quadratischen Gleichung (siehe Seite
103) .
Verschiebt man eine Gerade parallel zu sich so weit , bis sie die Parabel berührt ,
dann kann man sich vorstellen , dass im Berührpunkt die beiden Schnittpunk¬
te zusammenfallen . Das macht die Bezeichnung Doppellösung verständlich
(Abbildung 149 . 1 ) .
Ist die gegebene Gerade parallel zu y-Achse , dann erhält man das einfachere
System
I y = x 2

II x = s ,
das die einzige Lösung (ä | ^2) hat (Abbildung 149 .2) .

y ,

/ / y = x 2

/ ff
/ \\

v V
/ /> V— Berührpunkt

/W
/ / V / x

V {/

Abb . 149 . 1 Zur Erklärung des
Begriffs »Doppellösung «

Abb . 149 .2 Schnitt mit einer Geraden
parallel zur Parabelachse

* secans (lat .) = schneidend ; tangens (lat .) = berührend .
Passante ist eine Analogiebildung zu den vorherigen Begriffen . Aus passus (lat .) = das Ausspreizen der Füße
beim Gehen wird das französische passer = vorübergehen , vorbeikommen , das wir in unserem passieren wie¬
derlinden .
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Ein Zahlenbeispiel soll dir zeigen , wie man im konkreten Fall vorgeht .

Beispiel :
Berechne die Schnittpunkte der Geraden y = x + 4 mit der Normalpara¬
bel .

I y = x 2

II y = x + 4
I ' x 2 — x — 4 = 0

II " y = x + 4
_

I ' x = 1 (1 - 1/17) v * = 1 (14 - /17 )
II " y = x + 4

_
x = 1 (1 - 1/17) => y = 1 ( 1 - / 17) 4- 4 = i (9 - j/17 )

x = 1 (1 + l/l7 ) => j = 1 (1 + l/l7 ) + 4 = 1 (9 + ]/l7 )
Das ergibt die Schnittpunkte
S 1 (i ( l - /i7 ) |

l (9 - l/l7 )) und S 2 (i (l + l/l7 ) li (9 + l/l7 )) .
Das graphische Lösungsverfahren (Abbildung 150 . 1 ) liefert dafür die
Näherungswerte S t ( — 1,612,4 ) und S 2 (2,616,6 ) . Die exakten Werte sind
nur algebraisch zu haben .

'
y = x + 4

Abb . 150 . 1 Schnittpunkte der Normalparabel mit der Geraden y = x 4- 4
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Aufgaben
1 . Löse zuerst graphisch und dann rechnerisch .

a) x 2 — 2x = 0 b) x 2 + 2x — 3 = 0
c) x 2 + 6x = — 11 d) 2x 2 + 24 = 16x

2 . Löse zuerst graphisch und dann rechnerisch .
a) x 2 — l,6x — 2,6 = 0 b) 3x 2 — 2x — 12 = 0
c) 0,25 .x;2 + 0,5x — 0,5 = 0 d) 6x 2 + 2x — 25 = 0
e) 8x 2 — 14x + l = 0 f) 0,1 x 2 + 0,32x + 0,12 = 0

3 . Berechne die Koordinaten der Schnittpunkte der Normalparabel mit der
Geraden
a) y = — 0,5x + 5 , b) y = 6x — 3 .

4 . Überprüfe , ob die Gerade Sekante , Tangente oder Passante der Normal¬
parabel ist , und berechne gegebenenfalls die gemeinsamen Punkte .
a) y = x — 1 b) y = — 4x — 4 c) y = 20x — 100
d) j = 100x — 20 e) y = 3x + 4 f) y = 2,5 .x — 1,5625

5 . Bestimme eine Gleichung der Tangente der Normalparabel , die die Stei¬
gung m hat ; berechne die Koordinaten des Berührpunkts .
a) m = 3 b) m = — 6 c) m = 0

6 . Wie lautet eine Gleichung der Geraden durch den Punkt (012) , die die
Normalparabel in S (3 [ ?) schneidet ? Gib auch den zweiten Schnittpunkt
an .

7. Die Gerade y = mx + t sei Tangente der Normalparabel .
a) Zeige ; Der Berührpunkt hat die Abszisse 0,5m und die Ordinate — t .
b) Konstruiere mit Hilfe von a) die Tangente an die Normalparabel in

einem gegebenen Parabelpunkt .
c) Konstruiere mit Hilfe von a) die Tangente an die Normalparabel von

einem Punkt der negativen y-Achse aus .

8 . Bestimme Gleichungen der Tangenten der Normalparabel , die durch den
Punkt P gehen , und berechne jeweils die Koordinaten des Berührpunkts ,
a) P (01 — 3) b) P (0 | — 10,24)

9 . Bestimme Gleichungen der Tangenten der Normalparabel , die durch den
Punkt P gehen , und berechne jeweils die Koordinaten des Berührpunkts ,
a) P (11 — 3) b) P ( - 3 | 8)
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4 .3 Die Wurzelfunktion

4 .3 . 1 Definition der Wurzelfunktion

Ordnet man jeder nicht negativen Zahl x ihre Quadratwurzel Yx zu , so hat
man eine Funktion ; sie heißt Quadratwurzelfunktion oder kurz Wurzelfunk¬
tion . Wir merken uns

Definition 152 . 1 :
Die Funktion / : xk |/x , Df = Rq heißt Wurzelfunktion .

Zum Zeichnen des Graphen der Wurzelfunktion berechnen wir eine Werteta¬
belle, auf Zehntel gerundet .

X 0 0,25 0,5 1 2 3 4 5 6 7 8 9

Yx 0 0,5 0,7 1 1,4 1,7 2 2,2 2,4 2,6 2,8 3

Abbildung 152 . 1 gibt den Graphen wieder .
Wegen 0 ^ x t < x 2 <=> ]/x [ < Yx

~

2 (vergleiche Seite 53) ist die Wurzelfunktion
echt monoton wachsend . Die Wertemenge der Wurzelfunktion ist [Rq . Wäre
die Wertemenge nämlich nach oben beschränkt , dann müsste es eine Zahl N
geben , sodass Yx < N für alle x e IRq gälte . Aus 1/ x < N folgt aber x < N 2 ,und das ist ein Widerspruch , weil x beliebig groß werden kann .

y

1

o 5 10 x
Abb . 152 . 1 Der Graph der Wurzelfunktion

Aufgaben
1 . Bestimme die maximale Definitionsmenge der folgenden Funktionsterme

und berechne eine Wertetabelle , sodass du die Graphen der zugehörigen
Funktionen zeichnen kannst .

b) — ]/ — x c) V\ x \ d) - l/M

c) ]/ — x 2
2 . Löse wie in Aufgabe 1 :

a) Yx2 b) — Yx2
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4 .3 .2 Die Umkehrfunktion

Eine Funktion f : x \- > y mit y = f (x) ordnet jeder Zahl x ihrer Definitions¬
menge D genau eine Zahl y ihrer Wertemenge W zu .

yX

Abb . 153 . 1 Veranschaulichung einer Funktion / : x i—> y

Abbildung 153 . 1 zeigt , dass dabei auch verschiedene x -Werte denselben y-
Wert als Funktionswert haben können . Zu einem solchen j -Wert gehört also
mehr als ein x -Wert . Kehrt man die Zuordnung um , dann erhält man keine
Funktion , weil die umgekehrte Zuordnung nicht eindeutig ist . Es gibt aber
Funktionen / bei denen die Umkehrung der Zuordnung wieder eindeutig
ist , also eine neue Funktion g ergibt , / heißt in einem solchen Fall umkehrbar ,
und g nennt man die Umkehrfunktion von / (Abbildung 153 . 2) .
Die Umkehrbarkeit einer Funktion bedeutet , dass ihr Graph von jeder Paral¬
lelen zur x -Achse höchstens einmal geschnitten wird ; denn jedes yeW darf
nur einem einzigen xe D zugeordnet sein . Die Umkehrfunktion g zur Funk¬
tion f : x \- > y entsteht dann einfach durch Umkehren der Abbildungsrichtung
g : y i—> x (Abbildung 154 . 1 ) . Die Definitionsmenge der Umkehrfunktion g ist
die Wertemenge W der ursprünglichen Funktion/ . Die Wertemenge von g ist
dann natürlich die Definitionsmenge D von f .

x y X y

Abb . 153 .2 Die Funktion/und ihre Umkehrfunktion g
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x = g ( y )
Abb. 154 . 1 Die Funktion/ : x t—> y , ihre Umkehrfunktiong : y i- > x und ihr gemein¬

samer Graph

Schreibt man den Funktionswert y der Funktion / : x i—» y in der Form fix ) ,
so hat die Funktion/die Funktionsgleichung y = fix ) . Hat/eine Umkehr¬
funktion g : y i—> x und bezeichnet man ihren Funktionswert mit g (y) , so gilt
die Gleichung x = g (y) . Die Gleichungen y = f (x) und x = g (y ) stellen den¬
selben Zusammenhang zwischen den Elementen der Mengen D und W dar .
Bei y = fix ) wird lediglich die Zuordnungsrichtung x i—>■y , bei x = giy ) die
Zuordnung y i—> x hervorgehoben . In beiden Fällen ergibt sich derselbe
Graph .
Bei der Schreibweise x = giy ) für die Umkehrfunktion g : y x ist j > die
unabhängige und x die abhängige Variable . Betrachtet man die Funktion g für
sich allein , so wird man wie üblich die unabhängige Variable mit x und die
abhängige mit y bezeichnen . Diese Änderung der Bezeichnungsweise führt zur

5 - —

Abb. 154 .2 Spiegeln an der Winkelhalbierenden y = x durch Vertauschen der Koor¬
dinaten
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Gleichung y = g (x) . Der zugehörige Graph entsteht aus dem Graphen von
x = g {y ) durch Spiegelung an der Winkelhalbierenden y — x (Abb . 154 .2) .
Wie man die unabhängige Variable bezeichnet , ist eine reine Äußerlichkeit ; sie
hat nichts mit der durch die Funktion gegebenen Zuordnung zu tun . Sie wirkt
sich nur auf die Zeichnung des Graphen aus : Beim Spiegeln an der Winkelhal¬
bierenden y = x wird die x-Koordinate zur y-Koordinate und umgekehrt die
y- Koordinate zur x-Koordinate , also werden die x- und y- Koordinaten ein¬
fach vertauscht .

Aufgaben
1 . Welche der durch die folgenden Tabellen definierten Funktionen xi —►y

sind umkehrbar ? Stelle gegebenenfalls die Umkehrfunktion y i- » x durch
ihren Graphen dar .

a)

c)

X - 2 0 3 X - 2 0 3

y 12 - 1
b) y \ 1 2 1

X - 2 - 1012 X
A\

1 2,7 - 0,5 4

y 3 1 1 3 o
2 1 2 2 J

d) 7] 0,25 1,25 - 0,25 - 1,25

2 . Durch die Gleichungen
a) 5x + 2y — 10 = 0 b) x — y — 1 = 0
c) x + y - 3 = 0 d) y — 5 = 0
wird jeweils auf der Menge der reellen Zahlen eine Funktion / : x i—>■y
erklärt . Welche dieser Funktionen sind umkehrbar ? Stelle gegebenenfalls
die Umkehrfunktion g sowohl in der Form g : y i—> x als auch in der Form

g : xny durch eine Gleichung dar und zeichne die Graphen .

3 . Welche der in Abbildung 155 . 1 angegebenen Graphen definieren umkehr¬
bare Funktionen ?

Abb . 155 . 1 Zu Aufgabe 3
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4 . Die Graphen der Abbildung 156 . 1 stellen umkehrbare Funktionen
f \ x i—►y dar . Begründe dies ! Übertrage sie vergrößert in dein Heft und
zeichne jeweils den Graphen der Umkehrfunktion g in der Form

b)

Zu Aufgabe 4Abb . 156 . 1 Zu Aufgabe 4

5 . Durch den Graphen in Abbildung 156 .2 wird eine nicht umkehrbare
Funktion xi - > j erklärt (Begründung !) . Der Graph kann jedoch so in
Teilstücke zerlegt werden , dass jedes für sich eine umkehrbare Funktion
definiert . Gib die einfachste derartige Zerlegung an .

Abb . 156 .2 Zu Aufgabe 5
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6. Kann man die Graphen a und b der Abbildung 157 . 1 in Teilstücke zerle¬
gen , welche umkehrbare Funktionen definieren (vgl . Aufgabe 5 )? Wie
könnte die Zerlegung gegebenenfalls vorgenommen werden ?

Abb . 157 . 1 Zu Aufgabe 6

4 .3 .3 Die Wurzelfunktion als Umkehrfunktion

Hat die Quadratfunktion xh * x 2 eine Umkehrfunktion ? Der Graph der Qua¬
dratfunktion ist die Normalparabel . Sie wird von allen Parallelen zur x-Achse ,
die oberhalb der x-Achse laufen , zweimal geschnitten . Also hat die Quadrat¬
funktion keine Umkehrfunktion . Schränkt man jedoch die Definitionsmenge
so ein , dass der Graph nur aus dem steigenden oder nur aus dem fallenden Teil
der Parabel besteht , dann kann man die Funktion umkehren . Jetzt trifft jede
Parallele zur x -Achse den Graphen höchstens einmal . So hat z . B . die Funk¬
tion x y- y x 2 mit der Definitionsmenge [P CJ eine Umkehrfunktion (Abbildung
157 .2) . Aus y = x 2 mit x ^ O folgt x = ify mit y A 0 . Die Funktion

Abb . 157 .2 Die Quadratfunktion mit Abb . 157 . 3 Die Wurzelfunktion als

eingeschränkter Definitionsmenge Umkehrfunktion der (eingeschränkten )
D = [Rq Quadratfunktion
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g : y i—►1fy ; ^ eK 0
+ ist also die Umkehrfunktion zu / : x i—* x 2

; x e [Rq . g ist
aber die Wurzelfunktion , die wir in 4 .3 . 1 kennen gelernt haben . Ihr Graph ist
demnach die halbe Normalparabel und kann auch mit der Schablone gezeich¬
net werden . Mit der unabhängigen Variablen x erhält man g:
x i—> Vx , x e [Rq und als Graphen die an der Winkelhalbierenden gespie¬
gelte Halbparabel (Abbildung 157 . 3 ) .

Aufgaben
1 . Spalte die Quadratfunktion/ : x i—» x 2 in zwei umkehrbare Teilfunktionen

/ i und f 2 auf und gib jeweils die Umkehrfunktion an .
2 . Gib die Umkehrfunktion der Wurzelfunktion / : ih |/x an .
3 . Bestimme die maximale Definitionsmenge und die zugehörige Wertemen¬

ge der Funktion / und zeichne den Graphen . Ermittle gegebenenfalls die
Umkehrfunktion .
a) / (*) = V\ x \ b) f {x) = V^ x c) fix ) = - V\ x \ d) fix ) = - V^ x

* *4 .3 .4 Graph der Wurzelfunktion und Gerade

Wie bei Normalparabel und Gerade kann man auch bei der Wurzelfunktion
die Lage des Graphen zu einer Geraden untersuchen . Die Schnittbedingung
liefert eine Wurzelgleichung der Bauart ]/x = mx + t . Sie kann eine Doppellö¬
sung (Tangente ) , eine oder zwei einfache Lösungen (Sekante ) oder keine Lö¬
sung (Passante ) haben .

Aufgaben
1 . Löse durch Rechnung und Zeichnung :

a) \fx = x b) Vx = — x c) \fx = \ x \
d) ]/ \ x \ = x e) ]/ \ x

~
\ = — x f) f \ f \ = \ x \

2 . Löse durch Rechnung und Zeichnung :
a) Vx = 2x — 6 b) Vx = \ x + j
c) Vx = ix + 1 d) Vx = — jx — j

3 . a) Löse durch Rechnung ]fx — ]fa = x — a .
b) Löse a durch Zeichnung für a = 0 ; 1 ; 4 .

4 . Bestimme t so , dass y = \ x + t Tangente an den Graphen der Wurzel¬
funktion x i—►]/x ist .
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