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1 Potenzen mit natürlichen Zahlen
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500 .000 .000 .000 Mark
Banknote der Reichsbank im Wert von 500 Milliarden Mark . Aus Gründen der Spar¬
samkeit ist sie nur einseitig bedruckt . Es handelt sich um einen Entwurf , der nicht zur
Ausgabe gelangte und durch die zweifache Perforation »Wertlos Reichsbank « entwer¬
tet wurde . Entworfen und gedruckt hat sie die österreichische Staatsdruckerei zu Wien,
da 1923 die Reichsdruckerei und 30 weitere Druckereien im Deutschen Reich der
Nachfrage nach immer neuen Banknoten nicht mehr nachkommen konnten . Original¬
größe 17,4 cm x 9,4 cm . - Durch Verordnung vom 15 . 10 . 1923 wurde am 15 . 11 . 1923
die Rentenmark (RM ) als Zahlungsmittel eingeführt ; Umtauschkurs 1 RM = 1 Bil¬
lion Mark . An diesem Tag notierte der US-Dollar mit 4200000000000 Mark ; die
höchste im Umlauf befindliche Note lautete auf 100 Billionen Mark , was man natür¬
lich nicht als eine Eins mit 14 Nullen schrieb . Die Rentenmark wurde durch die neuge¬
gründete Deutsche Rentenbank ausgegeben . Gedeckt waren die Rentenmarkscheine ,
die keine Banknoten waren , durch eine Belastung der deutschen Landwirtschaft und
Industrie in Höhe von 3,2 Milliarden Goldmark . Durch Gesetz vom 30 . 8 . 1924 wurde
der Umlauf der Rentenmarkscheine eingeschränkt und die Reichsmark (RM ) gesetzli¬

ches Zahlungsmittel . Sie wurde einer Rentenmark gleichgesetzt.



1 Potenzen mit natürlichen Zahlen
als Exponenten

1 . 1 Große Zahlen

In manchen Bereichen der Wissenschaften und sogar des täglichen Lebens
gibt es Zahlen , die so groß sind , daß man sie in der üblichen Schreibweise nicht
mehr so ohne weiteres überblicken und handhaben kann .
Beispiele :

Anzahl der Menschen auf der Erde (1990) ~ 5300000000
Geldumlauf am 31 . 1 . 1988 in der Bundesrepublik Deutschland (Geld¬
scheine) « 151424000000 DM
1 Astronomische Einheit = Mittlere Entfernung Erde - Sonne ss
« 149600000000 m
1 Lichtjahr = Weg des Lichts in einem Jahr = 9460000000000000 m
Anzahl der Atome in 1 g Gold « 3057000000000000000000

Das verwendete Zahlensystem , das Dezimalsystem mit der Grundzahl 10 , gibt
uns die Möglichkeit , solche Ziffernungetüme mit vielen Endnullen mit Hilfe
von Zehnerpotenzen übersichtlicher zu schreiben . In der Wissenschaft stellt
man solche Zahlen z dar als Produkt aus einer Zahl a zwischen 1 und 10 und
der passenden Zehnerpotenz . Also

z = üi - 10"
mit 1 ^ a < 10 und n e IM

Eine derartige Darstellung einer Zahl z heißt im Englischen scientific notation ,
d . h . wissenschaftliche Schreibweise . Im Deutschen sagt man auch Gleitkom¬
madarstellung . Sie wird auch bei Taschenrechnern und Computernverwendet.
Der Faktor a heißt Mantisse *

, die Zahl n Exponent der Gleitkommadarstel¬
lung .
Die oben angegebenen Zahlen sehen in Gleitkommadarstellung so aus :

Anzahl der Menschen auf der Erde 1990 x 5,3 • 109
Geldumlauf in der Bundesrepublik 1988 x 1,51 • 10 11 DM
1 Astronomische Einheit x 1,496 • 10 11 m
1 Lichtjahr = 9,46 • 10 15 m
Anzahl der Atome in 1 g Gold x 3,057 1021

* mantissa , eigentlich mantisa (römisch -etruskisch ) = Zugabe . John Wallis (1616- 1703) führt dieses Wort
1693 in seinem De algebra tractatus - »Abhandlung über die Algebra « - in die Mathematik ein , als er seinen
Treatise of algebra von 1685 für seine Opera mathematica ins Lateinische übersetzt . Er betrachtet als Beispiel
die Dezimalzahl 3,12003416 und nennt 0,12003416 appendix ([ lat .] = Anhängsel , Beigabe ) bzw . mantissa der
Dezimalzahl . In der englischen Version heißt es nur appendage . Obwohl Mantisse später nur mehr im Zusam¬
menhang mit Logarithmen verwendet wird (siehe Seite 167) , gebraucht es 1801 Carl Friedrich Gauss (1777
bis 1855) in seinen Disquisitiones arithmeticae - »Untersuchungen über höhere Arithmetik « - im Sinne von
Wallis .
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Bei gerundeten Zahlen hat diese Schreibweise auch noch den Vorteil , daß man
die Genauigkeit , d . h . die geltenden Ziffern erkennen kann .

Beispiel :
Die Lichtgeschwindigkeit c beträgt 299793 km/s . Oft liest man auch den
Wert 300000 km/s und weiß dann nicht , wie vielen der 5 Nullen man
trauen kann . In Gleitkommadarstellung kann man die nach der Run¬
dung geltenden Ziffern erkennen :

c = 2,99793 ■ 105 km/s
c = 2,9979 • 105 km/s
c = 2,998 • 10 5 km/s
c = 3,00 • 105 km/s
Die letzte Zahl , c = 3,00 ■ 105 km/s , sagt , daß die Lichtgeschwindigkeit
auf 3 Stellen genau angegeben ist . 3 • 105 km/s hat nur noch eine geltende
Ziffer.

Für die besonders häufig gebrauchten Zehnerpotenzen mit Exponenten , die
ein Vielfaches von 3 sind , hat man eigene Namen . Ist der Exponent sogar ein
k -faches von 6 , dann enden diese Namen auf -illion , davor steht ein lateini¬
scher Hinweis auf die natürliche Zahl k . Die dazwischenliegenden Vielfachen
von 3 enden auf -illiarde .

106 = 1 Million = 1 Mio . = 1 Mill .
109 = 1 Milliarde = 1 Mrd .
1012 = 1 Billion = 1 Bio.
10 15 = 1 Billiarde
10 18 = 1 Trillion

1021 = 1 Trilliarde
1024 = 1 Quadrillion
1027 = 1 Quadrilliarde
IO30 = 1 Quintillion
usw .

In der UdSSR , in den USA und neuerdings auch in Großbritannien verwendet
man die -illiarden nicht und zählt :
one billion = 109

, one trillion = 1012
, . . .

Bei Benennungen verwendet man aus dem Griechischen entlehnte Vorsätze
für Zehnerpotenzen * :

10 1 = da = Deka 102 = h = Hekto 103 = k = Kilo

106 = M = Mega 109 = G = Giga 1012 = T = Tera

10 15 = P = Peta 10 18 = E = Exa 1021 = Z = Zetta

1024 = Y = Yotta
* 5ek<j (deka ) = zehn - äraxov (hekaton ) = hundert - xt ^ ioi (chilioi ) = tausend - nsyo ? (megas ) = groß -

yiyaq (gigas ) = riesig - xö xEpag (to teras ) = das Ungeheuer , das Ungetüm . Die Vorsätze Peta und Exa

wurden auf Grund eines deutschen Vorschlags 1975 von der 15 . Generalkonferenz für Maß und Gewicht

angenommen . Abgeleitet hat sie 1969 der Kanadier Albert J . Mettler von den griechischen Zahlwörtern

iisvte (pente ) für 5 bzw . (hex ) , das in Zusammensetzungen oft zu ££ct- (hexa -) verlängert wird , für 6, da

10 15 = (103) 5 und 1018 = (103)6 ist . Um eine Verwechslung mit den seit alters üblichen Vorsätzen penta für 5

und hexa für 6 zu vermeiden (vgl . Pentagramm und Hexameter ) , verzichtete Mettler auf das n in Peta und

auf das h bei Exa . Analog sind wohl die von der 19 . Generalkonferenz im Herbst 1991 in Paris zugelassenen

Vorsätze Zetta und Yotta als starke Verfremdung von Eitra (heptä ) = 7 bzw . ökto > (okto ) = 8 zu erklären ,

da 10 21 = ( 10 3) 7 bzw . 10 24 = (103) 8 ist .
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: Zur Geschichte der großen Zahlen

Um 3000 v . Chr . besaßen die Ägypter für jede der Stufenzah¬
len 1 , 10 , 100 , . . . , 1000000 ein eigenes Zahlwort , wie die
Siegeskeule des Königs Narmer belegt . Im Mittleren Reich
(ab 1991 v . Chr .) verliert das Wort hh , dessen Hieroglyphe ein
Gott ist, der den Luftraum umfaßt (Abbildung 10 . 1) , die Be¬
deutung von 1 Million und nimmt die von »unendlich viel«
an . Umgekehrt ging es bei den Griechen zu , wo pupioq
(myrios) = unzählig, unendlich viel zu püptot (myrioi)
= 10000 schrumpft , dem höchsten Zahlwort , das sie besa¬
ßen . Bei den Germanen und auch bei den Römern war 1000
die höchste Stufenzahl , für die es noch ein eigenes Zahlwort
gab , nämlich das althochdeutsche dusunt (woraus unser tau¬
send wurde ) bzw . das lateinische mille .

Abb . 10 . 1
Das ägyptische
Zeichen für
die Million
(Siegeskeule
des Narmer )

Natürlich rechneten die Römer mit erheblich größeren Zahlen , die sie aber multiplika¬
tiv ausdrücken mußten , fxj , die Million, drückten sie durch dedes centena milia, d . h .
durch »zehnmal jeweils hundert Tausender « aus . Bis ins hohe Mittelalter verfuhr man
nach dieser Methode sowohl in Europa wie auch bei den Arabern * . In einem histori¬
schen Text von 1250 taucht ein neues lateinisches Zahlwort auf , nämlich millio , wohl
aus dem Italienischen stammend . Mille war dort mit der Vergrößerungssilbe - on (e)
verbunden worden , so daß das neue Wort die Bedeutung von »vieltausend « bekam . In
der Kaufmannssprache erstarrt es dann zur Bezeichnung für den Wert 106 . In dieser
Bedeutung findet es sich wieder im Reisebericht Le devisement du Monde - »Die Be¬
schreibung der Welt« - des Venezianers Marco Polo (1254 - 1324 ) , den während seiner
Genueser Gefangenschaft 1298/99 sein Mitgefangener Ser Rustichello aus Pisa auf
mittelfranzösisch niederschrieb . Mathematisch taucht Million in einer 1430/38 auf
provenzalisch geschriebenen Arithmetik auf : miell milie vulgarment se exprimissen per
aquest vocable : milio - » tausend Tausend werden volkstümlich durch dies Wort ausge¬drückt : Million« - , dann 1478 in der Treviso-Arithmetik , dem Zweitältesten gedruckten
Rechenbuch ** . Und noch 1494 erklärt Luca Pacioli (um 1445 - 1517) in seiner Summa
de Arithmetica Geometria Proportioni et Proportionalität mille migliara [ . . .] che fasecondo il vulgo el milione. In Deutschland schreibt 1526 Christoff Rudolff (um 1500 -
vor 1543) kurz »Das tausentmaltausent oder million « in seiner Künstliche Rechnungmit der Ziffer vnd mit den zalPfennigen . Durchgesetzt hat sich Million aber erst durch
Christian von Wolffs (1679 - 1754) weitverbreitete Werke.
In Frankreich waren jedoch längst Namen für höhere Stufenzahlen im Gebrauch .
Jehan Adam verwendet 1475 in seinem Rechenbuch die Bildungen bymillion und tri-
million für 10 12 bzw. 10 18

. Systematisch führt die Namen Nicolas Chuquet (f 1488) ein ,ein Pariser Bakkalaureus * * * der Medizin . In seinem 1484 vollendeten und nur hand -

* Diese hatten die indischen Zähltürme nicht übernommen . Im Lalitavistara aus dem 1. Jh . v . Chr ., das le¬
gendenhaft das Leben des Buddha (t vermutlich 480 v . Chr .) erzählt , gibt es als Ausdruck seiner Allmacht
eigene Namen für die Stufenzahlen 10° bis 10 7 und dann weiter für alle Stufenzahlen der Form 10 7 • 10 2",
n = 1,2, . . . , 23 . Auch der indische Mathematiker Mahavira (9 . Jh .) verwendet eigene Namen für alle Zah¬
len der Form 10" bis hin zu n — 23.

** Älter ist der um 1475 in Trient gedruckte in baierischem späten Mittelhochdeutsch verfaßte Algorismus .
*** Niedrigster Grad der Artistenfakultät , in der die sieben artes liberales (Grammatik , Dialektik , Rhetorik

[Trivium ] , Arithmetik , Geometrie , Astronomie und Musik [Quadrivium ] ) gelehrt wurden (s. auch S . 76) .
Erstmals wurde dieser Grad von Papst Gregor IX . (1227- 1241 ) an der Sorbonne in Paris eingeführt .
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schriftlich überlieferten * Le Triparty en la Science des nombres - »Die drei Teile in der
Wissenschaft der Zahlen « - führt er die zur besseren Lesbarkeit großer Zahlen um 1200
von den Arabern übernommene Gruppierung der Ziffern in einem Beispiel an 6er-

Gruppen vor und schreibt dazu :

745324‘804300' 700023 ' 654321
lepremierpointpeult signiffiermillionLe secondpoint byIlion Le tierspoint tryIlion
Le quart quadrillion Le cinqe quyllion Le sixe sixlion Le sept .

e septyIlion Le huyf
ottyllion Le neufe nonyllion et ainsi des aultres se plus oultre on vouloitproceder ,

der erste Punkt soll die Million bezeichnen , der zweite Punkt die Billion , der dritte
Punkt die Trillion , der vierte die Quadrillion , der fünfte die Quintillion , der sech¬
ste die Sextillion , der siebente die Septillion , der achte die Oktillion , der neunte die
Nonillion , und so andere , wenn man darüber hinausgehen will .

Gottfried Wilhelm Leibniz (1646 - 1716) empfiehlt diese Bildungen bis zur Nonillion ;
»denn weiter braucht man wohl beim Gebrauch der Zahlen nicht zu gehen« . * * Chri¬
stian von Wolff hat auch für Verbreitung dieser Termini gesorgt .
Mit Milliart , aus dem unser Wort Milliarde wurde , bezeichnet Jacques Peletier (1517
bis 1582) in seiner L ’Arithmetique von 1552 die Zahl 1012

, also unsere Billion . 1558
verwendet es aber Jean Trenchant (um 1525 - ?) in seiner L ’Arithmetique bereits als

Abkürzung für 109
. In den allgemeinen Sprachgebrauch ging das Wort in Frankreich

jedoch erst im 19 . Jh . über . In Deutschland bürgerte es sich nach dem Frankfurter
Frieden vom 10 . 5 . 1871 ein, der den Deutsch -Französischen Krieg von 1870/71 been¬
dete und Frankreich die enorme Kriegskostenentschädigung von 5 Milliarden Francs

auferlegte , zahlbar innerhalb von drei Jahren .

Aufgaben
1 . Schreibe in Gleitkommadarstellung mit drei geltenden Ziffern :

a) 3140000 b) 3140000000 c) 314
d) 9999999 e) 12345678910 f) 2929292929

g) 11061106 h) 120000000000 i) 100

2 . Schreibe in Gleitkommadarstellung mit drei geltenden Ziffern :

a) Länge des Äquators = 40076000 m
b) Länge eines Erdjahrs (365,25 d) in Sekunden = ?

c) Masse der Erde = 5977000000000000000000000 kg
d) Oberfläche der Erde = 510000000000000 m2

e) Volumen der Erde = 1083000000000000000000 m 3

f) Alter der Erde = 4500000000 a

3 . Schreibe in Gleitkommadarstellung :
a) Alter des Weltalls = 20 Mrd . Jahre

* Estienne de la Roche dict Villefranche war aber im Besitz des Manuskripts und schlachtete es nach

Gutdünken für seine 1520 erschienene Larismetique nouellement composee aus , die 1538 sogar eine erweiterte

Auflage erfuhr .

** Nouveaux essais sur Ventendement humain (zwischen 1700 und 1709 entstanden , 1765 veröffentlicht ) : »Ainsi

je crois , qu ’il seroit convenable , qu ’en comptant au lieu Million des Millions , on dise Billion pour abreger , et

qu ’au lieu de Million de Millions de Millions , ou Million de Billions on dise Trilion , et ainsi de suite jusqu ’aux

Nonilions , car on ’a gueres besoin d ’aller plus loin dans l’usage des nombres .«
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12 1 Potenzen mit natürlichen Zahlen als Exponenten

b) Kürzeste Entfernung Erde - Mars = 55 Mio . km
c) Astronomische Längeneinheit Parsec = 1 pc = 30,875 Bio . km
d) Durchmesser der Sonne = 1,39 Mrd . m
e) Größter Geldschein 1) der deutschen Inflation: 100 Billionen Mark

(Kaufkraft Ende November 1923 : ^ kg Fleisch kostete 1 Bio . Mark .)
2) der ungarischen Inflation : 100 Quadrilliarden Pengö (Kaufkraft En¬
de Juli 1946 : j Laib Brot kostete 100 Quadrilliarden Pengö .)

4 . Wie viele Millionen sind
a) 3 • 106 b) 2,1 • 107 c) 3,2 • 108 d) 5 • 109 e) 8 • 1012 f) 10 • 1010 ?

5 . Wie viele Millionen m sind a) 10 Mm b) 100 Gm c) 0,1 Tm d) 100 km ?
6 . Kaiser Vespasian (9 - 79 n . Chr .)

stellte bei seiner Regierungsüber¬
nahme 69 n . Chr . fest , daß die
Staatsschulden quadrigenties mi-
lies ( = vierhundertmal tausend¬
mal ) Sesterzen * betrugen . In der
Staatsverwaltung ließ man bei ho¬
hen Beträgen die Einheit centena
milia ( = hundert Tausender ) weg.
Wie groß (in Sesterzen) sind die
von Sueton (um 70 - 130) in
Vesp . 16 überlieferten Staatsschul¬
den in Gleitkommadarstellung ?

Abb . 12 . 1 Links : Silber ; 0,87 g* *
, Präge¬

datum unbekannt . Vs . : II S(emis) [= 2 2] ;
Kopf der Roma mit Helm . - Rs . : ROMA ;
darüber die Dioskuren Castor und Pol¬
lux zu Pferde . Die göttlichen Zwillinge
waren ritterliche Nothelfer und Schutz¬
herren der Seefahrer .
Rechts : Messing ; 23,89 g , 71 n . Chr . Vs . : Lorbeerbekränztes Haupt Vespasians mit der
Umschrift IMP (erator ) CAES (ar) VESPASIAN (us) AUG (ustus ) P(ontifex ) M (axi-
mus )TR (ibunicia ) P(otestate ) P(ater) P(atriae) CO(n)S(ul) III . - Rs . : IUDAEA
CAPTA [= Judäa ist erobert ] und S (enatus ) C(onsulto ) [= auf Senatsbeschluß ] . Vor
einer Dattelpalme sitzt trauernd Judäa , hinter ihr steht der Kaiser in Rüstung . - Die
Münze erinnert an die Erstürmung Jerusalems und damit die Eroberung Judäas durch
des Kaisers Sohn Titus .

* sesterlins (lat .) , entstanden aus semis tertius — dritthalb = 2\ . Der Name rührt davon her , daß der Sesterz
der 4 . Teil des 210 v . Chr . geschaffenen denarius war , einer Silbermünze von 4,55 g , die in 10 Asse eingeteiltwurde ; der Sesterz war also 2\ Asse wert . Er wog 1,137 g = 1 scripulum (von lat . scrupus = spitzer , kleiner
Stein ) . Er blieb römische Rechnungseinheit bis 293 n . Chr . Nicht gemeint in der Aufgabe ist der unter
Augustus (63 v . Chr .- 14n . Chr .) eingeführte Sesterz , eine Messingmünze von 27,3g ( = 1 uncia ) .

** Die Abweichung vom Normgewicht 1,137 g ist verständlich , da kleinere Nominale al marco justiert wurden ,d . h ., eine größere Menge von Münzen wurde auf ihr Gesamtgewicht egalisiert . Die Spannen waren relativ
hoch . Bei größeren Werten geschah die Justierung al pezzo , d . h . stückweise .

Sesterzen .in Originalgröße

HpSt

II »
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7 . a) Jemand zahlt 100 Bio . Mark in 1 -Mark -Münzen aus . Wie viele Jahre
braucht er dazu , wenn er in jeder Sekunde eine Münze auszahlt und die
Kasse 10 Stunden pro Tag (la = 365 d) geöffnet ist?

b) Wie lange dauertdas Verfahren aus a) , wenn man den 100-Quadrilliar -
den -Schein in einzelne Pengö wechselt ?

8 . a) Wie hoch wird ein Turm (in km) , wenn man 100 Bio . Geldscheine , von
denen jeder die Dicke 0,1 mm hat , aufeinanderlegt ?
Wie viele Astronomische Einheiten (AE ) ergibt das ? Wie lang braucht
das Licht für diese Strecke ?

b) Löse a) mit 100 Quadrilliarden Geldscheinen an Stelle von 100 Bio .
Geldscheinen .

9 . In der Süddeutschen Zeitung vom 31 . Januar 1989 liest man: »2,2 Millio¬
nen Touristen besuchten 1988 Australien , 43 Prozent mehr als im Jahr
zuvor . Sie gaben , so rechnet das australische Fremdenverkehrsamt , drei
Billionen australische Dollar aus .« Wie viele Dollar gab demnach ein Tou¬
rist im Mittel aus ? Welchen Übersetzungsfehler hat der Autor wohl began¬
gen? Wie viele Dollar gab ein Tourist im Mittel vermutlich wirklich aus?

1 .2 Wiederholung der Rechengesetze für Potenzen
mit natürlichen Exponenten

Die Definition der Potenzen und das Rechnen mit ihnen kennst du schon . Zur
Erinnerung wiederholen wir :

Definition 13 . 1 : Für das Produkt a - a - . . . ■ a aus n gleichen Faktoren a
schreibt man kurz an

, gesprochen »a hoch n« , und nennt es «-te
Potenz von a ; kurz an -= a • a • . . . • a , ne {2,3,4 . . . } .

n Faktoren

Man sagt : a wird mit n potenziert , a heißt Grundzahl oder Basis,
n heißt Hochzahl oder Exponent .

Da n die Anzahl der Faktoren im Produkt angibt , muß n eine natürliche Zahl
a"

und außerdem größer als 1 sein . Kürzt man den Bruch — mit a , dann erhält
a

a n ü 2

man — = a” - 1
. Für n = 2 ergibt sich formal — = a 1

, andererseits ist
a a

a2 a - a ,— = - = a , also hegt nahe
a a

Definition 13.2 : a 1 •■= a
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Wir erinnern an die Regel für das Berechnen von Zahlentermen :

Klammer vor Potenz vor Punkt vor Strich

Beispiele :

1) 4 + 3 • 5 2 = 4 + 3 • 25 = 4 + 75 = 79
2) (4 + 3) • 52 = 7 • 5 2 = 7 - 25 = 175
3) 4 + (3 • 5)2 = 4 + 15 2 = 4 + 225 = 229
4) (4 + 3 • 5)2 = (4 + 15)2 = 192 = 361
5) ((4 + 3) • 5)2 = (7 • 5) 2 = 352 = 1225

Beachte : Manche Taschenrechner halten sich nicht an diese Vereinbarung .
Studiere also jeweils genau die Gebrauchsanweisung !

Rechengesetze

I. Multiplikation von Potenzen mit gleicher Basis
am • a" = (a ■ a ■ . . . ■ a) • (a ■ a • . . . ■ a) = a ■ a ■ . . . ■ a = am + n

m Faktoren « Faktoren m + n Faktoren

Also gilt

Satz 14 . 1 : Potenzen gleicherBasis werdenmiteinandermultipliziert, in¬
dem man die Exponenten addiert und die Basis beibehält ; kurz

am • an = am + n (m,neN ) .

Beispiele :
1) x 8 • x .8 + 19

.1 + 22) z ■z:
3) a2 ■ a ,2 + 3 ;(2 + 3 , + 4 = a 2 + 3 + 4 = a 9

II . Potenzieren einer Potenz
n Summanden m

,m + m + . . . + m(am)n = am - am ,n ' m .m • n= a! = a

n Faktoren am

Somit gilt

Satz 14.2 : Eine Potenz wird potenziert, indem man die Exponenten mit¬
einander multipliziert und die Basis beibehält ; kurz

(am)n = am n (m , ra e IN ) .
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Beispiele :
1) (x2) 3 = * 2 ' 3 = x6

2) (0 3) 5) 7 = (z3 ' 5) 7 = z( 3 ' 5 ) ' 7 = z3 ' 5 ' 7 = z105

Beachte : (x 2 )3 4= x 23
. Auf der linken Seite wird nämlich die Basis x2 mit 3

potenziert , und das ergibt x6
. Auf der rechten Seite hingegen wird die Basis x

mit dem Exponenten 23 potenziert ; da x23 die Kurzschreibweise für x (23 ) ist ,
erhält man x 8 .

III . Potenzieren eines Produkts

(a ■b)n = (a ■ b) ■ (a ■ b) ■ . . . ■ (a ■ b) — (a ■ a • . . . ■ a) ■ (b ■ b ■ b) = an ■ bn

n Faktoren bn Faktoren an Faktoren (a ■b)

Satz 15 . 1 : Ein Produkt wird potenziert, indem manjeden Faktor poten¬

ziert und die entstandenen Potenzen miteinander multipliziert ; kurz

(a • b)n = an ■ bn (n e IM) .

Offensichtlich gilt dieser Satz auch für Produkte aus mehr als zwei Faktoren ,
z . B . : (a - b - c - df = an - bn - cn - d" .

Beispiele:
1 ) (3x)4 = 3 4 ■ x4 = 81 x4

2) (0,3 • x2)4 = 0,34 • (x 2)4 = 0,008lx 8

IV. Potenzieren eines Quotienten
n Faktoren a

( :
a a a a - a - . . . ■ a a"a\ n a a
b b

' " ‘ ’
b b - b - . . . - b b"b

n Faktoren -
b n Faktoren b

Satz 15 .2 : Ein Bruch wird potenziert, indem man Zähler und Nenner
potenziert und die Zählerpotenz durch die Nennerpotenz dividiert ;
kurz

(b 4= 0 a n e IN ) .
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Beispiele :

x 4 • ( / )
'

^
(4ü3 j )3 43

(7>3 ) 3
;f 3 64ü9 j 3

W 2 \ 3 (3ßX2) 3 3 3 fl 3 (x2) 3 27ß3 X6

V. Division von Potenzen mit gleicher Basis

m Faktoren a

cC a ■ a ■ . . . ■ a
tn a 4= 0

ä a - a - . . . • a

n Faktoren a

Durch Kürzen läßt sich der rechts stehende Bruch vereinfachen :
Ist m > n , dann ergibt sich am ~ " .
Ist m = n , dann ergibt sich 1 .

1
Ist m < n , dann ergibt sich - .

a n - m

Wir halten die Ergebnisse fest in

Satz 16 . 1 : Für a 4= 0 gilt:
am _Ist m > n , dann gilt — = am ” .a
aIst m — n , dann gilt — = 1 .
an

UIst m < n , dann gilt — = —:
an an,tt —nt

Beispiele :

19 - 8

.7 - 3
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VI . Addition und Subtraktion von Potenzen

Weil sich Terme nur addieren bzw . subtrahieren lassen , wenn sie gleichartig
sind , brauchen wir für Potenzen (das sind ja speziell gebaute Terme !) keine
besonderen Regeln .

a3 + a4 kann man nicht zusammenfassen , wohl aber faktorisieren zu
a 3 (l + a) .
a 3 + b3 kann man nicht zusammenfassen .
a3 + a 3 dagegen ergibt 2a 3 .

Beachte :
3a = a + a + a
3a + a = 4a
3 a 2 + a = a (3a + 1 )
3a 2 + a 2 = 4a2

a 3 = a ■ a ■ a
3a • a = 3a 2

3 a 2 ■ a = 3a 3

3a z ■ a 2 = 3a 4

Aufgaben
1 . Berechne und vergleiche :

a) 2 3 und 3 2 b) 3 5 und 5 3

c) (2 + 5) 2 und 2 2 + 5 2 d) (17 — 12)2 und 172 —12:

e) (3 • 5)2 und 3 ■ 5 2 f ) (12 : 4)2 und 12 : 42

2 . a) (i )3 b) ( - 2 \ 2
3 ) c) (lf )4 d) ( -- ¥d 5 e) 0 ,:

f) — 0,3 3 g) 0,3 4 h) 0,03 2 0 - 2,5 2 j ) 0,:

3 . a) ( - 1 )2 b) ( - l )3 c) ( - 1 )4 d) ( -- l )5

e) ( - 1 )8 0 ( - l )17 g) ( _ 1 ) 1°3 h) ( -_ ^ 1234

i) Welche Werte können Potenzen mit der Grundzahl — 1 annehmen ?
Bei welchen Hochzahlen treten die verschiedenen Potenzwerte auf ?

a) l - f - e 2 b) (* - ! ) • (i )2
C) i - (f - i )2

d) (i - t ' i )2 e) ((i - l ) ■i )2 f) (i - f )2 1
2

a) ( - 0,1)2 b) ( - 10)2 c) ( -- o,i )3 d) ( ■- 10)3

e) ( - 0,01 )2 0 ( - 0,01 )3 g) ( -- 100)2 h) ( - 100)3

a) ~ ( - x)2 b) - ( - x )
3 C) [ - ( - ^ )] 2 d) [ - ( - x ) ]

3

Schreibe als Potenz : mit größtmöglichem Exponenten aus fM :

a) 216 b) 216 c) 0,216 d) 0,25 e) - 0,125
f) - 1 g) 0,008 h) 343

27 i) 1024 j) 59049
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8 . Schreibe das Ergebnis in Gleitkommadarstellung :
a) 2 - 103 - 4 - 105 b) 3 - IO 7 - IO 3 c) - 1,5 • 103 • ( - 1,8 ■ 109)
d) 6,25 • 108 • 1,6 • 107 e) 9,4 ■ 103 • 8,7 ■ 105 • 5,5 • 102

9 . a) x2 ■x 1 b) x • x 3 • x4 c) (a + bf ■ (a + b) 5

d) ( - z) 5 • ( - z) e) ( — ab)3 ■ ( — ab)5 f) -

10 . Berechne und vergleiche:
a) (22) 3 und 2 23 b) (2 3 )2 und 232
c) (3 2) 3 und 3 23 d) (3 3) 2 und 332

11 . Berechne und vergleiche :
a) (x2) 3 und x23 b) (( — x)2)3 und ( — x)23
c) (( — x)3 )2 und ( — x)32 d) ( — x 3 )2 und — x32

12. a) (x * y * z) 3 b) (x2 • y)4 c) z 5 • ( y6 • z)3

13. Schreibe das Ergebnis in Gleitkommadarstellung:
a) (3 • 102)4 b) (1,5 - IO7) 3 c) ( - 0,6 - IO9) 5 d) ( - 5 103)4

14 . Berechne und vergleiche :
a) (2x 2) 3 und (2x)23
c) (2 ( — x) 3) 2 und (2 ( - x))32

b) 2 (x2) 3 und 2x 23
d) 2 (( — x) 3) 2 und 2 ( — x) 32

d)
a + b

ab

b)

e)

,2 \ 3

(ab)4 • c x 2

(acf ■ b4

c)

f)

a2 b
'xS

3
~

,7[ fl 7
( 6 c 2

)
4

]
3

6 "14

16 . a) 7c

e)

a
V1

3 26

312

») rS

o

a
a5

241

c)

g)

a ■ a
3 4a ■ a

7 3 • 2 8

[ ( a
3 6 4

)
2 • c 6

]

2 19

2 35 . 5 20 ^
14 5 . 2 3

17 . Berechne unter Beachtung der möglichen Fälle :

d)

h)

a2
n

am um + 2
c) -

„ TT d)a) b)a a U
e) 3 n + i

: 34 3 4 : 3 n + 1 g) 3 2n + 1 : 3 2n ~ 1

222

15 5 • 23

3 4 • 20 3

. .n + 3

„m + 1

18 . Schreibe das Ergebnis in Gleitkommadarstellung :
3 • 107

, 10 19
x 1,8 • 107

s 10a )
1 . 5 - 10 3 b) - - C) ~

r\ TTöTT d)2,5 ■ 105 9 - 10 8 • IO 4



1 .2 Wiederholung der Rechengesetze für Potenzen mit natürlichen Exponenten 19

19. Schreibe das Ergebnis in Gleitkommadarstellung:
a) 3 ■ 105 + 2 • 10 6

c) (4 • 103 - 104) ■ 3 • 103
b) 3,1 • 104 - 2,5 • 103
d) 10 - 102 + 103 - 104

20 . Vereinfache:

a) 0,1252 + " • 44

17 b 5 y2 zt
21 . a) (1 + a2 + fl4) (fl2 — 1 ) b) (a2 — 1 ) (a2 + 1 ) (a4 + 1)

c) (fl4 — a2 b + b2) (fl2 + b)
d) (a 3 + 2a2 b + lab 2 + b z) (a 3 — la 2 b + lab 2 — b 3)

22 . a) (x 8 + x 6 - x4 + x 2 + 1 ) (x4 - x 2 + 1 )
b) (a 7 b2 + 3a* b6 - lab 10) (a8 b + 4a 5 b 5 - 3 a2 b 9)
c) (x 3 y 1 — 5x 5 y4 — 6x 7 j ) (xy 9 + 4x 3 y 6 — 6x 5 y 3)

23 . a) (fl2 + 5a) 3 b) (x4 - l ) 3 c) (x 3 - l )4 d) (1 + a 2 + a4)3

24 . a) Wie viele Astronomische Einheiten ergeben 1 Lichtjahr ?
b) Wie viele Lichtjahre ergeben 1 pc ? (Vgl . Aufgabe 12/3 . c) .)
c) Wie viele Sekunden braucht das Licht von der Sonne bis

1) zur Erde ,
2) zum meist sonnenfernsten Planeten Pluto , der in einer durchschnitt¬

lichen Entfernung von 5,91 • 1012 m die Sonne umkreist ,
3) zum sonnennächsten Planeten Merkur (5,791 ■ 10lo m)?

25 . Ein Blatt Papier der Dicke 0,1 mm wird lOOmal gefaltet . Wie dick ist das
entstandene Gebilde ?

26 . Aufgabe 79 aus dem Papyrus Rhind (entstanden um 1800 v . Chr . , geschrie¬
ben um 1550 v . Chr .) taucht bis ins hohe Mittelalter in vielen Abwandlun¬
gen auf und findet schließlich ihren Niederschlag in einem englischen Kin¬
derreim (Aufgabe 139/14) :
[In einem Dorf gibt es] 7 Häuser . [In jedem Haus leben] 7 Katzen . [Jede
Katze frißt ] 7 Mäuse . [Jede Maus frißt ] 7 Ähren Dinkel . * [Vonjeder Ähre
könnte man im nächsten Jahr ] 7 Scheffel [ernten .]
a) Wieviel gibt es von jeder Sorte?
b) Wie groß ist die im Papyrus Rhind angegebene Summe aller Sorten?

Dinkel , eine sehr winterharte und anspruchslose alte Kulturform des Weizens , auch Spelt oder Spelz genannt .
Unreif geernteter und gedarrter Dinkel heißt Grünkern . - 1 Scheffel = 4,805 1.
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1 .3 Polynomdivision*

Addieren , Subtrahieren und Multiplizieren von Polynomen hast du im Laufe
der letzten Jahre gelernt , ferner auch , wie man ein Polynom durch ein Poly¬
nom ersten Grades dividiert . Dieses Verfahren soll jetzt auf Divisorpolynome
höheren Grades erweitert werden . Dabei beschränken wir uns zunächst auf
den Fall , daß Dividend und Divisor nur eine , und zwar die gleiche Variable
enthalten .

Beispiel 1 :
(12x 5 + 12x - 54x 3 - llr 2 - 12 - 10x4) : (2x 2 - 6 - 3x) =
Die Division wird sich leichter durchführen lassen , wenn man die Polyno¬
me zuerst in gleicher Weise ordnet , und zwar nach fallenden Potenzen der
Variable .
(12x5 - 10x4 - 54x3 - llx 2 + 12x - 12) : (2x 2 - 3x - 6) =
Man beginnt nun bei der vorliegenden Ordnung die Division mit den
jeweils höchsten Potenzen , also mit 12x5 : 2x 2

, und erhält 6x 3
. Das Er¬

gebnis 6x 3 schreibt man rechts vom Gleichheitszeichen als ersten Sum¬
manden des Quotienten an und multipliziert damit dann den Divisor
2x 2 — 3x — 6 . Man erhält als Produkt 12x 5 — 18x4 — 36x 3

. Dieses wird
vom Dividendenpolynom subtrahiert . Das Verfahren wird so lange fort¬
gesetzt , bis sich als Rest entweder null oder ein Polynom ergibt , dessen
Grad niedriger ist als der Grad des Divisorpolynoms .

(12x5 - 10x4 - 54x3 - llx 2 + 12x - 12) : (2x2 - 3x - 6) = 6x3 + 4x2 - 3x + 2
— (12x5 — 18x4 — 36x 3 )_

8x4 — 18x3 — llx 2 + 12x — 12
— (8x4 — 12x3 — 24x 2)_

— 6x 3 + 13x2 + 12x — 12
- ( — 6x 3 + 9x 2 + 18x)

4x 2 — 6x — 12
— (4x 2 — 6x — 12)

(T

Falls sich nicht null als Rest ergibt , muß das Restpolynom durch das Divisor¬
polynom dividiert und der Bruchterm zum Ergebnis auf der rechten Seite
addiert werden , damit das Gleichheitszeichen zu Recht besteht . Dies ent¬
spricht dem Vorgehen bei der Division ganzer Zahlen :
18 : 7 = 2 Rest 4 , d . h . , 18 : 7 = 2 + $ = 2$ .
Hierzu nun

Die Division von Polynomen erscheint nicht vor dem 16 . Jh . Als erster bewältigte sie Michael Stifel
(14877- 1567) in seiner Arithmetica Integra 1544.
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Beispiel 2:

(x6 — x 3 — x2 — 2) : (x 3 + x — 3 ) = x 3 — x + 2 H— ^
- ——

^ 6 i 4 n 3 \ X + X — 3
— (x° + x — 3x J)

— x4 + 2x 3 — x 2 — 2
— ( — x4 — x2 + 3x)

2x 3 — 3x — 2
— (2x 3 + 2x — 6)

— 5x + 4

Nun wenden wir uns dem Fall zu , daß mehr als eine Variable Vorkommen .
Dann wählt man eine der Variablen aus und ordnet wie in den obigen Beispie¬
len nach fallenden Potenzen dieser Variable . Die Durchführung der Division
zeigt

Beispiel 3:
(6x4 + 13ax 3 + 2a 2 x2 — a 3 x — 2a4) : (2x 2 + 3ax — 2a 2) = 3x2 + 2ax + a2

— (6x4 + 9ax 3 — 6a 2 x2)
4ax 3 + 8a2x 2 — a 3 x — 2a4

— (4ax 3 + 6a 2 x2 — 4a 3 x)_
2 a2x 2 + 3a 3 x — 2a4

— (2a 2 x2 + 3a 3 x — 2a4)
Ö

Hätte man in Beispiel 3 die Polynome nicht nach x , sondern nach a geordnet ,
so hätte sich
( — 2a4 — a 3 x + 2a 2 x2 + 13ax 3 + 6x4) : ( - 2a 2 + 3ax + 2x 2 ) = a2 + 2ax + 3x2

ergeben , wie du leicht nachrechnen kannst .

Aufgaben
1 . a) (x 3 — 4x 2 + lOx — 12) : (x — 2)

b) ( — 6x 3 + 23x 2 — 23x + 56) : (7 — 2x)
c) (10a4 + 13a 3 - 3a2 + 2a + 3 ) : (2a + 3 )
d) ( iS * 3 ~ iw *2 + M* - 2 ) : (° >3 * - 5)
e) (84x 2 — 68x + 8) : (2x — f )

2 . a) (10x4 + 15x3 + 23x 2 - 9x + 9) : (10x2 - 5x + 3)
b) (4x4 — 17x2 + 4) : (4x 2 — 1 )
c) (64a4 - 8a 3 - 80a 2 + 5a + 25) : (8a2 - 5)
d) ( - 3 b* + 8 b 3 - 14b2 + U - 3) : ( - b2 + 2b - 3)
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3 . a) (x 5 + 2x 4 — x 3 — x 2 — 2x + 1 ) : (x 2 + 2x — 1 )
b) ( — 2x 6 + 12x 3 + 8x 2 + 16x - 10) : (2x 3 + 4x - 2)
c) ( — 2x 6 + 12x 3 + 8x 2 + 16x - 10) : ( - x 3 + 2x + 5)
d) (2x 6 - 3x 5 + llx 4 + llx 3 - llx 2 + 14x ) : (x 2 - 2x + 7)
e) ( — 0,06x 5 + 0,13x 4 - 0,29x 3 + 0,62x 2 - 0,3x + 1 ) : (0,3x 2 - 0,2x + 1 )

4 . a) (a 2 b 2 + 2a 2 b + a 2 + 2ab 2 + 4ab + 2a + b 2 + 2b + 1 ) : (ab + a + b + 1 )
b) ( — a 3 + 3a 2 b — 2a 2 — ab 2 + 4ab — a — b 3 + 2b 2 + b — 2) :

: ( — a2 + 2 ab + bz — 1 )
• c) ((a — l )x 4 — (3 a — 4)ax 3 + 3 a 2 (a — 2)x 2 + a 3 (a + 2)x + a4) : (ax + a —

d) (a 3 bc — 2 a 2b2 c + 2a 2 bc 2 + ab 3 c — 2ab 2 c 2 + abc 3) : (a — b + c)
e) (9x 4 — 4a 2x 2 + 4a 3 x — a4) : (3x 2 — 2ax + a 2)

5 . a) [(16x 4 - 32x 3 + 24x 2 - 8x + 1 ) : (2x - 1 )] : (2x - 1 )
b) (8x 3 — 12x 2 + 6x — 1 ) : (4x 2 — 4x + 1 )
c) (x 3 + y 3 ) : (x + j )
d) (x 3 - y 3 ) : (x - y)
e) (x 5 — 1 ) : (x — 1 )
f) (128x 7 — 1 ) : (2x — 1 )
g) (1 — 0,008x 6) : (10 — 2x 2)

6 . Divisionen , die nicht aufgehen :
a) (2x 5 + 2x 4 — x 3 — x 2 — 2x + 1 ) : (x 3 + 2x — 1 )
b) (12x 3 + 8x 2 + 16x — 10) : (2x 3 + 4x — 1 )
c) ( — 2x 6 — 10) : ( — x 3 + 2x + 5)
d) (llx 3 — llx 2 + 14x ) : (x 2 — 2x + 7)
e) (8x 3 + 2x 2 — 3x + 1 ) : (2x + 1 )
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